Slovak University of Technology in Bratislava

Faculty of informatics and information technologies

FIIT-5208-5669

Bc. Marek Jakab

Visual detection, recognition and tracking of

three-dimensional objects

Master thesis

Degree Course: Information systems

Study program: 9.2.6 Information systems

Department: Department of Applied Informatics, FIIT STU, Bratislava
Supervisor: Ing. Vanda BenesSova, PhD.

Date: May 2015

Slovenska technicka univerzita v Bratislave

FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII

Vizualna detekcia, rozpoznavanie a sledovanie trojrozmernych

objektov

Studijny program: Informaéné systémy

Autor: Bc. Marek Jakab

Veduci bakalarskej prace: Ing. Vanda BeneSova, PhD.
2015, Mgj

Proces detegovania objektov z obrazu kamery patri do oblasti pocitacového videnia,
ktory sa stdle vyvija. Viziou algoritmov pre rozpozndvanie objektov je rozpozndvanie
vel’kého mnoZstva objektov v redlnom case pri vysokom rozliSeni obrazu. S prichodom
zariadeni pre zaznamenavanie hibky je moZné rozpoznavanie objektov rozsirit o dalsiu
dimenziu a rozpoznavat’ 3D objekty.

Pri procese rozpoznavania objektov sa stretdvame s nemalym mnozstvom problémov.
V prvom rade sa snazime detegovat’ 3D objekty na 2D scéne kamery s pridanou informéaciou
o hibke. Objekt moze byt natodeny pri snimani kamerou v roznych uhloch, $kélach a
otoCeniach. Na scénu posobia rozne svetelné podmienky, Cast’ objektu moze byt zakryta,
alebo mo6Zu nastat’ neziaduce vplyvy zo strany hardvéru ako napriklad Sum a rozmazanie
obrazu.

V diplomovej praci sa venujeme bliZSie problému rozpoznavania objektov pomocou
lokalnych deskriptorov a ich moznostiach rozsirenia rozpoznéavania pre 3D objekty na zaklade

RGBD obrazu.

Slovak University of Technology Bratislava

FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Visual detection, recognition and tracking of three-dimensional
objects

Degree Course: Information systems
Author: Bc. Marek Jakab
Supervisor: Ing. Vanda BeneSovéa, PhD.

2015, May

Process of object recognition from the camera image belongs to still evolving study
field of computer vision. The vision for object recognition is to be able to recognize large
dataset of objects at high resolution images within real time. Using the devices for acquiring
depth data we are able to extend the field of object recognition with another dimension and
detect 3D objects.

In our research we are still facing with large numbers of issues. Even with depth
sensors we still do not possess full 3D information about the object. In addition, object can be
viewed from different angle, scales and rotation according to the object reference. Various
light conditions can affect the scene as well as partial occlusions of the objects are possible
and make recognition harder. Additional undesirable impacts are caused by hardware like
noise or image blur.

In the master thesis we focus our research on the problem of object recognition using
the methods of local descriptors and their possibilities to be extended for 3D objects based on

the RGBD image.

Affidavit

I hereby declare that this master thesis has been written only by undersigned with the aid of

Ing. Vanda Benesova, PhD. All sources have been stated in the reference list.

Bc. Marek Jakab

Bratislava, May 2015

Acknowledgement

I would like to express my gratitude to my supervisor Ing. Vanda Benesova, PhD. for the
useful comments, remarks and engagement through the learning process of this master thesis

which enlarged my knowledge about given topic.

Bc. Marek Jakab

1.

2.

Content

INErOdUCioncooiiiiiii ettt et 1
PN 11 |) RS 2
2 R 70 Toz:1 G (T3 3 010 4 F PSPPSR 4
2.1.1. Feature eXtraCtiONc.c.eevueiriieriierieeiteeteeniee st esit et et stee st esr e sseesneeseeeeaneeeee 5
HeESS1aN AELECTOT «...eeveiiiiiiieetieee ettt s 6
HAITIS AELECTOT ...ttt s 6
Laplacian of Gaussian (LOG)coeviiiiiiiiiiiie ittt e e sbee e 7
Difference of Gaussian (DOG)coieviiiurrieiiieiiiieiciieeee e eee e erreee e e eeeenaans 7
The Harris-Laplacian DeteCtOrccuuiiriiiiriieiiiieeiee ettt sree e 8
Maximally Stable Extremal Regions (MSER)cccooiiiiiiiiiniiiiiceeceeee 8
Features from Acelerated Segment Test (FAST) .c...oooiiiiiiiiiiiiiiiiieeceeceeee 9
2.1.2. Feature deSCIIPLIONc..eoiuiiiiieiieiieeiie ettt et 9
Scale Invariant Feature Transform (SIFT)ooooooiiiiiiiiiiie e, 10
Speed Up Robust Features (SURF)......coccooiiiiiiiiiiiiceeeeeeceeeeeeeeee 11
Binary Robust Independent Elementary Features (BRIEF)........cc.ccccoociiiniiininnnen. 11
Oriented Brief (ORB) ...ttt e e e e eanes 13
Fast Retina Key-point (FREAK)cooiiiiiiiiiieeeeee e 13
Histogram of Intensity Patches (HIPS)ccoooiiiiiiiiiiieeeeeeeeee e 13
2.1.3. DescCriptor MALChINGcccveiiiiiiiiiiieeiiie ettt et eee e st e e beeesaneees 15
DiStance MEASUTEIMENL.....c...ccvutiiriieriieeieeriteeite et ett et e st e st e bt e et e bt e sabeesbeeeaaeesbeesaeeas 16
Euclidean diStAnCe...........eeuiiruiiiiiiiiieiieeeeeteee ettt et 16
Hamming diStanCe.........c.eeeviuiiiiiiiieiiie ettt ettt e s aee e e e sebeeesnbee s 16
HOMOZIAPNY ... e n 17
RANSAC ettt ettt ettt e et et e st e e abeebeesnteenseas 17
2.2, SEZMENTALION ..couvvieiiieiiieiieiteete ettt ettt e sttt sat e e sare e beeseneebeesaneebeeesneenanesanees 17

2.2 1. ACHVE CONEOULS eneeeeeneeeeeee e et e e et ee e e e e e s et e e e e eaeaeeeeanaeseeanaeeeranaeeenanaeeennnn 17

2.2.2. SPlt and MEIZEcccueeiuiiiiieiieitee ettt ettt et st 18

2.2.3. Mean shift and mode finding techniquescccoevieeriiiiniiiiiiiieieeeeeee, 18
2.2.4. GIOWING TEZIOMSveerurreeruiieeeiieeeiteesiteesieeestteeesiteesssteesssseessteessaeesseessseessseens 18
2.2.5. Segmentation in depth IMAZEcovvviiiiiiiiiiiieiieeieeeeeeeeee e 18
2.3, KINECE SEIISOT .cnviiiiiiiiieitieeite ettt ettt sttt ettt ate et e et e be e sateebee s bt enaeeeanees 19
2.4, Kinect for WINAOWS V2.....coooiiiiiiiiiiiiienieeiere ettt 21
Related Work ... 23
3.1. Computer visual 0bJeCt detECHIONccveieriiieriiieiiie ettt 23
3.2. NAREF: 3D Range Image Features for Object Recognition..............ccceceeevuieenneennnee. 24
3.2. 1. TFeature detECIONcccuueiiiuieiiiieeeiie ettt ettt ettt e st e e s e e sabeeesaeee s 24
3.2.2. TFeature eXtraCtiONc.c.ueeruieiriuieeniieeniiee et e ettt e ettt e et e e bt e e sttt e sbeeesabeeesareeesaneens 25
3.3. A combined texture-shape descriptor for enhanced 3D feature matching 26
3.4. Surface feature detection and description with applications to mesh matching........ 28
3.4.1. Feature Detection (IMeShDOG)ccoocuiiiiiiiiiiiicieeee e 28
3.4.2. Feature Descriptor (MEShHOG)........c.cooviiiiiiiiiniiiiiieeieeeeeee e 29
Proposed Methodccoooiiiiiiii e 30

i BN o TeToa 1 1o 11 10) 1 NSO RRUPRRRPRRN 30
4.2, ComPONENLS AESIZMN.....eeeriiiiiiieeiiieeiiieerteeerieeerteeeseteeeaaeestaeesstreessseeessseeessseeensseesnns 30
4.3, CasCAdE TECOZNITIONeerviieriieeriieerieeesiteeesteeerteeeeteeeseeessaeesssreessseeesaseeessseeensseenns 31
4.4, Tmage Stream Pre-PrOCESSINZ ...ccvueeerreeerreeerieeerreeerereeesreesssreesssreessseeessseesssseesssseesnns 32
4.5. ODbJeCct SEZMENTALIONeeeviieriiieeeiieeiiieerteeesteeesteeeseteeesereessseessreesseeesseesssseesssseesnns 33
4.6. Depth descriptor AESIZIceuieruiiriiiiniieiieniieee ettt re e e s 34
4.6.1. Key-point dBtECIONcc..eevueiriieiiieiieiie ettt ettt e 34
4.6.2. DeSCIIPLOT PALIEIT..c.uueeeuriiiieriieeieeeteeiee st et e et et st et ereeseeesre e e eeneeseeeeanees 34
4.6.3. Depth description (DeSCIIPtOT VECIOT) ...c...eevureruieriierieeniieeieenireereeneeereesiee e 36
AVETAZE AN ..ot 36

StANAATA AEVIATION .ot e e e e e et e e e e e et e e e e e e e e e eereeeeaenns 36

Difference of maximal and minimal depthccccoeeiiiieiiiiieiiiieeeee e 37

GLODAL ANZIE ..ottt e 37
4.6.4. DESCIIPLOT INVATIANCEeeeruvieeuieeeireeeniteeerireeenireesireestreessteesseeesseeesseessseessnnes 38
SCAlE INVATTANCE.cuteeiiieiiieiieete ettt ettt ettt et st e e reesaeesaneenaee e 38
Rotation & perspective INVATIANCEeeerueeeeriieriiiieeiieeeiteesieeeeiteesiee et eesbeeesinee s 38
4.6.5. DeSsCriptor MACHINGccoviiiiiiiieiiie ettt ettt et e st e e sabeeenans 38

5. Implementation...............ccoooiiiiiiiiiiiiee e e e e e e a e e e eaaaeeeenes 39
5.1, TechnOlOZY USEA...ccuuiiiiiiiiiiieeiie ettt ettt et et e et e e et e e sebeeesasaeenans 39
S.1.1. ODbJect RECOZNIZETcc.eveiiiiiiiiiiiiiiicieeee et 39
S5.1.20 KINECE SDK ..ottt 40
S.1.300 OPENCV ettt et s 40
5.2. Architecture Of the SOIUtIONeiiiiiiiiiiiiiiiee e 41
530 KiINECI2X HDTATY ..coouviiiiiiiiiiiieeite ettt et 42
5.3. 1. Kinect2X InItialiZationcoooueeiriieiniieiiee ettt 43
5.4, DeSCriptor LADTATYcoociieiiiiiiiiiieeiie ettt ettt e e sebee s 43
5.5, DePth DESCIIPLOT...cuuviiiiiieiiiieeiieeete ettt ettt e et e et eer e e etaeesabaeesebeeesaseeenanes 43
5.5.1. Extraction of Depth Descriptor features...........coccveeerieeerieeniieenieeeieeeiee e 43
5.5.2. Key-point detection based on depth imagecceccveeeviieriiieniieenieeeeeeeen 45
5.5.3. Evaluating the surface based on DD values..........cccccceevviiiniiiiniieeniieeeiieeeen 45
5.5.4. Outhier TEMOVALcocueiiiiiiiiiieeeeteee ettt 47
5.5.5. Estimating the threshold values for flat surface prediction...........ccccceevvveennnen.. 48
5.5.6. DesCriptor MAChINGcc.eeeiiiiiiiriiiiienieeeeree ettt 49
5.6. Color (Intensity) DeSCIIPLOTcevviiiieriiiiienieeieeeteeee ettt 49
SIFT GPU Implementationccccveeueerierieeniieeiteniee ettt s esiee e e snee e e 49
ORB GPU ImpIementationccccveeueerieriieeniieeiienireeieesieeereesieesreesieeereesieesneesiee e 50
Descriptor MALCHING «...co.veeveiiiiiiierie ettt e 50

6. RESUILS ..ottt ettt et e e 51

0.1, DALASEL <ot ————eaa e e e et ——————————aeraan—————— 51

6.2, HATAWATEoueiiiiiiieiice ettt et et st 51
6.3. Depth Descriptor Pre-SeleCtiONeeevviieriieeriieeiiee ettt ettt sree s 52
6.4. Evaluation of Depth Descriptor roDUSINESScccueiiriieriiiiiiiiieeieeeieeeee e 52
6.5. Evaluation of surface prediCtion...........cceeiiiiiriiiiriieirieeeieeeeeeee et 53
Evaluation of mean vValUecccooiiiiiiiiiiiiiiiiececeeee e 54
Evaluation of standard deviation Valuec.ccceoeeriieiiiiniieniciiieicneeeeeeeee e 54

6.6. Comparison of MatChing tIMEcc.eeeviiieriiiieiiie et 55

To COMCIUSION.........iiiiiiiiiie ettt st ettt e et e st e ateenbeeee 57
8. REFEI@IICESc..oiiiiiiiiii ettt st ettt ettt saeeen 58
Attachment A: Content of electronic Mediacceeevviieiiieeiiee e e 61
Attachment B: User manual.............cocooiiiiiiiiiiiiee et 62
Attachment C: Technical dOCUMENTAtIONeieiiiiieiiieeiee e vee e 65
Attachment D: Resumé v slovenskom JazZyKucocccoieviriiniiiiniiniinicicccceecseeeene 71
UIVOU 1ottt 71

YN 111 /- VTSRS 71
Detekcia KIUCOVYCh BOAOV.....cooiiiiiiiiiiece e 72
Deskripcia KIUCOVYCh BOAOVeiiiiiiiiiiiieiie e 73
PArovanie desKITPLOTOVccuuiiiiiiiiiie ettt ettt see e tre et e e e e sabeeenanee s 73

NAVIN TIESENIA ...ttt et 74

10301 0] (S5 10 1<) 1 7 Tor LTRSS 76
VPSIEAKY ..t 78
ZNOANOLENIE & ZAVET .eeeeeuiviieeeeiiiieeeeieeeeesiteeeeestteeeeetaeeeestaaeeeesasaaeesassseeeesssaeessnsssnes 79

Attachment E: Paper published at SPIE Electronic & Imaging conference in San Francisco,

California

Attachment F: Paper published at IITSRC 2015 conference

1. Introduction

Visual detection and recognition of objects placed in an image or on video belongs to
one of the most challenging tasks in recent past. Big amount of methods and algorithms were
presented with the aim of precision and speed, compared to inevitable advance of hardware
and software. Field of computer vision, to which part of object recognition belongs to, is
nowadays one of most active and developing field in informatics. Thanks to research in this
field and new hardware, we are able to extend some well-known methods and come up with

new ideas, which can contribute to and move the ladder of the hard task of object recognition.

In this thesis we will discuss the problem of object recognition, compare and get
acquainted with object recognition algorithms and image segmentation. We will discuss
possibilities of recognition based on bottom-up models. The issue of finding object on an
image sequence is quite hard thanks to countless possible views of an image. Not only the
angle of view, but distance and light variations are making this task harder to compute and
make them possible on real time. Not mentioned the distortion of an image caused by

hardware, such as noise which occurs on captured images.

In our work, we will enhance the object recognition with a depth information. Most of
currently known bottom-up methods are based on classic RGB (Red, Green, Blue) images
where you cannot determine the real distance of object from camera. By using hardware like
sensor Kinect, we are not only able to capture RGB image but also depth image. With this
sensor we are able to see real surface of object and can partially rebuild the 3-dimensional
object. Providing that information we are able not only to enhance current methods of object
detection, but we are able to make segmentation of an object based on depth information and

therefore reduce area of an image we need to recognize on.

From wide area of object detection methods, we will take closer look at the method of
local descriptors. Our research focus on the implementation of real time algorithm which will
use depth information from available sensors like Kinect 2. Depth information will be used as

another value to enhance the recognition.

2. Analysis

Object detection is one of most important tasks of computer vision and image
processing. We usually call objects same name, even when their appearance is completely
different. For example we can recognize a car even when there are hundreds of types of
vehicles. They have different shape, different color or look. We need to take this into

consideration to be able to detect objects. In general, we divide objects into two categories[2]:

e generic objects - class recognition (generally a car)

e specific objects - instance recognition (specific type of a car)

Generic object recognition is based on describing the shapes of an object trained on several
instances of same class, where some general features which are most of the time same on all
instances are used. We create sort of a statistical model. This refer more to classification

issues.

In our work, we focus on specific object recognition algorithms. In general, we need
an image sample of the object from which we are going to extract information and store it for
later use in our recognition. Next, as we capture image from camera we are going to use that
information to get results, if image contains our trained object or not. This sounds like an easy

task, but it is not. There are many issues we are encountering during this process.

One of the main issues is that we are trying to represent 3 dimensional objects from
real world in 2D image. Objects usually do not look the same from different sides, even when
humans are still able to recognize them. Using Kinect sensor we are able to partially
recognize object shape, but we are still not able to have full 3D information of it. To take care
of this issue, the simplest way is to learn about object from sequence of images taken from

different views.

However, 3D object represented on 2D image is not the only one issue we are facing
during the process of object detection. There are several more problems regarding the specific
camera or depth sensor, time of the day or current view of an object we are trying to

recognize. We can identify those issues as below: [2]

e Light variance - Considering image as a matrix of RGB values, different light source
can make a negative impact on recognition. For example, photograph taken of the
same scene in different time represent completely different images if we compare the
values of each RGB channels in both images.

e Scale and distance - If we capture an object from various distances it will have
different size in the result image. Also values from depth image are different. We need
to consider it in our result algorithm with values, which will be invariant to the change
of distance and therefore also scale.

¢ Rotation - Object will probably not be in the same standing position in every captured
image. Rotated object differs from template and we need to make our algorithm
rotation invariant if we are going to recognize trained object from various rotated
positions.

e Axial rotation - Object can be captured from different angles and can look different.
In our method we should consider possibility of perspective transformed image
regarding to original training image.

e Noise - Distortion of an image not present in real environment. It is caused by various
quality of sensors and cameras.

e Occlusion - In a lot of images, we do not see object in a whole. There are many
situations where we are able to see only part of it.

e Object pose - Considering non rigid object we are trying to recognize.

The first and very easy conclusion for object recognition was a holistic method. Main
idea was to create a histogram of color intensities of the specific object. In such a histogram
we can see a similar pattern for the same object detected on an image. We can think of a
histogram as high dimensional space and use metrics for distance measurement like Euclidian
distance. However such a methods are not quite robust, need to be focused on certain object

optimally without any background and still can lead to false positive results.

img,(x,y) = 120

img,(x.y) = 123

img,(x.y) = 119

img4(x.y) = 241

- imgs(x.y) = 238

= 4> imgs(xy) = 246
>

Figure 2.1. Histogram representation of selected images. [2]

Statistical methods as told above was used for further analysis and multiple improvements
were made. In 1992, Turk & Pentland [4] in their work with face images were able to reduce
such an analysis into less dimensional vector using PCA (Principal Component Analysis)

creating an eigenface.

In 1995 this idea was used and improved by Murase & Nayar [5]. They created an
algorithm which were capable of recognizing about 100 objects in real time. All mentioned
methods had one major issue. For example using face dataset, any change in pose could lead
to failed detection using global representation. Positive thing about this method is that the
rotation invariance do not need to be take into consideration as intensity histogram does not

change after various rotations of the object.

Mentioned methods were based on global representation of an image and objects. The
main issue there was with occlusions which were detected on an image, large changes in
viewpoints or with deformable objects. Therefore new method was proposed based on local

features also known as key-points, and local descriptors.

