Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Tomas Pastyrik

Study programme: Open Informatics
Specialisation: Computer Graphics and Interaction

Title of Diploma Thesis: Visualization of inner structure of complex 3D objects based on
opacity modulation

Guidelines:

Analyze approaches that are using transparency to visualize inner structure of complex 3D
objects (objects composed from many parts - e.g., gear box). Design and implement an
algorithm utilizing per-pixel sorting of fragments [1, 2]. Compare the rendering speed of the
implemented algorithm with at least two different algorithms that are using transparency to
visualize inner structure of complex 3D objects (e.g., [3] and [4]). Perform the comparison of
rendering speed on at least ten 3D objects of various complexities. For the compared
algorithms also analyze to what extent we can modify the rendering equation and what
modifications in the algorithm it requires.

Bibliography/Sources:

[1] R. Carnecky, R. Fuchs, S. Mehl, J. Yun, and R. Peikert, “Smart Transparency for lllustrative Visualization of
Complex Flow Surfaces,” IEEE Transactions on Visualization and Computer Graphics, vol.19, no.5, pp.838-851,
2013.

[2] J.C. Yang, J. Hensley, H. Grlin, and N. Thibieroz, "Real-Time Concurrent Linked List Construction on the
GPU," Computer Graphics Forum, vol.29, no.4, pp.1297-1304, 2010.

[3] C. Everitt, "Interactive order-independent transparency," Technical report, NVIDIA Corporation, 2001.

[4] L. Bavoil and K. Myers, "Order Independent Transparency with Dual Depth Peeling,” Technical report, NVIDIA
Corporation, 2008.

Diploma Thesis Supervisor: Ing. Ladislav Cmolik, Ph.D.

Valid until the end of the summer semester of academic year 2015/2016

prof. ing. Jifi Zara, CSc.
Heéad of Department

prof. Ing. Pavel Ripka, CSc.
an

Prague, November 4, 2014

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Master’s Thesis

Visualization of inner structure of complex 3D objects based
on opacity modulation

Bec. Tomas Pastyrik

Supervisor: Cmolik Ladislav Ing., Ph.D.

Study Programme: Open Informatics
Field of Study: Computer Graphics and Interaction

January 5, 2015

v

Aknowledgements

I would like to thank Ing. Ladislav Cmolik, Ph.D. for his kind guidance and valuable
consultations and advices when supervising this thesis. [extend my gratitude to my parents,
friends and loved ones for their love and support which guided me through all my life.

vi

Vil

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.

I have no objection to usage of this work in compliance with the act §60 Zakon ¢. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Kladno on January 5, 2015

viii

Abstract

This thesis addresses problem of rendering semi-transparent objects and the enhancement
by opacity modulation to reveal object’s internal structures. Illustration Buffer - algorithm
solving the Order Independent Transparency (OIT) is implemented and compared to other
OIT solving techniques: Depth Peeling, Dual Depth Peeling and Per Pixel Linked Lists. We
focus on opacity modulation based on object’s features and we apply such modulations to the
Nlustration Buffer while comparing the ease of use with other algorithms. Finally we test all
mentioned algorithms and conclude which algorithm is better under specific circumstances.

keywords: order independent transparency, illustration buffer, comparison, depth peeling,
dual depth peeling, per pixel linked lists, opacity modulation, inner structure visualization

Abstrakt

Tato préce se zabyva problémem zobrazovani ¢astecné pruhlednych objekti a jeho vylepSeni
pomoci modulace prithlednosti za tcelem odhaleni vnit¥nich struktur 3D téles. Implemento-
vali jsme metodu Ilustration Buffer fesici problém Order Independent Transparency (OIT),
kterou porovnavame s algoritmy, které takové zobrazovani Tesi: Depth Peeling, Dual Depth
Peeling a Per Pizel Linked Lists. Aplikujeme metody modulace prihlednosti zalozené na
vlastnostech objektt na Illustration Buffer a zkoumame obtiZnost pouziti v porovnani s os-
tatnimi zminénymi algoritmy. Algoritmy fesici OIT problematiku testujeme mezi sebou a
ukazujeme, za jakych podminek je ktery algoritmus lepsi.

kli¢ova slova: order independent transparency, illustration buffer, porovnani, depth peeling,

dual depth peeling, spojové seznamy pro pixely, modulace prithlednosti, vizualizace vnitin{
struktury

ix

Contents

Theoretical Background|

[2.1 Rendering of Translucent Objects|

DIl

Painter’s Algorithm)| .

D2

Order Independent Transparencyl o oo

P21

Dual Representation of the Problem|

P22

Image Compositing|. .

[2.2.2.1 Under Operator|,

[2.2.2.2° Over Operator|

B3

Opacity Modulation|

P31

Modulation by Differences in Shapel

3.2

Modulation by Distance Between Samples Along the Viewing Ray|

P.3.3

Modulation by Distance trom Important Shape Features in the Layer| .

P34

Modulation by Groups

P35

Modulation by Distance from Defined Plane/Area (Cut Motivated)| . .

2.3.6

Additional Notes to Opacity Modulation|

3

Analysis of Compared Methods|

[3.1 Order Independent Transparency|

BI1

Depth Peeling|.

BI12

Dual Depth Peeling| .

[3.1.3 Alpha Blending Approximations]

3.1.4

Concurrent, Linked Tast Construction on the GPUl

[3.1.5.1 Neighbors Location by Carnecky|

13.1.5.2 Proposed Neighbors location|

B2

Comparison of OI'l" Solving Methods|

B21

Modulation by Groups

[3.2.2 Modulation by Distance from Defined Plane/Area (Cut Motivated)| . .

xi

15
15
15
16
18
18
20
21
23
24
24
25

xii CONTENTS

[3.2.3 Depth Peeling and Dual Depth Peeling|. 25

3.3 Per Pixel Tinked [istsl o oo oo 27
3.3.1 The Hlustration Buffer| oo 00000 29

3.4 Summary|l e 33
4 Design and Implementation| 35
4.1 Used Technologies| 35
M.1.1 OpenGL and GLSL| 35
412 GLMl. . ..o 35
M.1.3 RapidJSON| oo 35
4.1.4 QT Framework|o 36
4.1.5 The OpenGL Extension Wrangler Library| 36

4.2 Application Structure] L 36
4.2.1 Graphical User Intertace| 39
|4.2.2 Additional Notes to Application Structurel 40

4.3 Creation of the lllustration Bufferf. 00, 40
M3.1 Used structures 40
4.3.1.1 Formats Packingl 42

4.3.2 Bufter Filling|o 42

g e T 43
4.3.4 Neighbors Location|. L. 44
4.3.5 Groups and Importance per Components| 45
4.3.6 Visualization of the Illustration Bufferl 45

4.4 Non Local Transparency| 46
4.4.1 Transparency Fields| L. 46
442 Diffusion Process|o 47
4.4.2.1 Physical Process| oo 47

[4.4.2.2 Nonphysical Process| 48

4.4.2.3 Proposed a, 5 Diffusion| L. 49

4.4.2.4 Automatic Transparency Field Setup| 49

4.5 Modulation by Distance Along the Ray|. 49
4.5.1 Combined with Modulation by Differences in Shape| 50

4.6 Final Rendering Pass|. o 50
b Results and Discussionl 53
0.1 The llustration Buffer Creationl. L. 55
b.1.1 Sorting Methods Comparison| 58
b.1.2 Comparison with Other Methods| 59
b.1.3 Memory consumption| 61

5.2 Results of the Opacity Modulation| 61
5.2.1 Speed Comparison|o e 62
6.2.2 Visual Comparison| 63

6 Conclusionl 69

CONTENTS xiii

73

75

77

79

[£.2 Configuration| 82
[£.3 Measurements and Graphs|.o oL 82

xiv

CONTENTS

List of Figures

[2.1 Correct order (3,2, 1) | Lo 4
(2.2 Incorrect order (2, 1,3)] 4
[2.0 Unsolvalble problem for Painter’s algorithm | 4
[2.4 For the sake of simplicity one row display of pixels p;,7 € {1,...,m} where m is the |
| number of pixels is shown. Fragments with the same number are in the case of peeling |
| methods in the same layer. In case of ray casting terminology, numbers denote the |
| order along theray|.o 5
[2.5 Decreasing opacity globally for the whole model causes the internal structures |
| to appear in exchange for the loss of shape perception) 7
2.6 Normals @, m as neighbors of normal @
[2.7 The curvature estimation is than computed as the sum of all distances between the |
[n and other normals] L 8
2.8 a computed using equations 2.8) @.8) 9
[2.9 o computed using equations (2.9),(2.8)[.o 9
2.0 a computed using equations (2.9), .10)]. 9
RIT T-Junctiong o e 10
[2.12 Courtesy of Kruger et al.[16] shows distance from the point based modulation on |
| the left and focus area defined by orthogonal box on the right.| 11
[3.1 Creating shadow map from the camera point of view to retrieve the depth of nearest |
[fragments.| L L 16
[3.2 Peeling layers in both front and back direction. If number of layers n is odd, the last |
| layer would be blended twice if the sliding window mechanism was not used. |. . . . 17
[0.0 Shows how fragments are stored to the linked lists structure whene elements are |
[rendered to the viewport.| Lo oo 19
[3.0 Using a perspective we show two crossing planes a). When peeling the first layer and |
| querying the neighboring pixels of P in such layer, we retrieve b). When searching |
| for neighbors of P in Illustrative buffer we want to findc¢).| 21
[3.4 Principle of the concurrent lists is the same as in figure |[3.3] Here however are next |
| pointers stored separately from the data. Data are spanned by size of four here, |
| giving space for colour, four surrounding neighbours (NB), normal (N) and some |
| other data, which depend on the target use of the buffer. Bufter pixelHead it of a |
| same size as the viewport (X x Y). This figure does not consider the sorting of |
| samples along theray|o 22
[3.06 Meaning of €, and €, on the surface samples. | 22

XV

xvi LIST OF FIGURES
[3.7 a) indexed geometry to prevent duplicate geometry to be sent to gpu. b) Every |
| vertex knows indices of all vertices in given triangle. ¢) Every triangle has its own |
| id. d) table maps IDs of the triangles (blue) to b) where every vertex knows all |
[indices in its triangle. | Lo 23
[5.8 Every fragment has equal opacity.| 25
5.9 Fragment is fully opaque if the number of neighbors is less than four meaning it is |
| part of theedge. |. L 25
[3.10 a) space arrangement of shaded 3D terrain (red) with green grid on the top. b) Pro- |
[jection of objects in a). ¢) TODO: | Lo 26
[3.11 Samples along the view ray and distances between them in camera space. Distance(i) |
| shows a distance to the next layer in front to back manner and SkipDistance(i,k) is |
| a distance between samples s;, k. | . . -o 28
[0.12 Every fragment s; has four pointers nb1l;,nbR;, nbB;, nbL; to its geodesic neighbor |
| in the top, right, bottom and left direction, if such neighbor exists. Fragment s; still |
| has the pointer to next fragment along the view ray, it i1s not visualized here for the |
| sake of simplicity.|. L 29
[3.13 Fragment of the silhouette (red), fragment occluded by silhouette (green) and its |
| neighboring fragment not occluded by above surface (blue).| 30
[3.14 Can we simply answer the question is s; and s; on the same surface?”” Answer is |
[unfortunately negative as explained in the text. |. 31
[5.15 Hallo highlight using algorithm [§] produces dark hallo.| 32
[3.16 Hallo highlight produced by algorithm [9] with colourOfHaloHighlight = white. | . . 32
[3.17 Same as in figure [3.16[with last layer opaque. |o 000 32
4.1 Viewport of dimensions X, Y divided into 9 regions each with i1ts own atomic |
| counter fragCounter|il, s € {0.8}| 40
4.2 Heatmap gradient shows the linked lists size color coded in following manner: for |
| gradient blue->green->vyellow->red lowest sizes are blue and longest red. | 45
.5 Discrete Laplacian convolution kernel for 2D signals| 47
A4 ATl images were created by 15 iterations of diffusion process. Top left: is result |
| ot convolution with discrete Laplace operator of a. Top right: is non physical |
| approximation of [diffusion as in [12], suffering from any contour discontinuity. |
| Bottom left: is result of applying discrete gaussian filter on 3. We can see artifact |
| called ringing in place of former contour which is typical tor such kernels. Bottom |
| right: 1s method used by us where result i1s combination of blurred non physical 5 |
| diffusion process and output of discrete Laplacian operatoron o. |. 48
5.1 Measured projections of models along with the heatmaps indicating pixels |
| with highest length ot inked list as red. Models are sorted alphabetically by |
Cmamel - . o o o 54
-2 GPU Time in plit stages of the Illustration Buffer creation process. Models on the |
[horizontal axis is sorted by the Total rendering time.| 55
5.3 Heatmaps of the linked lists lengths of GPU 2 and Suspension 2. 56
[6-4 Parallel coordinates visualizing the same information as the figure |o.5. Time space |

18 split to thirds. Results of the first third are green, second third blue and last third

results are red) L e e e

LIST OF FIGURES xvii

[0.0 Visualized table [5.2l Secondary Y axis is used for the dashed line representing WV,

primary Y axis (on the right) is then used for all other variables using logarithmic

[0.0 Speed comparison of the dynamic sort and sorting in static array. Bigger spikes are

| caused by the ¥ parameter as discussed before.| 59
5.7 Depth peeling| 60
(5.8 Dual depth peeling| 60
5.9 Concurrent per pixel inked lists|. oL 60
(5.10 Iustration Buffer|. oo 60

[0.11 Speed comparison of the single pass of the diffusion process, blurring by Gaussian

| separable filter and of distance-curvature search, where distances between layers are

[found as well as the surface curvature. | 62

[E.1 Graphical User Interface of the main window with Settings panel on the

| right. All three tabs are shown.| 81

xviil LIST OF FIGURES

List of Tables

a1

Table shows data stored per tragment. First column shows the position in

the fragData buffer according to the spanning mechanism. Spandize = 4 is

used. One row of the table is represented as vector of 4 unsigned integers

(uvecd).| . . .

BT

Illustration Buffer creation split to stages Full, Sort, FindNeighbors, Compose.|

26

5.2

Illustration Bufter creation - Table show used models, number vertices, trag-

ments and max size of the linked lists i given view, resulting in time mea-

sured on GPU, and FPS where CPU overhead 1s considered as well. Column

W shows percentage coverage of the worst third of the linked lists lengths. In

other words it shows coverage of the yellow and red pixels in the heatmaps in

percents (Pixels with no linked lists stored are not considered).|

o8

.3

Comparison of the dynamic sort method with sort in the array. Table is sorted

by the MAX |LIST]| for convenience.|.

29

B4

Comparison of the depth peeling, dual depth peeling and concurrent per pixel

linked lists. Please note that data vertices, fragments, list max

size and W are shared by all methods and can be found for example in table

I 5 |

[0.0

bpeed comparison of the single pass ot the diffusion process, blurring by Gaus-

sian separable filter and of distance-curvature search, where distances between

layers are tound as well as the surface curvature|

B.1

Impact of changing the number ot fragments with other variables fixed. First

row denotes used viewport resolution.|o L.

B2

Impact of changing the number of fragments with other variables fixed. First

row denotes used viewport resolution.

[C1

Minimal application requirements. Either CLANG or GCC is required, not

xXix

XX

LIST OF TABLES

Chapter 1

Introduction

There are many challenges in rendering semi-transparent objects. The most important one is
to display such objects in a way users understand and can determine their inner structure and
shape from one image. It is vital for the users to be able to use their experience from the real
world and connect it to what they see to create the final mental model. Considering complex
objects the user might not be able to construct this model at all if the object is opaque or
transparency of all layers is homogeneous. This implies the need for some image enhancement
with knowledge of local geometry based on human perception. Even if we are able to enhance
image in this way it might not be enough for the user to understand the structure of examined
object correctly. Therefore interactivity is a desired property in object visualization so that
user can manipulate the object in space.

When we are rendering semitransparent 3D objects on GPU we can choose from variety
of order independent transparency (OIT) algorithms. Yet, it is not clear at what conditions
is one algorithm better than another. In other words, when it is worth to invest time
and resources to implement more complicated algorithm. In this thesis we therefore address
this problem by comparison of several OIT solving algorithms: Depth Peeling, Dual Depth
Peeling, Per Pizel Linked Lists and the Illustration Buffer.

Our implementation is based on one of the latest techniques called the Illustration
Buffer[12]. However authors focus mainly on flow surfaces while their technique of building
the buffer containing the scene can be used in general. When such a buffer - called Illustra-
tion Buffer is obtained, every single fragment knows its neighbors along the surface as well
as along the viewing ray. This knowledge can be later used to determine the most important
sections of image for the user such as edges, junctions, silhouettes. ..

Even though main goal of this thesis is to implement the technique described in [12]

we also compare it to other known techniques solving the OIT problem: Concurrent per
Pixel Linked Lists, Depth Peeling and Dual Depth Peeling.

1.1 Thesis Structure

Necessary theory background is introduced in Chapter 2, where OIT problem is defined along
with its dual representation. Methods of final image composition are introduced as well as
the categorization of opacity modulation techniques. Chapter 3 compares discussed OIT

2 CHAPTER 1. INTRODUCTION

solving algorithms with great focus on their usability in several opacity modulation ap-
proaches. Chapter 4 is rather practical. The application structure, used technologies and
details on the llustration Buffer implementation are provided. Finally we discuss our results
in Chapter 5 and Chapter 6 concludes the thesis.

Chapter 2

Theoretical Background

To achieve and describe some advanced opacity modulation techniques a related theory
should be introduced first. This chapter introduces the problem of rendering translucent ob-
jects, describes its dual representation that will provide us further flexibility when comparing
rendering methods. Finally, methods of final image composition are introduced.

For the purpose of this work let us define pizel as the final image element presented to
the user. Pizel is therefore the smallest element user can address. Considering traditional
rendering pipeline (e.g. in OpenGL 5.3), fragments are defined as a candidate for a pixel.
Both pizels and fragments contain the colour as well as the depth as the distance to the
camera.

The z-buffer of the same size as current framebuffer is defined to choose the final pixels
containing the depth of the closest pixels to the camera. It is the depth test that turns
fragments to pixels:

unchanged if fragment.depth > depthBuf fer(z,y)

deptBuf fer(z,y) = { fragment.depth if fragment.depth <= depthBuf fer(x,y)

If no depth-buffer is used during the rendering process, pixels are being rewritten by any
later fragments, regardless the depth. The order of incoming fragments in general case is
not defined.

2.1 Rendering of Translucent Objects

Since rendering of the translucent geometry needs to take into consideration all the translu-
cent fragments, the depth-buffer cannot be used. Without the depth-buffer we do not dis-
card any fragments due to their depth but we have to solve the order of rendered geometry
to get correct result, as shown in figures and 2.2 Numbers corresponds to the distance
to the camera with a red layer being the closest and the blue one the furthest. As it is

4 CHAPTER 2. THEORETICAL BACKGROUND

described in the section 2.1.1] sorting all the triangles of the scene might not always work.
Therefore sorting in bigger detail is required and all of the principles described in the section
2.2] are based on rendering the fragments in the right order, not triangles.

1 1

Figure 2.1: Correct order (3, 2, 1) Figure 2.2: Incorrect order (2, 1, 3)

2.1.1 Painter’s Algorithm

The Painter’s algorithm is the simplest method to partially solve the problem of the wrong
order. It simply sorts the elements (triangles) in back-to-front order before rendering them.
This method however is not completely reliable as it fails to solve following situation shown
in figure 2.3 where triangles create a depth cycle.

