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 Proces detegovania objektov z obrazu kamery patrí do oblasti počítačového videnia, 

ktorý sa stále vyvíja. Víziou algoritmov pre rozpoznávanie objektov je rozpoznávanie 

veľkého množstva objektov v reálnom čase pri vysokom rozlíšení obrazu. S príchodom 

zariadení pre zaznamenávanie hĺbky je možné rozpoznávanie objektov rozšíriť o ďalšiu 

dimenziu a rozpoznávať 3D objekty. 

 Pri procese rozpoznávania objektov sa stretávame s nemalým množstvom problémov. 

V prvom rade sa snažíme detegovať 3D objekty na 2D scéne kamery s pridanou informáciou 

o hĺbke. Objekt môže byť natočený pri snímaní kamerou v rôznych uhloch, škálach a 

otočeniach.  Na scénu pôsobia rôzne svetelné podmienky, časť objektu môže byť zakrytá, 

alebo môžu nastať nežiaduce vplyvy zo strany hardvéru ako napríklad šum a rozmazanie 

obrazu.  

 V diplomovej práci sa venujeme bližšie problému rozpoznávania objektov pomocou 

lokálnych deskriptorov a ich možnostiach rozšírenia rozpoznávania pre 3D objekty na základe 

RGBD obrazu. 
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 Process of object recognition from the camera image belongs to still evolving study 

field of computer vision. The vision for object recognition is to be able to recognize large 

dataset of objects at high resolution images within real time. Using the devices for acquiring 

depth data we are able to extend the field of object recognition with another dimension and 

detect 3D objects. 

 In our research we are still facing with large numbers of issues. Even with depth 

sensors we still do not possess full 3D information about the object. In addition, object can be 

viewed from different angle, scales and rotation according to the object reference. Various 

light conditions can affect the scene as well as partial occlusions of the objects are possible 

and make recognition harder. Additional undesirable impacts are caused by hardware like 

noise or image blur.  

 In the master thesis we focus our research on the problem of object recognition using 

the methods of local descriptors and their possibilities to be extended for 3D objects based on 

the RGBD image. 
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1. Introduction 
 

 Visual detection and recognition of objects placed in an image or on video belongs to 

one of the most challenging tasks in recent past. Big amount of methods and algorithms were 

presented with the aim of precision and speed, compared to inevitable advance of hardware 

and software. Field of computer vision, to which part of object recognition belongs to, is 

nowadays one of most active and developing field in informatics. Thanks to research in this 

field and new hardware, we are able to extend some well-known methods and come up with 

new ideas, which can contribute to and move the ladder of the hard task of object recognition. 

 In this thesis we will discuss the problem of object recognition, compare and get 

acquainted with object recognition algorithms and image segmentation. We will discuss 

possibilities of recognition based on bottom-up models. The issue of finding object on an 

image sequence is quite hard thanks to countless possible views of an image. Not only the 

angle of view, but distance and light variations are making this task harder to compute and 

make them possible on real time. Not mentioned the distortion of an image caused by 

hardware, such as noise which occurs on captured images. 

 In our work, we will enhance the object recognition with a depth information. Most of 

currently known bottom-up methods are based on classic RGB (Red, Green, Blue) images 

where you cannot determine the real distance of object from camera. By using hardware like 

sensor Kinect, we are not only able to capture RGB image but also depth image. With this 

sensor we are able to see real surface of object and can partially rebuild the 3-dimensional 

object. Providing that information we are able not only to enhance current methods of object 

detection, but we are able to make segmentation of an object based on depth information and 

therefore reduce area of an image we need to recognize on. 

 From wide area of object detection methods, we will take closer look at the method of 

local descriptors. Our research focus on the implementation of real time algorithm which will 

use depth information from available sensors like Kinect 2. Depth information will be used as 

another value to enhance the recognition.  
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2. Analysis 
 

 Object detection is one of most important tasks of computer vision and image 

processing. We usually call objects same name, even when their appearance is completely 

different. For example we can recognize a car even when there are hundreds of types of 

vehicles. They have different shape, different color or look. We need to take this into 

consideration to be able to detect objects. In general, we divide objects into two categories[2]: 

 generic objects - class recognition ( generally a car ) 

 specific objects - instance recognition (specific type of a car) 

Generic object recognition is based on describing the shapes of an object trained on several 

instances of same class, where some general features which are most of the time same on all 

instances are used. We create sort of a statistical model. This refer more to classification 

issues. 

 In our work, we focus on specific object recognition algorithms. In general, we need 

an image sample of the object from which we are going to extract information and store it for 

later use in our recognition. Next, as we capture image from camera we are going to use that 

information to get results, if image contains our trained object or not. This sounds like an easy 

task, but it is not. There are many issues we are encountering during this process.  

 One of the main issues is that we are trying to represent 3 dimensional objects from 

real world in 2D image. Objects usually do not look the same from different sides, even when 

humans are still able to recognize them. Using Kinect sensor we are able to partially 

recognize object shape, but we are still not able to have full 3D information of it. To take care 

of this issue, the simplest way is to learn about object from sequence of images taken from 

different views. 

 However, 3D object represented on 2D image is not the only one issue we are facing 

during the process of object detection. There are several more problems regarding the specific 

camera or depth sensor, time of the day or current view of an object we are trying to 

recognize. We can identify those issues as below: [2] 
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 Light variance - Considering image as a matrix of RGB values, different light source 

can make a negative impact on recognition. For example, photograph taken of the 

same scene in different time represent completely different images if we compare the 

values of each RGB channels in both images. 

 Scale and distance - If we capture an object from various distances it will have 

different size in the result image. Also values from depth image are different. We need 

to consider it in our result algorithm with values, which will be invariant to the change 

of distance and therefore also scale. 

 Rotation - Object will probably not be in the same standing position in every captured 

image. Rotated object differs from template and we need to make our algorithm 

rotation invariant if we are going to recognize trained object from various rotated 

positions. 

 Axial rotation - Object can be captured from different angles and can look different. 

In our method we should consider possibility of perspective transformed image 

regarding to original training image. 

 Noise - Distortion of an image not present in real environment. It is caused by various 

quality of sensors and cameras. 

 Occlusion - In a lot of images, we do not see object in a whole. There are many 

situations where we are able to see only part of it. 

 Object pose - Considering non rigid object we are trying to recognize. 

  The first and very easy conclusion for object recognition was a holistic method. Main 

idea was to create a histogram of color intensities of the specific object. In such a histogram 

we can see a similar pattern for the same object detected on an image. We can think of a 

histogram as high dimensional space and use metrics for distance measurement like Euclidian 

distance. However such a methods are not quite robust, need to be focused on certain object 

optimally without any background and still can lead to false positive results. 
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Figure 2.1. Histogram representation of selected images. [2] 

Statistical methods as told above was used for further analysis and multiple improvements 

were made. In 1992, Turk & Pentland [4] in their work with face images were able to reduce 

such an analysis into less dimensional vector using PCA (Principal Component Analysis) 

creating an eigenface. 

 In 1995 this idea was used and improved by Murase & Nayar [5]. They created an 

algorithm which were capable of recognizing about 100 objects in real time. All mentioned 

methods had one major issue. For example using face dataset, any change in pose could lead 

to failed detection using global representation. Positive thing about this method is that the 

rotation invariance do not need to be take into consideration as intensity histogram does not 

change after various rotations of the object. 

 Mentioned methods were based on global representation of an image and objects. The 

main issue there was with occlusions which were detected on an image, large changes in 

viewpoints or with deformable objects. Therefore new method was proposed based on local 

features also known as key-points, and local descriptors.  

2.1. Local descriptors 
 Discovery of local features and descriptors made a huge change in the research of 

object recognition. Thanks to local descriptors, we were able to develop object recognition 

methods which were more efficient and also robust under variety of viewing conditions or 

occlusions. The main task of local descriptors is to recognize whether the various features 
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extracted from the same object are presented in an image, how are they oriented and where 

are they located. The main task of the local descriptor methods are as follows: [2] 

 Extract local features both on training image and test image 

 Match stored features with detected features in test image 

 Verify the correspondences of features. Compute geometric configuration 

 Using local descriptor methods, features can be extracted with both scale and rotation 

invariant manner. As we extract selected features independently from others, we are able to 

translate them to default scale and rotation using for example gradient direction or edge 

orientation based on certain pixels around the features. In comparison to the global 

representation we are able to save expensive computing time as we do not need to rotate or 

scale whole image to achieve desired invariance.  

 

Figure 2.2. Example of object features (key-points). [2] 

Using small patterns to form features can still lead to easy mismatch of features and therefore 

geometric verification need to be done. In general we find out if matched features are able to 

create convex rectangle with no lines intersection as it could not exist in real world. 

2.1.1. Feature extraction 

 Main goal of successful object recognition is to detect significant local invariant 

features, with properties as follow [2]: 

 Can be found repeatedly in two images showing same object 

 Are detected in an image with certain precision 

 Are present and can be found in various viewpoints of an image 

 Are enough representative for selected object 
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 Are distinct from another object features 

 There are enough features per object so that object can be matched under partial 

occlusion 

 To pass to the process of feature description, first a set of distinctive features must be 

extracted. Feature is presented as key-point localized in an image. Next, we define a region 

around each detected key-point in a certain manner to achieve scale and rotation invariance. 

To form local descriptor and therefore describe selected key-point we use information in 

defined (depends on the certain descriptor) region. But first, the content of the region should 

be normalized to achieve invariance to varying light conditions. Also the rotation invariance 

can be achieved simply by finding dominant orientation of selected pattern. According to the 

orientation found we can rotate selected key-point. 

 Best adept for key-points are those points in an image where signal changes in two 

directions. Imagining uniform region or a single line, we are not able to distinguish points 

from their neighbors. In contrary, corners or non-uniform regions suits our case well. We 

present a list and a description of feature detectors which can be used in feature extraction. 

Hessian detector 

 The Hessian detector [2] is based on a second derivate matrix called Hessian. It looks 

for a key-points that are strong enough in two orthogonal directions. The cons of this method 

is that those operations are sensitive to a noise present in an image. To prevent bad key-point 

detection we usually smooth the image using Gaussian blur. Besides corners, Hessian detector 

can detect also responses at places with strong texture. 

Harris detector 

 Harris detector was explicitly designed for geometric stability. It defines key-points to 

be “points that have locally maximal self-matching precision under translational least-

squares template matching” (Triggs 2004)." [2] This detector looks for corners and is less 

responsive on textured areas. Also Harris detector is considered to be more precise than 

previous mentioned Hessian detector. Nevertheless, both Harris and Hessian detectors are not 

working well on different image scales and therefore they are not taken as scale invariant 

detectors. 
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Laplacian of Gaussian (LoG) 

 Laplacian of Gaussian [6] detector belongs to the family of scale invariant detectors. 

First solution to scale invariance was to continuously scale image around detected key-point. 

However this process is expensive related to speed and computing power. Instead a signature 

function is evaluated and plotted as a function of the neighborhood scale. To help find 

corresponding scales and scaling factor we divide two local maxima values. Laplacian of 

Gaussian detector is a blob-like feature detector based on previous theory that search for a 

scale space extrema. 

 

Figure 2.3. Illustration of Laplacian of Gaussian detector. [2] 

Difference of Gaussian (DoG) 

 Difference of Gaussian detector [7] is a good approximation for LoG detector but 

faster. It searches for 3D scale space extrema of the DoG function. The approximation is 

based on subtraction of two adjacent scale levels of Gaussian pyramid. Points of local extrema 

determines the position and size of detected key-points. 
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Figure 2.4. Illustration of Difference of Gaussian detector. [2] 

The Harris-Laplacian Detector 

 This detector [8] [9] was originally created for increased power compared to Laplacian 

or Gaussian detectors. As the name of this detector tell us, it combine Harris detector with 

added scale invariance from next detectors. Like original Harris detector, this detector looks 

mostly for corners but is more invariant to scale, image rotation, camera noise and 

illumination. Harris-Laplacian detector used to however detect lower amount of key-points 

and therefore partial occlusion of an object could be issue during detection. Because of this 

issue, detector went through slight changes few years after it was introduced. 

Maximally Stable Extremal Regions (MSER) 

 The detector [10] [11] we are going to describe now brought another improvement to 

the issue of key-point detection. Previous described detectors suits well in a lot of situations - 

scale, rotation, illumination invariance or camera noise, however there is still one problem 

that occurs in the object detection phase - the object viewpoint. Previous detectors proven to 

be not suited enough for instances, where object was captured from different view and angle, 

as it was using still the same pattern for detection. In those cases the perspective 

transformation of an image appeared to be too much expensive. 

 Next MSER detector was created to be able to detect affine covariant regions. First, 

the MSER detector applied watershed transformation to the image with the aim to extract 

homogenous intensity regions. Those regions are stable enough under changes of viewpoints 

of an image or other image distortion and can be considered as good features to describe. 
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Features from Acelerated Segment Test (FAST) 

 Detector FAST [12] [13] was proposed as to be very fast corner detector suitable for 

real time object detection and tracking. It is not based on first or second derivate of values like 

LoG or DoG. It simply compares the intensity values of 16 pixels forming a circle around 

key-point candidate. Corner at point P in the figure 5 is declared as a key-point if certain 

amount of pixels in a circle has bigger or lesser intensity with given threshold as point P in 

the middle of the circle. This number vary depending on the FAST algorithm itself as there 

are several more variations of this method. In first FAST detector, the number was set to 12 

consecutive pixels. FAST detector had to pay for its speed with the lack of rotation 

invariance. 

 

Figure 2.5. FAST key-point detector with circle used for comparison [12] 

2.1.2. Feature description 

 Now that we have detected key-points we need to describe selected features as in next 

step we are going to compare them. To create such a descriptor we take content around 

selected key-point and translate pixel values into vector of numbers. Pattern which pixels to 

take into consideration and the content of vector vary for different descriptors. We divide 

descriptors into 2 categories: [2] 

 numerical descriptors (float type) 

 binary descriptors 

First descriptor vectors contain float type values in their vectors. Later on, binary descriptors 

were introduced in aim for better computing speed. We are going to describe few well known 

descriptors which are promising in our case of real time 3D object detection and tracking. 
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Scale Invariant Feature Transform (SIFT) 

 Although SIFT descriptor [14] is old, it is still considered to be as one of the best local 

descriptors. It is still used in a lot of projects and also for comparison with other methods. 

SIFT descriptor was introduced by Lowe in 1999 and later 2004. For key-point detection, 

SIFT came up with his own detector also called SIFT which were based on Difference of 

Gaussian. It belongs to numerical local descriptors and to match pair of descriptors we can 

use Euclidean distance. 

"The SIFT descriptor aims to achieve robustness to lighting variations and small positional 

shifts by encoding the image information in a localized set of gradient orientation 

histograms" [2] 

 To create SIFT descriptor vector we first create image gradient with magnitude and 

orientations around detected key-point. The size of the pattern grid is 16 x 16 pixels. Next, we 

divide the selected pattern into smaller 4 x 4 pixels grids (sum of 16 windows), each 

representing a gradient orientation histogram with 8 bins created from corresponding 16 x 16 

pattern. During creation of descriptor gradient histogram is created after Gaussian weighting 

function, as we want the pixels closer to the middle of key-point to have bigger impact on the 

result vector. 

  Considering 4 x 4 grid, each containing histogram of orientation with 8 bins we create 

a descriptor vector with the size of 4 x 4 x 8 = 128. After descriptor is created we normalize 

values to achieve light invariance and unit length. 

 

Figure 2.6. Process of forming SIFT descriptor. [2] 
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Speed Up Robust Features (SURF) 

 The main reason behind the creation of local descriptor SURF [2] [16] was to provide 

as good robustness for object detection as SIFT descriptor but in less computational time. 