2.1. Local descriptors

Discovery of local features and descriptors made a huge change in the research of
object recognition. Thanks to local descriptors, we were able to develop object recognition
methods which were more efficient and also robust under variety of viewing conditions or

occlusions. The main task of local descriptors is to recognize whether the various features

extracted from the same object are presented in an image, how are they oriented and where

are they located. The main task of the local descriptor methods are as follows: [2]

e Extract local features both on training image and test image
e Match stored features with detected features in test image

e Verify the correspondences of features. Compute geometric configuration

Using local descriptor methods, features can be extracted with both scale and rotation
invariant manner. As we extract selected features independently from others, we are able to
translate them to default scale and rotation using for example gradient direction or edge
orientation based on certain pixels around the features. In comparison to the global
representation we are able to save expensive computing time as we do not need to rotate or

scale whole image to achieve desired invariance.

Figure 2.2. Example of object features (key-points). [2]

Using small patterns to form features can still lead to easy mismatch of features and therefore
geometric verification need to be done. In general we find out if matched features are able to

create convex rectangle with no lines intersection as it could not exist in real world.

2.1.1. Feature extraction

Main goal of successful object recognition is to detect significant local invariant

features, with properties as follow [2]:

e Can be found repeatedly in two images showing same object
e Are detected in an image with certain precision
e Are present and can be found in various viewpoints of an image

e Are enough representative for selected object

e Are distinct from another object features
e There are enough features per object so that object can be matched under partial

occlusion

To pass to the process of feature description, first a set of distinctive features must be
extracted. Feature is presented as key-point localized in an image. Next, we define a region
around each detected key-point in a certain manner to achieve scale and rotation invariance.
To form local descriptor and therefore describe selected key-point we use information in
defined (depends on the certain descriptor) region. But first, the content of the region should
be normalized to achieve invariance to varying light conditions. Also the rotation invariance
can be achieved simply by finding dominant orientation of selected pattern. According to the

orientation found we can rotate selected key-point.

Best adept for key-points are those points in an image where signal changes in two
directions. Imagining uniform region or a single line, we are not able to distinguish points
from their neighbors. In contrary, corners or non-uniform regions suits our case well. We

present a list and a description of feature detectors which can be used in feature extraction.

Hessian detector

The Hessian detector [2] is based on a second derivate matrix called Hessian. It looks
for a key-points that are strong enough in two orthogonal directions. The cons of this method
is that those operations are sensitive to a noise present in an image. To prevent bad key-point
detection we usually smooth the image using Gaussian blur. Besides corners, Hessian detector

can detect also responses at places with strong texture.

Harris detector

Harris detector was explicitly designed for geometric stability. It defines key-points to
be “points that have locally maximal self-matching precision under translational least-
squares template matching” (Triggs 2004)." [2] This detector looks for corners and is less
responsive on textured areas. Also Harris detector is considered to be more precise than
previous mentioned Hessian detector. Nevertheless, both Harris and Hessian detectors are not
working well on different image scales and therefore they are not taken as scale invariant

detectors.

Laplacian of Gaussian (LoG)

Laplacian of Gaussian [6] detector belongs to the family of scale invariant detectors.
First solution to scale invariance was to continuously scale image around detected key-point.
However this process is expensive related to speed and computing power. Instead a signature
function is evaluated and plotted as a function of the neighborhood scale. To help find
corresponding scales and scaling factor we divide two local maxima values. Laplacian of

Gaussian detector is a blob-like feature detector based on previous theory that search for a

QY 1. 0)+L,(0)—
\\\G
o

Figure 2.3. Illustration of Laplacian of Gaussian detector. [2]

scale space extrema.

o’

ol
3
2

Difference of Gaussian (DoG)

Difference of Gaussian detector [7] is a good approximation for LoG detector but
faster. It searches for 3D scale space extrema of the DoG function. The approximation is
based on subtraction of two adjacent scale levels of Gaussian pyramid. Points of local extrema

determines the position and size of detected key-points.

Scale
(next
octave)

Sampling with .y
step o*=2 A

Scale
(first G
octave)

Original image <=2,

Difference of
Gaussian Gaussian (DOG)

Figure 2.4. lllustration of Difference of Gaussian detector. [2]

The Harris-Laplacian Detector

This detector [8] [9] was originally created for increased power compared to Laplacian
or Gaussian detectors. As the name of this detector tell us, it combine Harris detector with
added scale invariance from next detectors. Like original Harris detector, this detector looks
mostly for corners but is more invariant to scale, image rotation, camera noise and
illumination. Harris-Laplacian detector used to however detect lower amount of key-points
and therefore partial occlusion of an object could be issue during detection. Because of this

issue, detector went through slight changes few years after it was introduced.

Maximally Stable Extremal Regions (MSER)

The detector [10] [11] we are going to describe now brought another improvement to
the issue of key-point detection. Previous described detectors suits well in a lot of situations -
scale, rotation, illumination invariance or camera noise, however there is still one problem
that occurs in the object detection phase - the object viewpoint. Previous detectors proven to
be not suited enough for instances, where object was captured from different view and angle,
as it was using still the same pattern for detection. In those cases the perspective

transformation of an image appeared to be too much expensive.

Next MSER detector was created to be able to detect affine covariant regions. First,
the MSER detector applied watershed transformation to the image with the aim to extract
homogenous intensity regions. Those regions are stable enough under changes of viewpoints

of an image or other image distortion and can be considered as good features to describe.

Features from Acelerated Segment Test (FAST)

Detector FAST [12] [13] was proposed as to be very fast corner detector suitable for
real time object detection and tracking. It is not based on first or second derivate of values like
LoG or DoG. It simply compares the intensity values of 16 pixels forming a circle around
key-point candidate. Corner at point P in the figure 5 is declared as a key-point if certain
amount of pixels in a circle has bigger or lesser intensity with given threshold as point P in
the middle of the circle. This number vary depending on the FAST algorithm itself as there
are several more variations of this method. In first FAST detector, the number was set to 12
consecutive pixels. FAST detector had to pay for its speed with the lack of rotation

invariance.

Figure 2.5. FAST key-point detector with circle used for comparison [12]

2.1.2. Feature description

Now that we have detected key-points we need to describe selected features as in next
step we are going to compare them. To create such a descriptor we take content around
selected key-point and translate pixel values into vector of numbers. Pattern which pixels to
take into consideration and the content of vector vary for different descriptors. We divide

descriptors into 2 categories: [2]

e numerical descriptors (float type)

e binary descriptors

First descriptor vectors contain float type values in their vectors. Later on, binary descriptors
were introduced in aim for better computing speed. We are going to describe few well known

descriptors which are promising in our case of real time 3D object detection and tracking.

Scale Invariant Feature Transform (SIFT)

Although SIFT descriptor [14] is old, it is still considered to be as one of the best local
descriptors. It is still used in a lot of projects and also for comparison with other methods.
SIFT descriptor was introduced by Lowe in 1999 and later 2004. For key-point detection,
SIFT came up with his own detector also called SIFT which were based on Difference of
Gaussian. It belongs to numerical local descriptors and to match pair of descriptors we can

use Euclidean distance.

"The SIFT descriptor aims to achieve robustness to lighting variations and small positional
shifts by encoding the image information in a localized set of gradient orientation

histograms" [2]

To create SIFT descriptor vector we first create image gradient with magnitude and
orientations around detected key-point. The size of the pattern grid is 16 x 16 pixels. Next, we
divide the selected pattern into smaller 4 x 4 pixels grids (sum of 16 windows), each
representing a gradient orientation histogram with 8 bins created from corresponding 16 x 16
pattern. During creation of descriptor gradient histogram is created after Gaussian weighting
function, as we want the pixels closer to the middle of key-point to have bigger impact on the

result vector.

Considering 4 x 4 grid, each containing histogram of orientation with 8 bins we create
a descriptor vector with the size of 4 x 4 x 8 = 128. After descriptor is created we normalize

values to achieve light invariance and unit length.

él(
x

Keypoint descriptor

k| &

Image gradients

Figure 2.6. Process of forming SIFT descriptor. [2]

10

Speed Up Robust Features (SURF)

The main reason behind the creation of local descriptor SURF [2] [16] was to provide
as good robustness for object detection as SIFT descriptor but in less computational time.
Instead of Gaussian derivate, SURF descriptor is based on box filters also known as Haar
wavelets. It is an approximation of derivate used in SIFT, but can be easier evaluated by using
integral images. Also because of this method, they do not had to use Gaussian pyramid for
scale invariance. The common part with SIFT descriptor is that it divides the area around key-
point into 4 x 4 grid regions. Instead of making histogram with 8 bins it computes summary
statistics, resulting in overall 64 dimensional vector instead of 128 for SIFT. SURF descriptor
were also implemented on graphic card using CUDA technology which is known as

GPUSUREF.

2. dx .:I::-:':;.
Tl 4
> dy NS

> ldyl
Figure 2.7. SURF descriptor visualization. [16]

Binary Robust Independent Elementary Features (BRIEF)

Numerical (float) descriptor vectors were in general slow to compute and match. Local
descriptor BRIEF [17] was intended to change those values into binary strings. In paper were
presented that those binary strings can be obtained directly from the image patches. They
compute their binary vector in a way of comparison of intensities between two corresponding

points. Those points are taken from selected lines they chosen to be their pattern.

Binary descriptors were introduced mostly because of their main advantage over
numerical descriptors. To match binary descriptors, lower cost Hamming distance can be
computed instead of Euclidean distance. On modern CPU's, Hamming distance can be

computed much faster using XOR operations.

11

To create descriptor vector, authors of BRIEF descriptor have chosen a sample of lines
and compare the intensity values of their end points. In next figure we show templates which

were tested in the aim of best matching capability.

Figure 2.8. Different pattern used for BRIEF evaluation. [17]

For each template recognition rate was computed. The next figure show us the result of their
evaluation. The random selected lines in a template have yield better results than generated

templates. That is the reason the template pattern for filling the descriptor in BRIEF is

generated from random lines.

100
90

80
70
60
50
40
30

Recognition rate [%]

20
10

Wall 1]2 wall 13 Wall 1]4 Wall 1[5 wall 1|6

Figure 2.9. Evaluation of recognition for previous selected patterns. [17]

12

Oriented Brief (ORB)

Rotation invariance was the major issue for the BRIEF descriptor. Not much time has
passed since the creation of the ORB [18] descriptor. Authors combined the FAST key-point
detector with the method of BRIEF descriptor to create fast binary local descriptor. They
upgraded FAST detector with key-point orientation and according to key-point orientation

steered the BRIEF descriptor itself.

Fast Retina Key-point (FREAK)

FREAK descriptor [19] was inspired by the human visual system. For key-point
detection FREAK descriptor use the same approach as were presented in BRISK [20]

descriptor.

Descriptor is consisted of binary strings created by comparing different intensities of
the image over the selected pattern. Pattern which is used for descriptor filling is similar to
retinal ganglion cells. We show the pattern image, where each circle represents receptive

field. The larger circle, the more is image smoothed by using Gaussian convolution.

Figure 2.10. Pattern used in FREAK description. [19]

Histogram of Intensity Patches (HIPS)

From our previous work [21] on bachelor thesis we have chosen HIPS descriptor [22]
to complete the list. This descriptor was introduced as a fast descriptor capable of real time

matching even on low cost CPU units. We have successfully implemented HIPS descriptor to

13

be able to match in real time even on low price mobile device at the cost of full rotation

invariance, making HIPS descriptor powerful to use for weaker devices.

For key-point localization HIPS descriptor use the well-known FAST algorithm. As
the FAST detector does not solve the scale and rotation invariance we need to add it to our
solution. To be able to match object from different angles and rotations we create a training
set of images also called as viewpoints from which we want our object to be detected. Next, to
increase robustness of our algorithm all viewpoints are slightly transformed in the manner of

affine and perspective transformations. Now we can start a training phase for HIPS descriptor.

From each of the viewpoints images we detect key-points using FAST key-point
detector. We select top 50 to 100 features which occurs in the viewpoint most of the time. As
we know for each image how it was transformed according to its reference viewpoint image,
we can transfer each key-point coordination's back to their original place. It can be easily
done by making a list of features with counter for each feature. Those features appear to be

strongest for selected viewpoint.

After we have selected top key-points from each viewpoint we create a sample grid of
8 x 8 pixels around them to form the descriptor vector. Each of the value in the grid is
normalized to achieve light invariance. Histogram with 5 bins is then created from the
intensity values of the pixels at the same position across the same key-points in viewpoint
images. According to the position of pixel and value in the histogram we fill the HIPS
descriptor in a way that 1 is filled to the descriptor vector when the selected intensity was
under selected threshold. Otherwise 0 was filled. Next figure shows the process of filling the

descriptor.

14

i B, B PO

> 7th pi
pixel

I. \

B

lI 59

Intensity level |0| |1| [2]| |3| (4
histogram

oy

iy

sample grids around corresponding 012345678..

key-points on training images. 0 R0l

EEEm -
EEEEE. -

2]
descriptor 3] [[-]-]-Jo].]..
3 O

64 bit number

Figure 2.11. Process of forming HIPS descriptor. [21]

Same procedure applies on the image from camera at the recognition time but instead of

binary number 1, O is filled when the intensity was under selected threshold.

By this we can easily compute the dissimilarity score of two created descriptors using
binary AND operation. Exactly the same descriptor vectors after binary AND will lead to the
result of vector filled with all zeros. The more the two descriptors are different, the more ones
will be in the result vector. To simply match the pair of descriptors we calculate dissimilarity

score. It is done by counting the one numbers in the binary vector after AND operation.

2.1.3. Descriptor matching

Considering the fact that each descriptor vector created went through the complex
process starting from detecting key-points, achieving invariance to different transformations,
normalizing the values end to filling the descriptor, there is high chance that even the same
key-points detected on almost the same image can be described in slightly different manner.
Hence to find corresponding pairs of descriptors we are not looking for the exact the same
pair. We perform actions more likely to be called as finding nearest neighbor or similarity

search.

The simplest way to get pair of corresponding descriptors is to make a brute force scan

through all of stored descriptors and declare pair of descriptors as a good pair under selected

15

threshold. This solution is good for smaller number of trained objects, however if we want to
store more objects and still want to be able to match them in real time, we need to consider

more efficient solution like KD trees or hash functions. [2]

Distance measurement

In previous chapters, we mentioned two types of local descriptors. The numerical and
the binary ones. Each of the selected type of local descriptor has their own method for
matching the good pair of descriptors. We present basic methods for matching pairs of

descriptors for both types.

Euclidean distance

Euclidean distance [2] is used to measure distance of two numerical values. Smaller
the result of the Euclidean distance is, the more similar pair of descriptor vectors are. It is
given by the Pythagorean formula. In next formula, d} represents i-th dimension value of the

first pair of descriptor.

n

distance = Z(di —db)?

i=1

Hamming distance

The purpose of binary local descriptors was to make computing the distance between
pair of descriptors easier and faster for current CPU's. The descriptor vector of binary
numbers is also known as binary string. The result of Hamming distance [2] is the number of
positions at which the binary strings were different. To find out the similarity of pair of
descriptors, we perform binary operation XOR between the binary strings. By definition of
XOR, the result is 1 when the values at same position of two vectors were different. To

calculate the distance, we simply count the occurrence of ones in the result vector.

A | B | XOR
1|1 0
1|0 1
0|1 1
010 0

Table 2.1. Exclusive OR operator

16

Homography

The next step after finding the pairs of descriptor is to compute the homography [2]
matrix. In other words we are trying to get geometrical representation or transformation of the
object found in the result image according to the stored object. This process can also serve as
a verification phase if the selected object occurs in the result image as we know that some
geometrical shapes cannot exist in real world. Local descriptor method can return also false

positive pairs which will result in unpredictable shapes after we retrieve homography matrix.

The process of finding homography helps us also to select true positive matches also
known as inliers and separate them from true negative matches (outliers) which were selected

as good matches from previous distance measurement.

RANSAC
RANSAC [2] is well known algorithm for finding homography. First, it takes four

random pairs of descriptors to compute the homography matrix. In next step from it compares
all pairs of descriptors left with previous created homoraphy matrix. When more than 50% of
descriptor pairs fit into the homography matrix, it claim selected homography matrix as a

result.

2.2. Segmentation

Segmentation is quite an old and quite complex task of the computer vision [1]. The
idea of segmentation is to be able to distinguish the desired object or group of pixels from the
rest of the image. In easier problems we are trying to merge group of pixels with common
attributes like color together. More complex issues are focused on object segmentation from
the background. There is no universal method for image segmentation and different task
would most likely require different approach of segmentation. Nowadays there are several
methods for image segmentation. We describe most common segmentation methods and our

simplified approach for the depth image.

2.2.1. Active contours

Algorithm based on the active contours method [1] focus on finding the curves to
determine boundaries for segmentation. Active contours are also called as snakes. It is an

iterative process. We can imagine it as a contour line in the image which is trying to minimize

17

the energy at current contour. Algorithms which belongs to this category are: snakes, dynamic

snakes, scissors or level sets.

2.2.2. Split and Merge

Next approach for image segmentation is to split large image into smaller areas. [1]
This approach generally splits the area into 4 smaller areas of the same size recursively. In
next step, those 4 area textures are compared if they are likely to be the same. If so, they are
merged together. As we were splitting the image in a certain pattern we may accidentally split
uniform region into 2 areas. Therefore the next step called merge proceeds to compare

neighbor areas and merge them together if they have the same texture.

2.2.3. Mean shift and mode finding techniques

Mean shift method [1] can be translated also as "per pixel" method. Each pixel is
represented in a feature vector as a sample of probability function. The possible data to create
such a vector could be color and position. We can consider this as a classification problem.
Algorithms such as k-means clustering, mean shift or Gaussian mixture models belongs to

this category.

2.2.4. Growing regions

Another segmentation method which can be considered as region or pixel based is
called growing regions. It is an iterative process. At the very beginning, we need to pick up
the seed point which refer to a start point for segmentation. In later steps we look at seed point
neighbor pixels and determine if they belong to the region or not. The process is done for all
pixels which were added to the region. The cons of this method is that we need to choose
suitable pixel as a seed point. This can be tricky part of the work for the color image. Also

selecting the threshold for pixel comparison is essential in order to get good results.

2.2.5. Segmentation in depth image

To be able to distinguish desired object from the background in the depth image, we
can use much easier methods which are not time and memory consuming. Depth sensors can
give us data which represent the distance of the selected pixel from the sensor. Segmentation
task can be easily done just by comparing the distances over pixels. In 2D images we could

only determine boundaries by color information. In 3D depth image objects are represented

18

by continuous surface of pixels with similar distance. The object boundaries are then
determined by large change in the distance. Growing region method for segmentation can be
used there as we can easily select seed point pixel just by selecting the closest pixel in the

depth image.

2.3. Kinect sensor

Kinect is one of the devices [3] which is capable of acquiring images with depth
information. Device was created by Microsoft and it consists of the standard RGB color
camera, depth sensor and an array of microphones. Kinect device also have tilt motor which is

capable of rotating the head of the device.

IR Emitter Color Sensor
IR Depth Sensor

Tilt Motor

_—4

Microphéne Array

Figure 2.12. Hardware components of Kinect device. [3]

From the Microsoft website, the specifications of the device are as follow:

Kinect Array Specifications
Viewing angle 43° vertical by 57° horizontal field of view
Vertical tilt range +27°

Frame rate (depth and color

stream) 30 frames per second (FPS)

Audio format 16-kHz, 24-bit mono pulse code modulation (PCM)

A four-microphone array with 24-bit analog-to-digital converter
Audio input characteristics (ADC) and Kinect-resident signal processing including acoustic
echo cancellation and noise suppression

A 2G/4G/8G accelerometer configured for the 2G range, with a

Accelerometer characteristics o .
1° accuracy upper limit.

