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Abstract

Biometric authentication is a form of identity verification, which re-
lies on user’s distinctive physiological or behavioral characteristics.
This thesis presents an evaluation of Hand Movement, Orientation
and Grasp (HMOG), a new behavioral biometric for continuous au-
thentication of smartphone users during typing. HMOG unobtru-
sively captures subtle micromovement and orientation dynamics re-
sulting from how a user grasps, holds, and taps on the smartphone.
We evaluated the authentication performance of HMOG features on
typing data collected from 100 subjects under two conditions: sit-
ting and walking. Combining HMOG with the state-of-the-art (tap
characteristics and keystroke dynamics) improved the performance
in walking (the best achieved EER lowered from 10.51% to 6.92%).
For sitting users, the performance improved in shorter authentica-
tion scans (e.g., from 19.11% to 15.44% for 20-second authentication
scan).
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Chapter 1

Introduction

Most methods of smartphone user authentication are based on a pass-
word, usually a personal identification number (PIN) or a touch-
screen gesture [16]. The password has to be entered for the access
to the system to be granted. The main drawbacks of password-based
authentication are that

• the password can be forgotten or stolen [29]; and
• the need to enter the password can be so irritating for the user,

that she may completely disable the password protection [2].
Both of these problems can be eliminated by authenticating the

user continuously, using her behavioral patterns (biometrics). No
password can be taken away or forgotten, as the key to authenti-
cation is the user’s behavior itself. Furthermore, the authentication
process is non-intrusive and proceeds continuously while the user
interacts with the phone. Continuous authentication can also be used
as an additional line of defense to password-based methods [16].

In this thesis, we present evaluation of Hand Movement, Ori-
entation, and Grasp (HMOG): a new behavioral biometric for con-
tinuous authentication of smartphone users during typing. HMOG
uses accelerometer, gyroscope, and magnetometer readings to unob-
trusively capture subtle hand micromovements and orientation pat-
terns generated when a user taps on the screen.

HMOG biometric is founded upon two core building blocks of
human prehension [30]: stability grasp, which provides stability to
the object being held; and precision grasp, which involves precision-
demanding tasks like tapping a target. We view the act of holding a
phone as a stability grasp and the act of touching targets on the touch-
screen as a precision grasp. We hypothesize that the way in which
a user “distributes” or “shares” stability and precision grasps while
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1. INTRODUCTION

interacting with the smartphone results in distinctive movement and
orientation behavior. The rationale for our hypothesis comes from
the following two bodies of research.

First, there is evidence (see [3, 22, 37]) that users have postural
preferences for interacting with hand-held devices like smartphones.
Depending upon the postural preference, it is possible that a user can
have her own way of achieving stability and precision—for example,
the user can achieve both stability and precision with one hand if the
postural preference involves holding and tapping the phone with the
same hand; or distribute stability and precision between both hands,
if the posture involves using both hands for holding and tapping; or
achieve stability with one hand and precision with the other.

Second, studies in ergonomics, biokinetics, and human-computer
interaction have reported that handgrip strength strongly correlates
with an individual’s physiological and somatic traits like hand length,
handedness, age, gender, height, body mass, and musculature (see,
e.g., [9, 15, 24]). If the micromovements generated from tapping re-
flect an individual’s handgrip strength, then the distinctiveness of
HMOG may have its roots in an individual’s physiological and so-
matic traits.

Motivated by the above, two types of HMOG features were pro-
posed: resistance features, which measure the micromovements of
the phone in response to the forces exerted by a tap gesture; and
stability features, which measure how quickly the perturbations in
movement and orientation, caused by tap forces, dissipate.

1.1 Contributions of This Thesis

This thesis is built upon the paper HMOG: A New Biometric Modal-
ity for Continuous Authentication of Smartphone Users by Zdeňka
Sitová, Jaroslav Šeděnka, Qing Yang, Ge Peng, Gang Zhou, Paolo
Gasti, and Kiran S. Balagani, which has been submitted for a jour-
nal review [34]. The paper proposes 96 HMOG features and evalu-
ates their performance for continuous authentication and biometric
key generation, using typing data collected from 100 subjects under
two conditions: sitting and walking. The paper also analyzes energy
consumption of HMOG feature computation.
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1. INTRODUCTION

Table 1.1: Summary of equal error rates (EERs) achieved with HMOG fea-
tures alone, and when fused with state-of-the-art features—tap characteris-
tics and keystroke dynamics (KD). The performance improved with longer
authentication scans. Here, we present results for the shortest (20 seconds)
and longest (140 seconds) authentication scans, with scaled Manhattan—
the best performing verifier, and with weighted sum score-level fusion.

Sit Walk

20-sec 140-sec 20-sec 140-sec

HMOG 21.95% 17.97% 18.53% 12.69%

Tap 20.99% 14.15% 21.22% 14.62%

HMOG + Tap 15.86% 11.68% 14.12% 8.63%

HMOG + Tap + KD 15.44% 10.2% 12.93% 7.07%

Tap + KD 19.11% 10.86% 17.93% 10.51%

In this thesis, we focus on the evaluation of continuous authen-
tication performance. Our extensive evaluation of HMOG features
on a dataset of 100 users1 who typed on the smartphone led to the
following findings (see Table 1.1 for summary of performance):

1. HMOG features extracted from accelerometer and gyroscope
signals outperformed HMOG features from magnetometer.

2. HMOG features achieved higher authentication accuracies for
walking compared to sitting. We investigated why HMOG had
a superior performance during walking by observing the per-
formance of HMOG during taps and between taps (i.e., the seg-
ments of the sensor signal that lie between taps) separately. Our
results suggest that HMOG can capture movements caused by
walking in addition to micromovements caused by taps.