Instead of Gaussian derivate, SURF descriptor is based on box filters also known as Haar 

wavelets. It is an approximation of derivate used in SIFT, but can be easier evaluated by using 

integral images. Also because of this method, they do not had to use Gaussian pyramid for 

scale invariance. The common part with SIFT descriptor is that it divides the area around key-

point into 4 x 4 grid regions. Instead of making histogram with 8 bins it computes summary 

statistics, resulting in overall 64 dimensional vector instead of 128 for SIFT. SURF descriptor 

were also implemented on graphic card using CUDA technology which is known as 

GPUSURF. 

 

Figure 2.7. SURF descriptor visualization. [16] 

Binary Robust Independent Elementary Features (BRIEF) 

 Numerical (float) descriptor vectors were in general slow to compute and match. Local 

descriptor BRIEF [17] was intended to change those values into binary strings. In paper were 

presented that those binary strings can be obtained directly from the image patches. They 

compute their binary vector in a way of comparison of intensities between two corresponding 

points. Those points are taken from selected lines they chosen to be their pattern. 

 Binary descriptors were introduced mostly because of their main advantage over 

numerical descriptors. To match binary descriptors, lower cost Hamming distance can be 

computed instead of Euclidean distance. On modern CPU's, Hamming distance can be 

computed much faster using XOR operations. 
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 To create descriptor vector, authors of BRIEF descriptor have chosen a sample of lines 

and compare the intensity values of their end points. In next figure we show templates which 

were tested in the aim of best matching capability. 

 

Figure 2.8. Different pattern used for BRIEF evaluation. [17] 

For each template recognition rate was computed. The next figure show us the result of their 

evaluation. The random selected lines in a template have yield better results than generated 

templates. That is the reason the template pattern for filling the descriptor in BRIEF is 

generated from random lines. 

 

Figure 2.9. Evaluation of recognition for previous selected patterns. [17] 
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Oriented Brief (ORB) 

 Rotation invariance was the major issue for the BRIEF descriptor. Not much time has 

passed since the creation of the ORB [18] descriptor. Authors combined the FAST key-point 

detector with the method of BRIEF descriptor to create fast binary local descriptor. They 

upgraded FAST detector with key-point orientation and according to key-point orientation 

steered the BRIEF descriptor itself. 

Fast Retina Key-point (FREAK) 

 FREAK descriptor [19] was inspired by the human visual system. For key-point 

detection FREAK descriptor use the same approach as were presented in BRISK [20] 

descriptor. 

 Descriptor is consisted of binary strings created by comparing different intensities of 

the image over the selected pattern. Pattern which is used for descriptor filling is similar to 

retinal ganglion cells. We show the pattern image, where each circle represents receptive 

field. The larger circle, the more is image smoothed by using Gaussian convolution. 

 

Figure 2.10. Pattern used in FREAK description. [19] 

Histogram of Intensity Patches (HIPS) 

 From our previous work [21] on bachelor thesis we have chosen HIPS descriptor [22] 

to complete the list. This descriptor was introduced as a fast descriptor capable of real time 

matching even on low cost CPU units. We have successfully implemented HIPS descriptor to 
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be able to match in real time even on low price mobile device at the cost of full rotation 

invariance, making HIPS descriptor powerful to use for weaker devices. 

 For key-point localization HIPS descriptor use the well-known FAST algorithm. As 

the FAST detector does not solve the scale and rotation invariance we need to add it to our 

solution. To be able to match object from different angles and rotations we create a training 

set of images also called as viewpoints from which we want our object to be detected. Next, to 

increase robustness of our algorithm all viewpoints are slightly transformed in the manner of 

affine and perspective transformations. Now we can start a training phase for HIPS descriptor. 

 From each of the viewpoints images we detect key-points using FAST key-point 

detector. We select top 50 to 100 features which occurs in the viewpoint most of the time. As 

we know for each image how it was transformed according to its reference viewpoint image, 

we can transfer each key-point coordination's back to their original place. It can be easily 

done by making a list of features with counter for each feature. Those features appear to be 

strongest for selected viewpoint. 

 After we have selected top key-points from each viewpoint we create a sample grid of 

8 x 8 pixels around them to form the descriptor vector. Each of the value in the grid is 

normalized to achieve light invariance. Histogram with 5 bins is then created from the 

intensity values of the pixels at the same position across the same key-points in viewpoint 

images. According to the position of pixel and value in the histogram we fill the HIPS 

descriptor in a way that 1 is filled to the descriptor vector when the selected intensity was 

under selected threshold. Otherwise 0 was filled. Next figure shows the process of filling the 

descriptor. 
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Figure 2.11. Process of forming HIPS descriptor. [21] 

Same procedure applies on the image from camera at the recognition time but instead of 

binary number 1, 0 is filled when the intensity was under selected threshold.  

 By this we can easily compute the dissimilarity score of two created descriptors using 

binary AND operation. Exactly the same descriptor vectors after binary AND will lead to the 

result of vector filled with all zeros. The more the two descriptors are different, the more ones 

will be in the result vector. To simply match the pair of descriptors we calculate dissimilarity 

score. It is done by counting the one numbers in the binary vector after AND operation. 

2.1.3. Descriptor matching 

 Considering the fact that each descriptor vector created went through the complex 

process starting from detecting key-points, achieving invariance to different transformations, 

normalizing the values end to filling the descriptor, there is high chance that even the same 

key-points detected on almost the same image can be described in slightly different manner. 

Hence to find corresponding pairs of descriptors we are not looking for the exact the same 

pair. We perform actions more likely to be called as finding nearest neighbor or similarity 

search. 

 The simplest way to get pair of corresponding descriptors is to make a brute force scan 

through all of stored descriptors and declare pair of descriptors as a good pair under selected 
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threshold. This solution is good for smaller number of trained objects, however if we want to 

store more objects and still want to be able to match them in real time, we need to consider 

more efficient solution like KD trees or hash functions. [2] 

Distance measurement 

 In previous chapters, we mentioned two types of local descriptors. The numerical and 

the binary ones. Each of the selected type of local descriptor has their own method for 

matching the good pair of descriptors. We present basic methods for matching pairs of 

descriptors for both types. 

Euclidean distance 

 Euclidean distance [2] is used to measure distance of two numerical values. Smaller 

the result of the Euclidean distance is, the more similar pair of descriptor vectors are. It is 

given by the Pythagorean formula. In next formula, 𝑑1𝑖  represents i-th dimension value of the 

first pair of descriptor. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √∑(𝑑1𝑖 − 𝑑2𝑖𝑛
𝑖=1 )2 

Hamming distance 

 The purpose of binary local descriptors was to make computing the distance between 

pair of descriptors easier and faster for current CPU's. The descriptor vector of binary 

numbers is also known as binary string. The result of Hamming distance [2] is the number of 

positions at which the binary strings were different. To find out the similarity of pair of 

descriptors, we perform binary operation XOR between the binary strings. By definition of 

XOR, the result is 1 when the values at same position of two vectors were different. To 

calculate the distance, we simply count the occurrence of ones in the result vector. 

A B XOR 

1 1 0 

1 0 1 

0 1 1 

0 0 0 

Table 2.1. Exclusive OR operator 
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Homography 

 The next step after finding the pairs of descriptor is to compute the homography [2] 

matrix. In other words we are trying to get geometrical representation or transformation of the 

object found in the result image according to the stored object. This process can also serve as 

a verification phase if the selected object occurs in the result image as we know that some 

geometrical shapes cannot exist in real world. Local descriptor method can return also false 

positive pairs which will result in unpredictable shapes after we retrieve homography matrix. 

 The process of finding homography helps us also to select true positive matches also 

known as inliers and separate them from true negative matches (outliers) which were selected 

as good matches from previous distance measurement. 

RANSAC 

 RANSAC [2] is well known algorithm for finding homography. First, it takes four 

random pairs of descriptors to compute the homography matrix. In next step from it compares 

all pairs of descriptors left with previous created homoraphy matrix. When more than 50% of 

descriptor pairs fit into the homography matrix, it claim selected homography matrix as a 

result. 

2.2. Segmentation 
 Segmentation is quite an old and quite complex task of the computer vision [1]. The 

idea of segmentation is to be able to distinguish the desired object or group of pixels from the 

rest of the image. In easier problems we are trying to merge group of pixels with common 

attributes like color together. More complex issues are focused on object segmentation from 

the background. There is no universal method for image segmentation and different task 

would most likely require different approach of segmentation. Nowadays there are several 

methods for image segmentation. We describe most common segmentation methods and our 

simplified approach for the depth image. 

2.2.1. Active contours 

 Algorithm based on the active contours method [1] focus on finding the curves to 

determine boundaries for segmentation. Active contours are also called as snakes. It is an 

iterative process. We can imagine it as a contour line in the image which is trying to minimize 
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the energy at current contour. Algorithms which belongs to this category are: snakes, dynamic 

snakes, scissors or level sets. 

2.2.2. Split and Merge 

 Next approach for image segmentation is to split large image into smaller areas. [1] 

This approach generally splits the area into 4 smaller areas of the same size recursively. In 

next step, those 4 area textures are compared if they are likely to be the same. If so, they are 

merged together. As we were splitting the image in a certain pattern we may accidentally split 

uniform region into 2 areas. Therefore the next step called merge proceeds to compare 

neighbor areas and merge them together if they have the same texture. 

2.2.3. Mean shift and mode finding techniques 

 Mean shift method [1] can be translated also as "per pixel" method. Each pixel is 

represented in a feature vector as a sample of probability function. The possible data to create 

such a vector could be color and position. We can consider this as a classification problem. 

Algorithms such as k-means clustering, mean shift or Gaussian mixture models belongs to 

this category. 

2.2.4. Growing regions 

 Another segmentation method which can be considered as region or pixel based is 

called growing regions. It is an iterative process. At the very beginning, we need to pick up 

the seed point which refer to a start point for segmentation. In later steps we look at seed point 

neighbor pixels and determine if they belong to the region or not. The process is done for all 

pixels which were added to the region. The cons of this method is that we need to choose 

suitable pixel as a seed point. This can be tricky part of the work for the color image. Also 

selecting the threshold for pixel comparison is essential in order to get good results. 

2.2.5. Segmentation in depth image 

 To be able to distinguish desired object from the background in the depth image, we 

can use much easier methods which are not time and memory consuming. Depth sensors can 

give us data which represent the distance of the selected pixel from the sensor. Segmentation 

task can be easily done just by comparing the distances over pixels. In 2D images we could 

only determine boundaries by color information. In 3D depth image objects are represented 
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by continuous surface of pixels with similar distance. The object boundaries are then 

determined by large change in the distance. Growing region method for segmentation can be 

used there as we can easily select seed point pixel just by selecting the closest pixel in the 

depth image. 

2.3. Kinect sensor 
 Kinect is one of the devices [3] which is capable of acquiring images with depth 

information. Device was created by Microsoft and it consists of the standard RGB color 

camera, depth sensor and an array of microphones. Kinect device also have tilt motor which is 

capable of rotating the head of the device. 

 

Figure 2.12. Hardware components of Kinect device. [3] 

From the Microsoft website, the specifications of the device are as follow: 

Kinect Array Specifications 

Viewing angle 43° vertical by 57° horizontal field of view 

Vertical tilt range ±27° 

Frame rate (depth and color 
stream) 

30 frames per second (FPS) 

Audio format 16-kHz, 24-bit mono pulse code modulation (PCM) 

Audio input characteristics 
A four-microphone array with 24-bit analog-to-digital converter 
(ADC) and Kinect-resident signal processing including acoustic 
echo cancellation and noise suppression 

Accelerometer characteristics 
A 2G/4G/8G accelerometer configured for the 2G range, with a 
1° accuracy upper limit. 

Table 2.2. Kinect sensor device specifications. [3] 
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 The purpose of the device was originally to be able to play games on the XBOX 360 

device, but it has many advantages in the research field of computer vision for its price and 

availability on the market. Device with the Microsoft software kit is able to: [3] 

 Capture RGB data from camera 

 Capture depth image from depth sensor 

 Perform skeleton tracking 

 Recognize speech gestures 

 Along with the Kinect sensor Microsoft created their own SDK (Software Developer 

Kit) to help developers make use of the Kinect device for research purposes. The interaction 

between the Kinect sensor and application is allowed by NUI API (Native User Interface) 

through which can we obtain desired color, depth or audio stream. 

 

Figure 2.13. Interaction between software and device. [3] 

  

Figure 2.14. Kinect SDK architecture. [3] 
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2.4. Kinect for Windows v2 
During the July 2014 new Kinect sensor v2 were introduced by Microsoft. Providing 

fidelity of the depth image three times better than in Kinect v1 sensor, it could take 3D object 

recognition to the new level where the depth description and matching could be done without 

merging it with color descriptors. 

Similar to the Kinect v1 device, new sensor have both RGB and Depth sensor. The 

new depth sensor is based on the time of flight method, providing more accurate results for 

depth mapping along with the better resolution. In next figure, we show differences between 

v1 and v2 sensor. 

 

Figure 2.15. Comparison of Kinect v1 and v2. 

The new Kinect device comes with the new Kinect SDK v2.0. Few changes has been 

done from the previous version. First, the new Kinect device works only with the new 

Windows 8 operating system and need USB 3.0 port. The SDK is supported for different 

languages like C++, C#, JavaScript and more. New SDK contains also additional features like 

integration with the Unity using a plugin, which is used for the game development. 
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Figure 2.16. High level architecture of new Kinect v2 SDK. [3] 
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3. Related work 
 

 We made a research about given task and present our conclusions to related work. 

Most interesting points from other author's work will be presented, with the aim of providing 

useful information for our research. 

3.1. Computer visual object detection 
 The previous work on this topic field have been done by diploma thesis [23] we are 

continue working at. In previous work, there were three modules implemented. First module 

was called KinectX which provides high level interface for the Kinect sensor to manipulate 

with. It have been done in the purpose of better code management for the main 

implementation of object detection. 

 For the second part of the thesis, two ways of detecting objects using the Kinect sensor 

were implemented. The first algorithm is based on local histogram of intensities comparison. 

The second one is the algorithm based on the SIFT descriptor with added depth information. 

The pipeline for the recognition algorithm is as follow: 

 Acquire the color and depth image from Kinect sensor 

 Align the depth image according to the color image 

 Remove artifacts caused by depth sensor in depth image 

 Compute the segmentation mask of the object 

 Detect features on the segmented part of the image 

 Feature extraction from depth and color image 

 Descriptors matching 

 Kinect device which were used for acquiring the depth information have 2 sensors 

which are not at the same position. Also, the depth sensor support max resolution of 640 to 

480 pixels, where camera supports maximum of 1024 to 768 pixels. The consequence of this 

set up is that artifacts can be detected as the depth image cannot and in almost every case will 

not be fully aligned to the color image. In the thesis, artifacts were removed by using filters 

such as median.  
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 For the segmentation method depth image was used for its efficiency. We can simply 

select the continuous surface of closest object to create segmentation mask. This part of the 

algorithm will save us a lot of computation time as we do not need to detect and extract 

features all over the image. 

 As for the last step of detecting and extracting features (key-points) we focus on the 

SIFT implementation. SIFT detector and descriptor was used over a color image. In addition, 

the result 128 dimensional descriptor vector was expanded with another 2 dimensions. For 

each detected key-point, we look at the depth image and acquire standard deviation and 

maximal difference from the depth data at selected surface around the key-point. Those are 

two additional attributes which were added to the result SIFT descriptor. 

3.2. NARF: 3D Range Image Features for Object 

Recognition 
 Authors of the paper [24] [25] are interested in feature extraction and description from 

the 3D image data. They presented interest point extraction method called NARF (Normal 

Aligned Radial Feature) together with descriptor. For the extraction of interest points or so 

called key-points, they want to achieve two main rules: 

 Detected key-points need to be located in the stable surface region. The main reason is 

to achieve robustness of the algorithm, as in next process they want to extract normal 

vector at the selected point from surface around the key-point. Unstable surface may 

result in not reliable results and errors in matching.  

