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Abstrakt

Tato práce se zabývá vývojem nové kompresńı metody založené na LZW a za-
rovnáńı řetězc̊u. Algoritmus je pojmenován ALZW a je navržen pro kompresi
velmi podobných řetězc̊u. Daná množina řetězc̊u je komprimována pomoćı
předem určeného referenčńıho řetězce. V porovnáńı s podobně zaměřeným
RLZ a všeobecně použitelným GZipem umožňuje ALZW velmi rychlou kom-
presi a pro podobné genetické sekvence dosahuje dobrých kompresńıch poměr̊u.
V př́ıpadě lidského chromozomu 20 dosahuje algoritmus dokonce lepš́ıch vý-
sledk̊u, něž podobně zaměřený algoritmus RLZ.

Kĺıčová slova datová komprese, LZW, ALZW, velmi podobné řetězce, DNA,
vyhledáváńı v komprimovaném textu
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Abstract

A new compression method based on LZW and sequence alignment is presen-
ted in this thesis. The algorithm is called ALZW and it is designed for com-
pression of Highly Similar Strings. Strings in a given set are compressed
relatively to a given reference sequence. Compared to similarly targeted RLZ
and general purpose GZip, the algorithm offers very fast compression and it
achieves good compression ratios for similar genomic sequences. It is even
able to outperform the RLZ algorithm in case of human chromosome 20.

Keywords data compression, LZW, ALZW, highly similar strings, DNA,
searching in compressed texts
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Introduction

As the DNA sequencing methods have become relatively cheap and fast, a lot
of DNA sequencing projects, such as 1000 Genomes1 and Genome 10K2, have
emerged. These projects yield massive amounts of data. In order to minimize
storage costs, an effective compression method is needed. It is known that
similarity of any two human genomes is more than 99%. Similarly, there
is only a small difference between genomes within particular species. This
redundancy can be used for compression. The method presented in this thesis
is focused on compression of highly similar DNA sequences; however, it can
be easily generalized for an arbitrary input alphabet.

Related work

Except all general purpose compression methods, such as Lempel-Ziv family,
there are several compression methods designed specifically for compressing
biological sequences.

RLZ presented by S. Kuruppu et al. in [1] is one of these methods. This
method is designed for compression of a set of highly similar DNA sequences.
The approach is to compress all sequences in a dataset relatively to a ref-
erence sequence using LZ77. It also supports efficient random access to the
compressed sequences. An optimized version of RLZ was presented in [2].
This version improves compression ratio of the original RLZ algorithm by
exploiting non-greedy parsing.

A method very similar to RLZ was presented by S. Grabowski and S. De-
orowicz in [3]. They used the same LZ77 compression scheme with a single
reference sequence but there are several differences in comparison with RLZ.
For example matches are found using hashing rather than suffix array and

1http://www.1000genomes.org/
2https://genome10k.soe.ucsc.edu/
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Introduction

extra phrases from compressed sequences are used in addition to the reference
sequence.

Another interesting method by P. Procházka and J. Holub presented in [4]
and called BIO-FMI is also designed for compressing sets of similar biological
sequences. It is based on tracking changes between compressed sequences and
a given reference sequence using known alignments and Wavelet Tree FM-
index.

There are also other DNA related compression algorithms such as Gen-
Compress, biocompress-2 and Comrad. GenCompress, presented by X. Chen
et al. in [5], is based on finding approximate repeats in DNA sequences.
Biocompress-2 was presented by S. Grumbach and F. Tahi in [6] and it is
based on detection of regularities, such as palindromes, in a given sequence.
Comrad was presented by S. Kuruppu et al. in [7] and it is based on identify-
ing exact repeated content in collections of input sequences using multi-pass
iterative dictionary construction.

Structure of the thesis

The text starts with definitions of notions from the theory of formal languages
and the graph theory that are used in the following chapters. Chapter 2
contains a description of the original LZW algorithm followed by considered
modifications and the final version of the proposed ALZW algorithm. The
issue of searching in ALZW compressed texts and interesting implementation
details are discussed in Chapter 3 and 4. The thesis is ended with experi-
mental evaluation of the ALZW compression and decompression algorithms,
presented pattern-matching algorithms and comparison with other compres-
sion methods.
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Chapter 1

Definitions

All necessary notions from the theory of formal languages and graphs used
throughout this thesis are defined below in this chapter.

1.1 Graph theory

Definition 1.1. Graph G is a pair G = (V,E) of vertices (nodes) V and
edges E, where V is a finite set and ∀e ∈ E : e = {u, v} ∧ u, v ∈ V .

Definition 1.2. Directed graph G is a pair G = (V,E) of vertices V and
edges E, where V is a finite set and E ⊆ V × V .

Definition 1.3. Subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′),
where V ′ ⊆ V and E′ ⊆ E.

Definition 1.4. Given a graph G = (V,E) and e ∈ E such that e = {u, v},
where u, v ∈ V , nodes u and v are called neighbours and relation between u, v
and e is called incidence.

Definition 1.5. Degree of a node is number of incident edges with the node.
Similarly input and output degree of a node is defined for directed graphs as
number of edges entering and exiting the node.

Definition 1.6. Path in a graph G = (V,E) is defined as a sequence:

v1 e1 v2 e2 v3 . . . vn−1 en−1 vn ,

where vi ∈ V for all i ∈ {1, 2, . . . , n}, ei ∈ E and ei = {vi, vi+1} for all
i ∈ {1, 2, . . . , n−1} and all vertices are distinct. If the first and the last vertex
are not distinct, then the path is called a cycle. Length of a path is number of
its edges.

Remark. Note that the same definition of the path, cycle and their lengths
can be also done for directed graphs.

3



1. Definitions

Definition 1.7. Distance between two nodes in a graph is length of the shortest
path between them.

Definition 1.8. An undirected graph is connected if there is a path between
any two nodes. A directed graph is (weakly) connected if its undirected equival-
ent is connected. The directed graph is strongly connected if there is a directed
path u→ v and v → u for any pair of vertices u and v.

Definition 1.9. Tree is a connected undirected graph without cycles. Leaf is
a node with degree 1, all other tree nodes are internal.

Definition 1.10. Directed tree is a directed graph which is a tree if directions
of edges are ignored. Rooted tree is a directed tree with one node called a root
and all edges oriented from the root to leaves.

Definition 1.11. Child of a node u in a rooted tree T = (V,E) is any node
v ∈ V , for which (u, v) ∈ E.

Definition 1.12. Parent of a node u in a rooted tree T = (V,E) is a node
v ∈ V , for which (v, u) ∈ E.

Definition 1.13. Ancestor of a node u in a rooted tree is defined as any node
except u on the path from the root to the node u.

Definition 1.14. Tree depth is defined for rooted trees as maximum distance
between the root and any leaf.

1.2 Theory of formal languages and data
compression

Definition 1.15. Alphabet Σ is an arbitrary non-empty finite set of symbols.

Definition 1.16. String ω over an alphabet Σ is a finite sequence of symbols
from Σ. Empty string, i.e. sequence containing no symbols, will be denoted by
ε.

Definition 1.17. Given an arbitrary string ω of length n over an alphabet Σ
such that ω = a1a2 . . . an, where ai ∈ Σ for all i ∈ {1, 2, . . . , n}, length of the
string will be denoted by |ω|. It also holds that |ε| = 0 for any Σ.

Definition 1.18. Given an arbitrary string ω = a1a2 . . . an over an alphabet
Σ, substring α of length m starting at position i (may be also called a factor)
is defined as:

α = ω[i..i+m− 1] = aiai+1ai+2 . . . ai+m−1 ,

where 1 ≤ i and i+m− 1 ≤ n.

4



1.2. Theory of formal languages and data compression

Definition 1.19. Given an arbitrary string ω = a1a2 . . . an over an alphabet
Σ, subsequence α of length m is defined as:

α = ai1ai2 . . . aim ,

where 1 ≤ i1 < i2 < · · · < im ≤ n.

Definition 1.20. Given an arbitrary string ω = a1a2 . . . an over an alphabet
Σ, prefix α of length m ≤ n is defined as a substring of length m starting at
position 1. A prefix of length m < n is called a proper prefix.

Definition 1.21. Given an arbitrary string ω = a1a2 . . . an over an alphabet
Σ, suffix α of length m ≤ n is defined as a substring of length m starting at
position n−m+ 1. A suffix of length m < n is called a proper suffix.

Definition 1.22. A proper prefix of a string, which is also a suffix of the
string, is called a border.

Definition 1.23. Language L over an alphabet Σ is a non-empty set of strings
over the alphabet Σ.

Definition 1.24. The set of all strings over an alphabet Σ will be denoted by
Σ∗. Σ+ denotes the set of all non-empty strings over the alphabet Σ.

Definition 1.25. Finite automaton FA is a tuple FA = (Q,Σ, δ, q0, F ), where
Q is a non-empty finite set of states, Σ is an input alphabet, δ is a function
δ : Q × Σ → P(Q), where P(Q) denotes powerset of Q, q0 ∈ Q is an initial
state and F ⊆ Q is a set of final states.

Definition 1.26. Deterministic finite automaton DFA = (Q,Σ, δ, q0, F ) is
a finite automaton, where δ : Q× Σ→ Q.

Definition 1.27. Suffix-trie of a string ω over an alphabet Σ is a rooted
tree, where each edge is labeled by a symbol from Σ, so that all paths can be
represented as strings over Σ. There are no two outer edges of any node labeled
by the same symbol. Suffix-trie contains all suffixes of ω and all paths starting
in the root node are prefixes of a suffix of ω. This also implies that all paths
in the suffix-trie are factors of ω.

Definition 1.28. Code K is a triplet K = (S,C, f), where S is a finite set
of source units, C is a finite set of codewords and f is an injective mapping
S → C+.

Definition 1.29. Let us denote B as a language of all non-empty strings over
a binary alphabet {0, 1}. Binary encoding of a language L with an alphabet Σ
is a code KL,B = (Σ, {0, 1}, f). Given any string ω ∈ L of length n such that
ω = a1a2 . . . an, function b : L → B defined as b(ω) = f(a1)f(a2) . . . f(an)
will be used as a shorthand notation for binary encodings.

5



1. Definitions

Remark. Note that the binary encoding can be also defined for finite sets of
strings as a simple concatenation of binary encodings of all strings in a par-
ticular set.