3. Augmenting HMOG features with tap characteristics (e.g., tap
duration and contact size) considerably improved authentica-
tion performance.

4. HMOG features complement tap and keystroke dynamics fea-
tures, especially for short authentication scans at which tap and
keystroke dynamics features fare poorly.

1. The dataset is available at http://www.cs.wm.edu/˜qyang/hmog.html.
We also described the data and its release in a poster [38].
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1. INTRODUCTION

1.2 Organization

This thesis is organized as follows. We provide background on bio-
metrics and review related research in chapter 2, present the descrip-
tion of HMOG features in chapter 3, describe the details of our dataset
and evaluation methodology in chapter 4, present the results of the
authentication experiments in chapter 5, discuss the results in chap-
ter 6, and conclude this thesis in chapter 7.
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Chapter 2

Background and Related Work

2.1 Background: Biometrics

The focus of this thesis is continuous authentication with behavioral
biometrics—the HMOG modality.

Biometrics are automated methods of authentication based on
measurable human physiological (e.g. fingerprint or iris pattern) or
behavioral (e.g. voice sample or signature) characteristics [29]. These
characteristics can be referred to by different terms such as: traits,
indicators, identifiers or modalities [21]. Physiological biometrics are
usually more reliable and accurate than behavioral, as the physiolog-
ical characteristics are easier to repeat, and often are not affected by
current (mental) conditions such as stress or illness [28].

Identity verification (or authentication [21]) occurs when the user
claims to be in the system, and the system compares the biometric
data to only one record in the database. It is in contrast to identifi-
cation, where the user’s identity is unknown, and the user can be
anywhere in the database or may not be there at all [29].

There can be one entry point in the authentication process, e.g. the
user places her finger on a fingerprint reader; or the authentication
process can be continuous, e.g. the system can silently authenticate
the user each minute, using her previously collected data. The time
interval in which user is being authenticated is called authentication
scan or window.

The authentication process has two main phases, enrollment and
recognition [21].

Enrollment. During the enrollment phase, user’s data is collected,
processed and a template is stored in a database. The template typi-
cally consists of features, extracted from raw biometric data.
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2. BACKGROUND AND RELATED WORK

A user may fail to enroll. The most straightforward example of
the failure to enroll is when a user without fingers tries to get au-
thenticated with a fingerprint reader. However, the user may also
have poor quality ridges—Jain and Ross [20] claim that there is em-
pirical evidence that about 4% of the population’s fingers cannot be
easily recognized by some of the existing sensors. With behavioral
biometrics, failure to enroll can occur when the user does not exhibit
the behavior which is used to build the template. A user, who uses
voice control to compose messages, cannot use the HMOG modality
for her authentication.

Recognition. In the recognition phase, biometric data of a user who
tries to enter the system is compared to the template. The similarity
is expressed by a score, which can have different interpretations de-
pending on the comparison technique (verifier) used—typically the
distance of the data from the template, or the probability that the
data come from the template.

Genuine scores result from comparison of legitimate (genuine)
user to the template, impostor scores from comparison of impostor
user to the template. When the impostor is not trying to mimic gen-
uine user’s behavior, the impostor scores are called zero-effort.

The user can enter the system when her data are similar enough
to the template. A threshold specifies how similar the data has to
be to the template for the verification request to be accepted. Such a
threshold is established before the biometric system is implemented
in practice, using two performance metrics:

• False Acceptance Rate (FAR) = from all impostor users’s at-
tempts, percentage of attempts in which the impostor user is
incorrectly accepted (= percentage of incorrectly classified im-
postor scores from all impostor scores); and

• False Rejection Rate (FRR) = from all genuine user’s attempts,
percentage of attempts in which the genuine user is incorrectly
rejected (= percentage of incorrectly classified genuine scores
from all genuine scores).

In an ideal biometric system, both FAR and FRR are 0%. When the
acceptance threshold is changed and FAR decreases, FRR increases,
and vice versa. A single number is often reported as an accuracy
measure of a biometric system—Equal Error Rate (EER), which equals
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2. BACKGROUND AND RELATED WORK

to FAR and FRR at a threshold, where FAR = FRR. Lower EER means
better performance. The EER can be computed from scores of the
whole user population (population EER), or from each user’s data
individually (user-wise EER).

2.2 Related Work

In this section, we review related research and highlight differences
between existing work and our work.

Since HMOG features are collected during taps, we review ex-
isting work that uses tap activity to authenticate smartphone users.
(Other work on continuous smartphone users authentication include
swipe-based [16, 32] and gait-based [12, 36] behaviors.)

Trojahn and Ortmeier [35] used digraph, pressure and size of fin-
ger features extracted from a 7-digit or 12-letter long phrase and
achieved FAR 9.53% at FRR 5.88% on 35 users. The authors used an
artificial neural network based verifier. Authentication vector was
created by averaging seven samples.

Zheng et al. [39] reported averaged EER 3.65% on 80 users in-
putting 4- and 8-digit PINs. Features evaluated in this work were
pressure, size of finger (both measured at press and release), key
hold, key interval, and magnitude of acceleration and angular ve-
locity (at press, release, maximum, minimum and average of each
PIN digit). The authors used dissimilarity score verifier, and one au-
thentication vector corresponded to one tap.