Table 2.2. Kinect sensor device specifications. [3]

19

The purpose of the device was originally to be able to play games on the XBOX 360
device, but it has many advantages in the research field of computer vision for its price and

availability on the market. Device with the Microsoft software kit is able to: [3]

e Capture RGB data from camera
e Capture depth image from depth sensor
e Perform skeleton tracking

e Recognize speech gestures

Along with the Kinect sensor Microsoft created their own SDK (Software Developer
Kit) to help developers make use of the Kinect device for research purposes. The interaction
between the Kinect sensor and application is allowed by NUI API (Native User Interface)

through which can we obtain desired color, depth or audio stream.

Sensor Array

Image Stream) .:
- —]
? e—D D1 SUrEAT — NUI Library > Application
Audio Stream ' b |
=X

Figure 2.13. Interaction between software and device. [3]

Windows Core Audio @
MU AP and Speach APls
DMD codec tor mic anay @

®
®_f__. _______________ 1

Kemel-mode drivers for Kinact for Windows |
Y — — — — —
| USE Hub | Hardware

@ [Maotos |

Device Device .
I setup access ‘Wideo stream control Audio stream control | User Mode
I WinUSE device stack WinUSB camera stack USBAudio audio stack | Kernel Mode

Camaras | | Audio mic array I
Kinect sensor

O Kinect far Windaws ! User-created
Windows SDK COmponents COmponents

Figure 2.14. Kinect SDK architecture. [3]

20

2.4. Kinect for Windows v2

During the July 2014 new Kinect sensor v2 were introduced by Microsoft. Providing
fidelity of the depth image three times better than in Kinect v1 sensor, it could take 3D object
recognition to the new level where the depth description and matching could be done without

merging it with color descriptors.

Similar to the Kinect vl device, new sensor have both RGB and Depth sensor. The
new depth sensor is based on the time of flight method, providing more accurate results for
depth mapping along with the better resolution. In next figure, we show differences between

vl and v2 sensor.

Feature Kinect for Windows 1 Kinect for Windows 2
Color Camera 640 x 480 @30 fps 1920 x 1080 @30 fps
Depth Camera 320 x 240 512 x 424

Max Depth Distance ~45M ~4.5M

Min Depth Distance 40 cm in near mode 50 cm

Horizontal Field of View 57 degrees 70 degrees

Vertical Field of View 43 degrees 60 degrees

Tilt Motor yes no

Skeleton Joints Defined 20 joints 26 joints

Full Skeletons Tracked 2 6

USB Standard 2.0 3.0

Supported 0S Win 7, Win 8 Win 8

Price $299 TBD

Figure 2.15. Comparison of Kinect v1 and v2.

The new Kinect device comes with the new Kinect SDK v2.0. Few changes has been
done from the previous version. First, the new Kinect device works only with the new
Windows 8 operating system and need USB 3.0 port. The SDK is supported for different
languages like C++, C#, JavaScript and more. New SDK contains also additional features like

integration with the Unity using a plugin, which is used for the game development.

21

Native ’ Windows Store Apps
Ap;’)h C# VB, JS, C++/CX

Native API WINRT
AP|

Kinect Runtime

Kinect Drivers

Physical Kinect Sensor

Figure 2.16. High level architecture of new Kinect v2 SDK. [3]

22

3. Related work

We made a research about given task and present our conclusions to related work.
Most interesting points from other author's work will be presented, with the aim of providing

useful information for our research.

3.1. Computer visual object detection

The previous work on this topic field have been done by diploma thesis [23] we are
continue working at. In previous work, there were three modules implemented. First module
was called KinectX which provides high level interface for the Kinect sensor to manipulate
with. It have been done in the purpose of better code management for the main

implementation of object detection.

For the second part of the thesis, two ways of detecting objects using the Kinect sensor
were implemented. The first algorithm is based on local histogram of intensities comparison.
The second one is the algorithm based on the SIFT descriptor with added depth information.

The pipeline for the recognition algorithm is as follow:

e Acquire the color and depth image from Kinect sensor

e Align the depth image according to the color image

e Remove artifacts caused by depth sensor in depth image
e Compute the segmentation mask of the object

e Detect features on the segmented part of the image

e Feature extraction from depth and color image

e Descriptors matching

Kinect device which were used for acquiring the depth information have 2 sensors
which are not at the same position. Also, the depth sensor support max resolution of 640 to
480 pixels, where camera supports maximum of 1024 to 768 pixels. The consequence of this
set up is that artifacts can be detected as the depth image cannot and in almost every case will
not be fully aligned to the color image. In the thesis, artifacts were removed by using filters

such as median.

23

For the segmentation method depth image was used for its efficiency. We can simply
select the continuous surface of closest object to create segmentation mask. This part of the
algorithm will save us a lot of computation time as we do not need to detect and extract

features all over the image.

As for the last step of detecting and extracting features (key-points) we focus on the
SIFT implementation. SIFT detector and descriptor was used over a color image. In addition,
the result 128 dimensional descriptor vector was expanded with another 2 dimensions. For
each detected key-point, we look at the depth image and acquire standard deviation and
maximal difference from the depth data at selected surface around the key-point. Those are

two additional attributes which were added to the result SIFT descriptor.

3.2. NARF: 3D Range Image Features for Object

Recognition

Authors of the paper [24] [25] are interested in feature extraction and description from
the 3D image data. They presented interest point extraction method called NARF (Normal
Aligned Radial Feature) together with descriptor. For the extraction of interest points or so

called key-points, they want to achieve two main rules:

e Detected key-points need to be located in the stable surface region. The main reason is
to achieve robustness of the algorithm, as in next process they want to extract normal
vector at the selected point from surface around the key-point. Unstable surface may
result in not reliable results and errors in matching.

e They want to use object borders which represent shapes of the object which can be
seen at current depth frame. Considering the algorithm is used on the hardware which
can capture partial view of the 3D scene (laser based scanners, stereo cameras or
Kinect device) the shape of the object will be different from other views. Those shapes
are rather unique for the selected objects and can result in increased robustness if they

are used for the description.

3.2.1. Feature detection

The process of detecting key-points is most important part for the descriptor to be

good at matching. For the NARF descriptor, key-points need to be able to recover information

24

regarding the borders and the surface. Detector need to detect those points which can be also
detected from different perspective view of an image. The algorithm for finding the key-

points is as follows:

1. Find borders in the range image. Border is found as the non-continuous traversal from
the foreground to the background of the image where they look for distance increases
between two neighbor points in the image.

2. For every image point, look at the local neighborhood of the image. Compute the
change in the surface and dominant orientation for the change.

3. Based on the dominant orientations of the surrounding image points calculate a value
which will represent the difference between the orientations in the area and the change
in the surface area (how much stable it is).

4. Smooth the interesting values.

5. Perform non-maximal suppression to be able to detect the final key-points.

()

ﬁ @ ki
(d)

Figure 3.1. Interest point extraction procedure. [24]

3.2.2. Feature extraction

Rotation invariance for the NARF descriptor is achieved by calculating the orientation
around the normal which is similar to selecting dominant orientation for 2D descriptors like

SIFT, except the 3D space. With the 3D information we are able to determine the

25

transformation for all the 6DOF (degrees of freedom). To create NARF descriptor around the
selected key-point we need to calculate normal range value patch. Star pattern is then used for
the selected patch to compute the descriptor. Each line of the star pattern will get its part in
the filling of the descriptor in a way it represent how much of the pixels under the line change.
Last step is to find dominant orientation of the descriptor and rotate it to default position to

achieve rotation invariance.

(b)

Figure 3.2. Pattern used to fill NARF descriptor. [25]

3.3. A combined texture-shape descriptor for enhanced 3D

feature matching

Authors of the paper proposed a novel descriptor for 3D feature matching containing
both shape and texture information. They proposed descriptor called CSHOT [26] (Color
SHOT) which should improve accuracy of the recognition in environment where clutter and

occlusion is present.

26

& Ci‘ 2.

. Eh:;-u Step (S A C:I::Ehup (Se) ;
T]
Shape description Texture description

Figure 3.3. Structure of CSHOT descriptor [26]

CSHOT descriptor extended from the SHOT descriptor [27]. Descriptor is based on
eigenvalue decomposition of a scatter matrix around selected point. In the paper also known
as definition of repeatable local reference frame. To encode spatially information (signature
structure) about the point, isotropic spherical grid is defined based on the local reference
frame. The result descriptor is then formed in a way that histogram of normal vectors is

defined for each sector of the grid and stored.

For the design generalization let's say SHqg/P) refers to genetic signature of
histograms computed over spherical support around feature point P. The signature histogram
relies on the G = vector-valued point-wise property of a vertex and f = metric used for
comparison of two point-wise properties. Next, to compute the signature histogram we apply

the f metric over all pairs (Gp, Gg) where Q represent generic vertex around feature point P.

In order to build up the descriptor at selected feature point, we compute m signatures

of histograms from different pairs and merge them together.

D(P) = USH{GJ) (P)

As for the texture based part of the descriptor, the authors of paper hand in hand with
comparison of RGB intensities associated to each vertex have also chosen an alternative
metric based on the L, norm between two triplets. L/ norm was implemented as the sum of

absolute differences between triplets.

27

3
(Re,Rq) =) IRp() ~Ro(D)|
i=1

In addition, CIELab color space was used for the testing purposes as it is well known
of being more perceptually uniform than RGB color space. For CIELab color space, two

metrics were deployed also known as CIE94 and CIE2000.

3.4. Surface feature detection and description with

applications to mesh matching

In presented paper, authors propose 3D feature detector (MeshDOG) along with 3D
feature descriptor (MeshHOG) for triangulated meshes [28]. Next to be described descriptor is
invariant to changes in rotation, translation and scale. Photometric information available with
2D images with geometric information from 3D sensors are handled hand to hand in a
consistent and simultaneous manner. Photometric information from 3D models can be viewed

as scalar functions and represent generalization of planar to non-planar domains.

As both photometric information and surface geometry are taken into consideration,
discrete convolution and discrete gradient are defined on surfaces (meshes). Based on these

functions, MeshDOG and MeshHOG detector and descriptor are presented.

3.4.1. Feature Detection (MeshDOG)

MeshDOG detector is a generalization of DoG operator. Detector seeks for the
extrema of a scale-space representation of scalar functions defined over a discrete manifold.

The MeshDOG detector performs in 3 main steps:

1. We find the extrema using difference of gaussian method across scales.
2. Apply threshold at detected extrema.
3. We eliminate unstable extrema and keep those locations of meshes which appears to

be corners.

28

Figure 3.4. Feature detection based on the previous steps. [28]

To eliminate more unstable responses, at the third phase of the detection Hessian operator is

used.

3.4.2. Feature Descriptor (MeshHOG)

MeshHOG is based on the histogram of oriented gradient descriptor (HOG). To
compute descriptor at specific vertex we use support region with defined neighborhood ring
size. We compute gradient information from each vertex in the neighborhood and translate it
according to dominant orientation to achieve rotation invariance. Next we compute histogram

of gradient where each gradient vector is 3 dimensional.

For increased robustness to scaling and different spatial samplings the number of rings
for the support region is based on a global measure chosen adaptively. Instead of creating
histogram with full 3D information, gradient vectors are projected to 3 orthonormal planes
which describes the local coordinate system and provide more compact representation.
Histogram with 2 levels is then computed for each of the plane after it is divided into 4 polar

slices. At the end we compute orientation histogram with 8 bins for each slice.

Figure 3.5. Process of creating MeshHOG descriptor. [28]

29

4. Proposed method

In the following part we are going to further describe the base idea of the depth
descriptor (DD). We will discuss the information depth map can provide us along with its

application for depth description and object recognition.

4.1. Specification

In previous solution [23], the original SIFT descriptor were enhanced with additional
depth statistical information. The depth information was taken from the Kinect v1 device and
there was no point of considering standalone depth descriptor because of the sensor fidelity.
As the new Kinect v2 device was introduced with better precision we have decided to create
depth descriptor capable of object recognition. Although it’s precision will unlikely match the
SIFT descriptor, it can be well used for object pre-selection. Considering less number of
objects will pass to the second round of color matching with 128 dimensional SIFT descriptor

we can decrease recognition time over larger databases.

In the next figure we show the proposed method with depth descriptor.

i

M ask imagep
RGB * Aligned Mask»
RGB data—————P]

Key- 701111\

o #-b‘

Figure 4.1. Pipeline of the proposed algorithm.

4.2. Components design

Application will be consisted of the following components:

¢ Kinect2X library — Like in previous version, library will provide us with the high-

level management of the Kinect v2 device. Starting up with the acquiring basic color

30

and depth stream, library will also provide basic algorithms working with OpenCV
library data types like cv::Mat resulting in better usability. There will be also
implemented methods for depth and color image alignment of the streams needed for
object segmentation and key-point localization.

e Descriptor Library — Library will be used for extracting the depth descriptor. The
main idea behind the library is in re-usability of the code isolating the main algorithm
from the GUI part so the code could be simply used for different applications.

e GUI application — Main application providing us with the model-view-controller
design used for depth and color stream visualization from the Kinect2X library as well

as communication with the user.

Figure 4.2. Components design.

4.3. Cascade recognition

From the previous work, SIFT descriptor enhanced with depth information was
implemented. Because of the increase in dimensions of the descriptor from 128 to 130, the
time needed to process frame will rise. Also for the proper matching we will need to re-
normalize all the values in the descriptor vector. As we use knn classifier for the matching
phase, it could lead to the curse of dimensionality issue without re-normalization of the data.
Resulting descriptor will be able to use both depth and color stream for the recognition, but

the depth information will have only small overall influence over the recognition.

Thanks to the new Kinect v2 device with higher resolution and time of flight
technology we are able to make recognition based only on the depth data. Taking idea from
the cascade matching which is now used for example in face detection can lead to improved

performance and accurate results.

31

We will divide the recognition part into the three steps. In the first part, we will
consider object recognition based on the global information of the object. As the global
information for the object will be stored in only one vector of few values, we expect to
remove only objects with large surface difference from the possible matches. The result of
this recognition, or better called pre-selection will be the sorted indices of the objects from the
best to the worst match. Ordered objects can be later used for the depth descriptor we are
going to create and describe later. As we have ordered the objects and will start matching the
descriptors from the best match to the worst, we can easily filter out the rest of the objects as
we come to the first object which did not pass the threshold value. For the last descriptor
matching, we will use original SIFT descriptor which is robust and will give us the best match

from the remaining objects.

In the next figures, we show the pipeline used for matching in original solution

compared to the new solution with depth descriptor.

Whole
dataset

Figure 4.3. Matching process using the default settings.
Whole

dataset

Pre-selected
dataset

Figure 4.4. Matching process using our proposed method.

4.4. Image stream pre-processing

Resolution of the depth and color data obtained from the Kinect v2 device is different
for both streams as well as field of view for both of the sensors, therefore as we detect key-
points in color image, their coordinates will not point to the same position in the depth image.

To be able to know the coordinates of key-points in the depth image, we need to make an

32

alignment of the color image to the depth image. This process can be done using the Kinect

SDK and will be part of the Kinect2X library.

In addition we are going to make alignment of the whole depth image according to the
color image because of the object segmentation. Segmentation of the object within the depth
image will provide us with the mask with the same resolution as the depth data and need to be
aligned to the color map. Using simple multiplication of the mask image with color image we

are able to get the object texture.

4.5. Object segmentation

Segmentation methods used for color images can suite us well for the depth image.
Considering the depth image as one channel image (for example grayscale) we can make use
of the image just like if we use it for the color processing. In our approach we are going to use
the method of growing regions with the seed point set to the coordinates of the lowest depth

value.

Thanks to the object segmentation we will be able to remove large number of key-
points detected on the scene unrelated to our object (image background). It will greatly

decrease the recognition time needed for object matching.

The growing regions method is suitable for this situation, as it select only points which
are within the certain threshold from the seed point. The segmentation can be also enhanced
in a way that the threshold value will be considered dynamically for each pixel neighborhood.
This enhancement will be able to select also objects where the surface depth change more

rapidly but still remove the background.

Figure 4.5. Object segmentation

33

4.6. Depth descriptor design

To create depth descriptor we have chosen to create four dimensional vector filled
with statistical information of the object. All the information are based on the normal vector
created from the local surface around the key-point. During the descriptor creation we aim to
maintain the invariance of the descriptor at least to the invariance level of the color descriptor

as the depth descriptor will be used first in line for the recognition.

4.6.1. Key-point detection

Best key-points for depth matching are those with different shapes of the objects with
stable but descriptive information of the local surface. It means that the best features would be
where the depth changes within the object, excluding the borders of the objects where the
depth could change rapidly - for example when the depth from the scene behind the object

will be captured.

Because of the four dimensions in the descriptor vector filled with statistical
information we will not be able to recognize object with certain precision. Therefore we are
going to make a tradeoff of finding the best key-points for depth description within the object
and save processing time. Instead we use key-points already detected by detector for color
matching which will still provide us with reliable information regarding the depth. As the
depth descriptor should not be used for object matching alone we will use it for pre-selection
before color matching, speeding up the overall recognition process. The use of the key-points

detected from the color stream for the purpose of depth recognition will later be evaluated.

4.6.2. Descriptor pattern

All the information we are going to use in the description is related to the normal
vector. Computing the normal vector and determining the surface can be easily done using
three points forming the triangle. Overall four triangle patterns are used forming the star
pattern over the key-points. The radius size within each triangle is formed changes according

to the current depth of the key-point and is set to certain value.

34

Figure 4.6. Pattern created out of triangles within the radius r around the key-point P.

Because we know the real world distance of the key-points we are able to compute the
pixel size of the pattern within the depth image. This will ensure that the same surface size is

chosen for the same key-point captured from different distance.

o

Figure 4.7. Visualization of change in size according to the depth.

Figure 4.8. Descriptor pattern visualization

35

4.6.3. Depth description (Descriptor vector)

Four features, which are derived by statistical evaluation, have been taken for the
definition of the depth feature vector. Three of them are based on the local surface description
and the fourth feature take into account also the global information of the object. In addition,
we filter out those triangles, which cannot provide the depth value in at least one point. At the

end all of the values are normalized.

Average angle

First feature in the depth feature vector is an average angle of the normal vectors given
by all triangles in the key-point. Therefore we need to compute four normal vectors - one for
each of the four triangles given by the pattern. Then we calculate the mean value of this
vectors. In the next step, we compute the difference angle between each of the normal vectors
and the mean normal vector. Now we can fill the first value of our descriptor by the feature

value F_avgAngle.

Upg Vg TUHY 0 TUGRY,

1 N
F _avgAngle= —Zarcco
N4 \/ 2 2 2 \/ 2 2 2
i= Wy i, sV, +V,,+V,5

Where N is the number normal vectors/triangles.

v is the average normal vector.

m

u, is the normal vector given by triangle.

Standard deviation
Second value in the depth descriptor is the standard deviation of all depth values of the

surfaces in the positions given by the triangles.

1 & 2
O = _— X. —
\/ ~ Z;,(;= H)
Where N is the number of all points in the descriptor pattern.

x; is the distance of the point from average surface.

u is the average distance of all points in pattern from average surface.

36

Difference of maximal and minimal depth

Difference between the maximum and minimum value define the next feature value in
the feature vector. Maximum and minimum can be evaluated during the process of computing
standard deviation in the same cycle. We store the maximal and minimal value and return

their difference.

Global angle

For the fourth value we have chosen the angle of the average normal vector at given
key-point and the normal vector of the whole object. The object normal vector is based on the
average vector value out of all normal vectors from all key-points. Comparing the results of
this value through all descriptors can provide us with the information relative to the surface

alignment of the object.

81V T8,V T 83V,

F _globalAngle = arcco = = =
\/81 +8,18; ~\/V1 TV, TV,

Where g is the average normal vector out of all normal vectors through all key-points.
v is the average the normal vector at given key-point.

