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1 Introduction 

The concept of security has been a vital issue ever since computer systems were 

introduced. In the early days, each computer system represented a standalone 

independent unit, where security usually meant concealing data of one user from the 

others. Purely centralized solutions developed to satisfy such requirements soon 

became obsolete, as the computer systems became interconnected and necessity to 

enforce security and data integrity across multiple physical devices arose.  

Cyber-Physical Systems (CPS) form the next evolutionary step with its own set 

of security issues. CPS consist of autonomous entities which have the ability to 

communicate with one another.  Each entity is often provided access to mission critical 

data, collected from various sensors or obtained from other entities. Preventing data 

compromise and ensuring data integrity is therefore a crucial part of CPS development. 

Since no central authority or management is present, security must be achieved by 

collaboration of the entities themselves. 

In this thesis we focus on one particular example of CPS – DEECo (Distributed 

Emergent Ensembles of Components). We analyze security vulnerabilities that 

DEECo shares with other CPS and identify issues that are DEECo-specific. A solution 

providing both physical security and data access control is then proposed. We also 

examine perils to data integrity and devise a system enabling components to modify 

their behavior according to the quality of information they receive. 

Suggested mechanisms are then implemented in the current version of jDEECo, 

the Java implementation of DEECo.  

1.1 Problem Description 

Since no central authority exists in the DEECo component model, security and data 

integrity can only be achieved by participating components and the DEECo runtime. 

This involves [1]: 

 Storage Security – each component’s data must prevented from unauthorized 

access and tampering. 

 Communication Security – data transmitted between components must be 

resilient to traffic monitoring and data forging attacks. 

 Access Control – only authorized components may gain access to protected 

data. 
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 Data Leakage Mitigation – manipulation with data with certain level of security 

cannot lead to its declassification. 

 Data Integrity Enforcement – data violating integrity constraints must not 

jeopardize other data in the system. The very notion of what “integrity 

constraints” actually means must be left for a component using the data to 

define. 

 Open-endedness and Dynamism – the system is not strictly defined, new 

components with new security and trust requirements may be deployed at any 

time. A component does not know the other components it may communicate 

with at deploy time – the security specification cannot be based on any 

hard-coded relations. 

1.2 Goals 

The goal of this thesis is to analyze security threats and data integrity risks in 

DEECo and propose a suitable mechanism for ensuring data security and integrity. We 

will examine well-known security and trust models and discuss their suitability for 

utilization in DEECo. The proposed solution will be implemented in jDEECo and 

verified on real-world case study.  

1.3 Thesis Organization 

The rest of the thesis is organized as follows. In chapter 2, we introduce DEECo 

and describe its core features and principles, necessary for determining security risks. 

In chapter 3, we analyze security and trust issues in DEECo and distributed 

environments in general. Chapters 4 and 5 are dedicated to the description of 

well-known security and trust models, respectively. In chapter 6 we provide the very 

basics of cryptography, used later in description of the physical security of data. This 

theoretical background knowledge is then utilized in chapter 7, which briefly outlines 

the proposed solution. In chapter 8, we describe the proposed solution in detail, 

providing examples and eventually evaluating the solution. The last chapters are 

dedicated to discussing advantages and disadvantages of the proposed solution 

(chapter 10), mentioning several security models similar to ours (chapter 11) and 

summarizing the thesis as a whole.   
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2 Background: DEECo 

In this chapter we describe the component model and general concepts of DEECo, 

which we later utilize to propose a solution for security and trust concerns. A running 

example depicted in the following section is used throughout the whole thesis to 

demonstrate various aspects of DEECo and its security challenges. It utilizes jDEECo, 

the Java implementation of DEECo which is also used for realization of security 

solution, described in chapter 8. 

2.1 Running Example 

We assume the following setup: there are two kinds of police, the State Police (SP) 

and the Municipal Police (MP). For our intents and purposes, the SP is responsible for 

chasing criminals, while the MP imposes speeding tickets and tickets for bad parking. 

Obviously there are also ordinary vehicles on the roads, which are monitored by both 

kinds of police. While the SP has jurisdiction everywhere, the MP is always bound to 

a single city. 

In the following sections, we will use this setup to demonstrate various features of 

DEECo. 

2.2 Key Concepts 

DEECo represents an example of an Ensemble-Based Component System (EBCS). 

As such it consists of autonomic entities (called components) that are dynamically 

composed into cooperative groups (called ensembles). The system architecture is then 

represented as components bound through ensembles. This architecture emerges at 

runtime, i.e. ensembles are dynamically created based on component data.  

An essential feature of DEECo is its communication paradigm – no components 

can communicate directly, the only way of exchanging data is through ensembles. The 

data exchange as well as all the other management services are handled by the DEECo 

runtime. [2] 

2.3 Components 

A component is an independent and autonomous unit, which is deployed and 

maintained by the DEECo runtime. Each component maintains its view of the system, 

i.e. subset of globally available data, called knowledge. It may not communicate 
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directly with any other component, the only external source of knowledge is the 

exchange operation within an ensemble (see 2.4). 

A component may define one or more processes. A process can both access and 

modify component’s knowledge, which it uses to determine component’s behavior. A 

process cannot access knowledge of other components. It can either be run periodically 

or it can be triggered by knowledge change. 

Knowledge forms a flat space, where no pointers or references are allowed. 

Especially, a component itself cannot be a part of knowledge of another component. 

The example below depicts a component that corresponds to the State Police 

vehicle from the running example. The component itself owns a list of wanted 

criminals and through the PoliceRadar ensemble (see 2.4) it obtains the identifier of a 

nearby vehicle. Periodically scheduled process than checks if such vehicle belongs to 

a wanted criminal and if so, instructs the State Police component to begin pursuit. 

@Component 

public class StatePolice { 

 

 public String pursuedCriminal; 

 public String vehicleNearbyDriver; 

 public Set<String> wantedCriminals; 

 

 public StatePolice(Set<String> wantedCriminals) { 

  // create the police with given list of wanted criminals 

  this.wantedCriminals = wantedCriminals; 

 } 

  

 @Process 

 @PeriodicScheduling(period = 1000) 

 public static void startPursuitIfCriminalNearby( 

  @In("wantedCriminals") Set<String> wantedCriminals, 

  @In("vehicleNearbyDriver") String vehicleNearbyDriver, 

  @InOut("pursuedCriminal") ParamHolder<String> pursuedCriminal 

 ) { 

  // if the police does not chase anyone at the moment 

  // and the nearby vehicle is driven by a wanted criminal 

if (pursuedCriminal.value == null && 

wantedCriminals.contains(vehicleNearbyDriver)) { 

   // start pursuit 

   pursuedCriminal.value = vehicleNearbyDriver; 

  } 

 }  
} 

Figure 1: Example of the State Police component 
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2.4 Ensembles 

An ensemble represents a relation between two components, one of them acting 

as coordinator, the other as member. An ensemble is defined by a predicate taking 

components’ knowledge as an input and determining whether such two components 

can form the given ensemble. This predicate is called a membership condition. 

A membership condition may be asymmetrical, since it referrers explicitly to 

coordinator’s and member’s knowledge (which may be completely different). 

An ensemble also defines a knowledge exchange operation. This operation is 

allowed to modify both member’s and coordinator’s knowledge, possibly transferring 

data from one to the other. A knowledge exchange can only be performed right after 

the membership condition (from the corresponding ensemble of course) was invoked 

and satisfied. 

If certain part of knowledge required by a membership condition is missing from 

the target component, the membership condition is always evaluated to false. 

Similarly, a knowledge exchange cannot be performed if any transferred knowledge is 

missing. 

In our running example, an ensemble could be formed from vehicles within certain 

distance (for instance within a range of a police radar), allowing the police to gather 

information about vehicle’s owner, speed etc. Alternatively, vehicles sharing the street 

could form an ensemble to exchange information about available parking space. 

@Ensemble 

@PeriodicScheduling(period = 5000) 

public class PoliceRadar { 

  

 @Membership 

 public static boolean membership( 

  @In("member.position") Coord memberPosition, 

  @In("coord.position") Coord coordPosition) { 

  // compute distance and return true if within range 

 } 

 

 @KnowledgeExchange 

 public static void exchange(       

  @In("member.ownerName") String ownerName, 

@Out("coord.vehicleNearbyDriver")  

      ParamHolder<String> vehicleNearbyDriver) { 

// use "member." to access member's knowledge 

// use "coord." to access coordinator's knowledge 

  vehicleNearbyDriver.value = ownerName; 

 } 

} 
   Figure 2: Example of ensemble - police radar 
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2.5 Knowledge 

Knowledge forms a flat global space, each component owns a copy of subset of 

this space. To address a particular part of the knowledge, a concept of knowledge paths 

is used. A knowledge path can either be absolute, i.e. refer directly to data, or it may 

contain evaluable expressions – nested knowledge paths, whose data then form the 

resulting absolute path. For example, let us consider the following component 

definition: 

The following knowledge paths are valid examples: 

 id – accesses the id field 

 position.x – accesses the x field of the Coordinates object 

 passengerNames.0 – accesses the first passenger name 

 properties.manufacturer – gets the value the key manufacturer from the properties 

map 

 properties.[interestingProperty] – evaluates the nested path in the brackets and 

then the surrounding path. If the value of interestingProperty was “color”, the 

resulting knowledge path would be properties.color. 

 

Any knowledge field may be decorated with the @Local annotation. This implies 

that this particular field will be available to the component processes the same way as 

any other, but it will not be distributed to other components in the system. 

We specifically stress the knowledge path expressibility, because it has a serious 

impact on security. When accessing data through a knowledge path containing nested 

expressions, security level of all partial knowledge paths must be taken into account. 

@Component 

public class OrdinaryVehicle { 

 public String id; 

public String interestingProperty; 

 public List<String> passengerNames; 

 public Map<String, Object> properties; 

 public Coordinates position; 

 

 @Local 

 public String driverId; 

} 

public class Coordinates { 

 public int x; 

 public int y; 
} 

Figure 3: Example component for demonstrating knowledge path variants 
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As a result of that, information about security protection of the knowledge must be 

safely distributed across components so that when a component attempts to access data 

through knowledge exchange, the runtime can make sure the access is legitimate. 
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3 Problem Analysis: Security and Trust in DEECo 

In this section we analyze threats to data security and integrity in DEECo. Some 

perils stem from the fact that DEECo is a distributed system, some originate from the 

dynamism of the DEECo architecture. For each listed risk we determine the 

requirements for security system so that it can guarantee immunity of DEECo to that 

risk.   

3.1 Security Threats 

3.1.1 Unauthorized Access 

Data confidentiality and is the obvious concern when proposing a security system. 

In the DEECo context, this implies: 

 No component can access other component’s knowledge without a proper 

security clearance.  

 No other system process sharing the hardware with the DEECo runtime can 

access any of the DEECo data. 

 Secured data transferred between DEECo entities must not be read nor 

modified without the runtime noticing (man-in-the-middle attacks resistance). 

3.1.2 Data Leakage 

The term data leakage commonly refers to a situation where classified 

information loses its protection during transmission and becomes accessible with 

lesser security privileges than originally required [3]. 

To prevent this, the proposed security system for DEECo must ensure that 

whenever a component is entrusted with knowledge, the knowledge will not lose its 

security status and will not eventually become accessible for any other component 

without proper access rights. Obviously, the knowledge exchange operation is critical 

from this point of view. However, we must also consider the effect of component 

processes, since they can modify the knowledge and therefore an “evil” component 

could safely obtain data through knowledge exchange and then make it available for 

anyone else by copying it to an unsecured part of knowledge. 
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3.1.3 Data Manipulation 

It is not only necessary to prevent the data from unauthorized reading, it must also 

be impossible for an intruder to modify the data without the runtime noticing. This is 

especially important during communication, where some form of read access is 

virtually inevitable. Particularly in DEECo, modification of any of these properties of 

a message must be prevented: 

 Source component identifier 

 The data version 

 The knowledge data itself along with their knowledge paths 

 The security metadata of the knowledge data 

3.1.4 Fake Messages 

It must be impossible to forge fake messages and send them to the DEECo 

runtime. Also, a component must be prevented from impersonating another 

component. 

3.1.5 Replay Attacks 

A replay attack consists of capturing and storing a transmitted message and using 

it again after some time. A popular example of viciousness of such attack is a payment 

order – if an attacker captured a message containing such information and used it 

again, the payment order would eventually be performed twice. 

However the way DEECo transmits data is idempotent (i.e. its repetitive execution 

would not change the result more than once). Since we are guaranteed data version 

safety (see 3.1.3), the replay attacks need not concern us. 

3.1.6 Covert Channels 

The term covert channel commonly refers to a situation where a subject can infer 

partial information about an object it cannot legally access. This could be for example 

the very existence of such object, the value it is not equal to, the range it falls in etc. 

For example if a police car is seen with its sirens on, we can deduce that it is 

chasing a criminal, even though we do not know the name of the criminal. 

This problem is actually closely related to the data leakage problem discussed in 

3.1.2. If the component (police car) had a process which would decide whether the 

car’s sirens should be on, an input of this process would be the name of the pursued 
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criminal (secured knowledge) and the output would be the state of the sirens 

(inherently unsecured). Then such process actually violates the classification of the 

secured knowledge. 

However, the only solution for this problem would be to take the police car’s 

sirens off or make the state of the sirens a secured knowledge – both of which is rather 

undesirable. The devised DEECo security system must therefore enable components 

to partially control the data leakage verification process to enable “safe” data leakage 

the component is aware of. 

3.1.7 Runtime Corruption 

We must consider a situation where the whole DEECo runtime was hacked and 

cannot be relied upon. The term often discussed in these circumstances is TCB – 

Trusted Computing Base, which generally comprises the hardware and software 

critical to security. OMG (Object Management Group) comments this:  

“The TCB should be kept to a minimum, but is likely to contain operating system(s), 

communications software (though note that integrity and confidentiality of data in 

transit is often above this layer), (…), security services and other object services called 

by any of the above during a security relevant operation.” [4] 

The TCB can eventually become quite large and obviously we want to avoid this. 

However, we have no choice but to trust the local runtime, local operating system, the 

device hardware etc. Nevertheless, this does not apply to the DEECo input (i.e. 

definition of components and ensembles), which are inherently untrusted. In the 

proposed security system, whenever a component utilizes any security feature of 

DEECo, identity of the component author must be verified before deploying such 

component into the runtime (for example via a digital signature). 