 They want to use object borders which represent shapes of the object which can be 

seen at current depth frame. Considering the algorithm is used on the hardware which 

can capture partial view of the 3D scene (laser based scanners, stereo cameras or 

Kinect device) the shape of the object will be different from other views. Those shapes 

are rather unique for the selected objects and can result in increased robustness if they 

are used for the description. 

3.2.1. Feature detection 

 The process of detecting key-points is most important part for the descriptor to be 

good at matching. For the NARF descriptor, key-points need to be able to recover information 
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regarding the borders and the surface. Detector need to detect those points which can be also 

detected from different perspective view of an image. The algorithm for finding the key-

points is as follows: 

1. Find borders in the range image. Border is found as the non-continuous traversal from 

the foreground to the background of the image where they look for distance increases 

between two neighbor points in the image. 

2. For every image point, look at the local neighborhood of the image. Compute the 

change in the surface and dominant orientation for the change. 

3. Based on the dominant orientations of the surrounding image points calculate a value 

which will represent the difference between the orientations in the area and the change 

in the surface area (how much stable it is). 

4. Smooth the interesting values. 

5. Perform non-maximal suppression to be able to detect the final key-points. 

 

Figure 3.1. Interest point extraction procedure. [24] 

3.2.2. Feature extraction 

 Rotation invariance for the NARF descriptor is achieved by calculating the orientation 

around the normal which is similar to selecting dominant orientation for 2D descriptors like 

SIFT, except the 3D space. With the 3D information we are able to determine the 
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transformation for all the 6DOF (degrees of freedom). To create NARF descriptor around the 

selected key-point we need to calculate normal range value patch. Star pattern is then used for 

the selected patch to compute the descriptor. Each line of the star pattern will get its part in 

the filling of the descriptor in a way it represent how much of the pixels under the line change. 

Last step is to find dominant orientation of the descriptor and rotate it to default position to 

achieve rotation invariance. 

 

Figure 3.2. Pattern used to fill NARF descriptor. [25] 

3.3. A combined texture-shape descriptor for enhanced 3D 

feature matching 
 Authors of the paper proposed a novel descriptor for 3D feature matching containing 

both shape and texture information. They proposed descriptor called CSHOT [26] (Color 

SHOT) which should improve accuracy of the recognition in environment where clutter and 

occlusion is present. 



 
27 

 

 

Figure 3.3. Structure of CSHOT descriptor [26] 

CSHOT descriptor extended from the SHOT descriptor [27]. Descriptor is based on 

eigenvalue decomposition of a scatter matrix around selected point. In the paper also known 

as definition of repeatable local reference frame. To encode spatially information (signature 

structure) about the point, isotropic spherical grid is defined based on the local reference 

frame. The result descriptor is then formed in a way that histogram of normal vectors is 

defined for each sector of the grid and stored. 

 For the design generalization let's say SHG,f(P) refers to genetic signature of 

histograms computed over spherical support around feature point P. The signature histogram 

relies on the G = vector-valued point-wise property of a vertex and f = metric used for 

comparison of two point-wise properties. Next, to compute the signature histogram we apply 

the f metric over all pairs (GP, GQ) where Q represent generic vertex around feature point P. 

 In order to build up the descriptor at selected feature point, we compute m signatures 

of histograms from different pairs and merge them together. 

𝐷(𝑃) =  ⋃ 𝑆𝐻(𝐺,𝑓)𝑖 (𝑃𝑚
𝑖=1 ) 

 As for the texture based part of the descriptor, the authors of paper hand in hand with 

comparison of RGB intensities associated to each vertex have also chosen an alternative 

metric based on the Lp norm between two triplets. L1 norm was implemented as the sum of 

absolute differences between triplets. 
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𝑙(𝑅𝑃, 𝑅𝑄) = ∑|𝑅𝑃(𝑖) −𝑅𝑄(𝑖)|3
𝑖=1  

 In addition, CIELab color space was used for the testing purposes as it is well known 

of being more perceptually uniform than RGB color space. For CIELab color space, two 

metrics were deployed also known as CIE94 and CIE2000. 

3.4. Surface feature detection and description with 

applications to mesh matching 
 In presented paper, authors propose 3D feature detector (MeshDOG) along with 3D 

feature descriptor (MeshHOG) for triangulated meshes [28]. Next to be described descriptor is 

invariant to changes in rotation, translation and scale. Photometric information available with 

2D images with geometric information from 3D sensors are handled hand to hand in a 

consistent and simultaneous manner. Photometric information from 3D models can be viewed 

as scalar functions and represent generalization of planar to non-planar domains. 

 As both photometric information and surface geometry are taken into consideration, 

discrete convolution and discrete gradient are defined on surfaces (meshes). Based on these 

functions, MeshDOG and MeshHOG detector and descriptor are presented.  

3.4.1. Feature Detection (MeshDOG) 

 MeshDOG detector is a generalization of DoG operator. Detector seeks for the 

extrema of a scale-space representation of scalar functions defined over a discrete manifold. 

The MeshDOG detector performs in 3 main steps: 

1. We find the extrema using difference of gaussian method across scales. 

2. Apply threshold at detected extrema. 

3. We eliminate unstable extrema and keep those locations of meshes which appears to 

be corners. 
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Figure 3.4. Feature detection based on the previous steps. [28] 

To eliminate more unstable responses, at the third phase of the detection Hessian operator is 

used. 

3.4.2. Feature Descriptor (MeshHOG) 

 MeshHOG is based on the histogram of oriented gradient descriptor (HOG). To 

compute descriptor at specific vertex we use support region with defined neighborhood ring 

size. We compute gradient information from each vertex in the neighborhood and translate it 

according to dominant orientation to achieve rotation invariance. Next we compute histogram 

of gradient where each gradient vector is 3 dimensional.  

For increased robustness to scaling and different spatial samplings the number of rings 

for the support region is based on a global measure chosen adaptively. Instead of creating 

histogram with full 3D information, gradient vectors are projected to 3 orthonormal planes 

which describes the local coordinate system and provide more compact representation. 

Histogram with 2 levels is then computed for each of the plane after it is divided into 4 polar 

slices. At the end we compute orientation histogram with 8 bins for each slice. 

 

Figure 3.5. Process of creating MeshHOG descriptor. [28] 
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4. Proposed method 
 

In the following part we are going to further describe the base idea of the depth 

descriptor (DD). We will discuss the information depth map can provide us along with its 

application for depth description and object recognition. 

4.1. Specification 
In previous solution [23], the original SIFT descriptor were enhanced with additional 

depth statistical information. The depth information was taken from the Kinect v1 device and 

there was no point of considering standalone depth descriptor because of the sensor fidelity. 

As the new Kinect v2 device was introduced with better precision we have decided to create 

depth descriptor capable of object recognition. Although it’s precision will unlikely match the 

SIFT descriptor, it can be well used for object pre-selection. Considering less number of 

objects will pass to the second round of color matching with 128 dimensional SIFT descriptor 

we can decrease recognition time over larger databases. 

In the next figure we show the proposed method with depth descriptor. 
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Figure 4.1. Pipeline of the proposed algorithm. 

4.2. Components design 
Application will be consisted of the following components: 

 Kinect2X library – Like in previous version, library will provide us with the high-

level management of the Kinect v2 device. Starting up with the acquiring basic color 
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and depth stream, library will also provide basic algorithms working with OpenCV 

library data types like cv::Mat resulting in better usability. There will be also 

implemented methods for depth and color image alignment of the streams needed for 

object segmentation and key-point localization. 

 Descriptor Library – Library will be used for extracting the depth descriptor. The 

main idea behind the library is in re-usability of the code isolating the main algorithm 

from the GUI part so the code could be simply used for different applications. 

 GUI application – Main application providing us with the model-view-controller 

design used for depth and color stream visualization from the Kinect2X library as well 

as communication with the user. 

KinectX2 Library GUI application
Depth Descriptor 

Library

 

Figure 4.2. Components design. 

4.3. Cascade recognition 
From the previous work, SIFT descriptor enhanced with depth information was 

implemented. Because of the increase in dimensions of the descriptor from 128 to 130, the 

time needed to process frame will rise. Also for the proper matching we will need to re-

normalize all the values in the descriptor vector. As we use knn classifier for the matching 

phase, it could lead to the curse of dimensionality issue without re-normalization of the data. 

Resulting descriptor will be able to use both depth and color stream for the recognition, but 

the depth information will have only small overall influence over the recognition. 

Thanks to the new Kinect v2 device with higher resolution and time of flight 

technology we are able to make recognition based only on the depth data. Taking idea from 

the cascade matching which is now used for example in face detection can lead to improved 

performance and accurate results. 
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We will divide the recognition part into the three steps. In the first part, we will 

consider object recognition based on the global information of the object. As the global 

information for the object will be stored in only one vector of few values, we expect to 

remove only objects with large surface difference from the possible matches. The result of 

this recognition, or better called pre-selection will be the sorted indices of the objects from the 

best to the worst match. Ordered objects can be later used for the depth descriptor we are 

going to create and describe later. As we have ordered the objects and will start matching the 

descriptors from the best match to the worst, we can easily filter out the rest of the objects as 

we come to the first object which did not pass the threshold value. For the last descriptor 

matching, we will use original SIFT descriptor which is robust and will give us the best match 

from the remaining objects. 

In the next figures, we show the pipeline used for matching in original solution 

compared to the new solution with depth descriptor. 
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Figure 4.3. Matching process using the default settings. 
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Figure 4.4. Matching process using our proposed method. 

4.4. Image stream pre-processing 
Resolution of the depth and color data obtained from the Kinect v2 device is different 

for both streams as well as field of view for both of the sensors, therefore as we detect key-

points in color image, their coordinates will not point to the same position in the depth image. 

To be able to know the coordinates of key-points in the depth image, we need to make an 
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alignment of the color image to the depth image. This process can be done using the Kinect 

SDK and will be part of the Kinect2X library.  

In addition we are going to make alignment of the whole depth image according to the 

color image because of the object segmentation. Segmentation of the object within the depth 

image will provide us with the mask with the same resolution as the depth data and need to be 

aligned to the color map. Using simple multiplication of the mask image with color image we 

are able to get the object texture. 

4.5. Object segmentation 
Segmentation methods used for color images can suite us well for the depth image. 

Considering the depth image as one channel image (for example grayscale) we can make use 

of the image just like if we use it for the color processing. In our approach we are going to use 

the method of growing regions with the seed point set to the coordinates of the lowest depth 

value. 

Thanks to the object segmentation we will be able to remove large number of key-

points detected on the scene unrelated to our object (image background). It will greatly 

decrease the recognition time needed for object matching. 

The growing regions method is suitable for this situation, as it select only points which 

are within the certain threshold from the seed point. The segmentation can be also enhanced 

in a way that the threshold value will be considered dynamically for each pixel neighborhood. 

This enhancement will be able to select also objects where the surface depth change more 

rapidly but still remove the background. 

 

Figure 4.5. Object segmentation 
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4.6. Depth descriptor design 
To create depth descriptor we have chosen to create four dimensional vector filled 

with statistical information of the object. All the information are based on the normal vector 

created from the local surface around the key-point. During the descriptor creation we aim to 

maintain the invariance of the descriptor at least to the invariance level of the color descriptor 

as the depth descriptor will be used first in line for the recognition. 

4.6.1. Key-point detection 

Best key-points for depth matching are those with different shapes of the objects with 

stable but descriptive information of the local surface. It means that the best features would be 

where the depth changes within the object, excluding the borders of the objects where the 

depth could change rapidly - for example when the depth from the scene behind the object 

will be captured.  

Because of the four dimensions in the descriptor vector filled with statistical 

information we will not be able to recognize object with certain precision. Therefore we are 

going to make a tradeoff of finding the best key-points for depth description within the object 

and save processing time. Instead we use key-points already detected by detector for color 

matching which will still provide us with reliable information regarding the depth. As the 

depth descriptor should not be used for object matching alone we will use it for pre-selection 

before color matching, speeding up the overall recognition process. The use of the key-points 

detected from the color stream for the purpose of depth recognition will later be evaluated. 

4.6.2. Descriptor pattern 

All the information we are going to use in the description is related to the normal 

vector. Computing the normal vector and determining the surface can be easily done using 

three points forming the triangle. Overall four triangle patterns are used forming the star 

pattern over the key-points. The radius size within each triangle is formed changes according 

to the current depth of the key-point and is set to certain value. 
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Figure 4.6. Pattern created out of triangles within the radius r around the key-point P. 

Because we know the real world distance of the key-points we are able to compute the 

pixel size of the pattern within the depth image. This will ensure that the same surface size is 

chosen for the same key-point captured from different distance. 

 

Figure 4.7. Visualization of change in size according to the depth. 

 

Figure 4.8. Descriptor pattern visualization 
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4.6.3. Depth description (Descriptor vector) 

Four features, which are derived by statistical evaluation, have been taken for the 

definition of the depth feature vector. Three of them are based on the local surface description 

and the fourth feature take into account also the global information of the object. In addition, 

we filter out those triangles, which cannot provide the depth value in at least one point. At the 

end all of the values are normalized. 

Average angle 

 First feature in the depth feature vector is an average angle of the normal vectors given 

by all triangles in the key-point. Therefore we need to compute four normal vectors - one for 

each of the four triangles given by the pattern. Then we calculate the mean value of this 

vectors.  In the next step, we compute the difference angle between each of the normal vectors 

and the mean normal vector. Now we can fill the first value of our descriptor by the feature 

value F_avgAngle. 
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Where N is the number normal vectors/triangles. 

mv


 is the average normal vector. 
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 is the normal vector given by triangle. 

Standard deviation 

 Second value in the depth descriptor is the standard deviation of all depth values of the 

surfaces in the positions given by the triangles. 
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Where N is the number of all points in the descriptor pattern. 

xi is the distance of the point from average surface. 

µ is the average distance of all points in pattern from average surface. 
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Difference of maximal and minimal depth 

 Difference between the maximum and minimum value define the next feature value in 

the feature vector. Maximum and minimum can be evaluated during the process of computing 

standard deviation in the same cycle. We store the maximal and minimal value and return 

their difference. 

Global angle 

 For the fourth value we have chosen the angle of the average normal vector at given 

key-point and the normal vector of the whole object. The object normal vector is based on the 

average vector value out of all normal vectors from all key-points. Comparing the results of 

this value through all descriptors can provide us with the information relative to the surface 

alignment of the object. 
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In next figure we show the visualization of the global angle. Bottom bar show us the 

possible values starting from the lowest left to the right. There is also average value of all 

angles shown as black dot within the bar. 

 

Figure 4.9. Visualization of angle at the given key-point with global normal vector. 
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4.6.4. Descriptor invariance 

 The original SIFT descriptor is invariant to different scale, rotation and small 

perspective transformation of the object. As we are going to make a depth descriptor which 

object need to pass we need to achieve at least the same invariance to the depth descriptor 

Scale invariance 

Different scale of the object can be translated into the distance for the 3D scene. 

Making our descriptor invariant to the object distance is the matter of determining the surface 

used for creating the descriptor. As we know the distance of the selected key-point from the 

depth map, we can easily determine the surface around the key-point according to the real 

world distance, instead of the normal length in pixels which is used in other descriptors. 

Rotation & perspective invariance 

To achieve invariance to different rotation of the object we have chosen to fill the 

descriptor with the statistical information which are independent to the rotation and angle of 

the object. Therefore the values should not change as we capture the object from different 

view. 

