
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Antońın Novák

Methods of the efficient state space search for the Nurse

Rostering Problem using branch-and-price approach

Department of Computer Science

Thesis supervisor: Ing. Roman Václav́ık

Acknowledgements

I would like to thank my family for support during writing this thesis and throughout

my studies. Without them this work would not be possible. Moreover, thanks belongs to my

girlfriend who patiently supported me over the years and provided me a calm environment

for my work. Furthermore, I would like to thank my thesis supervisor and Přemysl Š̊ucha

for great insights and discussions. Finally, my thanks goes to my friend Tomáš Báča for his

excellent comments and helpful corrections.

Abstract

This thesis introduces an exact algorithm for Nurse Rostering Problem

based on general decomposition method called Branch and Price. Pro-

posed method handles expressive set of soft constraints and is suitable

for real-world personnel rostering problems, which is shown by evaluation

on publicly available benchmark instances collected from real-world

environments. Furthermore, we have shown, how solutions of related hard

optimization problems can be used for future ones. Moreover, we studied

problem in details and proposed number of improvements, that made

proving optimality of solutions tractable for medium-sized instances.

Keywords: nurse rostering problem, branch and price, combinato-

rial optimization

Abstrakt

Tato práce popisuje exaktńı algoritmus pro problem rozvrhováńı

zdravotńıch sester založený na obecné dekompozičńı metodě Branch

and Price. Popsaný př́ıstup zvládá širokou škálu měkkých omezeńı a je

vhodný pro nasazeńı v reálných prostřed́ıch, což je doloženo testováńım

na veřejných instanćı problému z reálných prostřed́ıch. Mimo jiné jsme

ukázali, jak řešeńı př́ıbuzných těžkých optimalizačńıch úloh mohou pomoci

pro řešeńı těchto problémů v budoucnu. Studovány byly také vlastnosti

problému, na základě kterých jsme navrhli vylepšeńı, které vedly k

dosažitelnosti prokazováńı optimality na instanćıch středńı velikosti.

Kĺıčová slova: problém zdravotńıch sester, branch and price, kom-

binatorická optimalizace

CONTENTS

Contents

List of Figures v

1 Introduction 1

1.1 Problem statement . 3

1.1.1 Difficulties in practice . 5

1.1.2 Computational complexity . 5

1.2 Related work . 6

1.3 Summary . 8

1.4 Contribution . 9

1.5 Outline . 10

2 Branch and price method 12

2.1 General overview . 12

2.2 Original formulation . 13

2.3 Reformulation for Nurse Rostering Problem 14

2.4 Primal model . 17

2.4.1 Additional coverage constraints . 18

2.5 Dual model . 19

2.6 Column generation . 19

2.6.1 Derivation . 22

2.7 Algorithmic description . 23

3 Pricing problem 25

3.1 Definition . 25

3.2 Computational complexity . 27

3.3 Exact solution methods . 28

3.3.1 Branch and bound with domination rules 28

3.3.2 Mixed-Integer Linear Programming . 32

3.3.3 Informed state space search . 33

3.3.4 Constraint programming . 34

3.4 Heuristic methods . 36

3.4.1 Heuristic MIP . 36

3.5 Lower bound . 37

3.5.1 Tighter bound via Semidefinite Programming 38

3.6 Upper bound . 38

3.7 Additional remarks . 38

i

CONTENTS

4 Master problem 40

4.1 Definition . 40

4.2 Initial solution . 41

4.2.1 Single-pass heuristics . 41

4.2.2 Pattern pump heuristics . 42

4.3 Lower bound . 43

4.4 Lagrangian relaxation . 44

4.5 Branching methods . 45

4.5.1 Branching on master variables . 46

4.5.2 Branching on original variables . 46

4.5.3 Variable selection . 46

4.5.4 0–1 branching . 47

4.5.5 1/../S branching . 48

4.5.6 Constraint branching . 48

4.5.7 Strong branching . 49

4.5.8 Impact to performance . 49

4.6 Upper bound . 50

4.7 Column management . 50

5 Machine learning methods 52

5.1 Motivation . 52

5.2 Improving upper bound in pricing problem 53

5.2.1 Robust regression problem . 54

5.2.2 Relation to cover cuts . 57

5.2.3 Impact to performance . 57

5.2.4 Further improvements . 58

6 Additional observations 60

6.1 Motivation . 60

6.2 Column generation . 60

6.2.1 Dual variables stabilization . 60

6.2.2 Heading-in effect . 62

6.2.3 Tailing off effect . 63

6.3 MIP pricing . 63

6.3.1 Imposing lower and upper bounds on the objective 63

6.3.2 Branching priorities for variables . 64

6.3.3 Solution pool . 64

6.3.4 Subproblem skipping . 65

6.4 Symmetry breaking . 65

ii

CONTENTS

6.4.1 Symmetry breaking by fixing some assignments 66

7 Experimental results 68

7.1 Real-world benchmarks . 68

7.1.1 Generic branch and price . 69

7.1.2 Overall results . 69

7.1.3 Effect of improved MIP pricing . 70

7.1.4 Effect of solution pool . 70

7.1.5 Effect of primal heuristics . 71

7.1.6 Effect of subproblem skipping . 71

7.1.7 Effect of symmetry breaking . 72

7.2 Motol instance . 73

7.3 Discussion . 74

8 Conclusion 76

8.1 Future work . 76

9 Bibliography 79

Appendix A CD Content 83

iii

CONTENTS

iv

LIST OF FIGURES

List of Figures

1.1 Illustrative comparison of computation runtime of polynomial algorithms (ma-

trix multiplication, sorting) and an exponential one (Nurse Rostering). 2

1.2 Example solution of Valouxis instance (Valouxis and Housos, 2000). 4

2.1 Block diagram of the branch and price algorithm. 12

2.2 New variables and their meaning. 15

2.3 Primal master model. 17

2.4 Dual master model. 19

2.5 Column generation procedure. It generates a new column that could improve

primal objective based on the current dual solution. 20

2.6 Optimization in dual space over 3 variables. Displayed polytope is a feasible

region of dual LP. Inserting a cutting plane (a new schedule) (see Figure 2.6b)

makes current dual solution infeasible, thus it lowers the dual objective value

and consequently reduces the primal objective. 22

3.1 An example of a pattern matching in a schedule. 25

3.2 Graph structure for the pricing problem. Vertical layers correspond to days

and vertices to shift types. We are interested in finding the cheapest s− t path

which satisfies given constraints. 26

3.3 An illustrative example of the search tree with some dominated partial solu-

tions. Consider a constraint where we want to have at least two E shifts in

schedule. Partial schedule EDD is dominated by EEN, EDN is dominated by ENE. 29

3.4 An illustrative example of resources. Partial solution NE-N is associated with

resource vector [−200, 0, 1]. The first element is associated with the partially

evaluated reduced cost, the other are resources associated with constraints

a) and b). Dominance procedure compares vectors of corresponding partial

solutions element by element. 29

3.5 Example of an automaton rejecting On-Off-On pattern. Initial state is S0,

accepting states are S0...2. 35

3.6 LP relaxation is tight. Example gap between IP optimum and LP solution for

Azaiez instance. 37

4.1 An example of coverage penalties. 41

4.2 An example of a single-pass initial heuristics. A new column (t+1) is created

based on the dual multipliers calculated by coverages R
(t)
mjk satisfied up to (t). 43

4.3 Lower bound computed by Lagrangian relaxation at each iteration of column

generation in Millar instance. 45

v

LIST OF FIGURES

4.4 Example of 0–1 branching with the most fractional value variable selection.

It creates exactly two branches — in the first one it forbids the assignment

and in the second one it fixes the shift for a specific day and employee (and

consequently forbids other shifts for the same day). Fixed assignments are in

bold. 47

4.5 Example of 1/../S branching. For each possible shift assignment for a given

day it creates a new branch with fixed value. Fixed assignments are in bold. . 48

5.1 Example of loss function for a single datapoint, ǫ = 0.5 55

5.2 Discounting function for previous datapoints 55

5.3 Upper bound prediction for subproblems in Millar instance. 58

5.4 Upper bound prediction for subproblems in Azaiez instance. 59

6.1 Unstabilized column generation in Millar instance. Distance from current dual

solution to optimal dual solution is not monotonically decreasing. It results in

so-called bang-bang behavior. 61

6.2 An illustrative example of symmetry breaking. It fixes single assignment for 3

different employees. 67

7.1 Optimal solution for Motol-1 instance. Large consecutive blocks of free days

are caused by personal requests (i.e. vacation). 73

vi

1 INTRODUCTION

1 Introduction

Assigning employees to shifts in workplaces is a problem that is being solved every day

on the entire planet. Usually, every place that is running operations involving larger number

of people creates a working schedule for them, typically a few weeks onwards. Such working

schedule specifies what the duty of an employee is for any given day. Knowing this in advance

is important both for employees to arrange their personal activities and for the manager and

the company to plan the production.

Imagine for example a department in a large-sized hospital. The task of the head nurse

is to ensure that the department is able to provide high-quality health care every day of the

year. It means that employees of desired qualification come to work every day so that there is

always e.g. someone who can operate an X-Ray machine and that there are at least 5 nurses

in the morning and at least 3 nurses in the afternoon. Furthermore, the head nurse has to

ensure that employees are not tired and can perform to their best.

However, the hospital has limited staff only. These people also have custom working con-

tracts specifying different number of hours per month they are allowed to work. Moreover,

some of the employees have planned vacation, some nurses cannot work at night or they would

miss the last bus home, and some nurses have a small child, so they have to take them to

school every morning.

The head nurse cannot plan shifts for employees in an arbitrary way. Hospital staff does not

want to work too long without a rest period and, moreover, there are also working regulations

given by the working union and the labor code which have to be obeyed.

Although it may seem that the motivation includes the nurses in hospitals only, the con-

verse is true. The same problem, scheduling of human resources, is appearing frequently in

production, services and other areas of industries where a large number of employees occur.

For example, similar problem is being solved in large modern cinemas. A cinema typically

employs tens of employees which need to be scheduled over a time period. There are different

shift types (morning, day and night shift) and people are trained for different positions (selling

tickets, selling food and drinks, welcoming customers, etc.). Moreover, different staffing de-

mands are imposed for different times and days. This and other similar problems can be easily

reduced to our problem. Therefore, they can be solved by the same algorithms. Thus, Nurse

Rostering Problem is not an artificial example just made up by researches, but it addresses

the very important and practical problem of general personnel rostering.

If the (e.g. monthly) schedule for all employees has to be created by hand, the person in

charge of it will not only spend a lot of time while doing that but the solution is likely to be

far from optimal. The solution by hand can easily take hours to get while a computer might

1/83

1 INTRODUCTION

be able to find a better one in the order of minutes. Thus, it makes sense to pass this task

over to the computer.

However, this task is hard even for current computers. Properties of Nurse Rostering

Problem make it fundamentally different from problems like sorting a set of numbers (which

is still time demanding for a human being, but computers are able to do it quickly) or finding a

book in a digital library which can be solved easily. Informally said, Nurse Rostering Problem

reaches a level of complexity which our computers are not able to solve fast in general. This

complexity level is called NP-hard. Simply said, if a problem is NP-hard, it means that, in

general, we do not know how to solve it in polynomial time1 with respect to input length.

Commonly, solution of these hard problems takes a long (exponential) time. Nowadays, only

algorithms with exponential time complexity for solving NP-hard problems are known.

Instance size

Time Nurse Rostering

Matrix multiplication

Sorting

Figure 1.1: Illustrative comparison of computation runtime of polynomial algorithms (matrix multiplication,

sorting) and an exponential one (Nurse Rostering).

When facing such a complex problem, the exponential blow up must be pushed to the right

side (extending the plateau where instances can be solved reasonably fast) as far as possible

(see Figure 1.1), so that problems of desired sizes can be solved in reasonable time. It can be

done by studying the problem carefully in detail and looking for its properties and structure

that can be exploited.

Even though we call this problem Nurse Rostering due to historical reasons (nurses have

one of the most complicated labor codes, thus the study of this domain is challenging), one

has to keep in mind that many personnel rostering problems are reducible to our problem.

The last question to answer is whether the problem introduced above needs to be solved

optimally or if a heuristic (suboptimal) solution is sufficient. Many will argue that any solution

for a rostering problem is essentially sufficient when one is able to obtain it quickly. However,

we claim that if we were able to get the optimal solution in a comparable time, there is no

1Polynomial algorithm is commonly considered a fast one.

2/83

1 INTRODUCTION

reason to use the suboptimal solution.

In this thesis, we study the general variant of Nurse Rostering Problem (Burke et al.,

2004) and we show its properties that allow us to solve real-world instances optimally in the

order of minutes.

1.1 Problem statement

We are given a planning horizon of length n, a set of employees E , a set of skill competencies

J and a set of a shift types K. For each employee i ∈ E we have a set of patterns Pi which

defines both desirable and undesirable shift sequences. Each pattern is defined by a regular

language and is associated with a start day, a lower and upper limit for its appearance in

i’s individual schedule and a cost and penalty function for violating it (see Table 1.1). Each

employee can also specify their preference for assignment to each shift type on each day.