3.2 Trust Concerns 

So far we considered only two absolute states of knowledge – the safe state, where 

confidential knowledge is secured and accessed only by authorized components, and 

the risk state, where there is some kind of security breach (any of those discussed in 

3.1). These two states can be objectively judged and distinguished. 

In most systems however, this taxonomy is not sufficient. Even if all security 

requirements are fulfilled, there may be a reason for a component not to use the data it 

received, for example if it led to a violation of component’s inner integrity constraints. 



11 

 

Hence, a trust management system needs to be devised to enable components share 

information about trustworthiness of the knowledge. 

Trustworthiness, unlike security, is not absolute, but graded. Moreover, it is 

relative – in the real world, we trust someone with something, but that does not imply 

that everyone else trusts them the same. The trust management system we propose 

needs to reflect all these properties. 

3.2.1 Integrity Assurance 

Since DEECo is a representative of CPS, we can expect that at least part of 

knowledge will consist of data collected from device sensors. These sensors can be 

inherently faulty and provide malformed data. It is necessary to provide such a trust 

model that would enable components reason about quality and trustworthiness of 

knowledge they own. 
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4 Background: Security Models 

First, let us define the term security policy: “A security policy is nothing more than 

a well-written strategy on protecting and maintaining availability to your network and 

its resources.” [5] Building on that, we consider security model to represent a formal 

description of the security policy. Our endeavor to make DEECo secure then consists 

of identifying its assets, discovering potential threats and proposing a security policy, 

which would satisfy our idea of the system being “secure”.  

In this section, we will describe well-known security models and discuss their 

suitability for usage in distributed systems and eventually in DEECo. 

4.1 Genealogy 

The need for serious data confidentiality in information systems arose from the 

military sector in the 1970s. The early research of this topic therefore primarily focused 

on access control and information leakage detection and prevention. In this era, Bell 

and LaPadula introduced their multilevel security model to match the needs of 

government and military applications [6]. Also, the legendary “Orange Book”, issued 

by the Unites States Government Department of Defense (DoD) as Trusted Computer 

System Evaluation Criteria (TCSEC), was created to evaluate and classify computer 

systems security. 

While data confidentiality is essential for military sector, in commercial sector, 

data integrity is considered at least equally important. The Biba model [7] is a prime 

example of shifting from data security to data integrity – the Biba model forms a dual 

model to the previously mentioned Bell-LaPadula model, focusing on data 

trustworthiness and completely omitting confidentiality. Also, models to deal with 

even more business-specific demands were designed, for example the Chinese Wall 

model (see 4.7), which prevents the insider knowledge to cause conflict of interests 

between business parties. 

Reflecting the business sector demands, role-based access control models were 

introduced in the 1990s to better match with organizational structure of corporations. 

A role in such model corresponds with a position in a company hierarchy and is a basic 

unit when setting up security policies. [8] 

As networked systems began to be used, necessity for decentralized security 

models lead to the introduction of capability-based systems and eventually 
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credential-based access control, which includes for example the X.509 certificates 

being used today. 

4.2 Single-level Models 

Single-level models recognize only one level of security classification, i.e. an 

object either is or is not accessible by the given subject. In such simple setup, no roles 

or hierarchy is considered. 

4.2.1 Reference Monitor 

Any subject demanding access to any potentially sensitive object must first invoke 

a monitor, to which it passes the description of what object it wants to access and what 

operations it wants to perform. The monitor evaluates the request and responds with a 

simple yes/no, possibly auditing the request. [9] 

 

Figure 4: The Reference Monitor model schema 

The properties the reference monitor must have in order to guarantee security can 

be described by the NEAT acronym: 

 Non-bypassable – there is no way for a subject to access an object without 

having consulted the reference monitor first. 

 Evaluable – the model must be testable and verifiable. 

 Always invoked – the reference monitor is invoked on every access to an 

object. 

 Tamper-proof – it must not be possible for an intruder to modify reference 

monitor configuration, code, or data. 
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Obviously, the reference monitor must be available for all subjects in the system 

at any given time. Also, the reference monitor is invoked on every access to any object 

(non-bypassable and always invoked) and therefore it may represent a serious 

bottleneck and single point of failure. For this reasons, this model is not suitable for 

any usage in a distributed environment. [10] 

4.3 Mandatory Access Control (MAC) 

Multi-level security models were originally developed with military applications 

in mind. In such organizations, every piece of information is assigned exactly one level 

of confidentiality, for example unclassified, confidential, secret or top secret. 

Similarly, military personnel are assigned a clearance level, which may depend on 

rank, unit etc. The system then enforces the principle of least privilege – a subject gets 

only such clearance that is necessary for their work and they may access only objects 

with security level equal to or less than their clearance.  

In the following sections, we describe two dual security models, both building on 

the premise of data classification. While the Bell-LaPadula model was designed to 

provide data confidentiality, the Biba model equally focuses on data integrity. 

4.3.1 Bell-LaPadula 

In the Bell-LaPadula model [6], the system is described as a state machine. 

Initially, the system is in “secure state” (whatever that means for the particular 

application). It is then proven that formalized transition functions always end up with 

system being again in secure state, thus preserving the security policy. 

More formally, the model consists of the following elements: 

 The ordered set of classifications (confidential, secret, top secret etc.) 

 The set of compartments, describing logical units within the system (Secret 

Service, government, military research etc.). 

 Objects, which are assigned a set of compartments and a classification. The 

tuple (compartments, classification) then forms the security level of the object. 

For example, the information about eavesdropped phone calls could have the 

security level ({Secret Service}, confidential). 

 Subjects, whose security level is again the tuple (compartments, classification). 
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The model then defines partial ordering on security levels: ∀a, b ∈ security levels,  a ≤ b ≝ (𝑎. 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ≤ 𝑏. 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)  & (𝑎. 𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠 ⊆ 𝑏. 𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠) 

 

 Finally, the following properties must be hold to consider a transition function 

secure: 

 The Simple Security Property – for a security level SLs of a subject reading an 

object with a security level SLo, it must hold that 𝑆𝐿𝑜 ≤ 𝑆𝐿𝑠. This is also 

known as the “no read-up” property. 

 The *-property (read as the “star property”) – for a security level SLs of a 

subject writing to an object with a security level SLo, it must hold that 𝑆𝐿𝑜 ≥ 𝑆𝐿𝑠. This is also known as the “no write-down” property. 

 

The purpose of the Simple Security Property is obvious – no subject may read an 

object which has higher security level. 

The *-property is supposed to prevent declassification of information – no subject 

may write to an object, unless the object is properly secured. However, this is often 

considered rather a strong tool. If we take the military example into account, the  

*-property would disallow generals to write orders for privates, since such orders 

obviously have lower security level then the security levels of generals. Therefore, the 

concept of “trusted subjects” may be introduced into the system, allowing them to 

violate the *-property by declassifying objects and the *-property then being 

mandatory only for “untrusted subjects”. Similarly, the “no write-down” rule may be 

omitted when the output (the written information) does not directly depend on the input 

(the classified information). 

Moreover, the term strong *-property is sometimes used to refer to such model, 

where a subject may write to an object only if 𝑆𝐿𝑜 = 𝑆𝐿𝑠, i.e. no “write up” is allowed. 

This is motivated by integrity requirements, since it prevents less trusted subject from 

possibly corrupting more confidential data. 

4.3.2 Biba 

The previously discussed Bell-LaPadula model provided a way of preserving data 

confidentiality with the “no read-up, no write-down” rules. The Biba model [7] is 



16 

 

basically an inverse, substituting confidentiality for integrity, introducing “no 

read-down, no write-up” rules. 

Let us define the integrity level the same way we defined the security level, i.e. 

tuple (compartments, classification) and let us also use the same definition of ordering. 

The model then proposes following properties: 

 The Simple Integrity Property – for an integrity level ILs of a subject reading 

an object with a integrity level ILo, it must hold that 𝐼𝐿𝑜 ≥ 𝐼𝐿𝑠. This is also 

known as the “no read-down” property. 

 The Integrity *-property – for an integrity level ILs of a subject writing to an 

object with an integrity level ILo, it must hold that 𝐼𝐿𝑜 ≤ 𝐼𝐿𝑠. This is also 

known as the “no write-up” property. 

 

The goal of these properties is to prevent less trusted subjects corrupting data of 

more important objects and thus preserve their consistency.  

4.4 Discretionary Access Control (DAC) 

Unlike in MAC systems, where subjects were granted access to objects based on 

their security levels, in discretionary access control systems, the access is solely 

restricted based on the identity of the subject. Moreover, a subject can delegate its 

rights for certain object to another subject. The DAC model assumes existence of the 

owner of each object, who has unlimited rights to that object and is responsible for 

granting and revoking access of other subjects. [11] 

A basic structure for managing DAC is an access control matrix, first proposed in 

1973 by Lampson [12]. The matrix contains a row for each subject and a column for 

each object. The respective cells then contain lists of operations the given subject can 

perform on the given object.  

Storing access rights directly in the matrix would be inefficient, since most of the 

cells would be blank. This has two possible solutions:  

 Store only columns of the matrix, which for each object contain list of subjects 

and their privileges to that object. Such structure is then called an Access 

Control List (ACL). 

 Store the matrix rows, i.e. for each subject store the list of objects it can access 

and how. This is called a Capability List. 
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Figure 5: Access control matrix [8] 

Each of these solutions has its disadvantages – for an ACL, the query “what 

objects can the given subject access” would be rather complicated to evaluate. 

Similarly when using Capability Lists, we cannot easily determine what subjects can 

access given object. 

Despite this, DAC systems are practically used. The notorious example is the 

UNIX file system, which solves the problem of access control matrix size by reducing 

the number of subjects to three (owner, group and everyone else). The access rights 

for files (read, write, execute) are then stored using protection bits, effectively forming 

an ACL. 

There has been some research regarding usage of DAC in a distributed 

environment. Since obviously neither access control matrix nor ACL are suitable for 

distribution, the basic idea in most of such systems is to authenticate remote users, map 

them to their local representatives and treat these as any other local subject. The 

strength of this approach then directly corresponds with the strength of the 

authentication system. The original cryptographic protocol proposed by Needham and 

Schroeder [13] had some weaknesses, but it laid the groundwork for additional 

research, which among others produced the well-known system Kerberos [14]. 

4.5 Role-Based Access Control (RBAC) 

Utilizing DAC to provide data security stands on the premise that there is an owner 

among the subjects, who sets the security policy for the given object. It was observed 

in 1990s that this often does not hold – for example employees of a company access 
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and modify certain data, but the data itself belong to the company. To better model 

such situations, role-based access control models were researched and designed. 

The basic elements of the RBAC models are: 

 The set U of users – a user is typically a person within an organization, but it 

could also be a process, a device etc. 

 The set P of permissions – a permission is an authorization to perform specific 

operation (read a file, invoke a method etc.). A permission is always positive 

(it allows rather than denies). 

 The set R of roles – a role can be either viewed as a named collection of 

permissions or it can correspond with a job in the organization structure. 

 𝑃𝐴 ⊆ 𝑃 × 𝑅 – a many-to-many assignment of permissions to roles. 

 𝑈𝐴 ⊆ 𝑈 × 𝑅 – a many-to-many assignment of users to roles. 

 

Users are granted with permissions only through roles, which provides much better 

control over the configuration of the system. Also, it is unlikely that any user would 

require all permissions for their work. Thus, the RBAC is often extended with the 

concept of sessions. A session is a mapping of one user to a subset of their roles. When 

established, a session intermediates all permissions from all roles in the session to the 

user. The previously mentioned principle of least privilege is therefore fulfilled. 

Another RBAC extension is the role hierarchy model. This is obviously motivated 

by the user hierarchy in organizations, however, there are several interpretations of 

role hierarchy in RBAC. In one of them, role R1 inherits role R2 if all permissions 

assigned to R2 are also assigned to R1. In another, R1 contains R2 if all users assigned 

to R2 are also assigned to R1. And finally, R1 could inherit R2 if in all sessions where 

R1 is active, R2 is also active. In any case, role hierarchy aims to simplify the role 

management process by more accurately reflecting actual structure of an organization. 

Organizations must often deal with the problem of conflict of interests. This stems 

from a situation where a single user is assigned conflicting roles, for example in a 

bank, a cashier should not be able to issue money to himself. In RBAC, it is possible 

to monitor roles being assigned to each individual user and set up such security policy 

that would prevent from one user having conflicting permissions. There are other 

security models focusing on the separation of duty, two of them – the Clark-Wilson 
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model and the Chinese Wall model – are discussed in the following sections. [15] [16] 

[8] 

RBAC systems can be used in a distributed environment, as demonstrated on the 

dRBAC (Distributed RBAC) system [17]. This particular system uses distributed 

credential repositories called wallets to ensure that each component in the system can 

reason about providing access to confidential data. Since very similar attitude is used 

in DEECo, we consider distributed RBAC to be a good initial candidate for the devised 

security system. 

4.6 Clark-Wilson  

Similarly to the Biba model discussed in 4.3.2, the Clark-Wilson model [18] 

focuses on information integrity rather than confidentiality. It adopts principles and 

procedures from business and industry, particularly from banking systems. To ensure 

data integrity and consistency, the Clark-Wilson model formalizes the separation of 

duty principle (i.e. a user must be prevented from imposing conflicting roles) and the 

mechanism of well-formed transactions (i.e. any manipulation with data must leave 

the system in a consistent state). Formally, the model consists of the following basic 

elements: 

 Constrained Data Items (CDIs) – the data items to which the integrity model 

must be applied. 

 Unconstrained Data Items (UDIs) – the data items that are not under control of 

the model, e.g. user input or data from outside the system. 

 Integrity Verification Procedures (IVPs) – when executed, an IVP verifies 

integrity of all CDIs in the system. 

 Transformation Procedures (TPs) – correspond to well-formed transactions, 

which change a set of CDIs from one valid state to another valid state. 

  

Only TPs can manipulate with CDIs. The model also assumes that before the first 

execution of a TP, the system was in valid state (because an IVP was executed). Then, 

by induction, the validity of the system is preserved even during repetitive execution 

of TPs. 