Definition 1.30. Compression ratio of a binary encoding b1 in comparison
with a binary encoding b2 for a string ω ∈ L, where L is a language, is defined
as:

cr =
|b1(ω)|

|b2(ω)|
. (1.1)

Definition 1.31. Suppose we have a language L over an arbitrary finite al-
phabet Σ and function d : L × L → N defined as Levenshtein distance [8].
A set of Highly Similar Strings (HSS) is a finite set H ⊆ L where:

∀x, y ∈ H : x 6= y ⇒ 1−
d(x, y)

|x|+ |y|
> σ (1.2)

and σ is a minimum required similarity.

Definition 1.32. The problem of compressing HSS is a problem of finding
a binary encoding:

bHSS : {H : H ⊆ L, H is a set of HSS} → B ,

for which cr < 1 compared to a given binary encoding of the language L.

Definition 1.33. Given an information source S ∈ {s1, s2, . . . , sn} and prob-
abilities of source units P = {p1, p2, . . . , pn}, average entropy of the source is:

H(S) = −
n
∑

i=1

pi log2 pi . (1.3)

Definition 1.34. Given a message T ∈ S+, where S is an information source,
empirical entropy of 0-th order is defined as:

H0(T ) = −
∑

a∈S

na
T

|T |
log2

na
T

|T |
, (1.4)

where na
T is number of symbols a in T . Empirical entropy of k-th order is

defined as:

Hk(T ) =
1

|T |

∑

w∈Sk

|wT |H0(wT ) , (1.5)

where wT is concatenation of symbols following w in T .

6



Chapter 2

Algorithm development

Several modifications of the original LZW algorithm were studied in order to
create an algorithm for compression of HSS. All of these modifications, the
original algorithm and also the final version of the compression algorithm will
be described in this chapter.

2.1 Lempel-Ziv-Welch algorithm

This general-purpose compression algorithm, originally presented by T. A.
Welch in [9], is based on a tree-like dictionary, where numbers from N are
sequentially assigned to all nodes of the tree except its root. The dictionary
initially contains only symbols from the used input alphabet. On each match,
a corresponding phrase in the dictionary is extended by one symbol and the
algorithm outputs number of the phrase. Pseudocode of this algorithm fol-
lows (see Algorithm 1). An example of an LZW dictionary is presented in
Figure 2.1.

The main disadvantage of this algorithm in context of sets of HSS is its
focus on repetitions in a single sequence. In addition, a phrase can be extended
only by a single character on each occurrence of the phrase. This drawback
is partially covered by LZY [10], LZMW [11] and LZAP [11]. These methods
adapt faster to a given input; however, they are focused on compression of
a single sequence rather than a set of HSS. They still need multiple occurrences
of phrases to be able to adapt to them. The following dictionary properties
has turned out to be important (not only) for compression of HSS:

1. fast dictionary adaptation – A complete phrase should be inserted into
the dictionary as soon as possible to ensure that matching subsequences
between two strings are encoded using a small amount of codewords (one
in the best case).

2. high dictionary depth – Phrases should be as long as possible, so that
lengths of codewords are not longer than phrases they represent.

7



2. Algorithm development

Algorithm 1 Lempel-Ziv-Welch algorithm (LZW)

Input: string S = s1s2 . . . sn over an alphabet Σ
Output: LZW (S)

1: D ← ∅ ⊲ dictionary
2: P ← ε
3: for all a ∈ Σ do

4: InsertPhrase(D, a)

5: for i← 1..n do

6: N ← P.si
7: if N ∈ D then

8: P ← N
9: else

10: output EncodePhrase(D,P )
11: InsertPhrase(D,N)
12: P ← si

3. small dictionary size – It is important to keep size of the dictionary (i.e.
number of nodes) as low as possible to keep memory usage and lengths
of codewords down.

2.2 Considered modifications

The first considered modification of the original algorithm originates in an
observation that LZW dictionaries are subgraphs of suffix-tries. This modi-
fication is based on construction of suffix-trie for a given reference sequence.
Then the suffix-trie is used as a dictionary for compressing the other sequences
from a given set of HSS. The method greedily covers all sequences from the
set by factors of a chosen reference sequence. Omitting the fact that the
greedy coverage is not the best approach (see [2]), the greatest drawback of
this modification is its memory complexity implied by exploiting suffix-tries.
Their space complexity is O(n2), where n is length of an input string.

The second modification was an attempt to address this drawback by split-
ting all sequences in a given set to blocks of a fixed size. Unfortunately, this
method complicates later searching in compressed sets since a codeword may
represent different phrases in different blocks.

The third modification addresses the same problem by limiting depth of the
dictionary. This approach made the whole compression ineffective as lengths
of used codewords became greater than lengths of phrases they represented.

The idea of the next modification was a stage to the final version of the
compression algorithm. It is focused on pruning the dictionary from phrases
which are not used during compression. It requires phrase counting and two

8



2.3. Sequence alignment
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Figure 2.1: Example of an LZW dictionary for input string ACACGT-
CCGCAGGTAACG.

passes over the whole set of sequences. Except many other complications, the
most important one is the fact that the dictionary is not implicitly encoded in
the sequence of codewords. It would require saving the dictionary explicitly
which would make the compression ineffective.

The final version of the compression algorithm is focused on building the
dictionary only from phrases used in compression rather than pruning phrases
that are not used. The method is based on sequence alignment and expects
a set of aligned sequences as its input.

2.3 Sequence alignment

Sequence alignment is a well-known problem closely related to finding the
longest common subsequence in a set of at least two strings. We talk about
pairwise alignment if the set contains exactly two strings. Otherwise, we talk
about multiple alignment. The basic approach for construction of a pairwise
alignment of strings X = x1x2 . . . xn and Y = y1y2 . . . ym is based on comput-
ing the following function using dynamic programming:

lcs(i, j) =



















0 if i = 0 or j = 0

lcs(i− 1, j − 1) + 1 if xi = yj
max({lcs(i− 1, j),

lcs(i, j − 1)})
otherwise

(2.1)
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2. Algorithm development

and then reconstructing the alignment using backtracking.

A generalized version of this algorithm by S. B. Needleman and C. D.
Wunsch [12] is used in bioinformatics for global alignment (i.e. alignment of
whole strings) of protein/nucleotide sequences. This method uses gap pen-
alties and special scoring matrices as weight functions. Here is an example
of the function computed by Needleman-Wunsch algorithm using gap penalty
−1 and PAM250 scoring matrix:

nw(i, j) =































−j if i = 0

−i if j = 0

max({nw(i− 1, j − 1) + PAM250(xi, yj),

nw(i− 1, j)− 1,

nw(i, j − 1)− 1})

otherwise

. (2.2)

There is also a variant of the Needleman-Wunsch algorithm presented by T. F.
Smith and M. S. Waterman in [13] for computing so called local alignments.
Local alignments are substring pairs/tuples with high similarity.

Here is an example of a simple global pairwise alignment created by solving
the longest common subsequence problem:

ACACGTCCGC - - AGGTAACG
| | | | | | | | | | | | | | |
ACACGTACGCACAG - - A ACG

Time complexity of all three of these algorithms is Θ(mn) which makes
them useless for large sequences. Fortunately, many heuristic algorithms for
local and global alignment have been developed for use in bioinformatics (e.g.
ACANA [14], ClustalW [15], BLAST [16], SPA [17]).

2.4 Alignment-based LZW algorithm (ALZW)

As already mentioned, the final version of the compression algorithm pro-
posed in this thesis expects a set of aligned sequences as its input (pairwise
alignments with a single reference sequence are enough). Selection of an al-
gorithm for construction of sequence alignments is outside of the scope of this
thesis since different algorithms are suitable in different contexts. Moreover,
genomes of same species are usually sequenced in short “reads”, which are
aligned to a single reference genome, so all new sequences are saved aligned to
that reference genome. For example, this is the case of 1000 Genomes project.
There is no need for alignment computation in order to use ALZW algorithm
for compression of sequences from 1000 Genomes project.

The process of compression (Algorithm 2) works as follows: The dictionary
initialization is similar to the original LZW algorithm. The dictionary contains
only the input alphabet and two extra codewords for insertion and deletion.
Detailed initialization is not included in the pseudocode in order to keep it

10



2.4. Alignment-based LZW algorithm (ALZW)

simple. The insertion and the deletion placeholders are denoted by INS and
DEL. For each pairwise alignment, the algorithm sequentially processes pairs
of aligned symbols. The algorithm distinguishes four basic cases:

1. sequence of deletions,

2. sequence of insertions,

3. sequence of symbols that corresponds to a phrase in the dictionary and
contains at least one mismatching symbol,

4. sequence of symbols containing no mismatches.

In case of deletion (Algorithm 3), the special codeword for deletion is output
followed by number of deleted symbols. In case of insertion (Algorithm 4),
the inserted subsequence is greedily covered by phrases already present in
the dictionary. Then the insertion codeword is output followed by number
of inserted phrases and codewords of these phrases. (The information of the
number of inserted phrases is used later on decompression as the reference
sequence pointer must not be incremented for these phrases.) The numbers of
inserted phrases and deleted symbols are encoded using Elias delta code [18]
denoted by ∆. The last two cases are handled by Algorithm 5. Let us denote
the dictionary by D, the current subsequence by w, the next symbol by a and
test of a phrase existence by ∈P . The algorithm always starts with empty w
and it must handle four different situations:

1. w ∈P D, wa ∈P D,

2. w ∈P D, wa /∈P D and wa contains at least one mismatching symbol,

3. w ∈P D, wa /∈P D, wa contains no mismatching symbols and ID of the
next node added into D would be a power of two (therefore the width
of all codewords3 would be increased),

4. w ∈P D, wa /∈P D and wa contains no mismatching symbols.

In the first case, the algorithm simply extends the current subsequence by a.
In the second case, the algorithm outputs the codeword for w and a is used as
the first symbol of the following subsequence. In the third case, the algorithm
outputs separately the codeword for w followed by the codeword for a. The
whole phrase wa is then inserted into the dictionary and the algorithm starts
over with empty w. This procedure is hidden inside the InsertPhrase function
in Algorithm 5 on line 8. In the last case, the algorithm inserts wa into the
dictionary and extends the current subsequence by a.