Moreover, employee i can be associated with a permitted workload. A workload specifies a

minimum and maximum number of time units (thus each shift type k ∈ K is associated with

some time units, i.e. shift duration) allowed and the penalty for violation. Since the workload

can be also specified over subintervals of the planning horizon, an employee can be associated

with multiple workload constraints simultaneously.

The set of pattern based constraints Pi and the workload constraints combined together is

called a working contract. In general, there are two types of constraints — hard constraints and

soft constraints. Hard constraints must be satisfied at all cost. These can be some forbidden

shift patterns given by a labor code or minimal workload specified by a working contract.

Different hard constraints are given by the limitations of real world (i.e. every employee can

serve at most one shift at the same time) or by the problem description (i.e. every employee

has exactly one skill).

Soft constraints are the ones that can be violated for some penalty. In Nurse Rostering

Problem, these are pattern based constraints in most cases. Table 1.1 provides an example

of pattern based soft constraints and calculation of the penalty. The other common soft

constraint is the maximal workload. In contrast to the minimal workload constraint, working

overtime is common. However, the employer must pay to those employees more money, which

is undesirable from the company’s budget point of view.

Moreover, we are given a requirement for the preferred coverage Rmjk associated with the

day m, served by employees with the skill competency j on the shift k for each day of the

planning horizon. It is linked with the penalty cumjk for understaffing and comjk for overstaffing

it. We can also be given a minimum and maximum staffingMImjk (MAmjk respectively) and

penalties tumjk and tomjk for violation. When both preferred and minimal/maximal coverages

3/83

1 INTRODUCTION

Description Pattern Penalty Schedule Cost

Max 3 consecutive N
No 4 N NNNN 5, linear function

N N N N N
10

No N after E
No EN EN 20, linear function

N E E E N
20

Max 2 days off
No - - - - - - 2, quadratic function

N - - - -
8

Table 1.1: Examples of pattern soft constraints for the individual employee and their calculation. N stands

for night shift, E for early shift and - denotes a day off.

are specified, the combined penalty function is used. Notice, that these are soft constraints

also. For detail treatment of coverage penalties see Figure 4.1.

The objective is to minimize the sum of constraint violations (patterns) for each employee

plus sum of violations of their shift requests plus sum of violations of coverage constraints.

Nurse Rostering Problem is commonly modeled by a nurse-day view (Cheang et al., 2003).

That is matrix X where each row corresponds to a nurse and each column to a specific day.

Thus, nurse i is assigned to shift xij on day j. Such matrix of the solved problem can be seen

in Figure 1.2.

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

Employee 1 D D - - D N N N - - D D E N - - D D E E - - E E E E - -

Employee 2 E E E E - - E E N N - - D D D N - - - - - - D D E N - -

Employee 3 N N - - E E E E - - D E N N - - D D D D - - D D E E - -

Employee 4 - - D D E E - - E E N N - - D D D D - - D E N N - - E E

Employee 5 - D D D E - - - E E N N - - D D E E - - - - - - - E E E

Employee 6 D - - - E E E E - - - D E E N - - - D N N N - - E E E -

Employee 7 - D N N N - - D E E E - - - D E E E - - - - D D D N - -

Employee 8 E E E E - - - - - - - D D E N - - - D N N N - - D D D D

Employee 9 - - - - - - - E E E E - - D E E N - - D D D E - - D N N

Employee 10 D - - - D N N N - - - D E E E - - D E E E - - D D E N -

Employee 11 N N N - - D D D D - - - - - - E E E E - - D E E E - - -

Employee 12 - - D D D D - - D D D E - - E E N N - - E E N N - - E E

Employee 13 - D D N N - - - D D D E - - - - - - E E E E - - - D D N

Employee 14 D - - D D D D - - D E E N - - D E E N - - E E E N - - D

Employee 15 E E E E - - - D D D E - - - - D D N N - - D D E N - - D

Employee 16 E E E E - - D D N N - - D D E N - - D D D D - - - - - -

Figure 1.2: Example solution of Valouxis instance (Valouxis and Housos, 2000).

We call this matrix the roster. When we speak about the individual schedule of an em-

ployee, we are referring to the corresponding row in the roster.

4/83

1 INTRODUCTION

1.1.1 Difficulties in practice

Many researchers did not address the problem in a way closely related to the real-world

environments (Burke et al., 2004). Since the problem is too complex, algorithms tend to adopt

simplifying assumptions making the problem easier to solve. A large number of approaches

assume a custom (hand-picked) set of constraints or treat them as hard ones. These assump-

tions often make problems not well-suited for different environments — it is common that

hospital’s departments have different requirements and staff’s habits, therefore, some practice

which is forbidden at some places may be allowed in other ones.

However, due to a large number of restrictions for individual schedules it can easily happen

that no solution can meet all the demands, i.e. the problem becomes overconstrained. In order

to find at least some solution, we have to allow to violate constraints for some penalty. Thus,

it is reasonable instead of (hard) constraints to assume soft constraints (the ones that can be

violated even though it is not preferred).

Treating constraints as soft ones gives employer sufficient freedom for the design of the

constraint set and other requirements given by the problem description. On the other hand,

the issue with defining costs for violations arises. The individual nurse’s preferences from their

point of view can be more important than for a head nurse who is responsible for a proper

staffing. The other obvious issue is that violation of some constraints is hardly comparable

(e.g. how to compare penalty for understaffing on the morning shift to the violation of working

regulations?).

The usage in practice of flexible approaches allowing soft constraints can be difficult due

to questions raised above. However, we believe that the high quality of rosters produced by

those algorithms greatly pays off for itself (especially when the solutions are optimal ones

like with our approach) and makes flexible approaches useful even though some parameters

(penalties) must be supplied.

1.1.2 Computational complexity

The task of solving the problem described above even for just one employee can be identi-

fied as NP-hard. It can be shown that reduction from 3-SAT to NRP takes polynomial time

(see Chapter 3.2). This means that we cannot find a polynomial algorithm for solving NRP

unless P = NP.

Fortunately, we can exploit the inner structure of the problem in order to speed up the

algorithm. Complex constraints for the individual schedules are specified for single employee

only, thus these constraints can be resolved independently. These individual employees’ sched-

5/83

1 INTRODUCTION

ules are then tied up with coverage constraints which are much simpler to solve. This structure

results in a block-diagonal constraint matrix in IP (integer programming) formulation, which

can be solved much faster than some dense, highly coupled problems.

1.2 Related work

Nurse Rostering Problem has a long history counting more than 40 years. Methods de-

veloped so far can be split into two categories — heuristic and exact. Naturally, the heuristic

ones were adopted earlier because they are able to handle larger instances in tractable times.

Heuristic approaches for Nurse Rostering Problem cover metaheuristics, methods based on

mathematical programming and many others.

The other category of approaches, the exact ones, is considerably smaller. Most of the

authors did some simplifying assumptions on the constraints or the staff requirement in order

to solve the problem. For example, soft constraints are not always assumed. The issue is

that most of these modifications simplify the problem too much to be applied successfully in

practice, i.e. in real-world environments.

Essentially, all approaches published until recent time are the heuristic ones or assumed a

limited constraint set. Those which did not, will be also described in the paragraphs below.

The (Warner and Prawda, 1972) and (Warner, 1976) are early publications on a heuristic

method based on the mathematical programming for Nurse Rostering Problem. It allowed to

specify weights for constraints (undesired patterns) in the schedule. Some assignments were

made by hand (shifts at weekends etc.) before the optimization. The algorithm had 2 stages

— it searched for a feasible solution first and then it tried to find an improvement. This

algorithm was employed in several hospitals across the U.S.

In Nurse Rostering Problem, there are obviously often many conflicting goals — e.g.

to minimize the difference between desired and scheduled staff coverages, to maximize per-

sonal preferences, to minimize labor costs, etc. Thus, some multi-criteria approaches emerged.

(Jaszkiewicz, 1997) used a semi-interactive approach. The method used two stages — the first

stage ran simulated annealing (pareto-simulated annealing) and the second one was an in-

teractive stage, where the human operator selected good solutions by hand. Therefore, the

scheduling process was not fully automated.

(Jaumard et al., 1998) showed an approach based on column generation and branch and

bound. The objective was to minimize salary cost and employee dissatisfaction subject to cov-

erage demands. The subproblem (finding schedule for given nurse) was a resource constrained

shortest path problem with a non-decreasing resource function (Irnich and Desaulniers, 2005).

6/83

1 INTRODUCTION

Authors assumed a fixed constraint set including workload, shift rotations, etc. Their paper

reported that the proposed method was olny able to find feasible solutions, not necessary op-

timal ones. However, this work was an important improvement towards the exact approaches.

For solving real-world problems, a considerable number of metaheuristic approaches was

successfully applied. (Burke et al., 1999) introduced a hybridized tabu search and human-

inspired techniques for an improvement of solutions. (Burke et al., 2001) described a set of

genetic and memetic algorithms where coverage constraints are satisfied throughout the whole

search. The proposed method handled complex constraints and requirements for staffing. The

introduced recombination operator was based on hand-crafted characteristics of the solutions.

However, the approach suffered from long running times. (Aickelin and Dowsland, 2000, 2004)

proposed an indirect genetic algorithm where the constraints are expressed as a set of feasible

patterns. (Ikegami and Niwa, 2003) used a mathematical programming formulation solved

by tabu search. The approach was used in order to solve problems in Japan’s hospitals,

thus it implemented specific work regulation requirements. The problem is decomposed into

subproblems, where all but one nurse are fixed. However, the proposed approach is also heuris-

tic. (Burke et al., 2010) introduced hybridized heuristic ordering with variable neighborhood

search (Mladenović and Hansen, 1997). The method is able to support rostering decisions in

large modern hospital environments. The proposed approach offered good balance between

quality of solutions and computation time, allowing expressive problem formulations.

(Petrovic et al., 2003) used case-based reasoning, where the problems are solved based on

past experience. The approach imitated the human style of reasoning about rostering (Burke

et al., 2004). Only a limited set of rules for the roster was permitted, although it was applied

in practice.

The (Menana and Demassey, 2009) showed an interesting improvement for the Constraint

Programming model, where undesired patterns in the individual schedules are modeled as

fragments of a regular language. Authors designed a custom global constraint encapsulating

the regular and gcc (global cardinality constraint) global constraints in order to speed

up domain propagation. Moreover, they used Lagrangian relaxation for filtering domains. It

greatly improved runtime, however, the model handled hard constraints only.

(Maenhout and Vanhoucke, 2010) described an exact method based on the branch and

price algorithm. The proposed model allowed preferred coverage requirements (2-piecewise

linear penalty) over single skill competency and assumed hard constraints only, which allowed

reasonable solving times. Moreover, authors explored various branching strategies. They used

a custom artificial dataset for testing performance.

A branch and cut method was used for solving one of the modifications of Nurse Rostering

Problem in International Nurse Rostering Competition 2010 in (Santos et al., 2014). The

7/83

1 INTRODUCTION

authors implemented a custom cut generation procedure for clique cuts. They proposed an

approach where instead of finding the most violated cut they add all violated cuts at once.

(Burke and Curtois, 2014) presented a method based on branch and price algorithm. It was

able to solve real-world benchmark instances (Curtois, 2014). Their algorithm handled various

soft constraints and expressive problem formulations. However, even though authors used the

branch and price algorithm, which in general is an exact method, Burke’s method is not exact

in our opinion. We present arguments supporting this claim in Chapter 1.3.

1.3 Summary

Nurse Rostering Problem is greatly complicated. As (Tien and Kamiyama, 1982) men-

tioned: ”nurse rostering is more complex than the traveling salesman problem . . . ”. The devel-

opment of an exact algorithm, which is able to solve real-world instances up to the optimality

is a rather challenging task. Thus most of the approaches to Nurse Rostering Problem are

heuristic — ”most of these approaches are not exact” . . . ”problem is too complex” (Burke

et al., 2004).

The objective is to minimize the sum of the penalties for violation of individual preferences,

work regulations, coverage constraints and shift patterns in individual schedules in most cases.

Thus, it is desired to treat constraints as soft ones. In our opinion, it is a more faithful

description of reality. However, it makes the problem more difficult. Although it may not be

obvious, problems with soft constraints are harder to solve than the ones with hard constraints

only. When one is solving the problem optimally, hard constraints can be used for effective

pruning of the search space, which cannot be done with soft constraints easily.

When one is looking for the best solution of the roster, the aim is to design an algorithm

for proving its optimality in a short runtime. In order to find the optimal solution, the solution

with the lowest objective value has to be found and moreover, the proof that there is no other

with lower objective value is needed. This is hard in this domain and it makes the problem

challenging. To get some sense about particular numbers, the typical instance has about 20

employees, a 4 week planning horizon with 4 shift types and about 15 soft constraints per

employee. This forms a search space of a size approximately 21120 ≈ 10337 where each state

(solution) is feasible. In order to solve such instances up to the optimality, one has to reason

intelligently about which parts of the search space are actually useful and prune other parts

aggressively.

For finding the exact solution of Nurse Rostering Problem, the integer programming is

usually a method of choice. In our opinion, the branch and price approach is more flexible

than the branch and cut. It permits more complicated constraints, which could be hard to put

8/83

1 INTRODUCTION

into general integer programming model. Therefore, the branch and price approach is more

suitable for solving real-world instances.