 While the system can ensure that only TPs manipulate CDIs, it cannot ensure that 

a TP will not corrupt the integrity of the system. For that, a TP must be certified to 
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implement certain transaction. The integrity policy can then be expressed in two types 

of formalization rules: the certification (which may have to be done manually and is 

application-specific) and enforcement (which is done automatically by the system and 

is application-independent). 

 The basic rules defined in the Clark-Wilson model are as follows: 

 C1 (Certification): After running all IVPs, all CDIs must be in a valid state. 

 C2: For each TP there must be a certification that the TP will preserve validity 

of all CDIs it processed. 

 E1 (Enforcement): Only a TP can manipulate with a CDI. 

 

 These rules provide basic framework for maintaining consistency of CDIs. To 

provide a mechanism for also ensuring the separation of duty principle, we need to 

control which users execute the TPs: 

 E2: A user can only perform those TPs on specific CDIs, for which they have 

an authorization. 

 C3: The list of users and their authorizations from the E2 rule must be certified 

to meet the separation of duty requirement. 

 

 The E2 and C3 rules introduced the concept of user into the system. Since the user 

identity affects the TPs they can perform, it is necessary to perform an authentication. 

Thus: 

 E3: The system must authenticate any user attempting to execute a TP. 

 

 To ensure data traceability and restorability, the Clark-Wilson model requires 

presence of an audit trail in the system. This can be modeled as another CDI and 

therefore only one more rule is needed: 

 C4: All TPs must be certified to log the operation into and append-only CDI. 

 

So far, the model only worked with CDIs. However, not all data in the system are 

CDIs – for example, new data entered by a user are inherently UDIs. It is therefore 

necessary to allow certain TPs to work with UDIs, producing a CDI on the output or 

raising an error: 
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 C5: Any TP taking an UDI as an input must be certified to either produce a 

CDI on the output or to perform no transformation at all. 

 

 Finally, this model would be useless if any user could modify their certifications. 

Therefore: 

 E4: Only a super-user (administrator) may change authorizations to perform a 

TP. 

 

 Together, these nine rules define a model that enforces a consistent integrity 

policy. Later security models, such as the Chinese Wall model discussed in the 

following section, use the Clark-Wilson model as a groundwork for further 

enhancements. [18] [8] 

4.7 Brewer-Nash (Chinese Wall) 

Published in 1989, the Brewer-Nash model [19] (also known as the Chinese Wall 

model) represents the last step of transition from (military) data confidentiality to 

(commercial) data integrity and consistency. It aims to prevent the conflict of interest 

problem, which (as the authors argue) is as important to business as data secrecy to 

military sector. The Brewer-Nash model represents a business alternative to the 

traditional Bell-LaPadula model (discussed in 4.3.1). 

The classical example on which the Brewer-Nash model is demonstrated consists 

of two business corporations and an accountant, working for both corporations. In such 

setup, it is necessary to prevent the accountant from taking advantage of their insider 

knowledge and using it against either of the corporations.  

The corporate information is stored in a hierarchy. In the lowest level there are 

individual objects (items of information belonging to a single corporation). Objects of 

the same company are grouped into company datasets and in the highest level, datasets 

of corporations in competition are grouped into the conflict of interest classes. For 

convenience, let us mark the dataset of object o as yo and its conflict of interest class 

as xo. 
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Figure 6: The composition of objects in the Chinese Wall model [19] 

The basic idea of the Brewer-Nash model is the notion of access history. The 

conflict of interest prevention is achieved by allowing users to only access such data 

that are not in conflict with any other data they already possess. Formally, this is 

realized as a matrix N with a row for each subject and a column for each object in the 

system. The value of Ns,o is a Boolean value, which is true if and only if the subject s 

has accessed object o.  

Mirroring the Bell-LaPadula model, the Brewer-Nash model also defines the same 

two properties – the simple security property and the *-property (again read “star-

property”). The simple security property states that an access to an object o is granted 

only if one of the following conditions is satisfied: 

 The requested object is in the same company dataset as previously accessed 

object, i.e. there is a previously accessed object z such that Ns,z = true  

and yz = yo. 

 The requested object belongs to such conflict of interest class that the subject 

has never accessed before, i.e. for each object z that Ns,z = true, it holds  

that xz ≠ yz.  

 

Obviously we presume that N was properly initialized, i.e. all values set to false. 

Nevertheless, the simple security property is not sufficient to prevent conflict of 

interests. Suppose there is an accountant Alice working for Microsoft and an 

accountant Bob working for IBM. Moreover, they also both work for Heineken (which 

obviously belongs to an entirely different conflict of interest class). However, there is 

nothing that would prevent Alice writing confidential information about Microsoft into 

the Heineken dataset for Bob to read. 
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The *-property prevents such indirect violations by introducing the concept of 

sanitized data. We consider data to be sanitized if it is not possible to discover or infer 

the identity of the corporation it came from. The process of disguising corporation’s 

identity in data is called sanitization. The *-property than limits the access to object o 

by specifying two necessary conditions that must be satisfied: 

 Access to object o must be permitted by the simple security property. 

 There is no unsanitized object z such that Ns,z = true and yz ≠ yo. 

 

The second rule ensures that sanitized information can freely flow in the system, 

while unsanitized information is restricted to its dataset. [19] [8] 

4.8 Distributed Security Models 

The need for distributed security models came with the development of LAN 

networks and shared file systems. The security systems used locally did not scale well 

and often contained a single point of failure. Also, they lacked support for delegation 

as a way of decentralization and had little to offer in the fields of extensibility and 

expressibility. 

We discussed one way of designing a distributed security system when describing 

distributed ACLs in section 4.4. This approach relied on subject authentication and its 

mapping onto a local identifier, which was then subjected to a standard local security 

policy. In this section, we describe security models based on capabilities and 

credentials, which are designed to scale better and provide more support for delegation 

of privileges. 

4.8.1 Capability-Based Access Control 

What among others prevents utilizing a local security model in a distributed 

environment is scalability. Even such a straightforward solution such as an ACL 

requires each subject’s attempt to access an object to be validated by a central 

authority, thus creating possible performance bottleneck. Moreover, the ACL itself 

could be very long and therefore its checking would be inefficient. Combined with the 

lack of support for delegation, ACLs are not considered to be suitable for a distributed 

system. 

Capability-based systems target to solve all these issues. A capability (sometimes 

referenced as a key) is a token granting permissions for a specific object to the 
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capability owner. Initially, the capability itself contains the object identifier and access 

rights. Since this would be vulnerable to tampering, the system associates every newly 

created object with a random secret. This random secret, the object identifier and the 

access rights are then used to create a hash, which is included in the capability. 

Formally: ℎ𝑎𝑠ℎ = ℎ(𝑜𝑏𝑗𝑒𝑐𝑡𝐼𝑑, 𝑜𝑏𝑗𝑒𝑐𝑡𝑆𝑒𝑐𝑟𝑒𝑡, 𝑎𝑐𝑐𝑒𝑠𝑠𝑅𝑖𝑔ℎ𝑡𝑠) 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (𝑜𝑏𝑗𝑒𝑐𝑡𝐼𝑑, 𝑎𝑐𝑐𝑒𝑠𝑠𝑅𝑖𝑔ℎ𝑡𝑠, ℎ𝑎𝑠ℎ) 

 

Thanks to this, the system can at any time verify integrity of the capability by 

recomputing the hash. The capability does not contain any information about any 

subject, anyone who owns the capability is granted with the privileges the capability 

contains. This makes delegation of rights a very simple process – the delegator passes 

the capability he owns to the target subject, which can use it without any modifications. 

Also, revocation (i.e. removing existing access rights from subjects) can be easily 

achieved by resetting the object’s secret, thus invalidating all capabilities associated 

with it. 

However, capability-based approach in this setting does not prevent stealing of 

capabilities, their uncontrolled delegation nor duplication. It strongly relies on the 

principle of least privilege, but does not propose any way of ensuring it. In spite of 

that, the capability-based approach was even used with hardware support for example 

in the Cambridge CAP Computer [20] and it represents one of the most important 

developments in the distributed access control research. [21] [8] 

4.8.2 Credential-Based Access Control 

As discussed in the previous section, pure capabilities are not sufficient to provide 

reliable access control. A credential-based approach reuses the idea of a passable token 

serving as a tool for ensuring security policy. By a credential, we usually mean a 

statement made by an issuer about an identity or authority of a subject. This quite 

accurately reflects the real world, where for example citizens possessing a driving 

license are allowed to drive a vehicle. The issuer in this example a municipality, which 

are generally trusted to grant driving licenses only to people who can drive. 

The notion of trust actually has great significance for the credential-based security 

systems, thanks to wide use of public-key cryptography. Usage of symmetric-key 

cryptography in distributed systems is complicated by the need of key management 
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and distribution. In asymmetric cryptography however, it is sufficient for a 

communication to only know the well-known public keys. Together with the concept 

of certificates (which bind the public key with some attributes of its holder and are 

signed by a trusted authority), they represent a widely used mechanism for access 

control and security enforcement. 

Based on how credentials are used, distributed access control may be grouped into 

two categories: identity-oriented and key-oriented. [22] 

4.8.2.1 Identity-oriented 

This approach splits the access control into two stages – authentication and 

authorization. The purpose of authentication is to verify subject’s identity by binding 

the specified public key to a name. Authorization then maps the name onto a set of 

privileges. 

The well-known identity-oriented technologies are PGP (Pretty Good Privacy) and 

X.509 Public Key Infrastructure (PKI). Originally, the X.509 certificates only 

contained the subject’s public key, DN (Distinguished Name) of the issuer, DN of the 

subject and validity information. The latest v3 version however allows to add 

extensions, thus enabling to add application-specific information. [23] 

4.8.2.2 Key-oriented 

The key-oriented approach merges authentication and authorization into a single 

step by omitting the usage of names. This solves the problem with scalability and 

flexibility of providing a unique name in a very large distributed system. Also, the 

name itself does not affect the process of controlling access, unlike in the real world, 

where we can decide based upon the subject’s name whether we trust it. 

Currently used example of key-oriented approach to credential-based security is 

the SPKI (Simple Public Key Infrastructure) [24]. [8] 
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5 Background: Trust Management 

The term trust management was first defined in 1996 by Blaze et al. as “a unified 

approach to specifying and interpreting security policies, credentials, relationships 

which allow direct authorization of security-critical actions” [25]. Trust management 

systems were originally developed as an alternative mechanism for providing 

authorization, which would be better suited for large distributed systems, where 

individual security subjects are not known in advance and extensibility and 

expressibility are eminent. Examples of such systems are PolicyMaker and KeyNote, 

proposed by Blaze. We describe them in section 5.1. 

While these systems focus on managing public key authorization, they ignore 

other aspects of trust. They do not provide any mechanism for trust relationships 

analysis, nor do they utilize experience of other subjects in own trust decision making. 

Another generation of systems was then proposed, defining trust management as “the 

activity of collecting, codifying, analyzing and presenting evidence relating to 

competence, honesty, security or dependability with the purpose of making 

assessments and decisions regarding trust relationships for Internet applications” 

[26]. An example of such system, SULTAN, is described in section 5.2. 

5.1 PolicyMaker and KeyNote 

While some of the security models described in chapter 4 attempt to adapt 

centralized approach to access control into distributed environment, such proposed 

systems do not cope well with at least one of the following aspects: 

 Authentication – distributed access control must deal with the fact that subjects 

are not explicitly known at the time of creating security policy.  

 Delegation – to prevent centralization, it must be possible for a subject to 

delegate its privileges to another subject (w.r.t. security policy). 

 Expressibility and extensibility – any security policy must be possible to be 

modeled. 

 

Blaze et al. [27] argue that rather than adopting centralized system, distributed 

security requires a brand new approach. In this section we briefly describe 

PolicyMaker and its successor, KeyNote, which were designed specifically for 

distributed environment needs. 



27 

 

The systems are built around a trust management engine, which is basically a query 

engine evaluating programmable request action against local security policy. It takes 

the following input: credentials presented by the requester, an action string and local 

security policies. The output can be either simple yes/no, or additional restrictions, 

which would make the request conform the local security requirements. Crucially, the 

action string format and local security policy specification format are general-purpose 

and application-independent, and therefore the PolicyMaker engine is capable of 

handling any incoming request. 

The query has the following syntax: 

key1, key2, …, keyn REQUESTS ActionString 

The semantics of the ActionString is defined by the application, unlike the format, 

which is application-independent. The keys are the public keys identifying subjects 

issuing the request. Both policies and credentials are specified using assertions. 

Assertion is basically a statement delegating authorization from the signer to a subject, 

with the following syntax: 

Source ASSERTS AuthorityStruct WHERE Filter 

Source can be either the keyword POLICY in case of local policy assertions or a 

public key of a principal granting permissions in case of credentials. AuthorityStruct 

specifies a list of subjects to whom the assertion applies. Filter specifies a list of 

conditions the ActionString must meet to be considered valid. 

Local policy assertions are only intended to be used inside the trust management 

engine and therefore are not signed. Credentials on the other hand are free to move in 

the system and therefore must be signed to protect their integrity. The set of policy 

assertions on a system forms a trust root (equivalent to a Certification Authority in 

X.509). 

Filters are actually programs interpreted by the trust management engine. When a 

query is processed, the engine attempts to find a path from some trust root to the public 

keys requesting the action, where all the filters are satisfied. A filter works with an 

action string plus contextual information like date and time. This gives the application 

power to specify any security policy, without modifying or configuring the trust 

management engine. 

The PolicyMaker allows three languages to be used in filters: AWK-WARD (safe 

version of AWK developed by the authors specifically for PolicyMaker), Java and 
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Safe-TCL1. This caused problems with interoperability, which was one of the reasons 

why KeyNote was created. KeyNote is a successor of PolicyMaker, but is more 

standardized and provides better integration into applications. It provides single, 

unified assertion language, which is designed to run smoothly with the trust 

management engine. 

Both PolicyMaker and KeyNote are assertion monotonic, which means that 

negative assertions cannot be specified. There are certain trust management systems 

that allow negative assertions, e.g. REFEREE [28]. [8] 

5.2 SULTAN 

Trust management systems described in the previous section regarded trust as a 

way of executing access control. “To trust” in that context always meant “to provide 

access”. Grandison [29] however argues that authorization is just an outcome of a more 

abstract trust relationship and that trust does not imply access rights and vice versa.  