For example, let us suppose we would like to compress the sequence from
the alignment presented above in Section 2.3. The first sequence from the

3number of bits required for encoding a codeword

11



2. Algorithm development

Algorithm 2 Alignment-based LZW algorithm (ALZW) – compression

Input: set S = {S1, S2, . . . , Sm} of sequences aligned to a single reference
sequence R

Output: ALZW (S)

1: D ← InitDictionary()
2: for i← 1..m do

3: EncodeSequence(D,Si, R)

4: function EncodeSequence(D,S = s1s2 . . . sn, R = r1r2 . . . rn)
5: i← 1
6: while i ≤ n do

7: if si = DEL then

8: i← EncodeDEL(i,D, S)
9: else if ri = INS then

10: i← EncodeINS(i,D, S,R)
11: else

12: i← EncodeMM(i,D, S,R)

Algorithm 3 ALZW deletion encoding

1: function EncodeDEL(i,D, S = s1s2 . . . sn)
2: j ← i
3: while sj = DEL ∧ j ≤ n do

4: j ← j + 1

5: output EncodePhrase(D,DEL)
6: output ∆(j − i)
7: return j

alignment will be our reference sequence. Our input alphabet will be Σ =
{A,C,G, T}. Since the dictionary initially contains only six nodes – the in-
put alphabet, the insertion codeword and the deletion codeword (the root
node does not count), we need only three bits to encode a codeword. The
algorithm reads the first three symbols (subsequence ACA) and extends the
corresponding phrase in the dictionary. It cannot continue extending the cur-
rent subsequence since the next node added into the dictionary would have
ID = 8 and we would need one more bit to encode the codeword. There-
fore the algorithm outputs codeword 7 (phrase ACA) followed by codeword
1 (phrase C) and inserts ACAC into the dictionary. The algorithm continues
by reading the next two symbols (subsequence GT). The next symbol is A.
Since the phrase GTA is not in the dictionary and A is a mismatch, the al-
gorithm outputs codeword 9 (phrase GT) and A is used as the first symbol of
the following subsequence. The current subsequence is extended by one more

12



2.4. Alignment-based LZW algorithm (ALZW)

Algorithm 4 ALZW insertion encoding

1: function EncodeINS(i,D, S = s1s2 . . . sn, R = r1r2 . . . rn)
2: P ← ε,B ← ε, c← 1
3: while ri = INS ∧ i ≤ n do

4: N ← P.si
5: if N ∈P D then

6: P ← N
7: else

8: b← EncodePhrase(D,P )
9: B ← B.b

10: P ← si
11: c← c+ 1

12: i← i+ 1

13: b← EncodePhrase(D,P )
14: output EncodePhrase(D, INS)
15: output ∆(c)
16: output B.b
17: return i

Algorithm 5 ALZW match or mismatch encoding

1: function EncodeMM(i,D, S = s1s2 . . . sn, R = r1r2 . . . rn)
2: P ← ε
3: m← si = ri
4: while ri 6= INS ∧ si 6= DEL ∧ i ≤ n do

5: N ← P.si
6: m← m ∧ si = ri ⊲ match indicator
7: if N /∈P D ∧ m then

8: InsertPhrase(D,N) ⊲ only phrases containing no
mismatching symbols can be inserted into the dictionary

9: if N ∈P D then

10: P ← N
11: else

12: output EncodePhrase(D,P )
13: P ← si
14: m← si = ri
15: i← i+ 1

16: output EncodePhrase(D,P )
17: return i

13



2. Algorithm development

symbol. The next symbol is G but the algorithm cannot continue extending
the subsequence since ACG is not in the dictionary and it contains a mis-
match (as in the previous case). The algorithm outputs codeword 6 (phrase
AC) and G is used as the first symbol of the next subsequence. The current
subsequence is extended by one more symbol. The algorithm cannot continue
extending the subsequence since the next symbol is insertion. Therefore it
outputs codeword 10 (phrase GC) and starts processing the insertion. The
whole insertion can be covered by one phrase (phrase AC, codeword 6). The
algorithm outputs codeword 5 (the insertion codeword) followed by ∆(1) (for
one inserted phrase) and codeword 6 (for the inserted phrase). The next out-
put is codeword 11 (for the subsequence AG following the insertion). The
next subsequence is a two-symbol deletion. The algorithm outputs codeword
4 (the deletion codeword) followed by ∆(2) (for the deleted symbols). The
last output is codeword 14 (for the subsequence AACG following the deletion).
The complete sequence of codewords is:

7, 1, 9, 6, 10, 5,∆(1), 6, 11, 4,∆(2), 14.

The dictionary constructed by compressing this alignment is in Figure 2.2.

The process of decompression (Algorithm 6) works as follows: The diction-
ary is initialized in the same way as in the case of compression. A reference
sequence pointer is set to point to the first symbol of the reference sequence.
A codeword is read from the input. The following situations may occur:

1. it is the deletion codeword,

2. it is the insertion codeword,

3. it is a regular codeword and it is present in the dictionary,

4. it is a regular codeword and it is not present in the dictionary.

In the first case, the number of deleted symbols is read from the input and the
reference sequence pointer is incremented by that number. In the second case,
the number of inserted phrases is read from the input followed by codewords
of these phrases. The phrases are output and the reference sequence pointer
remains unchanged. In the third case, a phrase corresponding to the codeword
is output and the reference sequence pointer is incremented by length of the
phrase. In the last case, symbols from the current position in the reference
sequence are read and a corresponding phrase in the dictionary is being ex-
tended until the codeword occurs in the dictionary. Then the corresponding
phrase is output. The width of all codewords (i.e. number of bits required
for encoding a codeword) is incremented by one every time a match phrase
(a phrase containing no mismatching symbols) is followed by a matching sym-
bol. In such case, the last phrase inserted into the dictionary is extended by

14



2.4. Alignment-based LZW algorithm (ALZW)

Algorithm 6 Alignment-based LZW algorithm (ALZW) – decompression

Input: common reference sequence R, sequence C = c1c2 . . . cn containing
ALZW codewords

Output: set of decompressed sequences S

1: D ← InitDictionary()
2: S ← ∅, i← 1
3: while i ≤ n do

4: (i, s)← DecodeSequence(i,D,R,C)
5: S ← S ∪ {s}

6: function DecodeSequence(i,D,R = r1r2 . . . rm, C = c1c2 . . . cn)
7: A← ε, j ← 1
8: while j ≤ m do

9: if ci = EncodePhrase(D,DEL) then

10: j ← j +∆−1(ci+1)
11: i← i+ 2
12: else if ci = EncodePhrase(D, INS) then

13: k ← ∆−1(ci+1)
14: P ← DecodeINS(k, i+ 2, D,C)
15: A← A.P
16: i← i+ k + 2
17: else

18: P ← DecodeMM(ci, j,D,R)
19: A← A.P
20: j ← j + |P |
21: i← i+ 1

22: return (i, A)

Algorithm 7 ALZW match or mismatch decoding

1: function DecodeMM(c, i,D,R = r1r2 . . . rn)
2: P ← ε
3: while c /∈C D do

4: P ← P.ri
5: if P /∈P D then

6: InsertPhrase(D,P )

7: i← i+ 1

8: return DecodeCodeword(D, c)
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Figure 2.2: Example of an ALZW dictionary created by compressing the align-
ment presented in Section 2.3.

Algorithm 8 ALZW insertion decoding

1: function DecodeINS(k, i,D,C = c1c2 . . . cn)
2: P ← ε
3: m← i+ k − 1
4: for j ← i..m do

5: p← DecodeCodeword(D, ci)
6: P ← P.p

7: return P

that symbol. This procedure is not present in the pseudocode in order to keep
it simple. The process continues by reading another codeword from the input.

Note that there are two types of dictionary look ups used in the presented
algorithms. The first type is a simple phrase look up (e.g. look up for phrase
ACAC), which can be easily implemented by traversing the dictionary tree
from its root. The second type is a codeword look up (e.g. look up for codeword
12). The codeword look up is required only for decompression and an extra
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index is needed in order to implement it. To reflect the difference between
these two types of look ups, the test of a phrase existence is denoted by ∈P
whereas the test of a codeword existence is denoted by ∈C .

Also note that the DecodeSequence function can be changed in a way that
the algorithm will produce original alignments rather than simple sequences.
It requires a simple change in decoding of insertions and deletions. Place-
holders must be inserted into the reference sequence on positions of inserted
symbols or a new reference sequence containing placeholders must be created.
It depends whether we want to reconstruct a multiple or pairwise alignments.
The same holds for deletions – placeholders must be put into the created
sequences for every deleted symbol.

2.5 Complexity

Time complexity of Algorithm 3, 4 and 5 is linear with length of a given
match/mismatch, insertion or deletion subsequence. The claim holds for Al-
gorithm 4 and 5 since the test of a phrase existence, the InsertPhrase function
and the EncodePhrase function can be all implemented as simple dictionary
traversals. It requires only a constant number of steps per every symbol of
a given subsequence. The claim also holds trivially for Algorithm 3. There-
fore, time complexity of the EncodeSequence function used in Algorithm 2 is
linear with length of a given alignment. Maximum length of an arbitrary pair-
wise alignment is sum of lengths of both original sequences. (The case where
all symbols from one sequence are deleted and all symbols from the other
sequence are inserted). Considering only pairwise alignments as input of the
algorithm, the time complexity of the EncodeSequence function is O(r + s),
where r is length of a given reference sequence R without insertion placehold-
ers and s is length of a given sequence S without deletion placeholders. Time
complexity of the whole compression algorithm is then:

O(mr +

m
∑

i=1

si) , (2.3)

where m is number of compressed sequences and si is length of sequence Si

for all i ∈ {1, 2, . . . ,m}. Lower bound on the compression time complexity is:

Ω(mr) (2.4)

in case all input sequences are empty. Note that the deletion placeholders
would be still read.