1 N
g_ﬁgvi

In next figure we show the visualization of the global angle. Bottom bar show us the
possible values starting from the lowest left to the right. There is also average value of all

angles shown as black dot within the bar.

Figure 4.9. Visualization of angle at the given key-point with global normal vector.

37

4.6.4. Descriptor invariance

The original SIFT descriptor is invariant to different scale, rotation and small
perspective transformation of the object. As we are going to make a depth descriptor which

object need to pass we need to achieve at least the same invariance to the depth descriptor

Scale invariance

Different scale of the object can be translated into the distance for the 3D scene.
Making our descriptor invariant to the object distance is the matter of determining the surface
used for creating the descriptor. As we know the distance of the selected key-point from the
depth map, we can easily determine the surface around the key-point according to the real

world distance, instead of the normal length in pixels which is used in other descriptors.

Rotation & perspective invariance

To achieve invariance to different rotation of the object we have chosen to fill the
descriptor with the statistical information which are independent to the rotation and angle of
the object. Therefore the values should not change as we capture the object from different

view.

4.6.5. Descriptor matching

We will use the created depth descriptor in the same way as the SIFT descriptor is
used during the matching phase. All key-points found on the object using SIFT detector will
be taken to create new depth descriptor and then used for descriptor matching. Knn classifier
with k=2 will be used to obtain best pairs of descriptor using Euclidean distance metric. In
addition, nearest pair will be chosen only if their distance is within certain ratio threshold to
the second nearest pair. This method was proposed by Lowe with a goal to remove those

matches which could be labeled as false positive.

38

5. Implementation

In this part we are going to take closer look at implemented algorithms for the RGB-D
images as well as used software or libraries. We will describe the individual parts of our depth
descriptor through the key-points we use for descriptor extraction, the extraction itself up to

the matching phase.

5.1. Technology used

Application of object recognition is implemented in C++ using the Microsoft Visual
Studio 2013 under Windows 8.1 platform. As for the first evaluation, we have decided to
continue work on the previous created GUI application. Following software and libraries were

used in the implemented system:

e Object Recognizer [23]
e Qt framework'

e Kinect SDK v2.0°

e OpenCV library v2.4.8°
e SIFT GPU [29]

We have decided to remove the KinectX library from previous solution as it was developed
for first version of Kinect. Next, we removed the PCL library. It was used for statistical

evaluation over depth data which we replaced with our own implementation.

5.1.1. Object Recognizer

Previous solution of Object Recognizer [23] was modified to fulfill the new
requirements. Most classes related to the previous version of Kinect were removed along with
the classes used for the recognition. These classes were re-implemented and extended in the

standalone Descriptor library which will be explained later.

' Qt Framework [online]. 2014. [Accessed December 2014]. Available from: https://www.qt.io/

2 Kinect SDK [online]. 2014. [Accessed August 2014]. Available from: http://www.microsoft.com/en-
us/download/details.aspx?id=44561

3 OpenCV Library [online]. 2014. [Accessed December 2014]. Available from: http://opencv.org/

39

https://www.qt.io/
http://opencv.org/

Object Recognizer application is used to create graphical interface for the recognition
using the Qt framework. We have chosen the Qt framework because of the signal/slot
communication, simple threading model and we also use its build methods for loading

configuration files where we can adjust the recognition settings.

5.1.2. Kinect SDK

Kinect for Windows Software Development Kit allow the user to create applications
which use the voice, depth, color or other streams from the new Kinect v2 device. The kit
contains also high level methods which we can use for the gesture, face or voice recognition,

image alignment and other.

The requirements to use the device with the SDK however are strictly bond to the new
Windows 8, 64bit operating system with USB 3.0 present and DirectX 11 capable graphic

adapter.

Within the SDK we can find Kinect Studio application which can be used to simulate
the connected device. We can easily store the specific streams from the device and later use it

in any application without need to rewrite the code.

5.1.3. OpenCV

OpenCV is the well-known library for computer vision and image processing. The
library have support for large scale of operating systems like Windows, Android OS, Linux,
i0OS and Mac OS. The supported languages are C/C++/Python/Java. The OpenCV library

algorithms and functions are divided into several modules:

e Core — Defines basic structures and functions

e Imgproc — Image processing. It contains algorithms for image filtering,
transformations and others.

e Video - Video analysis, movement estimation or background removal.

e C(Calib3d - Basic geometric algorithms, 3D image reconstruction, camera calibration.

e Features2d — Local descriptors module, key-point detection, descriptor matching.

e Objdetect — Detection of the predefined objects

e Highgui — Basic interfaces, image & video capturing

e Gpu - Acceleration of algorithms on the GPU from previous modules.

40

5.2. Architecture of the solution

In our solution we intend to separate the three basic parts of the object recognition in

their own libraries/applications:

e GUI application for interaction with the user (Object Recognizer)
e Library to provide us with the basic connection to the Kinect v2 device, basic image
alignment and data transformation which can be used by OpenCV Library (Kinect2X)

e Library for the object recognition (Descriptor Library)

The module parts of the solution can be found in the next figure. We will describe the

components of each part in the next sections.

<<application== -
Ohbiject Recognizer coidevicess
e 8 E Kinect v2
£
Main Window | ___ seusem
. : =<library=z
| DAL - - wUSEEr -, Kinect SDK
' * _| Recognizer Thread
: A
LGB I .
! ! R L
¥ v i
=<library==
Image Widget Kinect2X = |
Kinect2X
. : . 7.
i H - e :
, _ E o '
, <<library== ' <<library=: :
ccusess SIFT GPU AR OpenCV i
' r clSE>) '
E ccusess cells g Bl
W : - : -
<<library=:
Descriptor Library E
«<interfaces=
Object Recognizer
& A
ORBD Recognizer SIFTD Recognizer
:{{U SEx-, LS B :
e :
Depth Descriptor

Figure 5.1. Application architecture

41

5.3. Kinect2X library

Kinect2X library was created with the aim of providing high-level interface for the
user who wants to use the Kinect v2 device in their applications. In addition we added
OpenCV support to the library. Thanks to it we are able to get the images in cv::Mat format
for further processing and call some methods from the library with the entry parameters as

they are used in OpenCV. The library consists of the following methods:

e Sensor initialization & shutdown
e Opening the streams (both depth & color)
e Image acquisition
o openCV and KinectSDK matrix datatype
e Converting 16 bit depth map to 8 bit
e Visualization of the depth frame
e Color frame alignment according to depth frame
e Depth frame alignment according to color frame
e Color coordinate (X,Y) alignment to the depth frame
e Depth coordinate (X,Y) alignment to the color frame
e Depth coordinates (X,Y) alignment to the real world coordinates

e Real world coordinates alignment to the Depth coordinates

The image alignment is made per pixel using the buffer as it is used in the Kinect
SDK. The results are then stored in the matrix and returned. We include the code for the color
alignment only as the rest of the methods are similar. To get the new position of pixel, we
created the matrix of indices pointing to the position at the depth or color stream based on the

request and the methods for it are already included in the Kinect SDK library.

Function alignColorFrame (width, height, frame)

mat_frame «— createEmptyMatrix()

frame_buffer < createEmptyBuffer(width,height)

for index < O until index < width * height do
colorInformation < getCoordinateFromMapper (index)
frame_buffer (index) < colorInformation

end

mat_frame < createMatFromBuffer(frame_buffer)

return mat_frame

42

5.3.1. Kinect2X initialization

The Kinect v2 support only one default sensor connected through the USB 3.0 port to
the computer. In our solution we have implemented the singleton instance of the class so we
can make access to the same initialized device with set parameters in the Object Recognizer
application for image stream acquisition and Descriptor Library for the use of image

alignment and depth information extraction.

5.4. Descriptor Library

The strategy design pattern used in the previous version of Object Recognizer was
moved to the descriptor library and ORB implementation on the GPU was added to it. The
pattern implements virtual methods which are overridden with the desired method from the

class specified at the configuration file.

Our solution support two methods for object recognition. First implementation is the
GPU implementation of SIFT descriptor [29] as a standalone library and the second one is the

ORB GPU implementation from the OpenCV library, build on the CUDA version 6.5.

Based on the configuration file, both of the mentioned descriptors can be used
separately as standalone descriptors for the segmented object or as a part of the cascade of
descriptors where the first level of recognition is done by our implementation of Depth

Descriptor.

5.5. Depth Descriptor

In this part we are going to describe the process of creating the Depth descriptor
vector. Important parts of the algorithm will be provided with pseudo-codes. In addition we
will make an experimental evaluation of the extracted descriptor for the purpose of
implementing additional part of recognition based on decision, whether the present object has

flat surface or not.

5.5.1. Extraction of Depth Descriptor features

Let’s assume we have already managed to get key-points from the SIFT detector. To
create descriptor vector for each key-point, we need to loop through them and extract desired

information. In the depth descriptor extraction we will work with the depth data, therefore we

43

need to align the color coordinates which were detected by SIFT detector to the depth

coordinates.

Function computeDescriptor (keyPoints)

depthDescriptorVector < createEmptyDescriptorVector()

foreach keyPoint € keyPoints do
depthPosition < getDepthFromColorCoord (keyPoint)
triangles <« getTriangles(depthPosition, radius)
averageNormal < getAverageNormal(triangles)
averageAngle < getAverageAngle(averageNormal, triangles)
std «— getStd(averageNormal, triangles)
maxmin «<— getMaxMin(averageNormal, triangles)
globalNormal < globalNormal + averageNormal
depthDescriptor < storeValues(averageAngle, std, maxmin)

end

Using the pseudo code above, we can store three out of four values for the descriptor.
For the last value, we need first to compute global normal vector of the object representing
average normal vector out of all normal vectors from the triangles. Hence, the function

continues with another loop.

Function computeDescriptor (keyPoints)

globalNormal < globalNormal / size(keyPoints)

foreach keyPoint € keyPoints do
averageNormal < getAverageNormal(triangles)
globalAngle < getAngle(averageNormal, globalNormal)
depthDescriptor «— storeValues(globalAngle)

end

Based on the depth at each key-point we need to determine the size radius for the
triangles. As we need to compute the size in real world coordinates, we need to make an
alignment of the key-point depth coordinates to the real world coordinates and after extracting

the triangle points, transform them back.

Function getTriangles(depthPosition, radius)

realPosition < getRealFromDepthCoord(depthPosition)
for i=1to 4 do
firstPoint < getFirstPoint(realPosition, radius)
secondPoint < getSecondPoint(realPosition, radius)

44

thirdPoint < getThridPoint(realPosition, radius)
trianglePoints «— getDepthFromRealCoord(firstPoint, secondPoint, thirdPoint)
triangles «— add(trianglePoints)

end

return friangles

The formulas of extracting the specific descriptor values have been mentioned in the
design chapter and do not be described with the pseudo code as the steps for their extraction

are straight-forward.

5.5.2. Key-point detection based on depth image

At the design part of the work we have talked about the key-point detection based on
the depth image. During evaluation part we measured the time each step of the process takes
to recognize the object. We come to the conclusion that the part, where we need to remove
large number of key-points detected at the border of the image (because of the segmentation

mask) takes approximately ~ 100 milliseconds, resulting in significant drop of frame rates.

Same process would apply to key-point detection based on the depth image which will
drop the frame rate even lower. Instead, we extracted the descriptor vector from the key-
points which were detected using the SIFT detector (or FAST detector for the ORB
descriptor) and evaluated the computed values. We were looking for the statistical
information related the values of descriptor vector and their comparison for flat and non-flat

objects.

5.5.3. Evaluating the surface based on DD values

We have taken the extracted Depth Descriptor values to make scatter plot for each
feature. In the next figures we compared the objects with flat and non-flat surface. For the
increased robustness of the experiment, each of the objects were taken from different views

and added to the plot.

45

0oE

» . . -
B . . was[. *
o . = . . LN . .
&5 . . - .
. . 0atz)e LI
51 .. e . .
‘. ™ oo, -,
var WAt T . . b " .o
“?":'.' ... 0" -“.. = ..:. - - c.m-.’.p.-‘.. - - - . -
..., s - - 5l he .
TR e Al T TR ol Y Y el
.
o ™ x“f:_..‘...;:b?"‘ . W 5. - w - N et "
\3".% RS 2 AT e Ay AT .g» ? et AWt L,
. -
r.mr.'...:.:.- %gdr,.b...\- PRl) .-.-.. PR R, c.nz-!g.‘*n ?ﬂ. “'.‘..‘_‘x‘“ .‘\. -?';.d:'. L
- | | L -
D) e B W i Jc e a0 n] m 7 o i o
nezs- .
- » *
. . . 1h. * -
noze - . - &
. .
F % e
¢ . -ot‘ ‘e
notsh bl e Lo TR T IR AT
AR IR . - X
s . ee te, = AT -
1% e e . on/‘... P *
R R NNy T e e
HYE IR I T T 0zl .
aces . - - . . .
[*, b ~ L N » Tepl
- "&. 'S'.'\’:q, ':v"-.".. Wfleme e, '..- L. Y P TP "1’-‘ -.E
A T ol M . Ty . . q.% .A&'& ,h" \o\.\.
% ET a & B 12) W m w '] [100 [&0

Figure 5.3. Example of objects used for evaluation.

46

mean median std

mean median std mean median

Figure 5.4. Bar plots of mean, median and standard deviation values of all features for non-flat (blue)

and flat (red) objects.

Based on the results provided we have decided to make the surface prediction based
on the fourth value, which represents the global angle feature. Even when the difference
between the objects are significant, during the experiments we came across some false
predictions related the surface. Upon extracting the values for such objects we have found that

in some cases, the outliers have become the issue.

5.5.4. Outlier removal

To remove outliers from the depth description we detect upper and lower quartile from
the descriptors vector values. We subtracted those values and multiplied it by the number 1.5
which represents the outer fence value. If the actual value of the descriptor were under/above
the quartile plus the outer fence value it was considered as an outlier and whole descriptor

were removed from the descriptor vector.

Function outlierRemoval(depthDescriptor)

lower_quartile < getLowerQuartile(depthDescriptor)
upper_quartile < getUpperQuartile(depthDescriptor)

47

outer_fence «— (upper_quartile - lower_quartile) * 1.5
foreach depthDescriptor do
for i=/to 4 do
if depthDescriptor[i] < lower_quartile - outer_fence
or depthDescriptor[i] > upper_quartile + outer_fence
removeDescriptor(depthDescriptor,i)
end
end
return depthDescriptor

Removing the outliers could not even improve the surface prediction but also overall
recognition based on the depth stream. Now we are able to set the threshold values for the

surface prediction.

5.5.5. Estimating the threshold values for flat surface prediction

In our application we have chosen to rely on the fourth value of the descriptor vector
for surface prediction as after the several experiments it has proven to have most
distinguishable values between flat and non-flat surface. The decision is based on the mean

and standard deviation values and could end in three different states:

e The object belongs to the flat surface objects dataset
e The object belongs to the non-flat surface objects dataset

e The object could belong to both of the above mentioned datasets

We added the third class where we cannot decide for sure about the object surface,
because this prediction is the first level of the recognition and will affect all recognition
processes done after. For example if we want to detect the paper box, which one side is flat
object, but the segmentation mask also takes neighbor side of the box, descriptor values will
change and it can be interpreted as non-flat object. Therefore the middle class containing flat
and non-flat objects at the same time could increase the robustness of the algorithm. The

threshold values for the prediction has been set to these values:

¢ Flat objects
o standard deviation under 0.15

o mean under 0.15

48

¢ Flat and non-flat objects
o Standard deviation above 0.15 and under 0.20
o Mean above 0.15 and under 0.35

¢ Non-flat objects
o Standard deviation above 0.20

o Mean above 0.35

The experiment showing us the accuracy of this prediction along with the threshold

setting adjustments can be found at the result section.

5.5.6. Descriptor matching

The depth descriptor values are stored as the real numbers. To compare the results we
use the brute force matching approach where we find best pairs of descriptors using the
Euclidean distance measurement. We will use the knn (k=2) matching which is already used
for SIFT matching in our application where we also consider the ratio between the closest and

the second closest descriptor.

As the depth values for the flat objects will have the same values we pass indices of

those object right to the last level of recognition without matching phase.

5.6. Color (Intensity) Descriptor

For the next level of recognition from color stream we implemented two well-known
descriptors. Both of the descriptors are implemented on the GPU unit and therefore we could

process the full HD images in near real time.

SIFT GPU Implementation

The implementation of SIFT on the GPU unit was taken from the University of North
Carolina: SiftGPU library [29]. It supports GLSL by default and CUDA for the users with
NVidia graphic cards which we also use in our implementation. Key-point detection is
provided with library based on Difference of Gaussian method and we also use it in later

implementation of depth descriptor.

49

ORB GPU Implementation
For the ORB GPU descriptor we use the implementation already included in the
OpenCV library with CUDA support. For key-point detection ORB descriptor use FAST

detector method which can be computed on the GPU as well.

Descriptor matching

To declare the object as one from the trained objects we compare the ratio between
good matches and the number of all key-points. For both SIFT and ORB descriptor we use
brute force matching. The SIFT descriptor which vector is filled with float datatype numbers
is matched using the Euclidean distance and for binary ORB descriptor we use Hamming

distance.

50

6. Results

We have implemented the depth descriptor and now we will evaluate its contribution
to the recognition. Several measurements will be executed. In the first measurement we are
going to take closer look at the number of objects which passed through pre-selection. The
second test will measure the robustness of the depth description pre-selection in comparison
to using just the SIFT descriptor in a way, we will compare the number of recognized objects
for both cases. Next, we will take a look at how accurate can Depth Descriptor decide, if the
object is flat or not. Last experiment will be regard the execution time of the object
recognition for the Depth Descriptor followed by the SIFT descriptor. The results will be

compared with the object recognition while using the SIFT descriptor alone.

6.1. Dataset

Our tested dataset were created in order to obtain reliable results. The set of toys fulfill

very well the requirements of the application and also has a large variability necessary for the

testing. Hence, various toys of different size and shape were chosen.

Figure 6.1. Sample of dataset used for the evaluation.

6.2. Hardware

The following hardware was used for the evaluation:

e Laptop with CPU Intel Core 17, 3632QM, 2.2 GHz, GPU NVidia GeForce GT635M
and RAM 8GB DDR3 1600Mhz.

51

6.3. Depth Descriptor pre-selection

First evaluation has been done with the aim of how many objects passed through the
depth descriptor to later color recognition. Objects are matched using the knn classifier using
the k=2 with respect to the ratio threshold between two closest matches. Changing the ratio
threshold could improve the processing time but will also increase the number of possible
matches. The ratio threshold for the matching in our experiment has been set to the default

value of 0.85.

Depth recognition
6 T T T T T T

w B [6)]

Nm. of pre-selected objects
N

5 10 15 20 25 30 35
Nm. of trained objects

Figure 6.2. Number of objects after pre-selection.

With increasing number of trained objects, our depth descriptor were able to make a
pre-selection and filter out most of the undesired objects. We can also see that the number of
objects which passed the matching phase is relatively stable and could improve the matching

speed for larger databases.

6.4. Evaluation of Depth Descriptor robustness

To evaluate the next experiment, we have acquired 30 images (color image, depth
image and mask image) for total of 26 different objects, containing both flat and non-flat
objects. In sum we have compared 780 different object views. Images we have acquired and
stored were captured from different views and angles which are hard to recognize even for
standalone SIFT descriptor. We have done so in order to fully and more precisely evaluate the

actual robustness of the depth description. We compared the percentage of recognized objects

52

for both standalone SIFT and SIFT with Depth Descriptor and computed the difference. The

results can be found in the following table.

Recognized Not-Recognized
objects objects
SIFT descriptor 50.26% 49.74%
Depth + SIFT
48.59% 51.41%
descriptor

Table 6.1. Percentage of recognized objects for Depth + SIFT descriptor according to SIFT only.