Figure 2.3: Unsolvalble problem for Painter’s algorithm

2.2 Order Independent Transparency

As shown in section [2.1.1] sorting the elements (in our case triangles) before rendering them
might not be enough. Order Independent Transparency (OIT) is a class of techniques that
do not require sorting the elements since it is the order of fragments that is more important.

This section describes possible representations of the problem, it shows how to compose
final pixel colour from gathered fragments (samples) and presents a theoretical background
for opacity modulation methods we use in this work. At the end of the section we also
discuss a basic use of colour modulation to provide a base for future discussion.

2.2. ORDER INDEPENDENT TRANSPARENCY 5

2.2.1 Dual Representation of the Problem

Techniques that solves the OIT problem are described in detail in Chapter However
to be able to compare such techniques the following dual representation of OIT solution
needs to be introduced|25]. Please note that this section does not describe actual researched
algorithms, only defines the terminology.

2

NRRRn R R

R

VVVYVYVYYVYY

vVVvVYyVYY

Pm

Figure 2.4: For the sake of simplicity one row display of pixels p;,i € {1,...,m} where m is the
number of pixels is shown. Fragments with the same number are in the case of peeling methods in
the same layer. In case of ray casting terminology, numbers denote the order along the ray.

Ray Casting

First way of defining the OIT problem is using the ray casting terminology, even though
algorithms described in the Chapter 3] do not use the ray casting algorithm directly. If frag-
ments along the ray beginning in the camera and intersecting the center of pixel are denoted
as fi,i € {1,...,n} where n is the number of fragments that intersect with such ray, algorithm
works as follows:

Algorithm 1: OIT solution using the ray casting terminology

for all pizels do

[

2 1. Cast the ray from the camera through the pixel’s center.

3 2. Sort fragments f;,7 € {1,...,n} along the ray by their depth - distance to the camera. Set the
indices of f; so that V(i,7 — 1),7 € n, fi.depth > f;_1.depth

4 3. Compose the final colour along the ray (further discussed).

5 end

Figure 2.12] shows this analogy using numbers to illustrate the order increasing with
the sample distance from the camera. However as shown in section [2.2.2] the direction
of ordering samples depends on selected method of composing the image - from front to back
or back to front.

6 CHAPTER 2. THEORETICAL BACKGROUND

Layers

Terminology of ray casting however might not be suitable for some algorithms solving
OIT problem, especially methods based on peeling. Layers are denoted as l;,i € {1,...,n}
where n is the number of total layers created. Layer [; than consists of all fragments, that
would have index ¢ in the Algorithm

Algorithm 2: OIT solution using layers terminology

1 while layer to be processed ezxists do

2 1. Render geometry.

3 2. Peel (ignore) any previously processed layers.

4 3. Store all pixels of the current layer (denoted by the same number in figure m to a separate
texture.

5 end

6 Blend all layers to one image using techniques described in section m

This results in image representation split into n sorted layers stored as separate images.
This differs from the previous method where each fragment is stored separately.

2.2.2 Image Compositing

When compositing the pixel final colour the order of incoming fragments is extremely im-
portant. Fragments need to be sorted along the ray as shown in figure in front to back
or back to front order. Each direction of sorting requires specific blending approach using
over or under operator when composing the final colour. Following equations using both
operators are derived from equation shown in Chapter 11.4 of the book Moderni pocitacova
grafika|24].

For both operators let us consider two samples, front sample sy with colour ¢y and
opacity ay and the back sample s; with colour ¢; and opacity . Sample is considered fully
transparent for a = 0 and fully opaque for « = 1. Let the colour of resulting sample be
denoted as C' of opacity a.

Following equation is used in terms of alpha blending[24] to solve the problem of rendering
semi-opaque objects in back to front manner (as the Painter’s algorithm does (section[2.1.1)):

C = ascs+ (1 — af)[apey + (1 — ap)Cpackground) (2.1)
In definitions of over and under operators we omit the cpackground O Purpose since it can
always be replaced as additional layer of samples.

2.2.2.1 Under Operator

Under operator is used when compositing samples in front to back manner. Equation
needs to be reformulated recursively for compositing final colour from the samples
si,i € {1,...,n} where n is the number of samples to be composed along the ray in op-
posite direction:

2.3. OPACITY MODULATION 7

C=ac+ (1 — al)(QQCQ + (1 — ag) . (ozi_lci_l + (1 — ai_l)ancn) (2.2)

C=aic1 +aca(l—a1)+...+aici(l—ag) ...- (1 —ayp) (2.3)

The under operator then substitutes following relationships from the equation 2.3}

Cout = QinCin + ;ci(1 — i) = a;c; under a;,ciy, (2.4)

Aoyt = (1 - ain) * Oy

where o, ¢; are opacity and colour accumulated by previous operator applications. While we
get colour Cpyy from equation 2.5 we need the vy as separate value to be able to accumulate
opacities through the composition. Please note that another notation is sometimes used

by using transparency defined as T; = (1 — «a;) which changes the g, relationship to
Towr = (Ti—1)(1 — ;) which is in fact the same only using transparency instead of the
opacity.

2.2.2.2 Over Operator

In some cases we may need to compose samples in back to front order. For that we need
to define over operator since in equation we cannot swap the front and back colours,
it is not commutative operation. Intuitively from equation [2.I] the over operator is:

Cout = @iC; + qinCin(l — o) = a;¢; over a ,ciy (2.5)

Qout = (1 - ain) * O

where a;, ¢; are opacity and colour accumulated from previous operator applications again.

2.3 Opacity Modulation

b) a =0.75 c) a=0.5 d) a=0.25

Figure 2.5: Decreasing opacity globally for the whole model causes the internal structures
to appear in exchange for the loss of shape perception.

8 CHAPTER 2. THEORETICAL BACKGROUND

Opacity modulation is the most important way of affecting how the subject percepts the in-
ternal structures of complex 3D objects. It is also accompanied by the colour modulation
which can help with highlighting specific sets of object features, as discussed further in sec-
tion [2.4] This section explains techniques considering the object shape in local context,
important shape features in global context, the importance, grouping and the transfer func-
tions. Please note that there are more techniques to achieve perceptively pleasant results
in volumetric rendering but only some of them are mentioned for the purpose of this work.
Some techniques from volumetric rendering that can be applied in our case with geometry
input are included in this section.

2.3.1 Modulation by Differences in Shape

Differences in shape, also called object’s curvature, can be easily found by following technique
depicted in figures and The curvature of current sample (fragment) with normal
7l depends on distances from normals of its neighbors as shown in figure .71 Distances
of normalized normals are than summed together to get the curvature value[16].

—

Curvature = |ii — | + |7 — b| + |7 — & + |7t — d| (2.6)

However it is clear that maximum distance between two normalized normals is bounded
by top value of 2. Which gives us range < 0,2 > for all the summands and range < 0,8 >
for the result. It might be convenient to normalize the curvature to the range < 0,1 >
for most applications. Number of neighboring normals is also not limited by four as it is
in equation but can be extended to get more precise estimation.

7
a n _
C
n-d|
d
L Figure 2.7: The curvature estimation is than com-
Figure 2.6: Normals @, b, ¢, d as neighbors puted as the sum of all distances between the 7 and
of normal 77 other normals.

2.3.2 Modulation by Distance Between Samples Along the Viewing Ray

We show this principle on the terminology of ray casting. Let us have samples s;, 7 € {1,...,n}
where n is the count of samples along this ray. Samples are sorted by distance from the
camera and index 7 therefore means the order of sample along the ray (closest sample to the

2.3. OPACITY MODULATION 9

camera has i = 1). In the following equation we choose sample s; to be the current surface
and s; as the context sample.

Distance(i) = |s;.depth — s;.depth]| (2.7)

For two samples with indices i,7 where ¢ < j and therefore s; closer to the camera, user
defined parameter focusRegion we compute opacity « of sample s; as:

(2.8)

o = saturate <

Distance(3)
focusRegion

Figure 2.8: a computed Figure 2.9: a computed Figure 2.10: « computed

using equations using equations ([2.9),(2.8) using equations , (2.10)

where saturate operation clamps result to range <0,1>. The result of this operation can
be seen in figure 2.8 If we store the value Distance for every sample along the ray and
compute it as:

Distance(i) = |s;.depth — s;+1.depth| (2.9)

in each sample stored we then get the distance to the next sample on the ray. This will result
in effect that can be seen in figure [2.9] It is very interesting to observe that even-though
figures 2.8]2.9] and [2.10] were rendered in our implementation using vertex defined objects,
the results seem to be volumetric. This is caused by the human perception of depth in

optically active environments.

The problem of this technique is that we do not see samples with high curvatures. If we
combine that knowledge with the curvature technique discussed before, we get equation [2.10],
which decides what is more important for given sample. User defined parameter J. is used
to modulate the curvature effect. This effect can be seen in figure 2.10] where the e.g. ear
and eye are now clearly visible, since the curvature value of those samples is high.

Di .
a = saturate <ma:c <M> , curvature(s) - (5C> (2.10)

focusRegion

10 CHAPTER 2. THEORETICAL BACKGROUND

2.3.3 Modulation by Distance from Important Shape Features in the
Layer

Modulation by the distance from important shape features is very useful at places of minimal
interest of local shape, and highly appreciated in perception of layers depth, order and
crossings. We use the terminology used by Carnecky et al.[12] to define features we work
with. For terms c),d),e) we suppose layered surfaces are used as in figure

a) Contour - is the border of surface silhouette.

b) Non local transparency - is a way of modulating the transparency using the distance
from important features such as contours. In general this term includes all methods
that use the whole context to modulate the transparency, not only a local sample
information.

¢) T-Junction - is an intersection of two perpendicular contours, each of them belonging
to one surface in the final image.

d) XT-Junction - XT-Junction - is an intersection of two perpendicular contours, each
of them belonging to one surface in the final image where some non local transparency
method is used and the upper layer therefore shows also the X junction of the bottom
layer in addition to the T junction.

e) Silhouette enhancement - is a method where the information about the contour is
also propagated to the layer below to highlight the silhouette of the upper layer.

We can see the use of non local trans-
parency method combined with the sil-
houette enhancement used in figure 2.11 Tyuncion
The T-Junction help us to percieve the
order of layers in depth. XT-Junctions
than reveal the continuing edges of the
bottom layer. The highlighted silhouette
can be implemented as an opacity modu-
lation, but as discussed later it is much
more convenient to use a colour modu-
lation instead to achieve custom colour
of the highlight. From simplistic figure
[2.17] we can also see that the main goal
of non-local transparency is to reveal the
most details possible if layers above are
not interesting in shape or features.

Non-local
transparency

XT-Junction

Silhouette

Non-local
enhancement

transparency

Figure 2.11: T-Junctions

The detection of presented features as well as the algorithm for their diffusion is presented
in the next chapter where the use with Illustration Buffer is described.

2.3.4 Modulation by Groups

This is a very basic principle requiring the model to be disassembled to parts, which give
functional, spacious, or some user defined meaning. Each part pg will than have its own
opacity oy to enter the sample compositing equations.

2.3. OPACITY MODULATION 11

2.3.5 Modulation by Distance from Defined Plane/Area (Cut Motivated)

This method is motivated by cutting through the volumetric data[l6].It is, in fact, very
similar to the method using distance between specific samples along the ray. In this case
however the distance is computed w.r.t. a point, plane, area (called later "the focus element")
in general in space which is not the original part of the model. The user is usually in charge
of the position and size of such focus element enabling to see just the information in the area
of focus.

(2.11)

o = saturate <H8i'p08 — f-pos| |>

focusRegion

Equation [2.11] demonstrates the case of a focus area of size focusRegion and center
in point f. Other cases can be solved by point location search methods from computational
geometry. In case of the focus element defined by plane we search the shortest distance
of s;.pos to the plane (the size of vector perpendicular to the plane originating in s;.pos).
The focus element defined by the area can be than solved by determining if s;.pos is inside
or outside of the focus area convex hull.

Figure 2.12: Courtesy of Kruger et al.[16] shows distance from the point based modulation on
the left and focus area defined by orthogonal box on the right.

2.3.6 Additional Notes to Opacity Modulation

Presented opacity modulation methods are often also called importance-based|[14],[16]. Even
though these methods require different metrics and features to be detected, all of them then
affect the samples opacity by the sample importance of given metric.

This chapter shows the most important methods for perception of the internal structure
however some other existing and not mentioned methods can be used depending on the use
domain.

Great advancement and inspiration in this area can be found in volume rendering where
the samples usually contain additional data about the mass they describe [11],[14],[16]. Many
of the principles from the illustrative and importance-based volume rendering (which is solv-
able by ray casting) may be applied to the Illustration Buffer.

12 CHAPTER 2. THEORETICAL BACKGROUND

2.4 Colour Modulation

Even though the opacity modulation and its application to different methods solving OIT
problem is the main topic of this work, a colour modulation should not be omitted since it is
an important part of the visualization process.

2.4.1 Lighting and Shading

Shading and lighting considerably affects the final perception of what we can see. Even
if the opacity modulation would allow us to see everything important we want to see, this
might not be enough for the total comprehension of the context. While, in our study, we use
only the diffuse lighting as:

NdotL = (maz(dot(normalize(normal), normalize(eyeDir)), 0.0)) (2.12)
Colour = sampleColour * NdotL ’

and we do not use any specular part of the lighting, a lighting model can affect our perception
of the material and increase the overall understatement of the context. Kruger et al. show
results of custom lighting models for the human skin and bones combined with a context
preserving opacity modulation[I6]. In general we should be very careful using the specular
part of the lighting combined with presented opacity modulation methods. The reason of
such care is that specular light peak could hide the detail we need in places where it is crucial
for the user to understand the object shape and structure.

The selected shading model also affects the perception of the surface smoothness. While
in our application the Phong’s shading model is used, flat or Gouraud shading might be
important to use in specific-use cases[24]. This matter is however not covered in this work.

2.4.2 Silhouette Enhancement

As shown in section ,a silhouette enhancement can have great impact when it is
combined with methods of non local transparency. This is however best achieved by a colour
modulation and not by opacity modulation as in [12]. We therefore use following formula
for the silhouette enhancement:

Colour = Colour + colourO f Hallo * saturate(distance) (2.13)

where colourO f Hallo is the desired colour of the highlight multiplied by distance to the
contour of the silhouette saturated to < 0,1 >. This is further discussed in[3.3.1] Please visit
algorithm [J] in the next chapter to see how this can be included in the colour composition
process.

2.4. COLOUR MODULATION 13

2.4.3 Transfer Functions

Transfer functions are a powerful tool especially in volume rendering where each sample is
defined by additional data, e.g. density. The transfer function is defined as:

Function f(x) is a transfer function f(x) = 14 if © is a scalar value and T is a value of
dimension d. In visualization the T4 is usually used to map the scalar value to RGBA colour.

This definition can be extended to multiple dimensions of the mapped scalar value as well
to achieve f(zg, ..., zn) = 74 where multiple scalar values will affect the result. Even though
our work does not focus on the volumetric rendering, this method can be used to geometry
based models as well. For example we can use it to modulate an opacity in a custom way
based on the distance. We use transfer function for debugging purposes and visualization
of the Mlustration Buffer as shown in Chapter 4.

14

CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Analysis of Compared Methods

This chapter presents analysis of the OIT problem and OIT solving algorithms. Further,
comparison of presented algorithms is discussed w.r.t. ease of use and application of opacity
modulation methods presented in Chapter 2.

3.1 Order Independent Transparency

Problem of the Order Independent Transparency (OIT) is well known in scene rendering
and there is no standard — already included implementation in either OpenGL or DirectX.
It is a general problem consisting of rendering objects with a uniform or non-uniform alpha
channel. To display such geometry correctly all fragments need to be blended in the correct
order, thus sorting the fragments is often the key requirement for techniques solving OIT.
This section is a summary of several most common techniques to deal with this problem.

3.1.1 Depth Peeling

In 2001 presented method by C.Everitt[15] is based on multiple geometry passes, peeling just
one layer of visible geometry per pass. It is in fact based on a shadow mapping technique,
which helps to determine visibility between scene points and a certain light source. Shadow
mapping uses additional depth buffers for every light source to be able to compare the depth
of rendered fragment and the depth buffer created by the light source.

While standard depth test provided by GPUs would give us only the nearest fragment’s
depth, it is not a sufficient test for OIT problem since knowledge of all layers depths is
required. The algorithm works as follows:

15

16 CHAPTER 3. ANALYSIS OF COMPARED METHODS

Algorithm 3: The Depth Peeling on GPU

Data: Depth Buffer D, Shadow Texture S, Layer Texture L, Result Texture R, Geometry
Result: All layers blended into R

Depth Test ON

Render the geometry

Store the first layer consisting of the nearest fragments to R, store the depth of such fragments to S.
while Layers to be processed ezist do

Depth Test ON

Render the geometry

Peel the previously captured layer using S.

Store result in L

S = create shadow map from the camera view.

Depth Test OFF

Render full-screen quad

Blend the L to R

© ® N O s W N

= e
N = O

end
In the final pass render texture R to the framebuffer.

=
[

Since we need two depth tests per pass, first
to peel away the previous layer and the second
to render only the currently nearest fragments,
OpenGL depth buffer is not enough. For the sec-
ond depth test we use standard OpenGL depth
buffer, shadow-mapping[24] principle is used to ,
create the depth map of layer to be peeled. This
shadow map is however rendered from the point of
the camera and not the light, see figure By
storing only z coordinates instead of the colour we
get the depth map for the next layer to be peeled.

This algor}thm therefore peltforms n geometry Figure 3.1: Creating shadow map from
passes to retrieve n layers. While more advanced the camera point of view to retrieve the
algorithms such as Dual Depth Peeling[9] blend depth of nearest fragments.
these layers “on the fly” during the peeling passes,
depth peeling algorithm[I5] stores currently retrieved layer and performs another blending
pass using full-screen quad, using OpenGL blending functions.

With graphical hardware being more advanced several extensions of original Depth Peel-
ing algorithm are published, such as Z-fighting Aware Depth Peeling[22] and more impor-
tantly Dual Depth Peeling[9] discussed below this section.

3.1.2 Dual Depth Peeling

Dual depth peeling method[9)is a modification of the original Depth peeling algorithm dis-
cussed in previous section allowing to peel two layers at once. In one pass it peels back
and front layers simultaneously. Since this is not possible to do with default depth buffer
and GPU does not have multiple depth buffers to perform front to back and back to front
rendering, custom min-max depth buffer has to be used.

3.1. ORDER INDEPENDENT TRANSPARENCY 17

To prevent peeling any fragments by both front to back and back to front directions, the
algorithm uses mechanism of sliding window for two consecutive layers. The min-max depth
buffer is implemented as RG32F two channel texture where depth values can be compared
by MIN blending in every pass. By using the sliding window mechanism single fragment
shader can be used for the depth comparison and blending. Default depth buffer offered by
hardware is turned off. The mechanism of using a sliding window for two consecutive layers

>
>

Figure 3.2: Peeling layers in both front and back direction. If number of layers n is odd, the last
layer would be blended twice if the sliding window mechanism was not used.

works as follows:

Distance from the camera

Lz

layers L), Livaa

layers L,, Ly

layers Ls, L,

Algorithm 4: The Dual Depth Peeling on GPU

Data: Min-Max buffer, Layer Texture F,Layer Texture B, Geometry
Result: All layers blended to one
1 Depth Test ON
2 Render the geometry
3 Store the first layer consisting of the nearest fragments to F and the last layer of furthest fragments
to B.
4 In the first pass no fragments are peeled. The min-max buffer values are initialized by depths of two
outside layers. while both directions did not meet do
Render the geometry
All fragments with equal depths from the previous pass are peeled from the front and back.
Update the min-max buffer.
Blend results of front peeling with F and results of back peeling with B in the same pass.