4.6.5. Descriptor matching 

We will use the created depth descriptor in the same way as the SIFT descriptor is 

used during the matching phase. All key-points found on the object using SIFT detector will 

be taken to create new depth descriptor and then used for descriptor matching. Knn classifier 

with k=2 will be used to obtain best pairs of descriptor using Euclidean distance metric. In 

addition, nearest pair will be chosen only if their distance is within certain ratio threshold to 

the second nearest pair. This method was proposed by Lowe with a goal to remove those 

matches which could be labeled as false positive. 
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5. Implementation 
 

 In this part we are going to take closer look at implemented algorithms for the RGB-D 

images as well as used software or libraries. We will describe the individual parts of our depth 

descriptor through the key-points we use for descriptor extraction, the extraction itself up to 

the matching phase. 

5.1. Technology used 
Application of object recognition is implemented in C++ using the Microsoft Visual 

Studio 2013 under Windows 8.1 platform. As for the first evaluation, we have decided to 

continue work on the previous created GUI application. Following software and libraries were 

used in the implemented system: 

 Object Recognizer [23] 

 Qt framework1 

 Kinect SDK v2.02 

 OpenCV library v2.4.83 

 SIFT GPU [29] 

We have decided to remove the KinectX library from previous solution as it was developed 

for first version of Kinect. Next, we removed the PCL library. It was used for statistical 

evaluation over depth data which we replaced with our own implementation. 

5.1.1. Object Recognizer 

Previous solution of Object Recognizer [23] was modified to fulfill the new 

requirements. Most classes related to the previous version of Kinect were removed along with 

the classes used for the recognition. These classes were re-implemented and extended in the 

standalone Descriptor library which will be explained later. 

                                                 
 

1 Qt Framework [online]. 2014. [Accessed  December  2014]. Available from: https://www.qt.io/ 
2 Kinect SDK [online]. 2014. [Accessed August 2014]. Available from: http://www.microsoft.com/en-
us/download/details.aspx?id=44561 
3 OpenCV Library [online]. 2014. [Accessed  December  2014]. Available from: http://opencv.org/ 

https://www.qt.io/
http://opencv.org/
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Object Recognizer application is used to create graphical interface for the recognition 

using the Qt framework. We have chosen the Qt framework because of the signal/slot 

communication, simple threading model and we also use its build methods for loading 

configuration files where we can adjust the recognition settings. 

5.1.2. Kinect SDK 

Kinect for Windows Software Development Kit allow the user to create applications 

which use the voice, depth, color or other streams from the new Kinect v2 device. The kit 

contains also high level methods which we can use for the gesture, face or voice recognition, 

image alignment and other.  

The requirements to use the device with the SDK however are strictly bond to the new 

Windows 8, 64bit operating system with USB 3.0 present and DirectX 11 capable graphic 

adapter. 

Within the SDK we can find Kinect Studio application which can be used to simulate 

the connected device. We can easily store the specific streams from the device and later use it 

in any application without need to rewrite the code. 

5.1.3. OpenCV 

OpenCV is the well-known library for computer vision and image processing. The 

library have support for large scale of operating systems like Windows, Android OS, Linux, 

iOS and Mac OS. The supported languages are C/C++/Python/Java. The OpenCV library 

algorithms and functions are divided into several modules: 

 Core – Defines basic structures and functions 

 Imgproc – Image processing. It contains algorithms for image filtering, 

transformations and others. 

 Video - Video analysis, movement estimation or background removal. 

 Calib3d - Basic geometric algorithms, 3D image reconstruction, camera calibration. 

 Features2d – Local descriptors module, key-point detection, descriptor matching. 

 Objdetect – Detection of the predefined objects 

 Highgui – Basic interfaces, image & video capturing 

 Gpu - Acceleration of algorithms on the GPU from previous modules. 
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5.2. Architecture of the solution 
In our solution we intend to separate the three basic parts of the object recognition in 

their own libraries/applications: 

 GUI application for interaction with the user (Object Recognizer) 

 Library to provide us with the basic connection to the Kinect v2 device, basic image 

alignment and data transformation which can be used by OpenCV Library (Kinect2X) 

 Library for the object recognition (Descriptor Library) 

The module parts of the solution can be found in the next figure. We will describe the 

components of each part in the next sections. 

 

Figure 5.1. Application architecture 



 
42 

 

5.3. Kinect2X library 
Kinect2X library was created with the aim of providing high-level interface for the 

user who wants to use the Kinect v2 device in their applications. In addition we added 

OpenCV support to the library. Thanks to it we are able to get the images in cv::Mat format 

for further processing and call some methods from the library with the entry parameters as 

they are used in OpenCV. The library consists of the following methods: 

 Sensor initialization & shutdown 

 Opening the streams (both depth & color) 

 Image acquisition 

o openCV and KinectSDK matrix datatype 

 Converting 16 bit depth map to 8 bit 

 Visualization of the depth frame 

 Color frame alignment according to depth frame 

 Depth frame alignment according to color frame 

 Color coordinate (X,Y) alignment to the depth frame 

 Depth coordinate (X,Y) alignment to the color frame 

 Depth coordinates (X,Y) alignment to the real world coordinates 

 Real world coordinates alignment to the Depth coordinates 

The image alignment is made per pixel using the buffer as it is used in the Kinect 

SDK. The results are then stored in the matrix and returned. We include the code for the color 

alignment only as the rest of the methods are similar. To get the new position of pixel, we 

created the matrix of indices pointing to the position at the depth or color stream based on the 

request and the methods for it are already included in the Kinect SDK library. 

Function alignColorFrame (width, height, frame) 

mat_frame ← createEmptyMatrix() 
frame_buffer ← createEmptyBuffer(width,height) 
for index ← 0 until index < width * height do 

colorInformation ← getCoordinateFromMapper (index) 
frame_buffer (index) ← colorInformation 

end 
mat_frame ← createMatFromBuffer(frame_buffer) 
return mat_frame 
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5.3.1. Kinect2X initialization 

The Kinect v2 support only one default sensor connected through the USB 3.0 port to 

the computer. In our solution we have implemented the singleton instance of the class so we 

can make access to the same initialized device with set parameters in the Object Recognizer 

application for image stream acquisition and Descriptor Library for the use of image 

alignment and depth information extraction. 

5.4. Descriptor Library 
The strategy design pattern used in the previous version of Object Recognizer was 

moved to the descriptor library and ORB implementation on the GPU was added to it. The 

pattern implements virtual methods which are overridden with the desired method from the 

class specified at the configuration file. 

Our solution support two methods for object recognition. First implementation is the 

GPU implementation of SIFT descriptor [29] as a standalone library and the second one is the 

ORB GPU implementation from the OpenCV library, build on the CUDA version 6.5. 

Based on the configuration file, both of the mentioned descriptors can be used 

separately as standalone descriptors for the segmented object or as a part of the cascade of 

descriptors where the first level of recognition is done by our implementation of Depth 

Descriptor. 

5.5. Depth Descriptor 
In this part we are going to describe the process of creating the Depth descriptor 

vector. Important parts of the algorithm will be provided with pseudo-codes. In addition we 

will make an experimental evaluation of the  extracted descriptor for the purpose of 

implementing additional part of recognition based on decision, whether the present object has 

flat surface or not. 

5.5.1. Extraction of Depth Descriptor features 

Let’s assume we have already managed to get key-points from the SIFT detector. To 

create descriptor vector for each key-point, we need to loop through them and extract desired 

information. In the depth descriptor extraction we will work with the depth data, therefore we 
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need to align the color coordinates which were detected by SIFT detector to the depth 

coordinates. 

Function computeDescriptor (keyPoints) 

depthDescriptorVector ← createEmptyDescriptorVector() 
foreach keyPoint ∈ keyPoints do 

depthPosition ← getDepthFromColorCoord (keyPoint) 
triangles ← getTriangles(depthPosition, radius) 
averageNormal ← getAverageNormal(triangles) 
averageAngle ← getAverageAngle(averageNormal, triangles) 
std ← getStd(averageNormal, triangles) 
maxmin ← getMaxMin(averageNormal, triangles) 
globalNormal ← globalNormal + averageNormal 

depthDescriptor ← storeValues(averageAngle, std, maxmin) 
end 
 

Using the pseudo code above, we can store three out of four values for the descriptor. 

For the last value, we need first to compute global normal vector of the object representing 

average normal vector out of all normal vectors from the triangles. Hence, the function 

continues with another loop. 

Function computeDescriptor (keyPoints) 

… 

globalNormal ← globalNormal / size(keyPoints) 
foreach keyPoint ∈ keyPoints do 

averageNormal ← getAverageNormal(triangles) 
globalAngle ← getAngle(averageNormal, globalNormal) 
depthDescriptor ← storeValues(globalAngle) 

end 
 

Based on the depth at each key-point we need to determine the size radius for the 

triangles. As we need to compute the size in real world coordinates, we need to make an 

alignment of the key-point depth coordinates to the real world coordinates and after extracting 

the triangle points, transform them back. 

Function getTriangles(depthPosition, radius) 

realPosition ← getRealFromDepthCoord(depthPosition) 
for i=1 to 4 do 
 firstPoint ← getFirstPoint(realPosition, radius) 
 secondPoint ← getSecondPoint(realPosition, radius) 
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 thirdPoint ← getThridPoint(realPosition, radius) 
 trianglePoints ← getDepthFromRealCoord(firstPoint, secondPoint, thirdPoint) 

triangles ← add(trianglePoints) 
end 
return triangles 

 

The formulas of extracting the specific descriptor values have been mentioned in the 

design chapter and do not be described with the pseudo code as the steps for their extraction 

are straight-forward.  

5.5.2. Key-point detection based on depth image 

At the design part of the work we have talked about the key-point detection based on 

the depth image. During evaluation part we measured the time each step of the process takes 

to recognize the object. We come to the conclusion that the part, where we need to remove 

large number of key-points detected at the border of the image (because of the segmentation 

mask) takes approximately ~ 100 milliseconds, resulting in significant drop of frame rates.  

Same process would apply to key-point detection based on the depth image which will 

drop the frame rate even lower. Instead, we extracted the descriptor vector from the key-

points which were detected using the SIFT detector (or FAST detector for the ORB 

descriptor) and evaluated the computed values. We were looking for the statistical 

information related the values of descriptor vector and their comparison for flat and non-flat 

objects. 

5.5.3. Evaluating the surface based on DD values 

We have taken the extracted Depth Descriptor values to make scatter plot for each 

feature. In the next figures we compared the objects with flat and non-flat surface. For the 

increased robustness of the experiment, each of the objects were taken from different views 

and added to the plot. 
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Figure 5.2. Scatterplot images of four depth descriptor features. 

 

Figure 5.3. Example of objects used for evaluation. 
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Figure 5.4. Bar plots of mean, median and standard deviation values of all features for non-flat (blue) 

and flat (red) objects. 

Based on the results provided we have decided to make the surface prediction based 

on the fourth value, which represents the global angle feature. Even when the difference 

between the objects are significant, during the experiments we came across some false 

predictions related the surface. Upon extracting the values for such objects we have found that 

in some cases, the outliers have become the issue. 

5.5.4. Outlier removal 

To remove outliers from the depth description we detect upper and lower quartile from 

the descriptors vector values. We subtracted those values and multiplied it by the number 1.5 

which represents the outer fence value. If the actual value of the descriptor were under/above 

the quartile plus the outer fence value it was considered as an outlier and whole descriptor 

were removed from the descriptor vector. 

Function outlierRemoval(depthDescriptor) 

lower_quartile ← getLowerQuartile(depthDescriptor) 
upper_quartile ← getUpperQuartile(depthDescriptor) 
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outer_fence ← (upper_quartile - lower_quartile) * 1.5 

foreach depthDescriptor do 
 for i=1 to 4 do 

  if depthDescriptor[i] < lower_quartile - outer_fence 

  or depthDescriptor[i] > upper_quartile + outer_fence 

   removeDescriptor(depthDescriptor,i) 

 end 
end 
return depthDescriptor 

 

Removing the outliers could not even improve the surface prediction but also overall 

recognition based on the depth stream. Now we are able to set the threshold values for the 

surface prediction. 

5.5.5. Estimating the threshold values for flat surface prediction 

In our application we have chosen to rely on the fourth value of the descriptor vector 

for surface prediction as after the several experiments it has proven to have most 

distinguishable values between flat and non-flat surface. The decision is based on the mean 

and standard deviation values and could end in three different states: 

 The object belongs to the flat surface objects dataset 

 The object belongs to the non-flat surface objects dataset 

 The object could belong to both of the above mentioned datasets 

We added the third class where we cannot decide for sure about the object surface, 

because this prediction is the first level of the recognition and will affect all recognition 

processes done after. For example if we want to detect the paper box, which one side is flat 

object, but the segmentation mask also takes neighbor side of the box, descriptor values will 

change and it can be interpreted as non-flat object. Therefore the middle class containing flat 

and non-flat objects at the same time could increase the robustness of the algorithm. The 

threshold values for the prediction has been set to these values: 

 Flat objects 

o standard deviation under 0.15 

o mean under 0.15 
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 Flat and non-flat objects 

o Standard deviation above 0.15 and under 0.20 

o Mean above 0.15 and under 0.35 

 Non-flat objects 

o Standard deviation above 0.20 

o Mean above 0.35 

The experiment showing us the accuracy of this prediction along with the threshold 

setting adjustments can be found at the result section. 

5.5.6. Descriptor matching 

The depth descriptor values are stored as the real numbers. To compare the results we 

use the brute force matching approach where we find best pairs of descriptors using the 

Euclidean distance measurement. We will use the knn (k=2) matching which is already used 

for SIFT matching in our application where we also consider the ratio between the closest and 

the second closest descriptor. 

As the depth values for the flat objects will have the same values we pass indices of 

those object right to the last level of recognition without matching phase. 

5.6. Color (Intensity) Descriptor 
For the next level of recognition from color stream we implemented two well-known 

descriptors. Both of the descriptors are implemented on the GPU unit and therefore we could 

process the full HD images in near real time. 

SIFT GPU Implementation 

The implementation of SIFT on the GPU unit was taken from the University of North 

Carolina: SiftGPU library [29]. It supports GLSL by default and CUDA for the users with 

NVidia graphic cards which we also use in our implementation. Key-point detection is 

provided with library based on Difference of Gaussian method and we also use it in later 

implementation of depth descriptor. 
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ORB GPU Implementation 

For the ORB GPU descriptor we use the implementation already included in the 

OpenCV library with CUDA support. For key-point detection ORB descriptor use FAST 

detector method which can be computed on the GPU as well. 

Descriptor matching 

To declare the object as one from the trained objects we compare the ratio between 

good matches and the number of all key-points. For both SIFT and ORB descriptor we use 

brute force matching. The SIFT descriptor which vector is filled with float datatype numbers 

is matched using the Euclidean distance and for binary ORB descriptor we use Hamming 

distance. 
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6. Results 
 

We have implemented the depth descriptor and now we will evaluate its contribution 

to the recognition. Several measurements will be executed. In the first measurement we are 

going to take closer look at the number of objects which passed through pre-selection. The 

second test will measure the robustness of the depth description pre-selection in comparison 

to using just the SIFT descriptor in a way, we will compare the number of recognized objects 

for both cases. Next, we will take a look at how accurate can Depth Descriptor decide, if the 

object is flat or not. Last experiment will be regard the execution time of the object 

recognition for the Depth Descriptor followed by the SIFT descriptor. The results will be 

compared with the object recognition while using the SIFT descriptor alone. 

6.1. Dataset 
Our tested dataset were created in order to obtain reliable results. The set of toys fulfill 

very well the requirements of the application and also has a large variability necessary for the 

testing. Hence, various toys of different size and shape were chosen. 

 

Figure 6.1. Sample of dataset used for the evaluation. 

6.2. Hardware 
The following hardware was used for the evaluation: 

 Laptop with CPU Intel Core i7, 3632QM, 2.2 GHz, GPU NVidia GeForce GT635M 

and RAM 8GB DDR3 1600Mhz. 
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6.3. Depth Descriptor pre-selection 
First evaluation has been done with the aim of how many objects passed through the 

depth descriptor to later color recognition. Objects are matched using the knn classifier using 

the k=2 with respect to the ratio threshold between two closest matches. Changing the ratio 

threshold could improve the processing time but will also increase the number of possible 

matches. The ratio threshold for the matching in our experiment has been set to the default 

value of 0.85. 