To the best of our knowledge, the only work on Nurse Rostering Problem solved by the

branch and price approach which is evaluated on real-world benchmark instances (Curtois,

2014) was published by (Burke and Curtois, 2014). The authors briefly described a basic

variant of the branch and price approach but the description of arguably the most important

part of the algorithm, the pricing problem, lacks details. Moreover, its description contains

mistakes — in the dominance procedure, lower bound on the reduced cost is not mentioned,

which is a crucial detail that was omitted. Moreover, we were not able to reproduce the

results achieved by their pricing procedure, thus we assume that some important details were

omitted (one clear example is the calculation of the lower bound which is missing completely,

see Chapter 3.3.1 for more details). Moreover, authors avoided the statement, whether their

approach is exact or heuristic. The article creates the impression that it presents an exact

method, since the branch and price is commonly used as the exact one. However, the results

show that their algorithm sometimes seemingly randomly stops without reaching any maximal

run time limit. The same behavior can be observed in the results for different benchmark

data presented in (Curtois T., 2014). In this work, authors more or less admitted that their

approach is not able to always find the optimal solution, although time or memory limits

are not exceeded. Therefore, it seems that they employed some speedup techniques (e.g.

rounding up some decision variables, which prevents from backtracking) while sacrificing the

completeness of the algorithm and those techniques were not described in the paper.

Even though their algorithm was able to find the optimal solution for the majority of real-

world test instances, it is a simplified task without proving their optimality. To see the dif-

ference between finding the optimal solution and proving its optimality, consider e.g. Golomb

ruler problem (Smith et al., 1999). For example, the optimal ruler of order of 26 was found in

2007 using a large cluster of computers, but its optimality was proven nearly two years after

its discovery2.

However, (Burke and Curtois, 2014) presents the best known results and we will compare

ourselves to those even though it is not clear whether their approach is exact.

1.4 Contribution

We have designed an exact algorithm for solving Nurse Rostering Problem which allows

pattern based soft constraints, coverage requirements with 4-piecewise linear penalties, soft

workload constraints and employees’ preferences. The method is based on the branch and price

2http://blogs.distributed.net/2009/02/24/17/26/bovine/

9/83

http://blogs.distributed.net/2009/02/24/17/26/bovine/

1 INTRODUCTION

approach, whose parts were further improved. We validated results on real-world benchmark

data (Curtois, 2014).

Beside achieving better results than in (Burke and Curtois, 2014) we further explored

the possibilities of applying the knowledge gained during the run of the algorithm in order

to decrease the computation time. Moreover, our contribution consists of solving a new real-

world instance for the surgery department of Motol hospital in Prague, Czech Republic (see

Chapter 7.2). We were able to find the optimal schedule for their department in a few minutes

and we improved the overall quality of their roster’s objective by a factor of over 220. More

specifically, our contribution consists mainly of:

• a new LP formulation of a master model allowing minimal and maximal staffing levels

across subsets of skills (see Chapters 4 and 2.4.1) and featuring a novel symmetry

breaking technique (see Chapter 6.4)

• a MIP based pricing model with a number of improvements containing branching prior-

ities and dynamical control of precision level based on the convergence of master model

(see Chapter 3.3.2)

• the proof that the decision version of the pricing problem with soft constraints is NP-

complete and is not polynomially approximable within ǫ (see Chapter 3.2)

• new initiation heuristics (see Chapter 4.2) and new primal heuristics for obtaining upper

bounds (see Chapter 4.6)

• a number of improvements to column generation applied to Nurse Rostering Problem,

mainly subproblem skipping and earlier branching (see Chapters 6.3.4 and 6.2.3)

• a novel machine learning algorithm for upper bound prediction in the pricing problem

(see Chapter 5.2)

1.5 Outline

The rest of the thesis is organized as follows. Chapter 2 presents an overview of the

general branch and price algorithm and column generation. Then, we show how to apply it to

Nurse Rostering Problem and we derive some important equations. In Chapter 3, the Pricing

Problem is defined and its computational complexity is proven. We show solution methods,

both exact and heuristic ones. It concludes with noteworthy aspects of the problem. Chapter 4

defines the Master Problem. Initiation heuristics are discussed as well as various branching

schemes. In Chapter 5 we deal with opportunities for application of machine learning methods

to problems in combinatorial optimization. We show how the knowledge gained during the

10/83

1 INTRODUCTION

column generation may be applied for future problems. Chapter 6 presents topics concerning

effective usage of the branch and price algorithm we have discovered. The thesis concludes

with experimental evaluation in Chapter 7 and states ideas for future research in Chapter 8.

11/83

2 BRANCH AND PRICE METHOD

2 Branch and price method

The purpose of this chapter is to introduce the reader to the column generation and branch

and price algorithm as a whole. We will show an interpretation of column generation using

duality and the application of branch and price approach to Nurse Rostering Problem. The

more detailed treatment of branch and price approach to the general integer programming

problem is nicely described in (Barnhart et al., 1998).

2.1 General overview

This chapter describes the branch and price method (Barnhart et al., 1998). It consists of

several parts, which will be later described individually in separated chapters. The diagram

of the algorithm can be seen in Figure 2.1. Before the problem can be solved by branch and

price, one has to decompose the original problem (original formulation) to a master problem.

Informally, master problem is a linear program that consists of variables related to all feasible

states of a state space given implicitly by the original formulation. This usually means, that

the master problem is huge (typically it has exponentially many variables in terms of number

of original formulation’s variables).

original

formulation

master

problem

restricted

master

problem

solve

relaxation

of RMP

column

found?
add column

integer

solution?
node solved

branch

problem decomposition

only a subset of columns is assumed

Simplex algorithm

pricing problem

no

yes

yes

no

Figure 2.1: Block diagram of the branch and price algorithm.

12/83

2 BRANCH AND PRICE METHOD

However, since only a few of these new variables are non-zero in an optimal solution, it

is natural to not consider them all at once. When only a subset of them is considered, we

get a restricted master problem. Throughout the optimization process, we repeatedly insert

new variables (columns) to the restricted master problem until the point, where one is able

to prove, that it represents an optimal solution of the master problem itself (i.e. no additional

columns are required).

In case that this solution is integer, it also represents a solution of the original formulation.

If it is not, one has to split the search space into disjoint parts and repeat the procedure for

each part. By examination of all nodes which yielded with an integer solution we can ensure

that we find the optimal one.

2.2 Original formulation

The problem described in Chapter 1.1 can be modeled as an integer programming problem.

The most straightforward formulation is to use binary decision variables for assigning people

to a shift on specific day. We will refer them as x in the rest of the text. A model based on

these decision variables is not very good for two reasons — first of all, it contains a lot of

symmetries (see Chapter 6.4 for more details) and secondly, it has weak linear relaxation.

We will show both the original formulation of the problem and its decomposition on a

simple example. Consider following problem — we have 2 identical employees to be scheduled

over 4 days. There are only day shift D and day off (denoted as −). Each employee has

constraints that they can work only 1 or 2 days and can has 2 or 3 days off. Each violation

of these constraints is penalized with 1 (unit penalty). For each day we require that there is

at least one employee on D shift with penalty 5 for understaffing.

Using the original x variables, we could model this problem in following way

min
x,p,n

∑

e∈{1..2}

poe,0 + poe,1 + pue,0 + pue,1 +
∑

m∈{1..4}

5num,1 (2.1)

subject to

∀e ∈ {1..2} :
∑

m∈{1..4}

xem0 ≥ 2− pue,0 (2.2)

∀e ∈ {1..2} :
∑

m∈{1..4}

xem0 ≤ 3 + poe,0 (2.3)

∀e ∈ {1..2} :
∑

m∈{1..4}

xem1 ≥ 1− pue,1 (2.4)

∀e ∈ {1..2} :
∑

m∈{1..4}

xem1 ≤ 2 + poe,1 (2.5)

13/83

2 BRANCH AND PRICE METHOD

∀m ∈ {1..4} :
∑

e∈{1..2}

xem1 ≥ 1− num,1 (2.6)

∀e ∈ {1..2}, ∀m ∈ {1..4} : xem0 + xem1 = 1 (2.7)

x ∈ {0, 1}2×4×2 (2.8)

p,n ≥ 0 (2.9)

where variable xemk is equal to 1 if and only if the employee e is assigned to shift k (denoting

k = 0 as day off) on day m. Variable pue,k (poe,k) is associated with the penalty for violations

of lower limit (upper limit respectively) for the number shift k for employee e. Finally, num,1

is slack variable for understaffing on day m.

Constraints (2.2) through (2.5) compute quality of individual schedules via penalties p

and constraint (2.6) is defining the penalty for understaffing on each day.

Instead of above formulation, we will use more efficient one by exploiting special structure

in the problem making it solvable efficiently.

2.3 Reformulation for Nurse Rostering Problem

The same problem as in previous chapter can be formulated in following way

min
y,n

2∑

i=1

16∑

j=1

cijyij +

4∑

m=1

2∑

k=1

5numk (2.10)

subject to

∀i ∈ {1..2} :
16∑

j=1

yij = 1 (2.11)

n ≥ 0 (2.12)

with variables yi,j in Figure 2.2.

14/83

2 BRANCH AND PRICE METHOD

cij : 2 0 0 0 0 0 0 2 0 0 0 2 0 2 2 4

- - - - - - - - D D D D D D D D

- - - - D D D D - - - - D D D D

- - D D - - D D - - D D - - D D

- D - D - D - D - D - D - D - D

y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9 y1,10 y1,11 y1,12 y1,13 y1,14 y1,15 y1,16

cij : 2 0 0 0 0 0 0 2 0 0 0 2 0 2 2 4

- - - - - - - - D D D D D D D D

- - - - D D D D - - - - D D D D

- - D D - - D D - - D D - - D D

- D - D - D - D - D - D - D - D

y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8 y2,9 y2,10 y2,11 y2,12 y2,13 y2,14 y2,15 y2,16

Figure 2.2: New variables and their meaning.

Each of these variables is related to some individual schedule for its employee and is

associated with the cost of that schedule. Selecting a variable contributes to the coverage

constraints included in the model.

0y1,1 + 0y1,2 + · · ·+ 1y1,16 + 0y2,1 + 0y2,2 + · · ·+ 1y2,16 ≥ 1− nu1,1 (2.13)

0y1,1 + 0y1,2 + · · ·+ 1y1,16 + 0y2,1 + 0y2,2 + · · ·+ 1y2,16 ≥ 1− nu2,1 (2.14)

0y1,1 + 0y1,2 + · · ·+ 1y1,16 + 0y2,1 + 0y2,2 + · · ·+ 1y2,16 ≥ 1− nu3,1 (2.15)

0y1,1 + 1y1,2 + · · ·+ 1y1,16 + 0y2,1 + 1y2,2 + · · ·+ 1y2,16 ≥ 1− nu4,1 (2.16)

Denoting left-hand-side of constraints (2.13) to (2.16) as matrix A, the entry aij takes

value 1 if the j-th schedule assigns D shift on i-th day and 0 otherwise. One of the optimal

solutions of the problem (2.10) is y1,4 = 1, y2,13 = 1 with the objective value 0 since it is a

lower bound on the objective.

Having all schedules yij enumerated explicitly wouldn’t help us to solve the problem faster

since there is an exponential number of them. Instead of it, we will only consider a subset

of them and generate new ones on demand. So, ideally, we would generate only exactly 2 of

them (y1,4 and y2,13) out of 2× 16 = 32. Therefore, the linear program would be tiny and it

will be solved efficiently.

The example shown above can be generalized as follows (Desrosiers and Lübbecke, 2005).

Consider following general form of linear programming problem

min
x

cTx (2.17)

subject to

Ax ≤ b

15/83

2 BRANCH AND PRICE METHOD

x ∈ X = {x ∈ Z
n |Fx ≤ w}

For the decomposition we use the fact that constraints specified by matrix A are easy to solve

on their own but the constraints in matrix F are the difficult ones. For our problem it holds

that A ≈ coverage constraints and F ≈ work regulations constraints.

Furthermore, the latter one is a block-diagonal matrix since the work regulations for

individual schedules are not coupled to each other. We exploit this structure by following

informal description — the master model will take care of constraints in the matrix A and

the so-called pricing model will repeatedly solve the task of finding individual schedules for

employees such that Fx ≤ w holds. Corresponding master problem is then

min
λ

∑

l∈L

clλl (2.18)

subject to

∑

l∈L

alλl ≤ b (2.19)

∀l ∈ L :λl ≥ 0 (2.20)

Decomposed model into this structure can be then solved efficiently by column generation

(Desrosiers and Lübbecke, 2005). This method solves the problem by generating columns into

matrix A and coefficients into vector c iteratively. At each iteration it solves problem based

on the dual formulation of (2.18) in form of minl∈L{cl − πTal} = minx∈X{c(x) − πTa(x)}

subject to that cost cl of a column al is given by the structure of the problem described by the

difficult constraints Fx ≤ w. The π denotes dual prices for the constraints (2.19). Therefore,

difficult constraints are not present explicitly in the decomposed model.

In our problem, each column corresponds to a complete working schedule for one em-

ployee. Since all the possible columns are not present explicitly in A, new ones are added in

iterative way. Furthermore, only the schedules, which are useful for the master model accord-

ing to the coverage constraints can be considered. By adding these useful schedules (columns)

iteratively, we converge into the optimal solution without enumerating all of them. This is one

of the sources of efficiency of column generation method. More detailed treatment of column

generation is presented in Chapter 2.6.