© ® N o o

end

10 To process the last fragments (if exists) only one direction needs to be used to avoid
double-processed fragments, using the sliding window.

11 The additional final step is needed to blend both layers F B created by front to back and back to

front progress.

It is also important to state that for the front to back direction under-blending equation needs
to be used while for all fragments peeled in the opposite direction, over-blending equation is
needed. Both equations are explained further in Chapter 3.

While in original depth peeling N geometry passes were necessary to process the scene,
where N is the number of layers it created, Dual depth peeling performs N/2 + 1 geometry
passes only, where the additional +1 step is described as step 11 in algorithm description.

18 CHAPTER 3. ANALYSIS OF COMPARED METHODS

3.1.3 Alpha Blending Approximations

As published by Houman Meshkin[I7] at GDqT] it is possible to approximate rendering
of transparent objects in a single geometry pass. The main idea of the Weighted Sum
algorithm is to remove completely order-dependent terms of the rendering equation and
splitting order-independent terms to multiple render targets. This method however does not
produce plausible results for higher alpha values, only for alpha values a < 0.3. Higher alpha
values result in too dark or too bright images (since we do not compare this method to other
algorithms in greater detail, please head to cited paper for details and images).

Much better results were achieved with Awverage Sum algorithm published by NVIDIA[9].
Their idea is based on the fact, that if all the layers had the same colour, result would not
depend on layers’ order. To fulfill such condition colours are replaced by average colour
per pixel and weighted by fragments’ alpha if not uniform. Even though the algorithm is
called[9] Single-Pass Approzimation, at least two passes are needed to accumulate RGBA
colours first and then to compute alpha-weighted average colour. As this algorithm does not
omit any order-dependent terms of the rendering equation, results are much more plausible
even for high or non-uniform alphas compared to Dual depth peeling and Weighted sum
algorithms. Such comparison of images can be found in[9].

Even though this approach is very fast, it gives only the approximation of the OIT
problem which is not extendable to any methods considering non-local transparency and
therefore this method is not further examined in this text.

3.1.4 Concurrent Linked List Construction on the GPU

So far described methods are complex and unintuitive due to graphical hardware of the time
they were published. A much more intuitive method is to store every fragment that belongs
to one pixel to a linked list originating in that pixel and sorting it by fragment’s depth to
achieve correct behavior in the colours compositing equation. Method|[23] described below
is very similar to original A-buffer published in 1984[13], it only achieves OIT by using
linked lists constructed in memory of GPU. While first GPU implementations of A-buffer
presented by Meyers and Bavoil called Stencil routed A-buffer|[18] and Bavoil et al.[10] called
K-buffer was able to store fixed amount of fragments per list, method presented by Yang|23]
is unbounded. Since this work is based on creating linked lists on GPU, this topic is discussed
further in following chapters.

A GPU version of A-buffer can be constructed in two geometrical passes. In the first pass
we create a linked lists of fragments per pixel. To do that we need to store the fragments
along with the pointers to their neighbours along the viewing ray, as well as the pointer to
the first fragment per pixel, called a pizel head. First fragments that are processed per pixel
are stored as la inked list head. With the following fragments we continue to build the linked
lists per pixel until all fragments are processed.

!Game Development Conference

3.1. ORDER INDEPENDENT TRANSPARENCY 19

VIEWPORT pixelHead fragData
alalalalal OO0 ||
| — 0 1 w2 3 4 5 6 7
< > -1 @ -1 -1 -1 color of pointer to
fragment 0 next from
I~ fragment O
X X -1 -1 -1 1 -1 In the fragData buffer span = 2

is used, therefore each fragment ocupies
exactly 2 fields.

index to fragData buffer
is therefore: index_fd = index*2

-1 -1 -1 -1 -1 Color is then stored at index_fd,
Next pointer is at index_fd + 1.

2Talalala] CEOEOEeE-
T 2lo|a|a|1| EELITIITIT]

11 12 13 14 15

N
X X -1 -1 -1 1 -1 Head pointer needs to be updated
to index of new fragment.
4—/

-1 - 1 -]_ 3 - 1 Previous index has to be stored as
the next pointer of the fragment witch
replaced it:

-1 -1 -1 4 | -1

Y Y

Figure 3.3: Shows how fragments are stored to the linked lists structure whene elements are rendered
to the viewport.

Algorithm 5: creating the concurrent linked lists structure

Data: Geometry to be rendered, atomic counter AC =1
Result: Unsorted concurrent linked lists

1 Depth Test OFF

2 Render the geometry

3 while fragment of coordinates (X,Y) in view space to be processed exists do

4 index = AC

5 compute fragment colour according to selected shading and lighting model
6 if pizelHead(X,Y) == -1 then

7 pixelHead(X,Y) = index

8 fragData(index*2) = colour

9 fragData(index*2 + 1) = -1// since we are first fragment of this lists next pointer is empty.
10 else
11 nextPointIndex = pixelHead(X,Y)
12 pixelHead(X,Y) = index
13 fragData(index*2) = colour
14 fragData(index*2 + 1) = nextPointIndex
15 end
16 AC+ =1 // increase the atomic counter
17 discard fragment // we do not want it to be seen yet.

end

-
@

20 CHAPTER 3. ANALYSIS OF COMPARED METHODS

As soon as we have the A-buffer constructed in the GPU’s memory, the second pass is
needed to sort pixels’ linked lists. That can be achieved simply by rendering a full-screen
quad and sorting lists in the fragment shader. While the original A-buffer[13] tored depth,
transparency, pixel coverage and colour per fragment, it’s GPU version23l stores such data
to separate buffer and than uses pointers to speed up the work with the linked list structure.

Figure [3.3| shows how to store the fragments data to the memory of the GPU to form
concurrent linked lists. To do so we need an atomic counter that will increase with each new
rendered fragment to give us the fragment identifier. The algorithm of creating the linked
lists is then showed in the Algorithm [5]

Now we have all samples (fragments) along each ray going through the center of each
pixel stored in the concurrent linked lists. To be able to compose the final image we have
to now sort the samples of each list. To do so the full-screen quad is rendered and for each
pixel the HEADPOINTERS buffer is queried for the first fragment of the list. Next pointers
in the FRAGMENTDATA buffer are then used to traverse the list until special value of -1 is
found which indicates the last element in the list. Fragments are than sorted using insertion
sort as Yang[23] or selection sort as Carnecky[12] (Even though selection sort should be more
efficient due to number of writes over the insertion sort, no performance difference was found
presumably because of caching[12]).

The biggest difference of this approach to the peeling mechanisms is that we only need
to render the geometry once. When sorting and blending the collected samples along the
rays we only access all the information already stored in GPU memory. Used structures are
mentioned in greater detail in the Design and Implementation chapter

3.1.5 Illustration Buffer

Inspired by Yang|23], technique called Illustration Buffer was presented by Carnecky et
al.[12]. It is the context that is desirable knowledge for all fragments to have. With that
knowledge it is easier to determine the fragment role in the image, such as being a part of
the silhouette, being occluded ete. Ilustration buffer data structure is motivated by several
image enhancements that modulate opacity based on specific image features that increase
understanding of complex transparent objects notably. Such features are described in the
Theory section in further detail.

To provide the information about the surrounding shape of all fragments, A-buffer con-
structed in the GPU memory[23] is extended. While in A-buffer method fragments know
their neighbors only along the viewing ray, [llustration Buffer presents method of finding and
connecting also neighbors that belong to the surrounding pixels. For pixel with coordinates
(z,y) new four neighbors are found if exists in linked lists of pixels (s + dx,y + dy) where
(dxv dy) € {(17 0)7 (_17 0)7 (07 1)? (07 _1)}'

After the neighbours being found the Illustration buffer can be used to traverse object
surfaces to retrieve desired shape describing information such as gradients or distances to
important features.

Figure [3.4] shows necessary structures for the Illustration Buffer and how the data are
stored when new element is rendered. To retrieve the next available free index for inserted
fragment we need to use global atomic counter, or several as is discussed in the imple-
mentation. In contrast to the previous concurrent linked lists we need to store much more

3.1. ORDER INDEPENDENT TRANSPARENCY 21

information. Therefore we reserve several cells in the fragData buffer per fragment and use
the spanning mechanism for retrieving the index to this buffer as explained in figure [3.3]
This is the list of structures we will need to construct and work with the Hlustration Buffer:

e pixelHead of size X XY where X,Y are the dimensions of the viewport. It stores ID
of the first fragment in the list.

e pixelCount is also two-dimensional X x Y buffer storing lengths of the lists in each
pixel. This buffer is however optional since we can control the end of the list by special
value of the last next pointer. On the other hand we can use this information in the
opacity modulation as shown further.

e fragNext is a one dimensional buffer where at frag next(index) is stored id of the
next fragment of id=index.

e fragData stores all data we need to work with the buffer. It stores for each fragment
the colour, indices of its four geodesic neighbors and optionally other data we need for
non local transparency which will be introduced further.

e fragData2 is of the same layout as fragData and it is used for ping pong computa-
tional schemes.

3.1.5.1 Neighbors Location by Carnecky

Now we assume we have already created the concurrent linked lists by Algorithm [f] and that
samples are already sorted along the viewing ray. This will be essential to location of the
neighbors.

These neighbors however differ greatly
from the neighbors in the layers. Consider
situation depicted in figure 3.5 where we see

3 found neighbors and peeled layers. It shows
how greatly can differ terms neighbors of P
in peeled layer and neighbors of P on the sur-
face. This major difference will show vital
for future use as shown later in this Chapter.

2 As shown in figure 3.5 the goal is to find
geodesic neighbors on the same surface and
not of the same layer in the peeling point of
view. We denote fragments of current linked

2 A4 list L as l;,i € {1,...,n} where n is the num-
Figure 3.5: Using a perspective we show two ber of fragments in L and neighboring list K
crossing planes a). When peeling the first layer with fragments k;,j € {1,...,m} where m
and querying the neighboring pixels of P in such is the number of fragments in K. While in
layer, we retrieve b). When searching for neigh- peeled layers neighboring pixels will be both
bors of P in Illustrative buffer we want to find ¢). p ;.43 layer, for indices of geodesic neighbors

b)

22 CHAPTER 3. ANALYSIS OF COMPARED METHODS

VIEWPORT pixelHead fragNext
Talalal2] EERRLRLIT
L |
< > a1lo]1]1|a
~—_
N N1 -1]-1] 1 (-1 DATA OF
FRAGMENT id=0
ity sj2|ty O T T 117171
8 9 10 11 12 13 14 15
-1|-1(-11(-1]-1
M M
fragNext
TTalalala] EERRLEIT
L |
< > 1|l 0|11
~—_
N N1 -1]-1| 4 |-1 DATA OF

FRAGMENT id=0

1]-1| 3|5 (-1 ONe[N [...[Ong[R ... |
8 9 10

en
1 12 13 14 15

a1l [Oneg[N ... [One]N]...|
16 20 21 22

e
17 18 19 23
M M

Figure 3.4: Principle of the concurrent lists is the same as in figure Here however are next
pointers stored separately from the data. Data are spanned by size of four here, giving space for
colour, four surrounding neighbours (NB), normal (N) and some other data, which depend on the
target use of the buffer. Buffer pixelHead if of a same size as the viewport (X x Y'). This figure does
not consider the sorting of samples along the ray.

does not always apply that ¢ == j. That means that to find the neighbor we need to tra-
verse entire neighboring list. Carnecky et al. use a simple heuristic measure € of the surface
continuity for two fragments as shown in figure 3.6l They compute the €, as difference of
fragments 4, j normals n;,n; as:

€n(i,j) =1 —n; +n; o\

. : : 3
The eye distance €, is computed using the ra- r"*

dius of a rendered object bounding spherer,y;, nor-

mal n;, pixel coordinates z;, eye distance z coor- €
z

dinate and finally the z; gradient (d%) “\'/./.~

1 dz;
€:(2,7) = zZit(rj—x) | =—) — 2
(]) Tobj [(!) <dl‘1> j:| Y v v ¥

Figure 3.6: Meaning of ¢, and ¢, on the
€(i,j) = w, - €,(1,7) + wy - €,(4,7) surface samples.

3.1. ORDER INDEPENDENT TRANSPARENCY 23

VERTICES COORDINATES

VolVi|Va|VslVa[Vs| | |
0 1 2 3 4 5 6 7 8

Hlu|luo|N

A W N = O
o|lo|lo|lo|lo
N|lW|l]| H] -

w

d)

Figure 3.7: a) indexed geometry to prevent duplicate geometry to be sent to gpu. b) Every vertex
knows indices of all vertices in given triangle. ¢) Every triangle has its own id. d) table maps IDs
of the triangles (blue) to b) where every vertex knows all indices in its triangle.

Given this heuristic measure € will be small for probably neighboring fragments of the
same surface and large for fragments of different surfaces. For two neighboring lists A, B
and fragment f; € A they first try to find the best neighbor candidate ¢; for f; in B and
than they traverse A to find if there is better neighbor for ¢; then f; in A. Even though
they use component ID check to set € = oo to exclude fragments of different components
(and therefore surfaces), this is rather inefficient since for location of one neighbor we have
to traverse both neighboring and original lists.

3.1.5.2 Proposed Neighbors location

To overcome the inefficiency of method[12] presented by Carnecky et al. we propose new
method motivated by indexed geometry. Given two neighboring lists A, B where list A is
the current list and B is the list where neighbor is to be find, we propose auxiliary structure
depicted in figure

We are using indexed geometry to lower the load of informations mapped to GPU me-
mory. We however extend the indices information so that every vertex knows indices of
all vertices of the same triangle. This is shown in figure b). This would however be
against the very principle of indexed geometry since we would replicate a lot of data. This
can be solved as shown in figure ¢) where every triangle has its unique ID attached and
auxiliary table to map IDs to triangle indices as shown in figure d).

For fragments f € A of coordinates z¢,y; and g € B of coordinates x4, y, then apply
following rules:

1. f and g are not neighbors if f and g do not share any indices of the triangle they are
part of.

2. f and g are neighbors and fragments of the same triangle if f and ¢ share exactly 3
indices.

3. f and g are neighbors and fragments of two neighboring triangles if f and g share
exactly 2 indices.

24 CHAPTER 3. ANALYSIS OF COMPARED METHODS

4. f and g are neighbors and fragments of two neighboring triangles if f and g share
exactly 1 indices. This situation can happen e.g. for triangles with ID = 1,ID =4
in figure [3.7]

Algorithm 6: proposed neighbor search

Data: two neighboring lists A, B, current fragment f; € A, indices of f; indicesOfF.
Result: Index to the linked list structure of f; neighbor.

1 for b = 0; b < count(B); b++ do

2 fragB = B(b); indicesOfB = fragB.triangleIndices;

3 for k = 0; k < 3; k++ do

4 for [=0;1 < 3; I++ do

5 if indicesOfB[k] == indicesOfA[L] then

6 return fragB.ID; // Neighbor has been found since it shares at least one triangle
index with f;.

7 end

8 end

end
10 end

The algorithm for neighbor search is then simplified to only one cycle through the neigh-
boring list B and there is no need for the cycle through A afterwards.

drawbacks

Even-though this method is geometry motivated there can be artifacts caused by the
rasterization process. Such artifacts occur when rendered triangles are smaller than pixel
and neighboring fragments skip triangle(s) in the isNeighbor query. This error is shown
in figure With that knowledge we can higher the viewport resolution or lower the detail
of the model to overcome this drawback in exchange for speed.

3.2 Comparison of OIT Solving Methods

We have shown several algorithms to solve the OIT problem as well methods to modulate
opacity based on several shape properties. Not all of those methods can be applied to all
presented algorithms solving OIT with the same effort or cannot be applied at all. This
section summaries such comparison of the peeling methods, per pixel linked lists and the
[lustration Buffer.

3.2.1 Modulation by Groups

Opacity modulation based on groups is trivial in all presented methods solving the OIT and
therefore is presented separately. To all algorithms we simply pass the group id along with
colour and normal to all fragments. Than we present the lookup texture with definitions
of desired opacity for each group.

3.2. COMPARISON OF OIT SOLVING METHODS 25

Figure 3.8: Every fragment has Figure 3.9: Fragment is fully opaque if the number of neigh-
equal opacity. bors is less than four meaning it is part of the edge.

3.2.2 Modulation by Distance from Defined Plane/Area (Cut Motivated)

Modulation of opacity by distance from defined area or plane is rather easy since the principle
is easily applicable to all mentioned algorithms it is presented separately as well.

In all mentioned algorithms we are able to pass to each fragment its position in camera
space to prevent non linear coordinates scale given by the projection to view space. With
this knowledge we can compute the distance to a focus area independently on the chosen
OIT solving algorithm.

3.2.3 Depth Peeling and Dual Depth Peeling

The depth peeling mechanism is really straightforward to implement as well as its extension
the dual depth peeling. It is not however as modifiable as we would want to as described
in following text considering the opacity modulation.

Modulation by Differences in Shape

Please recall the figures and as well as the curvature computation first. For this
problem to solve it is also important to understand the difference between neighbors in the
peeled layer and neighbors of the same surface. This difference is vital for understanding
following problem.

Given the situation in figure [3.11] we first need to find the neighbors in current layer.
However since the first layer will consist of both terrain and the grid, we can’t simply return
surrounding pixels of the texture storing such layer. To solve this partially we can pass

26 CHAPTER 3. ANALYSIS OF COMPARED METHODS

Y Y Y Y Y Y Y

a) b) c)

Figure 3.10: a) space arrangement of shaded 3D terrain (red) with green grid on the top. b) Pro-
jection of objects in a). ¢) TODO:

the componentI D along with the colour and normal to the shader. This will solve the cases
where all the neighboring pixels have the same component ID. In case of different component
ID we can’t fetch the true neighbor on the surface since we have no way how to traverse all
the layers. We can try to guess the curvature based on the other neighbors but we do not
know if the surface really continues in that direction. This approach will therefore produce
artifacts along the edges if curvature is used.

We could modify the algorithm to render to different texture for every peeling pass but
this would not help us in cases depicted in figure ¢) since we would still need to choose
between several fragments with the same componentID. This can be solved by applying
some eye-depth based heuristic with use of dynamic number of allocated textures given by
number of layers. This approach is not really intuitive to implement and would require major
change in the algorithm - storing every layer separately.

Modulation by Distance Between Samples along the Viewing Ray

While in all other presented cases the modification of the algorithm is the same for the
original depth peeling and dual depth peeling, we need to use the original depth peeling to
achieve the modulation by distance between layer samples.

When peeling the layers in the original depth peeling we do it in front to back manner.
The distance from the last layer is computed as:

Distance(i) = |s;.depth — s;.depth]|

where s; is the current sample and s; is the sample of previously peeled layer. We do not
even store that information explicitly along with the colour since this information is stored
in the depth buffer that we used to peel away previously processed layers.

Even though implementation of this is very simple and straightforward there is a problem
of normalization the Distance value. To do that we would need the maximum distance of
the whole peeling process but since depth peeling algorithms blend the intermediate results
layer by layer we do not have that information until the algorithm finishes which is too late.
The simplest solution of this problem might be user defined and controlled value which would
have to be adjusted for each model separately.