 

Figure 6.2. Number of objects after pre-selection. 

With increasing number of trained objects, our depth descriptor were able to make a 

pre-selection and filter out most of the undesired objects. We can also see that the number of 

objects which passed the matching phase is relatively stable and could improve the matching 

speed for larger databases. 

6.4. Evaluation of Depth Descriptor robustness 
To evaluate the next experiment, we have acquired 30 images (color image, depth 

image and mask image) for total of 26 different objects, containing both flat and non-flat 

objects. In sum we have compared 780 different object views. Images we have acquired and 

stored were captured from different views and angles which are hard to recognize even for 

standalone SIFT descriptor. We have done so in order to fully and more precisely evaluate the 

actual robustness of the depth description. We compared the percentage of recognized objects 
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for both standalone SIFT and SIFT with Depth Descriptor and computed the difference. The 

results can be found in the following table. 

 
Recognized 

objects 

Not-Recognized 

objects 

SIFT descriptor 50.26% 49.74% 

Depth + SIFT 

descriptor 
48.59% 51.41% 

Table 6.1. Percentage of recognized objects for Depth + SIFT descriptor according to SIFT only. 

For the following results we can assume that while using the Depth Descriptor for the 

pre-selection will worsen the prediction by approximately 3.32% which is acceptable result 

for the implemented settings. We are able to lower the gap by decreasing the ratio threshold 

during the matching phase for knn matcher, but that will result in increased number of pre-

selected objects and therefore slower recognition. 

In this part, we also take closer look at the pattern size. During the implementation 

phase we have set the size of the triangle pattern to 15 millimeter radius. We have evaluated 

the recognition accuracy for the additional values of 10 mm, 20mm and 25mm. The results 

show us that the pattern size of 15mm suits well for the current settings. Table with the results 

can be seen below. 

Pattern size 
Recognized 

objects 

Not-Recognized 

objects 

10 mm 47.31% 52.69% 

15 mm 48.59% 51.41% 

20 mm 48.21% 51.79% 

25 mm 46.79% 53.21% 

Table 6.2. Percentage of recognized objects for different pattern size. 

6.5. Evaluation of surface prediction 
In order to evaluate the prediction of the surface with the values described in the 

implementation part, we divided the experiment into two phases. We will evaluate both mean 

value and standard deviation value separate and compare the results. For the experiment we 

used different flat and non-flat objects resulting in 120 different object images captured from 
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different views. Based on the evaluations we decided to focus more on the surface prediction 

based on the mean value of descriptor vectors. 

Evaluation of mean value 

The experimental setup for the mean value was: 

 Flat objects 

o Mean value under 0.15 

 Flat and non-flat objects 

o Mean value above 0.15 and under 0.35 

 Non-flat objects 

o Mean value above 0.35 

The results are shown in the following table: 

 Flat objects Flat and non-flat objects Non-flat objects 

Flat objects 83.33% 15% 1.67% 

Non-Flat objects 0% 0% 100% 

Table 6.3. Surface prediction according to mean value. 

The values which will lead to failure on detecting the object are in the bottom left 

(non-flat objects which were classified as flat objects) and up right (flat objects which were 

classified as non-flat objects) corners of the table. We can see that the estimated mean values 

for the selection suits well for the experiments made, with only 1.67% of false surface 

estimation for flat objects. 

Evaluation of standard deviation value 

The experimental setup for the standard deviation values was: 

 Flat objects 

o standard deviation value under 0.15 

 Flat and non-flat objects 

o Standard deviation value above 0.15 and under 0.20 

 Non-flat objects 

o Standard deviation value above 0.20 
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Same procedure applies for the standard deviation value. In the first experiment results 

show us that the significant amount of objects (20%) were evaluated with false surface. 

 Flat objects Flat and non-flat objects Non-flat objects 

Flat objects 68.33% 11.67% 20% 

Non-Flat objects 0% 0% 100% 

Table 6.4. Surface prediction according to std value. 

We advanced the standard deviation border values to the following settings: 

 Flat objects 

o standard deviation value under 0.15 

 Flat and non-flat objects 

o Standard deviation value above 0.15 and under 0.25 

 Non-flat objects 

o Standard deviation value above 0.25 

The number of flat objects recognized as non-flat were reduced, however some non-

flat objects which were in previous experiment classified correctly, were moved to the middle 

class. Still we are able to recognize those objects and therefore overall accuracy will increase, 

but it can slower the recognition speed. 

 Flat objects Flat and non-flat objects Non-flat objects 

Flat objects 68.33% 15% 16.67% 

Non-Flat objects 0 18.33% 81.67% 

Table 6.5. Surface prediction according to mean value. 

6.6. Comparison of matching time 
For the next measurement we have trained same dataset of objects and measured time 

needed for descriptor matching. The next figure show us the time difference of the matching 

phase when using the SIFT descriptor only and SIFT descriptor with the pre-selection based 

on our proposed depth descriptor. 
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Figure 6.3. Comparison of time needed to match descriptors related to the default solution. 

We can see that for the first ten objects the processing time of our proposed method is 

slightly worse, because the recognition cannot yet fully benefit of pre-selection phase. The 

change comes with more trained objects. Thanks to the pre-selection of the objects we are 

able to detect object faster than using only the color-based descriptor. 
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7. Conclusion 
 

In this work we have analyzed the methods of visual object recognition based on the 

bottom-up approach of local descriptors. We have talked about the well-known local 

descriptors based on the color (intensity) image like SIFT, SURF, BRIEF, ORB, FREAK or 

HIPS as well as about key-point detectors which are used for the mentioned methods. We 

have also used SIFT and ORB descriptors in our implementation as they represent robust 

invariant descriptors with in the first case numerical and second binary descriptor vectors. 

We took closer look at the local descriptors which use another data for the object 

recognition: depth frame. Using depth information in object recognition has been taken into 

consideration and few good descriptors were reviewed. In our research we mentioned NARF 

descriptor which can be found in the PCL Library, MeshDOG or current state of the art for 

the color & depth recognition, the CSHOT descriptor. 

Because of the new version of Kinect which came to the market, considering the better 

fidelity and technology which we can use to extract depth information from the scene, we 

have decided to create a new, standalone local descriptor which will be based only on the 

depth data acquired from the depth sensor. We are aware that depth information still cannot 

overcome the robustness and precision of color description, but we will use it for object pre-

selection. The overall recognition will be in the form of cascade of descriptors. 

We have implemented the depth descriptor based on the statistical information over 

depth map acquired form the latest Kinect device. Our experiments show us the potential of 

faster recognition using the “cascade of descriptors” method over larger dataset. In addition 

we used the values from the descriptor vector to create another level of pre-selection in which 

we can predict the shape of the surface area and match objects accordingly to the shape. 

The speed of the recognition can be improved in the future with additional decision 

making processes like the color histogram as the background around the object is removed 

with segmentation method.  
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Attachment A: Content of electronic media 
 

Documents/MT_Jakab.pdf/.doc 

- Master Thesis document in doc and pdf fomat. 

- Papers published at SPIE and IITSRC 2015 

Documents/Technical Documentation/ 

- Description of the methods used in the solution. Generated by Doxygen tool.  

- Html and latex format 

Libraries/sift gpu/ 

- SIFT GPU library (build under vs 2013 and CUDA 6.5) 

Objects/ 

- Object images used for evaluation phase. 

Source Code/ObjectRecognizer 

- Implementation of the application. 

- Including GUI application, Kinect2X library and Descriptor Library. 

- All in one Visual Studio solution (VS2013) 

  



 
62 

 

Attachment B: User manual 
 

After running the application you will get a simple windows with few options. The 

object recognition window contains the button which will start communication with the 

default Kinect v2 sensor and the next button in the recognition settings will be used to train 

the object while the connection is established and both depth & color stream from Kinect 

sensor are open. 

 

Figure B.1. Main window of application. 

In order to start the recognition we first need to load all the settings. We can do so by 
clicking on the File at the top menu and selecting Open. Dialog window will pop up and ask 
us to select the .INI file with the recognition settings. 

 

Figure B.2. Dialog window to open settings file. 

After we click start with the loaded settings four additional windows will create with 
for the following streams: Color Stream, Color Segment, Depth Stream and Aligned Depth 

Stream. The Color Segment window is showing us the current object we are trying to 
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recognize. If we want to save the current object showing in the Color Segment, we can simply 
click on the train button in the main window. Dialog will popup asking us to specify the 
object name we want to store. 

 

 

Figure B.3. Adding trained object name. 

After a while the object will be saved and we are ready to recognize the stored object. 
The next figures are showing the output of Color Segment and Depth Stream windows. 

 

 

Figure B.4. Color segment and Depth stream windows. 

Configuration file 

In order to change additional settings we can edit the .INI file we use to load before we 

start the recognition. There are four main groups of settings we are able to change. 

SensorConfig group is used to change the settings for the color & depth stream from the 

Kinect device. It will resize the images acquired from the device as the default stream 
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resolution cannot be changed. DescriptorConfig group specify the local descriptor we want to 

use. The options are: SIFT, SIFTD, ORB and ORBD. Next, in the MatchingConfig group we 

can change the values for specific parts of the recognition, like the pattern size of the triangles 

for the depth descriptor, recognition confidence and so on. Last group named objects is used 

to train the objects from the stored images. The example of the file we use to set up the basic 

settings for the recognition application can be found in the lines below: 

[SensorConfig] 

sparameters\colorWidth=1920 

sparameters\colorHeight=1080 

sparameters\depthWidth=512 

sparameters\depthHeight=424 

 

[DescriptorConfig] 

descriptorName=SIFTD 

 

[MatchingConfig] 

mparameters\minKeypointsPerObject=4 

mparameters\distanceRatioThreshold=0.8 

mparameters\minRecognitionConfidence=0.1 

mparameters\minMatchesToFindHomography=4 

mparameters\ransacOutliersRemovalEnabled=false 

mparameters\patternSize=15 

 

[objects] 

1\name=1 

1\views\1\color=/data/1_0_color.png 

1\views\1\depth=/data/1_0_depth.png 

1\views\1\mask=/data/1_0_mask.png 

1\views\size=1 

size=1 
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Attachment C: Technical documentation 
 

The application is implemented in C++ as a Visual Studio 2013 solution with 3 
independent projects. The external libraries used in the project with their versions are as 
follows: 

 OpenCV 2.4.8 
 Kinect SDK v2.0 1409 
 SIFT GPU v400 

Documentation 

The description of the individual functions are generated by Doxygen tool and can be 

found in the attached DVD under documents/technical documentation folder in html and latex 

format. 

Use case diagram 

 

Figure C.1. Use case diagram. 

Class Diagram 

 In the following part we include class diagrams generated in Visual Studio 2013 for 

the following projects in the solution: 
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Object Recognizer 

Object Recognizer is the GUI application based on Qt framework. There are two main 

classes. MainWindow for managing the graphical interface, user input as well as image output 

from the application and recognition. RecognizeThread for actual recognition in separated 

thread. 

 

Figure C.2. Object recognizer class diagram. 

Kinect2X 

Kinect2X is a library used to establish communication with Kinect v2 sensor as well 

as acquiring color and depth images from it. There are also several functions used during 

descriptor extraction and supports OpenCV datatype for image. 
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Figure C.3. Kinect2X class diagram. 

Descriptor Library 

Descriptor Library contains the main methods for descriptor extraction and object 

recognition. It contains virtual class ObjectRecognizer which other classes used for 

recognition inherits from. 

 

Figure C.4. Descriptor Library class diagram. 
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Depth Descriptor feature extraction 

The main addition to the object recognition comes with the own implementation of 

depth descriptor. Here, we will show the algorithm for its extraction. The next for cycle show 

us the extraction of first three descriptor values. First, we need to extract the real word 

coordinates of the triangle around the key-point. In next steps, we extract the normal vectors 

and compute the actual values. We store the maximal values for later normalization and also 

compare if we successfully obtained good values for the descriptor. If any measurement error 

occurred during computation, we simply remove the descriptor. 

for (int i = 0; i < objectDepthKeypoints.size(); ++i) 

 { 
  descriptor = objectDepthDescriptors.ptr<float>(i); 

  std::vector<cv::Point> depthPoints; 

  std::vector<cv::Point3f> realPoints; 

  cv::Point3f realKeypoint; 

 
  // get Triangles and extract points 

  getTriangles(cv::Point((int)objectDepthKeypoints[i].pt.x, 
(int)objectDepthKeypoints[i].pt.y), realKeypoint, depthPoints, depthImage); 

  for (int j = 0; j < depthPoints.size(); ++j) 

  { 
    
   cv::Point3f realPoint1, realPoint2, realPoint3; 

   // get real world coordinates 

   if (kcv->getPointInReal(depthPoints[j], depthImage.cols, depthImage.rows, 
realPoint1)) 

   { 
    if (kcv->getPointInReal(depthPoints[j + 1], depthImage.cols, 
depthImage.rows, realPoint2)) 

    { 
     if (kcv->getPointInReal(depthPoints[j + 2], depthImage.cols, 
depthImage.rows, realPoint3)) 

     { 
      // store real coordinates 

      realPoints.push_back(realPoint1); 
      realPoints.push_back(realPoint2); 
      realPoints.push_back(realPoint3); 
     } 
    } 
   } 
   j = j + 2; 
  } 
  cv::Vec3f avgNormal; 

  std::vector<cv::Vec3f> normals; 

  float avgAngle; 

  // initialization to zero to avoid infinity values 

  if (realPoints.size() == 0) 

  { 
   descriptor[0] = 0.0f; 
   descriptor[1] = 0.0f; 
   descriptor[2] = 0.0f; 
   if (lastBadDescriptorIndex < 0) 

   { 
    lastBadDescriptorIndex = i; 
    continue; 

   } 
   continue; 

  } 
  // get average normal and first feature -- average angle 

  getNormals(realPoints, avgAngle, avgNormal, normals); 
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  float std, maxmin; 

  // standard deviation and max-min 

  // we translate surface to the keypoint position 

  getStdMaxMin(realPoints, realKeypoint, avgNormal, std, maxmin); 
  // store values for later normalisation 

  if (!(avgAngle == avgAngle) || !(std == std) || !(maxmin == maxmin)) 

  { 
   descriptor[0] = 0.0f; 
   descriptor[1] = 0.0f; 
   descriptor[2] = 0.0f; 
   if (lastBadDescriptorIndex < 0) 

   { 
    lastBadDescriptorIndex = i; 

   } 
   continue; 

  } 
 
  if ((avgNormal[0] == avgNormal[0]) && (avgNormal[1] == avgNormal[1]) && (avgNormal[2] 
== avgNormal[2])) 

  { 
   good_normals++; 
   object_normal[0] = object_normal[0] + avgNormal[0]; 
   object_normal[1] = object_normal[1] + avgNormal[1]; 
   object_normal[2] = object_normal[2] + avgNormal[2]; 
  } 
 
  // clear all 

  realPoints.clear(); 
  depthPoints.clear(); 
  if (avgAngle > max_angle)  

   max_angle = avgAngle; 
  descriptor[0] = avgAngle; 
  if (std > max_std)  

   max_std = std; 
  descriptor[1] = std; 
  if (maxmin > max_maxmin)  

   max_maxmin = maxmin; 
  descriptor[2] = maxmin; 
 
  avg_normals.push_back(avgNormal); 
  objectDepthKeypointsGood.push_back(objectDepthKeypoints[i]); 
  if (lastBadDescriptorIndex < 0)   

   continue; 

  std::memcpy(objectDepthDescriptors.ptr<float>(lastBadDescriptorIndex), 
objectDepthDescriptors.ptr<float>(i), 4 * sizeof(float)); 