Feng et al. [14] performed experiments on 40 users in fixed-text
setting with 5- to 60-character long authentication windows, achiev-
ing EER 1% with 40-characters long window. The authors used key
hold, key interval and pressure features, and performed 2-class veri-
fication with decision tree, Bayesian networks and random forest.

Gascon et al. [17] evaluated accelerometer, gyroscope and orien-
tation sensor1 based features extracted from a time window during
user’s typing burst. Twelve genuine users typed the same short pre-
defined text (≈ 160 characters) more than ten times, while other 303
impostors entered the text only once. There was a group of eight

1. Orientation sensor is a software-based sensor that derives its data from the ac-
celerometer and the geomagnetic field sensor [1].
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2. BACKGROUND AND RELATED WORK

users, which were hardly distinguishable (with AUC < 0.8); remain-
ing four users could be identified with average FAR 1% and FRR 8%.
The verifier was 2-class linear SVM.

Bo et al. [5] used mean magnitude of acceleration and angular
velocity during a gesture, as well as touch coordinates, touch pres-
sure, and touch event duration. Taps, scrolls and flings were cap-
tured from applications such as mail and social networks. Ten users
behaved as phone owners and 90 other users were using owner’s
phones as guests (with 50 guests in average for each owner). For sit-
ting users, mean FAR is 0% when making judgement after observing
13 taps, FRR almost approaches 0 with only 2 observations. The au-
thors rely on 2-class SVM, which justifies the extremely low EER. In
fact, the authors report accuracy 72.36% and FAR 24.99% with 1-class
SVM in sitting scenario. EER of gesture-based features in the walk-
ing scenario was higher than in sitting (FRR 18% after 4 gestures),
and therefore for walking users the authors rely on gait recognition,
achieving EER 0% after observing 3 gestures.

In Tables 2.1 and 2.2, we summarize the state-of-the-art in tap-
based authentication,2 and highlight various aspects of each work,
such as

1. how the taps were collected—did the user compose free-text or
type predefined fixed-text,

2. which body motion conditions (e.g., sitting and walking) were
considered,

3. number of subjects (including splitting subjects into owners
and attackers, wherever appropriate),

4. how the verifier was trained (training on both victim and im-
postor data usually allows lower EER compared to training on
victim data only),

5. how the authentication vector was created, and
6. which features were used (e.g., motion-sensor-, keystroke-, or

touch-based).

2. We review only studies that used taps from a virtual keyboard. See Clarke and
Furnell [10, 11], Buchoux and Clarke [6], Maiorana et al. [26], and Campisi et al.
[7] for papers that have performed tap-based authentication with a hardware key-
board.
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2. BACKGROUND AND RELATED WORK

Table 2.1: Comparison of our features with related work on smartphone
tap/typing authentication. ACC = for acceleration; AV = angular velocity;
MF = magnetic field.

Features Best result

Motion-based Tap Keystroke FAR FRR

Trojahn
et al. [35]

✗ pressure,
contact size

digraph 9.53% 5.88

Zheng
et al. [39]

magnitude of ACC
and AV at press,
release, max., min.,
and avg. of PIN

pressure,
contact size
at press and
release

key interval,
key hold

EER = 3.65%

Feng
et al. [14]

✗ pressure key interval,
key hold

EER = 1%

Gascon
et al. [17]

ACC, AV and ori-
entation features
extracted from
typing burst

✗ ✗ 1%a 8%a

Bo
et al. [5]

mean magnitude of
ACC and AV dur-
ing tap

coordinate,
pressure,
duration

✗ 0%b,
24.99%c

0%b

This
work

60 resistance and
36 stability features
extracted during
tap from ACC, AV,
and MF

contact size
(9 f.), dura-
tion, velocity
between taps

digraph,
key hold

EER = 6.92%

a. Results reported for most distinguishable genuine users only (4 out of 12).
b. Trained with impostor data.
c. Trained with victim data only.
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2. BACKGROUND AND RELATED WORK

Table 2.2: Comparison of details of our authentication experiments with re-
lated work on smartphone tap/typing authentication. COND = condition;
GEN = no. of genuine users; IMP = avg. no. of impostors.

COND Free
text

Authentic.
vector

GEN IMP Verifier Training
source

Trojahn
et al. [35]

sit ✗ average
of seven
samples

35 34 ANN unknown

Zheng
et al. [39]

sit ✗ each tap 80 79 dissimilarity
score

victim

Feng
et al. [14]

sit ✗ 5-60
character
window

40 39 decision tree,
random forest,
Bayes network

impostor
& victim

Gascon
et al. [17]

sit ✗ time
window

12 303 linear 2-class
SVM

impostor
& victim

Bo
et al. [5]

sit,
walk

✓ each
gesturea

10 50 2-class SVMb impostor
& victimc

This
work

sit,
walk

✓ time
window

90 98 sit,
92 walk

SM, SE,
1-class SVM

victim

a. Judgement is made after 1-13 gestures.
b. 1-class SVM for initial training.
c. Victim only for initial training with 1-class SVM.

11



2. BACKGROUND AND RELATED WORK

Among previous papers [5, 17, 39], which have used motion sen-
sors for user authentication, Zheng et al. [39] used fixed pins while
Gascon et al. [17] used fixed phrases. The only work that used free-
text typing and also the only one to authenticate users under walking
condition is the paper of Bo et al. [5]. Therefore, we believe that this
is closest work to our paper, and highlight the differences between
our paper and [5] as follows:

1. We performed experiments on a large-scale dataset containing
100 users (90 users qualified as genuine, and 92 or more as im-
postors), while [5] used only 10 genuine users and 50 impos-
tors (on average) from a dataset of 100 subjects. As the gen-
uine population size in [5] is too small, it is difficult to assess
how accurately the reported FARs/FRRs represent the achiev-
able authentication error rates with movement-based features,
given that the number of users is critical factor in assessing the
confidence on empirical error rates.