3.3. PER PIXEL LINKED LISTS 27

The dual depth peeling algorithm would have to be modified to not to blend the layers
on the fly in the same pass as the peeling occurs but to use one more texture to store the
result. If layers are indexed in front to back manner, results of layer I; would have to blended
to previously processed layers in the peeling of the next layer [;_1, when Distance between
li and li—l is known.

Modulation by Distance from Important Shape Features in the Layer

This is the most problematic case of the peeling methods functionality extension. As
we have seen in case of modulation by differences in shape finding the correct neighbors of
the same surface is difficult and non-intuitive task requiring major changes of the original
algorithm. Reason for that is that for successful diffusion of the distance information we do
need to know the real neighbors on the surface, not the neighbors in the peeled layer.

Second problem is to successfully detect desired image features, the silhouette in this
case. This problem was addressed by Nienhaus and Déllner in search for a method to
find object blueprints using depth peeling[20]. They have combined the depth normal with
normal buffer to create the edge map using discontinuities in the depth and normals to find
the visible edges. The non-visible edges become visible after occluding geometry is peeled
using the depth peeling mechanism.

In case of the opacity modulation by the distance from the closest silhouette of the same
surface, we need to spread the distance information over the layer first. Considering the
problem with location of the true neighbors on the surface, this problem becomes inherently
difficult. If we for now think of the neighbors location issue as solved we could spread the
distance information using method presented by Rong and Tan called the jump flooding|[21].
Jump flooding allows to spread the information from the original seeds (the silhouette in our
case) in logn steps given the n x n grid size.

As we will see in the analysis of the Illustration Buffer, this kind of modulation is much
more eagier to implement and comprehend than in case of peeling algorithms. Therefore we
do not advise using the depth peeling in this case.

We have also discussed the silhouette enhancement technique, which requires knowledge
of the distance from the silhouette of occluding layer above the current layer (please see the
Chapter 2 to recall the silhouette enhancement). Trying to implement such feature with
depth peeling is also not advised for the same reasons.

3.3 Per Pixel Linked Lists

Per pixel linked lists are fast and intuitive method to solve the OIT. It is however clear that
without extending the algorithm to the Illustration Buffer it is not applicable for any kind
of modulation that requires the fragment neighbors to modulate the opacity.

Modulation by Differences in Shape

28 CHAPTER 3. ANALYSIS OF COMPARED METHODS

Distance(i)
1

So Si —Si+1—Si+2 Sh

P

SkipDistance(0,i+2)

AL

Figure 3.11: Samples along the view ray and distances between them in camera space. Distance()
shows a distance to the next layer in front to back manner and Skip Distance(i,k) is a distance between
samples s;, Si.

This is the first case which per pixel linked lists are to simple to cover. Since we have
no information about neighboring fragments of the same surface, we cannot differentiate
surrounding normals to compute the curvature value.

However the case might not be lost entirely. We still could use the illumination-based
importance to modulate opacity by the shape differences[I4]. Even we will not get identical
results, we will be able to see the shape differences thanks to its shading computed with
respect to the eye vector. Places of highest lighting intensities will have the highest opacity.

For an extension of per pixel linked lists capable of this kind of modulation properly
please refer to the next section where Illustration Buffer is discussed.

Modulation by Distance Between Samples along the Viewing Ray

Great advantage of the linked lists structure is that we can traverse the list anytime we
need to after it is created. This does not apply for the depth peeling methods. This fact
becomes important when distance between layers that are not successive.

Distance(i) = |s;.depth — s;_1.depth|

SkipDistance(i, j) = |s;.depth — s;.depth]|

We can compute the Distance(i) value in the sorting pass since we already have loaded
pointers to memory to each sample along the ray and it will be more effective due to cashing.
Samples need to be sorted first of course. However in general case represented by SkipDis-
tance(i,j) where for s;, s; applies that |i — j| > 1 this couldn’t be solved by original depth
peeling nor the dual depth peeling. In case of the linked list we need just one traverse of the
list to get distances originating in s; to all samples s; where j > i.

3.3. PER PIXEL LINKED LISTS 29

Modulation by Distance from Important Shape Features in the Layer

This feature cannot be implemented using only concurrent linked lists. Please refer to
the lllustration Buffer which enables traversing not only the list along the view ray but also
to the neighboring fragments of the same surface as depicted in figure [3.12]

3.3.1 The Illustration Buffer

Figure 3.12: Every fragment s; has four pointers nbT;, nbR;, nbB;, nbL; to its geodesic neighbor in
the top, right, bottom and left direction, if such neighbor exists. Fragment s; still has the pointer to
next fragment along the view ray, it is not visualized here for the sake of simplicity.

In solving OI'T problem with opacity modulation based on non local transparency methods
we find the Illustration Buffer to be the best of presented methods. This section explains
how we can use the Illustration Buffer to explore what happens not only in properties of the
current fragment but also in properties of its surroundings along the surface.

Modulation by Differences in Shape

Given the constructed lllustration Buffer it is easy to achieve this kind of modulation.
All we have to do is to fetch neighbors indices of the current fragment and fetch their normals
from the fragData buffer as well, as shown in algorithm [7]

Modulation by Distance Between Samples along the Viewing Ray

Since the Illustration Buffer is extension of the per pixel linked lists algorithm which
already solved this issue please refer to previous section describing the mechanism inherited
by Hlustration Buffer.

30 CHAPTER 3. ANALYSIS OF COMPARED METHODS

Algorithm 7: Computing curvature from geodesic neighbors normals of fragment f;

Data: current fragment f; and its normal n

Result: Curvature = |ii — @| + |t — b| + |7t — &| + |7t — d]

vecd neighbors = getNeighbors(fragData, i);

float Curvature = 0;

for int j = 0; 5 < 4; j++ do

if ezists(neighbors[j]) then

neighborData = getData(fragData, neighbors[j]);
vec3 neighborNormal = getNormal(neighborData);

Curvature += |7 — neighbor Normall;
end

© ® N O A~ W N

end
return saturate(Curvature); //Please refer to the Theoretical Background Chapter for
description of the saturate function.

[
(=]

Modulation by Distance from Important Shape Features in the Layer

N L .
\ i
p) \> .

[i
\

Figure 3.13: Fragment of the silhouette (red), fragment occluded by silhouette (green) and its
neighboring fragment not occluded by above surface (blue).

Method described by Carnecky to modulate the opacity by the distance from the sur-
face silhouettes|12] uses the Hlustration Buffer structure. Transparency field f is introduced
to have high values at surface silhouettes falling off with increasing distance from the silhou-
ette. Binary value bg is then used to identify the boundary fragments and is therefore set
to 0 for the boundary fragments and 1 elsewhere. As initial conditions we set f = 1 and
bs for fragments with less than four neighbors (red fragment in figure . If fragment is
occluded by a silhouette we set 8 = 0 and bg = 0 and we set 3 = 0,bg = 1 for all other
pixels. Those values are stored as custom fragment properties in fragData buffer. To spread
the initial values of § and bg two possibilities are presented|I2] - physical and non-physical
approximation:

0
B =B (3.1)

First is physically motivated process of homogeneous diffusion defined as with a dif-
fusion coefficient \,. Local operator (3.2) using a forward discretization of is used to
implement the diffusion process. The steady state of the diffusion is not met, forward dis-
cretization process is stopped after specified number of iterations.

3.3. PER PIXEL LINKED LISTS 31

BEHL = g% 1 b A s ALY (3.2)

In equation second order central finite difference approximation of Ag is used.
Since without computing the error estimation the central finite difference produces errors
that are not visually plausible we use discrete Laplace operator for Aa® estimation from 8
surrounding neighbors. Please refer to the Design and Implementation Chapter for details.

This process is however not very effective for the diffusion of o modulated by distance
from the silhouettes. Please see the Results and Discussion Chapter for comparison with
following non-physical process:

ﬁk—i_l = malL‘(ﬁk, mal‘(ﬁﬁeighbor) -)\/B) (3.3)

We have been also examining the possibility of
using already mentioned Jump flooding algorithm
which would for n x n grid size distribute the dis-
tance in logn steps[21]. This idea is unfortunately ”bTiH
not applicable since we cannot simply solve the nbR,
query: is f; of screen coordinates k,1 neighbor sj si -~
of f; of screen coordinates m,n?’, which is vital T
query asked in every step of the jump flooding algo-
rithm. Situation is shown in figure [3.14] Problem = =
is that we would have to employ some pathﬁndingﬂ
technique to answer that question which would be Figure 3.14: Can we simply answer the
much more computationally expensive than pre- question ’is s; and s; on the same sur-

sented diffusion processes. face?’ Answer is unfortunately negative as
explained in the text.

-
—
-
S
o
Ly

The silhouette enhancement can be imple-
mented in very same manner as the § field. The
field v (called the halo highlight field[12]) is there-
fore introduced along with the binary value b,. Value of v will be high near the occluding
edges and fall of with increasing distance from such edge. v = 0,b, = 1 for every other
fragment. We can use the very same diffusion as with the g field:

7k+1 = max(’yk, ma‘r(’y’r’ieighbo'r) -)\7) (34)

User defined variables A\g and A\, in equations affect the falloff of the 3, values
and results of such affecting are discussed in Chapter 5.

To use the values we have spread over the surfaces we need to modify the image composi-
tion equations. Considering the front to back blending procedure, colour ¢ as the final pixel
colour, colour ¢; of current fragment and «; is fragment initial transparency (not opacity),
the composition algorithm is modified to Algorithm 8.

2Pathfinding is a method of finding a path from A to B in a graph.

32 CHAPTER 3. ANALYSIS OF COMPARED METHODS

7 o

Figure 3.16: Hallo highlight

Figure 3.15: Hallo highlight

using algorithm [produces produced by algorithm [9] Figure 3.17: Same as in figure
darkghaﬁo P with colourO fHaloHighlight with last layer opaque.
) = white.

Algorithm 8: Composition of final pixel colour using fields 3,

Data: linked list A
Result: Colour ¢ of a pixel

1 ¢=0

2 a=1

3 for int i = 0; i < size(A); i++ do
a ai = (1—)(ow + (1 — as)Bs)
5 c=c+ ad;c;

6 a=oa(l —a;)

7 end

8 C = (Chackground

Please note that algorithm [§ presented by Carnecky[12] is not complete and the ~ field
will not work not produce image that was presented in [12]. The @; will be going to zero for
high gamma values and on the line 5 it will therefore produce dark halo highlight, not white
as presented in the paper. We therefore suggest following change in the algorithm [0 Results
of the composition using the algorithm [§] is shown in figure 3:15] while result of algorithm
[9]is shown in figure [3.16] To produce the same result as in figure [2.11] we also set the last
layer to be always opaque which can be seen in figure [3.17}

Algorithm 9: Composition of final pixel colour using fields 3, ~

Data: linked list A
Result: Colour ¢ of a pixel

1 ¢=0

2 a=1

3 for int i = 0; i < size(A); i++ do

4 c+ = v * colourO f HaloHighlight
5 ai = (ai + (1 — i) Bi)

6 c=c+ adic;

7 a=oa(l —a;)

8 end

9 C = (Chackground

3.4. SUMMARY 33

3.4 Summary

In this Chapter algorithms based on peeling as well as on linked lists were introduced and
compared based on the ease of use and most importantly on extendability by other opacity
modulation techniques. Algorithms dual depth peeling and original depth peeling are in-
tuitive to use in case of modulation by depth between samples along the ray, even in case
of modulation by distance to defined focus area. It is however hard and not worth the effort
to solve opacity modulation considering any non-local information. Therefore use of peeling
algorithms on such techniques is not advised.

We have found the Illustration Buffer to be really powerful tool offering intuitive traverse
of the object surfaces and therefore retrieving any non-local information easily.

34

CHAPTER 3. ANALYSIS OF COMPARED METHODS

Chapter 4

Design and Implementation

In this chapter implementation of the Illustration Buffer is presented as well as used tech-
nologies and overall structure of the application.

4.1 Used Technologies

In this section used technologies are described as is their purpose in our application. We use
ANSI C++ and comply the C++11 standard as a bottom layer technology.

4.1.1 OpenGL and GLSL

OpenGL[] is an environment for development of interactive 2D and 3D graphics applications.
It offers powerful API for communication with the GPU, managing buffers, textures and
much more. We use OpenGL to implement all the structures we need by the Illustration
Buffer as well as the skeleton of the algorithmn itself.

GLSL[3] is a shading language with direct support of OpenGL enabling management
of all operations that occurs at programmable points in OpenGL rendering pipeline. We use
GLSL to implement our shaders that implement most of the algorithm logic. Opengl version
4.4.0 NVIDIA 331.113 is used along with GLSL version: 4.40 NVIDIA via Cg compiler.

4.1.2 GLM

GLM]2] is a header only library for working with vector and matrix mathematics in graphics
applications mostly. We can find definitions of new types with standard vector and matrix
operations with overloaded operators for ease of use. We use this library to store vector and
matrices data to pass to the GLSL shading languange.

4.1.3 RapidJSON

A fast JSON parser/generator for C++ with both SAX/DOM style API[7] is used to parse
our configuration files stored in the JSON format.

35

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.1.4 QT Framework

QT Framework|[5] is a framework for development of cross-platform applications as well as
their user interface (UT). It is divided into several modules to minimize the unnecessary
code for specific application. In our implementation we use only four modules of 5.3.0 QT
Framework version:

e Core is a base of the QT framework offering many extensions of ¢c4++11 containers,
functionality and it is necessary for development with QT.

e Gui module cares about most of the GUI elements.

e Widgets module extends the Gui module by adding widgets that we use for modal
windows and better layout of the application.

e Opengl module offers basic opengl integration with OpenGL context management.
It also offers a wrapper for all OpenGL commands since version QT5 but that offers
only limited functionality of OpenGL ES 2.0. We therefore use a GLEW library for
that purpose.

4.1.5 The OpenGL Extension Wrangler Library

The OpenGL Extension Wrangler Library (GLEW)[I] is used to manage OpenGL extensions
as well as to provide access to OpenGL functionality we require. We use version 1.11.0 in our
application.

4.2 Application Structure

First we describe classes that are most important for the algorithm. Since the application
consists of many classes we show relation diagrams in parts. We do not describe shaders
or processing workflow in this section.

IllustrationBufferAlgorithm class is responsible for creation of all buffers, textures
and auxiliary structures before the algorithm starts. Then it consists of several methods
each describing one stage of the algorithm. These are discussed further in this section.
AlgTemplateObject class serves as a renderer of the object. It also initializes attached
algorithm and then calls methods of the algorithm when enabled.

Context is class passed to both I1lustrationBufferAlgorithmand AlgTemplate—
Object and is used as configuration container. It offers inner configuration as well as user
parameters controlled by UI to other classes. Since there are 42 field members of the Context
class we omit that information in all diagrams.

Object is a parent of AlgTemplateObject and is is responsible for the geometry and
memory management for object geometry, materials and such.

ObjMt1lLoader class implements simple parsing of OBJ format and it also supports ma-
terials and loading object groups. It loads informations about model name and path form
JSON file providing simple way of importing OBJ models without changing the source code.
ShaderProgramLoader class loads the shaders configuration from attached JSON file.
This allows us to add and remove shader programs dynamically without changing the code.

4.2. APPLICATION STRUCTURE 37

Diagram 1: Diagram show relations between AlgTemplateObject, IllustrationBufferAlgorithm, Ob-
ject and Context along with its enumerations.

+splLoader

-loader

Diagram 2: Diagram shows relations between AlgTemplateObject, IllustrationBufferAlgorithm,
Object and Context along with its enumerations.

38 CHAPTER 4. DESIGN AND IMPLEMENTATION

MeasurementsControl Userlinput
+ fragCount : GLuint
+ bestTime : float + Userlnput(w : AlgorithmWidget*, c : Camera*)
+ bestFps : float + ~ Userinput()
+ MeasurementsControl(g : Context*) + handleKey(key : int, released : bool, c : Context*)
+ ~ MeasurementsControl() + handleMouse(x : int, y : int)
+ beginFrame() + pressMouseButton(btn : int, x : int, y : int)
+ afterGeol y : Alg Object*) + releaseMouseButton(btn : int)
+ endFrame(a : AlgTemplateObject*) + scroll(direction : float)
—Lt resetTimer()

-camera

Camera
+mControl + object : Object*
Context + trackball : VirtualTrackball*
- - — - + rotationQuaternion : gim::quat
+ Context(width : int, height : int) . "
+ ~ Context() L o ¢
+ windowSizeCh d(width : int, height - int) + distance : GLfloat
il B AR ¢ i TR + origDistance : GLfloat
+ updateCameraViewMatrix() Aot 3
+ projectionMatrix : glm::mat4
+ update() q N
) + viewMatrix : glm::mat4
+ loadModelsInfo(filename : const char*)
+ getModelN (o RS) B i 6 + scrollSpeed : const float
+ g:dPo e arl;le; r?ta.me(i. s. “ve: 0’: : s rmg' GLuint) + useWalkMode : bool
" a o rogram(€ :" |o.n eyt. ;or:) -CGT_ ! ;tnrogram : Ghuin + usePerspectiveProjection : bool
R I SIS 8 @SS EIET) 8 EHD + Camera(width : int, height : int)
+ updateFpsValue() & = @A)
* getW!ndowHélght() : Glfmt + windowSizeChanged(width : int, height : int)
+ getWindowWidth() : GLint +) Type)
t(t :
+ setWindowHeight(windowHeight : GLint) > n o
+ mouseMovement(x : int, y : int, leftMouseBtnPressed : bool
+ setWindowWidth(windowWidth : GLint) K>— (. y)
P, Ipha : float) + mousePressed(x : int, y : int)
= = - + mouseReleased()
+camera + updateCameraViewMatrix()
+ updateProjectionMatrix()
+ resetViews()
+fps
-clock
Fps +trackball
= = VirtualTrackball
TimeMeasuring + Fps()
+ counter : GLuint + ~ Fps() + VirtualTrackball(winWidth : int, winHeight : int)
+ TimeMeasuring() + Initialize() + ~ VirtualTrackball()
+ start() + Frame() + screenMapping(pt : gim::vec2) : glm::vec3
+ end() + GetFps() : float + startTracking(pt : gim::vec2)
+ getElapsedTime() : GLuint64 + start() + track(pt : gim::vec?) : glm::quat

Diagram 3: Camera class is attached to UserInput to receive commands and is accessible via
Context. VirtualTrackball is used in case of orbiting camera mode, walking mode is imple-
mented as part of the Camera class. Fps and TimeMeasurements are used for measurements.

UserInput captures all user input from mouse and the keyboard and adjusts Context and
Camera variables accordingly.

Camera while model matrix is stored in the Object, camera is holding view and pro-
jection matrices. Quaternions are used for rotations of the camera. Camera is capable
of both perspective and orthogonal projections, walk mode is also implemented here. It uses
VirtualTrackball for modifications of the view matrix if orbiting mode is enabled.

VirtualTrackball class is notified when user clicks and starts dragging. It than for
each frame computes the difference angle between the start point and the end point, both
projected to the ball surface. Please refer to [24] for description of virtual trackball method.

Fps class uses QElapsedTimer from QT to compute time difference between last and
current frame and turn it into the FPS value.