So far, we have talked only about column generation itself. One has to keep in mind,

that column generation is a continuous optimization method, thus it does not ensure integer

property of the solution. Additional process has to be employed. By splitting search space

in a similar way as it is done by the branch and bound method (Lawler and Wood, 1966),

we obtain the optimal solution (integer one) of the original problem. Thus, the branch and

16/83

2 BRANCH AND PRICE METHOD

price method is essentially the branch and bound method where each node (restricted master

model) is solved by column generation. The best integer solution found so far serves as the

upper bound while the lower bound at each node of a search tree is the objective value of the

master problem solved up to the optimality by column generation (see Chapter 4).

The next section describes specific formulation of the master problem for Nurse Rostering

Problem. It is a model assigning schedules to employees and calculating coverage constraint

penalties for selected schedules. Then, we will show how to find new columns which help us

to solve the problem up to the optimality.

2.4 Primal model

As we mentioned in Chapter 1.1, the instance of Nurse Rostering Problem consists (among

others) of a set of employees E , their skills J , a set of shifts M, time horizon and pre-

ferred/minimal/maximal coverages and their penalties for understaffing/overstaffing for each

day, skill and shift combination. These requirements are taken in account by primal (master)

model (see Figure 2.3)

min
y,n,v

∑

i∈E

∑

l∈Fi

cilyil +
∑

m∈M

∑

j∈J

∑

k∈K

cumjkn
u
mjk +

∑

m∈M

∑

j∈J

∑

k∈K

comjkn
o
mjk +

+
∑

m∈M

∑

j∈J

∑

k∈K

tumjkv
u
mjk +

∑

m∈M

∑

j∈J

∑

k∈K

tomjkv
o
mjk (2.21)

subject to

∀i ∈ E :
∑

l∈Fi

yil = 1 (2.22)

∀m ∈M, ∀j ∈ J , ∀k ∈ K :
∑

i∈E

∑

l∈Fi

ailmjkyil + numjk − n
o
mjk = Rmjk (2.23)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : numjk − n
o
mjk − v

u
mjk ≤ Rmjk −MImjk (2.24)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : − numjk + nomjk − v
o
mjk ≤ MAmjk −Rmjk (2.25)

∀i ∈ E , ∀l ∈ Fi : yil ≥ 0 (2.26)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : numjk ≥ 0 (2.27)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : nomjk ≥ 0 (2.28)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : vumjk ≥ 0 (2.29)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : vomjk ≥ 0 (2.30)

Figure 2.3: Primal master model.

17/83

2 BRANCH AND PRICE METHOD

where cil is a cost of pattern l for employee i consisting of soft cost penalties (the exact

equation for cil is (2.45)) and yil is a variable assigning a schedule l to employee i. The Fi

denotes the set of patterns of employee i. The cumjk and comjk are penalties for understaffing

(overstaffing respectively) with respect to preferred coverages Rmjk at shift k on day m for

skill j and the tumjk (tomjk) is penalty for violation of a minimal coverage MImjk (maximal

coverage MAmjk) at shift k on day m for skill j.

The numjk and nomjk are slack variables for understaffing (overstaffing respectively) on day

m at shift k for skill j. Similarly, vumjk and vomjk are also slack variables associated with the

staffing levels under (over) minimal (maximal) requirements.

Most importantly, ailmjk is equal to 1 when employee i in its schedule l is assigned to the

shift k on the day m with skill competency j, otherwise it is 0.

The objective is the sum of costs of assigned patterns and sum of penalties for violating

coverage constraints. Constraints (2.22) model the requirement that each employee is assigned

to the exactly one shift pattern. Constraints (2.23) model preferred coverage requirements for

each day, skill and shift. Finally, constraints (2.24) and (2.25) model minimal and maximal

coverages and their respective penalties.

2.4.1 Additional coverage constraints

Although the model described in Figure 2.3 is expressive enough to solve most of instances,

it is still not the most general one. Some instances pose additional constraints on desired

coverages across all the skills. This can be modeled by adding additional constraints like

∀m ∈M, k ∈ K :
∑

j∈J

(−numjk + nomjk) + wu
mk ≥ MImk −

∑

j∈J

Rmjk (2.31)

∀m ∈M, k ∈ K :
∑

j∈J

(−numjk + nomjk)− w
o
mk ≤ MAmk −

∑

j∈J

Rmjk (2.32)

∀m ∈M, k ∈ K : wu
mk, w

o
mk ≥ 0 (2.33)

and by putting penalties associated with slack variables wu
mk and wo

mk into the objective

function. Moreover, we can model other coverage constraints which consider the specific subset

of skills J with similar approach.

These additional constraints has no impact on the form of objective function of the pricing

problem — the information about altered coverage requirements is communicated to the

pricing subproblem through π dual prices.

18/83

2 BRANCH AND PRICE METHOD

2.5 Dual model

Using Lagrangean relaxation (Boyd and Vandenberghe, 2004) we can derive following

dual formulation of problem shown in Figure 2.3. In Figure 2.4 we can see full form of dual

max
γ,π,φ,ψ

∑

i∈E

γi +
∑

m∈M

∑

j∈J

∑

k∈K

Rmjkπmjk +
∑

m∈M

∑

j∈J

∑

k∈K

(Rmjk −MImjk)φmjk +

+
∑

m∈M

∑

j∈J

∑

k∈K

(MAmjk −Rmjk)ψmjk

subject to

∀i ∈ E : γi ∈ R (2.34)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : πmjk ∈ R (2.35)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : φmjk ≤ 0 (2.36)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : ψmjk ≤ 0 (2.37)

∀i ∈ E , ∀l ∈ Fi : γi +
∑

m∈M

∑

j∈J

∑

k∈K

ailmjkπmjk ≤ cil (2.38)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : πmjk + φmjk − ψmjk ≤ cumjk (2.39)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : − πmjk − φmjk + ψmjk ≤ comjk (2.40)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : − φmjk ≤ pumjk (2.41)

∀m ∈M, ∀j ∈ J , ∀k ∈ K : − ψmjk ≤ pomjk (2.42)

Figure 2.4: Dual master model.

problem. We will use dual formulation in Chapter 2.6.1 for derivation of column generation

procedure for our problem.

The most important variables in dual model are πmjk. Each of these variables is associated

with the constraint prescribing staffing levels at the related day, shift and skill. When a

restricted master problem (the one with fixed number of column) is solved up to the optimality

(e.g. by Simplex algorithm), value of πmjk corresponds to algorithm’s need to schedule (or

even not to schedule) some employees on the corresponding shift/day/skill.

2.6 Column generation

Column generation is a famous technique for solving LPs with large number of variables.

The core of the method is not to consider all the variable configurations at once, but rather

19/83

2 BRANCH AND PRICE METHOD

start with small number of them and generate the new ones on the fly as it is needed in order

to improve objective value. The point is that one can prove that all the variables presented in

a model are not needed for finding and proving optimal solution but specific subset of them

is just enough (Desrosiers and Lübbecke, 2005).

The obvious question could arise, how one can possibly know which new variable should be

generated at the given step? The answer lies in the dual formulation of the given problem —

find the constraint in the dual problem which corresponds to variable we wish to generate in

master problem and find cutting plane in that form such that it will make current dual solution

infeasible. This gives us a new variable for the primal program (see Figure 2.5). Procedure

repeats until we are able to find some cuts in the dual problem which violate current dual

solution. If there is no such a cut, primal (and also the dual) programs are solved up to the

optimality.

Now the question is how to find such cuts. In order to do that, one has to design dedicated

algorithm taking into account the form of the dual constraint which we want to be violated. We

call this task a subproblem (pricing problem) and the corresponding algorithm a subproblem

(pricing) solver. Computational complexity of the subproblem solver is problem-specific. For

some problems, we can find polynomial time computable subproblems or pseudopolynomial

algorithms (for example in cutting stock problem where the subproblem is a knapsack problem

(Korte et al., 2002)). In other cases the complexity can be NP-hard without any known

pseudopolynomial algorithm.












c1 c2 · · · cn

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

. . .
...

...

an1 an2 · · · ann bn


















π dual variables
pricing solver
−−−−−−−−→












cn+1

a1,n+1

a2,n+1

...

an,n+1












add new column
−−−−−−−−−−→












c1 c2 · · · cn cn+1

a11 a12 · · · a1n a1,n+1 b1

a21 a22 · · · a2n a2,n+1 b2
...

. . .
...

...
...

an1 an2 · · · ann an,n+1 bn












Figure 2.5: Column generation procedure. It generates a new column that could improve primal objective

based on the current dual solution.

Our subproblem is usually viewed as a resource constrained shortest path on acyclic graphs

problem. This is identified (Irnich and Desaulniers, 2005, pp. 4) to be in NP-hard complexity

class, which is the result consistent with the previous statement that Nurse Rostering Problem

is contained within NP-hard complexity class.

From the LP solver point of view, the column generation procedure is also computation-

ally efficient since we can use previous basis as a starting point for the next iteration with

additional variables. Therefore, it is not solving the problem every time from scratch.

One has to keep in mind that column generation does not ensure the integer property

of the solution. As we said before, it is the solution method for continuous optimization

20/83

2 BRANCH AND PRICE METHOD

problems. In our problem we have to ensure integer property by different mechanism called

branching (see Chapter 4.5).

We offer two different perspectives on the intuition why the column generation works in

the following paragraphs below. Then, in the next chapter, we formally derive the column

generation procedure for our problem.

Primal perspective Column generation generates variables (columns in Simplex tableau)

for the primal program. This step cannot increase the objective value since we can always set

the new variable yil to zero in order to obtain previous solution which is also feasible in the

modified problem. Moreover, selecting (even part of) this variable can decrease the objective

value because it could fulfill the coverage constraints (2.23) better.

Dual perspective In the dual task (2.34) we are adding (the most) violated constraints

in current dual solution into the model. To see why it is needed, one needs to consider the

weak duality theorem (Boyd and Vandenberghe, 2004) which states that the objective value

of the dual will be always less or equal to the primal objective value (i.e. the dual is a lower

bound on the primal). Since we are restricting polyhedron over which the maximization is

performed, the dual objective remains equal or decreases. This will weaken a lower bound on

the primal objective which consequently can be decreased by the solver. Essentially, we are

trying to cut out the optimal dual feasibility polyhedron which corresponds to the optimal

set of variables in primal. See Figures 2.6a and 2.6b for the visualization.

21/83

2 BRANCH AND PRICE METHOD

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

0

20

40

60

80

100

primal

dual

(a) Current dual solution

0

20

40

60

80

100

dual

primal

(b) Making dual solution infeasible

Figure 2.6: Optimization in dual space over 3 variables. Displayed polytope is a feasible region of dual LP.

Inserting a cutting plane (a new schedule) (see Figure 2.6b) makes current dual solution infeasible, thus it

lowers the dual objective value and consequently reduces the primal objective.

2.6.1 Derivation

In order to make current dual solution infeasible, one has to find a cut, which will be

violated. We have constraints in form of (2.38) in the dual formulation of the master problem.

There is an exponential number of them, however, just a subset of them is active in the

optimum. One has to solve a problem of finding ail in order to find cuts from this set which

are violated

γi +
∑

m∈M

∑

j∈J

∑

k∈K

ailmjkπmjk > cil (2.43)

Obviously, it is equivalent to solving

0 > cil − γi −
∑

m∈M

∑

j∈J

∑

k∈K

ailmjkπmjk = µi (2.44)

22/83

2 BRANCH AND PRICE METHOD

The expression on right-hand-side of (2.44) is called the reduced cost, thus we say that we

are looking for columns with negative reduced cost (µi < 0). The cil is the cost of pattern l

under a working contract and shift preferences of employee i. It can be rewritten in terms of

original variables as

cil(x) =
∑

p∈Pi

clbp max{0, lbp −#p}+ cubp max{0,#p− ubp}+
∑

m∈M

∑

k∈K

pimkxmk (2.45)

where pimk is a penalty for not assigning shift k on day m to employee i, Pi is a set of patterns

for employee i, #p is number of matches of pattern p in schedule x and clbp (cubp) is a penalty

for violation #p of bound lbp (ubp respectively).

2.7 Algorithmic description

For complete description of the algorithm see pseudocode Algorithm 1.

Algorithm 1: Branch and price

1 initColumns, UB ← heuristics()

2 queue← RMP (initColumns)

3 while queue is not empty do

4 RMP ← queue

5 do

6 solution← solve(RMP)

7 yil ← pricing(RMP)

8 if lb(RMP) > UB then

9 go to 3.

10 end

11 add column yil into the RMP

12 while column with negative reduced cost exists;

13 if solution is integer-valued then

14 if obj < UB then

15 UB ← obj

16 end

17 else

18 if obj ≤ UB then

19 queue← branch(RMP)

20 end

21 end

22 end

23/83

2 BRANCH AND PRICE METHOD

Individual parts of the branch and price algorithm are described in the following pages:

heuristics is described in Chapter 4.2 , solve in Chapter 4, pricing in Chapter 3, lb in

Chapter 4.4 and branch in Chapter 4.5.