Space complexity of Algorithm 2 is given by maximum size of dictionary D
and temporary buffers B, N and P . The temporary buffers may be extended
only by a single symbol for each symbol of a given subsequence. Maximum
length of the subsequence is equal to the length of the whole sequence. Space
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2. Algorithm development

complexity of these buffers is then O(maxi∈{1,2,...,m} si). The dictionary can be
extended by at most one node per each symbol of every compressed sequence.
The overall space complexity of Algorithm 2 is then:

O(
m
∑

i=1

si) . (2.5)

The lower bound on the compression space complexity is trivially:

Ω(1) . (2.6)

It is again the case when all input sequences are empty.
Time complexity of decompression (Algorithm 6) depends on complexities

of functions DecodeMM and DecodeINS (Algorithm 7 and 8). Complexity of
the first one is O(r), where r is again length of the reference sequence, since
a given codeword c may represent the whole reference sequence. Complexity
of the second one is O(nr), where n is number of codewords, because of the
same reason. The test of a codeword existence and the InsertPhrase function
take only constant amount of time. Assuming codewords in the dictionary are
indexed using a hashtable, the test can be implemented as a simple constant-
time look up into the hashtable. The InsertPhrase function was explained
above. The DecodeCodeword function requires time for a single codeword look
up and time needed for reconstruction of a sequence the codeword represents.
Time complexity of the whole decompression is then:

O(nr) . (2.7)

The lower bound on the decompression time complexity is:

Ω(n) (2.8)

in case all codewords represent only deletions.
Space complexity of Algorithm 6 is a little less clear in terms of the input

size. Note that it cannot be more than in the case of compression since the
same data structures are used – the temporary buffers for storing subsequences
and the dictionary. Size of the dictionary is at most O(nr). It is the case when
phrases does not have a common prefix and number of encoded sequences is
proportional to number of codewords. Upper bound on the temporary buffer
used inside the DecodeMM function is O(r) since – as mentioned above –
a given codeword may represent the whole reference sequence. Upper bound
on the temporary buffer used inside the DecodeINS function is O(nr) for the
same reason. The overall space complexity is then:

O(nr) (2.9)

The lower bound on the decompression space complexity is trivially:

Ω(1) . (2.10)

It is again the case when all codewords represent only deletions.
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Chapter 3

Searching in compressed text

Searching in compressed texts and searching in general are complex problems.
The main goal is to exploit the fact that the compressed representation is
shorter than the original text and to use the information stored in dictionary.
A method presented by J. Lahoda and B. Melichar in [19] will be discussed in
this chapter together with three general purpose algorithms for exact pattern
matching. The goal of this chapter is not showing a best algorithm applicable
in all possible contexts. It is rather focused on demonstrating different meth-
ods that can be used for pattern matching on ALZW compressed sequences.

3.1 Naive approach

The most straightforward and easiest solution of this problem is using a naive
pattern matching algorithm (see Algorithm 9) on a decompressed sequence.
The algorithm simply traverses the sequence from left to right and attempts
to match a given pattern on every position in the sequence.

Algorithm 9 Naive pattern matching

Input: decompressed sequence S = s1s2 . . . sn, pattern P = p1p2 . . . pm
Output: indices of occurrences of P in S (if any)

1: l← n−m+ 1
2: for i← 1..l do

3: j ← 1
4: c← true
5: while j ≤ m ∧ c do

6: c← c ∧ si+j−1 = pj
7: j ← j + 1

8: if c then

9: output i

19



3. Searching in compressed text

Time complexity of this solution is O(mn+τ), where m is length of a given
pattern P , n is length of the decompressed sequence and τ is time required
for decompression. Space complexity is O(1 + γ), where γ is space used for
decompression.

3.2 Boyer-Moore-Horspool algorithm

A better approach is using a more sophisticated pattern matching algorithm
rather than the naive one. An algorithm presented by R. N. Horspool in [20]
was chosen due to its simplicity (see Algorithm 10) and the fact it is one of
the fastest exact string matching algorithms.

Suppose we have a sequence S of length n and a pattern P = a1a2 . . . am of
length m. Let Q = a1a2 . . . am−1 be a prefix of P . The algorithm goes through
the sequence S from left to right and attempts to match the pattern from its
end. Then it shifts the pattern to the right to a position where the rightmost
symbol of the current subsequence matches with the rightmost occurrence of
the same symbol in the prefix Q. The pattern is shifted by m if there is no
such symbol in Q. See Figure 3.1 for example.

Algorithm 10 Boyer-Moore-Horspool algorithm

Input: decompressed sequence S = s1s2 . . . sn, pattern P = p1p2 . . . pm
Output: indices of occurrences of P in S (if any)

1: for all a ∈ Σ do

2: shift [a]← m

3: l← m− 1
4: for i← 1..l do

5: shift [pi]← m− i

6: i← 1
7: while i ≤ (n−m+ 1) do

8: j ← m
9: c← true

10: while j ≥ 1 ∧ c do

11: c← c ∧ si+j−1 = pj
12: j ← j − 1

13: if c then

14: output i

15: i← i+ shift [si+m−1]

The worst case time complexity of this algorithm is O(nm) as in the case
of the naive search. However, as the algorithm can shift a given pattern by
more than one symbol at a time, the average-case complexity is O(n) (see [21]
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3.3. Pattern matching using deterministic finite automata

S: A AAAAA A ATCTTCAAAA
| | | |

P : A ACT T C
| | | |

shift: A ACTTC

Figure 3.1: Example of the shift operation used in Algorithm 10.

for more details). The overall average-case time complexity of this solution is
then O(n+ τ), where τ is time required for decompression. Space complexity
is O(σ + γ), where σ is size of an input alphabet and γ is space used for
decompression.

3.3 Pattern matching using deterministic finite
automata

Using deterministic finite pattern matching automata is another solution based
on decompression of all sequences. In order to construct a pattern matching
automaton for a given pattern P , we need to construct a skeletal machine and
a border array first.

Definition 3.1. Given a pattern P = p1p2 . . . pm over an alphabet Σ, skeletal
machine SM = (Q,Σ, δ, q0, F ) for the given pattern is a deterministic finite
automaton, where:

• Q = {q0, q1, . . . , qm},

• δ(qi−1, pi) = qi for all i ∈ {1, 2, . . . ,m},

• δ(q0, a) = q0 for all a ∈ Σ, a 6= p1,

• F = {qm}.

Definition 3.2. Let β : Σ+ → Σ∗ be a function giving the longest border of
a given non-empty string over an alphabet Σ, border array of a given string
S = s1s2 . . . sn is defined as B = (b1, b2, . . . , bn), where bi = |β(s1s2 . . . si)| for
all i ∈ {1, 2, . . . , n}.

Border array for a given string of length n can be constructed using Al-
gorithm 11 in Θ(n) time (see [22] for a detailed proof).

Given a pattern P = p1p2 . . . pm, its skeletal machine and its border array,
we can use the border array to compute all the remaining transitions of the
corresponding pattern matching automaton. Let us suppose we have matched
Q = p1p2 . . . pj , where j < m, the last matched position in a given string X
is i and we cannot continue since pj+1 6= xi+1. The longest proper suffix of Q
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3. Searching in compressed text

Algorithm 11 Construction of a border array

Input: string S = s1s2 . . . sn
Output: border array B = (b1, b2, . . . , bn) of the string S

1: b1 ← 0
2: for i← 2..n do

3: j ← bi−1

4: while si 6= sj+1 ∧ j > 0 do

5: j ← bj

6: if si = sj+1 then

7: bi ← j + 1
8: else

9: bi ← 0

which is also a prefix (the longest border) can be reused. If the symbol xi+1

cannot be matched with a symbol following the border prefix, we continue
with the longest border of the current border until we can match the symbol
or until we end up with empty border. This procedure can be used in con-
struction of deterministic pattern matching automaton for a given pattern,
see Algorithm 12. Example of a pattern matching automaton is in Figure 3.2.
Time complexity of this algorithm is Θ(σm), where σ is size of a given input
alphabet and m is length of a given pattern.

Algorithm 12 Construction of a pattern matching automaton

Input: pattern P = p1p2 . . . pm over an alphabet Σ
Output: pattern matching automaton M = (Q,Σ, δ, q0, F ) for the pattern P

1: Construct border array B = (b1, b2, . . . , bm) for the pattern P using Al-
gorithm 11.

2: Append a special symbol # /∈ Σ to the pattern P .

3: Q← {q0, q1, . . . , qm}
4: F ← {qm}
5: for all a ∈ Σ, a 6= p1 do

6: δ(q0, a)← q0

7: for i← 1..m do

8: δ(qi−1, pi)← qi
9: for all a ∈ Σ, a 6= pi+1 do

10: δ(qi, a)← δ(qbi , a)

Since using a pattern matching automaton requires only a constant number
of steps per each symbol of a given input string, time complexity of the whole
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0 2

C, G, T

1
A

C, G, T

A C

G, T

A

Figure 3.2: Example of a deterministic finite pattern matching automaton for
pattern “AC” and input alphabet Σ = {A,C,G, T}.

solution is O(σm+ n+ τ), where n is length of a decompressed sequence and
τ is time required for decompression. Space complexity is O(σm+ γ), where
γ is space used for decompression.

3.4 Pattern matching on regular collage system

This algorithm, originally presented by J. Lahoda and B. Melichar in [19],
is designed for pattern matching on so called regular collage systems. Col-
lage systems, presented by T. Kida, Y. Shibata, M. Takeda, A. Shinohara
and S. Arikawa in [23], can be used as an abstraction of various compression
methods including LZW and ALZW.

Definition 3.3. Collage system is a pair (D,S) of a dictionary D and a se-
quence S. The dictionary is a sequence of n assignments:

X1 = expr1, X2 = expr2, . . . , Xn = exprn ,

where each exprk can be constructed as follows:

a for any a ∈ (Σ ∪ {ε}), (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and j ∈ N, (prefix truncation)

X
[j]
i for i < k and j ∈ N, (suffix truncation)

(Xi)
j for i < k and j ∈ N. (j times repetition)

The sequence S = Xi1 , Xi2 , . . . , Xim is a sequence of assignments from D.

There are several types of collage systems. The important two used by Lahoda
and Melichar are regular and simple collage systems. Dictionary of a regular
collage system can contain only primitive assignments and concatenations.
Simple collage systems are defined as regular collage systems where for each
concatenation assignment XiXj either Xi or Xj is a primitive assignment.
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3. Searching in compressed text

3.4.1 Algorithm

Suppose we have a deterministic finite pattern matching automaton (see Fig-
ure 3.2 for example of such automaton). The algorithm is based on an obser-
vation that there is only a limited amount of phrases in the dictionary D that
behave differently in context of the automaton (see Definition 3.5).

Definition 3.4. Let M = (Q,Σ, δ, q0, F ) be a deterministic finite pattern
matching automaton and δ∗ a transitive-reflexive closure of δ. Any two strings
u,w ∈ Σ∗ are in relation ∼M if and only if the following holds for all q ∈ Q:

1. δ∗(q, u) = δ∗(q, w),

2. exactly one of the following conditions holds:

a) there is a prefix u′ of u and a prefix w′ of w such that δ∗(q, u′) ∈ F
and δ∗(q, w′) ∈ F ,

b) for all prefixes u′ of u and all prefixes w′ of w holds that δ∗(q, u′) /∈
F and δ∗(q, w′) /∈ F .

In other words, strings u and w are in relation ∼M if and only if they stop
in the same state for any initial state q of the finite automaton M and they
both either go through at least one final state of the automaton or they do
not go through any final state. Note that relation ∼M is equivalence (see [19]
for a detailed proof).