TimeMeasurements while Fps measures time using CPU clock, TimeMeasurements
class measures time w.r.t. GPU. It uses opengl queries GI,_TIME_ELAPSED, GL_QUERY_RE-
SULT_AVAILABLE, GL_QUERY_RESULT to measure processing on GPU more precisely.

MeasurementsControl captures important data in time given by the measured task.
Such logic is used from the AlgTemplateObject in the beginning of each frame, after the
geometry is rendered and when frame ends.

4.2. APPLICATION STRUCTURE 39

4.2.1 Graphical User Interface

Graphical interface is built on top of QT Framework using Qt Designer Form Class allowing
easy management of the elements using graphical designer provided by QT Creator IDE. Each
form is attached to its own class where signals and events are captured and can be eagily
passed to the application logic. GUI consists from classes shown in Diagram 4. How the
GUI of our implementation looks like can be seen in Appendix [E]

SettingsPanel

QWwidget |

+ SettingsPanel(c : Context*, parent : QWidget*)
+ ~ SettingsPanel()

+ redrawComponentNames()
+ redrawComponentOpacities()
-individualOpacityDialog
ITr parencyWidg
AboutDialog
+ IndividualTransparency(c : Context*, parent : QWidget*)
+ ~ IndividualTransparency() + AboutDialog(parent : QWidget*)
+ redrawComponentOpacities() + ~ AboutDialog()
-aboutDialog
AlgorithmWidget
+ AlgorithmWidget(format : const QGLFormat&, ¢ : Context*, parent : QWidget*)
+ ~ AlgorithmWidget()
+ initializeAlgorithm()
+ reloadModel(name : undef)
+ eventFilter(obj : QObject*, event : QEvent*) : bool
+ exportFBOTolmage()
-glWidget
-centralWidget
CentralWidget
-glWidget
+ CentralWidget(c : Context*, parent : QWidget*) Mainwind
+ ~ CentralWidget() ainfiincow
+ init(glWidget : AlgorithmWidget*) + MainWindow(app : QApplication*, c : Context*)
+ initFallback() H + ~ MainWindow()
Diagram 4: There is one MainWindow, which is partitioned into CentralWidget
and SettingsPanel. CentralWidget is a place for AlgorithmWidget which ren-
ders its content using OpenGL. Application uses two dialogs - AboutDialog and

IndividualTransparencyWidget.

MainWindow is a descendant of QMainWindow. It creates all the widgets as shown in
Diagram 4 as well the global menu. Global menu serves for change of the model, exporting
images and toggling the AboutWidget.

SettingsPanel is tabbed interface used for the control of all variables that affect how
currently selected stage works. It also consist of camera options, groups options and custom
opacity per component settings.

CentralWidget is only a wrapper class for the AlgorithmWidget.

AlgorithmWidget class is responsible for the initialization of OpenGL context as well as
for checking application requirements.

IndividualTransparencyWidget if enabled in the settings, this widget dynamically
generates sliders for each component in rendered model. Sliders represent opacity value.

AboutDialog shows informations about the application, author and purpose.

40 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.2.2 Additional Notes to Application Structure

In our implementation class T1lustrationBufferAlgorithm is responsible for the in-
vocation of shaders that not only create the Illustration Buffer but are also used for variety
of opacity modulations. While it would be more coherent to separate the buffer creation
and algorithms using the Illustration Buffer to separate classes, it is all in one class in our
implementation. Reason for that is optimization of the shader invocations. For example
some data computation needed by future opacity modulation is possible to do in the same
pass as the sorting of samples.

4.3 Creation of the Illustration Buffer

Implementation of Nlustration Buffer algorithm of its stages is described in this section
as well as used structures.

4.3.1 Used structures

To store the Hlustration Buffer in the memory of GPU buffers for linked lists head pointers,
next pointers, data for each fragment, indices of surrounding triangles as well as fragment
counter as described in Chapter 3. Creation of such structures occurs in prepareBuffers
method of T1lustrationBufferAlgorithm class.

GL_ATOMIC_COUNTER_BUFFER is used to implement the counter of all rendered frag-
ments to receive their unique id. It is clear that using only one counter for entire scene
might become the bottleneck of the pipeline. We have therefore experimented also with
partitioning the viewport into the grid as shown in image

fragCounter{0] fragCounter{1] fragCounter{2]

Y fragCounter([3] fragCounter{4] fragCounter[5]

fragCounter([6] fragCounter{7] fragCounter[8]

X

Figure 4.1: Viewport of dimensions X,Y divided into 9 regions each with its own atomic
counter fragCounterli],i € {0..8}

Even though we get some improvement in speed, this method is not memory efficient.
With such partitioning we have to reserve fixed amount of expected fragments count in
the fragment data buffer. Even if we have enough memory, cashing will not be as effective
because of big empty areas between each fragCounter address space in the fragment data
buffer.

11

4.3. CREATION OF THE ILLUSTRATION BUFFER 41

Since we need to not only read but also write to the buffers in the same shader in-
vocation, traditional GL _TEXTURE 2D cannot be used in case of most structures we
need. We therefore use OpenGL extension ARB_shader_image_load_store. This ex-
tension brings functions imageLoad(), imageStore() and also many atomic operations im-
ageAtomic*().

Buffer pizelHead which stores pointers to first node of each per pixel linked lists is defined
as GL_TEXTURE 2D with GL_R32I type of the same size as the viewport. To use is as
image w.r.t. ARB_shader_image_load_store we need to bind it as a ImageTexture:

In G-+ source code

glTexImage2D (GL_TEXTURE 2D,0 ,GL_R32I, width , height ,0 ,GL_RED INTEGER,GL_INT,0) ;

And in the shader:

5| uniform layout(binding = 0, r32i) coherent iimage2D u_pixelHead;

We use also buffer pizelCount which stores lengths of per pixel linked lists. It is therefore
also 2D and we use the same format as for the buffer pizel Head.

We use GL_ TEXTURE BUFFER for buffers fragData,fragData?2, fragNexzt and fragEle-
ments. These are one dimensional texture buffers created as follows (only fragData is shown):

buffersIds [fragData] = 0;

glGenBuffers (1, &buffersIds[fragData]);

glBindBuffer (GL_TEXTURE BUFFER, buffersIds|[fragDatal);

glBufferData (GL_TEXTURE BUFFER, fragCountMaxData, 0, GL DYNAMIC DRAW) ;
glBindBuffer (GL_TEXTURE BUFFER, 0);

texturelds[fragData] = 0;

glGenTextures (1, &texturelds[fragData]) ;

glBindTexture (GL_TEXTURE BUFFER, texturelds|[fragData]);
glTexBuffer (GL_TEXTURE BUFFER, GL_ RGBA32UI, buffersIds[fragData]) ;
glBindTexture (GL_TEXTURE BUFFER, 0);

Internal formats used by those buffers are: GL__RGBA32UI for fragData,fragData2 and
fragElements and GL_R32I for fragNext. Buffer fragElements consists of vertex indices
of the triangle it belongs to. We need this for neighbors search is described in Chapter 3.

Table shows what data we store when experimenting with the Illustration Buffer. We
use the spanning mechanism for fragData buffer to store 4*4 unsigned integers per fragment.
Four uvecd are therefore reserved in fragData buffer per fragment. We describe the data
stored further in this Chapter.

uint uint uint uint
fragIlD*spanSize RGBA Color Depth LayerIndex | DistToNext Layer
fragIlD*spanSize + 1 Left Right Bottom Top
fragIlD*spanSize + 2 o+ 2b, B+ 2bg v + 2b,
fraglD*spanSize + 3 | Normalized normal | Curvature

Table 4.1: Table shows data stored per fragment. First column shows the position in the frag-
Data buffer according to the spanning mechanism. SpanSize = 4 is used. One row of the table
is represented as vector of 4 unsigned integers (uvec4).

42 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.3.1.1 Formats Packing

Note cells RGBA Color and Normalized normal in table .1 where we store vector data
to unsigned integer. To save used memory space packing of 4 floats f, f €< 0,1 > to one
unsigned integer is used. For example color and alpha channel are stored to one unsigned
integer as:

packing formats in GLSL using bitwise shifts

uint color32UI = (uint(color.r * 255) << 24) | (uint(color.g % 255) << 16)
| (uint(color.b % 255) << 8) | uint(color.a * 255);

For one float value to uint we can use built—in GLSL functions

uint depth32UI = floatBitsToUint (abs(depth));

4.3.2 Buffer Filling

In our implementation creation of the Illustration Buffer is separated to two stages.

fillPassBefore method ensures that buffers pizelCount and pizelHead are reset to initial
state. This can be done using GL_PIXEL_UNPACK_BUFFER. Other buffers can be simply
rewritten by new data but for image to not interfere with previous results pizelCount and
pizelHead need to be reset. Atomic counter used for fragments indices needs to reset as well.
This can be done using following code snippet:

glBindBuffer (GL_ATOMIC COUNTER BUFFER, buffersIds|[fragCount]) ;

GLuint* p=(GLuintx*)glMapBufferRange (GL_ATOMIC COUNTER BUFFER,0 , sizeof (GLuint),
GL_MAP_WRITE_BIT |
GL_MAP_ INVALIDATE BUFFER,_BIT |
GL_MAP_UNSYNCHRONIZED BIT) ;

p[0] = ourInitialValue;
glUnmapBuffer (GL_ATOMIC COUNTER_BUFFER) ;
glBindBuffer (GL_ATOMIC COUNTER_BUFFER, 0);

Then all buffers are binded as uniforms to the current shader pass we call the fill-
Pass. Since OpenGL cannot know what purpose of our buffer is we need to specify how
the buffer will be accessed. That is done when binding the buffer using GL_READ_WRITE,
GL_READ_ONLY, GL_WRITE_ONLY flags and memory qualifiers coherent, volatile,
restrict, read- only, writeonly in the shader. It is responsibility of the deve-
loper to set these since write operations when using image load/store are not automatically
coherent[6].

drawVBO method is then called in the AlgTemplateObject that renders the geometry
using indexed geometry[24] and GL_ARRAY_ BUFFER buffers that store model data in the
memory of GPU and are uploaded only once before the algorithm start.

When geometry is rendered using the £il1Pass all fragments are discarded and stored
in the llustration Buffer:

11

4.3. CREATION OF THE ILLUSTRATION BUFFER 43

vecd color = computeShadingAndLighting (normal, eyeDirection);
color.a = u_alpha;

uint newFragld = atomicCounterIncrement(u_fragCount);

i|ivec2 coords = ivec2(gl_FragCoord.xy);

7| int prevFragld = imageAtomicExchange(u_ pixelHead, coords, int(newFragld));

imageAtomicExchange(u_fragNext, int(newFragld), int(prevFragld));

ol imageStore (u_fragData, int(newFragld+«u dataSpanSize), pack(color, depth));

Here all other data needed by current setup can be stored as well.

Triangle indices for the neighbor search, fragment normal for curvature
estimation , and others.

imageAtomicAdd (u_pixelCount, coords, 1); increase number of processed
fragments at these coordinates.

Now all the data are stored in presented buffers in GPU memory. Geometry therefore
does not have to be rendered again and again as in case of the peeling methods which will
turn out to be very important in measurements. For the [llustration Buffer to be complete we
still have to sort accumulated fragments and find their geodesic neighbors along the surface.

4.3.3 Sorting

In our application two sorting methods are implemented. One sorting the linked list without
using any auxiliary structures and second where array of fixed size is used for sorting.

Sorting the Linked List by Insertion sort can be done easily using two fragNext
buffers. One to be filled initially and second that will be used for adding sorted fragments
as shown in algorithm [I0] Since our insertion sort differs in two used structures for next
pointers we show used GLSL source code instead of pseudocode. We can see this procedure
as a analogy to two linked lists A,B. A is unsorted and B consists only from copy of head
in A. Then we remove node a from the front of A and insert them to B. To be able to remove
a.next from A and insert it to B, we would have to remember what was the original a.next
since inserting the a node to B may change its next pointer. In single linked lists this could
be solved also by copies of the nodes instead of their removal from A. We solve this issue as
mentioned by two buffers for the next pointers.

Sorting in Array of Fixed Size Number of accesses to the buffers is a bottleneck of the
previous method. We load all values and their next pointers to static arrays of fixed size (64
in our implementation). This array is then sorted and results are stored back to the buffers.

44

CHAPTER 4. DESIGN AND IMPLEMENTATION

Algorithm 10: creating the concurrent linked lists structure

© ® N O s W N

W W W W W W NN NNNDNNDNNNRER R B B 25 B 2 B 2
G W N HF O © ® N O 0 A ® N HFHF O ®© 0 9 0 Gt d W N FH O

Data: Buffers u_fragNext and u_ fragNext2, u_fragData and u_ pixelHead

Result: Sorted next pointers in the u_fragNext2 and fixed head pointer in u_ pixelHead.
int sortedSize — 1;

int head = imageLoad(u_ pixelHead, ivec2(gl FragCoord.xy)).x;

float headDepth = uintBitsToFloat(imageLoad(u_fragData, head*u_dataSpanSize).y);
int new = imageLoad(u_ fragNext, head);

float newDepth = uintBitsToFloat(imageLoad(u_fragData, new*u_dataSpanSize).y);
int newCounter = 1;

int curr,prev;

float currDepth;

while sortedSize < totalCount do

if newDepth < headDepth then

imageStore(u_fragNext2, new, ivec4(head,0,0,0));

head = new;

headDepth = newDepth;

new = imageLoad(u_fragNext, new);

newDepth = uintBitsToFloat(imageLoad(u_fragData, new*u_ dataSpanSize).y);
sortedSize-++;

continue;

end
prev = head;
curr = imageLoad(u_ fragNext2, head);
currDepth = uintBitsToFloat(imageLoad(u_fragData, curr*u_ dataSpanSize).y);
int innerCounter = 0;
while innerCounter <= sortedSize & currDepth < newDepth do
prev = curr;
curr = imageLoad(u_ fragNext2, curr);
currDepth = uintBitsToFloat(imageLoad(u_fragData, curr*u_dataSpanSize).y);
innerCounter+-+;
end
imageStore(u_fragNext2, prev, ivec4(new,0,0,0));
imageStore(u_ fragNext2, new, ivecd(curr,0,0,0));
new = imageLoad(u_fragNext, new);
newDepth = uintBitsToFloat(imageLoad(u_fragData, new*u_dataSpanSize).y);
sortedSize+-+;

end
imageStore(u_pixelHead, ivec2(gl FragCoord.xy), ivec4(head,0,0,0));

4.3.4 Neighbors Location

Proposed indices motivated method is implemented to find neighbors along the surface.
As described in every vertex is passed all 3 vertex indices of incident triangle. We
use GL_ARRAY_BUFFER to pass pre-processed indices to the vertex shader when geometry
is rendered.

Indices are passed to the fragment shader as flat uvec3 v_triangleIndices

so that its values are not interpolated between fragments and indices stay valid. This infor-
mation is then stored per fragment in the fragData buffer.

4.3. CREATION OF THE ILLUSTRATION BUFFER 45

FindNeighborsPass is the name of shader program that finds neighbors for all stored
fragments if exist. First fullscreen quad is rendered to access the buffers by the pixel co-
ordinates. Location of the neighbors is then trivial as described in algorithm [6] in [3.1.5.2]
Refered algorithm will return ids of all geodesic neighbors if exist. We store those values
into the fragData buffer as well.

4.3.5 Groups and Importance per Components

In our application two modes are available. In the default mode each component (part of
the geometry) are set with the same initial opacity. In mode called individual opacity each
component can have its own initial opacity value. In addition in both modes we can select
which components are to be rendered.

Opacity shared by all components is implemented simply using uniform GLSL variable.
Individual opacities u_ComponentOpacities[512] are passed to the shader as an uni-
form array where componentID is used to address it. We would use same mechanism for
u_ AllowedComponents[512], there is however a hardware limitation considering the number
of uniform values that can be passed in one shader invocation. We therefore merge two arrays
to one in following manner: there is no need to have binary array u_ AllowedComponents|512]
for components to be used. If a value of u_ComponentOpacities[componentID] is
equal to zero, its fragments are not stored to the linked lists at all. If other than zero, frag-
ments are stored and individual opacity is set. This not only saves number of used uniform
values and stores only necessary - visible fragments to per pixel linked lists.

4.3.6 Visualization of the Illustration Buffer

Several tools to visualize and debug the Illustration Buffer are implemented. First we use
the transfer function to visualize the depths of per pixel linked lists as a heatmap. This
is simply done by copying the pizelCount buffer to CPU and finding the maximum depth
to normalize all depths to range < 0,1 >. Normalized value is then used as a coordinate
to one dimensional texture that represents the transfer function. Results of such visualization
are shown in figure [4.2

Figure 4.2: Heatmap gradient shows the linked lists size color coded in following manner: for
gradient blue->green->yellow->red lowest sizes are blue and longest red.

46 CHAPTER 4. DESIGN AND IMPLEMENTATION

To visualize found neighbors and correct order of fragments along the ray peeling of the
[lustration Buffer is implemented. Two modes can be used in our application:

Peeling limit is a limiting number to the final pixel compositing equation. For example
if set to 3, only first three fragments in each linked list are used for the computation of final
color.

Layer by Layer is a mode where for number L only L-ith fragments are shown if exist.

4.4 Non Local Transparency

Non local transparency modulation methods presented by Carnecky et. al.[I2] are im-
plemented to demonstrate Illustration Buffer flexibility and ease of use. We have however
used transparency field « in different way than in[12] as described further.

4.4.1 Transparency Fields

Let 3,v be transparency fields accompanied by binary fields bg, by as introduced in Chapter
3. Carnecky et. al. also use fields «, b, for initial transparency. These were designed for
complex flow surfaces with discontinuous initial transparency « in [12]. They use described
physically motivated diffusion process to smooth the «,b, values since any discontinuity
in the transparency could be mistaken for a surface contour. We however do not have
discontinuous initial transparency considering only one surface, we only use different initial
values per surface which do not suffer from mentioned perception problem.

To test the difference between physical and non physical diffusion process we therefore
modify the « field presented in [12] to be set fully opaque on the surface contour. To set
fields «, 8, along with binary values b,, bg, b, several prerequisites have to be met:

1. fragmentIndex, fragmentLayerIndex € {1,...,n}, where n is number of fragments
in given linked list and fragmentLayerIndex is increasing with the distance from the
camera. We compute and store this simply during the sortPass as custom fragment
data.

2. boundaryN is a number of directions for which current fragment is a boundary. This
can be easily computed in the findNeighborsPass when all existing neighbors are known.
BoundaryN is set to zero and increased by one with every direction where neighbor
does not exist.

3. indexSmallerThanNeighbours is a binary field that is true if fragmentindez is
smaller than at least one fragmentindexr of its neighbors. This indicates fragment
adjacency to the contour. (Please refer to Chapter 3 and figure [3.13))

4. indexGreaterThanNeighbours is also binary field that is true if fragment lies un-
derneath some silhouette fragment and its fragmentIndex is therefore bigger than of
one of its neighbors. (Please refer to Chapter 3 and figure |3.13)

4.4. NON LOCAL TRANSPARENCY 47

With these values known we can finally set fields «, 8, with respect to rules defined
in Chapter 3:

B!

|}

2|}

if (boundaryN > 0){
beta, aplha = 1.0f;
b_alpha, b_beta = 1.0f;

if (layerIndexGreaterThanNeighbours) {
beta = 0.0f;
b_beta = 0;

if (layerIndexSmallerThanNeighbours) {
gamma = 1.0f;
b_gamma = 0;

Note that we have set the fields o, 5 = 1.0f at the surface boundary. While it may
seem as a duplicate information we use than different diffusion techniques for both fields and
compare the results as well as results of their combination. To save memory we store both
values « and by, as a + 2b, without loss of precision. All discussed fields are implemented in
the end of the findNeighborsPass and stored to fragData buffer to positions discussed in Used
structures section.