2. We introduced and evaluated a wide range of micro-movement
features, while [5] used only two, which are also used in our
work (mean magnitude of acceleration and angular velocity
during gesture).

3. Our evaluation is more comprehensive and includes detailed
comparison and fusion with additional features such as touch
and keystroke. This allowed us to report how fusion with dif-
ferent types of features impacted authentication as well as BKG
performance. In contrast, [5] reports only results for movement-
based features combined with touch features.

4. HMOG features performed well in both sitting and walking
condition, while [5] resorted to gait features for walking.

12



Chapter 3

Description of HMOG Features

Recall from the previous chapter that the biometric template typi-
cally consist of features, extracted from raw biometric data. This is
also the case of HMOG biometric. The HMOG features are presented
in this chapter.

We define two types of HMOG features: grasp resistance and
grasp stability—that are computed from accelerometer, gyroscope,
and magnetometer sensor readings. Because HMOG features aim
to capture the subtle micromovements and orientation patterns of a
user while tapping on the screen, we extract HMOG features during
or close to tap events.

Let X , Y , and Z represent the readings from a sensor (accelerom-
eter, gyroscope, or magnetometer) in x, y, and z axes respectively. Let
M =

√
X2 + Y 2 + Z2 represent the magnitude of acceleration, angu-

lar speed, or magnetic field. Grasp resistance and stability features
are computed as follows.

3.1 Grasp Resistance Features

Grasp resistance features measure the resistance of a hand grasp to
the forces (or pressures) exerted by touch/gesture events. We quan-
tify resistance as the change (or perturbation) in movement and ori-
entation (i.e., acceleration, angular velocity and magnetic field) caus-
ed by a tap event. We define grasp resistance features as follows:

1. Mean of X , Y , Z, and M during a tap event.
2. Standard deviation of X , Y , Z, and M during a tap event.

Figure 3.1 illustrates variables used in features 3 through 5. (The fea-
tures are explained using Z-axis as an example.)
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3. DESCRIPTION OF HMOG FEATURES
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Figure 3.1: Variables used for calculating grasp resistance features 3-5,
showed on sample data.

3. Difference between X , Y , Z, and M values before and after a
tap event. We calculate this as

avg100msAfter(Z) - avg100msBefore(Z),
where avg100msBefore(Z) is the mean of Z values in 100 ms
window before tap start time and avg100msAfter(Z) is the
mean of Z values in 100 ms window after tap end time.

4. Mean change in X , Y , Z, and M values caused by a tap. We
calculate this as

avgTap(Z) - avg100msBefore(Z),
where avgTap(Z) is the mean of Z values during a tap event.

5. Maximum change in X , Y , Z, and M values caused by a tap.
This is calculated as

maxTap(Z) - avg100msBefore(Z),
where maxTap(Z) is the maximum Z value during a tap event.

Five grasp resistance features from three sensors and four types
of readings (X , Y , Z, and M ) lead to 5× 3× 4 = 60 features.
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3. DESCRIPTION OF HMOG FEATURES

avg100msBefore(Z)

maxTap(Z)
= end of tap

tap
non-tap

start of tap

100 ms

Time (milliseconds)

R
e
a
d
in

g
s 

fr
o
m

 a
cc

e
le

ro
m

e
te

r 
in

 t
h
e
 z

-a
x
is

 (
m

/s
2
)

100 200 300 400

tafter

tstart
tend

= tmax

tbefore tafter

50 ms 50 ms

tmin tend +
200ms 

= |Z - avg100msBefore(Z)|

Figure 3.2: Illustration of key variables for computing grasp stability fea-
tures 1-3, showed on sample data.

3.2 Grasp Stability Features

Stability features quantify how quickly the perturbations caused by
a finger-force from a tap event disappear after the tap event is com-
plete. We compute grasp stability features as follows (Figure 3.2 il-
lustrates variables used in features 1 through 3):

1. Time duration to achieve movement and orientation stability
after a tap event. This feature is calculated as

tmin − tend,
where tend can be obtained using the tap event handler, tmin is
calculated as follows.
Let T = (t1, . . . , tn) represent the series of timestamps collected
between tend and tend + 200 ms, and R = (Z1, . . . , Zn) the corre-
sponding sensor readings. We define avgDiffs(ti) as an aver-
age of |Zj − avg100msBefore(Z)| for j = i . . . n.
tmin is such that avgDiffs(tmin) = minti∈T (avgDiffs(ti)).
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3. DESCRIPTION OF HMOG FEATURES

2. Normalized time duration for mean sensor value to change
from before tap to after tap event, calculated as

tafter center − tbefore center

avg100msAfter(Z)− avg100msBefore(Z)
,

where tafter center is the center of the 100 ms window after a tap
event, and tbefore center is the center of the 100 ms window before
the tap event.

3. Normalized time duration for mean sensor values to change
from maximum sensor value during a tap to after tap event,
calculated as

tafter − tmax in tap

avg100msAfter(Z)− maxTap(Z)
,

where maxTap(Z) is the maximum sensor value during a tap,
and tmax in tap is the time when this value occurred.