For the following results we can assume that while using the Depth Descriptor for the
pre-selection will worsen the prediction by approximately 3.32% which is acceptable result
for the implemented settings. We are able to lower the gap by decreasing the ratio threshold
during the matching phase for knn matcher, but that will result in increased number of pre-

selected objects and therefore slower recognition.

In this part, we also take closer look at the pattern size. During the implementation
phase we have set the size of the triangle pattern to 15 millimeter radius. We have evaluated
the recognition accuracy for the additional values of 10 mm, 20mm and 25mm. The results
show us that the pattern size of 15mm suits well for the current settings. Table with the results

can be seen below.

_ Recognized Not-Recognized
Pattern size
objects objects
10 mm 47.31% 52.69%
15 mm 48.59% 51.41%
20 mm 48.21% 51.79%
25 mm 46.79% 53.21%

Table 6.2. Percentage of recognized objects for different pattern size.

6.5. Evaluation of surface prediction

In order to evaluate the prediction of the surface with the values described in the
implementation part, we divided the experiment into two phases. We will evaluate both mean
value and standard deviation value separate and compare the results. For the experiment we

used different flat and non-flat objects resulting in 120 different object images captured from

53

different views. Based on the evaluations we decided to focus more on the surface prediction

based on the mean value of descriptor vectors.

Evaluation of mean value

The experimental setup for the mean value was:

¢ Flat objects

o Mean value under 0.15

¢ Flat and non-flat objects

o Mean value above 0.15 and under 0.35

¢ Non-flat objects

o Mean value above 0.35

The results are shown in the following table:

Flat objects Flat and non-flat objects Non-flat objects
Flat objects 83.33% 15% 1.67%
Non-Flat objects 0% 0% 100%

Table 6.3. Surface prediction according to mean value.

The values which will lead to failure on detecting the object are in the bottom left
(non-flat objects which were classified as flat objects) and up right (flat objects which were
classified as non-flat objects) corners of the table. We can see that the estimated mean values
for the selection suits well for the experiments made, with only 1.67% of false surface

estimation for flat objects.

Evaluation of standard deviation value

The experimental setup for the standard deviation values was:

¢ Flat objects

o standard deviation value under 0.15

¢ Flat and non-flat objects

o Standard deviation value above 0.15 and under 0.20

¢ Non-flat objects

o Standard deviation value above 0.20

54

Same procedure applies for the standard deviation value. In the first experiment results

show us that the significant amount of objects (20%) were evaluated with false surface.

Flat objects Flat and non-flat objects Non-flat objects
Flat objects 68.33% 11.67% 20%
Non-Flat objects 0% 0% 100%

Table 6.4. Surface prediction according to std value.

We advanced the standard deviation border values to the following settings:

¢ Flat objects

o standard deviation value under 0.15
¢ Flat and non-flat objects

o Standard deviation value above 0.15 and under 0.25
¢ Non-flat objects

o Standard deviation value above 0.25

The number of flat objects recognized as non-flat were reduced, however some non-
flat objects which were in previous experiment classified correctly, were moved to the middle
class. Still we are able to recognize those objects and therefore overall accuracy will increase,

but it can slower the recognition speed.

Flat objects Flat and non-flat objects Non-flat objects
Flat objects 68.33% 15% 16.67%
Non-Flat objects 0 18.33% 81.67%

Table 6.5. Surface prediction according to mean value.

6.6. Comparison of matching time

For the next measurement we have trained same dataset of objects and measured time
needed for descriptor matching. The next figure show us the time difference of the matching
phase when using the SIFT descriptor only and SIFT descriptor with the pre-selection based

on our proposed depth descriptor.

55

Recognition time (RGB vs RGB-D)
120 T T T T T T

—©S— SIFT descriptor
—*— Depth + SIFT

100

80

60

40

process time [ms]

20

[[[[[

10 15 20 25 30 35
number of trained objects

Figure 6.3. Comparison of time needed to match descriptors related to the default solution.

We can see that for the first ten objects the processing time of our proposed method is
slightly worse, because the recognition cannot yet fully benefit of pre-selection phase. The
change comes with more trained objects. Thanks to the pre-selection of the objects we are

able to detect object faster than using only the color-based descriptor.

56

7. Conclusion

In this work we have analyzed the methods of visual object recognition based on the
bottom-up approach of local descriptors. We have talked about the well-known local
descriptors based on the color (intensity) image like SIFT, SURF, BRIEF, ORB, FREAK or
HIPS as well as about key-point detectors which are used for the mentioned methods. We
have also used SIFT and ORB descriptors in our implementation as they represent robust

invariant descriptors with in the first case numerical and second binary descriptor vectors.

We took closer look at the local descriptors which use another data for the object
recognition: depth frame. Using depth information in object recognition has been taken into
consideration and few good descriptors were reviewed. In our research we mentioned NARF
descriptor which can be found in the PCL Library, MeshDOG or current state of the art for
the color & depth recognition, the CSHOT descriptor.

Because of the new version of Kinect which came to the market, considering the better
fidelity and technology which we can use to extract depth information from the scene, we
have decided to create a new, standalone local descriptor which will be based only on the
depth data acquired from the depth sensor. We are aware that depth information still cannot
overcome the robustness and precision of color description, but we will use it for object pre-

selection. The overall recognition will be in the form of cascade of descriptors.

We have implemented the depth descriptor based on the statistical information over
depth map acquired form the latest Kinect device. Our experiments show us the potential of
faster recognition using the “cascade of descriptors” method over larger dataset. In addition
we used the values from the descriptor vector to create another level of pre-selection in which

we can predict the shape of the surface area and match objects accordingly to the shape.

The speed of the recognition can be improved in the future with additional decision
making processes like the color histogram as the background around the object is removed

with segmentation method.

57

8. References

[1] SZELISKI, Richard. Computer vision: algorithms and applications. Springer, 2010.

[2] GRAUMAN, Kristen; LEIBE, Bastian. Visual object recognition. Morgan & Claypool
Publishers, 2011.

[3] Microsoft Kinect Website: http://msdn.microsoft.com/en-us/library/hh855347.aspx ;

http://www.microsoft.com/en-us/kinectforwindows/default.aspx

[4] PENTLAND, Alex P.; TURK, Matthew. Face recognition system. U.S. Patent No
5,164,992, 1992.

[5] NAYAR, Shree K.; NENE, Sameer A.; MURASE, Hiroshi. Real-time 100 object
recognition system. In: Robotics and Automation, 1996. Proceedings., 1996 IEEE
International Conference on. IEEE, 1996. p. 2321-2325.

[6] LINDEBERG, Tony. Feature detection with automatic scale selection. International

journal of computer vision, 1998, 30.2: 79-116.

[7] TUYTELAARS, Tinne; MIKOLAJCZYK, Krystian. Local invariant feature detectors: a
survey. Foundations and Trends® in Computer Graphics and Vision, 2008, 3.3: 177-280.

[8] MIKOLAJCZYK, Krystian; SCHMID, Cordelia. Scale & affine invariant interest point

detectors. International journal of computer vision, 2004, 60.1: 63-86.

[9] MIKOLAJCZYK, Krystian, SCHMID, Cordelia. Indexing based on scale invariant
interest points. In: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on. IEEE, 2001. p. 525-531.

[10] MATAS, Jiri, et al. Robust wide-baseline stereo from maximally stable extremal regions.

Image and vision computing, 2004, 22.10: 761-767.

[11] DONOSER, Michael; BISCHOF, Horst. Efficient maximally stable extremal region
(MSER) tracking. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on. IEEE, 2006. p. 553-560.

58

http://msdn.microsoft.com/en-us/library/hh855347.aspx

[12] ROSTEN, Edward; DRUMMOND, Tom. Fusing points and lines for high performance
tracking. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on.
IEEE, 2005. p. 1508-1515.

[13] ROSTEN, Edward; DRUMMOND, Tom. Machine learning for high-speed corner
detection. In: Computer Vision—-ECCV 2006. Springer Berlin Heidelberg, 2006. p. 430-443.

[14] LOWE, David G. Object recognition from local scale-invariant features. In: Computer
vision, 1999. The proceedings of the seventh IEEE international conference on. leee, 1999. p.

1150-1157.

[15] MIKOLAJCZYK, Krystian, et al. A comparison of affine region detectors. International
journal of computer vision, 2005, 65.1-2: 43-72.

[16] BAY, Herbert; TUYTELAARS, Tinne; VAN GOOL, Luc. Surf: Speeded up robust
features. In: Computer Vision—ECCV 2006. Springer Berlin Heidelberg, 2006. p. 404-417.

[17] CALONDER, Michael, et al. Brief: Binary robust independent elementary features. In:
Computer Vision—ECCV 2010. Springer Berlin Heidelberg, 2010. p. 778-792.

[18] RUBLEE, Ethan, et al. ORB: an efficient alternative to SIFT or SURF. In: Computer
Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011. p. 2564-2571.

[19] ALAHI, Alexandre; ORTIZ, Raphael; VANDERGHEYNST, Pierre. Freak: Fast retina
keypoint. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 2012. p. 510-517.

[20] LEUTENEGGER, Stefan; CHLI, Margarita; SIEGWART, Roland Yves. BRISK: Binary
robust invariant scalable keypoints. In: Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, 2011. p. 2548-2555.

[21] JAKAB, Marek. Planar object recognition using local descriptor based on histogram of
intensity patches. In: Proceedings of the 17th Central European Seminar on Computer

Graphics. 2013. p. 139-143.

[22] TAYLOR, Simon; ROSTEN, Edward; DRUMMOND, Tom. Robust feature matching in
2.3us. In: Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops
2009. IEEE Computer Society Conference on. IEEE, 2009. p. 15-22.

59

[23] RACEV, Marek. Pogitatové vizudlne rozpoznédvanie objektov. Master thesis. Slovak

University of Technology, Faculty of informatics and information technologies. 2013.

[24] STEDER, Bastian, et al. NARF: 3D range image features for object recognition. In:
Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). 2010.

[25] STEDER, Bastian, et al. Point feature extraction on 3D range scans taking into account
object boundaries. In: Robotics and automation (icra), 2011 ieee international conference on.

IEEE, 2011. p. 2601-2608.

[26] TOMBARI, Federico; SALTI, Samuele; DI STEFANO, Luigi. A combined texture-
shape descriptor for enhanced 3D feature matching. In: Image Processing (ICIP), 2011 18th
IEEE International Conference on. IEEE, 2011. p. 809-812.

[27] TOMBARI, Federico; SALTI, Samuele; DI STEFANO, Luigi. Unique signatures of
histograms for local surface description. In: Computer Vision—-ECCV 2010. Springer Berlin

Heidelberg, 2010. p. 356-369.

[28] ZAHARESCU, Andrei, et al. Surface feature detection and description with applications
to mesh matching. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 2009. p. 373-380.

[29] Changchang, Wu., “SiftGPU: A GPU Implementation of Scale Invariant Feature

Transform (SIFT),” < http://cs.unc.edu/~ccwu/siftgpu/>

[30] JAKAB, Marek; BENESOVA, Wanda; RACEV, Marek. 3D object recognition based on
local descriptors. In: IS&T/SPIE Electronic Imaging. International Society for Optics and
Photonics, 2015. p. 94060L-94060L-11.

60

http://cs.unc.edu/~ccwu/siftgpu/

Attachment A: Content of electronic media

Documents/MT _Jakab.pdf/.doc

- Master Thesis document in doc and pdf fomat.

- Papers published at SPIE and IITSRC 2015
Documents/Technical Documentation/

- Description of the methods used in the solution. Generated by Doxygen tool.

- Html and latex format
Libraries/sift gpu/

- SIFT GPU library (build under vs 2013 and CUDA 6.5)
Objects/

- Object images used for evaluation phase.
Source Code/ObjectRecognizer

- Implementation of the application.
- Including GUI application, Kinect2X library and Descriptor Library.
- All in one Visual Studio solution (VS2013)

61

Attachment B: User manual

After running the application you will get a simple windows with few options. The
object recognition window contains the button which will start communication with the
default Kinect v2 sensor and the next button in the recognition settings will be used to train
the object while the connection is established and both depth & color stream from Kinect

Sensor are open.
0 Object Recognizer - O “
File
Object Recognition Recognition Settings
Kinect:

Start

Figure B.1. Main window of application.

In order to start the recognition we first need to load all the settings. We can do so by
clicking on the File at the top menu and selecting Open. Dialog window will pop up and ask
us to select the ./NI file with the recognition settings.

o Open Recognition Configuration File
\(—l s Ay . « ObjectRecog... » objects » v & Search objects Lo
Organise = New folder i== v il 7]
p Desktop L] Name Type ®
Documents 4| rec_config - NULL Cenf
4 Downloads - ORB - Accuracy test Conf
W Music ig - ORB Conf’
= Pictures - ORBD - Accuracy test Conf
& Videos E ig - ORBD Conf’
i Windows & (C:) i+ | rec_config - SIFT - Accuracy test Conf
Ca SYSTEM_DRV (D: ik | rec_config - SIFT Conf
a Data (E) £ rec_config - SIFTD - Accuracy test Conf'
ca Windows7_05 (F ec_config - SIFTD - Copy Conf
F'@; Lenovo_Recover _,c_ rec_config - SIFTD Conf
—a Unix (H) e o >
File name: | rec_config - SIFTD v | | INI Files (.ini) i
| Open ‘ Cancel

Figure B.2. Dialog window to open settings file.

After we click start with the loaded settings four additional windows will create with
for the following streams: Color Stream, Color Segment, Depth Stream and Aligned Depth
Stream. The Color Segment window is showing us the current object we are trying to

62

recognize. If we want to save the current object showing in the Color Segment, we can simply
click on the train button in the main window. Dialog will popup asking us to specify the
object name we want to store.

0 Object Recognizer S

(] Train Object 7 I

Object name:

Yoda|

Figure B.3. Adding trained object name.

After a while the object will be saved and we are ready to recognize the stored object.
The next figures are showing the output of Color Segment and Depth Stream windows.

(*] Color Segment ? ("] Depth Stream ?

Current FPS: 2.12615 Average FPS: 1.75887 Current FP5: 9.8912 Average FPS: 8.45911

Figure B.4. Color segment and Depth stream windows.
Configuration file
In order to change additional settings we can edit the .INI file we use to load before we
start the recognition. There are four main groups of settings we are able to change.

SensorConfig group is used to change the settings for the color & depth stream from the

Kinect device. It will resize the images acquired from the device as the default stream

63

resolution cannot be changed. DescriptorConfig group specify the local descriptor we want to
use. The options are: SIFT, SIFTD, ORB and ORBD. Next, in the MatchingConfig group we
can change the values for specific parts of the recognition, like the pattern size of the triangles
for the depth descriptor, recognition confidence and so on. Last group named objects is used
to train the objects from the stored images. The example of the file we use to set up the basic

settings for the recognition application can be found in the lines below:

[SensorConfig]
sparameters\colorWidth=1920
sparameters\colorHeight=1080
sparameters\depthWidth=512
sparameters\depthHeight=424

[DescriptorConfig]
descriptorName=SIFTD

[MatchingConfig]
mparameters\minKeypointsPerObject=4
mparameters\distanceRatioThreshold=0.8
mparameters\minRecognitionConfidence=0.1
mparameters\minMatchesToFindHomography=4
mparameters\ransacOutliersRemovalEnabled=false
mparameters\patternSize=15

[objects]

1\name=1
1\views\1\color=/data/1_0_color.png
1\views\1\depth=/data/1_0_depth.png
1\views\1\mask=/data/1_0_mask.png
1\views\size=1

size=1

64

Attachment C: Technical documentation

The application is implemented in C++ as a Visual Studio 2013 solution with 3
independent projects. The external libraries used in the project with their versions are as
follows:

e OpenCV 24.8
e Kinect SDK v2.0 1409
e SIFT GPU v400

Documentation

The description of the individual functions are generated by Doxygen tool and can be
found in the attached DVD under documents/technical documentation folder in html and latex

format.

Use case diagram

./'.‘- \
| Load seftings
\ v
./'.) i

| Object training]
% 3

Actar .

P Y
| Object recognition |
\ Y,

Figure C.1. Use case diagram.
Class Diagram

In the following part we include class diagrams generated in Visual Studio 2013 for

the following projects in the solution:

65

Object Recognizer

Object Recognizer is the GUI application based on Qt framework. There are two main
classes. MainWindow for managing the graphical interface, user input as well as image output

from the application and recognition. RecognizeThread for actual recognition in separated

updatePixmap

*

Figure C.2. Object recognizer class diagram.

thread.
| MainWindow ¥ | | ImageViewer ¥ | | ImageViewer | MainWindow # | | RecognizeThread A |
Class Class Class Class Class
=+ Ui MzinWindow + UilmageViewer —+ QDizlog = QMainWindow & QThread
r 7
public [public [=l Fields =l Fields =l Fields
@ frames LA alignedDepthStreamWin... . sbort
p hvi L kvi . @ nitizlTime @ colorSegmentWindow ® colormage
Ui_MainWindow R Ui_lmageViewer A Qa scene "a colorStreamWindow 93 conditicn
= = @, statusBar @, depthStreamWindow @, configurationFileName
Or Or Oa text Ga fileName ﬂa depthimage
Fields Fields @ time ® m_sensor - images
@ actionOpenFile @ dialoglayout @, iotalFrames @ thread @ isReady
@ centralWidget @ graphicsView @y @, timer @, kev_sensor
e gr?dLa}fDut = Methods = pMethods EL timerinterval @, mask
: Q”dl—a;'DUt_z @ retranslateli @, ~ImageViewer @, i :E maskedColorimage
roupBox .
@ a .p calLavout @ setuplli B, setScaleFactor = Methods a“ mutex
crizontallaycu
@ initialize P:B . — @, setText @, ~MainWindow - ohjectlist
initializePushButton (. i
@ LinectLabel ImageWidget A @, showFps @, alignedDepthStreamCpen a recognizer
inectLabe
. =3 @, showlmage @, closefvent E Methods
@ mainToolBar b OGraphicsvisw) @ ;
@ menuBar o showText ', colerStreamOpen @ ~RecognizeThread
@ @ display
@ menuFile B Methods s depthStreamOCpen & c!lspla, .
. - X G]* depthStreamsCpen G]a findSeedPoint
@ objectRecognitionGroup... 2, ~ImageWidget . .
@, Mat2Qlmage @, flocdFillSegmentation
@ chutdownPushButton @, keyPressEvent . . .
@, onObjectRecognition @ imageMotFound
@ ststusBar @, mouseDoubleC...
. @, onSensornitialized @ imageReady
@ trainPushButton @, wheelEvent -
. @, onSensorShutdowned @ loadSettings
@ verticallayout @ zoom ; d i i
= @, openRecognitionConfig ... @ objectRecognized
Llsiizis @, showConfigurationFileEr... @ recoghize
@ retranslateli @, showConfigurationFileN... @, removeBlacklines
@ setuplli @, showErrorMessage @, run
ff’* shutdownSensor &’a runRecognition
@, timerEvent @ setConfigFile
fﬂ* trainObject &’E setParameter
@, updateDepth @ stop
@, updatelmage @ trainObject
@

Mested Types

Kinect2X

Kinect2X is a library used to establish communication with Kinect v2 sensor as well
as acquiring color and depth images from it. There are also several functions used during

descriptor extraction and supports OpenCV datatype for image.