Trust can then be regarded as “the quantified belief by a truster with respect to the 

competence, honesty, security and dependability of a trustee within a specified 

context”. This reflects the real world, where we (i.e. truster) always trust someone (i.e. 

trustee) about something (i.e. context) to some level (quantified). The proposed trust 

management model called SULTAN provides whole suite for specifying trust 

relationships, querying through Prolog, monitoring etc. Its primary purpose is to 

identify and analyze the effects of changing specifications on a business and to utilize 

these specifications to augment the security of Internet commerce. Unlike 

PolicyMaker or KeyNote described in the previous section, SULTAN supports also 

negative recommendations (i.e. its trust model is non-monotonic). 

 

  

                                                 
1 http://www.tcl.tk/software/plugin/safetcl.html  

http://www.tcl.tk/software/plugin/safetcl.html
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6 Background: Cryptography 

In this chapter we describe the very basic terms and principles of cryptography, 

which we later utilize when designing physical security for the DEECo data.  

Cryptography can be defined as the science of “processing data into unintelligible 

form, reversibly, without data loss” [30]. Such techniques have been used long before 

computers had been invented, but for our purposes, let us focus on the digital 

cryptography, i.e. the problem of encryption and decryption of digital data. 

Cryptography is in that context used to solve the following issues that arise from 

exchanging messages between a sender and a recipient: 

 Confidentiality – data are not accessible for unauthorized parties 

 Integrity – it is impossible to tamper with data without the recipient noticing 

 Authenticity – the recipient is able to reliably determine the sender of data 

 Non-repudiation – the sender cannot deny sending the data 

 

Before we continue with cryptography classification, let us define the basic terms: 

 Plaintext – the readable data we want to secure 

 Ciphertext – encrypted, unreadable data created by encrypting the plaintext 

 Key – a token used to encrypt or decrypt the data (or to do both) 

 

6.1 Symmetric Cryptography 

In symmetric cryptography, the same key is used for both encryption of decryption 

of data.  

 

Figure 7: Symmetric cryptography scheme [45] 
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The obvious disadvantage of this concept is that before the two parties can 

communicate, they must first exchange the key securely. Although techniques exist 

that help establishing a secret key over a public channel (Diffie-Hellman key exchange 

[31]), there are still issues concerning authenticity, key exchange performance etc. 

The main advantage of symmetric cryptography when compared to asymmetric 

cryptography is performance – symmetric algorithms are generally 1,000x – 10,000x 

faster [32]. Examples of such algorithms include DES (Data Encryption Standard), 

AES (Advanced Encryption Standard) or Blowfish. 

6.2 Asymmetric Cryptography  

Unlike symmetric cryptography, asymmetric cryptography (also known as public 

key cryptography) uses a pair of keys. One of them is called the public key and can be 

freely distributed. The other is called the private key and must be kept secret by its 

owner. To encrypt a portion of data, the sender uses the well-known public key of the 

receiver to create the ciphertext. However, only the private key corresponding to the 

encryption key can decrypt the data. 

This solves the main problem of symmetric cryptography – the exchange of the 

keys. The fact that someone knows the public key of a subject does not imply that they 

can decrypt its messages. However, a mechanism is still needed to securely obtain the 

public key for an entity. This is one of the tasks of the complex system called PKI 

(Public Key Infrastructure). 

The main disadvantage of asymmetric cryptography is performance. Therefore, in 

practice, a hybrid encryption is used to merge benefits of both approaches to 

cryptography. We describe this in detail in section 8.3.2. 

Figure 8: Asymmetric cryptography scheme [44] 
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The most well-known example of an asymmetric encryption algorithm is RSA 

(Rivest, Shamir, Adleman). 

6.3 Digital Signatures 

Signatures are used to ensure data integrity and non-repudiation. They combine 

two mechanisms – hash (digest) functions and asymmetric cryptography. 

Hash functions are used to irreversibly transform an arbitrarily long text into a 

fixed-length digest. This is not considered an encryption, since no key is used in the 

process and therefore anyone can create the same digest from the given data. The digest 

should depend on every bit of the input data and therefore it should not be possible to 

fabricate such data that would result in the given digest. Well-known hash functions 

include MD5, SHA etc. 

Before sending the message, the sender computes a digest of the message using 

some hash function. This produces a fixed-length string, which the sender encrypts 

using their private key. The result is called a signature and is sent along with the rest 

of the message. The recipient of the message, who wants to make sure they obtained 

untampered data from the claimed sender, first uses the same hash function to compute 

a digest from the received message. Then the received signature is decrypted using the 

sender’s public key. The result is compared with the computed digest and if they 

match, authenticity and integrity of the message is guaranteed. 

 

  

Figure 9: Digital signature generation and verification scheme [43] 
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7 Solution Strategy 

In this chapter we utilize our knowledge of well-known security and trust models 

gained in chapters 4 and 5 to sketch a design of security and trust solution for DEECo, 

providing defense against threats described in chapter 3.  

DEECo does not contain any central authority nor shared resources, apart from 

distributed knowledge. Also, a component has a very limited view of the system, 

specifically, it does not know other components in the system neither can it 

communicate with them.  

We therefore take RBAC (section 4.5) as a groundwork for security, substituting 

DEECo components for subjects and setting up an association “component has-many 

roles”. Next, we need to specify which roles (i.e. components) can access which part 

of knowledge. Inspired by ACL (section 4.4), we associate each knowledge path (i.e. 

security object) with roles that can access it. Since such list contains role identifiers 

and not directly component names, we avoid the problem with ACL length. To prevent 

data leakage, we take our inspiration from the Bell-LaPadula model (section 4.3.1) and 

we verify each knowledge exchange and component process to preserve security level 

(i.e. knowledge cannot lose security protection while being transferred). The roles 

associated with knowledge paths can be distributed along with the knowledge. The 

security is then enforced by every local runtime, when it compares the knowledge path 

roles and the local component roles and grants the component access only on 

successful match. 

The trust part of the solution is mainly inspired by SULTAN (section 5.2), which 

suggests predicates “truster-trustee-object” to model trust relationships. Specifically, 

truster and trustee are components, object is a knowledge path. To create such 

relationships, we use the idea from the Clark-Wilson model (section 4.6) about IVPs 

(Integrity Verification Procedures). Each component can apart from standard 

processes also define a “rating process”, through which it can check integrity of its 

data and provide rating of each knowledge path. This rating is then associated with the 

component the knowledge came from. By distributing such ratings among 

components, each component can at any moment check quality of its data and make 

respective adjustments. 
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8 Realization 

In this section we describe the realization of the strategy from the previous 

chapter. We base our work on jDEECo, a Java implementation of DEECo developed 

in the Department of Distributed Systems and provide extensions for specification and 

enforcement of security policies. 

8.1 Assumptions 

When discussing runtime corruption (section 3.1.7) as a potential security threat, 

we mentioned the term TCB (Trusted Computing Base). TCB comprises all hardware 

and software, which we implicitly trust (usually because we have no other choice). In 

this very case, we consider the Java runtime, underlying operating system and 

hardware to be part of TCB. Also, we include the jDEECo runtime in TCB as well (of 

course without the definitions of components and ensembles – see 8.3.4). The last 

assumption however is added just in sake of simplicity – we could easily add a runtime 

signature hash to each message transferred between entities and instruct the recipient 

to verify that the sender is a proper jDEECo runtime. 

Another assumption is related to the certificates and corresponding private keys 

used to encrypt transferred knowledge (as described in 8.3). We assume that all these 

certificates and keys are located in a keystore, which is copied to each instance of the 

jDEECo runtime and the runtime can access it. This is similar to assuming that all 

ensembles and components definitions are known to every runtime in the system. 

Though this is not strictly required, we assume that the minimum version of Java 

runtime in which jDEECo is run is 1.8. Significant amount of new features has been 

added to the language2, and some of them are utilized both in the implementation and 

in the examples in this text (for example repeatable annotations3). Even though a 

workaround exists for each new feature, we consider the new approach to be more 

intuitive. 

8.2 Principles 

In this section we define basic principles that we obeyed when designing the 

security and trust solution for DEECo. 

                                                 
2 http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html  

3 http://docs.oracle.com/javase/tutorial/java/annotations/repeating.html  

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
http://docs.oracle.com/javase/tutorial/java/annotations/repeating.html
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1. The whole concept of security must be extensible. For example, there must be 

no such thing as a finite, hard-coded list of security roles. 

2. The security policy must be defined declaratively and on the component level. 

The component itself knows best, how sensitive its data are. 

3. The security always comes with a performance overhead. If no security is used 

by the components however, no overhead must be present. I.e. security must 

be an optional feature. 

4. The basic communication paradigm of DEECo must not be changed (for 

example, components must not communicate directly). 

5. The integrity constraints and the corresponding trust relationships utilization 

must be defined on the component level as well. Similarly to security, it is the 

component who knows the integrity constraints best. 

8.3 Security Architecture 

In this section we describe the mechanisms added to jDEECo to enable 

components protect their knowledge. Also, we describe how components themselves 

are verified before being deployed in the runtime. 

8.3.1 Security Policy Specification 

As we mentioned earlier, we use roles to restrict access to knowledge. Any 

component may be assigned (at design time) any number of roles. A role is defined by 

a Java interface annotated with @RoleDefinition, its assignment to a component is 

expressed by adding the @HasRole annotation to the component class definition. A 

State Police component from our running example (see 2.1) could be defined as: 

@RoleDefinition 

public interface PoliceRole { 

} 

 

@RoleDefinition 

public interface IntegratedRescueSystemRole { 

} 

 

@Component 

@HasRole(PoliceRole.class) 

@HasRole(IntegratedRescueSystemRole.class) 

public class StatePoliceVehicle { 
} 

Figure 10: Simple roles assignment example 
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Having added roles to components, we now need a mechanism for specifying the 

protection of their knowledge. Any knowledge field in the component definition may 

also be assigned any number of roles, thus instructing the runtime to allow only 

components owning the specified role to access the knowledge. This is achieved by 

adding the @Allow annotation. 

In the example above, the id field is unsecured – any other component can read it. 

The ownerName field is accessible only for components possessing the police or 

ambulance role, the access is read-only in both cases (which means that such field 

cannot appear in the @Out or @InOut process/knowledge exchange parameter). The 

orderedToStop field can be both read and modified by the police components (and 

cannot be accessed by anyone else). 

To improve expressibility, it is possible to use also the @AllowEveryone 

annotation, which is not parametrized with role, only with access rights. The purpose 

of this annotation is to specify basic security policy which applies to every component 

in the system. The following example demonstrates usage of the @AllowEveryone to 

specify that any component may read the data, but only Police may modify them. 

 

 

 

 

 

@RoleDefinition 

public interface AmbulanceRole { 

} 

 

@Component 

public class OrdinaryVehicle { 

/** 

  * An unsecured field 

 */ 

public String id; 

 

@Allow(value=PoliceRole.class,accessRights=AccessRights.READ) 

@Allow(value=AmbulanceRole.class,accessRights=AccessRights.READ) 

public String ownerName; 

 

@Allow(value=PoliceRole.class,accessRights=AccessRights.READ_WRITE) 

public boolean orderedToStop; 
} 

Figure 11: Securing knowledge by specifying access roles 
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To make the role-based specification more dynamic, it is possible to add 

parameters to roles. For example, the Municipal Police component should have the 

police role, but only for the given city. It would be inconvenient to create a dedicated 

police role for each possible city and even more demanding to add them to protected 

knowledge fields. To address this, we propose three kinds of parameters: 

 Parameter with absolute value 

 Parameter referencing knowledge 

 Parameter with wildcard 

The following example shows examples for each kind of parameter: 

The parameter is defined as a public, static and final field in the role interface, 

annotated with @RoleParam. These modifiers are obligatory and are intended to 

prevent a component to modify its own security role parameters (as will be discussed 

in 8.3.4).  

@RoleDefinition 

public interface PoliceRole_AbsoluteParam { 

 @RoleParam 

 public static final String cityName = "Prague"; 

  

@RoleParam 

 public static final Integer cityId = 123; 

} 

 

@RoleDefinition 

public interface PoliceInCityRole { 

 @RoleParam 

 public static final String cityName = "[cityId]"; 

} 

 

@RoleDefinition 

public interface PoliceEverywhereRole  

extends PoliceInCityRole { 

 @RoleParam 

 public static final String cityName = null; 

} 

Figure 13: Security role parameters example 

@Component 

public class OrdinaryVehicle { 

@AllowEveryone(AccessRights.READ) 

@Allow(value=PoliceRole.class,accessRights=AccessRights.WRITE) 

public boolean orderedToStop; 

} 

Figure 12: Example with @AllowEveryone 
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Parameter with absolute value can have any serializable type. 

A path parameter is a string containing a knowledge path enclosed with brackets 

(to differentiate it from an absolute value parameter of type string). The knowledge 

path is evaluated each time the role is used and the obtained value serves as an actual 

parameter. 

A wildcard parameter has a special significance when used together with role 

inheritance. Since security role is defined by an interface, inheritance can be used to 

achieve robustness and help maintainability. In the example above, the interface 

PoliceEverywhereRole inherits PoliceInCityRole, which implies that every component 

with the PoliceEverywhereRole role also has the PoliceInCityRole. It is possible to 

override parameters defined in roles parents. The wildcard parameter (which is 

recognized thanks to its null value) in this example models a situation where a 

component with PoliceEverywhereRole also has PoliceInCityRole for any cityName 

value. 

8.3.2 Encryption and Signing 

In the previous section we described how knowledge fields can be annotated in 

order to achieve security. In this section we focus on physical security, i.e. methods of 

protecting knowledge data by encryption and signing, to prevent unauthorized access 

and tampering. 

First, let it be reminded that we considered the jDEECo runtime and underlying 

Java runtime, operating system and hardware to be part of TCB, i.e. we trust these 

components completely. Therefore, we consider objects stored in the runtime memory 

to be safe, protected by the operating system memory access control mechanisms etc. 

and thus without need of additional protection. 

However, we must also protect the data when they leave the safe memory and are 

transferred to another entity in the system. jDEECo uses the KnowledgeData object as 

a serializable wrapper, containing (among others) the sender component ID, data 

version and the transferred knowledge (a map between a knowledge path and an object 

value). Several other items are present, but they are not concern to security (hop count 

and last sender ID used in rebroadcast, RSSI4 etc.).  