24/83

3 PRICING PROBLEM

3 Pricing problem

Pricing problem provides new columns which are candidates for entering the Simplex basis

and, thus, decreasing the primal objective value. In our case, the pricing problem represents

NP-hard problem which has to be solved repeatedly. Since it is used frequently in the branch

and price algorithm, its runtime must be as low as possible. In following sections we show

different methods for solving it and ways for speeding it up.

This chapter is organized as follows: first, in Chapter 3.1 we formally define the pricing

problem, then in Chapter 3.3 we will show different solution methods we have developed,

in Chapter 3.4 we will show how the exact pricing method can be turned into an effective

heuristics and in Chapters 3.5 through 3.7 we conclude with some theoretical properties of

the pricing problem.

3.1 Definition

The pricing problem is given by the following mathematical programming model

min
x
−γi −

∑

m∈M

∑

k∈K

πmkxmk + cil(x) (3.1)

subject to

∀m ∈M :
∑

k∈K

xmk = 1 (3.2)

x ∈ {0, 1}|M|×|K| (3.3)

where x are original variables (assigning days to the shifts), γi and πmk are constants in R

and cil is defined as in (2.45).

The description of the equation (2.45) mentions term number of matching frequently.

One way how to understand it is to treat the employee’s schedule as a finite word from the

alphabet K. A matching refers to whether it is contained in regular language defined by a

regular expression representing the pattern (see Figure 3.1). Sometimes the pattern is matched

multiple times in the schedule, so we sum up occurrences.

· · · − E E − N D · · ·

︸ ︷︷ ︸

pattern ”(E or D), Off, N” is matched

Figure 3.1: An example of a pattern matching in a schedule.

25/83

3 PRICING PROBLEM

Due to historical reasons the pricing problem in Nurse Rostering — searching for a schedule

for individual employee — is often described as a resource constrained shortest path problem

(Irnich and Desaulniers, 2005) (see Figure 3.2). The reason is that in the past, most of the

approaches did not consider patterns as soft constraints (Burke et al., 2004), therefore, a

certain number of appearances of such pattern in a schedule was consider as resource on the

path, which was limited (hence the word constrained).

S

N1

D1

Off1

N2

D2

Off2

N3

D3

Off3

N4

D4

Off4

T

Figure 3.2: Graph structure for the pricing problem. Vertical layers correspond to days and vertices to shift

types. We are interested in finding the cheapest s− t path which satisfies given constraints.

However, the modern treatment of Nurse Rostering Problem (see Chapter 1.1) has only

a little connection with previous point of view. We consider number of pattern matching in

the schedule as a soft constraint, thus we cannot cut off this ”path” in a simple way and

therefore, it makes only a little sense to imagine them as paths.

In fact, soft constraints are not constraints in a sense that they would restrict the set

feasible solutions. They are actually changing the objective function of the problem. If a soft

constraint is ”violated”, it adds a penalty to the objective. Therefore, every soft constraint is

actually presented in the objective in some way. Essentially, there are no constraints in our

pricing problem, just a complex, non-convex objective function spanning across a space of

schedules, which is given by K|M|. Moreover, the objective function changes during iterations

of column generation. Since we consider very general form of patterns defining quality of a

schedule, there is no obvious way how to prune the search space.

These properties of the problem hints to the branch and bound based solution method.

Fortunately, we were able to derive a strong lower bound based on the linear programming

relaxation (see Chapter 3.5) which helps significantly to speed up the algorithm. It makes it

very fast in practice and furthermore it allows to control the quality of solutions produced by

the pricing algorithm (see Chapter 3.4.1).

Moreover, since problems that are being solved by the pricing algorithm are not the

26/83

3 PRICING PROBLEM

random ones but rather tend to have some reasonable structure (it is unlikely that individ-

ual schedules in optimal roster will contain shift assignments scattered randomly across the

planning horizon) we can derive some properties of the objective function automatically by

machine learning algorithms and apply gained knowledge throughout the solution process

(see Chapter 5.2).

3.2 Computational complexity

Most of papers argue about the complexity of Nurse Rostering Problem by stating that for

a single employee it is a resource constrained shortest path (RCSP) problem whose complexity

is NP-hard as shown in (Irnich and Desaulniers, 2005). However, we were not able to find

formal proof of the reduction of the pricing problem with soft constraints to the RCSP. Thus,

we will show what is the complexity of decision version of our pricing problem below.

Proposition Determining whether the column with negative reduced cost exists is NP-

complete.

Proof We show that 3-SAT3 is polynomially reducible to the Pricing Problem. For each

instance of 3-SAT we show how to define an instance of pricing problem such that given

3-SAT instance is satisfiable if and only if the given instance of pricing problem (i.e. column)

has a negative reduced cost.

Suppose we have a 3-SAT instance with n literals and m clauses. We define a pricing

instance with length of planning horizon n with 2 shift types (e.g. − and D). We set

∀m ∈ {1 . . . n}, ∀k ∈ {−, D} : πmk := 0

γi := −0.5

For each clause p we define a match with lower bound lbp := 1 and upper bound ubp := 3

with costs clbp = cubp := 1. Each match has exactly 3 patterns to be matched — for each literal

xi in clause p we add a pattern D with starting day i and for literals in negative sense ¬xj a

pattern − with starting day j. This reduction is clearly polynomial.

Now we show the problem equivalence. Suppose we have a satisfiable formula in 3-CNF.

Therefore, at least one literal in each clause p must be true. Since it holds, corresponding

pattern will be matched, thus the lower bound of the match lbp will not be violated. When

we consider the definition of the soft cost penalties of the pricing problem (2.45), it is easy

3It is the problem to decide whether the given propositional logical formula in 3-CNF is satisfiable.

27/83

3 PRICING PROBLEM

to see that there exists a column with reduced cost −0.5, i.e. it is the negative one. In other

way around, suppose that a column with negative cost exists. Since this will only happen

when there are no soft constraints violated (at least one pattern is matched in each match),

it implies that every clause of the 3-CNF formula is true, i.e. the formula is satisfiable.

Up to this we showed that 3-SAT ⊲p Pricing Problem. Now we show that Pricing Problem

is contained in NP which concludes the proof. This is easy to see, since we have p matches

where each of them can be evaluated in constant time. Since p is polynomial in n we compute

reduced cost in polynomial time and compare it with 0. �

Proposition Pricing Problem is not polynomially approximable within ǫ > 0 unless P =

NP.

Proof Using reduction of 3-SAT problem to the Pricing Problem shown above we will show

that MAX 3-SAT4 Problem polynomially reduces directly to the Pricing Problem. We con-

struct an instance of the Pricing Problem such that number of unsatisfied lower bounds on

pattern matches is minimized. Since MAX 3-SAT is not polynomially approximable within

ǫ (Pardalos and Xue, 1994) we conclude that Pricing Problem cannot be polynomially arbi-

trarily approximated also. �

3.3 Exact solution methods

Having an exact solution method for pricing problem is necessary — at some stage algo-

rithm has to prove that restricted master problem converged, i.e. no column with negative

reduced cost exists (see diagram in Figure 2.1). As we proved above, this task is NP-complete,

thus it is hard to solve it in reasonable time like we demand.

3.3.1 Branch and bound with domination rules

We have designed an exact algorithm based on branch and bound method with dominance

rules on partial solutions. It prunes nodes in the search tree (i.e. partial solutions) not only

based on lower and upper bounds but also by reasoning about their structure.

For each partial solution it keeps track on the number of matching of each pattern and

lower bound on its objective value. Based on the structure of patterns, one is able to reason

4It is the problem where we want to maximize the number of satisfied clauses in given 3-CNF propositional

logical formula.

28/83

3 PRICING PROBLEM

whenever for given two partial solutions of the same length one dominates other (i.e. its

objective cannot be worse than the other) or if they are incomparable. When one of the

partial solutions is dominated by another one, we can prune whole subtree of that solution

(see Figure 3.3). The efficiency of the algorithm depends on the power of the domination

technique.

E

EE ED EN

EEE EED EEN EDE EDD EDN ENEEND ENN

ENEEEENE

Figure 3.3: An illustrative example of the search tree with some dominated partial solutions. Consider a

constraint where we want to have at least two E shifts in schedule. Partial schedule EDD is dominated by EEN,

EDN is dominated by ENE.

However, since we are mostly dealing with soft constraints, design of such procedure is

not trivial. We were able to develop following method.

Dominance rule Our dominance procedure compares two partial solutions of the same

length. The domination is resolved based on the number of matches of each pattern. We

divide patterns into two groups and patterns from each group are treated from two different

perspectives — constraint on minimal and constraint on maximal matching. We frequently

use the fact that number of pattern matches is non-decreasing. This is easy to see since adding

a new shift to the end of the partial schedule cannot undo the pattern match done before,

therefore it can only stay the same or increase.

N E − N · · ·

π1−: 0 π3−: 0 π3−: 0 π4−: 0 · · ·

π1E : +100 π2E : -100 π3E : +100 π4E : +100 · · ·

π1D: +100 π2D: -100 π3D: -100 π4D: +100 · · ·

π1N : -100 π2N : +100 π3N : +100 π4N : 0 · · ·

Constraints:

a) Min 1 D, Max 3 D

b) Max 1 NE

Figure 3.4: An illustrative example of resources. Partial solution NE-N is associated with resource vector

[−200, 0, 1]. The first element is associated with the partially evaluated reduced cost, the other are resources

associated with constraints a) and b). Dominance procedure compares vectors of corresponding partial solutions

element by element.

Each partial solution is characterized by a number of matching for each pattern from the

29/83

3 PRICING PROBLEM

set Pi by a lower bound on its reduced cost. We refer to each of those numbers as a resource.

A resource in partial solution a is denoted #a (see example in Figure 3.4).

As we said, patterns are divided into two groups. The first group contains patterns with

unit length and the second one contains patterns spanning across more days. We define

dominance on separate resources as follows:

1. lower value of the lower bound on the reduced cost dominates the higher one

2. for patterns of unit length

(a) minimum matching:

i. if #a < lb and #b < lb then the solution with higher # dominates the other

ii. if #a < lb and #b ≥ lb then b dominates a

iii. if #a ≥ lb and #b ≥ lb then equivalent

(b) maximum matching:

i. if #a ≤ ub and #b ≤ ub then the solution with lower # dominates the other

ii. if #a ≤ ub and #b > ub then a dominates b

iii. if #a > ub and #b > ub then the solution with lower # dominates the other

3. for longer patterns

Even though patterns of unit length are a special case of longer ones, we treat them

separately due to following notion of future matching. We can reason about patterns

with length greater than 1 based on the possibility they will match on current ending

of the partial solution. Suppose a pattern of length k and denote ∀i ∈ {1 . . . k − 1}

possibilities of overlapping the pattern with the ending of partial solution a as #M
(i)
a .

Then

(a) minimum matching:

i. if #a ≥ lb and #b ≥ lb then equivalent

ii. else if #a < lb and #b ≥ lb then b dominates a

iii. else

A. if ∃i, j : #M
(i)
a > #M

(i)
b and #M

(j)
a < #M

(j)
b then a and b are incompa-

rable

B. if ∀i : #M
(i)
a ≥ #M

(i)
b and ∃j : #M

(j)
a > #M

(j)
b then a dominates b

C. else equivalent

(b) maximum matching:

i. if ∃i, j : #M
(i)
a < #M

(i)
b and #M

(j)
a > #M

(j)
b then a and b are incomparable

30/83

3 PRICING PROBLEM

ii. if ∀i : #M
(i)
a ≤ #M

(i)
b and ∃j : #M

(j)
a < #M

(j)
b then a dominates b

iii. else equivalent

4. for periodical patterns

We denote a number of possible matching of the pattern (based on its starting day and

structure) in the rest (non-allocated) of the schedule a as #Fa.

(a) minimum matching:

i. if #a < lb and #b < lb then the solution with higher # dominates the other

ii. if #a < lb and #b ≥ lb then b dominates a

iii. if #a ≥ lb and #b ≥ lb then equivalent

(b) maximum matching:

i. if ub ≥ #a +#Fa and ub ≥ #b +#Fb then

A. if #a ≤ ub and #b > ub then a dominates b

B. if #a > ub and #b ≤ ub then b dominates a

ii. if #a > ub and #b > ub then the solution with lower # dominates the other

iii. else a and b are incomparable

When the solutions are incomparable then they cannot dominate each other. However,

when the procedure states equivalent it means, that both resource values do not contribute

to the final resolution of the dominance procedure, therefore the particular resources can be

omitted.

Finally, partial solution A dominates partial solution B if and only if A is not dominated

on any resource by solution B and A dominates B on at least one resource. One can show,

that dominance procedure defined as above always preserves at least one optimal solution.

Search procedure The search procedure of the algorithm works as described in (Burke

and Curtois, 2014). Essentially, it is a breadth-first search with limited number of expanded

solutions in a queue. The queue contains a Pareto optimal set of partial solutions of the

same length. When the limit of queue size is exceeded at some depth, algorithm stores Pareto

optimal partial solutions found so far and continues searching to the last depth level. Then, it

updates upper bound with the best complete solution found so far, increases maximal queue

size and starts again from the point where it overflowed last time. If no overflow happened,

algorithm found at least one optimal solution at the last level.