  ++lastBadDescriptorIndex; 
 } 
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Fourth descriptor value 

Last value of the descriptor is extracted in a similar way. As it was described, we 

compute average angle through all key-points and write down the angle between each key-

point and average angle. 

for (int i = 0; i < avg_normals.size(); i++) 
 { 
  // if average normal is finite & with no error 
  descriptor = objectDepthDescriptors.ptr<float>(i); 
  if ((avg_normals[i][0] == avg_normals[i][0]) && 
   (avg_normals[i][1] == avg_normals[i][1]) && 
   (avg_normals[i][2] == avg_normals[i][2])) 
  { 
   float angle; 
   // compute global angle 
   getAvgAngle(object_normal, avg_normals[i], angle); 
   if (!(angle == angle)) 
   { 
    descriptor[3] = 0.0f; 
    if (lastBadDescriptorIndex < 0) 
    { 
     lastBadDescriptorIndex = i; 
     continue; 
    } 
    continue; 
   } 
   descriptor[3] = angle; 
   if (angle > max_object_angle) 
    max_object_angle = angle; 
  } 
  else 
  { 
   descriptor[3] = 0.0f; 
   if (lastBadDescriptorIndex < 0) 
   { 
    lastBadDescriptorIndex = i; 
    continue; 
   } 
   continue; 
  } 
  objectDepthKeypointsGood.push_back(objectDepthKeypoints[i]); 
  for (int j = 0; j < 4; j++) 
   descriptorValues[j].push_back(descriptor[j]); 
  if (lastBadDescriptorIndex < 0) 
   continue; 
  std::memcpy(objectDepthDescriptors.ptr<float>(lastBadDescriptorIndex), 
objectDepthDescriptors.ptr<float>(i), 4 * sizeof(float)); 
  ++lastBadDescriptorIndex; 
 }  
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Attachment D: Resumé v slovenskom jazyku 
 

Úvod 

Vizuálna detekcia objektov patrí v súčasnosti medzi rozvíjajúce sa časti počítačového 

videnia. Dôraz pri rozpoznávaní sa kladie hlavne na rýchlosť, robustnosť a zabezpečenie toho, 

aby bolo možné objekty rozpoznávať aj pri rôznych uhloch natočenia a aj v prípadoch, kde 

nedokážeme zachytiť celý objekt na obraze. V práci sa ďalej venujeme rozpoznávaniu 

objektov pomocou lokálnych deskriptorov. Diskutujeme o možnostiach využitia hĺbkových 

dát pre potreby rozpoznávania 3D objektov v podobe vytvorených deskriptorov, ktoré spájajú 

informáciu o textúre spolu s hĺbkovou informáciou.  

Analýza 

Rozpoznávanie objektov možno vo všeobecnosti rozdeliť do dvoch kategórií: 

 Rozpoznávanie generických objektov 

 Rozpoznávanie špecifických objektov 

Naša práca sa zaoberá práve rozpoznávaním špecifických objektov pomocou metód 

lokálnych deskriptorov. Vo všeobecnosti algoritmus pre rozpoznávanie funguje tak, že sa na 

vstupnom obrázku nájdu kľúčové body záujmu, ktorých okolie sa vhodným spôsobom opíše a 

uloží do číselného, prípadne binárneho vektora. Takto vytvorené vektory sa potom uložia a 

predstavujú náš objekt, ktorý chceme neskôr rozpoznať. Rovnaký postup sa následne aplikuje 

na obraze na ktorom chceme objekt rozpoznať. Rozpoznávanie prebieha na základe 

porovnávania vektorov deskriptorov a nájdenia korešpondujúcich párov deskriptorov. 

Akokoľvek môže postup znieť veľmi jednoducho, pri procese dochádza k viacerým 

faktorom, ktoré môžu mať negatívny vplyv na rozpoznávanie. V prvom rade sa snažíme 

rozpoznávať 3D objekt na 2D reprezentácii. To znamená, že samotný objekt môžeme rôzne 

otáčať a stále bude jeho reprezentácia v podobe obrázku rôzna. 

Ďalšie faktory ktoré negatívne vplývajú na rozpoznávanie a je potrebné ich pre 

algoritmus rozpoznávania brať v úvahu sú: 
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 Svetelné podmienky – Ak sa na obrázok pozeráme ako maticu ktorá obsahuje 

jednotlivé RGB hodnoty, tak rôzny vplyv svetla na scénu mení tieto hodnoty. Tým 

pádom napríklad dva rovnaké objekty, ktoré odfotíme z rovnakého pohľadu pri 

rôznom osvetlení budú predstavovať iné hodnoty v matici obrázka. 

 Škála a vzdialenosť – V algoritme rozpoznávania je potrebné dbať aj na vzdialenosť 

objektu, ktorá rovnako vplýva zmenou dát ako i na farebnom obrázku, tak aj na 

hĺbkovej mape.  

 Rotácia – Objekt, ktorý plánujeme rozpoznať nemusí byť vždy otočený rovnako. Pri 

našom riešení žiadame, aby naša implementácia bola voči tomuto vplyvu odolná. 

 Rotácia okolo osi – Vo voľnom preklade rôzne uhly natočenia objektu. Vo 

výslednom obrázku predstavujú rôzne formy perspektívnych transformácii. 

 Šum – Skreslenie obrázku, artefakty, ktoré sa na živej scéne nenachádza. Sú 

spôsobené hlavne samotným senzorom. 

 Prekrytie – Vo veľa prípadoch nevidíme celý objekt, ale len jeho časť. Algoritmus 

rozpoznávania by mal byť schopný rozpoznať objekt aj pri jeho čiastočnej 

viditeľnosti. 

Detekcia kľúčových bodov 

Prvým krokom algoritmu lokálnej deskripcie je detekcia kľúčových bodov. Pre 

samotné rozpoznávanie je vhodná detekcia týchto bodov nesmierne dôležitá, pretože budú 

ďalej slúžiť pri vytváraní deskriptora. Hlavné vlastnosti, ktoré sa od kľúčových bodov 

požadujú, sú nasledovné: 

 Aby bolo možné nájsť rovnaké body na objekte pri rôznych meraniach 

 Aby boli tieto body nachádzané s určitou presnosťou 

 Aby sa kľúčové body nachádzali na objekte aj pri rôznych natočeniach 

 Aby boli body dostatočne reprezentatívne a zároveň odlišné 

 Aby týchto bodov bolo viac a tým pádom by sa objekt mohol rozpoznať aj keď vidíme 

iba jeho časť 

Niektoré deskriptory majú aj vlastné detektory kľúčových bodov. Medzi známe 

metódy detekcie takýchto bodov ale patria detektory ako DoG, LoG, FAST. 
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Deskripcia kľúčových bodov 

Na základe toho, či sa jedná o deskriptory s reálnymi hodnotami alebo binárne 

deskriptory, bude prebiehať aj samotná deskripcia. Okolie kľúčových bodov sa zakóduje do 

vektorov deskriptorov, ktoré sa neskôr budú porovnávať. Medzi doteraz najznámejšie 

deskriptory patrí napríklad deskriptor SIFT. 

SIFT deskriptor 

Pre výpočet deskriptora je potrebné najskôr vytvoriť obrázkový gradient s veľkosťou 

a orientáciou v okolí kľúčového bodu. Veľkosť mriežky, nad ktorou sa táto operácia robí je 

16 na 16 pixelov. Táto mriežka sa ďalej delí na menšie časti veľkosti 4 na 4 pixela, pre ktoré 

sa  každej časti vypočíta histogram orientácii pre 8 smerov. Počas vytvárania sa dbá na to, aby 

jednotlivé pixely, ktoré sa nachádzajú bližšie ku stredu vzoru a tým pádom kľúčového bodu 

mali väčší vplyv pri tvorbe histogramu. 

Vzhľadom na menšie časti s veľkosťou 4 x 4 a vytvorených histogramov s 8 

hodnotami bude celkový SIFT deskriptor obsahovať 4 x 4 x 8 = 128 hodnôt. Následne sa 

normalizujú hodnoty aby sa dosiahla invariantnosť pred rôznymi svetelnými podmienkami. 

 

Obrázok D.1. Deskriptor SIFT 

Párovanie deskriptorov 

Najjednoduchšia metóda párovania deskriptorov je takzvaná metóda hrubej sily, kde 

porovnávame každý deskriptor s každým. Vzhľadom na typ deskriptoru je možné použit 

viacero metrík porovnávania. 

Pre číselné (dátový typ float) deskriptory je najčastejšie používaná metrika pre 

nájdenie podobnosti na základe Euklidovskej vzdialenosti. 
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Pre binárne deskriptory sa môže napríklad použiť Hammingová vzdialenosť, ktorá sa 

realizuje pomocou binárnej operácie XOR. 

Návrh riešenia 

Riešenie nadväzuje na prácu predošlého diplomového projektu, v ktorom bola 

vytvorená aplikácia rozpoznávania objektov pomocou deskriptora SIFT, ktorého vektor bol 

rozšírený o ďalšie 2 hodnoty na základe hĺbkovej mapy zo senzora kinect.  

Na túto aplikáciu sme v našom riešení nadviazali a rozhodli sa viac venovať 

potenciálu rozpoznávania objektov pomocou hĺbkovej informácii. Na trh sa dostala nová 

verzia Kinect založená na metóde „času letu“ (time of flight), ktorá sľubuje presnejšie 

meranie vzdialeností. 

Kaskádové rozpoznávanie 

Vďaka lepšiemu hĺbkovému senzoru sme sa v práci rozhodli vytvoriť vlastný hĺbkový 

deskriptor, ktorý by bol schopný rozpoznávať objekty. Vzhľadom na fakt, že hĺbkové dáta 

stále nedosahujú dostatočnú kvalitu ako dáta farebnej kamery, rozhodli sme sa daný hĺbkový 

deskriptor použiť ako prvý vstup pre pre-selekciu objektov z daného naučeného datasetu. 

Tým pádom môžeme niektoré objekty, ktoré neprešli hĺbkovým deskriptorom vylúčiť, 

a neskôr vo fáze rozpoznávania objektov pre deskriptory založené na textúre urýchliť celkové 

rozpoznávanie. Zároveň vďaka hĺbkovej informácii pred samotnú hĺbkovú detekciu vieme 

pridať rozlíšenie objektov na základe tvaru jeho povrchu. Môžeme tak rozdeliť objekty 

s rovnou plochou od ostatných objektov. 

Detekcia kľúčových bodov 

Pre detekciu kľúčových bodov pri vytváraní vlastného hĺbkového deskriptora 

používame body, ktoré boli detegované pre deskriptory v ďalšej úrovni rozpoznávania. 

Neskoršie testy ukazujú na vhodnosť využitia týchto bodov a je tak možné ušetriť čas, kde ich 

pre hĺbkové dáta nemusíme znova detegovať. Zároveň dochádza k zrýchleniu aj vďaka 

segmentácii, kde vďaka hĺbkovej informácii ktorú máme k dispozícii dokážeme určiť pozadie 

objektu a odstrániť všetky kľúčové body, ktoré objektu nepatria. 
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Deskripcia kľúčových bodov 

Pri tvorbe deskriptora sme sa rozhodli použiť hviezdicový vzor zo štyroch 

trojuholníkov vzhľadom na fakt, že tri body trojuholníka môžeme použiť pri určovaní 

normálového vektora plochy, ktoré tieto body opisujú.  

 

Obrázok D.2. Vzor použitý pri tvorbe hĺbkového deskriptora. 

Vektor hĺbkového deskriptora bude obsahovať 4 hodnoty, ktoré budú vypočítané 

štatistickými metódami. Takto dosiahneme invariantnosť voči rôznym natočeniam. Zároveň je 

veľkosť daného vzoru prepočítaná na veľkosť 15 milimetrov, čím dosiahneme to, že hĺbkový 

deskriptor bude možné využiť pri detekcii objektov z rôznych vzdialeností. V nasledujúcej 

časti si opíšeme jednotlivé hodnoty deskriptora. 

Priemerný uhol 

Prvá hodnota deskriptora je daná priemerným uhlom na základe všetkých 

trojuholníkov vo vzore. Z normálových vektorov vypočítame priemernú normálu, od ktorej 

zisťujeme uhly k jednotlivým normálovým vektorom. Z týchto uhlov je následne zistený 

priemerný uhol. 
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Štandardná odchýlka 

 Druhá hodnota deskriptora je štandardná odchýlka hĺbkových hodnôt vypočítanej 

z hĺbok v bodoch trojuholníkov. 
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Kde N je počet všetkých bodov vo vzore. 

xi je vzdialenosť bodu od priemernej plochy. 

µ je priemerná vzdialenosť bodov od priemernej plochy. 

Rozdiel maximálne ja minimálnej hĺbky 

 Tretia hodnota predstavuje rozdiel maximálnej a minimálnej hodnoty hĺbky 

v jednotlivých bodoch vo vzore. 

Globálny uhol 

 Ako štvrtú hodnotu sme sa rozhodli pozrieť na objekt globálne. Zistili sme si 

priemerný normálový vektor pre celý objekt cez všetky vzory. Následne sme si pre každý 

deskriptor uložili hodnoty uhlu medzi celkovým normálovým vektorom objektu 

a priemerným normálovým vektorom pre každý kľúčový bod. 
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Kde g


je priemerný normálový vektor celého objektu. 

v
 je priemerný normálový vektor kľúčového bodu. 
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Implementácia 

Na základe návrhu sme zostrojili hĺbkový deskriptor s danými parametrami. Pri 

implementácii sme použili jazyk C++ a nasledovné technológie: 
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 Object Recognizer[23] 

 OpenCV knižnica 

 Qt Framework 

 Kinect SDK v2.0 

Architektúra systému 

Pri implementácii sme dbali na rozdelenie jednotlivých modulov. Vytvorili sme 

knižnicu Kinect2X, ktorá má na starosti komunikáciu so zariadením Kinect ako aj mapovanie 

dát do formátu použiteľných pre OpenCV knižnicu. Zároveň knižnica ponúka mapovanie 

pozícií hĺbkových dát na pozície vo farebných dátach a naopak. 

Všetky funkcionality deskriptorov sme umiestnili do samostatnej knižnice s názvom 

Descriptor Library. Nachádza sa tu implementácia deskriptorov SIFT a ORB na grafickej 

jednotke ako aj naša implementácia hĺbkového deskriptora. 

Posledný modul tvorí samotná aplikácia, ktorá sa stará hlavne o používateľské grafické 

rozhranie a správu vlákien. 
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Obrázok D.3. Architektúra systému. 

Jednotlivé časti implementácie v podobe pseudo kódov sú popísané v anglickej verzii 

implementácie. 

Výsledky 

Pri zhodnocovaní výsledkov sme vykonali viacero experimentov. V prvom rade nás 

zaujímal počet objektov, ktoré hĺbkový deskriptor posunie do ďalšej úrovne rozpoznávania. 

Vďaka pre-selekcie môžeme následne porovnať čas vykonávania rozpoznávania, ktorý by mal 

s rastúcim datasetom klesať. Výsledky jednotlivých testov nájdeme na nasledujúcich 

obrázkoch. 
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Obrázok D.4. Počet objektov ktoré prešli pre-selekciou. 

 

Obrázok D.5. Porovnanie času rozpoznávania pri použití deskriptora SIFT s hĺbkovým deskriptorom 

a samostatného deskriptora SIFT. 