We extracted the above three grasp stability features for three sensors
and four types of sensor readings (X , Y , Z and M ), for a total of
3× 3× 4 = 36 features.
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Chapter 4

Dataset and Evaluation Methodology

4.1 Dataset

To evaluate HMOG features, we used sensor data collected from 100
smartphone users (53 male, 47 female) during eight free text typing
sessions [38].1 Users answered three questions, typing at least 250
characters for each answer. In four of the collection sessions, users
typed while sitting; in the remaining four, they typed while walking
in a controlled environment.2

For each user, an average of 1 193 taps per session (standard de-
viation: 303) and 1 019 key presses (standard deviation: 258) were
collected. The average duration of a session was 11.6 minutes, with
a standard deviation of 4.6 minutes. All data was collected using a
Samsung Galaxy S4 3 smartphone with Android OS 4.2.2.

The dataset contains accelerometer, gyroscope and magnetome-
ter sensor readings (sampling rate 100 Hz) as well as raw touch data
collected from the touchscreen, touch gestures (e.g., tap, scale, scroll,
and fling), key press, and key release latencies on the virtual key-
board. Due to security concerns, Android OS forbids third-party ap-
plications to access touch and key press data generated on the virtual
keyboard. Therefore, a virtual keyboard was designed for data col-
lection, that mimicked the look, feel, and functionality of default An-
droid keyboard, including the autocomplete option, which the users
were free to use.

1. The dataset is available at http://www.cs.wm.edu/˜qyang/hmog.html.
2. For one user, sensor data in two sessions were not recorded, and therefore
HMOG features were not extracted.
3. The dataset does not contain pressure information, because Samsung Galaxy S4
cannot record it.
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4. DATASET AND EVALUATION METHODOLOGY

During data collection users were allowed to choose the orienta-
tion of the smartphone (i.e., landscape or portrait). Because less than
20 users typed in landscape orientation, we performed all authenti-
cation experiments with data collected in portrait mode.

4.2 Design of Authentication Experiments

Here, we provide details of the experiments to evaluate the continu-
ous authentication performance of HMOG features. The experiments
were performed offline (after data collection) with MATLAB [27].

1-Class Verifiers. We performed verification experiments using three
verifiers: scaled Manhattan (SM), scaled Euclidian (SE), and 1-class
SVM. (Henceforth, we use “SVM” to refer to “1-class SVM”.) We
chose these verifiers because previous work on behavioral authen-
tication has shown that they perform well. For instance, SM and
SVM were top performers in a study on keystroke authentication of
desktop users by Killourhy and Maxion [23]. SVM performed well
in experiments on touch-based authentication of smartphone users
by Serwadda et al. [32]. SE is a popular verifier in biometrics (see for
example [4, 18]).

Parameter tuning was not required for SM and SE. However, for
SVM, we used RBF kernel and performed a grid search to find the
parameters (for γ, we searched through 2−13, 2−11, 2−9, . . . , 213; and
for ν, we searched through 0.01, 0.03, 0.05, 0.1, 0.15 and 0.5). We used
LIBSVM library [8] for SVM.

We did not include 2-class verifiers in our evaluation. To train a 2-
class verifier, in addition to data from smartphone owner, biometric
data from a large set of other users (non-owners) is required. Because
sharing of biometric information between smartphone users leads
to privacy concerns, we believe that 1-class verifiers are more suit-
able for smartphone authentication. (A similar argument was made
in [33].)

Training and Testing. For experiments in sitting and walking condi-
tions, we used the first two sessions for training and the remaining
two for testing. We extracted HMOG features during each tap. Thus,
each training/testing vector corresponded to one tap. With keystroke
dynamics features, each vector corresponded to one key press.
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4. DATASET AND EVALUATION METHODOLOGY

For SM and SE, the template consisted of the feature-wise aver-
age of all training vectors. We used user-wise standard deviations
for each feature for scaling. For SVM, the template was constructed
using all training vectors. Users with less than 80 training vectors
in their template were discarded from authentication. As a conse-
quence, ten users failed to enroll (and were not included in our ex-
periments).

We created authentication vectors by averaging test vectors sam-
pled during t-seconds scan. We report results for authentication scans
of t = 20, 40, 60, 80, 100, 120 and 140 seconds. We chose these scan
lengths to cover both low and higher authentication latencies. Our
preliminary experiments showed that for scans longer than 140 sec-
onds, there is minimal improvement in authentication performance.

Quantifying Authentication Performance. We generated two types
of scores, genuine (authentication vector was matched against tem-
plate of the same user) and zero-effort impostor (authentication vec-
tor of one user was matched against the template of another). We
used population equal error rate (EER) to measure the performance.

4.3 Comparing HMOG to Other Feature Sets

We compared the authentication performance of HMOG features with
tap characteristics (such as duration and contact size) and keystroke
dynamic features (key hold and digraph latencies).

Direct comparison of results reported by the researchers who de-
signed the features is technically impossible due to usage of differ-
ent datasets and authentication parameters. Therefore, we extracted
three feature sets described below (tap, key hold and digraph) from
our dataset and performed identical experiments as with HMOG.

Tap Features. We chose 11 commonly used (see Section 2.2) tap char-
acteristics:

• duration of the tap;
• contact size features: mean, median, standard deviation, 1st,

2nd and 3rd quartile, first contact size of a tap, minimum and
maximum of the contact size during the tap (9 features); and

• velocity (in pixels per second) between two consecutive press
events belonging to two consecutive taps.
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4. DATASET AND EVALUATION METHODOLOGY

We could not extract pressure features, because of the absence of
pressure information in our dataset.