The weakness of this dominance rule is that it is based on the notion of Pareto optimality

(Censor, 1977). With the increasing number of resources (patterns) it is becoming more likely

31/83

3 PRICING PROBLEM

that solutions will be evaluated as incomparable since it is sufficient that a single resource in

one solution dominates the resource in the other solution and for different resource vice versa.

Thus, we observed, that this method is not suitable in practice even though similar method

is claimed to be used in (Burke and Curtois, 2014).

3.3.2 Mixed-Integer Linear Programming

The problem (3.1) can be modeled by following MIP (mixed-integer linear mathematical

program)

min
x,s,ǫ

−
∑

m∈M

∑

k∈K

(πmk − pimk)xmk +
∑

l∈Pi

cubl ǫ
ub
l + clbl ǫ

lb
l (3.4)

subject to

∀m ∈M :
∑

k∈K

xmk = 1 (3.5)

∀l ∈ Pi, I ∈ F (l) :

I+|l|−1
∑

m=I

∑

k∈l(m)

xmk − |l|+ 1 ≤ sl,I (3.6)

∀l ∈ Pi :
∑

I∈F (l)

sl,I − ǫ
−
l ≤ ubl (3.7)

∀l ∈ Pi :
∑

I∈F (l)

sl,I + ǫ+l ≥ lbl (3.8)

∀m ∈M, ∀k ∈ K : xmk ∈ {0, 1} (3.9)

∀l ∈ Pi, I ∈ F (l) : sl,I ∈ {0, 1} (3.10)

∀l ∈ Pi : ǫ±l ≥ 0 (3.11)

where πmk are the dual multipliers taken from the dual solution of the restricted master

problem (see Figure 2.5), the pimk is penalty for not assigning shift k on day m, cubl (clbl) is a

cost of violation of maximal (minimal respectively) matching of a pattern l, F (l) is a set of

indicies of feasible matching starts of the pattern l, l(m) is a set of shifts which can take place

on day m in pattern l, lbl (ubl) is a minimum (maximum respectively) number of matches for

pattern l and |l| stands for the length of a pattern l.

Compare objective (3.4) to the pricing problem definition (3.1). The term γi is dropped out

of the objective since it is a constant. Soft cost penalty cil computation is done by introducing

additional binary variables sl,I for each matching position I of the pattern l. These variables

are constrained in such a way, that they are taking value 1 if the pattern l is matched starting

from position I. They are summed up and compared to the allowed bounds. If a bound is

violated, it increases the objective via ǫ±l slack variable.

32/83

3 PRICING PROBLEM

For the majority of constraints which are posed in the benchmark instances this model

is complete. However, it misses e.g. constraint for minimal/maximal workload across the

schedule or its individual parts. Other thing missing in the formulation above is a quadratic

penalty function for the violation of constraints.

Since we deal with integer domain (e.g. there cannot be 2.71 patterns present) we can

model the quadratic in terms of MIP using following construction where we introduce new

variables zt and impose constraints in form of

ǫl = 0z0 + 1z1 + 2z2 + . . . =
∑

t

tzt

∑

t

zt = 1, zt ∈ {0, 1}

and put to the objective scalar multiplication of the vector z with the designed cost vector

c = [0 1 4 9 16 . . .]T . Note that one needs an upper bound on the number of violations in

advance because there must be a finite number of zt variables.

The main disadvantage of the (3.4) model is that the number of variables grows fast (but

it is still polynomial) with the number of patterns present in the problem (sl,I variables).

Overall, MIP seems as a good way to solving the pricing problem. In our case we deal

with the NP-hard problem without any obvious structure, thus we have essentially only the

branch and bound method to search this space. Since the LP relaxation is very strong (see

Section 3.5), we have also very good lower bound on the integer objective, thus, the branch

and cut implemented in IP solver is effective solution method.

3.3.3 Informed state space search

The problem of finding the working schedule for the individual employee can be viewed

as a state-space search problem. Each state is a complete or partial schedule. The actions we

consider are extensions of the partial schedule (one for each shift type). Applicability of an

action in a state is given by the branching constraints (see Chapter 4.5). Moreover, there is a

cost function associated with each state. The initial state is an empty schedule with the cost

of 0 and a goal state(s) are the ones which are complete schedules with minimum value of the

cost function. Thus the search space is finite, but very large.

With this settings it essentially coincides with the branch and bound method. We used

the informed search method — A* algorithm (Russell et al., 1995). It is the branch and bound

like method which specifies the order of the nodes in which they are expanded. We designed

an admissible heuristics for that (in context of branch and bound framework it is called a

lower bound). It is computed as

33/83

3 PRICING PROBLEM

h(s) =

n∑

m=s

max
k∈K

πmk +
∑

l∈Pi

cubl max{0,#l − ubl} (3.12)

Since the large number of partial solutions must be evaluated, we have implemented the

delta evaluation scheme — it allows us to evaluate pattern matching only at the last position

rather than in whole schedule. Since the evaluation is the most time consuming operation in

this pricing algorithm it leads to the significant speedup.

Although computation of h(s) is fast, it is obviously much weaker in contrast to the

linear programming relaxation of (3.4). Thus, this approach pays off only for small scheduling

horizons. We found out that A* is able to outperform the MIP based pricing in practice for

horizon length n ≤ 14 (two weeks).

3.3.4 Constraint programming

Constraint programming (CP) is more suitable for testing feasibility rather than optimiz-

ing. Thus, we have started by designing a CP model for finding columns without any violation

of soft constraints to see how it will perform.

The model is following

∀m ∈M : Xm ∈ K (3.13)

∀m ∈ {M|m mod 7 = 5 ∨m mod 7 = 6} : (Xm > 0) ⇐⇒ Bm (3.14)

aggregate(B) ≤ ub (3.15)

global cardinality(k0 −KNum0, . . . , k|K| −KNum|K|) (3.16)

∀k ∈ K : KNumk ∈ {lbk . . . ubk} (3.17)

∀l ∈ Pi : automaton(X,Ll) (3.18)

where Xm is a decision variable assigning shift on day m. The Ll is a regular language defined

by the pattern l ∈ Pi. The global constraint automaton ensures that X is accepted by an

automaton equivalent with the language Ll (see Figure 3.5 for an example of such language).

We further used global cardinality constraint to force assignment of a certain number

of each shifts in the schedule (since this is common constraint) in order to strengthen the

formulation. Bounds on the occurrence for each of them can be modeled by a single number

(the case when desired minimum equals to maximum) or just using additional variable (in

our case KNumi with appropriate domain).

The constraint (3.14) is so called reified constraint. The Bm is a boolean variable taking

value of 1 if and only if the Xm is not assigned to the Off shift. Using Bm variables and

34/83

3 PRICING PROBLEM

Off

On

On

Off

Off

On All

S0

S1

S2 S3

Figure 3.5: Example of an automaton rejecting On-Off-On pattern. Initial state is S0, accepting states are

S0...2.

appropriate aggregate function we can model the requirements for working shifts that can

occur during the weekends. Once again, the purpose of these additional constraints is to

improve the strength of the model.

It is possible to further extend the model into the form where we state constraints

∀m ∈M : element(Xm,πm, Ym) (3.19)

−γi −
∑

m∈M

Ym +
∑

l∈Pi

cl < 0 (3.20)

where element constraint ensures that Ym takes Xm-th value of πm. The cl is a penalty

calculated by automaton constraint. These additional constraints can be used to test whether

the column with the negative cost exists, i.e. to check whether the column generation has

converged. However, as we will show below, even with these expressive constraints the model’s

performance is not impressive.

Computational results Value/variable ordering does matter. We observed that fail-first

principle on the most constrained variable with descending value ordering is on average supe-

rior approach for solving our model. See detailed results in Table 3.1. Variable ordering: left-

most selects the leftmost variable first, min (max) selects the leftmost variable with the small-

est lower (greatest upper) bound, ff selects the leftmost variable with the smallest domain, ffc

selects the variable with the smallest domain, ties are breaked by the most constrainted first.

Value ordering: up explores domain in ascending order and down in descending order. For

each combination of variable/values ordering Table 3.1 reports number of backtracks needed

to to solve the problem and the overall running time.

During the tests we have used multiple automaton constraints — one for each pattern.

We have also tried to do the intersection of individual languages and then minimize resulting

35/83

3 PRICING PROBLEM

Backtracks/Runtime [-/ms]

leftmost min max ff ffc

Instance up down up down up down up down up down

Azaiez 3104/210 4/30 549/70 4/30 2208/260 4/30 3104/230 4/40 270/70 0/30

Millar 1/20 18/50 1/50 14/40 1/20 2/40 1/40 18/20 2/20 25/20

Table 3.1: Computational results of constraint programming model for some instances. First entry of each

cell corresponds to the number of backtracks during the solution and the second one shows the running time.

automaton. However, the results were actually slightly worse than when we used separate

constraints.

We did not perform measurements for all test instances, since based on preliminary results

in Table 3.1, we were not impressed by the power of the CP on this problem enough to continue

research in this direction.

3.4 Heuristic methods

It is not necessary to find optimal solution for the pricing problem and prove it in every

iteration of column generation. Finding column with the largest negative reduced cost does

not guarantee that it will enter the basis, it is just more likely to do so. This means that during

some iterations of column generation it is not necessary to find optimal column with respect

to the definition (3.4), but even just some good-quality solutions with negative reduced cost

could do the same job as the optimal solution. On the other hand, one has to keep in mind

that column with positive reduced cost cannot improve the objective of the primal problem

(at least not immediately in current iteration).

Essentially, the only moment when it is necessary to run the exact algorithm is the stage,

when the proof is needed for the master model being solved up to the optimality (e.g. before

branching, for obtaining a lower bound etc.).

3.4.1 Heuristic MIP

We can easily turn our MIP formulation for pricing problem into an effective heuristics.

We set parameters for IP solver to solve the problem up to the specified gap, i.e. proportion

between lower bound and upper bound (usually something from 0.5% to 15%). Moreover, we

update gap parameter dynamically based on the speed of convergence of the primal objective.

If the convergence is fast, it is presumably sufficient to solve problems heuristically. When

the convergence is becoming slow, it starts decreasing the gap. When the column generation

almost converged, it sets gap to zero, therefore it turns into the exact method once again.

36/83

3 PRICING PROBLEM

More detailed treatment of the heuristic MIP pricing can be found in Chapter 6.3.

3.5 Lower bound

An obvious lower bound on the reduced cost (3.1) is

lb = −γi −
∑

m∈M

max
k∈K

πmk (3.21)

since ∀x ∈ {0, 1}|M|×|K| : cil(x) ≥ 0. When one constructs partial solutions, e.g. left-to-right

as our A∗ does it, we can strengthen this bound based on the pattern matches which are over

their upper bound ubl. However, in practice, this bound is relatively weak.

The other way for obtaining the bound is to deal with the whole problem at once. When

relaxing on integer property of constraints in formulation (3.4), the new problem can be used

as a lower bound for pricing problem. This is easy to see since we are minimizing over the

larger set, thus objective value in the optimum will not be greater than the true value of (3.1).

The advantage of linear relaxation of (3.4) is that it gives us polynomial time computable

bound in contrast to the original NP-hard task.

We empirically observed, that the power of linear relaxation of the model (3.4) is very good,

i.e. on average we obtain values about 5% lesser than the integer optimum (see Figure 3.6).

One can see that linear relaxation tends to be weaker at the end of the column generation.

In our opinion, this is caused by the fact, that it gets harder to find columns with negative

reduced cost at the end of the process. Therefore, more binary variables in the MIP model

are used, which causes troubles for relaxation.

Iteration [-]
0 10 20 30 40 50 60

re
la

x
a
ti
o
n
 g

a
p
 [
%

]

-2

0

2

4

6

8

10

12

14

16

18

Figure 3.6: LP relaxation is tight. Example gap between IP optimum and LP solution for Azaiez instance.

It is worth it to note, that this bound can be also used as an admissible heuristics for the

informed search described in Chapter 3.3.3.

37/83

3 PRICING PROBLEM

3.5.1 Tighter bound via Semidefinite Programming

Different way how to obtain a relaxation is to formulate the problem as a Semidefinite

Programming Problem (SDP) — it is a special case of convex optimization problem which

is more general than the linear and quadratic programming problems. In fact, they are just

special cases of SDP. In paper (Alizadeh, 1995, pp. 25-27) the method of SDP relaxation is

described, which in theory gives us tighter relaxation of 0-1 linear programming problem than

regular LP, i.e. it creates non-linear convex hull of feasible points which is closer to the integer

hull of the original problem. Importantly enough, a SDP problem can be solved in polynomial

time like linear programming.

The particular example is weighted maximum stable set problem, where we are asked to

pack a set of vertices of a graph which give us the highest utility given that we are forbidden

to select both vertices connected by an edge. It can be proved, that SDP relaxation of the IP

formulation of the problem already contains some classes of specific cuts such as clique cuts,

odd hole cuts and others implicitly which are important in order to solve original IP problem

fast.

However, considering the power of linear relaxation, there is arguably not so much poten-

tial for SDP relaxation to be useful in our problem since SDP relaxation’s size grows with

the square of the number of constraints in the IP formulation.

3.6 Upper bound

Since we are interested in columns with negative reduced cost only, we have an obvious

upper bound on the reduced cost (3.1). When a constant term is dropped out of the objective

as in model (3.4), the upper bound became the γi term.