                                                 
4 Received Signal Strength Indication 
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Let us elaborate on possible security threats the KnowledgeData object may face 

during transmission. In the following sections, we describe protection mechanisms for 

each kind of security attack. 

8.3.2.1 Preventing Data Modification 

The attacker may attempt to capture transferred data and modify it. This does not 

necessarily imply that the attacker can read the data – enough damage can be done 

even with random modification. Also, the knowledge itself is not the only potential 

target. If the attacker for example set the data version to a lower value, the receiving 

component would consider such data obsolete and did not update its local knowledge. 

This way, the attacker could direct the flow of data in the system, which is highly 

undesirable. To ensure system integrity, we must prevent this even for unsecured 

knowledge (i.e. knowledge fields with no @Allow annotations). 

We therefore propose for each KnowledgeData object to compute a hash, sign this 

hash with a dedicated private key and attach the signature to the KnowledgeData 

object. This way, the receiving entity can verify the integrity of the data by 

recomputing the hash and matching it against the decrypted signature. Also, it knows 

that the data came from a valid jDEECo instance (since no other would own the same 

key pair used for signing). 

Not all items in the KnowledgeData object are signed – we exclude all items that 

are not subject to security and that may change during the transmission: hop count, last 

sender ID etc. Including them in the signature would create a performance issue since 

the signature would have to be recomputed each time the message is resent, excluding 

them on the other hand causes no security issue since they do not affect processing of 

received data.  

8.3.2.2 Concealing Data 

Thanks to a mechanism introduced in the previous section we can now be sure 

that messages cannot be modified along their way. However, we also need to be sure 

that knowledge data cannot be read. Moreover, we must deal with multiple @Allow 

annotations on a single knowledge field, meaning that any of given roles can access 

the field. 

We could simply use a symmetric key and encrypt all secured knowledge data in 

the message. Since every key is known to every entity, the receiving side could decrypt 

the message, unlike the potential attacker who captured it. We however consider this 
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solution inappropriate, because symmetric keys are vulnerable to compromise and also 

the idea of every piece of data being encrypted the same way, regardless on the actual 

security level, seems wrong. 

We therefore propose associating every evaluated security role with an 

asymmetric key pair and using this key pair for encryption. By “evaluated”, we mean 

the security role whose parameter values were resolved to actual values – for absolute 

value parameters and wildcard parameters this is trivial, for path parameters we obtain 

the value from the component’s knowledge. Thanks to this, the role “Municipal Police 

in Prague” (Prague being value of a parameter) will be associated with a different key 

then “Municipal Police in Pilsen”. The sender entity then checks security roles 

associated with the knowledge being sent, obtains the respective public key (all keys 

are known to every entity, as we assume in 8.1), encrypts the knowledge and sends it. 

To make it possible for a receiving entity to get the private key, it is necessary to 

include the identifier of a role in the KnowledgeData object being sent. This identifier 

of course is included in the message signature to prevent its modification. 

Several issues are introduced by this approach. First, there may be multiple 

@Allow annotations on a knowledge field, each of the roles of course associated with 

a different key pair. To address this, the sending entity splits the message being sent 

into several “submessages”, each of these corresponding to a single security level. For 

example, consider the following component: 

The first submessage would contain only the fields with no security protection, in 

our case only the field1, not encrypted. A submessage would then be created for each 

role used in the fields, i.e. a submessage containing field2 and field3 (both encrypted 

with the key corresponding to RoleA) and a submessage containing field3, encrypted 

with the RoleB key would be created. 

@Component 

public class Component {  

 public String field1; 

 

 @Allow(value=RoleA.class) 

public String field2; 

 

 @Allow(value=RoleA.class) 

 @Allow(value=RoleB.class) 

public String field3; 

} 

Figure 14: Example component to demonstrate submessages 
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The second and last issue concern the actual way of encrypting the knowledge 

data. The straightforward idea of simply encrypting the byte stream of the whole 

KnowledgeData object fails, because the object contains data that must not be 

encrypted – for example the security role identifier, last sender ID etc. Thankfully, 

Java offers the concept of SealedObject5. This is basically a safe created around any 

object we want to protect. Without a key to the safe (i.e. the key used to create the 

SealedObject), it is impossible to access it. Moreover, the SealedObject is serializable. 

We can therefore replace each protected knowledge object with a SealedObject 

containing it and pass the SealedObject to the lower layer of jDEECo that will take 

care of serialization and transmission. The receiving side then simply checks if the 

object it received is an instance of SealedObject and if so, it uses the security role 

identifier included in the message to obtain the key to it. 

8.3.2.3 Knowledge Path Risks 

As mentioned earlier, the KnowledgeData object that forms a message being 

transferred among jDEECo entities contains knowledge in the form of tuples 

(knowledge path, knowledge data). The mechanism of encryption described in the 

previous section encrypts only the data, not their knowledge paths. Could that be a 

potential security risk? 

Since the attacker can read the knowledge paths, they may attempt to modify 

them. That would of course be a great security issue, however even though the 

knowledge paths are not encrypted, they are included in the signature hash and 

therefore the receiving entity would spot the inconsistency. This kind of attack is 

therefore not possible. 

                                                 
5 http://docs.oracle.com/javase/7/docs/api/javax/crypto/SealedObject.html  

http://docs.oracle.com/javase/7/docs/api/javax/crypto/SealedObject.html
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Secondly, let us not forget on the concept of nested knowledge paths. We 

discussed them in section 2.5 – a knowledge path may contain nested paths, which are 

evaluated first and their value becomes part of the main knowledge path. For example, 

consider the following scenario: 

Now let us demonstrate the evaluation of the knowledge path 

driversCredentials.[pursuedDriverId]. First, the nested knowledge path 

pursuedDriverId is evaluated, which gives us driversCredentials.123456/7890. This 

path is then evaluated (i.e. a value corresponding to the 123456/7890 key is retrieved 

from the map) and we get the result: John Smith.  

As we can see at the second step, the knowledge path at that moment actually 

contains knowledge data. If such single knowledge tuple was transferred in a message, 

it would look like this: (driversCredentials.123456/7890, encrypted(John Smith)). The 

actual value John Smith is properly encrypted for the PoliceRole, but the knowledge 

path is not – and the attacker may obtain an information that driver with ID 

123456/7890 is being pursued. However, this situation can never appear in jDEECo, 

since only knowledge paths corresponding to whole knowledge fields are sent. In the 

example then, the knowledge paths driversCredentials and pursuedDriverId and 

corresponding encrypted values are sent. Even this kind of attack is therefore not 

possible. 

  

@Component 

public class MunicipalPolice { 

 @Allow(value = PoliceRole.class) 

 public Map<String, String> driversCredentials; 

 

 @Allow(value = PoliceRole.class) 

 public String pursuedDriverId; 

  

 public MunicipalPolice() { 

  this.pursuedDriverId = "123456/7890"; 

  this.driversCredentials = new HashMap<>(); 

   

  this.driversCredentials 

.put(pursuedDriverId, "John Smith"); 

 } 
} 

Figure 15: Example of the Municipal Police component 
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8.3.2.4 Performance 

As mentioned at the beginning of the section 8.3.2.1, in order to ensure data 

integrity, even messages containing no secured knowledge should be signed. This 

however conflicts with the Principle 3 discussed in section 8.2, because even though 

such component does not use any security feature of jDEECo, it is burdened with 

performance overhead caused by creating and verifying signatures. To address this 

issue, the signature generation for unsecured messages is an optional feature, turned 

on by setting the system property deeco.security.sign_plaintext_messages to true. 

Also, asymmetric cryptography is known to be very slow. In the setup we 

described in section 8.3.2.2, we would use the public key of the security role to encrypt 

basically whole KnowledgeData object, which however can be potentially quite large 

and both its encryption and decryption therefore a performance issue. To address this 

problem, we use common solution for such situations – for each KnowledgeData 

object we encrypt, a random symmetric key is generated. This key is then used to 

encrypt the KnowledgeData (symmetric encryption is much faster). Then we use 

appropriate public key to encrypt just the symmetric key and we attach the result to 

the KnowledgeData object. Since the symmetric key is much smaller then whole 

KnowledgeData, the performance does not suffer that much. When a target entity 

receives such KnowledgeData, it uses the proper private key to decrypt the symmetric 

key attached in the message and this key then to decrypt the rest of the data. We 

therefore bypassed the problem with performance while preserving advantages of 

asymmetric encryption. This method is known as hybrid encryption [33]. 

8.3.3 Access Control 

So far we described definition of the security policy (see 8.3.1) and mechanisms 

used to encrypt and sign data during their transmission (see 8.3.2). Now let us focus 

on the mechanism of access control, i.e. how the security policy is enforced and access 

to knowledge restricted. 

The access control mechanism must be executed whenever a component obtains 

new data. In DEECo, this only happens in the knowledge exchange method of an 

ensemble. We must therefore introduce a new processing step – after a membership 

condition test, the runtime must verify that the local component owns such collection 

of roles that permits it to read the knowledge of the remote component. If and only if 
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both tests are passed (membership condition and security), the knowledge exchange 

can be performed. 

First, let us identify the protected knowledge.  

 

The membership condition may contain only @In parameters, we must therefore 

verify that the local component has read access to all knowledge paths in the 

parameters. The knowledge exchange method may contain any kind of parameters, we 

must verify all of those as well.  

8.3.3.1 Covert Channel Intermezzo 

Before we continue, let us discuss if it is really necessary to verify access rights 

to the membership method parameters. There cannot be any output parameters, so even 

if the component gained access to the knowledge it should not, the component has 

nowhere to write that information. Moreover, checking the parameters costs us time. 

However, this is a prime example of a covert channel (discussed in 3.1.6). Consider 

the following example of an “evil” ensemble: 

 

@Ensemble 

@PeriodicScheduling(period = 5000) 

public class PoliceRadar { 

  

 @Membership 

 public static boolean membership( 

  @In("member.position") Coord memberPosition, 

@In("member.ownerName") String ownerName, 

  @In("coord.position") Coord coordPosition) { 

  // compute distance and return true if within range 

 } 

 

 @KnowledgeExchange 

 public static void exchange(       

  @In("member.ownerName") String ownerName, 

@InOut("coord.vehicleNearbyDriver")  

      ParamHolder<String> vehicleNearbyDriver) { 

// use "member." to access member's knowledge 

// use "coord." to access coordinator's knowledge 

  vehicleNearbyDriver.value = ownerName; 

 } 

} 

Figure 16: Example of an ensemble 
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If the membership condition parameters were not checked for access rights, this 

ensemble would leak information – any component could find out, it a nearby police 

is currently pursuing a criminal, even though they could not find out, which one.  

8.3.3.2 Forming an Ensemble 

To fully understand issues related with access control, we must first explain the 

jDEECo knowledge transmission paradigm in more detail.  

Each jDEECo entity (i.e. each instance of the runtime) may contain multiple 

components. All of these components are considered local. Knowledge of these 

components is periodically sent to all other entities in the system via the 

KnowledgeData object. As we mentioned in section 8.3.2, the KnowledgeData object 

contains information about security role protecting its knowledge, so that the target 

component could determine the right key for decryption. Before the jDEECo security 

extension was introduced, each received KnowledgeData object updated a knowledge 

of a replica in the entity. A replica represented a copy of knowledge of a remote 

component, hosted on a local entity. An entity then contained a replica for each remote 

component in the system (from which it at least once received the KnowledgeData 

object). We will explain how this has changed by introducing a security model later in 

the section 8.3.3.3. 

Forming an ensemble is then quite a simple process, in which the jDEECo runtime 

periodically iterates through all possible pair of local components and replicas and 

@Ensemble 

@PeriodicScheduling(period = 1000) 

public class EvilEnsemble { 

 

 @Membership 

 public static boolean membership( 

  @In("member.pursuedCriminals") Set<String> pursuedCriminals)  

 { 

  return !pursuedCriminals.isEmpty(); 

 }  

 @KnowledgeExchange 

 public static void exchange( 

  @Out("coord.policeInPursuit")  

ParamHolder<Boolean> policeInPursuit)  

 { 

  policeInPursuit.value = true; 

 } 

} 

Figure 17: Example of a covert channel ensemble 
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attempts to form an ensemble. Inherently, there are two possible ways the ensemble 

may be formed: 

1. Between two local components 

2. Between the local component and a replica (of another remote component) 

 

Considering forming an ensemble between two replicas is obviously pointless, 

since no knowledge of a local component would be updated. 

For each tested pair of components, the jDEECo runtime first assigns the local 

component the role coordinator (the remote component thus becoming the member) 

and evaluates the membership condition. If that is passed, knowledge exchange is 

performed. Then, the jDEECo runtime switches the roles, the local component 

becomes a member while the remote one a coordinator. Again, membership condition 

is checked and possibly, knowledge exchange method invoked. 

8.3.3.3 Security Role Evaluation 

After a membership condition was passed, we need to check, whether the local 

component owns such set of roles that would enable it to read the knowledge 

mentioned in the arguments of the membership condition and knowledge exchange 

method. For that, two things are needed: 

1. The security roles of the local component: since the local component has been 

annotated with @HasRole, we can also easily determine the roles. 

2. The security roles that protect the knowledge fields of the remote component 

(i.e. were assigned using @Allow). However, to make this information 

available on the local component, it must be transferred from the definition of 

the remote component. Therefore we added it to the KnowledgeData object 

that is used to transfer data between entities (and encrypted the “security 

metadata” the same way as the knowledge data to prevent information 

leakage). 

 

All the roles now must be evaluated, i.e. their parameters must be resolved to actual 

values. Especially the path parameters must be resolved using the respective 

component’s knowledge. And at this point, we are facing two problems: 

1. What if the path parameter used in the @Allow security role referred to @Local 

knowledge? 
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2. What if the knowledge path used in the ensemble methods arguments contained 

nested and protected knowledge paths? 

 

Let us demonstrate the first problem on the following example. 

As we can see, the pursuedDriverId field is protected with the PoliceRole. 

However, in order to evaluate the role (i.e. resolve its parameters), the cityId field must 

be present in the knowledge as well. This causes no problem when evaluating the role 

locally, however, when this component becomes a replica (by transferring its 

knowledge to another entity), the cityId field will be missing, because it is decorated 

with @Local and therefore cannot be distributed. 