4.4.2 Diffusion Process

We now have fields «, 8, initialized. Physical and non physical approximations can be
computed. Since these approximations differ significantly when used alone, method of com-
bining the physical and altered nonphysical diffusion process is proposed. We can motivate
ourselves with figure[4.4] where we can see how inefficient is transport of values using discrete
Laplace operator and artifacts caused by nonphysical process proposed by [12].

To overcome the read/write collisions during this pass, ping pong computational scheme
is implemented in the fieldsDiffusionPass where the diffusion occurs. This is simply done
by switching buffers fragData in input and fragData2 in pass output in every iteration.

4.4.2.1 Physical Process

As described we use discrete Laplace operator for the Aa® estima-
tion. Discrete Laplace operator’s convolution kernel is commonly used
in image processing. Kernel shown in figure is in our implemen-
051 1|05 tation not applied to pixels as in image processing but to neighboring
fragments in the Ilustration Buffer.

1]-6|1 This is simply implemented as a sum of the neighboring frag-
05! 1 los ments with corresponding coefficient given by the convolution ker-
nel shown in figure Best results was achieved by normal-
ization of final value by %. Second order central finite differen-
ce proposed by Carnecky et. al. is also implemented but not
used due to high amount of visual errors. For its use please
uncomment line with #define CENTRAL_DIFFERENCE in the

smoothFieldsPassLaplacian. frag shader file.

Figure 4.3: Discrete
Laplacian convolution
kernel for 2D signals

48 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.4: All images were created by 15 iterations of diffusion process. Top left: is result of
convolution with discrete Laplace operator of a. Top right: is non physical approximation of S
diffusion as in [12], suffering from any contour discontinuity. Bottom left: is result of applying
discrete gaussian filter on 8. We can see artifact called ringing in place of former contour which is
typical for such kernels. Bottom right: is method used by us where result is combination of blurred
non physical 8 diffusion process and output of discrete Laplacian operator on a.

4.4.2.2 Nonphysical Process

Nonphysical diffusion process introduced before is very straightforward to implement. In it-
eration over all fragments of a linked list we simply compute the field for all existing
neighbors of current fragment f; as:

GLSL code using built—in functions intBitsToFloat and max

beta diffusion = beta(f_i) initially
float bn=uintBitsToFloat (fieldDatan.y);//beta of currently processed neighbor
beta diffusion = max(beta diffusion ,bn — lambda_beta);

In the end of the process beta diffusion value is in correct range due to maximizing
process. Identical process is used for computation of gamma_ diffusion for silhouette en-
hancement.

4.5. MODULATION BY DISTANCE ALONG THE RAY 49

4.4.2.3 Proposed «, § Diffusion

As we can see in figure we get great quality (no box-like artifacts) for a price of very
inefficient values transport in case of discrete Laplacian operator. Quite opposite is a result
of the nonphysical diffusion of § field, where we get values quickly distributed but quality is
very poor. We therefore use a combination of those techniques with minor modification.

First « field is processed by a discrete Laplacian operator and [is processed by the
nonphysical process. To overcome the visual errors we propose to use the Gaussian filter
to blur the result of 8 diffusion to lower amount discontinuities in such result. We implement
this using user-defined number of blurring passes using 2D Gaussian filter kernel.

2

G(z) = e 22 (4.1)

Since equation (4.1]), with standard deviation o controlling the filter width is both sep-
arable and radially symmetrical, its 2D version can be separated to two one-dimensional
filters to speed up the process[19]. Field g is first blurred in the horizontal direction and
result of such convolution is then blurred horizontally. In our implementation we use stan-
dard deviation o = 0.85 and size of the 1D filter size = 5 (current fragment + 2 neighbors
on both sides).

We can see in figure that such blurring produces another type of visual error called
Ringing artifact|24]. We therefore combine this blurred image with computed field o which
has in principle high values exactly in places of the ringing artifacts. This is of course no
coincidence since Laplacian operator is sensitive to high-frequency input which is a place
where the ringing artifacts occur. Final image is composed using algorithm [§| where « field
is used instead of the initial opacity «;.

4.4.2.4 Automatic Transparency Field Setup

To get visually pleasant results we would have to adjust value A\g manually with every
change of diffusion iterations. To overcome this we allow auto mode in our application
as the default mode. Value Ag in the auto mode are computed simply as:

Ag = 0.95/DIterations;

where 0.95 is a best value for our scenes found experimentally and DlIterations is a number
of diffuse iterations. For an auto mode we have found sufficient to set values A\, = 1 and
Ay = 0.45.
¥

4.5 Modulation by Distance Along the Ray

After sorting the fragments along the ray when creating the Illustration Buffer, single traverse
of the linked list will give us the distances between the fragments along the ray. We store
this information in the fragData buffer.

To turn the distance to a channel, distances need to be normalized. We do this by uniform
variable u_distanceNorm controlled by the user. Value « is then simply computed as:

w

50 CHAPTER 4. DESIGN AND IMPLEMENTATION

alpha = clamp(distance/(u_distanceNorm),0.0,1.0);

Please note that proper way to do this would be to find the maximum distance between
fragments across all linked lists and use it for the normalization. If user-defined parameter
Aq is then defined in range < 0,1 >, there is no need to clamp the final value:

alpha = (distance/u__distanceNorm) x \g;

Finding the maximum is however not implemented since it would require additional com-
putation time and we found the single user-defined variable u_ distance Norm to be sufficient
since we aim to keep the application as interactive as possible. For automatic normalization
we can find the maximum by doing the modified parallel prefiz scan with maximizing prefixes
instead of summing[19].

4.5.1 Combined with Modulation by Differences in Shape

Fragment curvature is found during the curvaturePass. We use curvature computed from
4 geodesic neighbors as well as 8 adding also neighbors on the diagonals. For all fragments
in the linked list curvature is computed as:

neighbors is an array with 8 neighbor IDs if exist, zero otherwise.
norm_n has to be unpacked from the unsigned int as discussed before
float curvature = 0f;
for (int n = 0; n < 8; n++){
if (neighbours|n] > 0){
uvecd s = imageLoad(u_fragData, int(neighbours|[n])+*u_dataSpanSize+3);
vec3 norm n = vec3(s.x >> 16, (s.x >> 8) & OxFF,(s.x) & O0xFF) /255.0;
vecd diff = norm n — normal;
curvature += length (diff);

4.6 Final Rendering Pass

All gathered informations are composed together in the final rendering pass renderOIT.
We again iterate over all fragments in each linked list and composite the final pixel color as
discussed in Chapter 3. To enable the user to understand the purpose of each transparency
field, following combinations are to be applied: («), (8), (o and B), (o and), (8 and ~)
and finally (o and 8 and «). Field is simply set zero if not used and no changes need to be
done to the compositing equation implemented as:

src.rgh += gamma * vec3(1.0f); white color of silhouette enhancement
alpha r = (alpha + (1.0f — alpha)xbeta);

finalFragmentColor.rgb += finalFragmentColor.a % alpha_ r % src.rgb;
finalFragmentColor.a *= (1.0f — alpha);

;| finalFragmentColor.a %= (1.0f — beta);

4.6. FINAL RENDERING PASS ol

Simple version of the compositing is used for the modulation by distance along the ray
and the curvature effect:

alpha = clamp (max(distance ,curvaturexu_curvatureEffector) ,0.0,1.0);
finalFragmentColor.rgb += finalFragmentColor.a * (alpha % src.rgb);
3| finalFragmentColor.a = (1.0f — alpha);

52

CHAPTER 4. DESIGN AND IMPLEMENTATION

Chapter 5

Results and Discussion

In this Chapter results and measurements of our implementation of the Illustration Buffer
are presented along with measurements of compared algorithms. For measurements of the
Per Pizel Linked Lists and the [lllustration Buffer we use our own implementation while
Depth peeling and Dual depth peeling methods are measured using the NVIDIA Graphics
SDK 10|8] where only more precise measuring was implemented.

While our implementation is cross-platform application and developed on Linux, NVIDIA
Graphics SDK 10 is compilable only under the Visual C++ Compiler and therefore all
measurements are conducted on a Windows machine with following configuration:

e CPU: Intel Core™2 Duo CPU E6850 @ 3.00GHz, 64KiB L1 cache, 4MiB L2 cache

e Memory: 4 x 2GiB DIMM DDR Synchronous 59392 MHz

GPU: GeForce GTX 660, 2048 MB GDDR5 @ 6.0 Gbps, OpenGL 4.3

e OS: Windows 8 64-bit

Compiler: GCC 4.9.1

OpenGL: version: 4.4.0 NVIDIA 331.113

e GLSL: version: 4.40 NVIDIA via Cg compiler

Very precise GPU timers are used to measure application rendering time in nanoseconds.
Queries GI_TIME_ELAPSED, GL_QUERY_RESULT_AVAILABLE and GL_QUERY_RESULT
are used. For measurements of the total rendering time we use Fps class using QElap-—
sedTimer.

Twelve varied models are used to measure the Illustration Buffer characteristics. Each
model is tested in two positions - one general and one with maximum possible linked lists
length. All tested views along with the heatmaps visualizing linked lists depths are shown
in figure Please note that in all measurements image resolution 600 x 600 is used if not
stated otherwise.

53

54 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.1: Measured projections of models along with the heatmaps indicating pixels with
highest length of linked list as red. Models are sorted alphabetically by name.

5.1. THE ILLUSTRATION BUFFER CREATION 5%)

5.1 The Tllustration Buffer Creation

During the Illustration Buffer creation we examine relations between number of vertices,
rendered fragments (not pixels!), lengths of the linked lists storing the data along the ray and
of course rendering time on the GPU and rendering time combined with the CPU workload.
Please note that choosing the sorting method also causes big performance impact. For
simplicity we show this on concurent per pizel linked lists alone in the next section. To be
able to examine the relations fully creation process is split to several stages by functionality.

e Fill stage renders the geometry and fills the buffers in GPU memory necessary for
future Hlustration Buffer creation. No pixels are rendered to the framebuffer.

e Sort stage sorts the fragments along the view ray. No pixels are rendered to the
framebuffer.

e FindNeighbors stage is responsible for finding existing geodesic neighbors along the
surface for each stored fragment, if exists. It also sets initial transparency fields. No
pixels are rendered to the framebuffer.

e Total stage combines all before and composes final pixel colors.

== Fill time [Mms] === Sort time [ms] FindNeighbors time [ms] == Total time [ms]

— AN

N % 2 2 Vv .z Vv 2 2 2 2 g v Vv Vv Vv 2 Vv Vv h Vv Vv Vv
N r
LS ST ST N FFEFL TS NS FS S S
& 5§ &P X 5C @ (& & S R $ & X N IS S X N IS >
B GRS &« ¥ & S & & & & B & P
¥ AR N A s° o
& &
& L2

Figure 5.2: GPU Time in plit stages of the Illustration Buffer creation process. Models on the
horizontal axis is sorted by the Total rendering time.

Results of the split stages measurements are shown in table[5.1] Table then shows the
Total rendering time in greater detail. These informations are necessary to decode what is
happening in figure |5.2

When Fill and Sort stages are compared we see two spikes for Dragons 1,2 which
are scenes with the greatest number of vertices. These show perfectly how application stays
vertex bounded during the sort for big geometry instances with small linked lists lengths.
Spike for the Dragons 2 shows how workload of the sort stage is a lot bigger than for
Dragons 1, where maximum linked list length was smaller.

56 CHAPTER 5. RESULTS AND DISCUSSION

Fill Sort FindNeighbors Total
MODEL NAME TIME [ms] | FPS |[TIME [ms] [FPS || TIME [ms] | FPS || TIME [ms] | FPS
Anatomy 1 1,442 485 2,313 395 7,192 134 7,563 126
Anatomy 2 1,458 527 2,847 324 12,035 81 12,572 80
BikeWheelFork 1 1,790 | 510 3,459 | 274 11,095 | 83 12,390 | 82
BikeWheelFork 2 1,047 | 468 7612 | 113 39,816 | 26 40,351 26
Drill 1 2,775 | 335 5272 | 180 20,430 | 50 21,551 a7
Drill 2 3475 | 271 8,808 | 109 38,060 | 28 39,334 | 28
Engine 1 3,519 266 7,911 121 28,751 37 30,020 35
Engine 2 3,073 304 9,400 103 41,438 26 42,659 26
GearBox 1 5,851 165 15,437 65 71,184 17 73,291 17
GearBox 2 6,765 143 21,213 48 105,697 13 108,145 12
GPU 1 1,634 498 3,000 311 11,944 82 12,710 77
GPU 2 3,365 278 20,969 49 129,777 11 131,769 11
Head 1 3,666 258 6,987 138 26,569 39 27,981 38
Head 2 5118 | 186 11,047 | 88 18,076 | 23 50,113 | 22
Hearth 1 3,047 | 300 5517 | 173 20,675 | 50 21,785 | 47
Hearth 2 1,143 | 228 7652 | 127 30,256 | 36 31,838 | 34
Suspension 1 5485 | 178 11,203 | 87 15,992 | 24 47,641 24
Suspension 2 7807 | 124 19,305 | 53 83,112 5 86,381 5
Teapot 1 1,265 648 2,088 437 6,225 155 6,699 147
Teapot 2 2,626 350 4,896 194 15,028 67 16,112 62
Dragon 1 5,250 184 6,130 158 11,493 86 12,101 83
Dragon 2 5,210 185 6,399 152 13,926 71 14,616 68
Dragons 1 14,167 71 15,836 65 24,961 42 25,894 41
Dragons 2 15,015 | 65 20,456 | 51 16,741 25 19,083 | 24

Table 5.1: Hlustration Buffer creation split to stages Fill, Sort, FindNeighbors, Compose.

Biggest workload occurs during the FindNeighbors stage where we no longer see the
spikes propagating to the stage time. This implies that application is not vertex bounded in
most cases. Other properties has to be therefore examined. Table shows measurements
of the Illustration Buffer creation. Table is visualized in figure [5.5] Even though this figure
is hard to read it implies some very interesting observations. For better visualization please
refer to figure 5.4 where parallel coordinates are used. Since figure does not provide the
information about the current model, we provide both graphs for completeness.

First we can see that rendering time is highly affected by maximum length of all linked
lists storing the information along the ray since shape of the lines is almost identical. When
carefully examining views GPU 2 and Suspension 2 we see that even though GPU 2 has
lower number of fragments and vertices, smaller length of the longest linked list, the rendering
time is higher than of Suspension 2. Reason for this behavior is captured in figure [5.3

Figure 5.3: Heatmaps of the linked lists lengths of GPU 2 and Suspension 2.

5.1. THE ILLUSTRATION BUFFER CREATION o7

Is is clear that even though the longest linked list of Suspension 2 is longer than
in case of GPU 2, coverage of the longest linked lists is much lower. We can see this fact also
in by examining the dashed line. This line shows percentage coverage of the linked list
lengths that are bigger than % of the longest linked list, please mind the secondary vertical
axis. We denote this coverage as U. This also perfectly demonstrates the complexity of GPU
parallelization process and optimizations being done by the hardware. Figure[5.4]shows how
important is the W property for the final rendering time, which is not so apparent from
figure 5.5 Lines are in most cases ordered and without crossings in the last segment of the
graph thus ¥ characteristics is the most important parameter affecting the final speed along
with the maximum list lengths.

1400000.00 2000000.00 70.00 14.00 140.00

1121400.00+ 11.20+ 4112.00

842800.00

8.40+ 484.00

564200.00

156.00

285600.00 28.00

=
7000.00 250000.00 0.00 0.00
VERTICES FRAGMENTS LIST MAX PSI GPU TIME [ms]
LENGTH

Figure 5.4: Parallel coordinates visualizing the same information as the figure Time space
is split to thirds. Results of the first third are green, second third blue and last third results are red.

max linked list size === === Number of pixels with (max linked list size) > max — 1/3max in percents frag count

vertex count s ||lustration Buffer Creation Time (micro seconds)
14%

12%

10%

8%

6%

4%

2%

K2 Vv 2
S ; N 9 F LSS S S S
K A Q & Q}@ X o Oéb& 0‘50& I E Q@% Q\Q’,o & Q@g} «Q;&? @ro‘? Q@Q O&Q o@qo

Figure 5.5: Visualized table Secondary Y axis is used for the dashed line representing ¥,
primary Y axis (on the right) is then used for all other variables using logarithmic scale.

58 CHAPTER 5. RESULTS AND DISCUSSION

[MODEL [[VERTICES | FRAGMENTS | MAX [LIST| | ¥ [%] || TIME [ms] || FPS |
Anatomy 1 37963 284196 13 0,01% 7,562848 126
Anatomy 2 37963 360567 23 4,98% 12,571584 80
BikeWheelFork 1 34786 268946 14 2,16% 12,390464 82
BikeWheelFork 2 34786 396110 54 2,61% 40,350754 26
Drill 1 119328 682863 30 0,06% 21,550688 47
Drill 2 119328 938931 33 5,29% 39,334015 28
Engine 1 73125 991435 26 1,34% 30,020128 35
Engine 2 73125 822796 44 0,93% 42,659233 26
GPU 1 10796 494564 16 1,58% 12,710432 7
GPU 2 10796 1067557 58 13,14% 131,768768 11
GearBox 1 334954 1240161 42 1,01% 73,290848 17
GearBox 2 334954 1559269 58 0,76% 108,144798 12
Head 1 97141 991103 22 1,58% 27,980576 38
Head 2 97141 1645353 38 0,42% 50,11261 22
Hearth 1 92026 756464 20 1,30% 21,785376 47
Hearth 2 92026 1187402 30 1,01% 31,837536 34
Suspension 1 372827 895210 30 0,58% 47,640865 24
Suspension 2 372827 1900548 64 0,10% 86,380898 15
Teapot 1 7231 363598 8 0,04% 6,69888 147
Teapot 2 7231 868698 16 1,21% 16,111521 62
Dragon 1 437645 317648 10 0,10% 12,100896 83
Dragon 2 437645 331854 16 0,28% 14,615904 68
Dragons 1 1312935 471328 14 0,12% 25,893728 41
Dragons 2 1312935 1368308 18 0,50% 49,082592 24

Table 5.2: Hlustration Buffer creation - Table show used models, number vertices, fragments
and max size of the linked lists in given view, resulting in time measured on GPU, and FPS
where CPU overhead is considered as well. Column W shows percentage coverage of the
worst third of the linked lists lengths. In other words it shows coverage of the yellow and red
pixels in the heatmaps in percents (Pixels with no linked lists stored are not considered).

Another method measurements can be found in Appendix [B] where change of resolution
is examined with other parameters fixed. Measurements, where one variable is changed with
others fixed however can’t be simply done with the coverage ¥ and linked list lengths. This
would require special models designed for this very purpose thus such measurements were
not conducted. Please note that by changing the resolution maximal length of linked lists
does not need to stay fixed due to the rasterization process. It will however stay almost
stable in most cases.

We can observe in figure that difference between GPU times between consequent
resolutions depends on the same aspects of the scene as discussed in this section. That is
percentage coverage ¥, maximal length of all linked lists and finally number of fragments.