Definition 3.5. Two phrases behave differently in context of a given determ-
inistic finite pattern matching automaton M unless they are in relation ∼M .

Definition 3.6. Let us consider an arbitrary ordering of states Q of the auto-
maton M . Signature S(u) is defined for each string u ∈ Σ∗ as a vector
S(u) = ((q′1, f1), (q

′
2, f2), . . . , (q

′
|Q|, f|Q|)), where qi ∈ Q and fi ∈ {true, false}

for all i ∈ {1, 2, . . . , |Q|}. It also holds that q′i = δ∗(qi, u) and fi is true if and
only if there is a prefix u′ of u such that δ∗(qi, u

′) ∈ F , otherwise fi is false.

Note that strings u,w are in relation ∼M if and only if S(u) = S(w).

As already mentioned, there is only a limited amount of strings that be-
have differently in context of a given deterministic finite pattern matching
automaton. We can use the equivalence ∼M to divide Σ∗ into disjoint classes.
We pick a shortest string, so-called representative, out of each of these classes.
All these strings together form a set of representatives W . The set W is fi-
nite since there cannot be more classes of equivalence than number of distinct
signature vectors. Algorithm 13 describes construction of the set of represent-
atives for a given deterministic finite automaton M . See Table 3.1 for example
of a set of representatives for the automaton from Figure 3.2.
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3.4. Pattern matching on regular collage system

Algorithm 13 Construction of a set of representatives

Input: deterministic finite automaton M = (Q,Σ, δ, q0, F )
Output: set of representatives W for the automaton M

1: W ← ∅
2: S ← ∅
3: U ← {ε}
4: while U 6= ∅ do

5: remove a string w from U such that ∀u ∈ U : |u| ≥ |w|
6: if S(w) /∈ S then

7: W ←W ∪ {w}
8: S ← S ∪ {S(w)}
9: for all a ∈ Σ do

10: U ← U ∪ {w.a}

Table 3.1: Example of a set of representatives for the automaton from Fig-
ure 3.2.

S(u)
u 0 1 2

ε (0, false) (1, false) (2, false)

A (1, false) (1, false) (1, false)

C (0, false) (2, true) (0, false)

G (0, false) (0, false) (0, false)

AC (2, true) (2, true) (2, true)

CA (1, false) (1, true) (1, false)

CC (0, false) (0, true) (0, false)

ACA (1, true) (1, true) (1, true)

ACC (0, true) (0, true) (0, true)

Definition 3.7. Characteristic automaton MH = (QH ,W, δH , qH0, ∅) is defined
for a given deterministic finite automaton M and its set of representatives as:

• QH : QH = W ,

• δH : QH ×W → QH : δH(qH , w) = u, for u,w ∈W , where qHw ∼M u,

• qH0 : qH0 = ε.

In case of simple collage systems (note that this is also the case of ALZW),
we can use a simplified version of the characteristic automaton. The simpli-
fied characteristic automaton MH = (QH ,Σ, δH , qH0, ∅) takes only Σ as its
alphabet and its transition function is defined as:

δH : QH × Σ→ QH : δH(qH , a) = u, for a ∈ Σ and u ∈W , where qHa ∼M u.
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3. Searching in compressed text

An example of such automaton is in Figure 3.3.

ε

A
A

G

G, T

C

C

A

AC

C

G, T ACA
A

ACC
C, G, T

C

A

G, T

A
C, G, TA

C, G, T

CA
A

CCC, G, T

CA

G, T

A

C, G, T

Figure 3.3: Example of the simplified version of the characteristic automaton
for the deterministic finite automaton from Figure 3.2 and its set of repres-
entatives.

Algorithm 14 describes pattern matching on regular collage systems in
context of ALZW. DictionaryD is built exactly as in case of the decompression
but no codeword is decompressed. Representatives of all phrase-representing
codewords (i.e. no insertion or deletion codewords or delta-encoded numbers)
are generated using Algorithm 15. The representatives’ signatures are used
then to determine the next state of the pattern matching automaton M and
to check if any final state of the automaton was reached. In such case, exact
positions of a given pattern must be found in the decompressed subsequence.
The pattern matching automatonM or an arbitrary string matching algorithm
can be used to find exact positions of the pattern. Note that the match
positions of P may start in codewords preceding the current codeword, so the
string matching algorithm must start in a predecessor of the current codeword.
Length of the decompressed subsequence between such predecessor and the
current codeword must be at least (|P | − 1).

If the representative of the current codeword is not known, it is generated
using known representatives in the ancestor line of the codeword. Ancestors
of the codeword are traversed until an ancestor with a known representative is
found. The characteristic automaton is used then to find the representative of
the current codeword. Note the difference between LZW and ALZW. In the
first case, this procedure always takes only a constant number of steps since
the parent of the current codeword must have been present in the already
processed part of the sequence of codewords. In the latter case, the procedure
may cause decompression of the whole codeword since adding a phrase into
ALZW dictionary is not based on repetitions.
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3.4. Pattern matching on regular collage system

Algorithm 14 Lahoda-Melichar algorithm in the context of ALZW

Input: reference sequence R, sequence C = c1c2 . . . cn containing ALZW
codewords, pattern P

Output: indices of occurrences of P (if any)

For simplicity, let us assume the given sequence of codewords represents
only a single sequence.

For the given pattern P construct deterministic pattern matching auto-
maton M , set of representatives W , its corresponding set of signatures S
and characteristic pattern matching automaton MH . Symbol S will be
also used to denote mapping between sets W and S.

1: D ← InitDictionary()
2: r ← GetRoot(D)
3: U ← {(r, ε)} ⊲ codeword → representative map
4: q ← q0
5: for i← 1..n do

6: update D using ci
7: if ci is a phrase-representing codeword then

8: w ← GetRepresentative(ci, D, U,MH)
9: s← S(w)

10: (q, f)← s(q) ⊲ get signature element corresponding to q
11: if f then

12: output find exact positions of P in ci and its predecessors

Algorithm 15 Get representative for a given codeword

1: function GetRepresentative(c,D, U,MH = (QH ,W, δH , qH0, ∅))
2: X ← ε
3: r ← GetRoot(D)
4: while (c, ·) /∈ U ∧ c 6= r do

5: a← PhraseLastSymbol(D, c)
6: c← ParentCodeword(D, c)
7: X ← X.a
8: w ← U(c)
9: k ← |X|

10: for i← k..1 do

11: a← X[i]
12: w ← δH(w, a)
13: c← ChildCodeword(D, c, a)
14: U ← U ∪ {(c, w)}

15: return w
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3. Searching in compressed text

3.4.2 Complexity

Time complexity of the preprocessing phase consists of time needed for con-
struction of the deterministic exact string matching automaton M , the set of
representativesW , the corresponding set of signatures S and the characteristic
automaton MH . As already shown, automaton M = (Q,Σ, δ, q0, F ) can be
constructed in O(σm) time, where σ is size of the alphabet and m is length of
a given pattern P , yielding an (m+ 1) state deterministic automaton. Upper
bound on the set of representatives, in case of an exact string matching auto-
maton, is O(m2) (see [19] for details). Number of candidates added into set U
used in Algorithm 13 is O(σm2) since for each representative exactly σ other
candidates are added. Set U can be implemented using queue, so it takes only
a constant number of steps to remove the shortest candidate (it is always the
first one) or to insert a new candidate. Sets W and S can be implemented
using hashset. Hash for a given string or signature can be precomputed in
time of their construction, so getting hash of a particular string or signature
will later take only a constant number of steps. (In case of a hash collision,
the elements must be still compared.) Signature for a given candidate w = xa,
where x is a prefix and a is the last symbol of w, can be computed in O(m)
steps, since we can use the already known signature of the prefix x. The look
up for a signature in S will also take at most O(m) steps. Therefore, the
overall time complexity of Algorithm 13 is O(σm3). Note that only a simple
characteristic automaton is needed in case of ALZW. Such automaton can be
constructed in O(σm3) since for every representative w ∈ W and all a ∈ Σ
we have to compute signature of wa in order to get the next state. Time
complexity of the whole preprocessing phase is then:

O(σm3) . (3.1)

Space complexity of the preprocessing phase is:

O(m3 + σm2) (3.2)

since size of representatives is proportional to m and for each representative
we need to store its signature of size Θ(m) and a next state for all a ∈ Σ.
(Size of the automaton M is O(σm).)

Time complexity of the searching phase is O(|D|+ |C|), where D is a dic-
tionary and C is a sequence of codewords, since for each node added into D
we can compute its representative in constant time using MH and represent-
ative of the node’s parent. Note that this may lead to O(n) time complexity,
where n is length of the decompressed sequence, in case all codewords must be
decompressed in order to compute representatives or to find exact positions of
a given pattern. If the sequence of codewords encodes only a single sequence,
space complexity of the dictionary is O(|R|), where R is a reference sequence.
Time complexity of the searching phase in terms of the input size is then:

O(|R|+ |C|) , (3.3)
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3.4. Pattern matching on regular collage system

time complexity of the whole algorithm is then:

O(|R|+ |C|+ σm3) (3.4)

and space complexity of the algorithm is:

O(|R|+m3 + σm2) . (3.5)
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Chapter 4

Implementation

Algorithms for ALZW compression and decompression together with pattern
matching algorithms described in Chapter 3 were implemented into two com-
mand line applications alzw and alzwq. Another two implemented applications
are called sam2fasta and sam2seq. These command line tools are for convert-
ing given genomic sequences in SAM format to sequence alignments in FASTA
format (see Appendix B and C for the format descriptions) or to sequences of
letters a, c, g, t and n respectively. The SAM format is used by 1000 Gen-
omes project for storing individual sequences. Sequences from this project’s
database were used for testing. All applications were implemented in C++ 11.
This chapter describes all interesting implementation details and trade-offs.

4.1 alzw

This application is a command line tool for compression and decompression
of given genomic sequences using algorithm ALZW described in Chapter 2.
In case of compression, at least one pairwise alignment in FASTA format is
expected. All pairwise alignments passed to the input as command line ar-
guments must be aligned to the same sequence, otherwise the behavior is
undefined. The compressed set of sequences is put in the standard output. In
case of decompression, the reference sequence together with the set of com-
pressed sequences are passed to the input as command line arguments. The
decompressed sequences are put in files. All names of the output files are con-
catenations of the original alignment file names and “.fa” suffix. The output
sequences are in FASTA format (see Appendix B). The application is used as
follows:

alzw [OPTIONS] [RSEQ] [ALZW] [A1 [A2 [...]]]