To overcome this problem, we reutilize the encryption mechanism introduced in 

8.3.2. We already included the security role information in the KnowledgeData object, 

so that the receiving component could determine the decryption key. Now we can use 

this already evaluated role information again for access control, rather than evaluate 

the role locally. To make this work, we however need to slightly modify the replica 

management. So far, the replicas were shared between the local components hosted on 

the same entity. This is no longer acceptable, since each component may have different 

access rights (i.e. different roles). Therefore, we propose a replica to be created for 

each local component individually, containing exactly those data that the local 

component can access. This way, whenever we check if a component has access to a 

knowledge of another component, we can always yield success when the second 

@RoleDefinition 

public interface PoliceRole { 

 @RoleParam 

 public static final String cityIdParameter = "[cityId]"; 

} 

  

@Component 

public class MunicipalPolice {  

 @Allow(PoliceRole.class) 

 public String pursuedDriverId; 

  

 @Local 

 public String cityId; 

  

 public MunicipalPolice(String cityId) { 

  this.cityId = cityId; 

 } 
} 

Figure 18: Ensemble using security role with @Local path parameter 
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component is a replica (because, essentially, the access control has already been 

performed when receiving the KnowledgeData object). 

The second problem mentioned at the beginning of this section is related to the 

potential complexity of knowledge path used in ensemble method. As we described in 

section 2.5, a knowledge path may contain nested sub-paths, which are evaluated first 

and their value is used in their parent. Consider the following example: 

Let us focus on the input parameter of the knowledge exchange method. Before 

actually executing the method, we need to check whether the local component has 

rights sufficient to access the knowledge specified by the path. Starting from the 

innermost path, the roles necessary for accessing the path are (we use abbreviations 

PoR for PoliceRole, StR for StateRole etc. to maintain readability): 

@RoleDefinition 

public interface PoliceRole { } 

@RoleDefinition 

public interface OfficerRole { }  

@RoleDefinition 

public interface CommanderRole { }  

@RoleDefinition 

public interface StateRole { } 

@RoleDefinition 

public interface CityRole { } 

 

@Component 

public class PoliceComponent { 

 @Allow(PoliceRole.class) 

 public Map<String, String> drivers; 

  

 @Allow(StateRole.class) 

 @Allow(CityRole.class) 

 public Map<String, String> driverAges; 

   

 @Allow(OfficerRole.class) 

 @Allow(CommanderRole.class) 

 public String wantedDriverId; 

} 

 

@Ensemble 

public class ComplicatedEnsemble { 

 @Membership 

 public static boolean membership() { return true; } 

  

 @KnowledgeExchange 

 public static void exchange( 

@In("driverAges.[drivers.[wantedDriverId]]") String value, 

@Out("wantedDriverAge") ParamHolder<String> result 

) { 

  result.value = value; 

 } 

} 

Figure 19: Example of complicated knowledge path in an ensemble 
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1. wantedDriverId: OfR OR CoR 

2. drivers.[wantedDriverId]: PoR AND (OfR OR CoR)  

using distributivity we get: (PoR AND OfR) OR (PoR AND CoR) 

3. driverAges.[drivers.[wantedDriverId]]:  

(StR OR CiR) AND ((PoR AND OfR) OR (PoR AND CoR))  

using distributivity again:  

(StR AND PoR AND OfR) OR (StR AND PoR AND CoR) OR  

(CiR AND PoR AND OfR) OR (CiR AND PoR AND CoR) 

 

As we can see, the set of roles necessary to access a knowledge path actually forms 

a DNF (Disjunctive Normal Form) formula, each literal representing a role the 

component must have. When comparing security level of knowledge (represented by 

its path) and a component, this formula has to be satisfied. Since satisfiability is an 

NP-complete problem (Cook-Levin Theorem [34]), we have no other choice but to test 

each of the disjuncts whether the accessing component has all the roles that match the 

roles specified by its formula literals. 

 To test if the two roles match, we simply need to do the following: 

1. Test the role names for equality 

2. Test the role arguments – for each argument of the protecting role (i.e. role 

assigned using @Allow), there must be an argument in the accessing role (i.e. 

role assigned using @HasRole) which: 

a. Has the same name 

b. Either has the same value or is null (as discussed in 8.3.1, null value 

acts as a wildcard) 

8.3.3.4 Indirect Access Control 

The mechanism of access control as we so far described it presumed that the 

access is provided based on the relation between the protecting component (which 

decorates its knowledge with @Allow) and the accessing component (which is 

decorated with @HasRole). However, this must not always be the case.  
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Let us return to the example with vehicles, Municipal Police (MP) and State Police 

(SP). The State Police role could be defined as “the Municipal Police role in every 

city”, as demonstrated on the following snippet: 

It could be desirable for a SP to share certain knowledge about ordinary vehicles 

only with MP that comes from the same city as the ordinary vehicle. That is, SP would 

obtain certain knowledge from ordinary vehicle, which is not accessible to MP. 

However, SP would annotate the knowledge in such way that it would be accessible 

for MP provided the city in which the MP belongs is the same as the city of the ordinary 

vehicle. This can be achieved using the evaluation context of the @RoleParam: 

 

 

@RoleDefinition 

public interface MunicipalPoliceRole { 

 @RoleParam 

 public static final String cityIdParameter = "[cityId]"; 

} 

  

@RoleDefinition 

public interface StatePoliceRole extends MunicipalPoliceRole { 

 @RoleParam 

 public static final String cityIdParameter = null; 
} 

Figure 20: Example of Municipal Police and State Police roles 
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First, let us focus on the PoliceInAuthorsCity role. The SHADOW context kind 

instructs the jDEECo runtime not to evaluate the parameter in the context of the 

component itself, but rather in the context of the component from the corresponding 

knowledge came from. When the role PoliceInAuthorsCity used to restrict access to 

secret_for_city is evaluated, jDEECo finds the replica from which this field was 

populated and resolves the cityIdParameter in its context. To determine the right 

replica, the concept of knowledge authorship is used (described in 8.4.3). 

Secondly, the aliasedBy property of the @RoleDefinition annotation must be used. 

This simply adds the role of that name to the list of roles for given component. 

@RoleDefinition(aliasedBy = PoliceInAuthorsCity.class) 

public interface MunicipalPolice { 

 @RoleParam 

 public static final String cityIdParameter = "[cityId]"; 

} 

  

@RoleDefinition 

public interface StatePolice extends MunicipalPolice { 

 @RoleParam 

 public static final String cityIdParameter = null; 

} 

  

@RoleDefinition 

public interface PoliceInAuthorsCity extends StatePolice { 

 @RoleParam(ContextKind.SHADOW) 

 public static final String cityIdParameter = "[cityId]"; 

} 

 

@Component   

public class OrdinaryVehicleComponent  { 

 public String cityId; 

  

 @Allow(StatePolice.class) 

 public String secret_for_city; 

} 

 

@Component  

@HasRole(MunicipalPolice.class)   

public class MunicipalPoliceComponent  { 

 public String cityId; 

   

 @Local 

 public String secret_for_city; 

} 

 

@Component  

@HasRole(StatePolice.class)   

public class StatePoliceComponent  {   

 @Allow(PoliceInAuthorsCity.class) 

 public String secret_for_city; 

} 

Figure 21: Example of an indirect access control 
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The knowledge flow would then be: 

1. The StatePoliceComponent obtains secret_for_city from the 

OrdinaryVehicleComponent (because the roles of @Allow and @HasRole 

match). 

2. The MunicipalPoliceComponent attempts to access the same data, but fails 

(because the roles do not match). 

3. The MunicipalPoliceComponent attempt to get the data from 

StatePoliceComponent:  

a. First, the role names for secret_for_city must match. Because the 

MunicipalPolice is aliased by PoliceInAuthorsCity, which is used in 

@Allow, the match succeeds. 

b. Second, the values of the cityIdParameter must be the same. In the 

MunicipalPoliceComponent, the parameter is easily evaluated by 

retrieving the value of the cityId knowledge path. In the 

StatePoliceComponent, the author of the secret_for_city knowledge is 

determined to be the correct OrdinaryVehicleComponent and the cityId 

knowledge path is evaluated in the context of its replica. Since these 

values will again match, the knowledge exchange will be performed. 

 

Thanks to this mechanism, it is possible to create very specific security policies 

while maintaining the security level of the knowledge data. Also, we can perceive 

using the SHADOW context as a form of delegation. 

8.3.4 Component Clearance Verification 

Component’s access privileges are determined by the security roles it owns. Since 

this is an essential part of the security model, we need to design a mechanism that 

would enforce the following requirements: 

1. No component with security roles that may cause breaking the system security 

policy can be deployed. 

2. Component cannot add or remove security roles of itself nor other components. 

3. Component cannot modify any security role parameter values. 

 

Let us start with the first requirement. It is rather vaguely formulated – since each 

component is an autonomous unit, the phrase “system security policy” cannot be 
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defined explicitly, but rather as “union of security policies of all components”. In our 

running example, the ordinary vehicle component marked certain knowledge to be 

accessible only for components with the police role. The protecting component then 

relies on the system no to contain a fabricated “bad component” with the police role. 

We need a way of maintaining such setup, where each component has only those roles 

that it is safe to be entrusted with. 

For that, we introduce the concept of certification authority (CA). Similarly to PKI 

(Public Key Infrastructure), this authority is inherently trusted by all components and 

its job is to verify that new components meet the security policy requirements. The 

process of deploying a new set of components is then: 

1. Develop (code) the new components and package them in a JAR (Java 

Archive) file. 

2. Send this JAR to a well-known certification authority. 

3. The authority verifies that the components in the JAR conform the security 

policy. If the verification succeeds, the CA signs the JAR. 

4. When jDEECo loads the JAR containing the components, the signature is 

checked and only if it is proved to be a valid signature of the CA, the 

components are loaded and deployed. 

 

Thanks to this, we can rely on the CA to do the (possibly manual) verification of 

security role usage. Since this checking is only performed in design-time, we have also 

bypassed the problem of creating a performance bottleneck.  

To simplify the process, jDEECo does not verify the JAR signature in case no 

component in the JAR owns any security role. In that case, we can deploy the 

components without consulting the CA, without risking security breach. Moreover, to 

ease development, it is possible to turn off signature checking altogether by setting the 

system property deeco.security.verify_secured_component_jars to false. 

The second requirement from the beginning of this section stated that no 

component can add or remove security roles of itself or other components. The security 

roles are assigned to a component when it is deployed, jDEECo provides no 

mechanism of modifying the collection of security roles at runtime. Also, no 

component is allowed to communicate with any other component directly. Thanks to 

these two facts, it is guaranteed that the collection of security roles of a component 

remains intact. 
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Finally, the third requirement says that component cannot modify the parameter 

values of the security roles it owns. For instance, the Municipal Police role from our 

running example has a parameter identifying the city, in which this role is valid. 

Obviously, it is highly undesirable to let any component modify such value. Before we 

propose a mechanism that would prevent such situations, let us describe the problem 

with respect to security role parameter definition introduced in 8.3.1. 

 There are three kinds of security role parameters:  

 Absolute, containing any Java object or primitive value 

 Path, containing a string knowledge path 

 Blank, containing Java null, which acts as a wildcard 

As we can see, it would be very easy for a component to modify the parameter 

value, if the modifier final was not used. The final keyword guarantees that: 

 Absolute parameters containing primitive types or Strings are read only 

(because these types are immutable) 

 Path parameters are read only (since they are always Strings). 

 Wildcard parameters are read only (because once null is assigned, it cannot be 

replaced with any other value). 

 

However, the final keyword will not prevent a situation where the value of an 

absolute parameter is an object. For example, consider the following: 

 

@RoleDefinition 

public interface TestRole { 

 @RoleParam 

 public static final Integer cityId = 123; 

  

@RoleParam 

 public static final String cityReference = "[cityId]"; 

 

@RoleParam 

 public static final String cityWildcard = null; 

} 

 
Figure 22: An example role containing all kinds of parameters 
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Despite the final keyword, anyone can modify the value of the field x and therefore 

modify the parameter of the security role. To prevent this, all security parameter values 

are cloned before being loaded into the jDEECo runtime and these clones are not 

accessible from component code. Thus, even if someone modifies the value of x, the 

cloned value and also the security role remains unchanged.  

Finally, we need to address the issue with path security role parameters. Even 

though the knowledge path itself is set as a compile-time String constant, the 

knowledge data (that are later used as the actual parameter of the role, when the 

knowledge path is evaluated) can potentially be modified, for example in the 

component processes. 

To solve this, all knowledge paths used in the security role parameters are marked 

as locked. Whenever a method is called that is allowed to modify knowledge (i.e. 

component process or knowledge exchange), its output arguments are checked for 

being locked and if they are, the method is not called. It is not sufficient to perform his 

check just once when the component is deployed, since the knowledge paths in the 

output arguments may contain evaluable nested paths (which may result in different 

absolute knowledge path on each evaluation). 

8.3.5 Data Leakage Prevention 

So far we described mechanisms used to protect knowledge and control access 

of components to the knowledge. In this section, we introduce the problem of data 

leakage and present a suitable solution. 

@RoleDefinition 

public interface TestRole2 { 

 @RoleParam 

 public static final TestObject testObject = new TestObject(); 

} 

 

public interface TestObject { 

 public int x = 3; 

} 

 
Figure 23: Example of a security role containing object parameter value 
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Let us consider the following component: 

The LeakingComponent from the example above clearly has access to both 

protectedKnowledge (because it has the necessary role) and unprotectedKnowledge. 

However, each time the process is invoked, the confidential knowledge is copied into 

a freely distributable knowledge field, the knowledge thus losing its protection. Such 

behavior is obviously undesirable, we need to make sure that whenever a component 

is entrusted with certain knowledge, it will not “betray” us and make the knowledge 

available for someone without proper security clearance. 