Key Hold Features. Key hold latency is the down-up time between
press and release of a key. We used 89 key hold features, each corre-
sponding to a key on the virtual keyboard.

Digraph Features. Digraph latency is the down-down time between
two consecutive key presses. We used digraph features for combi-
nations of the 35 most common keys in our dataset.4 Thus we have
352 = 1225 digraph features.

Score-level Fusion. To determine whether HMOG features comple-
ment existing feature sets, we combined tap, key hold, digraph and
HMOG features using weighted sum score-level fusion. We chose
this method because it is simple to implement, and has been shown
to perform well in biometrics [19]. We used the technique of Lock-
lear et al. [25] to ensure that weights sum to one and proportion of
weights is preserved when scores from some feature sets were miss-
ing (e.g. due to lack of accelerometer data). We used grid-search to
find the weights which led to the best authentication performance.

4.4 Feature Selection, Preprocessing, and

Transformation

To improve authentication performance, we performed preprocess-
ing (e.g., outlier detection), feature selection, and feature transforma-
tion with Principal Component Analysis. All procedures described
in this section were performed on training data, separately for each
verifier, feature set and for sitting and walking conditions.

Feature Selection. We evaluated two methods for feature selection:
Fisher score [13], and minimum-Redundancy Maximum-Relevance
(mRMR) [31]. Fisher score ranking was computed independently for
each feature as the ratio of between-user to within-user variance. The
higher the Fisher score, the higher the discriminability of the corre-

4. All 26 alphabetic keys, 5 keyboard switches (shift, switch between numerical
and alphabetical keyboard, delete, done, return) and 4 special characters (space,
dot, comma and apostrophe). The availability of other keys in our training data
was extremely low (< 1 in average per user).
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4. DATASET AND EVALUATION METHODOLOGY

sponding feature. We experimented with feature subsets whose sum
of Fisher scores accounted for 85, 90, 95, 98 and 100% of the sum
of Fisher scores of all features. Our experiments showed that Fisher
score performed better for HMOG features, while mRMR performed
well for tap features. With key hold and digraph features, the best
performing feature set contained all the features.

For HMOG, feature selection was performed on (1) all HMOG
features, and (2) features extracted from best performing sensors only.
Using the best performing sensors only led to better results. The best
performing sensors were accelerometer combined with gyroscope
for SM and SVM in all scans and conditions, and for SE 20-second
scans in sitting and 20- and 40-second scans in walking. For other
scans with SE, using only gyroscope features led to best performance.

The following parameters for Fisher score ranking provided the
best authentication results: 98% (39 features) for SM and SVM dur-
ing sitting; 98% (37 features) for SM during walking; and 95% (28
features) for SVM during walking. For SE, we achieved lowest EER
by including resistance features only, than with features selected by
feature selection. Figure 4.1 reports the ranking of features during
sitting (4.1(a)) and walking (4.1(b)), and shows the selected features.

For tap features, with SM verifier we achieved the best results
with 3 features chosen by mRMR (threshold 0) and for SE and SVM
with 2 features (threshold 0.1). The best three features according to
mRMR are (in this order): duration of the tap; mean of contact size;
and velocity between two consecutive down events.

Outlier Removal. For HMOG and tap templates, we evaluated the
interquartile outlier removal, i.e. kept only values in interval [firstQ−
k ∗ iqr, thirdQ + k ∗ iqr], where firstQ is the first quartile, thirdQ is
the third quartile, iqr = thirdQ − firstQ is the interquartile range,
and k is the parameter. The higher k, the less values are considered
as outliers—we experimented with k = 3, 10, 20, 50, 100, 200 and
500. Experiments with SM verifier showed that outlier removal does
not improve authentication accuracy, so we did not perform it in our
experiments.

For key hold and digraph, using only outlier removal and no fea-
ture selection or transformation led to the best authentication results.
Outlier removal was done by restricting two parameters: (1) maximal
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4. DATASET AND EVALUATION METHODOLOGY

length (values longer than l ms were discarded), and (2) minimum
number of occurrences of a feature in template (if the feature occurs
less than m times in user’s template, then this feature is discarded).
The values evaluated for l were 100, 200, 300, 400, 500 and 1000 for
key hold and 200, 350, 500, 650 and 800 for digraph. For m value we
experimented with 2, 5, 10, 15, 20, 40 and 60. The optimal l value was
200 for key hold and ranged between 350–500 for digraph; the opti-
mal m value ranged between 2–60 for key hold and between 2–5 for
digraph.

Feature Transformation. We evaluated Principal Component Analy-
sis (PCA), which transforms original features into principal compo-
nents that are subsequently used in authentication experiments. Our
motivations for using PCA are (1) to remove correlation between fea-
tures to meet the assumptions in SE and SM, and (2) to reduce dimen-
sionality by using only those principal components, which explain
most of variance in data. We used PCA on (1) all features (except
magnetometer features), and (2) features selected by feature selec-
tion. We experimented with components explaining 90%, 95%, 98%
and 100% of total variance in order to find the threshold for dimen-
sionality reduction. PCA improved EER for HMOG features with
SE when performed on resistance features and with SVM in sitting
when performed on features selected by feature selection. PCA per-
formed on all tap features improved results with SM and SE.
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(b) Feature fisher ranking for walking.