Zhodnotenie a záver 

V práci sme analyzovali jednotlivé metódy detekcie a zamerali sa hlavne na detekciu 

pomocou lokálnych deskriptorov. Preskúmali sme oblasť rozpoznávania objektov, kde bola 

využitá aj hĺbková informácia z dostupných senzorov. Rozhodli sme sa pre vlastnú 

implementáciu hĺbkového deskriptora, ktorá bola úspešná a zároveň pomáha v redukcii času 

rozpoznávania so zvyšujúcim sa počtom natrénovaných objektov. Hĺbkový deskriptor 
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prepustí do ďalšej úrovne rozpoznávania väčšinou vždy aj objekt, ktorý hľadáme a zhoršenie 

presnosti o 3.32% považujeme za akceptovateľné. 

Problematika detekcie je stále ešte nepreskúmaná a možností vylepšenia detekcie 

neubúda. Medzi ďalšie možné spôsoby rozpoznania objektov napríklad môže patriť 

porovnanie veľkosti samotného objektu, prípadne porovnanie farebného histogramu. 
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3D object recognition based on local descriptors 

 

Marek Jakab1, Wanda Benesova2, Marek Racev3, 

Slovak University of Technology, Faculty of Informatics and Information Technologies, Slovakia 

ABSTRACT 

In this paper, we propose an enhanced method of 3D object description and recognition based on local descriptors using 
RGB image and depth information (D) acquired by Kinect sensor. Our main contribution is focused on an extension of 
the SIFT feature vector by the 3D information derived from the depth map (SIFT-D). We also propose a novel local 
depth descriptor (DD) that includes a 3D description of the key point neighborhood. Thus defined the 3D descriptor can 
then enter the decision-making process. Two different approaches have been proposed, tested and evaluated in this 
paper. First approach deals with the object recognition system using the original SIFT descriptor in combination with our 
novel proposed 3D descriptor, where the proposed 3D descriptor is responsible for the pre-selection of the objects. 
Second approach demonstrates the object recognition using an extension of the SIFT feature vector by the local depth 
description. In this paper, we present the results of two experiments for the evaluation of the proposed depth descriptors. 
The results show an improvement in accuracy of the recognition system that includes the 3D local description compared 
with the same system without the 3D local description. Our experimental system of object recognition is working near 
real-time. 

Keywords: local descriptor, depth descriptor, SIFT, segmentation, Kinect v2, 3D object recognition 

1. INTRODUCTION 

Visual object recognition is still one of the biggest challenges in computer vision. One of the promising ways to 
approach this challenge seems to be the usage of local descriptors. The bottom-up approach using local descriptors is 
widespread and has also been the focus of research interest all over the world in recent years. Object recognition methods 
based on local descriptors are potentially applicable for applications working in near real time and the method also 
provides invariance to different illumination, scale, angle or rotation of the object, even if limited. Our goal is to provide 
a novel local descriptor which will extend the local description derived from an RGB image with a description of the 
neighborhood of a key point in the depth image (D). Therefore we can use the RGB-D sensors providing us with a color 
(RGB) and also a depth image (D). 

Our main contribution is focused on the extension of the object recognition method using a SIFT feature vector by the 
3D information derived from the depth mask. In this paper, we propose a novel local depth D-descriptor which 
represents a 3D description of the key point neighborhood. As so defined, the 3D descriptor can then enter into the 
decision-making process. Two different approaches could be considered: 

- Object recognition using the original SIFT descriptor in combination with our novel proposed 3D descriptor, 
where the proposed 3D descriptor is responsible for the pre-selection of the objects. 

- Object recognition using an extension of the SIFT feature vector by the depth local description as for example: 
absolute value of the difference between the depth minimum and depth maximum in the local area, standard 
deviation of the depth value in the local area. 

In this paper, we present the results of two experiments for the evaluation of the proposed depth descriptors. 

                                                           
1 marko.jakab@gmail.com 

2 vanda_benesova@stuba.sk 
3 marek.racev@gmail.com 



 

 

 
 

Object recognition using local descriptors is typically based on the paired matching of all the trained object data with the 
data derived from an unknown object. The problem of a growing time requirement and a decreasing recognition accuracy 
becomes serious with the increasing number of objects in a dataset.  Our first experiment is based on the idea that depth 
description will be used in the pre-selection step. We propose the usage of the RGB-D data obtained from the Kinect v2 
sensor device for the purpose of a pre-selection of the objects for a subsequent SIFT-matching-based object recognition.  
That means that only a selected part of the objects from the trained dataset will be accepted by the first recognition part 
which uses the depth descriptors. Hence, the calculation time needed for the following SIFT matching will not exceed 
certain limits with growing number of objects in the dataset. For the purpose of the pre-selection, we use the information 
which provides us with complex and relatively precise measurements of the depth area around each of the key points. 
This information is statistically evaluated and then used in the descriptor creation. 

In addition, object depth information could be used for a more global object description based on depth information, as 
for example the “global flatness” of an object. 

The goal of the pre-selection is to speed up the decision process and also to improve the achieved recognition accuracy. 
The hardware setup for the presented evaluation has been completed using the Kinect v2 sensor device. 

In the second experiment the well-known SIFT descriptor was extended by two values derived from the local depth 
description in the neighborhood of the key point.  In the experiment, a whole recognition system has been evaluated in 
two ways: including original SIFT descriptor and our proposed extended descriptor SIFT-D. 

2. RELATED WORK 

The most relevant papers which present the research related to object recognition concerning both RGB and depth image 
(RGB-D) have been taken into consideration. 

Normal Aligned Radial Feature (NARF) [1] [2] descriptor is able to extract and describe features from the 3D image 
data. The NARF descriptor has been developed with the goal to achieve two important objectives necessary for the 
object recognition. Firstly, the algorithm needs to select those key points which are located in the stable surface region. 
The reason is the robustness of the algorithm, since without this constraint, errors can occur in the computing of the 
normal vector in the point. Hence, these errors can subsequently cause errors in the matching phase. The second rule 
concerns finding the useful key points. Considering the fact that the 3D data are taken from the devices which are able to 
take only partial 3D image of the scene (like laser scanners, stereo camera or the Kinect device), shapes of the object will 
be different for different views of the object. Therefore, unique and high-quality selection of the key points is of high 
importance. The NARF descriptor uses star pattern for filling the descriptor. This means that way that each line of a star 
represents how different the pixel value is under the line. 

Another depth descriptor is called Color-Signature of Histograms of Orientations (CSHOT) [3] [4] (color signatures of 
histograms). This descriptor contains both shape and texture information suitable for RGB-D (RGB & Depth) matching. 
The basic idea of forming this descriptor is the eigenvalue decomposition of the scatter matrix around the key point. A 
spherical grid is created around the point it could form a histogram of normal vectors defined for each sector of the grid. 
This descriptor could be an example of merging both color and depth information in one single descriptor. 

Nascimento, Erickson R., et al. have proposed a Binary Robust Appearance and Normals Descriptor (BRAND) [5] 
which combines the appearance and geometric shape information from RGB-D images. In the first step, the scale factor 
using the depth information from RGB-D image is calculated. The scale factor is then used in the next step (dominant 
direction estimation) and in the feature analysis in the key point's vicinity. At last, the authors combine both appearance 
and geometric information to create key point descriptors that are expected to be robust, fast and lightweight. The 
authors also demonstrate that the descriptor is robust, invariant to rotation and scale, and provides reliable results in a 
registration task even when a sparsely textured and poorly illuminated scene is used. The main constraint of this method 
is, that a small irregularities of these surfaces can be confused with noise. 

Lowe proposed a Scale Invariant Feature Transform (SIFT) [6]. SIFT combines a scale invariant region detector and a 
descriptor based on the gradient distribution in the detected regions. The main idea of the descriptor is to compose the 
local histograms of gradient locations and gradient orientations in one vector, wherein the contribution to the location 
and orientation in histogram bins is weighted by the gradient magnitude. The quantization of gradient locations and 
orientations makes the descriptor robust to small geometric distortions and small errors in the region detection. The 



 

 

 
 

descriptor is finally arranged as a 128-dimensional vector of float numbers. The SIFT [6] descriptor is one of the older 
descriptors, but still robust, scale and rotation invariant and widely used. 

3. DEPTH DESCRIPTOR (DD) 

3.1 Descriptor pattern 

To fill the descriptor vector, we use a star pattern created by four triangles which are rotated around the selected key 
point. Four triangles determine 12 points and the depth distances value of these 12 points are used in the computing of 
the depth descriptor vector. Each triangle defines a plane and hence the normal vectors of the planes could be calculated 
and subsequently used in the descriptor. 

 

Figure 1. Star pattern around the key point P. 

The points in the star pattern are defined with the constraint that the maximum distance radius in the real world metric is 
set to 15mm. To make the algorithm more robust, we can add more star patterns with different size radii. 

 

Figure 2. Visualization of dynamic change of the triangle size according to the depth. 



 

 

 
 

 
Figure 3. Visualization of descriptor pattern on trained object. 

3.2 Descriptor vector 

Four features, which are derived by statistical evaluation, have been taken for the definition of the depth feature vector. 
Three of them are based on the local surface description and the fourth feature also takes into account the global 
information of the object as will be described later in the chapter. In addition, we filter out those triangles which cannot 
provide the depth value in at least one point. 

1st feature value derived from average angle referenced to a normal vector 

The first feature in the depth feature vector is derived from the average angle of the normal vectors given by all triangles 
in the key point. Therefore we need to compute four normal vectors - one for each of the four triangles given by the 
pattern. Then the corresponding average vector of this key point will be calculated. This vector will be used as a 
reference in the next evaluation. In the next step, we can compute the difference angle between each of the normal 
vectors and the reference normal vector. 

The first value of our depth descriptor F_avgAngle will be then calculated as follows: 
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Where N is the number normal vectors/triangles. 

mv


is the average normal vector. 

iu


 is the normal vector given by triangle. 

2nd feature value derived from standard deviation of depth referenced to a plane perpendicular to the averaged 
normal vector 

The second feature was proposed with the goal to create an efficient description of the local depth differences. To yield 
at least some acceptable kind of rotation and distance invariance of this feature, it is necessary to define a reference plane 
which is invariant to object rotation and to distance from the sensor. For this purpose, we have chosen the plane which is 
perpendicular to the reference averaged normal vector described in the previous section. The descriptor value is then 
given by the standard deviation of the depth differences between the actual depth value in a point and the reference 
plane. All points given by the descriptor pattern (see section 3.2.1.) shall enter into the evaluation. 
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Where N is the number of all points in the descriptor pattern (see section 3.1). 

xi is the distance of the depth value from the reference plane in the point i. 

  µ  is the mean value of xi (i=1...n). 



 

 

 
 

3rd feature value derived from the difference between the maximum and minimum depth values referenced to a 
plane perpendicular to the averaged normal vector 

Calculation of the depth value referenced to the reference plane is similar to those described in the previous section. 
Instead of the previous statistical evaluation by standard deviation, the simple difference between the maximum and 
minimum value of the recalculated depth value was taken into account as the next feature value. 

Calculation of these values can be done very efficiently. The maximum and minimum value can be incorporated into the 
process of the calculation of the previous feature: standard deviation. 

4th feature value derived by using a global angle 

The previous three features‘ values have been designed as a local description without any global reference. The goal of 
the fourth feature value is to take into consideration also the global orientation of the object and hence a global normal 
vector was defined for this reason. The global normal vector is calculated as the average vector value out of all local 
normal vectors across all key points. This feature can provide additional information about the flatness of the object. 
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Where g


 is the global average normal vector through all key points. 

v


 represents the local average normal vector at a given key point. 
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The next figure shows a visualization of the difference angle between the global normal vector and local reference 
average normal vector. The bottom bar shows the possible values of color scale normalized into the range 0-1. The mean 
value of all angles is visualized as a black dot within the bar. 

 
Figure 4. Visualization of angle at the given key point with global normal vector. 

3.3 Invariance 

The original SIFT descriptor is invariant to different scale, rotation and small perspective transformation of the object. 
Our goal is to develop a local depth descriptor which will extend the SIFT descriptor and hence we also aim to achieve a 
comparable rotation and scale invariance. 

 



 

 

 
 

Scale invariance 

The 3D information should be taken into account for the scale definition of the depth descriptor. As we know the 
distance of the selected key point from the sensor, we can easily determine the corresponding neighborhood size in 
pixels around the key point according to the real world distance. 

Rotation & perspective invariance 

To achieve invariance to different rotations of the object, we aim to fill the descriptor with the information which is 
defined as independent of the rotation and angle of the object. We have already described those values in previous 
chapters. 

4. EXTENSION OF THE SIFT FEATURE VECTOR BY THE LOCAL DEPTH DESCRIPTION 

Our idea was to extend the 128 feature values of the SIFT descriptor by additional feature values derived from the depth 
map which can provide additional local information. For this purpose we need to calculate a normal vector to the local 
area given by the key point. Then the local area around the key point will be transformed so that this normal vector is in 
the direction of the view. This transformation results in a new depth map which will be used for the next calculation of 
the additional features. 

4.1 Extended SIFT feature vector (SIFT-D) 

The first additional feature used in the extended feature vector is a standard deviation of the depth values in the local area 
surrounding the key point. The reference plane for the depth calculation is the plane perpendicular to the normal vector. 
Unlike the depth descriptor (DD) described above, the standard function in the PCL library was used for the calculation 
of the normal vector in the key point instead of the triangle pattern. 
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Where I(x, y) is a depth value at the position with coordinates x, y. 

Ir is a number of rows in the segment. 

Ic is a number of columns in the segment. 

The second additional feature used to extend the feature vector is the difference between the maximum and minimum of 
the depth values in the described area [mm]. 

 )min()max( II   (7) 

An intuitive interpretation of the presented maximum range feature value is similar to the interpretation presented above: 
in case of a flat area the feature value is near or equal to zero. 

If the corresponding normal vector was not able to be calculated due to the missing values in the depth map, zero values 
in place of both extending features are used. 

 

Figure 5. The extended proposed feature vector SIFT-D. 

Actually, the development of the extension features was greatly limited by the depth map quality. The next limitation is 
given by the resolution of the depth sensor in relation to the recognized object size. For example, the NARF descriptor 



 

 

 
 

can describe the area in much more detail, but the NARF-described area in the size of about 20 x 20 cm in real world 
coordinates is too large and hence not usable for our tested objects. 

5. EXPERIMENTAL SETUP 

5.1 Dataset 

Our tested dataset was related to the final application: a self checkout in a shop. The set of toys fulfill very well the 
requirements of the application. The set also has a large variability necessary for the testing. Hence, various toys of 
different size and shape were chosen. The same example of the toys in the dataset are presented in the figure 6. 

 

Figure 6. Objects used for training and measurement. 

5.2 Hardware and software implementation 

In the experiment for the evaluation of the proposed depth-based pre-selection the following hardware was used:  

- Laptop with CPU Intel Core i7, 3632QM, 2.2 GHz, GPU NVidia GeForce GT635M and RAM 8GB DDR3 
1600Mhz. 

The test program was implemented in C++ with the library OpenCV. In the second experiment the PCL library was also 
included. 

Implementation of the SIFT feature extraction and description was computed on the GPU unit [7]. Thanks to the GPU 
implementation we are able to use full HD images for color description and still provide the results in near real time. 

Kinect v2 provides significantly higher depth fidelity (depth accuracy +- 1mm) and depth resolution (512 x 424) 
compared with the previous Kinect device. 

Resolution of the RGB-D image acquired by Kinect v2 in the experiment with depth descriptor is presented in the next 
table: 

Table 1.  Image settings for color and depth processing. 

Image Description 

Color image 1080p, 1920x1080 color image from 
Kinect v2 RGB sensor 

Depth image 512x424 pixel resolution image from 
Kinect v2 Depth sensor 

An older version of sensor Kinect (Kinect for Windows) was used in the experiment presented as the extension of SIFT 
descriptors 

The project and the source code are available on the web page: 

http://vgg.fiit.stuba.sk/3d-object-recognition/ 

 

http://vgg.fiit.stuba.sk/3d-object-recognition/


 

 

 
 

6. PROPOSED DEPTH DESCRIPTOR (DD) EVALUATION 

6.1 Overview of the processing pipeline 

The whole pipeline of the experimental setup is presented in the next figure. 