Even though obtaining γi at each iteration is for free, it is not a very tight bound, especially

from the beginning of the column generation. We will address this issue in Chapter 5.2.

3.7 Additional remarks

Cutting planes in dual master problem Pricing problem, in general, can be accelerated

by putting additional valid inequalities into the dual formulation of the master problem. This

would reduce domains of dual variables and consequently could improve column generation

convergence. However, in order to preserve optimality of the branch and price algorithm, one

has to assure that putting a cutting plane into the dual preserves at least one optimal solution

of the pricing problem.

38/83

3 PRICING PROBLEM

The stabilization of the column generation can be seen as a form of dual cutting planes,

i.e. it restricts the domains of the π variables. We will discuss it in details in Chapter 6.2.1.

Single skill When we recall the equation (3.1) defining the pricing problem, it can be seen

that we are using πmk variables although the dual master model (Figure 2.4) contains πmjk

variables. The reason is that we have assumed, that every employee has exactly one skill, thus

for the given subproblem (finding a schedule for single employee) j is fixed. This holds for

most of the benchmark instances (Curtois, 2014).

39/83

4 MASTER PROBLEM

4 Master problem

Under our decomposition scheme, the master problem takes care of coupling employees’

schedules into the complete roster. It is done in a way, such that the objective is minimal. The

objective combines penalties for the coverage requirements and costs of individual schedules.

Solution of restricted master problem provides dual multiplies for the pricing problem. It

generates a new column, which could enter the basis of the restricted master problem. If it

does, we obtain different solution, hence the new column can be constructed.

This chapter is organized as follows. In Chapter 4.1 we define the master problem, in

Chapter 4.2 we discuss ways to obtaining initial solution, then in Chapter 4.3 properties of

lower bound provided by the master problem are described. In Chapter 4.4 we show usage of

Lagrangian relaxation, Chapter 4.5 deals with branching mechanisms and in Chapter 4.6 we

conclude with some improvements for obtaining the upper bounds.

4.1 Definition

The master problem takes form of set covering polytope (Barnhart et al., 1998). Given

some set of variables, their costs and constraints on them, it selects a feasible subset of them

with the minimal sum of their costs and penalty for constraint violations.

Master problem is modeled by the linear program in Figure 2.3. By examining its con-

straints it is clear, that it cannot be infeasible unless there is an employee with empty set

Fi. Model’s abilities also include 4-piecewise linear penalty function for staffing requirements

(preferred and both minimal/maximal coverages penalties with different slopes) for each day

and shift type (see Figure 4.1). These coverage requirements can be specified across subsets

of skill competencies independently.

Moreover, it allows employees to express their preferences for each

• shift on/off assignment

• day on/off assignment

with individual weights. The particular day-shift assignment can be also frozen (i.e. hard

constrained assignment).

40/83

4 MASTER PROBLEM

 MI
mjk

 R
mjk

MA
mjk

p
e

n
a

lt
y
 [

-]

0

2

4

6

8

10

12

14

16

preferred penalty
min/max penalty
combined penalty

Figure 4.1: An example of coverage penalties.

4.2 Initial solution

In order to start the column generation, the master problem must be supplied with an

initial feasible solution. In the master problem (2.21) it is rather easy. Any set of columns

will do (until there is at least one for each employee) since we consider nearly all constraints

as the soft ones. However, completely random initial solution is not usually desired.

From the dual space point of view, the initiation heuristics serves, after the first resolving

of the restricted master, as an estimate of the optimal dual prices π. When the initiation

solution does not cut out the dual feasibility polyhedron sufficiently enough, more iterations

of column generation will be needed in order to find the optimum of the master problem.

On the other hand, an inappropriate initial solution can guide the column generation to

the ”local optima” which may be hard to escape, i.e. consecutive dual solutions will be far

from the optimal ones, thus the pricing problem will cut out unnecessary parts of feasibility

region repeatedly.

4.2.1 Single-pass heuristics

An initial solution can be obtained by the pricing problem solver. We proposed the fol-

lowing method. It randomly selects the first employee and generates a schedule for him/her

with the minimum soft cost violation with respect to him/her working preferences. For that,

it uses the same pricing solver as in column generation procedure but with zero dual prices

for assignments constraints. Then, it iteratively solves pricing problem for all employees using

41/83

4 MASTER PROBLEM

dual prices modified by the information about required coverages and assignments already

made in previous steps (see Figure 4.2). The equations generating a column for employee t+1

are based on the state of the partial roster created up to employee t. They are stated as

γ
(t+1)
i ← +∞ (4.1)

π
(t+1)
mjk ←







0 if k = 0
cu
mjk

|E|−t
(Rmjk −R

(t)
mjk) if R

(t)
mjk < Rmjk and k > 0

−comjk(R
(t)
mjk −Rmjk + 1) otherwise

(4.2)

The assignment πmj0 = 0 is made since we allow to take day off without penalization

because no penalties for overstaffing/understaffing at day off are imposed (we consider the

off shift as k = 0). However, when coverages R
(t)
mjk, k > 0 of partial roster are under the desired

level, we increase importance of those shifts proportionally to the penalty of over staffing and

employees left for allocation. The intuition is that if some coverages are not yet satisfied but

we still have many employees to assign, it is not an issue because some of the unscheduled

employees will cover those shifts in next steps. On the other hand, if some preferred coverages

are already fulfilled, we will adjust our preference to not to place shifts there by the factor of

over staff penalty.

When the problem description does not provide a preferred coverage Rmjk but only min-

imal and maximal ones, we can use them directly in updating equations (4.1) and (4.2) or

just estimate the ”preferred” coverage as average of both of them.

As we mentioned, we use pricing solver for deriving columns for the initial solution. When

the MIP based pricing solver is employed, we do not solve problem up to the optimality, but

with specified gap of 5% (see Chapter 3.4.1).

4.2.2 Pattern pump heuristics

We proposed an initial heuristics that generates all schedules for employees with given

working contract with desired soft cost (e.g. zero). It creates a master model using these

columns which we assign to all employees with the appropriate working contract and solve it

resulting restricted master model as an IP. We essentially ”pump” the patterns inside to the

master model, hence the name Pattern pump heuristics.

To find these columns with zero costs for violation of soft constraints we use the same A∗

algorithm as which can be used in pricing problem (see Chapter 3.3.3). For smaller problems

(i.e. 2 weeks scheduling horizon, 3 shift types), generation of these patterns is very simple

since we can prune the nodes (partial schedules) as soon as some of these constraints are

violated.

42/83

4 MASTER PROBLEM

1 0 · · · 1

0 1 · · · 0

0 0 · · · 0

1 0 · · · 1

0 1 · · · 0

0 0 · · · 0
...

...
...

1 1 · · · 0

(1) (2) · · · (t)

a11 a21 · · · at1

Σ
−→ R

(t)
100 → π100

Σ
−→ R

(t)
101 → π101

Σ
−→ R

(t)
102 → π102

Σ
−→ R

(t)
200 → π200

Σ
−→ R

(t)
201 → π201

Σ
−→ R

(t)
202 → π202

...
...

...
Σ
−→ R

(t)
mjk → πmjk

π(t+1)

Figure 4.2: An example of a single-pass initial heuristics. A new column (t+1) is created based on the dual

multipliers calculated by coverages R
(t)
mjk satisfied up to (t).

The nice property of formulation (2.21) is its strong LP relaxation thus IP solver is usually

able to solve the problems with thousands of variables in the root node (i.e. without branching)

just with cutting planes. Integer solution from the IP solver then serves as an initial solution.

The advantage of the pattern pump heuristics is that it provides good upper bounds in a

few milliseconds. The drawback is that it works in reasonable time only for smaller instances

(i.e. where columns can be enumerated fast, as stated above).

4.3 Lower bound

When the master problem is solved up to the optimality, its objective value serves as a

lower bound on the objective value of the whole (integer) problem specified by the original

formulation (see Chapter 2.2).

These bounds are tight in practice (Burke and Curtois, 2014) — on the majority of test

instances it is within gap less than 1%. However, if it is not the case, we can sometimes deduce

stronger bounds by employing the condition of being integer-valued.

We found a way how to improve lower bounds. The point is that when the optimal objective

of the relaxed problem (optimal objective value of the master problem) is greater than 0, then

we know that at least one soft constraint is violated. By looking at all the penalties we tight

up bound to the smallest of them as

lb = max{zrmp, min
l,m,j,k

{penalty for pattern l, penalty for coverage constraintsm, j, k}} (4.3)

The zrmp denotes the optimal objective value of the master problem (not necessary integer

43/83

4 MASTER PROBLEM

solution). Keep in mind that above is possible only in case that zrmp > 0.

Consider instance Valouxis — column generation in root node yields a lower bound 8.

However, since all penalties for coverage constraints and costs of patterns are greater than

8, we can tight up the lower bound according (4.3) which in the case of Valouxis instance is

20, i.e. optimal value. This technique was not mentioned in either work by (Maenhout and

Vanhoucke, 2010) or (Burke and Curtois, 2014).

Sometimes it would be convenient to have some lower bound even before master problem

is solved up to the optimality. It can be done by Lagrangian relaxation, which let us compute

the lower bound at the arbitrary iteration of column generation.

4.4 Lagrangian relaxation

We can use column generation for calculating a lower bound on the value of master problem

even before it converged. When all subproblems (employees) are solved up to the optimality

it can be shown (van den Akker et al., 2002) that following equation always holds

ẑ ≥ zrmp +
∑

i∈E

µi (4.4)

where ẑ is optimal value of master problem, zrmp is current value of restricted master problem

and µi is reduced cost for i-th pricing problem.

Figure 4.3 depicts the lower bound obtained by equation (4.4). Lower bound does not

have to necessarily develop in monotonic way (it can decrease between iterations). However,

since the equation (4.4) holds in every iteration, one can store the maximum of it and use it

as the lower bound.

Lagrangian relaxation can be also used to address one of the issues in column generation

procedure — so called tailing off effect. This is a phenomenon where by the end of column

generation a large number of columns with only a little negative reduced cost is generated.

Thus, the algorithm could spend a majority of runtime in this tail trying to solve the relaxation

of the original problem. However, when the solution of the relaxation becomes difficult, it is

not desirable to spend too much time there.

It can be shown (Barnhart et al., 1998) that when following inequality holds for any fixed

dual solution γ and π

z − ⌊z⌋ > −
∑

i∈E

µi (4.5)

where µi is the reduced cost (see Chapter 2.6.1 for its calculation) of the optimal solution

for subproblem i, and z is the objective value of restricted master problem, then we can stop

44/83

4 MASTER PROBLEM

Iteration [-]
0 10 20 30 40 50 60 70 80 90

O
b

je
c
ti
v
e

 v
a

lu
e

 [
-]

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

MP's objective
Lagrangian relax.

Figure 4.3: Lower bound computed by Lagrangian relaxation at each iteration of column generation in Millar

instance.

column generation procedure without taking a risk of missing the optimal solution.

This result follows from the fact that we are working with integer-valued objective. In-

formally, the reduced cost can be seen as the maximal amount of the primal objective that

could be improved if it would enter the basis. When the potential improvement given by all

subproblems is less than 1, the column generation has converged.

4.5 Branching methods

Branching in general is the method which ensures integer property of a solution. In a

fractional solution, it selects a variable and value for it, fixes them and resolves the problem.

This procedure is repeated until the solution is integer. The integer solution then serves as an

upper bound. The optimal solution of the whole problem is the one with the lowest objective

value among the integer ones.

Branching is a complete method since every time it branches it splits solution space into

disjoint parts in such a way, that no integer solution is omitted. Branching itself can be time

exhausting since, in the worst case, it basically enumerates all the solutions (and there is

exponential number of them). However, in practice, it is not the case. We may prune many

nodes using lower bounds obtained by a column generation procedure which are very tight so

these nodes are not visited.

In order to perform branching we have to select a variable and decide which values it

45/83

4 MASTER PROBLEM

takes. We will discuss both these decisions in the following paragraphs.

4.5.1 Branching on master variables

Probably the most natural variables to branch on are the ones that specifies selected

columns (i.e. yil variables in (2.21)). Thus, branching on master variables makes decision like

employee i is assigned to pattern l and employee i is not assigned to pattern l. The former

could serve for obtaining the integer upper bound, but the latter says nearly nothing — the

new problem is the same as its parent with the exception that only a single pattern for one

employee is forbidden.

4.5.2 Branching on original variables

The other reasonable choice of variables to branch on are original ones — these assign an

employee to a specific shift on specific day. The branching decisions then looks like employee i

is assigned to a morning shift on day j and employee i is forbidden to work on morning shift

on day j. Moreover, since an employee is always assigned to the exactly one shift at each day

(it is one of few hard constraints in our problem) it can also forbids other assignments in the

branch, where employee is assigned to the particular shift in a positive sense (see Figure 4.4).

Those decisions are usually better than the ones made on the master variables (Maenhout

and Vanhoucke, 2010). Following sections will therefore focus on the branching on the original

variables.

It is important to note that those branching decisions change the structure of the pricing

problem and the algorithm solving it has to take it into account. Essentially, branching on

original variables splits the search space based on whether the some shift is allocated at some

day for an employee. This creates a new master problem, which is then solved by column

generation, thus the pricing problem is solved in it. However, this master problem is different

from its parent and the pricing problem must obey this constraint. It is introduced to the

pricing problem by constraints in form of xmk = 1 or xmk = 0.