RSEQ reference sequence file in FASTA format (used

only in case of decompression)
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4. Implementation

ALZW ALZW compressed file (used only in case of

decompression)

A# sequence alignment file in FASTA format (used

only in case of compression)

OPTIONS:

-d decompression

-s num synchronization period [200] (valid only in

case of compression)

-a adaptive synchronization (valid only in case

of compression)

-h show help

Compression example:

alzw *.afasta > compressed.alzw

Decompression example:

alzw -d rseq.fa compressed.alzw

4.1.1 ALZW file format

ALZW compressed files consist of two parts (see Figure 4.1) – a file table
and a sequence of codewords. Figure 4.2 depicts structure of the file table.
The first element of the table is 32 bit unsigned integer representing number
of records stored in the table. The records follows. Each record is a NULL
terminated string representing path to the original alignment file. The se-
quence of codewords represents all the compressed alignments. Width of each
codeword depends on state of the encoder during compression (size of the
dictionary, values of the delta-encoded numbers). There are no separators
between individual compressed sequences. During decompression, a new se-
quence is started on each successful completion of an alignment.

4.1.2 Optimizations

Early experiments with implementation of the encoding algorithm showed very
high memory consumption. The experiments were performed with several
randomly chosen sequences of human chromosome 20 from the database of
1000 Genomes project. Two optimizations were employed in order to decrease
memory consumption. Detailed measurements of memory consumption with
and without these optimizations will be presented in Chapter 5.
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4.1. alzw

file table

sequence of codewords

Figure 4.1: ALZW file format.

n

file name 1

file name 2

...

file name n

Figure 4.2: Structure of the file table used in ALZW file format.

The first optimization is based on an observation that adding a phrase
into the ALZW dictionary often creates a sequence of nodes with consecutive
numbers. Such sequence can be collapsed into a single node. Unlike regular
nodes, the collapsed nodes must also store information about the collapsed
transitions, i.e. number of transitions and the transition symbols. Figure 4.3
shows a subset of the dictionary presented in Figure 2.2. Sequences starting
in nodes 6 and 12 were collapsed into two single nodes.

0
A

...

6, 2: AC

11

12, 2: CG

C

G

A

Figure 4.3: Example of an ALZW dictionary with collapsed nodes.
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4. Implementation

Unfortunately, this optimization complicates codeword look ups during
decompression. Without this optimization, a codeword look up can be done
in constant time using a hashtable-based index of the dictionary nodes. The
same method can be used even with this optimization but instead of pointers
to individual nodes, pointer-offset pairs would be used as values of the table.
This method has a big disadvantage – it would almost nullify the effect of this
optimization since all codewords, even the collapsed ones, must be indexed.
A better index is needed in order to solve this problem. The index must sup-
port efficient insertions, deletions and queries for non-existing node identifiers.
A node with the closest lower number must be always returned for such query.
This property ensures support of look ups for codewords contained within col-
lapsed nodes. Balanced binary search trees were chosen as ideal candidates.
The final implementation of the node index uses RB tree as it requires less
operations on insertion and deletion in comparison with AVL tree.

Using RB tree based index of codewords also increases decoding time com-
plexity to O(nr log(nr)), where n is number of codewords and r is length of
a given reference sequence. The factor of log(nr) is derived from the upper
bound on size of the dictionary, which is O(nr). The encoding time complexity
remains unchanged since the index is not needed for encoding.

The second memory optimization is trying to address the fact that SNPs
are present on different positions within individual input sequences. This issue
causes the compression algorithm to loose its “synchronization” when com-
pressing multiple sequences. The algorithm starts creating phrases at different
offsets for each compressed sequence and therefore it creates different sets of
phrases for these sequences. The goal is to reuse as many phrases between all
compressed sequences as possible. The optimization creates explicit synchron-
ization points within a given set of input sequences. When a synchronization
point is reached during compression, a new phrase is started.

Two variants of this optimization were tested. The first (static) variant
creates a synchronization point every n bases, where n is an input parameter.
The second variant is adaptive. It requires one additional pass over the input
sequences before their compression in order to find positions of all SNPs.
Synchronization points are put right behind these positions. In case a sequence
of such synchronization points would create a phrase shorter than n bases,
where n is again an input parameter, only the first synchronization point
from the sequence is used. In both variants, offsets of synchronization points
are computed relatively to the beginning of a given reference sequence to take
possible differences between individual input alignments into account. See
Figure 4.4 for illustration of the difference in compression with and without
synchronization points.

The last interesting optimization adds a new special codeword into the
dictionary. The codeword is used as an indicator of codeword width incre-
ments. It is used every time when adding a new node into the dictionary
would increase width of codewords. This allows to read a sequence of code-
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reference:

seq #1:

seq #2:

reference:

seq #1:

seq #2:

Figure 4.4: Illustration of the difference in compression with and without
explicit synchronization points. Synchronization points are denoted by red
crosses, SNPs by red squares, different phrases by colored lines.

words without decoding it. The optimization is not needed for compression
or decompression, it is required for implementation of the algorithm presen-
ted in Section 3.4. Negative effect on compression ratio is negligible for long
sequences.

4.2 alzwq

This command line tool provides a simple interface for searching of given
patterns in ALZW compressed files. All algorithms described in Chapter 3
were implemented. Selection of a particular algorithm can be done using
a command line argument. Queries are read from the standard input, one
query per line. Empty line quits the application. An ALZW compressed file
together with a corresponding reference sequence must be passed as command
line arguments. The application is used as follows:

alzwq [OPTIONS] RSEQ ALZW

RSEQ reference sequence file in FASTA format

ALZW ALZW compressed file

OPTIONS:

-h show help

-a alg searching algorithm [lm], valid options are:

lm Lahoda-Melichar
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dfa deterministic finite automaton

bmh Boyer-Moore-Horspool

s simple search (naive algorithm)

Loading compressed sequences:

alzwq rseq.fa compressed.alzw

Entering query:

AGAGGGACTGGGTTCCATGGGACTGCAGGAGAGCAAGGAGGCCACTGTGGCCGAAATGGA

Query output:

match (seq: 1, offset: 57046274)

match (seq: 2, offset: 57044658)

match (seq: 5, offset: 57043848)

match (seq: 6, offset: 57055067)

match (seq: 7, offset: 57048277)

match (seq: 8, offset: 57044878)

match (seq: 9, offset: 57054258)

match (seq: 10, offset: 57047313)

...

4.2.1 Optimizations

In order to speed up searching of multiple patterns, the whole process has been
split into two phases – preprocessing and searching. The ALZW dictionary is
constructed only once in the preprocessing phase. It is used then for all queries
read from the standard input. This optimization also creates space for a second
one – hash-based node indexing. Since the dictionary nodes are indexed using
RB tree (see Section 4.1), we can improve codeword look up times using a hash-
based index. The index will be limited only on the codewords present in the
compressed file, which is usually a ralatively small subset of all codewords
present in the dictionary. The hash-based index together with the dictionary
construction require only one additional pass over the compressed file before
execution of the first query.

4.3 sam2fasta, sam2seq

Both of these applications are command line conversion tools for sequences
in binary SAM format (see Appendix C). The first one produces sequence
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alignments in FASTA format used by the alzw application. The second one
produces sequences of characters a, c, g, t and n used by rlz application. Both
applications require a single reference sequence file in FASTA format and at
least one sequence file in binary SAM format to be passed as command line
arguments. Output file names are concatenations of the original file names
and “.afasta” suffix in case of the first application and “.seq” suffix in case of
the second one. The applications are used as follows:

sam2fasta/sam2seq [OPTIONS] RSEQ FILE1 [FILE2 [...]]

RSEQ reference sequence file in FASTA format

FILE# sequence file in binary SAM format

OPTIONS:

-h show help

Usage examples:

sam2fasta rseq.fa *.bam

sam2seq rseq.fa *.bam

4.4 Compilation

All applications were built and tested in Fedora 21 x86 64, a GNU/Linux
distribution. They can be compiled using GCC C++ 11 compiler version
4.9.2. In order to make the compilation simple, a Makefile is attached. The
samtools library (version 0.1.19) used in sam2fasta and sam2seq applications is
included as a part of the project and compiled together with the applications.
The following extra libraries are required:

• Zlib version 1.2.3 or higher,

• POSIX threads.
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Chapter 5

Experimental evaluation

This chapter presents results of experimental evaluation of the ALZW com-
pression and decompression algorithms presented in Chapter 2 and the pat-
tern matching algorithms presented in Chapter 3. Twenty randomly chosen
sequences of human chromosome 20 from the database of 1000 Genomes Pro-
ject were used for this evaluation.

Memory consumption was monitored using GNU time utility with “-v”
parameter. Compression ratio was computed relatively to size of correspond-
ing sequences in FASTA format. Two types of compression ratio are presented.
The first type includes only compressed sequences, i.e. without the used ref-
erence sequence. The second type is overall compression ratio which includes
also the reference sequence as it is needed for decompression. The reference
sequence was taken in its plain form (it is simple to reconstruct the FASTA
format again) and compressed using GZip.

All experiments were performed in Fedora 21 x86 64 Linux environment on
a machine with Intel Core i7-2620M CPU @ 2.70GHz and 8GB main memory.
Each experiment was repeated twice in order to minimize time distortions
caused by IO cache of the host operating system. Detailed data from the
measurements can be found in Appendix A.

5.1 Compression and decompression

Figure 5.1 depicts relation between compression time, decompression time and
number of sequences. The sequences were compressed with static synchron-
ization period of 200 bases. As expected from the time complexity analysis
presented in Section 2.5, the relation between compression time and number
of sequences is linear. The decompression time on the other hand does not
show any signs of the O(log n) RB index used. Moreover, the decompression
is even faster than compression.

Effect of the RB index is more obvious when comparing memory consump-
tion (Figure 5.2). The memory consumption also seems to be linear with
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Figure 5.1: Relation between compression and decompression times and num-
ber of sequences.
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Figure 5.2: Relation between memory consumption of compression and de-
compression and number of sequences.

number of compressed sequences; however, it is more sensitive on content of
the sequences (see the unevenness between 1 and 8 sequences).

Compression ratio (without the reference sequence) compared to encoding
in FASTA format is shown in Figure 5.3. The algorithm achieves compression
ratio around 5% for sequences of human chromosome 20 and static synchron-
ization period of 200 bases. The overall compression ratio (i.e. including the
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Figure 5.3: Relation between compression ratio and number of sequences.
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Figure 5.4: Relation between overall compression ratio and number of se-
quences.

reference sequence) is shown in Figure 5.4. It is clear that compressing more
sequences minimizes the negative effect of storing the reference sequence.