5.1.1 Sorting Methods Comparison

Here measurements of the two implemented sorting methods are presented. Since per pizel
linked lists are part of the Illustration Buffer solution we present results on the per pizel
linked lists only for simplicity.

It is very clear from graph in figure and table that dynamic version of the sort
is winning in all cases over sorting in static array. This measurements might be however
more interesting and producing different results even when GPU with bigger memory was
used. We have used 3 arrays of size 64. One for IDs, second for the depths and third for the
distances between layers. In case of our GPU it was more expensive to allocate such arrays
than much bigger amount of texture reads and writes, which could differ on hardware where
invocation of the fragment shader for one pixel would have more memory available.

5.1. THE ILLUSTRATION BUFFER CREATION 29

Time [ms] = dynamic == in array

40,00
35,00
30,00
25,00
20,00
15,00
10,00

5,00

max linked list length
0,00

8 10 13 14 14 16 16 16 18 20 22 23 26 30 30 30 33 38 42 44 54 58 58 64

Figure 5.6: Speed comparison of the dynamic sort and sorting in static array. Bigger spikes are
caused by the ¥ parameter as discussed before.

Common characteristics Dynamic In array
MODEL VERTICES | FRAGS | MAX U [%] TIME [ms] | FPS TIME [ms] | FPS
|LIST|
Teapot 1 7231 363598 | 8 0,04% 1,79 466 3,31 287
Dragon 1 437645 317648 | 10 0,10% 5,07 187 6,45 149
Anatomy 1 37963 284196 | 13 0,01% 2,10 418 3,51 262
BikeWheelFork 1 34786 268946 14 2,16% 3,29 285 5,12 187
Dragons 1 1312935 471328 14 0,12% 12,85 79 14,49 69
GPU 1 10796 494564 16 1,58% 2,68 343 5,01 189
Teapot 2 7231 | 868698 | 16 1,21% 3,00 | 241 6,42 | 150
Dragon 2 437645 331854 16 0,28% 5,41 176 6,83 141
Dragons 2 1312935 | 1368308 | 18 0,50% 17,11 60 20,70 50
Hearth 1 92026 756464 | 20 1,30% 4,99 189 7,99 121
Head 1 97141 991103 | 22 1,58% 6,14 156 9,85 101
Anatomy 2 37963 360567 | 23 4,98% 2,72 336 4,86 196
Engine 1 73125 991435 | 26 1,34% 7,05 135 9,82 101
Drill 1 119328 682863 | 30 0,06% 4,75 197 7,47 129
Hearth 2 92026 1187402 | 30 1,01% 6,62 145 12,16 81
Suspension 1 372827 | 895210 | 30 0,58% 10,37 | 94 13,18 77
Drill 2 119328 938931 33 5,29% 8,05 119 10,24 96
Head 2 97141 1645353 | 38 0,42% 9,91 98 15,96 64
GearBox 1 334954 1240161 | 42 1,01% 14,46 67 18,96 54
Engine 2 73125 822796 | 44 0,93% 8,73 111 11,02 90
BikeWheelFork 2 34786 396110 | 54 2,61% 7,60 115 9,40 99
GPU 2 10796 | 1067557 | 58 13,14% 20,68 50 36,82 30
GearBox 2 334954 | 1559269 | 58 0,76% 20,07 50 24,80 43
Suspension 2 372827 | 1900548 | 64 0,10% 17,66 57 22,74 44

Table 5.3: Comparison of the dynamic sort method with sort in the array. Table is sorted
by the MAX |LIST| for convenience.

5.1.2 Comparison with Other Methods

We now know how the Illustration Buffer behaves. This section provides speed comparison
with the remaining methods compared in this thesis: depth peeling, dual depth peeling and
concurrent per pizel linked lists.

60 CHAPTER 5. RESULTS AND DISCUSSION

1400000.00 2000000.00 70.00 14.00 140.00 1400000.00 2000000.00 70.00 14.00 140.00
]]
1121400.00 50000.0 X 11.20; 112.00 1121400.00 50000.0 X 11.20; 112.00
842800.00 \1800000.00; 8.407 84.00 842800.00 \/800000.00: 8.404 84.00
564200.00 0, 01 56.00 564200.00 0, : 04 56.00
285600.00 . 81 28.00 285600.00 . 81 28.00
7000.00 250000.00 0.00 0.00 0.00 7000.00 250000.00 0.00 0.00 .
VERTICES FRAGMENTS LISTS MAX PSl GPU TIME [ms] VERTICES FRAGMENTS LISTS MAX PsSl GPU TIME [ms]
LENGTH LENGTH
Figure 5.7: Depth peeling Figure 5.8: Dual depth peeling
1400000.00 2000000.00 70.00 14.00 140.00 1400000.00 2000000.00 70.00 14.00 140.00
\
1121400.00 50000.00; X 11.2 112.00 1121400.00 50000.004 11.2 112.00
842800.00 \1200000.00¢ 8.404 84.00 842800.00 1400000.00¢ 8.40+ 84.00
564200.00 0, a 04 56.00 564200.00 0, 5. 56.00
285600.00 . .8 28.00 285600.00 L 28.00
7000.00 250000.00 0.00 0.00 40.00 7000.00 250000.00 0.00 0.00 0.00
VERTICES FRAGMENTS LISTS MAX PSI GPU TIME [ms] VERTICES FRAGMENTS LIST MAX PSI GPU TIME [ms]
LENGTH LENGTH
Figure 5.9: Concurrent per pixel linked lists Figure 5.10: Tllustration Buffer

We have used implementation of the peeling methods from the NVIDIA Graphics SDK 10,
only our own GPU time measuring system was added to their implementation. Concurrent
per pixel linked lists we on the other hand measured in our own implementation since it is
a sub-problem of the Illustration Buffer construction.

Figures[5.7] 5.8 5.9 and [5.10] show such comparison using parallel coordinates. Measured
data can be also found in table We can see that linked lists absolutely win in speed.
Another observation is that only Illustration Buffer is really affected by ¥, which is caused
by its FindNeighbors stage. We can also see that overhead on the fragment shader is not
big for first three methods and they are vertex bounded in most cases. This is logical for
the peeling methods since we need to render the geometry in each peeling pass. It might
be however surprising for the per pizel linked lists, where even though the sorting procedure
must occur on all fragments overhead is small thus application stays vertex bounded. This
is however completely different in case of the Illustration Buffer where processing of the
FindNeighbors stage is vital for the final rendering time.

Another really interesting finding is that dual depth peeling is in fact much slower than
original depth peeling algorithm. It is not an error in measurements, dual depth peeling

5.2. RESULTS OF THE OPACITY MODULATION 61

as stated by the authors[9] 'may speed up performance by 2x for geometry bound applica-
tions’. Which is true, only for models Dragon, Dragons dual depth peeling actually speeds
up the rendering process and slows down otherwise.

Depth peeling Dual depth peeling Linked lists Illustration Buffer
MODEL TIME [ms] | FPS || TIME [ms] | FPS || TIME [ms] | FPS TIME [ms] | FPS
Anatomy 1 3,71456 269 3,780544 265 2,10 418 7,562848 126
Anatomy 2 6,845984 146 6,763392 148 2,72 336 12,571584 80
BikeWheelFork 1 5,002528 200 6,605408 151 3,29 285 12,390464 82
BikeWheelFork 2 18,693695 54 18,202721 55 7,60 115 40,350754 26
Drill 1 11,776256 85 13,186496 76 4,75 197 21,550688 47
Drill 2 17,932705 56 19,386368 52 8,05 119 39,334015 28
Engine 1 12,098816 83 15,221184 66 7,05 135 30,020128 35
Engine 2 19,601856 51 21,992928 46 8,73 111 42,659233 26
GPU 1 4,749152 211 6,540608 153 2,68 343 12,710432 77
GPU 2 17,111233 58 27,447712 36 20,68 50 131,768768 11
GearBox 1 49,930943 20 40,493729 25 14,46 67 73,290848 17
GearBox 2 68,777283 15 49,199966 20 20,07 50 108,144798 12
Head 1 11,10448 90 13,515168 74 6,14 156 27,980576 38
Head 2 24,807137 40 34,500385 29 9,91 98 50,11261 22
Hearth 1 10,079136 99 11,115456 90 4,99 189 21,785376 47
Hearth 2 15,244064 66 19,986464 50 6,62 145 31,837536 34
Suspension 1 35,680351 28 || 21,393408 a7 10,37 94 || 47,640865 24
Suspension 2 63,731583 16 57,904831 17 17,66 57 86,380898 15
Teapot 1 2,470528 | 405 2,968192 337 1,79 466 6,69888 147
Teapot 2 4,463328 224 7,612128 131 3,90 241 16,111521 62
Dragon 1 23,64992 42 16,269793 62 5,07 187 12,100896 83
Dragon 2 23,782944 42 18,152449 55 5,41 176 14,615904 68
Dragons 1 56,015232 18 34,098175 29 12,85 79 25,893728 41
Dragons 2 66,103233 15 40,214657 25 17,11 60 49,082592 24

Table 5.4: Comparison of the depth peeling, dual depth peeling and concurrent per pizel
linked lists. Please note that data vertices, fragments, list max size and V¥ are
shared by all methods and can be found for example in table

5.1.3 Memory consumption

Unfortunately, memory consumption is the biggest weakness of the lllustration Buffer. While
in Depth Peeling and Dual Depth Peeling structures are of fixed size without any rela-
tion to the number of rendered fragments (except for the absolute size of the viewport,
of course), structures fragData and fragNext of the Illustration Buffer are growing linearly
based on the number of fragments. Demand on the memory is of course growing when we
expand the amount of data stored per one fragment.

5.2 Results of the Opacity Modulation

In this section performance of methods used to modulate the opacity is presented as well
as the results of such renders.

62 CHAPTER 5. RESULTS AND DISCUSSION

5.2.1 Speed Comparison

GPU time is captured in table and visualized in figure [5.11] We show the GPU time of
one pass only! It usually takes several passes to get pleasant results as discussed further.
Please note that we omit other dependencies in figure[5.11]for simplicity, please refer to figure
where parallel coordinates are used to visualize such relations.

Diffusion and blurring stages are examined first. We see that curves of both are very
much alike in shape but diffusion process is much more expensive. While both processes are
similar, the implementation differs greatly. While blurring Gaussian filter is separable to
horizontal and vertical pass, Laplacian filter used in diffusion process cannot be separated
thus it needs to access more texture data in one iteration. It is also clear that performance
cost of the blurring process is relatively small thus we can use it to enhance the diffusion
process.

While it may seem that process of finding the surface curvature along with the distance
between samples is more expensive than previously discussed stages, it is not. We need
several passes of both diffusion and blurring processes while the distance-curvature pass will
be performed only once to get data we need for final composition. 8 neighbors were used to
find the surface curvature in this measurement.

== Distance-curvature pass time Blurr one pass time === Diffuse one pass time
160
140
120
100
80
Z 60
[}
£ 40
20
0
v L TN T T SR TN S T SN, N, S A R S TN Qv 9
@A (@ XD N @ @ Q\) Qo S & L P N QST & AN o@ o“%
o'&o o'&o e?}((eQ MR ‘o@ ¢ ° e"& e"& A Qg’é\ Q‘Q’é\ & & &@& <& (5‘"39 o‘\'ﬁ & &
v v & & [€)) K K Q
N & &
NN
& Q@

Figure 5.11: Speed comparison of the single pass of the diffusion process, blurring by Gaussian
separable filter and of distance-curvature search, where distances between layers are found as well
as the surface curvature.

However as we show in visual comparison, curvature computed from 4 geodesic neighbors
is usually sufficient, which will yield lower processing time.

Only measurements of one pass are provided. This is simply because we would get linear
progression of the time for many iterations of presented methods. Such progression is not
really interesting nor surprising since dataset topology (neighbors) does not change during
the process.

5.2. RESULTS OF THE OPACITY MODULATION

63

Common characteristics DIFFUSION BLURR DIST-CURV

MODEL VERTICES FRAGS | MAX U [%] TIME [ms] TIME [ms] TIME [ms]
|LIST|

Anatomy 1 37963 284196 | 13 0,01% 9,630 2,771 10,244
Anatomy 2 37963 360567 | 23 4,98% 12,809 3,933 16,257
BikeWheelFork 1 34786 268946 | 14 2,16% 13,325 3,581 15,895
BikeWheelFork 2 34786 396110 | 54 2,61% 17,775 5,484 45,671
Drill 1 119328 682863 | 30 0,06% 23,919 7,745 28,554
Drill 2 119328 938931 | 33 5,29% 33,609 10,109 48,878
Engine 1 73125 991435 | 26 1,34% 35,054 11,194 39,724
Engine 2 73125 822796 | 44 0,93% 28,032 7,693 50,682
GPU 1 10796 494564 | 16 1,58% 20,245 5,981 18,279
GPU 2 10796 | 1067557 | 58 13,14% 61,811 16,001 147,159
GearBox 1 334954 | 1240161 | 42 1,01% 46,219 15,173 86,068
GearBox 2 334954 | 1559269 | 58 0,76% 63,914 19,020 125,594
Head 1 97141 991103 | 22 1,58% 37,152 11,019 38,196
Head 2 97141 | 1645353 | 38 0,42% 61,848 18,971 66,959
Hearth 1 92026 756464 | 20 1,30% 25,532 8,062 28,990
Hearth 2 92026 | 1187402 | 30 1,01% 40,554 12,199 43,196
Suspension 1 372827 895210 | 30 0,58% 30,447 9,739 56,365
Suspension 2 372827 | 1900548 | 64 0,10% 70,155 20,998 105,973
Teapot 1 7231 363640 | 8 0,04% 12,777 3,618 10,228
Teapot 2 7231 868698 | 16 1,21% 30,894 8,861 24,599
Dragon 1 437645 317648 | 10 0,10% 9,624 3,669 15,210
Dragon 2 437645 331854 | 16 0,28% 9,303 3,240 17,553
Dragons 1 1312935 471328 | 14 0,12% 13,778 5,192 30,169
Dragons 2 1312935 | 1368308 | 18 0,50% 50,068 17,090 63,829

Table 5.5: Speed comparison of the single pass of the diffusion process, blurring by Gaussian
separable filter and of distance-curvature search, where distances between layers are found
as well as the surface curvature.

5.2.2 Visual Comparison

Selection of output images rendered by our application is presented in this section. We
also present FPS in time of rendering and the values of variables used. Since this thesis
does not address the human perception in greater detail and focus on the technical aspects,
we leave the conclusion of this images to the reader. We provide this list to remind the
parameters used in this thesis and algorithms to better understand following images:

e Curv is a short for curvature.

e Dist is a short for method based on distance between samples along the ray.

e . is a user parameter defined to affect the curvature effect on the final image.

e «, 3,7 are transparency fields defined in Chapter 3.

®)., \g, Ay are parameters to affect transparency fields «, 3,v. If Caption of an image
does not state such value, automatic mode was applied as described in Chapter 4.

e di is a number of iterations used during the diffusion process.

e bi is a number of iterations of the Gaussian filter.

focusRegion is a distance between samples along the ray of higher importance.

64

OIT Only, a = 0.5, 269 FPS

OIT Only, a = 0.5, 34 FPS

CHAPTER 5. RESULTS AND DISCUSSION

Curv-Dist, focusRegion = 0.7,0. = 1.8, 9 FPS

5.2. RESULTS OF THE OPACITY MODULATION 65

Curv Only, 6. = 0.6, 46 FPS Dist Only, focusRegion = 0.1, 46 FPS

Dist-Curv, focusRegion = 1.1, §. = 0.9, 46 FPS Curv Only, 6. = 0.6, 46 FPS

OIT Only, a = 0.13, 11 FPS used «, 8,7, di =10, bi = 2,0 = 0.13, 9 FPS

66 CHAPTER 5. RESULTS AND DISCUSSION

OIT Only, a = 0.34, 69 FPS Curv Only, 6. = 1.8, 23 FPS

Dist Only, focusRegion = 0.9, 23 FPS Dist-Curv, focusRegion = 0.9, . = 1.8, 23 FPS

Curv Only, 6. = 1.2, 21 FPS used «, 8,7, di =10, bi = 5,a = 0.13, 18 FPS

5.2. RESULTS OF THE OPACITY MODULATION 67

OIT Only, o = 0.4, 79 FPS used «, 8,7, di =5, bi =5, a = 0.16, 9 FPS

Curv Only, 6. = 1.8, 24 FPS Dist-Curv, focusRegion = 0.5, §. = 1.8, 24 FPS

68

CHAPTER 5. RESULTS AND DISCUSSION

Chapter 6

Conclusion

This thesis addressed the approaches of the internal structure visualization for complex 3D
objects. Theoretical background for the problematics of rendering semi transparent objects
and techniques of the opacity modulation based on several object features was presented.
Comparison of the OIT solving algorithms was provided and the Illustration Buffer was
found the most flexible algorithm considering discussed opacity modulation techniques thus
was examined in further detail.

We implemented the Illustration Buffer algorithm using OpenGL and GLSL technology.
All discussed opacity modulation technique were implemented on top of the Nlustration
buffer. We have found the construction of the buffer to be the hard part of the implementa-
tion, application of the opacity modulation methods was rather easy.

We have tested our implementation on 24 scenes consisting of 12 geometrical models
varying between 7K to 1.3M vertices, 26K to 1.9M fragments and 8 to 64 maximal lengths
of the per pixel linked lists using 600x600 image resolution. Impact of increasing the number
of fragments was measured by changing the resolution.

Our results show that the Concurrent per Pizel Linked Lists are the best choice over
other methods considering speed. Peeling methods are on the other hand more memory
efficient and their memory consumption does not grow with the number of fragments like
in case of the [llustration Buffer and Concurrent per Pizel Linked Lists. The Illustration
Buffer was found to be the slowest but most usable algorithm. Now it should be easy for the
reader to choose the algorithm according to his/her demands.

Construction times of the [llustration Buffer vary between 6ms to 131ms in our measure-
ments. We have found the number of fragments and most importantly the maximum length
of the per pixel linked lists and coverage of the longest lists to be the most performance
affecting variables.

We have introduced geometry motivated method for searching the geodesic neighbors
along the surface which speeds up the search process but produces artifacts for models with
great detail (so that several triangles are render to one pixel.). This can be however solved
by model preprocessing in exchange for greater performance and interactivity.

69

70 CHAPTER 6. CONCLUSION

6.1 Future Work

We have seen that search for the neighbors is a bottleneck of the Illustration Buffer creation
process. Methods of this process optimization and enhancement should be researched to
provide better interactivity even on very complex models. As we could see in section Visual
Comparison where final renders of our application were shown, our implementation is not
Z-Fighting aware and therefore produces errors where the geometry is poorly defined or is
defined in scale that is too small.

Mainly technical aspects of the opacity modulation were addressed in this thesis and
testing on human participants should be done to better understand the human perception
of complex internal structures by using varying opacity modulation techniques.

Bibliography

1]

2]

3]

7]

8]

[10]

[11]

[12]

GLEW - The OpenGL Extension Wrangler Library. <http://glew.sourceforge.
net /I>. Accessed: 2014-12-24.

GLM - OpenGL Mathematics. <http://glm.g-truc.net/0.9.6/index.
html>. Accessed: 2014-12-24.

GLSL - OpenGL Shading Language. <https://www.opengl.org/
documentation/glsl/>. Accessed: 2014-12-24.

OpenGL - The Industry’s Foundation for High Performance Graphics. <https://
www.opengl.orqg/>. Accessed: 2014-12-24.