Figure 4.1: HMOG accelerometer and gyroscope features sorted by Fisher
score computed from training data. Higher scores correspond to features
with higher discriminative power. Overall, resistance features perform bet-
ter than stability. We show selected features for SM and SVM. For SE, only
resistance features led to better performance than feature selection. Feature
names (on x-axis) are encoded as follows:
[Resistance|Stability][ID][-][X|Y|Z|Magnitude][-][Acc|Gyro]
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Chapter 5

Authentication Results

In this chapter, we report authentication performance of HMOG fea-
tures. We compare the performance of HMOG with keystroke and
tap features and also report results with fusion.

5.1 Performance of HMOG Features

With SM and SVM verifiers, HMOG features extracted from both ac-
celerometer and gyroscope outperformed those extracted from in-
dividual sensors (see Table 5.1 for EERs). With SE, HMOG features
from gyroscope outperformed all other sensors and sensor combi-
nations, except for 20- and 40-second scan lengths in walking con-
dition and 20-second scan in sitting, where accelerometer and gyro-
scope features performed best. HMOG features from magnetometer
performed consistently worse than accelerometer and gyroscope fea-
tures with all verifiers, in both sitting and walking conditions. Com-
bining magnetometer features with features from accelerometer and
gyroscope did not improve performance.

Resistance features outperformed stability features in both walk-
ing and sitting conditions (and also had a higher Fisher score, see
Figure 4.1). This suggests that the ability of resistance features to dis-
criminate between users is higher than that of stability features. For
SM and SVM, we achieved the lowest EERs when we used both re-
sistance and stability features and performed Fisher score-based fea-
ture selection (see Figure 4.1 for the selected features). For SE, using
only resistance features led to best EER. In some cases, using PCA
after feature selection further lowered EERs. In Table 5.1, we indicate
when feature selection and PCA led to the lowest EERs.
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5. AUTHENTICATION RESULTS

In Figure 5.1, we show the EERs of all verifiers under sitting and
walking conditions, when the authentication scans varied between
20 and 140 seconds. Among the three verifiers, SM overall had lower
EERs for both sitting and walking conditions and therefore we present
the results only with SM hereafter.

Table 5.1: Summary of lowest EERs achieved with individual HMOG fea-
tures. FS = Fisher score-based feature selection.

Best performing
motion sensors

Best performing
features

Sitting Walking

Scaled
Manhattan

accelerometer +
gyroscope

resistance +
stability (w/ FS)

17.88% 12.69%

Scaled
Euclidean

gyroscope, or
accelerometer +
gyroscope

resistance 19.15%
(w/ PCA)

13.88%
(w/ PCA)

1-class
SVM

accelerometer +
gyroscope

resistance +
stability (w/ FS)

22.43%
(w/ PCA)

14.65%
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Figure 5.1: Comparison of HMOG features in sitting and walking condi-
tions for three verifiers. The reported EERs are with PCA for SVM in sitting
condition and for SE, and without PCA for SVM in walking condition and
for SM.
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5. AUTHENTICATION RESULTS

5.2 Comparison of HMOG with Keystroke Dynamics

and Tap Features

HMOG and tap features performed better than keystroke dynamics
features in both sitting and walking conditions (see Figure 5.2 for
authentication performance with SM—the relative performance of
HMOG, tap, and keystroke dynamics features with SE and SVM ver-
ifiers was virtually the same as with SM). HMOG features outper-
formed tap features in walking condition, while tap outperformed
HMOG in sitting. The performance of tap and keystroke dynamics
features did not change significantly between sitting and walking.
However, the performance of HMOG improved considerably (up to
5.52%) during walking.
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Figure 5.2: Comparison of EERs of HMOG with keystroke dynamics (i.e.,
key hold and digraph) and tap features with SM verifier.
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5.3 Fusion of HMOG, Tap, and Keystroke Features

We used SM verifier and performed score-level fusion with the fol-
lowing feature combinations: {HMOG, tap, keystroke dynamics};
{tap, keystroke dynamics}; and {tap, HMOG}. Detailed fusion re-
sults for sitting and walking conditions are presented in figures 5.3(a)
and 5.3(b), respectively. The lowest EERs achieved with fusion are
summarized in Table 5.2.

Our results show that: (1) for both walking and sitting conditions,
score-level fusion of all signals led to the lowest EER; and (2) fusing
HMOG with tap features led to a decrease in EERs and either out-
performed (in the case of walking and shorter scans in sitting) or
was comparable (in the case of longer scans in sitting) to fusion of
tap and keystroke dynamics (see figures 5.3(a)) and 5.3(b)).

Both (1) and (2) indicate that HMOG provides additional distinc-
tiveness to tap and keystroke dynamics, especially in walking condi-
tion. (2) shows that keystroke dynamics can be replaced by HMOG
features to obtain better performance in walking and in shorter scans
in sitting condition.

Table 5.2: Summary of lowest EERs achieved with score-level fusion of
HMOG, Tap, and Keystroke Dynamics (KD) Features. With Scaled Man-
hattan verifier.

Score-level fusion (with SM verifier) Sitting Walking

HMOG, Tap, and KD 10.20% 6.92%

HMOG and Tap 11.68% 8.12%

Tap and KD 10.86% 10.51%
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Figure 5.3: Score-level fusion of combinations of feature types with SM ver-
ifier.
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Chapter 6

Discussion

Our results in Chapter 5 show that HMOG outperform tap features
in walking condition, and that fusing HMOG features with other fea-
tures improves the performance.