To address this issue, we propose a “data leakage” verification to be performed 

before each knowledge exchange. This is the only moment when a component obtains 

a new knowledge and therefore the only moment that is critical to data leakage. The 

verification procedure needs to check the target component (i.e. the component whose 

knowledge is being modified) if there is no situation, where a piece of knowledge 

would be copied from more secured field to a less secured field. To model the 

dependencies between knowledge fields, the jDEECo @In, @InOut and @Out 

parameter kinds are used. Specifically, the algorithm of the verification runs as 

follows: 

1. Iterate through all processes of the target component 

a. For each input parameter (i.e. decorated with @In or @InOut), create 

transitive closure of dependent parameters 

@RoleDefinition 

public interface Role {} 

 

@Component 

@HasRole(Role.class) 

public class LeakingComponent { 

@Allow(Role.class) 

 public String protectedKnowledge; 

  

 public String unprotectedKnowledge; 

  

 @Process 

 public static void process( 

  @In("protectedKnowledge") String protectedKnowledge, 

  @Out("unprotectedKnowledge") ParamHolder<String> 

unprotectedKnowledge 

 ) { 

  unprotectedKnowledge.value = protectedKnowledge; 

 } 
} 

Figure 24: Example of data leaking component 
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2. For each such parameter and its dependencies, evaluate the security roles 

protecting its knowledge path (see 8.3.3.3 how security protection of a 

knowledge path actually forms a logical formula in DNF) 

3. Verify that no output parameter has lower security level than the original input 

parameter.  

 

If this check does not yield success, the knowledge exchange is not performed 

and the knowledge security therefore is not jeopardized. 

Specific case is knowledge annotated with @Local which depends on secured 

knowledge. In such situation, the verification process can yield success immediately, 

because local knowledge is never distributed to other components and therefore the 

data cannot leak. 

Verification of data leakage as we just described it is rather a strong tool – it never 

allows any output parameter to be less secure then any input parameter, despite the 

semantics of the data. Let us discuss one example, where such strict behavior is 

undesirable (we already mentioned it briefly in 3.1.6): 

In this example, the police vehicle component contains a process which decides 

whether the vehicle sirens should be on or off. This decision is made according to a 

@RoleDefinition 

public interface PoliceRole {} 

  

public enum SirensState { ON, OFF } 

 

@Component 

@HasRole(PoliceRole.class) 

public class PoliceWithSirens { 

 @Allow(PoliceRole.class) 

 public String pursuedCriminal; 

  

 public SirensState sirensState; 

  

 @Process 

 public static void determineSirensState( 

  @In("pursuedCriminal") String pursuedCriminal,  

  @Out("sirensState") ParamHolder<SirensState> sirensState 

 ) { 

  if (pursuedCriminal == null) { 

   sirensState.value = SirensState.OFF; 

  } else { 

   sirensState.value = SirensState.ON; 

  } 

 } 
} 

Figure 25: Example of a component process with inevitable data leakage 
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value of secured pursuedCriminal field. However, the data leakage verification 

process would detect that the unsecured sirensState fields depends on secured 

pursuedCriminal field and therefore this component would not receive any data in the 

knowledge exchange method, even though apparently no unnecessary knowledge is 

made public. 

To solve this issue, it is possible to decorate any process method with 

@IgnoreKnowledgeCompromise. When this annotation is applied, the process method 

is not checked for data leakage, enabling components to mark harmless dependencies. 

It is a job of CA (described in 8.3.4) to make sure this annotation is not abused to 

arbitrarily copy data between fields with incompatible security levels.  

Lastly, let us consider performance footprint of the data leakage prevention 

mechanism we just described. Before each knowledge exchange, it is necessary to get 

dependency graph for each knowledge field in the target component, evaluate 

corresponding roles and check if no field loses its security level. Using simple 

benchmarking jDEECo simulation and VisualVM6 as a profiler, we estimated the 

effect of data leakage check is 20% slowdown. Therefore we introduce a caching layer, 

which stores results of data leakage checks and thus keeping the performance footprint 

minimal. By introducing such layer, the slowdown caused by repetitive execution of 

data leakage checks in removed entirely.  

8.4 Trust Architecture 

In this section, we describe the trust model proposed for utilization in DEECo 

along with realization in jDEECo. Its goal is to enable components reason about 

quality of their knowledge, possibly preventing violation of integrity constraints. 

8.4.1 Concept 

As mentioned in chapter 7, the proposed trust model takes inspiration from the 

SULTAN system described in 5.2. To reflect also the real world, where trust is always 

quantified, we propose to store trust relations as quaternions: 

 The truster, i.e. the ID of the component which is the source of the trust 

relationship 

                                                 
6 http://visualvm.java.net/  

http://visualvm.java.net/
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 The trustee, i.e. the ID of the component with which is the truster in 

relationship 

 The knowledge path, i.e. what the truster trusts the trustee with 

 The rating, i.e. a value from selected enumeration of possible states of the 

knowledge (e.g. OK, UNUSUAL etc.) 

 

These quaternions are distributed across the components the same way as 

knowledge and are therefore available at any component at any time. Because the 

quaternion contains a concrete knowledge path (which must be absolute, i.e. not to 

contain nested knowledge paths), it is possible to rate knowledge at any level of detail. 

The quaternions are created by the components themselves through dedicated 

process (see 8.4.3), idea being that it is the component who knows the integrity 

constraints the best. It is inspired by IVP (Integrity Verification Procedure) as defined 

in the Clark-Wilson model (see 4.6). 

8.4.2 Obtaining the Rating 

To make ratings accessible, a new method parameter kind is introduced, called 

@Rating (adding to already existing @In, @InOut and @Out). This parameter kind 

can be used in any method – component process, ensemble membership condition or 

knowledge exchange and takes a knowledge path as an argument as well. Such 

parameter must have the type ReadonlyRatingsHolder, which provides method to get 

the number of components that rated the knowledge path with the specified rating 

level. The @Rating parameter usage is demonstrated on the following example: 
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In this example, the number of components that rated the knowledge path 

outsideTemperature with value OK is obtained. This is the only functionality the 

ReadonlyRatingsHolder provides, specifically, it does not enable to modify any 

ratings. 

Since the ratings data are aggregated and do not contain any knowledge or 

component information, these data are not subjected to access control. Security roles 

and data leakage prevention described in section 8.3 are therefore not applied, any 

component can obtain rating for any knowledge path. To prevent information leakage 

through covert channels (for example by test-rating a knowledge path to check if it 

contains data), the rating mechanism does not even check if the knowledge path being 

rated exists. 

8.4.3 Creating the Rating 

It is the component who knows best what integrity constraints should its 

knowledge meet, therefore it should again be the component who provides rating of 

the knowledge data. To satisfy this requirement and also to satisfy the need to prevent 

components from setting the ratings arbitrarily, we propose the ratings to be set in a 

dedicated process of the component. 

Any component may define a single ratings process, which is a method similar to 

common component process. This process however cannot contain any output 

parameters (@InOut nor @Out), to prevent knowledge modification. On the other 

@Component 

public class ComponentWithRating { 

 

 public double outsideTemperature; 

  

 @Process 

 public static void process( 

  @In("outsideTemperature") double outsideTemperature, 

  @Rating("outsideTemperature") ReadonlyRatingsHolder 

outsideTemperatureRating 

 ) { 

if (outsideTemperatureRating.getRatings(PathRating.OK)  

    > 2) { 

   // treat outsideTemperature as reliable 

  } else { 

   // treat outsideTemperature as unreliable 

  } 

 } 
} 

Figure 26: Example of component using knowledge rating 
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hand, it may contain @Rating parameters with type RatingsHolder (as opposed to 

ReadonlyRatingsHolder described in previous section).  

This object provides functionality for setting the rating of the knowledge path, as 

demonstrated on the following example: 

The method providing the knowledge rating is decorated with @RatingsProcess, 

there can be at most one such method defined per component. In the example above, 

the ratings process takes the knowledge of path outsideTemperature and based on the 

value, sets the rating for this path.  

The ratings process of a component is (if present) called after each successful 

knowledge exchange, since it is the only moment where the component knowledge is 

enriched with outside data that may potentially violate integrity constraints. 

As we mentioned earlier, the ratings form a quaternion. So far the following is 

obvious: 

 The truster component is the component whose rating process is invoked 

 The knowledge path is the path from the @Rating parameter 

 The rating is the value of enumeration set in the setMyRating method of the 

RatingsHolder object  

@Component 

public class ComponentWithRating { 

 

 public double outsideTemperature; 

  

 @RatingsProcess 

 public static void ratingProcess( 

  @In("outsideTemperature") double outsideTemperature, 

  @Rating("outsideTemperature") RatingsHolder 

outsideTemperatureRating 

 ) { 

  if (outsideTemperature > -50 && outsideTemperature < 50) { 

   outsideTemperatureRating 

.setMyRating(PathRating.OK); 

  }  

else  

if (outsideTemperature > -100 && outsideTemperature < 100) { 

   outsideTemperatureRating 

.setMyRating(PathRating.UNUSUAL); 

  } else { 

   outsideTemperatureRating 

.setMyRating(PathRating.OUT_OF_RANGE); 

  } 

 } 

} 

Figure 27: Example of a component rating process 
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However, we also need to know the trustee, i.e. the component whose knowledge 

is being rated. For that, we need to introduce the concept of knowledge authors.  

When the component is first deployed in the jDEECo runtime, it is also set as the 

author of its whole knowledge. The only moment when the authorship of knowledge 

can change is during knowledge exchange. At this time, the authors of the knowledge 

are updated the same way as the knowledge itself, i.e. the author of the given 

knowledge path from source component is also set as the author of the knowledge path 

at the target component. 

If a piece of knowledge is modified in the component process (i.e. the @InOut or 

@Out parameter was used), the component itself is set as the author of corresponding 

knowledge paths (since it may have changed the knowledge data). However, if the 

component did not modify the knowledge it received, the author remains the same as 

set in the knowledge exchange, even when this knowledge is redistributed. It is 

therefore necessary to include the knowledge authors in the KnowledgeData object 

that is used to send data between components. The information about knowledge 

authors is of course encrypted the same way as the knowledge data itself.  

Thanks to this concept, the jDEECo runtime can always for the given component 

and knowledge path determine ID of the component, where the knowledge came from. 

In the ratings process, this is used to determine the trustee, i.e. the component whose 

knowledge is being rated. It is also used in all other @Rating parameters to initialize 

the ReadonlyRatingsHolder (i.e. to determine how is the given knowledge path of the 

given component rated). 

8.4.4 Ratings Distribution 

As we described earlier, component knowledge is periodically distributed to other 

components, where it forms a replica. The KnowledgeData object is used as a wrapper 

for transferring the knowledge itself, security attributes (see 8.3.3.3), knowledge 

authors (see 8.4.3) and other metadata.  

Similarly, rating information is distributed using the RatingsData object, which 

contains list of quaternions created during invocation of the rating processes of the 

local components. Since the ratings are potentially confidential, the RatingsData 

content is encrypted with well-known key to prevent compromise during transmission. 

The ratings data are also distributed periodically, along with the knowledge data. 
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9 Evaluation 

In this chapter we describe the implementation of the running example which 

utilizes the proposed security mechanisms. Then we profile the simulation to monitor 

performance footprint. 

The simulation uses two kinds of vehicles: the police vehicle and the ordinary 

vehicle. The ordinary vehicle behavior is the same as in [2], i.e. each vehicle starts at 

certain location, is assigned certain destination and uses means described in [2] to 

reach it.  

The police vehicle contains the same logic, i.e. it too travels between two 

locations. However, each police vehicle also contains a list of names of wanted 

criminals. While travelling, police vehicle uses the ensemble called PoliceRadar to 

monitor ordinary vehicles within range and if any of them is driven by a wanted 

criminal, the police vehicle starts a pursuit by setting itself the same destination as the 

pursued vehicle. Let us see the corresponding code (certain parts of it have been 

removed for brevity): 

@Component 

public class Vehicle { 

 /** Id of the vehicle component. */ 

public String id; 

  

/** Destination place */ 

 public String dstPlace; 

  

/** Position of the current link. */ 

 public Coord position; 

  

 /** Contains a list of link ids that lead to the destination. */ 

 @Local 

 public List<Id> route; 

 

 public VehicleKind vehicleKind = VehicleKind.ORDINARY; 

  

 @Allow(value = PoliceRole.class,accessRights = AccessRights.READ) 

 public String ownerName; 

 

 ... 
} 

Figure 28: Ordinary vehicle component used in simulation 
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@RoleDefinition 

public interface PoliceRole { } 

 

@Component 

@HasRole(PoliceRole.class) 

public class PoliceVehicle { 

/** same fields as in ordinary component – id, route, 
destination, speed … */ 

 

@Local 

 public String[] wantedOwnerIds; 

  

 @Local 

 public String currentlyPursuedOwnerId, currentlyPursuedVehicleId;

  

 public VehicleKind vehicleKind = VehicleKind.POLICE; 

  

 @Local 

 public Map<String, String> vehiclesOwnersNearby,vehicleIdsNearby; 

 

 ... 

} 

Figure 30: Police vehicle used in simulation 

@Ensemble 

@PeriodicScheduling(period = 1000) 

public class PoliceRadar { 

 @Membership 

 public static boolean membership( 

  @In("member.position") Coord memberPosition, 

  @In("member.vehicleKind") VehicleKind memberKind, 

  @In("coord.position") Coord coordPosition, 

  @In("coord.vehicleKind") VehicleKind coordKind) { 

  return 

Navigator.getEuclidDistance(memberPosition,coordPosition) <= 

Settings.POLICE_RADAR_RANGE && 

memberKind == VehicleKind.ORDINARY &&  

coordKind == VehicleKind.POLICE; 

 } 

 

 @KnowledgeExchange 

 public static void exchange(    

  @In("member.id") String id, 

  @In("member.ownerName") String ownerId, 

  @In("member.dstPlace") String dstPlace, 

  @InOut("coord.vehiclesOwnersNearby") 

ParamHolder<Map<String, String>> vehiclesOwnersNearby, 

  @InOut("coord.vehicleIdsNearby") ParamHolder<Map<String, 

String>> vehicleIdsNearby) { 

  vehiclesOwnersNearby.value.put(ownerId, dstPlace); 

  vehicleIdsNearby.value.put(ownerId, id); 

 } 

} 

Figure 29: PoliceRadar ensemble used in simulation 
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As we can see, the PoliceRadar ensemble adds data about an ordinary vehicle 

(member) to a police vehicle (coordinator). The police vehicle than uses these data in 

a dedicated process, which consults the map of vehicles nearby with the given list of 

wanted criminals and if a match is found, the police vehicle sets its destination to the 

destination of the pursued vehicle (if only life was so simple…). 