5.2 Optimizations

Comparison of memory consumption with and without the node collapsing
optimization described in Section 4.1 is shown in Figure 5.5. Due to memory
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Figure 5.5: Comparison of memory consumption with and without node
collapsing.
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Figure 5.6: Memory consumption with and without explicit synchronization.

limitation, only short prefixes of chromosome 20 (5% of the original length)
were used for this test. The memory savings are enormous – the optimized
variant uses more than 10 times less memory than the variant without node
collapsing.

Figure 5.6 depicts the difference in memory consumption with and without
the synchronization optimization as described in Section 4.1. Significance of
the optimization is apparent only when compressing more than five sequences,
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Figure 5.7: Effect of synchronization period on memory consumption.
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Figure 5.8: Effect of synchronization period on memory consumption (se-
quences were taken in reverse order).

otherwise the effect is questionable. The memory consumption is even higher
with the optimization in case of one, two or three sequences.

Importance of the synchronization period parameter choice is depicted in
Figure 5.7. Shortening the synchronization period for small number of com-
pressed sequences increases memory requirements. But starting from four
sequences, there is always a synchronization period value with the lowest pos-
sible memory consumption. The relation between memory consumption and
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Figure 5.9: Effect of synchronization period on compression time.
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Figure 5.10: Effect of synchronization period on compression ratio.

synchronization period is even strictly increasing for seven sequences. Unfor-
tunately, there is no simple universal rule for choosing the synchronization
period parameter. Effect of a particular parameter value is strongly related to
given sequences. Even changing the order in which given sequences are com-
pressed may affect behavior of the algorithm. For example, compare Figure 5.7
and 5.8. The same set of sequences was compressed in case of Figure 5.8. The
difference is only in order of their compression – they were taken in reverse
order in case of Figure 5.8.
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Figure 5.11: Comparison of memory consumption with static and adaptive
synchronization.
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Figure 5.12: Comparison of compression time with static and adaptive syn-
chronization.

Decreasing the synchronization period parameter value has also negative
effect on compression time and compression ratio (see Figure 5.9 and 5.10).
Considering all the positive and negative effects of the synchronization optim-
ization, a good compromise for compressing sequences of human chromosome
20 would be setting the parameter value between 100 and 300.

Figure 5.11 depicts the difference between static and adaptive synchroniza-
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Figure 5.13: Comparison of compression ratio with static and adaptive syn-
chronization.

tion in terms of memory consumption. In case of the adaptive synchronization,
the synchronization period parameter denotes the minimum phrase length (i.e.
a synchronization point is ignored if length of the current phrase is lower than
a given threshold). As implied by the figure, the adaptive synchronization
has slightly higher memory requirements than the static version. It is caused
by synchronization map – a structure storing precomputed synchronization
points. This preprocessing step requires one additional pass over a given set
of input sequences which also negatively affects compression time as can be
seen in Figure 5.12. The only improvement provided by the adaptive syn-
chronization is in compression ratio (see Figure 5.13). It is more significant
with shorter synchronization periods. Increasing the synchronization period
value gradually diminishes the difference until it vanishes completely.

5.3 Searching

The pattern matching algorithms presented in Chapter 3 are compared in
terms of search times in Figure 5.14. Searching was performed on a set of
two sequences of human chromosome 20 compressed using ALZW with static
synchronization period of 100 bases. Searched patterns were randomly gen-
erated. Bad results of the Lahoda-Melichar algorithm for long patterns are
caused mainly due to its expensive preprocessing (see Figure 5.15). The al-
gorithm is able to outperform the other three only for short patterns and
large datasets as shown in Figure 5.16. This test was performed on a set
of twenty sequences of human chromosome 20 compressed using ALZW with
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Figure 5.14: Relation between search time and length of a given pattern for
the algorithms supported by alzwq.
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Figure 5.15: Comparison of preprocessing times for the algorithms supported
by alzwq.

static synchronization period of 100 bases.

Memory consumption of these algorithms is compared in Figure 5.17 and
5.18. The Lahoda-Melichar algorithm exhibits high memory overhead for all
pattern lengths. Overhead of the other three algorithms is negligible.
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Figure 5.16: Relation between search time and length of a given pattern for
the algorithms supported by alzwq.
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Figure 5.17: Comparison of memory consumption of the algorithms supported
by alzwq.

5.4 Comparison with other compression methods

Table 5.1 shows compression efficiency of the ALZW algorithm, similarly tar-
geted RLZ and general purpose GZip. Compression efficiency is expressed in
bits per base (bpb). The first line of the table contains 0-order entropy of the
original set of sequences. Using compression ratio would be inappropriate in
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Figure 5.18: Comparison of memory consumption of the algorithms supported
by alzwq.

Table 5.1: Comparison of different compression methods in terms of compres-
sion efficiency.

Entropy [bpb]
S. cerevisiae Human chromosome 20

original 2.12 2.21
alzw 1.34 0.36

rlz 0.29 0.38
GZip 2.4 2.29

this case since each algorithm works with different input format. Two datasets
were compressed – 39 genomes of Saccharomyces cerevisiae and 21 sequences
of human chromosome 20. In both cases, ALZW provides better compression
ratio than GZip and it even outperforms RLZ in case of the human chromo-
some 20 dataset. (Both datasets were compressed without synchronization in
order to get the best compression ratio from the ALZW algorithm.)

Times of compression and decompression are compared in Table 5.2. ALZW
provides the best compression times from the set of the three algorithms. In
case of decompression, the situation is different. Both RLZ and GZip are
faster. Memory requirements of the three algorithms in case of compression
and decompression are presented in Table 5.3.
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5. Experimental evaluation

Table 5.2: Comparison of different compression methods in terms of compres-
sion and decompression times.

S. cerevisiae Human chromosome 20
Comp. [s] Decomp. [s] Comp. [s] Decomp. [s]

alzw 40 13 112 55
rlz 63 7 311 39
GZip 100 5 237 11

Table 5.3: Comparison of different compression methods in terms of memory
consumption.

S. cerevisiae Human chromosome 20
Comp. [MB] Decomp. [MB] Comp. [MB] Decomp. [MB]

alzw 124 155 1222 1510
rlz 42.5 7.8 780 26
GZip 2.9 2.8 2.9 2.9
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Conclusion

A new compression algorithm called ALZW was developed and implemented
as a part of this thesis. The algorithm is designed for compression of sets
of highly similar strings and it was tested on two datasets – 21 sequences of
human chromosome 20 and 39 sequences of Saccharomyces cerevisiae – and
compared with two other compression algorithms – similarly targeted RLZ
and general purpose GZip. Despite having quite big memory requirements,
the algorithm gives the best compression ratio for the human chromosome 20
dataset and offers the best compression times out of the tested algorithms.
The decompression is not as fast as in case of RLZ and GZip but it is still
faster than the compression.

Several pattern matching algorithms were discussed in context of the im-
plemented compression algorithm. They were implemented and tested against
each other for different lengths of searched patterns. The LM algorithm [19]
was good only for short patterns and big datasets. The BMH algorithm [20]
provided the best results in all other cases.

Even though the algorithm provides good results (at least in case of com-
pression of human chromosome 20), there is still a lot of space for further
optimizations. For example, in encoding of insertions and encoder synchron-
ization. Unlike RLZ, the algorithm also currently does not support efficient
random access into compressed files.
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Appendix A

Data from experimental

evaluation

Table A.1: Relation between compression and decompression times, memory
consumption and number of sequences.

Number of Duration [s] Used memory [MB]
sequences compression decompression compression decompression

1 5.232357 4.166167 226.980 205.652

2 10.489771 5.926878 288.184 266.124

3 15.886271 7.801413 331.548 309.372

4 23.050428 13.118687 417.416 481.652

5 28.507743 14.859205 479.152 508.120

6 34.070694 16.471080 497.872 531.796

7 40.928335 22.313617 564.436 696.124

8 46.985495 24.783185 626.048 724.748

9 52.769546 26.544997 646.356 764.504

10 57.971574 28.469935 674.036 794.468

11 63.161655 30.462997 695.148 823.260

12 69.278990 32.220120 715.276 850.248

13 74.357532 34.603957 734.304 898.756

14 81.456574 36.273671 768.248 936.952

15 86.039249 38.510106 794.712 956.876

16 91.300733 40.003135 808.668 979.996

17 96.620971 41.557204 825.020 1006.524

18 102.712915 44.927742 843.692 1055.540

19 109.864520 47.385145 877.816 1094.764

20 115.126815 50.319774 905.400 1170.628
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A. Data from experimental evaluation

Table A.2: Relation between compression ratio and number of sequences.

Number of Compression Overall
sequences ratio [s] compression ratio [s]

1 4.297037 15.332279

2 3.853007 11.335698

3 3.785122 9.406061

4 5.734309 9.842657

5 5.204215 8.713066

6 4.880849 7.932703

7 5.887501 8.433080

8 5.605229 7.898346

9 5.461553 7.539098

10 5.295952 7.199168

11 5.164602 6.919747

12 5.039149 6.668613

13 5.045340 6.557809

14 5.009516 6.423370

15 4.901444 6.233497

16 4.813814 6.072516

17 4.751562 5.943676

18 4.773793 5.901936

19 4.756824 5.829354

20 4.890039 5.905171

Table A.3: Comparison of memory consumption with and without node col-
lapsing.

Number of Used memory [MB]
sequences with node collapsing without node collapsing

1 12.784 144.284

2 16.988 278.512

3 24.316 403.140

4 26.008 503.128

5 32.080 625.992

6 34.988 740.344

7 38.112 834.920

8 41.304 947.724

9 48.252 1061.344

10 48.384 1169.484

11 53.112 1277.568

12 53.128 1378.596

13 57.628 1483.000

14 57.452 1589.240

15 62.372 1691.136

16 62.716 1792.288

17 62.748 1894.248

18 68.368 1999.176

19 68.528 2099.684

20 73.312 2200.476
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Table A.4: Memory consumption with and without explicit synchronization.