66

[KCV_sensor]
Class

= Fields

@ frame

9; d_frame

"E m_CameraCoordinates

aﬁ m_ColorCoordinates

@ m_CoordinateMapper

GE m_DepthCoordinates

ﬂa m_KinectSensor

@ m_MultiSourceFrameReader

9; status
= Methods

®a ~KCV_sensor
acquirelmages
alignColorfFrame (+ 1 overload)
alignDepthFrame [+ 1 overload)
alignintensityFrame
getlnstance
getPointFromReal
getPointinDepth
getPointinReal
initSensor [+ 1 overload)
mapDepthFrameToCameraSpace
visualiseDepthMap

e eea

Figure C.3. Kinect2X class diagram.
Descriptor Library

Descriptor Library contains the main methods for descriptor extraction and object
recognition. It contains virtual class ObjectRecognizer which other classes used for

recognition inherits from.

o

(ORBDrecognizer A (ObjectRecognizer # (SIFTDrecognizer A | DepthDescriptor A
Class Class Class Class
—+ ObjectRecognizer =+ Algorithm —+ ObjectRecognizer T
- r - 4 - 1 = Fields
Field Method Field
e ods e @ flatSurfaceObjectindices
@, depthDescriptor public @ ~ObjectRecogn... public ©. depthDescriptor @, matches
@ depthimage o @ addObject . @ depthimage @ mean
&
LA indicesPassedDepth @, addChbjectlmpl LS descriptorExtractor @ nean max flat
-] - -
@, intensitylmage @ create (+ 1 ove.. @, descriptorMatcher @ mean max flat nonflat
& _max_flat_|
@, kev_sensor @ initialize . featureDetector @, non_flatSurfaceObjectindices
a -
@, mask @, initializeParame... . indicesPassedDepth @, objectDepthDescriptors
a
@, maskedintensitylmage @ islnitialized @, intensitylmage @, objectDepthDescriptorsVector
a
@, orbGpu @ recognizeObject “a kev_sensor @, objectDepthKeypoints
-] [) @ a 3
' patternbize e s mask LR objectDepthKeypointsVector
LA points public LS maskedIntensitylmage @ radius
a
@, ransacOutliersRemovalE .. PR E— @, patternSize =
i - 2) @ . Methods
B Methods NULLrecognizer = siftGpu ® DepthD ot
Class ~DepthDescriptor
. =]
@ ~ORBDrecognizer b ObjectRecognizer [{siEss @ addObjectlmpl
@, addChjectlmpl T @ ~SIFTDrecognizer @ compute
@, getMumberQfObj = Fields @, addObjectimpl © DepthDescriptor
g info @ nullParsm @ getDepthimage @, gethvgAngle
[; !nlltl.:.llzlfapzrameters = Methods g gztt:\:ter:'t}'wage @, getNormals
islnitialize asl -
@ ORBDrecognizer (+ 1 ov @ ~NULLrecogniz...) ignitializeParameters S getsidMaxiein
pS @, addObjectimpl @a ©a gefTriangles
s processimages @ inf a processimages @ recognizeCbjectimpl
@, recognizeQbjectimpl inre @, recognizeObjectimpl -
" J ! P) @ NULLrecognizer N 9 ! P @, storeindices
- ~ @ SIFTDrecognizer (+ 2 ov... \),

L P, |

y.

Figure C.4. Descriptor Library class diagram.

67

Depth Descriptor feature extraction

The main addition to the object recognition comes with the own implementation of
depth descriptor. Here, we will show the algorithm for its extraction. The next for cycle show
us the extraction of first three descriptor values. First, we need to extract the real word
coordinates of the triangle around the key-point. In next steps, we extract the normal vectors
and compute the actual values. We store the maximal values for later normalization and also
compare if we successfully obtained good values for the descriptor. If any measurement error

occurred during computation, we simply remove the descriptor.

for (int i = @; i < objectDepthKeypoints.size(); ++1i)
{
descriptor = objectDepthDescriptors.ptr<float>(i);
std::vector<cv::Point> depthPoints;
std::vector<cv::Point3f> realPoints;
cv::Point3f realKeypoint;

// get Triangles and extract points

getTriangles(cv::Point((int)objectDepthKeypoints[i].pt.x,
(int)objectDepthKeypoints[i].pt.y), realKeypoint, depthPoints, depthImage);

for (int j = ©; j < depthPoints.size(); ++Jj)

{

cv::Point3f realPointl, realPoint2, realPoint3;
// get real world coordinates
if (kcv->getPointInReal(depthPoints[j], depthImage.cols, depthImage.rows,
realPointl))
{
if (kcv->getPointInReal(depthPoints[j + 1], depthImage.cols,
depthImage.rows, realPoint2))

{
if (kcv->getPointInReal(depthPoints[j + 2], depthImage.cols,
depthImage.rows, realPoint3))
{
// store real coordinates
realPoints.push_back(realPointl);
realPoints.push_back(realPoint2);
realPoints.push_back(realPoint3);
¥
¥
¥
j=3+2

cv::Vec3f avgNormal;
std::vector<cv::Vec3f> normals;
float avgAngle;
// initialization to zero to avoid infinity values
if (realPoints.size() == 0)
{
descriptor[@0] = @.0f;
descriptor[1] = @.0f;
descriptor[2] = @.0f;
if (lastBadDescriptorIndex < 9)

{

lastBadDescriptorIndex = i;
continue;

}

continue;

¥
// get average normal and first feature -- average angle
getNormals(realPoints, avgAngle, avgNormal, normals);

68

float std, maxmin;

// standard deviation and max-min

// we translate surface to the keypoint position
getStdMaxMin(realPoints, realKeypoint, avgNormal, std, maxmin);

// store values for later normalisation

if (!(avgAngle == avgAngle) || !(std == std) || !(maxmin == maxmin))
{

descriptor[@0] = @.0f;
descriptor[1] = @.0f;
descriptor[2] = @.0f;
if (lastBadDescriptorIndex < 0)

{

lastBadDescriptorIndex = i;
}
continue;

}

if ((avgNormal[@] == avgNormal[@]) && (avgNormal[l] == avgNormal[1]) && (avgNormal[2]
== avgNormal[2]))

{
good_normals++;
object_normal[@] = object_normal[@] + avgNormal[O];
object_normal[1l] = object_normal[1] + avgNormal[1l];
object_normal[2] = object_normal[2] + avgNormal[2];
¥

// clear all
realPoints.clear();
depthPoints.clear();
if (avgAngle > max_angle)
max_angle = avgAngle;
descriptor[@] = avgAngle;
if (std > max_std)
max_std = std;
descriptor[1l] = std;
if (maxmin > max_maxmin)
max_maxmin = maxmin;
descriptor[2] = maxmin;

avg_normals.push_back(avgNormal);
objectDepthKeypointsGood.push_back(objectDepthKeypoints[i]);
if (lastBadDescriptorIndex <)
continue;
std: :memcpy(objectDepthDescriptors.ptr<float>(lastBadDescriptorIndex),
objectDepthDescriptors.ptr<float>(i), 4 * sizeof(float));
++lastBadDescriptorIndex;
}

69

Fourth descriptor value

Last value of the descriptor is extracted in a similar way. As it was described, we
compute average angle through all key-points and write down the angle between each key-

point and average angle.

for (int i = ©; i < avg_normals.size(); i++)
{
// if average normal is finite & with no error
descriptor = objectDepthDescriptors.ptr<float>(i);
if ((avg_normals[i][@] == avg_normals[i][0]) &&
(avg_normals[i][1] == avg_normals[i][1]) &&
(avg_normals[i][2] == avg_normals[i][2]))

{
float angle;
// compute global angle
getAvgAngle(object_normal, avg_normals[i], angle);
if (!(angle == angle))
{
descriptor[3] = 0.0f;
if (lastBadDescriptorIndex <)
{
lastBadDescriptorIndex = 1i;
continue;
}
continue;
¥
descriptor[3] = angle;
if (angle > max_object_angle)
max_object_angle = angle;
}
else
{

descriptor[3] = 0.0f;
if (lastBadDescriptorIndex < 0)

{
lastBadDescriptorIndex = i;
continue;

¥

continue;

objectDepthKeypointsGood.push_back(objectDepthKeypoints[i]);

for (int j = 0; j < 4; j++)
descriptorValues[j].push_back(descriptor[j]);

if (lastBadDescriptorIndex <)
continue;

std: :memcpy(objectDepthDescriptors.ptr<float>(lastBadDescriptorIndex),

objectDepthDescriptors.ptr<float>(i), 4 * sizeof(float));
++lastBadDescriptorIndex;
}

70

Attachment D: Resumé v slovenskom jazyku

Uvod

Vizudlna detekcia objektov patri v sicasnosti medzi rozvijajiice sa Casti pocitacového
videnia. Doraz pri rozpoznavani sa kladie hlavne na rychlost’, robustnost’ a zabezpecenie toho,
aby bolo mozné objekty rozpoznavat’ aj pri réznych uhloch natocenia a aj v pripadoch, kde
nedokdzeme zachytit’ cely objekt na obraze. V praci sa d’alej venujeme rozpoznavaniu
objektov pomocou lokalnych deskriptorov. Diskutujeme o mozZnostiach vyuZitia hibkovych
dat pre potreby rozpoznavania 3D objektov v podobe vytvorenych deskriptorov, ktoré spajaji

informdciu o texture spolu s hlbkovou informaciou.

Analyza

Rozpoznavanie objektov mozno vo vSeobecnosti rozdelit’ do dvoch kategorii:

e Rozpoznavanie generickych objektov

e Rozpoznavanie $pecifickych objektov

NaSa praca sa zaobera prave rozpoznavanim Specifickych objektov pomocou metdd
lokalnych deskriptorov. Vo vSeobecnosti algoritmus pre rozpoznavanie funguje tak, Ze sa na
vstupnom obrdzku najdu kI'icové body zaujmu, ktorych okolie sa vhodnym spdsobom opiSe a
ulozi do ¢iselného, pripadne binarneho vektora. Takto vytvorené vektory sa potom ulozZia a
predstavuju nas objekt, ktory chceme neskor rozpoznat'. Rovnaky postup sa nasledne aplikuje
na obraze na ktorom chceme objekt rozpoznat. Rozpoznavanie prebieha na zaklade

porovnavania vektorov deskriptorov a najdenia koreSpondujucich parov deskriptorov.

Akokol'vek mdze postup zniet’ vel'mi jednoducho, pri procese dochadza k viacerym
faktorom, ktoré mézu mat negativny vplyv na rozpoznavanie. V prvom rade sa snazime
rozpoznavat' 3D objekt na 2D reprezentacii. To znamend, ze samotny objekt mézeme rdzne

otacat’ a stale bude jeho reprezentdcia v podobe obrdzku rézna.

Dalsie faktory ktoré negativne vplyvaji na rozpoznavanie aje potrebné ich pre

algoritmus rozpoznéavania brat’ v tivahu su:

71

e Svetelné podmienky — Ak sa na obrazok pozerame ako maticu ktord obsahuje
jednotlivé RGB hodnoty, tak rézny vplyv svetla na scénu meni tieto hodnoty. Tym
paddom napriklad dva rovnaké objekty, ktoré odfotime z rovnakého pohladu pri
r6znom osvetleni budu predstavovat’ iné hodnoty v matici obrazka.

o Skala a vzdialenost’ — V algoritme rozpoznavania je potrebné dbat’ aj na vzdialenost’
objektu, ktord rovnako vplyva zmenou dit ako ina farebnom obrazku, tak aj na
hibkovej mape.

e Rotacia — Objekt, ktory planujeme rozpoznat’ nemusi byt’ vzdy oto¢eny rovnako. Pri
naSom rieSeni ziadame, aby naSa implementécia bola voci tomuto vplyvu odolna.

e Roticia okolo osi — Vo volnom preklade rozne uhly natoCenia objektu. Vo
vyslednom obrazku predstavuju rozne formy perspektivnych transformaécii.

e Sum - Skreslenie obrdzku, artefakty, ktoré sa na zivej scéne nenachadza. Su
spOsobené hlavne samotnym senzorom.

e Prekrytie — Vo vela pripadoch nevidime cely objekt, ale len jeho Cast. Algoritmus
rozpozndvania by mal byt schopny rozpoznat' objekt aj pri jeho ciastocnej

viditel'nosti.

Detekcia kI'G¢ovych bodov

Prvym krokom algoritmu lokalnej deskripcie je detekcia klicovych bodov. Pre
samotné rozpoznavanie je vhodna detekcia tychto bodov nesmierne dolezitd, pretoze budu
d’alej sluzit’ pri vytvarani deskriptora. Hlavné vlastnosti, ktoré sa od klIaovych bodov

poZaduju, st nasledovné:

e Aby bolo moZné najst’ rovnaké body na objekte pri roznych meraniach

e Aby boli tieto body nachddzané s urc¢itou presnostou

e Aby sa kl'i¢ové body nachadzali na objekte aj pri réznych natoc¢eniach

e Aby boli body dostato¢ne reprezentativne a zaroven odlisSné

e Aby tychto bodov bolo viac a tym padom by sa objekt mohol rozpoznat’ aj ked’ vidime

iba jeho Cast’

Niektoré deskriptory maji aj vlastné detektory klIicovych bodov. Medzi zname

metody detekcie takychto bodov ale patria detektory ako DoG, LoG, FAST.

72

Deskripcia kP’i¢ovych bodov

Na zdklade toho, ¢i sa jednd o deskriptory s redlnymi hodnotami alebo bindrne
deskriptory, bude prebiehat’ aj samotna deskripcia. Okolie kI"aicovych bodov sa zakdduje do
vektorov deskriptorov, ktoré sa neskor budu porovnavat. Medzi doteraz najznamejSie

deskriptory patri napriklad deskriptor SIFT.
SIFT deskriptor

Pre vypocet deskriptora je potrebné najskor vytvorit' obrdzkovy gradient s vel'kostou
a orientaciou v okoli klIi¢ového bodu. Velkost mriezky, nad ktorou sa tato operacia robi je
16 na 16 pixelov. Tato mriezka sa d’alej deli na menSie Casti vel'kosti 4 na 4 pixela, pre ktoré
sa kazdej Casti vypocita histogram orientacii pre 8 smerov. Pocas vytvdrania sa dbd na to, aby
jednotlivé pixely, ktoré sa nachadzaju blizsie ku stredu vzoru a tym padom kla¢ového bodu

mali vac¢si vplyv pri tvorbe histogramu.

Vzhl'adom na mensie casti s velkostou 4 x 4 avytvorenych histogramov s 8
hodnotami bude celkovy SIFT deskriptor obsahovat 4 x 4 x 8§ = 128 hodnét. Nésledne sa

normalizuju hodnoty aby sa dosiahla invariantnost’ pred réznymi svetelnymi podmienkami.

Image gradients Keypoint descriptor

Obrazok D.1. Deskriptor SIFT

Parovanie deskriptorov
NajjednoduchsSia metdda parovania deskriptorov je takzvana metdda hrubej sily, kde
porovndvame kazdy deskriptor s kazdym. Vzhl'adom na typ deskriptoru je moZzné pouZit

viacero metrik porovndvania.

Pre ciselné (datovy typ float) deskriptory je najcastejSie pouzivand metrika pre

ndjdenie podobnosti na zdklade Euklidovskej vzdialenosti.

73

Pre binarne deskriptory sa mdze napriklad pouzit Hammingova vzdialenost’, ktora sa

realizuje pomocou bindrnej operacie XOR.

Navrh rieSenia
RieSenie nadvdzuje na pracu predoslého diplomového projektu, v ktorom bola
vytvorend aplikdcia rozpozndvania objektov pomocou deskriptora SIFT, ktorého vektor bol

rozsireny o d’al$ie 2 hodnoty na zaklade hibkovej mapy zo senzora kinect.

Na tdto aplikdciu sme v naSom rieSeni nadviazali arozhodli sa viac venovat
potencidlu rozpozndvania objektov pomocou hlbkovej informécii. Na trh sa dostala nova
verzia Kinect zalozend na metdde ,,Casu letu” (time of flight), ktord sl'ubuje presnejSie

meranie vzdialenosti.
Kaskadové rozpoznavanie

Vd’aka lepsiemu hibkovému senzoru sme sa v praci rozhodli vytvorit’ vlastny hibkovy
deskriptor, ktory by bol schopny rozpoznavat’ objekty. Vzhladom na fakt, ze hibkové data
stale nedosahuju dostatoénu kvalitu ako data farebnej kamery, rozhodli sme sa dany hibkovy
deskriptor pouzit’ ako prvy vstup pre pre-selekciu objektov z daného nauceného datasetu.
Tym padom mozeme niektoré objekty, ktoré nepresli hibkovym deskriptorom vylagit,
a neskor vo faze rozpoznavania objektov pre deskriptory zalozené na textre urychlit’ celkové
rozpoznavanie. Zaroveit vd’aka hibkovej informacii pred samotnt hibkovii detekciu vieme
pridat’ rozliSenie objektov na zdklade tvaru jeho povrchu. Mo6Zeme tak rozdelit’ objekty

s rovnou plochou od ostatnych objektov.
Detekcia kl'i¢ovych bodov

Pre detekciu kPucovych bodov pri vytvarani vlastného hibkového deskriptora
pouzivame body, ktoré boli detegované pre deskriptory v d’alSej drovni rozpozndvania.
Neskorsie testy ukazuji na vhodnost’ vyuzitia tychto bodov a je tak mozné usetrit’ ¢as, kde ich
pre hibkové data nemusime znova detegovat. Zaroveii dochadza k zrychleniu aj vdaka
segmenticii, kde vd’aka hibkovej informacii ktort mame k dispozicii dokdZeme uréit’ pozadie

objektu a odstranit’ vSetky kIi¢ové body, ktoré objektu nepatria.

74

Deskripcia kl'a¢ovych bodov

Pri tvorbe deskriptora sme sa rozhodli pouzit hviezdicovy vzor zo Styroch
trojuholnikov vzhladom na fakt, Ze tri body trojuholnika mézeme pouzit’ pri urCovani

normdlového vektora plochy, ktoré tieto body opisuju.

Obrizok D.2. Vzor pouzity pri tvorbe hibkového deskriptora.

Vektor hibkového deskriptora bude obsahovat’ 4 hodnoty, ktoré budi vypoéitané
Statistickymi metédami. Takto dosiahneme invariantnost’ vo¢i rdznym natoceniam. Zaroven je
velkost’ daného vzoru prepoéitana na vel’kost’ 15 milimetrov, ¢im dosiahneme to, e hibkovy
deskriptor bude mozné vyuzit’ pri detekcii objektov z rdznych vzdialenosti. V nasledujice]

Casti si opiSeme jednotlivé hodnoty deskriptora.

Priemerny uhol

Prvd hodnota deskriptora je dana priemernym uhlom na zdklade vSetkych
trojuholnikov vo vzore. Z normélovych vektorov vypocitame priemernt normalu, od ktorej
zistujeme uhly k jednotlivym normdlovym vektorom. Z tychto uhlov je ndsledne zisteny

priemerny uhol.

Uig Vg TU Yy UV,

2 2 2 2 2 2
\/uil +ui2 +ui3 '\/va +vm2 +vm3

N
F _avgAngle= %Z arcco
i=1

Kde N je pocet normalovych vektorov.

v, je priemerny normalovy vektor.

u; je normalovy vektor pre trojuholnik.

75

Standardna odchylka

Druh4 hodnota deskriptora je $tandardnd odchylka hibkovych hodnét vypoéitane;
z hibok v bodoch trojuholnikov.

1 &
o= 2 -y
Kde N je pocet vSetkych bodov vo vzore.
x; je vzdialenost’ bodu od priemernej plochy.
u je priemernd vzdialenost’ bodov od priemernej plochy.
Rozdiel maximalne ja minimalnej hibky

Tretia hodnota predstavuje rozdiel maximélnej a minimalnej hodnoty hibky

v jednotlivych bodoch vo vzore.
Globalny uhol

Ako Stvrtd hodnotu sme sa rozhodli pozriet na objekt globdlne. Zistili sme si
priemerny normalovy vektor pre cely objekt cez vSetky vzory. Nésledne sme si pre kazdy
deskriptor wulozili hodnoty uhlu medzi celkovym norméalovym vektorom objektu

a priemernym normalovym vektorom pre kazdy klI'ic¢ovy bod.

gV, +8&,v, + 85V3

F _ globalAngle = arcco = = =
\/81 +8, +8&; -\/Vl v, tvs

Kde g je priemerny normélovy vektor celého objektu.

v je priemerny normalovy vektor kI'icového bodu.