 

Figure 7. Pipeline of the experimental setup. 

6.2 Object segmentation in the D image and geometric alignment of the RGB and D images 

The first step in the processing pipeline is the object segmentation. Methods which used the RGB-D sensor and, hence, 
the depth image for the segmentation of 3D objects can overcome the methods of segmentation using RGB image in 
lower computational complexity and also in the achieved robustness. 

A presumption of the proposed method is the object position in the captured scene, which means that the unknown object 
is positioned as the nearest object to the Kinect sensor. In our approach we use the method of growing regions, where a 
seed point of the segmentation is the nearest point to the Kinect device detected in the depth image. The result of the 
segmentation is a binary mask. The border of the mask can produce misleading key points which are not inside of the 
object and hence a morphological processing - erosion - of the mask is necessary. The segmentation step is crucial for 
the recognition as we can easily filter out most of the undesired key points and speed up the matching phase. 

Because of the different resolution of the depth sensor and the color camera, we need to geometrically align the both 
frames RGB and D. Then we can apply the binary segmentation mask on the geometrically aligned RGB image. 

 
Figure 8. Object segmentation based on the depth. 

6.3 Key point selection 

In the next step, the SIFT detector is used for the calculation of all the key points in the segmented area. As mentioned, 
our real-time system already uses published implementation of the SIFT detector and SIFT descriptor calculated on the 
graphical processor unit (GPU). 

The information about the SIFT key point position is then used by the depth-based pre-selection step which will be 
described in chapter 6.4 in more detail. The result of this step is a subset of selected objects which satisfy the depth 
examination. This subset will then serve as an input for the SIFT brute-force matching recognition. 



 

 

 
 

6.4 Matching 
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Figure 9. Reference method for matching without any pre-selection. 
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Figure 10. Proposed matching with pre-selection. 

For the evaluation of the tested recognition system we have used the standard implementation of the brute-force 
matching. The Euclidean distance in the SIFT feature for each pair of the features will be calculated and subsequently the 
two best matches for each query are taken into consideration. 

The proposed pre-selection method is compared with matching without any pre-selection which serves as a reference 
method. 

7. RESULTS 

7.1 Evaluation of the depth descriptor (DD) based pre-selection 

The goal of the experimental setup is to prove the ability of a depth description based pre-selection of objects in a dataset 
which should be used in the subsequent recognition system. The choice of the recognition system can be free in general, 
but we use a SIFT brute-force matching in our experimental system and we also exploit synergies in SIFT key point 
detection. 

In the evaluation, we are looking for an answer to the question: how many objects of the whole dataset fulfill the pre-
selection step with the expectations that the correct corresponding template is included in the pre-selected subset. The 
number of objects accepted in the pre-selection step “Depth recognition” in relation to the growing size of the dataset is 
presented in the next figure: 
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Figure 11. Average number of objects passed depth descriptor matching. 

We can see that the depth descriptor is able to remove large numbers of trained objects and hence decrease the time of 
the color matching. The tested input dataset was growing from 5 to 25 and the number of objects accepted in the pre-
selection did not extend the number: 3. The mean value of accepted objects was: 2.03. 

7.2 Evaluation of the extended SIFT (SIFT-D) 

In the second experiment we tested how an extension of the SIFT descriptor by the depth local description can improve 
the recognition accuracy. We will address this descriptor as SIFT-D in the following description. 

The segmentation part of the processing pipeline and key point detection are similar to those described in the previous 
section. Then for each of the detected SIFT key points there will be a SIFT and, alternatively, a SIFT-D descriptor 
calculated. 

The recognition has been evaluated in the whole recognition system using SIFT compared with the same recognition 
system using SIFT-D instead of SIFT. 

The matching strategy was proposed by Lowe and is similar to the matching strategy used in our first experiment 
described in section 3. In this matching strategy the acceptance of a matched pair is given by the relation of the 
Euclidean distances of two nearest neighbors. 
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If the relation of distances d(a,b1)  and d(a,b2) is < threshold t, the pair (a ,b1) will be accepted. This threshold will be 
also applied in the described bi-directional matching strategy. The traditional RANSAC algorithm follows this step 
before the final decision will be achieved. 

Whether the template is corresponding to the investigated object or not depends on the ratio of accepted symmetrical 
correspondences R to the sum of correspondences in one direction A  and the opposite direction B. 

An object will be recognized if the following condition has been satisfied. 

 
||||

||2
BA

R
c




  (9) 

Where c is the final threshold of positive/negative decision. In our evaluation there was c= 0.1. 

25 objects (toys) of the dataset were used in the training phase. The recognition system was tested 10 times for each 
object and each of both descriptors (SIFT and SIFT-D). 



 

 

 
 

The results of this evaluation are presented in the next table. 

Table 2. SIFT-D evaluation. 

 correct recognized  - direct view correct recognized  - variable view 

SIFT 99% 94.5% 

SIFT-D 100% 97% 

8. CONCLUSION AND FUTURE WORK 

Two strategies for including the depth information into the local descriptors have been proposed, implemented and 
tested. 

The Depth Descriptor (DD) was used for the reduction of the object from the dataset which will be passed into the next 
recognition section. The proposed feature is composed of four different depth descriptions in the neighborhood of a key 
point. Using this descriptor, the number of the pre-selected objects could be significantly reduced. 

The SIFT descriptor extended by the local depth information has been also tested and evaluated. The recognition rate 
was quite high using the SIFT descriptor, but the contribution of the SIFT-D descriptor brought a still better result of 
successful recognition. 
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Abstract. In this paper, we propose an enhanced method of 3D object 
description and recognition based on local descriptors using RGB image and 
depth information (D) acquired by Kinect v2 sensor. Our main contribution is 
focused on a novel local depth descriptor (DD) that includes a 3D description 
of the key point neighborhood. Thus defined the 3D descriptor can then enter 
the decision-making process. New approach has been proposed, tested and 
evaluated in this paper that deals with the object recognition system using the 
original SIFT descriptor in combination with our novel proposed 3D 
descriptor, where the proposed 3D descriptor is responsible for the pre-
selection of the objects. The results show an improvement in speed of the 
recognition system. 

1 Introduction 

Visual object recognition is still one of the biggest challenges in computer vision. One of the 
promising ways to approach this challenge seems to be the usage of local descriptors. Object 
recognition methods based on local descriptors are potentially applicable for applications working 
in near real time and the method also provides invariance to different illumination, scale, angle or 
rotation of the object, even if limited. Our goal is to provide a novel local descriptor which will 
extend the local description derived from an RGB image with a description of the neighborhood of 
a key point in the depth image (D). 

In this paper, we propose a novel local depth D-descriptor which represents a 3D description 
of the key point neighborhood. As so defined, the 3D descriptor can then enter into the decision-
making process where the proposed 3D descriptor is responsible for the pre-selection of the 
objects. 

Object recognition using local descriptors is typically based on the paired matching of all the 
trained object data with the data derived from an unknown object. The problem of a growing time 
requirement and a decreasing recognition accuracy becomes serious with the increasing number of 
objects in a dataset. We propose the usage of the RGB-D data obtained from the Kinect v2 sensor 
device for the purpose of a pre-selection of the objects for a subsequent SIFT-matching-based 
object recognition. That means that only a selected part of the objects from the trained dataset will 
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be accepted by the first recognition part which uses the depth descriptors. Hence, the calculation 
time needed for the following SIFT matching will not exceed certain limits with growing number 
of objects in the dataset. 

2 Related Work 

The most relevant papers which present the research related to object recognition concerning both 
RGB and depth image (RGB-D) have been taken into consideration. 

Example of combined texture & shape descriptor is Color-Signature of Histograms of 
Orientations (CSHOT) [1] [2]. This descriptor contains both shape and texture information 
suitable for RGB-D (RGB & Depth) matching. The basic idea of forming this descriptor is the 
eigenvalue decomposition of the scatter matrix around the key point. A spherical grid is created 
around the point it could form a histogram of normal vectors defined for each sector of the grid. 

Binary Robust Appearance and Normals Descriptor (BRAND) [3] is the descriptor which 
combines the appearance and geometric shape information from RGB-D images. In the first step, 
the scale factor using the depth information from RGB-D image is calculated. The scale factor is 
then used in the next step (dominant direction estimation) and in the feature analysis in the key 
point's vicinity. The authors combine both appearance and geometric information to create key 
point descriptors that are expected to be robust, fast and lightweight. The authors also demonstrate 
that the descriptor is robust, invariant to rotation and scale, and provides reliable results even for 
sparsely textured and poorly illuminated scene. The main constraint of this method is, that a small 
irregularities of these surfaces can be confused with noise. 

Lowe proposed a Scale Invariant Feature Transform (SIFT) [4]. SIFT combines a scale 
invariant region detector and a descriptor based on the gradient distribution in the detected regions. 
The main idea of the descriptor is to compose the local histograms of gradient locations and 
gradient orientations in one vector, wherein the contribution to the location and orientation in 
histogram bins is weighted by the gradient magnitude. The quantization of gradient locations and 
orientations makes the descriptor robust to small geometric distortions and small errors in the 
region detection. The descriptor is finally arranged as a 128-dimensional vector of float numbers. 
The SIFT descriptor is one of the older descriptors, but still robust, scale and rotation invariant and 
widely used. 

3 Depth Descriptor (DD) 

3.1 Descriptor Pattern 

 

Figure 1. Star pattern around the key point P. 
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To fill the descriptor vector, we use a star pattern created by four triangles which are rotated 
around the selected key point. Four triangles determine 12 points and the depth distances value of 
these 12 points are used in the computing of the depth descriptor vector. Each triangle defines a 
plane and hence the normal vectors of the planes could be calculated and subsequently used in the 
descriptor. The points in the star pattern are defined with the 15mm constraint radius. 

3.2 Descriptor vector 
Four features, which are derived by statistical evaluation, have been taken for the definition of the 
depth feature vector. Three of them are based on the local surface description and the fourth 
feature also takes into account the global information of the object. 
1st feature value derived from average angle referenced to a normal vector 
The first feature in the depth feature vector is derived from the average angle of the normal vectors 
given by all triangles in the key point. Therefore we need to compute four normal vectors - one for 
each of the four triangles given by the pattern. Then the corresponding average vector of this key 
point will be calculated. This vector will be used as a reference in the next evaluation. In the next 
step, we can compute the difference angle between each of the normal vectors and the reference 
normal vector. 
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Where N is the number normal vectors/triangles. 

mv


is the average normal vector. 

iu


 is the normal vector given by triangle. 

2nd feature value derived from standard deviation of depth referenced to a plane 
perpendicular to the averaged normal vector 
The second feature was proposed with the goal to create an efficient description of the local depth 
differences. The descriptor value is then given by the standard deviation of the depth differences 
between the actual depth value in a point and the reference plane which is computed from average 
normal vector. 
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Where N is the number of all points in the descriptor pattern (see section 3.1). 
xi is the distance of the depth value from the reference plane in the point i. 

  µ  is the mean value of xi (i=1...n). 
3rd feature value derived from the difference between the maximum and minimum depth 
values referenced to a plane perpendicular to the averaged normal vector 
Calculation of the depth value referenced to the reference plane is similar to those described in the 
previous section. Instead of the previous statistical evaluation by standard deviation, the simple 
difference between the maximum and minimum value of the recalculated depth value was taken 
into account as the next feature value. 
4th feature value derived by using a global angle 
The previous three feature values have been designed as a local description without any global 
reference. The goal of the fourth feature value is to take into consideration also the global surface 
of the object. The global normal vector is calculated as the angle between pattern normal vector 
and average vector value out of all local normal vectors across all key points. 
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Where g


 is the global average normal vector through all key points. 

v


 represents the local average normal vector at a given key point. 

3.3 Invariance 
The original SIFT descriptor is invariant to different scale, rotation and small perspective 
transformation of the object. Our goal is to develop a local depth descriptor which will extend the 
SIFT descriptor and hence we also aim to achieve a comparable rotation and scale invariance. 
Scale invariance 
The 3D information should be taken into account for the scale definition of the depth descriptor. 
As we know the distance of the selected key point from the sensor, we can easily determine the 
corresponding neighborhood size in pixels around the key point according to the real world 
distance. 
Rotation & perspective invariance 
To achieve invariance to different rotations of the object, we aim to fill the descriptor with the 
information which is defined as independent of the rotation and angle of the object. We have 
already described those values in previous chapters. 

4 Experimental setup 

4.1 Dataset 
Our tested dataset was related to the final application: a self-checkout in a shop. The set of toys 
fulfill very well the requirements of the application. The set also has a large variability necessary 
for the testing. Hence, various toys of different size and shape were chosen. 

 

Figure 2. Objects used for training and measurement. 

4.2 Hardware and software implementation 
In the experiment for the evaluation of the proposed depth-based pre-selection the following 
hardware was used: Laptop with CPU Intel Core i7, 3632QM, 2.2 GHz, GPU NVidia GeForce 
GT635M and RAM 8GB DDR3 1600Mhz. 

The test program was implemented in C++ with the library OpenCV. Implementation of the 
SIFT feature extraction and description was computed on the GPU unit [5]. Thanks to the GPU 
implementation we are able to use full HD images for color description, 512 to 424 pixels for 
depth image and still provide the results in near real time. The project and the source code are 
available on the web page: http://vgg.fiit.stuba.sk/3d-object-recognition/ 
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5 Overview of the processing pipeline 

 

Figure 3. Pipeline of the experimental setup. 

5.1 Object segmentation in the D image and geometric alignment of the RGB and 
D images 

The first step in the processing pipeline is the object segmentation. Methods which used the RGB-
D sensor and, hence, the depth image for the segmentation of 3D objects can overcome the 
methods of segmentation using RGB image in lower computational complexity and also in the 
achieved robustness. 

In our approach we use the method of growing regions, where a seed point of the 
segmentation is the nearest point to the Kinect device. The result of the segmentation: binary mask 
will be used to retrieve the object texture. The segmentation step is crucial for the recognition as 
we can easily filter out most of the undesired key points and speed up the matching phase. 

 

Figure 4. Object segmentation based on the depth. 

5.2 Key point selection 
In the next step, the SIFT detector is used for the calculation of all the key points in the segmented 
area. The information about the SIFT key point position is then used by the depth-based pre-
selection step. 

5.3 Matching 
For the evaluation of the tested recognition system we have used the standard implementation of 
the brute-force matching. The Euclidean distance in the SIFT feature for each pair of the features 
will be calculated and subsequently the two best matches for each query are taken into 
consideration. The proposed pre-selection method is compared with matching without any pre-
selection which serves as a reference method. 
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6 Evaluation of the depth descriptor (DD) based pre-selection 

The goal of the experimental setup is to prove the ability of a depth description based pre-selection 
of objects in a dataset which should be used in the subsequent recognition system. The choice of 
the recognition system can be free in general, but we use a SIFT brute-force matching in our 
experimental system. We can see that the depth descriptor is able to remove large numbers of 
trained objects and hence decrease the time of the texture matching. Next figure show us the 
number of objects which passed through the pre-selection phase across several experiments. 

 

Figure 5. Average number of objects passed depth descriptor matching. 

Over several experiments, the matching speed improved by 10 – 20 % when the object was 
compared against the dataset of 35 objects (at the mentioned setup: ~100ms per object with SIFT 
descriptor and ~80ms per object when Depth + SIFT was used). While the results improve with 
increasing dataset, we also noticed slightly negative speed effect for the first ~15 learned objects. 

7 Conclusion 

The Depth Descriptor (DD) was used for the reduction of the object from the dataset which will be 
passed into the next recognition section. The proposed feature is composed of four different depth 
descriptions in the neighborhood of a key point. Using this descriptor, the number of the pre-
selected objects could be significantly reduced together with recognition time. 
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