The testing simulation includes 40 ordinary vehicles and 10 police vehicles, 10 

minutes of service is simulated. To implement the lower communication and 

simulation levels, MATSim7 and OMNet8 are used. Since jDEECo is not entirely 

deterministic, each of the experiments below is run 10 times, the hosting computer (4 

core Intel i7, 6GB memory available for the JVM, Windows 8.1) was restarted after 

each run. Slight inaccuracy is introduced by the Java JIT (Just-In-Time) compiler – the 

measured times do not include just the simulation, but also the time needed to compile 

the Java bytecode to a native language. But since this time is more or less constant for 

each experiment and run, we consider this inaccuracy irrelevant. 

The following experiments were conducted: 

A. Completely removed security, i.e. the @Allow annotation protecting the 

ownerName field is removed and messages are not signed.  

B. Protected the ownerName field with the @Allow annotation as listed in Figure 

28, but turned off the plaintext message signing. 

C. Removed the @Allow annotation, but signing of messages enabled.  

D. Utilized both @Allow annotation and plaintext messages signing. 

 

The results of the experiments are summarized in the following tables and graph: 

 

Table 1: Time in seconds required to run simulations 

Run 
1 2 3 4 5 6 7 8 9 10 

Exp. 

A 601.19 596.76 607.10 624.90 602.98 608.77 592.00 602.16 618.40 599.65 

B 913.55 917.93 921.13 919.38 922.17 921.95 916.69 895.65 918.93 905.58 

C 642.36 632.67 642.72 642.56 677.31 642.62 694.24 645.88 637.29 650.32 

D 976.53 971.25 997.94 980.37 997.77 974.51 986.37 948.24 943.66 992.90 

                                                 
7 http://www.matsim.org/  

8 http://omnetpp.org/  

http://www.matsim.org/
http://omnetpp.org/
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Figure 31: Box plot displaying time elapsed during simulations of setups A - D 

 

Table 2: Number of messages sent during experiments 

Run 
1 2 3 4 5 6 7 8 9 10 

Exp. 

A 7184818 7186331 7185581 7185767 7185103 7185261 7184132 7186402 7185241 7184772 

B 8616110 8616306 8613529 8615357 8616350 8616265 8615556 8615016 8615233 8617015 

C 7185302 7185277 7185277 7185921 7184373 7186089 7185501 7185258 7184663 7186086 

D 8616473 8615946 8616718 8615019 8614814 8613162 8614897 8615992 8614107 8617032 

 

The increase of number of messages between experiments with security (B, D) 

and without security (A, C) is caused by sending protected data in separate messages, 

as explained in 8.3.2.1. To find out the cause of elapsed time increase, we use 

VisualVM to find out that most of the extra time is spent encrypting messages and 

generating signatures for such messages. 
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Interestingly, VisualVM shows that almost all of the delay is caused by using 

public key cryptography to encrypt symmetric keys and generate signatures. The 

performance footprint of symmetric encryption is barely recognizable. On average, the 

increase in number of messages is 20%, the extra time is 51%.  
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10 Discussion 

In this chapter we review the security model proposed in chapter 8 from various 

points of view and discuss its several drawbacks. Specifically, we discuss whether the 

result system complies with principles we set ourselves in section 8.2. 

Most importantly, the solution does not contain any runtime centralized logic, 

which would be highly unsuitable for any CPS. Even though in 8.3.4 we introduced 

the concept of certification authority, this is not an issue since the authority is only 

consulted at deploy-time, not at runtime. 

The model we propose is fully extensible – a new security role can be created 

without having to redeploy other components. Also, thanks to the concept of security 

role parameters, the expressibility of such solution is very high.  

Classic subject authentication as we know it from the Bell-LaPadula model for 

example (see 4.3.1) is not present in our solution. Instead, security roles are used to 

classify components. Thanks to this, a component does not need to know the identity 

of all components with which it may share an ensemble and therefore exchange data. 

The security roles are also used for authorization, as described in 8.3.3.3. Thanks 

to role inheritance and the concept of parameters, the model can well reflect the real 

world needs.  

Delegation of rights is achieved using the indirect access control, as described in 

8.3.3.4. This enables even more dynamic exchange of data. 

However, it is not possible to modify access rights at runtime, i.e. perform 

revocation of privileges. For example, once deployed, a component cannot change the 

set of roles for which certain knowledge is accessible. This is caused by the fact that 

the whole component definition is loaded by the jDEECo runtime when the component 

is deployed and the component has no way of modifying such setup afterwards. The 

only way of revoking access to knowledge is to undeploy the component, perform the 

changes in security specifications and redeploy the component. This issue could 

however be easily solved – for each part of the knowledge, we could also store the 

ensemble through which it has been obtained. By periodically re-evaluating the 

ensemble’s membership condition, we could revoke the rights the component once 

already had. 

Knowledge in DEECo is protected by specifying roles which can access it. As we 

mentioned in chapter 7, this approach is inspired by classical ACLs, where instead of 
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specifying concrete subjects, more general security roles are used. However, this 

causes the DEECo solution to share also the drawbacks of ACLs. Namely, the query: 

“What knowledge can the given security role access?” would be hard to evaluate, since 

it would lead to iterating across all deployed components. Fortunately, such query is 

never needed in standard DEECo usage. 
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11 Related Work 

In this chapter we compare our solution of DEECo security with similar systems 

that provide access control and trust management for decentralized systems. 

11.1 dRBAC 

Freudenthal et al. [17] built their dRBAC (Distributed Role-based Access Control 

for Dynamic Coalition Environments) system around a similar concept of security 

roles as DEECo. Their solution focuses among other things on third-party delegation 

of rights. Unlike in DEECo, assignment of security roles is not signed by a globally 

trusted certification authority, but rather by any other subject in the system. This 

concept allows subjects not only to be granted certain roles, but also to be granted a 

right to delegate certain roles to others. While this is more dynamic and provides better 

support for delegation, to verify subject’s access rights, it is necessary to backtrace the 

delegation chain and perform verification on each element, which can be a 

performance issue. The dRBAC systems targets this problem by introducing the proof 

monitors (an entity can be notified about changes in the delegation chain) and caching 

of delegations. The security rights of certain subject are stored locally in a repository 

called the wallet. Each wallet maintains a consistent view of the credentials in the 

system using delegation subscriptions. The wallet is therefore quite similar to 

knowledge in DEECo, the difference being that a wallet contains only security 

information, whereas knowledge represents all data accessible to a component. 

11.2 RT Framework 

The RT framework [35] addresses the problem of decentralized access control by 

introducing a combination of RBAC, trust management and logic programming. 

Similarly to DEECo, the purpose of RT roles is to avoid the issue of individual subjects 

having to know all the others in order to enforce a security policy. From trust 

management, RT takes principles of managing distributed authority through the use of 

credentials. The languages from the RT family are based on DATALOG [36], a 

restricted form of logic programming. These languages are used for identifying 

subjects, specifying policy statements and queries. 

The most basic language of the family is RT0, where roles are specified simply by 

their names. In RT1 however, a concept of role parameters is introduced, which is very 
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similar to DEECo. A role parameter can either be a constant (which corresponds to an 

absolute security role parameter in DEECo) or a variable (corresponding to the path 

parameter in DEECo). RT1 also supports a variable to be specified a value set, which 

allows more flexible policy then the DEECo blank security role parameter.  

The RTT language extends the RT0 with tools to enforce a separation of duty 

(SoD) principle among the security subjects. Because DATALOG is used to assign 

roles to subjects, it is possible to enforce the SoD principle on the language level, 

unlike in DEECo, where it is a responsibility of a certification authority. Lastly, the 

RTD language is able to handle delegation of role activation. All the languages can be 

combined, the RT1
DT thus being an ultimate language containing features of all the 

others.  The RT framework also contains an infrastructure necessary for utilizing the 

framework in real-world environment. Similarly to dRBAC, this includes a goal-

oriented credential chain discovery and support for policy statement creation, storage 

and distribution. 

11.3 IoT Security 

When designing a security solution for the Internet of Things (IoT), several 

additional issues need to be addressed. Most importantly, devices in IoT may have 

very limited resources – memory, power, storage etc. In such environment, even a 

standard HTTP protocol is too complex and new dedicated protocols such as CoAP 

[37] are therefore being designed to access and control the devices. 

Several access control models are built over such protocols. Hernández-Ramos et 

al. [38] propose their solution based on capabilities (see 4.8.1), which is designed to 

be as simple and as power-saving as possible. 
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Figure 32: Distributed Capability-based approach to IoT [38] 

When a subject wants to perform certain operation on an object, it must first obtain 

corresponding Capability Token from an Issuer. The Token contains information about 

the object, the operation to be performed and additional conditions to be checked on 

the target device. To prevent tampering, the Token is signed. The Subject then issues 

the request to the object and attaches the corresponding Token – the device hosting the 

Object simply checks if the request complies with the Token and eventually performs 

the operation. 

While this approach can be simpler than our solution of security in DEECo, it is 

primarily designed for situations where the target device knows all potential subjects 

that may access it. Such assumption is legitimate in certain use cases (e.g. smart home 

can be controlled only by family members), but in others can be rather problematic. 
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12 Conclusion and Future Work 

In this thesis we proposed an extension for the DEECo component model that 

would satisfy the need for security and trust management. We started by describing 

DEECo and its current Java implementation, jDEECo. Based on the DEECo 

architecture and principles, we analyzed potential security threats and the role of trust 

in the component model.  

Next chapters were dedicated to research on existing and well-known security 

models. We concluded that some of them (e.g. the Reference Monitor discussed in 

4.2.1) were designed specifically for usage in operating and other highly centralized 

systems and therefore cannot be taken as a source of inspiration for our work.  As the 

security models developed, some of them became applicable even for distributed 

systems – particularly the RBAC (Role-Based Access Control) family of models does 

not rely on any centralized authority and thus it became the groundwork for our 

proposed security systems.  

An example of such security model, the Clark-Wilson model (see 4.6), inspired 

us to define knowledge integrity through rating processes in components. Thanks to 

this concept, the component can rate knowledge it owns and the jDEECo runtime then 

aggregates (based on the authorship of the knowledge) the ratings among the 

components.  

We then described our solution in detail and evaluated its usability on a Java 

implementation of the running example. We noticed the performance overhead 

introduced mainly by encrypting and decrypting messages and considered this to be a 

potential extension point. 

Eventually we compared our work with related research, discussing the 

complexity of adding particular features to our solution.  

Since jDEECo is still being developed in the Department of Distributed and 

Dependable Systems, the security layer will need to be developed as well. The 

currently proposed functionality includes option to build jDEECo without any security 

level to simplify development and also to rate data based on multiple versions, not just 

a single snapshot. Also, the concept of specifying value sets for security role 

parameters introduced in RT1 would be useful in the DEECo security model. 
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15 List of Abbreviations 

 

ACL Access Control List 

CA Certification Authority 

CPS Cyber-Physical System 

DAC Discretionary Access Control 

DEECo Distributed Emergent Ensembles of Components 

EBCS Ensemble-Based Component Systems 

IoT Internet of Things 

JIT Just-In-Time 

JVM Java Virtual Machine 

MAC Mandatory Access Control 

OMG Object Management Group 

PKI Public Key Infrastructure 

RBAC Role-Based Access Control 

TCB Trusted Computing Base 

TCSEC Trusted Computer System Evaluation Criteria 

  



77 

 

16 Attachments 

The directory on the enclosed CD has following structure: 

 /doc 

o /thesis – contains the PDF version of this document 

o /generated – documentation generated by Doxygen9 

 /src – contains source files of jDEECo. Most of the code related to this thesis 

is located in the two packages: 

o cz.cuni.mff.d3s.deeco.security  

o cz.cuni.mff.d3s.deeco.integrity  

These packages are located in the /src/jdeeco-core/src/ and /src/jdeeco-

core/test/ folders. The following packages were also modified: 

o cz.cuni.mff.d3s.deeco.annotations  

o cz.cuni.mff.d3s.deeco.annotations.processor  

o cz.cuni.mff.d3s.deeco.knowledge 

o cz.cuni.mff.d3s.deeco.network 

o cz.cuni.mff.d3s.deeco.task 

All edited source files are decorated with the @Author Ondřej Štumpf 

declaration. 

 /README.txt 

 

  

                                                 
9 http://www.stack.nl/~dimitri/doxygen/  

http://www.stack.nl/~dimitri/doxygen/
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17 Appendix – Build Instructions 

To build the jDEECo projects, 64bit Java 1.810 and Maven11 are used. Use the mvn 

clean install command in the src/jdeeco-parent folder for building and running 

the tests. 

Alternatively, all subfolders of the src directory are Eclipse12 projects. It is 

therefore possible to build and run tests using the IDE, which must have the Maven 

plugin13 installed. First, create an Eclipse workspace (make sure not to choose the src 

directory as the workspace location) and import all three projects from the src directory 

(using File → Import → General → Existing Projects into Workspace). After the 

import, run the Maven update command using Alt + F5 (with the options Clean 

projects and Force Update of Snaphots/Releases selected). Now all standard build and 

test facilities of Eclipse are available. Let us remind that Java 1.8 is required – project 

Build Path may need to be edited if it was installed later on. 

To run the simulations described in chapter 9, slightly extended version of the 

simulation runner used at the Department of Distributed and Dependable Systems was 

used. To get it, use Git to fetch the police-simulation branch from 

https://github.com/ostumpf/cbse-2015-tutorial . Import the obtained project into the 

Eclipse workspace, add the jdeeco-core and jdeeco-simulation projects as references 

and run the Maven update command again. Now create a Java Application run 

configuration in Eclipse with the following properties: 

 Main class: “cz.cuni.mff.d3s.roadtrain.demo.SimulationRunner” 

 Program arguments: “police 40 10 1” (simulation kind identifier, ordinary 

vehicles count, police vehicles count, run) 

 VM arguments: “-Dlog4j.configuration=log4j-custom.xml -Xmx6096m”, 

possibly adding “-Ddeeco.security.sign_plaintext_messages=true” 

 

After running the configuration, the elapsed time and number of messages sent is 

printed to console. 

 

                                                 
10 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html  

11 https://maven.apache.org/  

12 http://www.eclipse.org/luna/  

13 http://eclipse.org/m2e/  

https://github.com/ostumpf/cbse-2015-tutorial
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/
http://www.eclipse.org/luna/
http://eclipse.org/m2e/
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