S

1N
g_ﬁl-:l i

Implementacia

Na zaklade navrhu sme zostrojili hibkovy deskriptor s danymi parametrami. Pri

implementécii sme pouzili jazyk C++ a nasledovné technoldgie:

76

e Object Recognizer[23]
e OpenCV kniznica
e Qt Framework

e Kinect SDK v2.0
Architektira systému

Pri implementicii sme dbali na rozdelenie jednotlivych modulov. Vytvorili sme
kniznicu Kinect2X, ktord ma na starosti komunikéciu so zariadenim Kinect ako aj mapovanie
dat do formatu pouziteI'nych pre OpenCV kniznicu. Zaroven kniznica ponika mapovanie

pozicii hibkovych dat na pozicie vo farebnych datach a naopak.

Vsetky funkcionality deskriptorov sme umiestnili do samostatnej kniZnice s nazvom
Descriptor Library. Nachadza sa tu implementdcia deskriptorov SIFT a ORB na graficke;j

jednotke ako aj naa implementacia hibkového deskriptora.

Posledny modul tvori samotnd aplikdcia, ktord sa stard hlavne o pouZzivatel'ské grafické

rozhranie a spravu vldkien.

77

<<application== -
Obiect Recognizer =<fdevices=
je o9 E Kinect v2
D
Main Window .. <=l s;e}::-
=<library=:
: sese -~ s e - Kinect SDK
. _,| Recognizer Thread ;
.)
IS8 ' V
! ! el
v W - :
<<library=>=
image Widget Kinectzx 3 |
Kinect2X
j ' | A
E . cclusess e :
i <<library== . <<library=: :
celiSans SIFT GPU oo OpenCV
! i <<lSE> r '
E —clsess seelS e 2 <<l Slf-‘?}
W : — : :
<<library==
Descriptor Library E
<<interface==
Object Recognizer
& A
ORBD Recognizer SIFTD Recognizer
:-'r:-'r:l.l S8R, sl =g :
W W
Depth Descriptor

Obrazok D.3. Architektdra systému.

Jednotlivé Casti implementacie v podobe pseudo kédov su popisané v anglickej verzii

implementécie.

Vysledky

Pri zhodnocovani vysledkov sme vykonali viacero experimentov. V prvom rade nés
zaujimal po&et objektov, ktoré hibkovy deskriptor posunie do d’alsej urovne rozpoznavania.
Vd’aka pre-selekcie mozeme nasledne porovnat’ ¢as vykonavania rozpoznavania, ktory by mal
s rastucim datasetom klesat. Vysledky jednotlivych testov ndjdeme na nasledujicich

obrazkoch.

78

Depth recognition

6 T T T T T T
2 50 .
(6]
(0]
5
o 4T .
Q
3
o 3r i
@
o
o 2 -
©
S
Z 1+ .
0
5 10 15 20 25 30 35
Nm. of trained objects
Obrazok D.4. Pocet objektov ktoré presli pre-selekciou.
Recognition time (RGB vs RGB-D)
120 T T T T T T
—S— SIFT descriptor
1004 Depth + SIFT

[
o
]

process time [ms]
S [e)]
o o
]]

0 % r r r r r
0 5 10 15 20 25 30 35

number of trained objects

Obrizok D.5. Porovnanie ¢asu rozpoznavania pri pouziti deskriptora SIFT s hibkovym deskriptorom

a samostatného deskriptora SIFT.

Zhodnotenie a zaver

V praci sme analyzovali jednotlivé metddy detekcie a zamerali sa hlavne na detekciu
pomocou lokalnych deskriptorov. Preskiimali sme oblast’ rozpoznavania objektov, kde bola
vyuzitd aj hibkova informécia z dostupnych senzorov. Rozhodli sme sa pre vlastni
implementéaciu hibkového deskriptora, ktora bola {ispe$na a zaroveii pomaha v redukcii ¢asu

rozpoznavania so zvySujlicim sa poétom natrénovanych objektov. Hibkovy deskriptor

79

prepusti do d’alSej Grovne rozpoznavania vacsinou vzdy aj objekt, ktory hl'addme a zhorSenie

presnosti o 3.32% povazujeme za akceptovatelné.

Problematika detekcie je stdle eSte nepreskimana a moznosti vylepSenia detekcie
neubuda. Medzi dalSie mozné spdsoby rozpoznania objektov napriklad moéze patrit

porovnanie vel’kosti samotného objektu, pripadne porovnanie farebného histogramu.

80

Attachment E: Paper published at SPIE Electronic

& Imaging conference in San Francisco, California

3D object recognition based on local descriptors

Marek Jakab', Wanda BenesovaZ?, Marek Racev?,

Slovak University of Technology, Faculty of Informatics and Information Technologies, Slovakia

ABSTRACT

In this paper, we propose an enhanced method of 3D object description and recognition based on local descriptors using
RGB image and depth information (D) acquired by Kinect sensor. Our main contribution is focused on an extension of
the SIFT feature vector by the 3D information derived from the depth map (SIFT-D). We also propose a novel local
depth descriptor (DD) that includes a 3D description of the key point neighborhood. Thus defined the 3D descriptor can
then enter the decision-making process. Two different approaches have been proposed, tested and evaluated in this
paper. First approach deals with the object recognition system using the original SIFT descriptor in combination with our
novel proposed 3D descriptor, where the proposed 3D descriptor is responsible for the pre-selection of the objects.
Second approach demonstrates the object recognition using an extension of the SIFT feature vector by the local depth
description. In this paper, we present the results of two experiments for the evaluation of the proposed depth descriptors.
The results show an improvement in accuracy of the recognition system that includes the 3D local description compared
with the same system without the 3D local description. Our experimental system of object recognition is working near
real-time.

Keywords: local descriptor, depth descriptor, SIFT, segmentation, Kinect v2, 3D object recognition

1. INTRODUCTION

Visual object recognition is still one of the biggest challenges in computer vision. One of the promising ways to
approach this challenge seems to be the usage of local descriptors. The bottom-up approach using local descriptors is
widespread and has also been the focus of research interest all over the world in recent years. Object recognition methods
based on local descriptors are potentially applicable for applications working in near real time and the method also
provides invariance to different illumination, scale, angle or rotation of the object, even if limited. Our goal is to provide
a novel local descriptor which will extend the local description derived from an RGB image with a description of the
neighborhood of a key point in the depth image (D). Therefore we can use the RGB-D sensors providing us with a color
(RGB) and also a depth image (D).

Our main contribution is focused on the extension of the object recognition method using a SIFT feature vector by the
3D information derived from the depth mask. In this paper, we propose a novel local depth D-descriptor which
represents a 3D description of the key point neighborhood. As so defined, the 3D descriptor can then enter into the
decision-making process. Two different approaches could be considered:

- Object recognition using the original SIFT descriptor in combination with our novel proposed 3D descriptor,
where the proposed 3D descriptor is responsible for the pre-selection of the objects.

- Object recognition using an extension of the SIFT feature vector by the depth local description as for example:
absolute value of the difference between the depth minimum and depth maximum in the local area, standard
deviation of the depth value in the local area.

In this paper, we present the results of two experiments for the evaluation of the proposed depth descriptors.

! marko.jakab@gmail.com

2 yanda_benesova@stuba.sk

3 marek.racev@gmail.com

Object recognition using local descriptors is typically based on the paired matching of all the trained object data with the
data derived from an unknown object. The problem of a growing time requirement and a decreasing recognition accuracy
becomes serious with the increasing number of objects in a dataset. Our first experiment is based on the idea that depth
description will be used in the pre-selection step. We propose the usage of the RGB-D data obtained from the Kinect v2
sensor device for the purpose of a pre-selection of the objects for a subsequent SIFT-matching-based object recognition.
That means that only a selected part of the objects from the trained dataset will be accepted by the first recognition part
which uses the depth descriptors. Hence, the calculation time needed for the following SIFT matching will not exceed
certain limits with growing number of objects in the dataset. For the purpose of the pre-selection, we use the information
which provides us with complex and relatively precise measurements of the depth area around each of the key points.
This information is statistically evaluated and then used in the descriptor creation.

In addition, object depth information could be used for a more global object description based on depth information, as
for example the “global flatness™ of an object.

The goal of the pre-selection is to speed up the decision process and also to improve the achieved recognition accuracy.
The hardware setup for the presented evaluation has been completed using the Kinect v2 sensor device.

In the second experiment the well-known SIFT descriptor was extended by two values derived from the local depth
description in the neighborhood of the key point. In the experiment, a whole recognition system has been evaluated in
two ways: including original SIFT descriptor and our proposed extended descriptor SIFT-D.

2. RELATED WORK

The most relevant papers which present the research related to object recognition concerning both RGB and depth image
(RGB-D) have been taken into consideration.

Normal Aligned Radial Feature (NARF) [1] [2] descriptor is able to extract and describe features from the 3D image
data. The NARF descriptor has been developed with the goal to achieve two important objectives necessary for the
object recognition. Firstly, the algorithm needs to select those key points which are located in the stable surface region.
The reason is the robustness of the algorithm, since without this constraint, errors can occur in the computing of the
normal vector in the point. Hence, these errors can subsequently cause errors in the matching phase. The second rule
concerns finding the useful key points. Considering the fact that the 3D data are taken from the devices which are able to
take only partial 3D image of the scene (like laser scanners, stereo camera or the Kinect device), shapes of the object will
be different for different views of the object. Therefore, unique and high-quality selection of the key points is of high
importance. The NARF descriptor uses star pattern for filling the descriptor. This means that way that each line of a star
represents how different the pixel value is under the line.

Another depth descriptor is called Color-Signature of Histograms of Orientations (CSHOT) [3] [4] (color signatures of
histograms). This descriptor contains both shape and texture information suitable for RGB-D (RGB & Depth) matching.
The basic idea of forming this descriptor is the eigenvalue decomposition of the scatter matrix around the key point. A
spherical grid is created around the point it could form a histogram of normal vectors defined for each sector of the grid.
This descriptor could be an example of merging both color and depth information in one single descriptor.

Nascimento, Erickson R., et al. have proposed a Binary Robust Appearance and Normals Descriptor (BRAND) [5]
which combines the appearance and geometric shape information from RGB-D images. In the first step, the scale factor
using the depth information from RGB-D image is calculated. The scale factor is then used in the next step (dominant
direction estimation) and in the feature analysis in the key point's vicinity. At last, the authors combine both appearance
and geometric information to create key point descriptors that are expected to be robust, fast and lightweight. The
authors also demonstrate that the descriptor is robust, invariant to rotation and scale, and provides reliable results in a
registration task even when a sparsely textured and poorly illuminated scene is used. The main constraint of this method
is, that a small irregularities of these surfaces can be confused with noise.

Lowe proposed a Scale Invariant Feature Transform (SIFT) [6]. SIFT combines a scale invariant region detector and a
descriptor based on the gradient distribution in the detected regions. The main idea of the descriptor is to compose the
local histograms of gradient locations and gradient orientations in one vector, wherein the contribution to the location
and orientation in histogram bins is weighted by the gradient magnitude. The quantization of gradient locations and
orientations makes the descriptor robust to small geometric distortions and small errors in the region detection. The

descriptor is finally arranged as a 128-dimensional vector of float numbers. The SIFT [6] descriptor is one of the older
descriptors, but still robust, scale and rotation invariant and widely used.

3. DEPTH DESCRIPTOR (DD)
3.1 Descriptor pattern

To fill the descriptor vector, we use a star pattern created by four triangles which are rotated around the selected key
point. Four triangles determine 12 points and the depth distances value of these 12 points are used in the computing of
the depth descriptor vector. Each triangle defines a plane and hence the normal vectors of the planes could be calculated
and subsequently used in the descriptor.

1.
11./12 /\

10.

8./9.\/ 5./6.

Figure 1. Star pattern around the key point P.

The points in the star pattern are defined with the constraint that the maximum distance radius in the real world metric is
set to 15mm. To make the algorithm more robust, we can add more star patterns with different size radii.

Figure 2. Visualization of dynamic change of the triangle size according to the depth.

'
4

Figure 3. Visualization of descriptor pattern on trained object.
3.2 Descriptor vector

Four features, which are derived by statistical evaluation, have been taken for the definition of the depth feature vector.
Three of them are based on the local surface description and the fourth feature also takes into account the global
information of the object as will be described later in the chapter. In addition, we filter out those triangles which cannot
provide the depth value in at least one point.

1st feature value derived from average angle referenced to a normal vector

The first feature in the depth feature vector is derived from the average angle of the normal vectors given by all triangles
in the key point. Therefore we need to compute four normal vectors - one for each of the four triangles given by the
pattern. Then the corresponding average vector of this key point will be calculated. This vector will be used as a
reference in the next evaluation. In the next step, we can compute the difference angle between each of the normal
vectors and the reference normal vector.

The first value of our depth descriptor F_avgAngle will be then calculated as follows:

u.

tl'vml + ui2'vm2 + ui3'vm3

ey

1 N
F _avgAngle=— E arcco
N < \/ 2 2 2 \/ 2 2 2
i= Wi g +u AV, V.5 +V

Where N is the number normal vectors/triangles.

\7m is the average normal vector.

U, is the normal vector given by triangle.

2nd feature value derived from standard deviation of depth referenced to a plane perpendicular to the averaged
normal vector

The second feature was proposed with the goal to create an efficient description of the local depth differences. To yield
at least some acceptable kind of rotation and distance invariance of this feature, it is necessary to define a reference plane
which is invariant to object rotation and to distance from the sensor. For this purpose, we have chosen the plane which is
perpendicular to the reference averaged normal vector described in the previous section. The descriptor value is then
given by the standard deviation of the depth differences between the actual depth value in a point and the reference
plane. All points given by the descriptor pattern (see section 3.2.1.) shall enter into the evaluation.

o= lﬁ:(x —u) 2
N L

i=1

Where N is the number of all points in the descriptor pattern (see section 3.1).
x; is the distance of the depth value from the reference plane in the point i.

u is the mean value of x; (i=1...n).

3rd feature value derived from the difference between the maximum and minimum depth values referenced to a
plane perpendicular to the averaged normal vector

Calculation of the depth value referenced to the reference plane is similar to those described in the previous section.
Instead of the previous statistical evaluation by standard deviation, the simple difference between the maximum and
minimum value of the recalculated depth value was taken into account as the next feature value.

Calculation of these values can be done very efficiently. The maximum and minimum value can be incorporated into the
process of the calculation of the previous feature: standard deviation.

4th feature value derived by using a global angle

The previous three features‘ values have been designed as a local description without any global reference. The goal of
the fourth feature value is to take into consideration also the global orientation of the object and hence a global normal
vector was defined for this reason. The global normal vector is calculated as the average vector value out of all local
normal vectors across all key points. This feature can provide additional information about the flatness of the object.

&V T8V, T 85V
2

F _globalAngle = arcco - - = ——
\/g1+g2+g3.\/v1+v2+v3

3

—

Where g is the global average normal vector through all key points.

V represents the local average normal vector at a given key point.

1 N
=— DV, 4)
g NZ‘

The next figure shows a visualization of the difference angle between the global normal vector and local reference
average normal vector. The bottom bar shows the possible values of color scale normalized into the range 0-1. The mean
value of all angles is visualized as a black dot within the bar.

Figure 4. Visualization of angle at the given key point with global normal vector.
3.3 Invariance

The original SIFT descriptor is invariant to different scale, rotation and small perspective transformation of the object.
Our goal is to develop a local depth descriptor which will extend the SIFT descriptor and hence we also aim to achieve a
comparable rotation and scale invariance.

Scale invariance

The 3D information should be taken into account for the scale definition of the depth descriptor. As we know the
distance of the selected key point from the sensor, we can easily determine the corresponding neighborhood size in
pixels around the key point according to the real world distance.

Rotation & perspective invariance

To achieve invariance to different rotations of the object, we aim to fill the descriptor with the information which is
defined as independent of the rotation and angle of the object. We have already described those values in previous
chapters.

4. EXTENSION OF THE SIFT FEATURE VECTOR BY THE LOCAL DEPTH DESCRIPTION

Our idea was to extend the 128 feature values of the SIFT descriptor by additional feature values derived from the depth
map which can provide additional local information. For this purpose we need to calculate a normal vector to the local
area given by the key point. Then the local area around the key point will be transformed so that this normal vector is in
the direction of the view. This transformation results in a new depth map which will be used for the next calculation of
the additional features.

4.1 Extended SIFT feature vector (SIFT-D)

The first additional feature used in the extended feature vector is a standard deviation of the depth values in the local area
surrounding the key point. The reference plane for the depth calculation is the plane perpendicular to the normal vector.
Unlike the depth descriptor (DD) described above, the standard function in the PCL library was used for the calculation
of the normal vector in the key point instead of the triangle pattern.

=)
=TT INUESIEIY ®
r ¢ y=0 x=0
1 Lo
M= ﬁ I(X, y) (6)

Where I(x, y) is a depth value at the position with coordinates x, y.
I; is a number of rows in the segment.
Lc is a number of columns in the segment.

The second additional feature used to extend the feature vector is the difference between the maximum and minimum of
the depth values in the described area [mm].

a =max(/)—min(/) 7

An intuitive interpretation of the presented maximum range feature value is similar to the interpretation presented above:
in case of a flat area the feature value is near or equal to zero.

If the corresponding normal vector was not able to be calculated due to the missing values in the depth map, zero values
in place of both extending features are used.

0 1 ; : : 127 128 129

m—
Figure 5. The extended proposed feature vector SIFT-D.

Actually, the development of the extension features was greatly limited by the depth map quality. The next limitation is
given by the resolution of the depth sensor in relation to the recognized object size. For example, the NARF descriptor

can describe the area in much more detail, but the NARF-described area in the size of about 20 x 20 c¢m in real world
coordinates is too large and hence not usable for our tested objects.

5. EXPERIMENTAL SETUP

5.1 Dataset

Our tested dataset was related to the final application: a self checkout in a shop. The set of toys fulfill very well the
requirements of the application. The set also has a large variability necessary for the testing. Hence, various toys of
different size and shape were chosen. The same example of the toys in the dataset are presented in the figure 6.

' e ' s -.A",‘\. e
li : H&}L W‘. 3
Figure 6. Objects used for training and measurement.
5.2 Hardware and software implementation

In the experiment for the evaluation of the proposed depth-based pre-selection the following hardware was used:

- Laptop with CPU Intel Core 17, 3632QM, 2.2 GHz, GPU NVidia GeForce GT635M and RAM 8GB DDR3
1600Mhz.

The test program was implemented in C++ with the library OpenCV. In the second experiment the PCL library was also
included.

Implementation of the SIFT feature extraction and description was computed on the GPU unit [7]. Thanks to the GPU
implementation we are able to use full HD images for color description and still provide the results in near real time.

Kinect v2 provides significantly higher depth fidelity (depth accuracy +- 1mm) and depth resolution (512 x 424)
compared with the previous Kinect device.

Resolution of the RGB-D image acquired by Kinect v2 in the experiment with depth descriptor is presented in the next
table:

Table 1. Image settings for color and depth processing.

Image Description

Color image 1080p, 1920x1080 color image from
Kinect v2 RGB sensor

Depth image 512x424 pixel resolution image from
Kinect v2 Depth sensor

An older version of sensor Kinect (Kinect for Windows) was used in the experiment presented as the extension of SIFT
descriptors

The project and the source code are available on the web page:

http://vgg.fiit.stuba.sk/3d-object-recognition/

http://vgg.fiit.stuba.sk/3d-object-recognition/

6. PROPOSED DEPTH DESCRIPTOR (DD) EVALUATION
6.1 Overview of the processing pipeline

The whole pipeline of the experimental setup is presented in the next figure.
'4’1
)

—Depth daxab- Mask image—»

RGB data »

RGB * Aligned Mask-»

Key-points

Depth data

Figure 7. Pipeline of the experimental setup.
6.2 Object segmentation in the D image and geometric alignment of the RGB and D images

The first step in the processing pipeline is the object segmentation. Methods which used the RGB-D sensor and, hence,
the depth image for the segmentation of 3D objects can overcome the methods of segmentation using RGB image in
lower computational complexity and also in the achieved robustness.