QT Framework - Qt Project. <<http://gqt-project.org/>. Accessed: 2014-12-24.

OpenGL - Image Load Store. <https://www.opengl.org/wiki/Image_Load_
Storer>. Accessed: 2014-12-24.

Rapid JSON - A fast JSON parser/generator for C++ with both SAX/DOM style API.
<lhttps://github.com/miloyip/rapidijson>. Accessed: 2014-12-31.

NVIDIA Graphics SDK 10. <https://developer.nvidia.com/opengl>. Ac-
cessed: 2014-12-24.

BAVOIL, L. - MYERS, K. Order independent transparency with dual depth peeling.
Technical report, NVIDIA Corporation, 02 2008.

BAVOIL, L. et al. Multi-fragment effects on the GPU using the k-buffer. In Proceedings
of the 2007 symposium on Interactive 3D graphics and games, s. 97-104. ACM, 2007.

BRUCKNER, S. et al. Hlustrative context-preserving volume rendering. In FuroVis, s.
69-76, 2005.

CARNECKY, R. et al. Smart transparency for illustrative visualization of complex flow
surfaces. IEEE Trans. Vis. Comput. Graph. 2013, 19, 5, s. 838-851.

CARPENTER, L. The A -buffer, an Antialiased Hidden Surface Method. SIGGRAPH
Comput. Graph. January 1984, 18, 3, s. 103-108. ISSN 0097-8930. doi: 10.1145/964965.
808585. Dostupné z: <http://doi.acm.org/10.1145/964965.8085850>.

71

http://glew.sourceforge.net/
http://glew.sourceforge.net/
http://glm.g-truc.net/0.9.6/index.html
http://glm.g-truc.net/0.9.6/index.html
https://www.opengl.org/documentation/glsl/
https://www.opengl.org/documentation/glsl/
https://www.opengl.org/
https://www.opengl.org/
http://qt-project.org/
https://www.opengl.org/wiki/Image_Load_Store
https://www.opengl.org/wiki/Image_Load_Store
https://github.com/miloyip/rapidjson
https://developer.nvidia.com/opengl
http://doi.acm.org/10.1145/964965.808585

72

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

MOURA PINTO, F. - FREITAS, C. M. Importance-aware composition for illustrative
volume rendering. In Graphics, Patterns and Images (SIBGRAPI), 2010 23rd SIB-
GRAPI Conference on, s. 134-141. IEEE, 2010.

EVERITT, C. Interactive order-independent transparency. Technical report, NVIDIA
Corporation, 06 2001.

KRUGER, J. - SCHNEIDER, J. - WESTERMANN, R. Clearview: An interactive con-
text preserving hotspot visualization technique. Visualization and Computer Graphics,
IEEE Transactions on. 2006, 12, 5, s. 941-948.

MESHKIN, H. Sort-independent alpha blending. 2007.
MYERS, K. - BAVOIL, L. Stencil routed A-buffer. In ACM SIGGRAPH, 7, 2007.

NGUYEN, H. Gpu Gems 3. Addison-Wesley Professional, first edition, 2007. ISBN
9780321545428.

NIENHAUS, M. — DSLLNER, J. Blueprints - [lustrating Architecture and Technical
Parts using Hardware-Accelerated Non-Photorealistic Rendering. In HEIDRICH, W. —
BALAKRISHNAN, R. (Ed.) Graphics Interface, 62 / ACM International Conference
Proceeding Series, s. 49-56. Canadian Human-Computer Communications Society, 2004.
Dostupné z: <http://dblp.uni-trier.de/db/conf/graphicsinterface/
graphicsinterface2004.html">. ISBN 1-56881-227-2.

RONG, G. — TAN, T.-S. Jump flooding in GPU with applications to Voronoi diagram
and distance transform. In Proceedings of the Symposium on Interactive 3D Graphics
and Games, s. 109-116. ACM Press, 2006.

VASILAKIS, A. - FUDOS, I. Z-fighting Aware Depth Peeling. In SIGGRAPH Posters.
ACM, 2011.

YANG, J. C. et al. Real-time Concurrent Linked List Construction on the GPU. In
Proceedings of the 21st Eurographics Conference on Rendering, EGSR’10, s. 1297-
1304, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association. doi:
10.1111/j.1467-8659.2010.01725.x. Dostupné z: <http://dx.doi.org/10.1111/
7.1467-8659.2010.01725.%x>.

ZARA, J. et al. Moderni pocitacovd grafika. Computer Press, 2004. ISBN
9788025104545.

éMOLiK, L. Interactive Illustrative Visualization of 8d Models. PhD thesis, Faculty of
Electrical Engineering, Czech Technical University in Prague, July 2011.

http://dblp.uni-trier.de/db/conf/graphicsinterface/graphicsinterface2004.html"
http://dblp.uni-trier.de/db/conf/graphicsinterface/graphicsinterface2004.html"
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x

Appendix A

List of Abbreviations

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

ANSI American National Standards Institute
APT Application Programming Interface
CPU Central Processing Unit

FPS Frames per second

GDC Game Development Conference
GLEW The OpenGL Extension Wrangler Library
GLSL OpenGL Shading Language

GPU Graphics Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment
JSON JavaScript Object Notation

MVP Model View Projection

OBJ Wavefront .obj File Format

OIT Order Independent Transparency

QT Cross-platform Application and Ul Framework
RGBA Red Green Blue Alpha Format

SDK Software Development Kit

UI User Interface

VBO Vertex Buffer Object

73

74

APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

Additional Measurements Data

4002400 4502450 5002500 5502550
model #irags [[ms] #frags | [ms] #frags | [ms] #rags [[ms]
Anatomy 1 126296 4,71 159666 5,09 197269 5,52 238644 6,71
Anatomy 2 160267 7,81 202807 8,44 250522 9,75 302912 11,51
BikeWheelFork 1 119486 6,64 151306 7,97 186828 8,54 226038 11,16
BikeWheelFork 2 176012 | 25,14 222792 | 28,07 275204 | 29,03 332948 30,77
Drill 1 303673 | 12,42 384597 | 14,61 474041 | 16,45 573959 20,03
Drill 2 417460 | 21,55 528164 | 25,73 651967 | 30,35 788422 34,68
Engine 1 440439 | 16,81 557607 | 19,71 688829 | 22,26 833030 26,58
Engine 2 365743 | 24,23 462718 | 28,11 571715 | 31,53 691365 38,55
GPU 1 219870 7,28 278235 8,68 343496 9,43 415536 11,26
GPU 2 474450 | 61,33 600549 | 81,68 741436 | 83,67 897034 | 102,54
GearBox 1 550972 | 43,57 697378 | 48,73 860962 | 55,39 1041905 66,89
GearBox 2 693358 | 61,88 877294 | 68,70 1083141 | 82,11 1310306 92,44
Head 1 440563 | 14,95 557542 | 17,73 688352 | 20,62 833145 24,71
Head 2 731184 | 26,97 925545 | 32,02 1142755 | 37,66 1382749 41,62
Hearth 1 336200 | 12,41 425523 | 14,70 525262 | 16,66 635657 19,73
Hearth 2 527587 | 17,28 667923 | 20,32 824387 | 23,35 997826 27,83
Suspension 1 397860 | 27,82 503386 | 32,00 621602 | 37,81 752308 42,39
Suspension 2 844522 | 52,52 1069506 | 61,71 1320028 | 64,70 1597364 68,17
Teapot 1 161566 | 3,37 || 204534 | 4,18 || 252578 | 4,51 || 305504 5,79
Teapot, 2 386128 8,03 488538 | 10,03 603308 | 11,31 729882 13,80
Dragon 1 141126 8,64 178682 9,563 220612 | 10,05 266784 11,48
Dragon 2 147526 | 10,00 186578 | 11,10 230448 | 12,11 278944 13,47
Dragons 1 209316 | 19,92 264930 | 21,43 327276 | 22,33 395986 24,51
Dragons 2 608124 | 32,35 769554 | 35,96 950294 | 39,87 1149646 44,81

Table B.1: Impact of changing the number of fragments with other variables fixed. First
row denotes used viewport resolution.

6]

76 APPENDIX B. ADDITIONAL MEASUREMENTS DATA

6002600 6502650 7002700
model #frags | [ms] #irags [[ms] #frags | [ms]
Anatomy 1 284196 7,82 333476 8,71 386880 8,79
Anatomy 2 360567 13,04 423164 14,87 490751 16,85
BikeWheelFork 1 268946 12,60 315752 13,70 366012 14,69
BikeWheelFork 2 396110 42,24 464712 42,01 539200 46,34
Drill 1 682863 | 21,95 || 802118 | 24,96 || 929220 | 23,22
Drill 2 938931 40,02 1101728 44,11 1277522 49,58
Engine 1 991435 30,38 1163484 34,37 1349344 37,95
Engine 2 822796 43,10 965506 47,64 1119805 51,28
GPU 1 494564 13,00 580287 14,83 673177 16,44
GPU 2 1067557 | 132,28 1253030 | 132,23 1453378 148,61
GearBox 1 1240161 73,63 1455451 81,61 1687934 89,25
GearBox 2 1559269 | 102,70 1830104 | 107,29 2122659 108,57
Head 1 991103 28,28 1163565 32,60 1349534 35,01
Head 2 1645353 44,81 1931097 45,51 2239816 48,29
Hearth 1 756464 22,39 887865 25,17 1029590 28,07
Hearth 2 1187402 32,16 1393473 37,34 1616192 39,81
Suspension 1 895210 48,69 1050801 53,92 1218220 59,23
Suspension 2 1900548 75,55 2230808 80,17 2587586 87,69
Teapot 1 363598 7,27 426754 7,82 494974 8,59
Teapot 2 868698 16,76 1019654 19,14 1182474 21,16
Dragon 1 317648 12,34 372736 13,69 432214 14,15
Dragon 2 331854 15,19 389544 16,17 451678 17,24
Dragons 1 471328 26,28 552926 28,15 641244 29,50
Dragons 2 1368308 47,10 1606040 47,33 1862570 47,27

Table B.2: Impact of changing the number of fragments with other variables fixed. First
row denotes used viewport resolution.

Max [list| === PS| Percentual coverage == 400x400 450x450 500x500
e 550X550 === 600X 600 B650X650 === 700x700

1000,00 14,00%
12,00%
10,00%
100,00

8,00%

6,00%
10,00

4,00%
2,00%

1,00 0,00%

Drill 1
Drill 2
GPU 1
GPU 2

Head 1
Head 2
Hearth 1
Hearth 2

Anatomy 1
Anatomy 2
3ikeWheelFork 1
3ikeWheelFork 2
Engine 1

Engine 2
GearBox 1
GearBox 2
Suspension 1
Suspension 2
Teapot 1

Teapot 2

Dragon 1
Dragon 2
Dragons 1
Dragons 2

Figure B.1: Visualization of tables and
. PSI is ¥ as defined before.

Appendix C

Installation Guide

Our application needs graphic card supporting at least OpenGL of version 4.2. It also re-
quires extensions GL_shader_image_load_store, GL_shader_atomic_counters.
The application is compilable on both Linux and Windows. Following minimal software
requirements have to be met:

’ Library ‘ Minimal version

OpenGL | 4.2
GLEW 1.11.0
Qt 5.3
GLM 0.9.5
QMake 3.0
GCC 4.9.1
CLANG | 3.5.0

Table C.1: Minimal application requirements. Either CLANG or GCC is required, not both.

Windows libraries 32 bit compiled by MinGW are included on the DVD. On linux simply
install packages for your distribution including the library. Easiest way is to compile the
code is using QtCreator IDE which automatically detects the environment and performs
necessary commands. If using this method, please set the root directory of our structure as
a run directory so that resources are available. We now describe how to build application
manually:

1. Run gmake NlustrationBufferProjectQT5.pro to generate makefiles.
2. Run make
3. Run make install (this will automatically copy the resources folder to your executable.)

4. Run compiled application.

Entire project configuration for both Windows and Linux platforms is present in the
IllustrationBufferProjectQT5.pro file which makes this project easily usable.

7

78

APPENDIX C. INSTALLATION GUIDE

Appendix D

DVD Content

This is the structure of attached DVD. Please note that not all models presented as
renders in this thesis are part of the models folder since some models provided by the su-
pervisor were not allowed to distribute, only publish the results by it’s license. Models that
are included are free to use.

D D 4ttt et eeee ettt root directory
I o Y- PP scripts for measurements
D o 3 I o application windows executable

Platforms iiiiiiiiii ittt necessary QT libs for windows
TESOUTCES turerreneernneeesneeesneeenneeanns copy of the resources for win exe
@ [o 2 documentation, thesis PDF and video
o LoD 47 4o =3 o NP documentation of the source code
I o =R source code of the thesis text
SCreensShotS iiiiiiiiiiiiiiiiai it ireenaaneennn. screenshots of the application
e I 1 libraries
| TESOULCES tttiinnnneeteennnnneeeeannnneeeeeannnneeeens non compilable resources
o7 o i configuration JSON files
o B T styles of the GUI
B GES vt ttenteenneeeeneeeaneesaneeeaneesaneesanneeanneenns Images for the GUI
01T Yo LSS 1= models and materials
] 4= Lo Lot P GLSL shaders
XU ES tiiiiiiietteennnneeeeeannnneeeeaaannnnannns texture for the heatmap
ot C+-+11 source code
o 0 T T classes and ui files for the GUI
MEASULING tiverrrrnnneeeeeennneeeeeennnnann classes used for the measurements
graphs ittt python files to generate parallel coord. graphs
R o 111 o SRR empty directory, used for temporal build data

79

80

APPENDIX D. DVD CONTENT

Appendix E

User Manual

Figure E.1: Graphical User Interface of the main window with Settings panel on the
right. All three tabs are shown.

Main GUI of our application can be seen in figure[E.1] Settings panel on the right enables
full control of active stages, camera modes and most importantly working with the variables
that affect the result as described in this thesis. We also provide the Contrast modifier
to simply enhance image colors by adjusting the contrast.

Main menu can be seen on the top bar. Application section provides actions FEzport
to PNG, About and Quit. Please note that export of the framebuffer to a PNG file is
supported only on Linux due to Qt bug. On windows image will be generated but colors will
be wrong. Model section provides list of all models loaded to the application.

81

82 APPENDIX E. USER MANUAL

E.1 Controls

Application and algorithm’s functions are controlled via the settings panel and global
menu. Following controls are used for movement in the scene:

e Orbit Camera Mode - mouse is used to rotate the model when left mouse button is
pressed. Scrolling wheel can be used to zoom.

e Walk Camera Mode - Keys W, A, S, D are used to move forward, backward, left and
right. Keys Q, E are used for control of the elevation. Mouse can be used to adjust the
look at direction.

E.2 Configuration

Application is configurable via JSON config files. Following snippet shows how the config
file looks like for models. First is a name as will appear in the application and second is the
path to a file. Material files are loaded automatically, its name has to be the same as of the
.obj file though, only with .mt1.

{
"Anatomy" : "resources/models/anatomy.obj",
3 "Teapot" : "resources/models/teapot.obj"
}
{
"fillPass" : {
"programNumber" : 1,
4 "vert" : "resources/shaders/basic.vert",
"frag" : "resources/shaders/fillPass.frag"
6 },
"sortPass": {
8 "programNumber": 2
"vert" : "resources/shaders/sortPass.vert",
10 "frag" : "resources/shaders/sortPass.frag"
}
12 "renderOITPass": {
"programNumber": 3,
"vert" : "resources/shaders/sortPass.vert",
"frag" : "resources/shaders/renderOIT. frag"
16 1.
}

E.3 Measurements and Graphs

We also provide several .bat files that can be used for batch measurements of all provided
models on the Windows platform for convenience.

Note that the application source code has to be recompiled with uncommented line 25:
#define MEASURING_TIME in Context.h header file. For optimal results please check

E.3. MEASUREMENTS AND GRAPHS 83

the comments in the shaders, where several defines are used for measurements of the given
task only.

e IllustrationBufferConstruction.bat Illustration Buffer construction.

e IllustrationBufferResolutions.bat Changing the resolution from 400x400 to 700x700
e IllustrationBufferDiffusion.bat Measurement of one diffusion pass GPU time

e IllustrationBufferDiffusionGauss.bat Measurement of one blurring pass GPU time
e LinkedLists.bat Measures only creation of per pizel linked lists.

e TllustrationBufferViewDistance.bat Is used for measurements of finding the cur-
vature and distance between samples.

These scripts runs the application with the same MVP matrices as we have used in our
measurements and will generate txt file with the results.

When the application is compiled with #define MEASURING_TIME as stated above,
following arguments can be used:

arg 1: Number for measured task (1 = per pixel linked lists, 2 = Tllustration Buffer con-
struction, 3 = Diffusion, 4 = Diffusion and Gaussian filter, 5 = Distance Curvature)

arg 2 : counter of the model (e.g. 2 if this model is measured second time in given view)

arg 3 : model name as will appear in generated report

arg 4 : model path

arg 5 - 21 : rows of the model view matrix

arg 22 - 37 : rows of the projection matrix

arg 38 : optional dimmension of the viewport. Is set 600x600 by default.

Python scripts we have used to generate graphs with parallel coordinates are also included
on attached DVD in src/graphs directory.

	Introduction
	Thesis Structure

	Theoretical Background
	Rendering of Translucent Objects
	 Painter's Algorithm

	Order Independent Transparency
	Dual Representation of the Problem
	Image Compositing
	Under Operator
	Over Operator

	Opacity Modulation
	Modulation by Differences in Shape
	Modulation by Distance Between Samples Along the Viewing Ray
	Modulation by Distance from Important Shape Features in the Layer
	Modulation by Groups
	Modulation by Distance from Defined Plane/Area (Cut Motivated)
	Additional Notes to Opacity Modulation

	Colour Modulation
	Lighting and Shading
	Silhouette Enhancement
	Transfer Functions

	Analysis of Compared Methods
	Order Independent Transparency
	Depth Peeling
	Dual Depth Peeling
	Alpha Blending Approximations
	Concurrent Linked List Construction on the GPU
	Illustration Buffer
	Neighbors Location by Carnecky
	Proposed Neighbors location

	Comparison of OIT Solving Methods
	Modulation by Groups
	Modulation by Distance from Defined Plane/Area (Cut Motivated)
	Depth Peeling and Dual Depth Peeling

	Per Pixel Linked Lists
	The Illustration Buffer

	Summary

	Design and Implementation
	Used Technologies
	OpenGL and GLSL
	GLM
	RapidJSON
	QT Framework
	The OpenGL Extension Wrangler Library

	Application Structure
	Graphical User Interface
	Additional Notes to Application Structure

	Creation of the Illustration Buffer
	Used structures
	Formats Packing

	Buffer Filling
	Sorting
	Neighbors Location
	Groups and Importance per Components
	Visualization of the Illustration Buffer

	Non Local Transparency
	Transparency Fields
	Diffusion Process
	Physical Process
	Nonphysical Process
	Proposed , Diffusion
	Automatic Transparency Field Setup

	Modulation by Distance Along the Ray
	Combined with Modulation by Differences in Shape

	Final Rendering Pass

	Results and Discussion
	The Illustration Buffer Creation
	Sorting Methods Comparison
	Comparison with Other Methods
	Memory consumption

	Results of the Opacity Modulation
	Speed Comparison
	Visual Comparison

	Conclusion
	Future Work

	List of Abbreviations
	Additional Measurements Data
	Installation Guide
	DVD Content
	User Manual
	Controls
	Configuration
	Measurements and Graphs