With all three verifiers, HMOG features achieve lower error rates
for walking compared to sitting. This is not the case for the touch
features and keystroke dynamics.

Here we investigate why HMOG features performed better dur-
ing walking. Specifically, we investigate whether the high authen-
tication accuracies of HMOG features during walking were due to
hand movements caused by taps, or due to movements caused by
walking, or a combination of both.

Experiment setup. We extracted 64 HMOG features from two seg-
ments of an accelerometer/gyroscope signal: (1) during tap, as dis-
cussed in previous sections; and (2) between taps, in which HMOG
features were extracted when the user was not tapping the screen
(see Figure 6.1). In (2), the signal between taps was segmented into
non-overlapping blocks of 91 ms; one HMOG feature vector was ex-
tracted from each block. We selected 91 ms as the block size because
it was the median duration of a tap in our training data. This ensured
that the number of sensor readings used to extract a HMOG feature
vector between and during tap remained same.

HMOG features extracted during taps use sensor readings from
100 ms before and 200 ms after a tap event (see Section 3). We ex-
tracted HMOG features between taps starting 300 ms after a tap until
300 ms before the next tap, to avoid any overlap between during and
between HMOG features.

The average number of the training vectors per user for HMOG
during taps was 1 122 for sitting, and 1 186 for walking. For between
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Figure 6.1: Area from which HMOG features were extracted. The figure
shows a sample of readings from the z-axis of accelerometer in sitting con-
dition.

taps, it was 7 692 for sitting and 7 462 for walking. The average num-
ber of testing vectors per user for HMOG features during taps was
897 for sitting and 972 for walking. For between taps, it was 5 885 for
sitting and 5 768 for walking. User population was the same for both
settings. Verification experiments were performed using SM.

HMOG Features Extracted During vs. Between Taps. We compared
HMOG features extracted during taps with the same features ex-
tracted between taps for sitting and walking conditions. For sitting,
HMOG features extracted during taps performed consistently better
than those extracted between taps (see EERs in Figure 6.2). This in-
dicates that HMOG features were able to capture distinctive hand
micromovement patterns when the users tapped on the phone. Sim-
ilarly, for walking, HMOG features extracted during taps performed
better than those extracted between taps (see EERs in Figure 6.2).
This again indicates that HMOG features capture users distinctive
hand micromovement patterns when the user is tapping, regardless
of the motion condition.

Impact of Walking on HMOG Features Extracted Between Taps.
HMOG features extracted between taps during walking outperform-
ed the same when extracted during sitting. In Figure 6.2, compare
between tap EERs for sitting and walking. This indicates that HMOG
features capture distinctive movements induced by walking, even in
the absence of tap activity.
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Figure 6.2: Performance of HMOG features when extracted from the tap
and between the taps.

Supported by the above results, the high authentication accura-
cies achieved by HMOG features during walking can be jointly at-
tributed to: (a) the distinctiveness in hand movements caused by tap
activity and (b) the distinctiveness in movements caused by walking.

Note. Our data collection was not designed to collect gait related in-
formation (e.g., ground truth via video captures) and therefore, we
could not perform experiments to directly compare our HMOG re-
sults with authentication results of gait based features.

Nevertheless, HMOG features do not overlap with features tra-
ditionally used for gait recognition. All our features are extracted
from a time windows with median size 91 ms and the time window
location is determined by taps. Traditional gait recognition meth-
ods detect users’ steps from accelerometer and than extract features
from the steps, or compare the signals of steps. See for example [12],
achieved EER of 20.1% for 51 volunteers with phone in pocket at-
tached to a belt or [36], used data of 31 users and reported 14.3% EER
when the phone is held in hand and 13.7% EER when it is in a breast
pocket. Work of Bo et al. [5] (already mentioned in Section 2.2) eval-
uates their gesture-based accelerometer and gyroscope features as
sufficient only for the sitting condition; relying on gait-recognition-
based features in walking.
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Chapter 7

Conclusion

In this thesis we presented evaluation of HMOG, a novel behav-
ioral biometric modality that harnesses hand micromovements dur-
ing taps for continuous user authentication.

We evaluated the authentication performance of HMOG features
on data from 100 users under two motion conditions (sitting, and
walking). Our results show that HMOG features (best achieved EER
12.69%) outperform tap features (14.62%) in authentication of walk-
ing users. Moreover, HMOG combined with tap and keystroke dy-
namics features provide the best combined performance—as low as
10.2% in sitting and 6.92% in walking.

Surprisingly, HMOG features collected when a user is walking
perform better than the same features collected while the user is sit-
ting. Our analysis suggests that this is due to the ability of HMOG to
capture body movements in addition to hand micromovements.

This thesis was built upon the paper HMOG: A New Biomet-
ric Modality for Continuous Authentication of Smartphone Users by
Zdeňka Sitová, Jaroslav Šeděnka, Qing Yang, Ge Peng, Gang Zhou,
Paolo Gasti, and Kiran S. Balagani, submitted for a journal review [34].
The paper proposes 96 HMOG features for continuous authentica-
tion of typing smartphone users, and our contribution is the offline
evaluation of the continuous authentication performance. The paper
moreover evaluates biometric key generation (BKG) performance of
HMOG, and energy consumption of HMOG feature computation.

In future studies, HMOG during swipe and pinch gestures should
be investigated. Although our preliminary experiments showed that
our features do not perform well for swipe and pinch, we believe that
by designing new HMOG features specifically for these touchscreen
interactions, the performance of our biometrics can be improved.
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