A presumption of the proposed method is the object position in the captured scene, which means that the unknown object
is positioned as the nearest object to the Kinect sensor. In our approach we use the method of growing regions, where a
seed point of the segmentation is the nearest point to the Kinect device detected in the depth image. The result of the
segmentation is a binary mask. The border of the mask can produce misleading key points which are not inside of the
object and hence a morphological processing - erosion - of the mask is necessary. The segmentation step is crucial for
the recognition as we can easily filter out most of the undesired key points and speed up the matching phase.

Because of the different resolution of the depth sensor and the color camera, we need to geometrically align the both
frames RGB and D. Then we can apply the binary segmentation mask on the geometrically aligned RGB image.

Figure 8. Object segmentation based on the depth.

6.3 Key point selection

In the next step, the SIFT detector is used for the calculation of all the key points in the segmented area. As mentioned,
our real-time system already uses published implementation of the SIFT detector and SIFT descriptor calculated on the
graphical processor unit (GPU).

The information about the SIFT key point position is then used by the depth-based pre-selection step which will be
described in chapter 6.4 in more detail. The result of this step is a subset of selected objects which satisfy the depth
examination. This subset will then serve as an input for the SIFT brute-force matching recognition.

6.4 Matching

Whole
dataset

Figure 9. Reference method for matching without any pre-selection.

Whole
dataset

Figure 10. Proposed matching with pre-selection.

For the evaluation of the tested recognition system we have used the standard implementation of the brute-force
matching. The Euclidean distance in the SIFT feature for each pair of the features will be calculated and subsequently the
two best matches for each query are taken into consideration.

The proposed pre-selection method is compared with matching without any pre-selection which serves as a reference
method.

7. RESULTS
7.1 Evaluation of the depth descriptor (DD) based pre-selection

The goal of the experimental setup is to prove the ability of a depth description based pre-selection of objects in a dataset
which should be used in the subsequent recognition system. The choice of the recognition system can be free in general,
but we use a SIFT brute-force matching in our experimental system and we also exploit synergies in SIFT key point
detection.

In the evaluation, we are looking for an answer to the question: how many objects of the whole dataset fulfill the pre-
selection step with the expectations that the correct corresponding template is included in the pre-selected subset. The
number of objects accepted in the pre-selection step “Depth recognition” in relation to the growing size of the dataset is
presented in the next figure:

Depth recognition

3.5 T T T T T T T T T T

Nm. of pre-selected objects

4 6 8 10 12 14 16 18 20 22 24 26
Nm. of trained objects

Figure 11. Average number of objects passed depth descriptor matching.

We can see that the depth descriptor is able to remove large numbers of trained objects and hence decrease the time of
the color matching. The tested input dataset was growing from 5 to 25 and the number of objects accepted in the pre-
selection did not extend the number: 3. The mean value of accepted objects was: 2.03.

7.2 Evaluation of the extended SIFT (SIFT-D)

In the second experiment we tested how an extension of the SIFT descriptor by the depth local description can improve
the recognition accuracy. We will address this descriptor as SIFT-D in the following description.

The segmentation part of the processing pipeline and key point detection are similar to those described in the previous
section. Then for each of the detected SIFT key points there will be a SIFT and, alternatively, a SIFT-D descriptor
calculated.

The recognition has been evaluated in the whole recognition system using SIFT compared with the same recognition
system using SIFT-D instead of SIFT.

The matching strategy was proposed by Lowe and is similar to the matching strategy used in our first experiment
described in section 3. In this matching strategy the acceptance of a matched pair is given by the relation of the
Euclidean distances of two nearest neighbors.

M={(a1,b1)|d(a—’b')<t,‘v’aeA} 8)

d(a’bz)

If the relation of distances d(a,bl) and d(a,b2) is < threshold t, the pair (a ,bl) will be accepted. This threshold will be
also applied in the described bi-directional matching strategy. The traditional RANSAC algorithm follows this step
before the final decision will be achieved.

Whether the template is corresponding to the investigated object or not depends on the ratio of accepted symmetrical
correspondences R to the sum of correspondences in one direction A and the opposite direction B.

An object will be recognized if the following condition has been satisfied.
2|R|
T ©)
| Al+]B]
Where c is the final threshold of positive/negative decision. In our evaluation there was c= 0.1.

25 objects (toys) of the dataset were used in the training phase. The recognition system was tested 10 times for each
object and each of both descriptors (SIFT and SIFT-D).

The results of this evaluation are presented in the next table.

Table 2. SIFT-D evaluation.

correct recognized - direct view | correct recognized - variable view

SIFT 99% 94.5%

SIFT-D | 100% 97%

8. CONCLUSION AND FUTURE WORK

Two strategies for including the depth information into the local descriptors have been proposed, implemented and

tested.

The Depth Descriptor (DD) was used for the reduction of the object from the dataset which will be passed into the next
recognition section. The proposed feature is composed of four different depth descriptions in the neighborhood of a key
point. Using this descriptor, the number of the pre-selected objects could be significantly reduced.

The SIFT descriptor extended by the local depth information has been also tested and evaluated. The recognition rate
was quite high using the SIFT descriptor, but the contribution of the SIFT-D descriptor brought a still better result of
successful recognition.

ACKNOWLEDGMENT

This research has been supported by a grant VEGA 1/0625/14.

REFERENCES

Steder, Bastian, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Burgard. "NARF: 3D range image features
for object recognition." In Workshop on Defining and Solving Realistic Perception Problems in Personal
Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 44. 2010.

Steder, Bastian, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Burgard. “Point Feature Extraction on 3D
Range Scans Taking into Account Object Boundaries.” 2011 IEEE International Conference on Robotics and
Automation (May 2011). doi:10.1109/icra.2011.5980187.

Tombeari, Federico, Samuele Salti, and Luigi Di Stefano. “A Combined Texture-Shape Descriptor for Enhanced
3D Feature Matching.” 2011 18th IEEE International Conference on Image Processing (September 2011).
doi:10.1109/icip.2011.6116679.

Tombari, Federico, Samuele Salti, and Luigi Di Stefano. “Unique Signatures of Histograms for Local Surface
Description.” Lecture Notes in Computer Science (2010): 356—369. doi:10.1007/978-3-642-15558-1_26.

Nascimento, Erickson R., Gabriel L. Oliveira, Mario F. M. Campos, Antonio W. Vieira, and William Robson
Schwartz. “BRAND: A Robust Appearance and Depth Descriptor for RGB-D Images.” 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (October 2012). doi:10.1109/ir0s.2012.6385693.

Lowe, D.G. “Object Recognition from Local Scale-Invariant Features.” Proceedings of the Seventh IEEE
International Conference on Computer Vision (1999). doi:10.1109/iccv.1999.790410.

Changchang, Wu., “SiftGPU: A GPU Implementation of Scale Invariant Feature Transform (SIFT),” <
http://cs.unc.edu/~ccwu/siftgpu/>

http://cs.unc.edu/~ccwu/siftgpu/

Attachment F: Paper published at IITSRC 2015

conference

3D Object Recognition Based on Local
Descriptors

Marek JAKAB*

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies
Ilkovicova 2, 842 16 Bratislava, Slovakia

marko.jakab@gmail.com

Abstract. In this paper, we propose an enhanced method of 3D object
description and recognition based on local descriptors using RGB image and
depth information (D) acquired by Kinect v2 sensor. Our main contribution is
focused on a novel local depth descriptor (DD) that includes a 3D description
of the key point neighborhood. Thus defined the 3D descriptor can then enter
the decision-making process. New approach has been proposed, tested and
evaluated in this paper that deals with the object recognition system using the
original SIFT descriptor in combination with our novel proposed 3D
descriptor, where the proposed 3D descriptor is responsible for the pre-
selection of the objects. The results show an improvement in speed of the
recognition system.

1 Introduction

Visual object recognition is still one of the biggest challenges in computer vision. One of the
promising ways to approach this challenge seems to be the usage of local descriptors. Object
recognition methods based on local descriptors are potentially applicable for applications working
in near real time and the method also provides invariance to different illumination, scale, angle or
rotation of the object, even if limited. Our goal is to provide a novel local descriptor which will
extend the local description derived from an RGB image with a description of the neighborhood of
a key point in the depth image (D).

In this paper, we propose a novel local depth D-descriptor which represents a 3D description
of the key point neighborhood. As so defined, the 3D descriptor can then enter into the decision-
making process where the proposed 3D descriptor is responsible for the pre-selection of the
objects.

Object recognition using local descriptors is typically based on the paired matching of all the
trained object data with the data derived from an unknown object. The problem of a growing time
requirement and a decreasing recognition accuracy becomes serious with the increasing number of
objects in a dataset. We propose the usage of the RGB-D data obtained from the Kinect v2 sensor
device for the purpose of a pre-selection of the objects for a subsequent SIFT-matching-based
object recognition. That means that only a selected part of the objects from the trained dataset will

* Master degree study programme in field: Applied Informatics
Supervisor: Dr. Vanda Benesov4, Institute of Applied Informatics, Faculty of Informatics and Information
Technologies STU in Bratislava

IIT.SRC 2015, Bratislava, April 23, 2015, pp. 231-236.

232 Computer Graphics, Multimedia and Computer Vision

be accepted by the first recognition part which uses the depth descriptors. Hence, the calculation
time needed for the following SIFT matching will not exceed certain limits with growing number
of objects in the dataset.

2 Related Work

The most relevant papers which present the research related to object recognition concerning both
RGB and depth image (RGB-D) have been taken into consideration.

Example of combined texture & shape descriptor is Color-Signature of Histograms of
Orientations (CSHOT) [1] [2]. This descriptor contains both shape and texture information
suitable for RGB-D (RGB & Depth) matching. The basic idea of forming this descriptor is the
eigenvalue decomposition of the scatter matrix around the key point. A spherical grid is created
around the point it could form a histogram of normal vectors defined for each sector of the grid.

Binary Robust Appearance and Normals Descriptor (BRAND) [3] is the descriptor which
combines the appearance and geometric shape information from RGB-D images. In the first step,
the scale factor using the depth information from RGB-D image is calculated. The scale factor is
then used in the next step (dominant direction estimation) and in the feature analysis in the key
point's vicinity. The authors combine both appearance and geometric information to create key
point descriptors that are expected to be robust, fast and lightweight. The authors also demonstrate
that the descriptor is robust, invariant to rotation and scale, and provides reliable results even for
sparsely textured and poorly illuminated scene. The main constraint of this method is, that a small
irregularities of these surfaces can be confused with noise.

Lowe proposed a Scale Invariant Feature Transform (SIFT) [4]. SIFT combines a scale
invariant region detector and a descriptor based on the gradient distribution in the detected regions.
The main idea of the descriptor is to compose the local histograms of gradient locations and
gradient orientations in one vector, wherein the contribution to the location and orientation in
histogram bins is weighted by the gradient magnitude. The quantization of gradient locations and
orientations makes the descriptor robust to small geometric distortions and small errors in the
region detection. The descriptor is finally arranged as a 128-dimensional vector of float numbers.
The SIFT descriptor is one of the older descriptors, but still robust, scale and rotation invariant and
widely used.

3 Depth Descriptor (DD)

3.1 Descriptor Pattern

8./’9.\—/ 5./6.

Figure 1. Star pattern around the key point P.

Marek Jakab: 3D Object Recognition Based on Local Descriptors 233

To fill the descriptor vector, we use a star pattern created by four triangles which are rotated
around the selected key point. Four triangles determine 12 points and the depth distances value of
these 12 points are used in the computing of the depth descriptor vector. Each triangle defines a
plane and hence the normal vectors of the planes could be calculated and subsequently used in the
descriptor. The points in the star pattern are defined with the 15mm constraint radius.

3.2 Descriptor vector

Four features, which are derived by statistical evaluation, have been taken for the definition of the
depth feature vector. Three of them are based on the local surface description and the fourth
feature also takes into account the global information of the object.

1st feature value derived from average angle referenced to a normal vector

The first feature in the depth feature vector is derived from the average angle of the normal vectors
given by all triangles in the key point. Therefore we need to compute four normal vectors - one for
each of the four triangles given by the pattern. Then the corresponding average vector of this key
point will be calculated. This vector will be used as a reference in the next evaluation. In the next
step, we can compute the difference angle between each of the normal vectors and the reference
normal vector.

U,V + Uiy Vo + U3V,

1 N
F _avgAngle=—) arcco
—aveang NZ; \/ 2 2 2 \/ 2 2 2
i= Uy H Uy T UL AV, V0 Vs 0
Where N is the number normal vectors/triangles.

V,, is the average normal vector.

U, is the normal vector given by triangle.

2nd feature value derived from standard deviation of depth referenced to a plane
perpendicular to the averaged normal vector

The second feature was proposed with the goal to create an efficient description of the local depth
differences. The descriptor value is then given by the standard deviation of the depth differences
between the actual depth value in a point and the reference plane which is computed from average
normal vector.

1 & 2
o= Nz(xi_ﬂ)
= 2

Where N is the number of all points in the descriptor pattern (see section 3.1).

x; is the distance of the depth value from the reference plane in the point i.

4 is the mean value of x; (i=1...n).
3rd feature value derived from the difference between the maximum and minimum depth
values referenced to a plane perpendicular to the averaged normal vector
Calculation of the depth value referenced to the reference plane is similar to those described in the
previous section. Instead of the previous statistical evaluation by standard deviation, the simple
difference between the maximum and minimum value of the recalculated depth value was taken
into account as the next feature value.
4th feature value derived by using a global angle
The previous three feature values have been designed as a local description without any global
reference. The goal of the fourth feature value is to take into consideration also the global surface
of the object. The global normal vector is calculated as the angle between pattern normal vector
and average vector value out of all local normal vectors across all key points.

234 Computer Graphics, Multimedia and Computer Vision

gVt 8,V T 850,

2 2 2 [2 2 2
\/81 +8,+8&; -\/V1 v, +vs

F _globalAngle = arcco
3)

Where g is the global average normal vector through all key points.
v

represents the local average normal vector at a given key point.

3.3 Invariance

The original SIFT descriptor is invariant to different scale, rotation and small perspective
transformation of the object. Our goal is to develop a local depth descriptor which will extend the
SIFT descriptor and hence we also aim to achieve a comparable rotation and scale invariance.
Scale invariance

The 3D information should be taken into account for the scale definition of the depth descriptor.
As we know the distance of the selected key point from the sensor, we can easily determine the
corresponding neighborhood size in pixels around the key point according to the real world
distance.

Rotation & perspective invariance

To achieve invariance to different rotations of the object, we aim to fill the descriptor with the
information which is defined as independent of the rotation and angle of the object. We have
already described those values in previous chapters.

4 Experimental setup

4.1 Dataset

Our tested dataset was related to the final application: a self-checkout in a shop. The set of toys
fulfill very well the requirements of the application. The set also has a large variability necessary
for the testing. Hence, various toys of different size and shape were chosen.

Figure 2. Objects used for training and measurement.

4.2 Hardware and software implementation

In the experiment for the evaluation of the proposed depth-based pre-selection the following
hardware was used: Laptop with CPU Intel Core 17, 3632QM, 2.2 GHz, GPU NVidia GeForce
GT635M and RAM 8GB DDR3 1600Mhz.

The test program was implemented in C++ with the library OpenCV. Implementation of the
SIFT feature extraction and description was computed on the GPU unit [5]. Thanks to the GPU
implementation we are able to use full HD images for color description, 512 to 424 pixels for
depth image and still provide the results in near real time. The project and the source code are
available on the web page: http://vgg fiit.stuba.sk/3d-object-recognition/

Marek Jakab: 3D Object Recognition Based on Local Descriptors 235

5 Overview of the processing pipeline

y

Depth data»

Mask image g Vask

Key-points
RGB data

Depth e #-—v.

Figure 3. Pipeline of the experimental setup.

5.1 Object segmentation in the D image and geometric alignment of the RGB and

D images
The first step in the processing pipeline is the object segmentation. Methods which used the RGB-
D sensor and, hence, the depth image for the segmentation of 3D objects can overcome the
methods of segmentation using RGB image in lower computational complexity and also in the
achieved robustness.

In our approach we use the method of growing regions, where a seed point of the
segmentation is the nearest point to the Kinect device. The result of the segmentation: binary mask
will be used to retrieve the object texture. The segmentation step is crucial for the recognition as
we can easily filter out most of the undesired key points and speed up the matching phase.

Figure 4. Object segmentation based on the depth.

5.2 Key point selection

In the next step, the SIFT detector is used for the calculation of all the key points in the segmented
area. The information about the SIFT key point position is then used by the depth-based pre-
selection step.

5.3 Matching

For the evaluation of the tested recognition system we have used the standard implementation of
the brute-force matching. The Euclidean distance in the SIFT feature for each pair of the features
will be calculated and subsequently the two best matches for each query are taken into
consideration. The proposed pre-selection method is compared with matching without any pre-
selection which serves as a reference method.

236 Computer Graphics, Multimedia and Computer Vision

6 Evaluation of the depth descriptor (DD) based pre-selection

The goal of the experimental setup is to prove the ability of a depth description based pre-selection
of objects in a dataset which should be used in the subsequent recognition system. The choice of
the recognition system can be free in general, but we use a SIFT brute-force matching in our
experimental system. We can see that the depth descriptor is able to remove large numbers of
trained objects and hence decrease the time of the texture matching. Next figure show us the
number of objects which passed through the pre-selection phase across several experiments.

Depth recognition
3.5 T T T T T T

T T T T

Nm. of pre-selected objects

4 6 8 10 12 14 16 18 20 22 24 26
Nm. of trained objects

Figure 5. Average number of objects passed depth descriptor matching.

Over several experiments, the matching speed improved by 10 — 20 % when the object was
compared against the dataset of 35 objects (at the mentioned setup: ~100ms per object with SIFT
descriptor and ~80ms per object when Depth + SIFT was used). While the results improve with
increasing dataset, we also noticed slightly negative speed effect for the first ~15 learned objects.

7 Conclusion

The Depth Descriptor (DD) was used for the reduction of the object from the dataset which will be
passed into the next recognition section. The proposed feature is composed of four different depth
descriptions in the neighborhood of a key point. Using this descriptor, the number of the pre-
selected objects could be significantly reduced together with recognition time.

Acknowledgement: This research has been supported by a grant VEGA 1/0625/14.

References

[1] Tombari, Federico; Salti, Samuele; Di Stefano, Luigi.: A combined texture-shape descriptor
for enhanced 3D feature matching. In: ICIP 2011, IEEE, 2011. p. 809-812.

[2] Tombari, Federico; Salti, Samuele; Di Stefano, Luigi.: Unique signatures of histograms for
local surface description. In: Computer Vision—ECCV 2010. Springer, 2010. p. 356-369.

[3] Nascimento, Erickson R., et al.. BRAND: A robust appearance and depth descriptor for
RGB-D images. In: Intelligent Robots and Systems (IROS 2012), 2012. p. 1720-1726.

[4] Lowe, David G.: Object recognition from local scale-invariant features. In: Computer
vision, 1999. The proc. of the seventh IEEE international conference on. leee, 1999. p.
1150-1157.

[5] Changchang, Wu., “SiftGPU: A GPU Implementation of Scale Invariant Feature Transform
(SIFT)” Available at: http://cs.unc.edu/~ccwu/siftgpu/

http://cs.unc.edu/~ccwu/siftgpu/