Number of Used memory [MB]
sequences without synchronization static sync. period 200

1 196.436 226.980

2 258.056 288.184

3 306.732 331.548

4 427.800 417.416

5 489.348 479.152

6 529.544 497.872

7 635.120 564.436

8 696.440 626.048

9 737.808 646.356

10 786.216 674.036

11 827.776 695.148

12 868.408 715.276

13 907.052 734.304

14 960.112 768.248

15 1006.216 794.712

16 1040.156 808.668

17 1076.432 825.020

18 1114.840 843.692

19 1167.544 877.816

20 1222.112 905.400

Table A.5: Effect of synchronization period on memory consumption.

Used memory [MB]
Sync. number of sequences:
period 3 4 5 6 7

50 429.568 458.800 520.380 529.316 545.232

100 365.676 429.088 490.764 504.388 551.236

150 341.120 418.980 480.480 497.096 556.312

200 331.440 417.568 479.128 497.684 564.684

250 324.632 415.592 477.460 497.832 569.624

300 320.868 416.356 477.864 499.976 575.116

400 316.076 416.688 478.476 503.336 583.872

500 313.208 417.400 478.928 505.664 589.584

600 311.100 418.164 479.628 507.940 594.912

700 309.892 418.560 480.296 509.960 598.968

800 309.044 419.096 480.868 511.628 602.192

900 308.036 419.584 481.248 513.116 604.976

– 306.612 428.076 489.548 529.612 634.780
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Table A.6: Effect of synchronization period on memory consumption (se-
quences were taken in reverse order).

Used memory [MB]
Sync. number of sequences:
period 3 4 5 6 7

50 510.600 535.436 597.132 610.568 621.208

100 450.652 507.264 568.912 589.048 605.088

150 426.836 496.032 558.084 581.220 600.068

200 415.000 491.740 553.348 579.052 600.152

250 407.340 488.560 550.084 577.816 600.372

300 402.652 487.064 548.648 578.088 602.240

400 396.524 485.628 547.244 579.004 605.532

500 392.540 484.876 546.312 580.216 608.592

600 390.044 484.532 546.136 581.416 611.220

700 388.332 484.416 546.120 582.556 613.524

800 386.860 484.744 546.128 583.676 615.672

900 386.008 484.568 546.332 584.684 617.508

– 382.064 490.432 552.168 597.808 639.448

Table A.7: Effect of synchronization period on compression time.

Compression time [s]
Sync. number of sequences:
period 3 4 5 6 7

50 19.045675 26.883740 33.870677 40.082402 48.159467

100 16.849937 24.532062 29.864893 35.606864 43.870621

150 16.222682 23.548965 28.753680 34.128656 41.507258

200 15.675598 23.129700 28.577988 33.527908 40.958817

250 15.402325 22.748495 27.740377 33.921067 40.552652

300 15.288032 22.798483 27.671684 32.972081 40.454660

400 15.178841 22.986306 27.123770 32.400232 39.897847

500 15.047755 22.542585 26.932533 32.865916 40.300925

600 15.040655 22.810644 27.009167 32.322766 39.574394

700 15.029614 22.715422 27.288084 32.725876 39.731454

800 14.938725 22.364840 27.045138 32.141055 39.478856

900 14.800013 22.019250 27.040915 31.741205 39.205088

– 14.798581 22.517642 27.614049 32.016678 40.274213
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Table A.8: Effect of synchronization period on compression ratio.

Compression ratio [%]
Sync. number of sequences:
period 3 4 5 6 7

50 8.131776 9.752009 9.318991 9.054633 9.855125

100 5.209596 7.102150 6.618178 6.323924 7.249267

150 4.274965 6.201733 5.684608 5.369399 6.315548

200 3.785122 5.734309 5.204215 4.880849 5.887501

250 3.488918 5.452650 4.914818 4.604609 5.628303

300 3.290917 5.264798 4.736331 4.419380 5.445148

400 3.042789 5.057867 4.519974 4.193297 5.221519

500 2.893280 4.941537 4.393638 4.060433 5.089726

600 2.793370 4.863389 4.309052 3.971723 5.001723

700 2.721706 4.807506 4.248456 3.908024 4.938669

800 2.668004 4.766477 4.203936 3.861275 4.892238

900 2.627481 4.733169 4.167957 3.823605 4.854923

– 2.309201 4.425506 3.848132 3.502348 4.594432
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Table A.9: Comparison of static and adaptive synchronization.
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Table A.10: Relation between overall search time, preprocessing time and
length of a given pattern for the algorithms supported by alzwq.

Pattern Overall search time [s] Preprocessing time [ms]
length BMH LM DFA naive BMH LM DFA naive

20 sequences of human chromosome 20 (static sync. period of 100 bases):

10 52.270 44.894 55.789 64.108 0.009 0.182 0.011 0.009

15 48.239 45.009 55.935 61.650 0.009 0.459 0.012 0.009

20 54.404 45.833 56.251 63.098 0.009 0.866 0.012 0.009

25 53.102 44.997 55.715 62.300 0.009 1.515 0.012 0.009

30 48.581 44.746 56.486 64.064 0.009 2.475 0.012 0.009

2 sequences of human chromosome 20 (static sync. period of 100 bases):

50 4.109 7.953 4.963 5.470 0.009 9.881 0.014 0.009

100 4.182 7.970 4.804 5.433 0.009 67.190 0.018 0.009

150 4.290 8.252 4.814 5.400 0.009 218.646 0.020 0.009

200 3.988 8.546 4.885 5.642 0.011 514.817 0.021 0.010

250 4.689 9.176 4.861 5.562 0.011 1064.238 0.033 0.010

300 4.059 10.438 4.892 5.585 0.010 1869.187 0.036 0.011

350 4.317 11.772 5.042 5.627 0.011 2932.223 0.031 0.012

400 4.123 13.272 4.806 5.517 0.011 4276.924 0.032 0.010

450 4.332 15.533 4.930 5.385 0.011 6014.270 0.039 0.011

500 4.145 17.971 4.969 5.550 0.015 8155.124 0.044 0.011

550 4.569 22.567 4.939 5.507 0.012 12321.230 0.044 0.011

600 3.923 26.504 4.792 5.607 0.012 16017.207 0.049 0.011

650 3.988 30.753 4.869 5.666 0.019 20127.441 0.052 0.011

700 4.200 35.832 4.826 5.313 0.011 24634.207 0.057 0.019
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A. Data from experimental evaluation

Table A.11: Comparison of memory consumption of the algorithms supported
by alzwq.

Pattern Used memory [MB]
length BMH LM DFA naive

20 sequences of human chromosome 20 (static sync.
period of 100 bases):

10 1505.940 1996.088 1506.172 1506.236

15 1506.172 1996.236 1505.940 1506.108

20 1505.940 1996.228 1506.108 1506.024

25 1506.032 1996.368 1506.000 1506.040

30 1506.108 1996.464 1506.072 1506.024

2 sequences of human chromosome 20 (static sync.
period of 100 bases):

50 382.752 446.884 382.680 382.672

100 382.644 455.496 382.676 382.672

150 382.672 477.316 382.712 382.756

200 382.760 516.448 382.772 382.680

250 382.672 580.360 382.680 382.648

300 382.592 672.048 382.684 382.692

350 382.644 799.100 382.600 382.644

400 382.588 963.056 382.648 382.588

450 382.688 1177.924 382.768 382.680

500 382.640 1436.168 382.668 382.820

550 382.648 1756.364 382.908 382.760

600 382.768 2144.400 382.704 382.592

650 382.772 2596.220 382.668 382.592

700 382.640 3110.676 382.800 382.772
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Appendix B

FASTA format

FASTA format, as defined in [24], is a text-based format for storing nucle-
otide and protein sequences. One file may contain multiple sequences. Each
sequence consists of a description line and the sequence itself. The sequence
is represented by the standard IUPAC codes. According to recommendation,
all lines should be at most 80 characters long. Empty lines are not allowed.
Lower-case letters in a sequence are treated as upper-case. Formal specifica-
tion of the format in EBNF follows:

fasta = { record } ;

record = description , "\n" , sequence ;

description = ">" , { letter } ;

letter = any ASCII character except "\n" ;

sequence = { segment , "\n" } ;

segment = { base } ;

base = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H"

| "I" | "K" | "L" | "M" | "N" | "P" | "Q" | "R"

| "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

| "*" | "-" ;

There is no difference between regular FASTA format and aligned FASTA
format except the fact it contains at least two sequences. The sequences must
be aligned to a same length using "-" symbols (insertions and deletions).
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Appendix C

SAM format

SAM stands for Sequence Alignment/Map and it is a format for storing large
alignments of genomic sequences. The format is used by 1000 Genomes pro-
ject. It contains short reads generated by a sequencer and aligned to a ref-
erence sequence. There is also a lot of metadata (mapping quality, etc.).
Complete description of the format is beyond the scope of this text, see [25]
for more details. There are two variants of the format – text-based and binary.
Both of them can be read using samtools C library.

Unfortunately, a complete sequence or an alignment cannot be read easily.
The format can be read only in form of the short aligned reads. Each position
of the complete alignment may be covered by multiple reads. Moreover, the
reads may contain different symbols for a particular position. An easy solu-
tion was employed in order to resolve this problem in sam2fasta and sam2seq
tools. All reads covering a particular position are compared according to their
mapping quality and symbol from a read with the best mapping quality is
used (see Figure C.1). This might not be an ideal solution from the biological
point of view, but it is applicable for testing the compression algorithm.

quality
ref: A ACGA CGACTTGACTAAGGATGTGAAA

read #1: GGAGACTTGT 5%
read #2: C GAATT 70%
read #3: C TTGACA 50%

seq: ? ? ? GG CGAATTGACA ? ? ? ? ? ? ? ? ? ? ? ?

Figure C.1: Example of a SAM alignment coverage.
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Appendix D

Acronyms

ALZW Alignment-based LZW compression algorithm

AVL Adelson-Velsky and Landis tree

BMH Boyer-Moore-Horspool algorithm

DFA Deterministic Finite Automaton

EBNF Extended Backus-Naur Form

FA Finite Automaton

HSS Highly Similar Strings

LM Lahoda-Melichar algorithm

LZ77 Lempel-Ziv 1977 compression algorithm

LZAP Lempel-Ziv All Prefixes compression algorithm

LZMW Lempel-Ziv-Miller-Wegman compression algorithm

LZY Lempel-Ziv-Yokoo compression algorithm

LZW Lempel-Ziv-Welch compression algorithm

RB Red-Black tree

RLZ Relative Lempel-Ziv compression algorithm

SNP Single Nucleotide Polymorphism
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Appendix E

Contents of enclosed DVD

alzw.testing.env.ova..VirtualBox image with the testing environment
readme.txt ..................... the file with DVD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

alzw........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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