4.5.3 Variable selection

Before we branch we have to choose variable(s) to branch on. The general idea is that

we want to select a variable and value for it in order to resolve the main cause of not being

integer-valued. Fractional value for some variable appears when there is a conflict caused by

the linear relaxation in assignment for given shift, i.e. should an employee be assigned on

46/83

4 MASTER PROBLEM

given shift or not?

Most fractional value Selects a variable with the most fractional value. Since we consider

values between 0 and 1, it selects the variable with value closest to 0.5. In case of ties it can

select e.g. the one which influences the more expensive coverage constraint. It tries to resolve

the most conflicting assignments.

Closest to one Selects a variable with the value closest to 1. It resolves almost decided

assignments. However, in order to preserve completeness of the algorithm, it also has to

consider the branch with opposite decision.

4.5.4 0–1 branching

The most obvious method for branching on the original variables is to use 0–1 branching.

It simply selects a variable and creates two branches, where for each it fixes the decision. An

example is depicted in Figure 4.4.

Day 1 Day 2

- D N - D N

E1 0.1 0.2 0.7 0 0 1

E2 1 0 0 1 0 0

E3 0 0.5 0.5 0 0 1

Day 1 Day 2

- D N - D N

E1 0.1 0.2 0.7 0 0 1

E2 1 0 0 1 0 0

E3 ? ? 0 0 0 1

Day 1 Day 2

- D N - D N

E1 0.1 0.2 0.7 0 0 1

E2 1 0 0 1 0 0

E3 0 0 1 0 0 1

x313 = 1x313 = 0

Figure 4.4: Example of 0–1 branching with the most fractional value variable selection. It creates exactly two

branches — in the first one it forbids the assignment and in the second one it fixes the shift for a specific day

and employee (and consequently forbids other shifts for the same day). Fixed assignments are in bold.

47/83

4 MASTER PROBLEM

4.5.5 1/../S branching

This method works in quite a similar way as the 0–1 branching but it creates branches for

all possible shift assignments for a given day. When there are only 2 possible shifts per day

it coincides with the 0–1 branching. See Figure 4.5 for an example.

Day 1 Day 2

- D N - D N

E1 0.1 0.2 0.7 0 0 1

E2 1 0 0 1 0 0

E3 0 0.5 0.5 0 0 1

Day 1 Day 2

- D N - D N

E1 0.1 0.2 0.7 0 0 1

E2 1 0 0 1 0 0

E3 1 0 0 0 0 1
Day 1 Day 2

- D N - D N

E1 0.1 0.2 0.7 0 0 1

E2 1 0 0 1 0 0

E3 0 1 0 0 0 1

Day 1 Day 2

- D N - D N

E1 0.1 0.2 0.7 0 0 1

E2 1 0 0 1 0 0

E3 0 0 1 0 0 1

x312 = 1

x311 = 1 x313 = 1

Figure 4.5: Example of 1/../S branching. For each possible shift assignment for a given day it creates a new

branch with fixed value. Fixed assignments are in bold.

4.5.6 Constraint branching

Constraint branching imposes constraints over multiple original variables. (Maenhout and

Vanhoucke, 2010) used constraint branching for ensuring whether an employee serves same

shifts on consecutive days. The reason behind this choice is hidden in their constraint set,

where the constraint minimum number of consecutive days was used. Constraints used by the

branching rule then looks like

ximjk + xi(m+1)jk = 2

where it e.g. requires that employee i is assigned on the day m and m + 1 to the shift k.

However, this leads to the unbalanced search tree, since the other branch is ximjk+xi(m+1)jk 6=

2, which covers 3 distinct options for variable’s values to take. Therefore, this subtree contains

problem similar to its parent.

48/83

4 MASTER PROBLEM

Similar branching method can be used if the problem poses constraints on weekend assign-

ments, i.e. the requirement whether the employee serves over the weekends. It is reasonable

to expect that most of these requirements are satisfied in high-quality solutions.

These more complicated branching schemes can be seen as a form of look ahead techniques

known from the Constraint Programming. It tries to resolve variable’s values in advance using

constraints in an active way.

Although constraint branching may reduce the path to the solution, it pays for it by

creating unbalanced search tree. (Maenhout and Vanhoucke, 2010) observed, that on average,

it didn’t pay off for their test instances.

4.5.7 Strong branching

Strong branching is general branching paradigm which selects variable to branch on based

on an estimate of how the branch could improve the objective value. Typical choice is to

evaluate the LP relaxation with every variable fixed and selects e.g. the one that yielded

with the lowest objective. Obviously, strong branching is more time demanding than ordinary

branching schemes (e.g. most fractional variable).

There can be variety of evaluation functions for strong branching. Some of them are based

on the LP relaxation value, other are based on the measure of fractionality of LP solutions.

This obviously hints to the entropy measure. In paper by (Gilpin and Sandholm, 2011) was

shown, how information-theoretic measures such as entropy can help to solve difficult real-

world MIP problems.

4.5.8 Impact to performance

If one deals with solving problems optimally, (Barnhart et al., 1998) suggest to use branch-

ing scheme which creates balanced search tree. When the focus is rather on finding high-quality

solution quickly, then some heuristic branching schemes can be employed (e.g. rounding up

some assignments in fractional solutions) which creates unbalanced search tree or even pre-

vents from backtracking.

The work (Maenhout and Vanhoucke, 2010) explored branching schemes we have described

above. Their result was that superior strategy is 0–1 branching with selection of the most

fractional variable. On the other hand (Burke and Curtois, 2014) reports, that the choice

of the branching strategy has no significant impact on the performance. The reason is that

(Maenhout and Vanhoucke, 2010) used custom generated instances coming from the same

49/83

4 MASTER PROBLEM

distribution of parameters while (Burke and Curtois, 2014) used real-world instances from

various hospital environments.

Our conclusion are the same as (Burke and Curtois, 2014), thus we used 0–1 branching

with the most fractional variable selection.

4.6 Upper bound

Upper bound on the integer objective might be obtained in following ways:

1. from the initiation heuristics

2. at the every iteration of column generation

3. primal heuristics — resolve master problem as an integer program

Ad. 1. When we have a heuristics that generates exactly one column for each employee,

we have obviously an upper bound (see Chapter 4.2).

Ad. 2. Moreover, the solution of restricted master problem may serve also as an upper

bound whether the solution of it is integer-valued (the integer property of the solution is not

guaranteed by column generation, see Chapter 2.6).

Ad. 3. However, we can enforce the integer property. Having a set of columns, one can

construct a model in Figure 2.3 with integer constraints on y variables. Solution of this

modified problem gives us an integer solution which can serve as an upper bound. Even

though this lifts up computational complexity from P to NP-hard, solving modified problem

is not time demanding in most cases. Due to its set covering structure, IP solver is able to

apply various cuts to speed up the computation. Moreover, we can use additional constraints

on the objective value like objective is greater or equal to the value obtained by linear relaxation

and objective is less or equal to the value of known upper bound which helps to prune the

search space. Further details are presented in Chapter 6.3.

4.7 Column management

So far, we have talked about how to find a column which could enter the basis. Although

in an optimal solution we need only a single column for each employee, we typically generate

much more than that. Columns generated from the beginning were optimal with respect to

dual prices, which are no longer relevant. Therefore, these old columns are not likely to enter

50/83

4 MASTER PROBLEM

current basis once they left it. Moreover, their current reduced cost may be even greatly

positive so they even cannot enter the basis in current iteration.

Since these column are not probably useful, we can remove them from the master model.

This will decrease the computational demand for the Simplex algorithm which solves restricted

master problem frequently (Lübbecke and Desrosiers, 2005).

Removal of a column cannot affect the optimality of the branch and price algorithm. In

the worst case, the columns that were removed will be generated again if it turns out as

needed in later iterations.

51/83

5 MACHINE LEARNING METHODS

5 Machine learning methods

In this chapter we will explain how machine learning methods relates to our solution

method. In Chapter 5.1 we will discuss properties of our problem and considerations regarding

to the application of machine learning methods. In Chapter 5.2 we describe proposed the

algorithm for improving upper bound for pricing problem and we show an interpretation of

its effect in Chapter 5.2.2 and results in Chapter 5.2.3.

5.1 Motivation

As we have shown in Chapter 2 where the branch and price algorithm was described, it

consists of a large number of smaller problems (i.e. pricing problems, for more details see

Chapter 3) which are of the same computational complexity as the original problem, i.e. NP-

hard. Those problems are solved in a sequence and the solution of each problem influences the

next one in the sequence. Moreover, the next problem in the sequence is not trivially known,

although it is given in deterministic but complicated way (new column influences the optimal

solution of linear programming problem and results in different dual solution). Therefore, the

problems are not random ones, but share some common properties.

Currently, algorithms solving these problems are not able to reuse information obtained

in the past even though these problems are clearly closely related. Therefore, hundreds and

thousands of hard optimization problems are solved from the scratch during the whole run of

branch and price algorithm. Clearly, a speedup of these problems has an effect on the overall

runtime. However, one has to keep in mind some considerations regarding to reuse of such

information extracted in the past when the exactness of the algorithm must be preserved.

So far, we talked only about reusing information gained during the solving of a single

master problem (i.e. the whole original problem instance). The obvious question might be,

whether it is possible to extend the extraction of good decisions that led to high-quality

solutions (or even to the optimal ones) on instance-wise level. Those decisions could be e.g.

branching decisions, frequently appearing patterns in the individual schedules, etc. When

one consider the real-world benchmark instances (Curtois, 2014), which are in our main

interest, he/she will find out that these are highly heterogeneous in terms of the number

of employees, length of planning horizon, number of shift types, coverage constraints and,

the most importantly, working restrictions constraints. Clearly, this makes sense, since these

instances are really taken from different hospital environments5.

5This is also the reason that makes our task challenging. It might be easy to design an algorithm solving

effectively problems with given constraint set, but we have to address the problem on very general level.

52/83

5 MACHINE LEARNING METHODS

From the statistical point of view, one would say that these instances are not drawn from

the identical distribution. Therefore, beside the fact that there are too little instances as data

samples, statistical machine learning does not seem as a feasible method to be applied for

deriving properties of the problem on the instance-wise level. The main assumption of i.i.d.

(independent identically distributed) about samples is clearly violated in such a way that it

cannot be even pretended it holds.

We believe, that deriving useful properties of problem instances needs to be done during

the runtime (i.e. online) specifically for each problem instance. For example, it can be proved

that some instances of Nurse Rostering Problem are polynomially solvable6, therefore a lot

easier to solve than expected. It would be useful to derive e.g. symmetries in the problem

that can be exploited without sacrificing optimality. However, this is also beyond the abilities

of statistical machine learning. To address this, one has to shift from a paradigm of learning

by observations to the learning by reasoning (i.e. deriving logically correct conclusions which

are not given explicitly about the problem instance).

In Chapter 5.2 we address the problem mentioned from the beginning of this chapter. We

will show how to partially overcome difficulties raised by complexity of our problem instances

by designing an online learning algorithm for deriving useful information for the pricing

problem. Moreover, such methods can have impact not only on Nurse Rostering Problem

studied in this thesis, but also might improve generic branch and price approach as the

method for solving large integer problems. Therefore, the method introduced in this chapter

has applications even outside of the domain of personnel rostering.

5.2 Improving upper bound in pricing problem

While solving the pricing problem, where we are looking for the schedule for invididual

employee, two bounds are commonly used — the lower bound (see Chapter 3.5) and the upper

bound (i.e. 0, since we are looking for solutions with negative reduced cost). For branch and

bound based solution method it holds (assuming minimization), that each search node (partial

individual schedule) has a lower bound associated with it and all the nodes shares the same

upper bound. Since we deal with a problem with soft constraints, one of a few ways how to

prune nodes in the search tree is to prove that their lower bound has greater value than the

best currently known upper bound. These two bounds are getting closer to each other during

the run of a pricing algorithm. Naturally, it is desired to have them as close as possible from

the start so more nodes can be pruned early.

6This is not a surprising fact, since for example the shortest path problem in general is NP-hard, however,

special cases without negative circuits can be solved in polynomial time.

53/83

5 MACHINE LEARNING METHODS

Consider the high-level form of the objective function for the pricing problem

f(x) = −γ − πTx+ cil(x) (5.1)

where γ and π are constants and cil is a function counting soft cost violations. Since cil is

not convex in x, it is hard to find the global minimum of f . We want to find x such that

f(x) < 0, thus, we immediately have an upper bound γ > z on the z ≡ −πTx + cil(x). In

this chapter we address the question, if it is possible to obtain tighter bound on value of z.

We propose the following online algorithm for predicting the upper bound. At each itera-

tion the algorithm observes new features values and has access to the previous features and

their target values. Based on this information the algorithm outputs its new prediction and

use it in pricing solver. After the run of the pricing solver, it obtains the actual true value.

5.2.1 Robust regression problem

Since the algorithm predicts values from continuous interval, we face a regression problem

(Williams and Rasmussen, 2006). Arguably, the most popular and one of the simplest solution

methods is ordinary least squares method (LSM). This method minimizes the sum of residual

squares (l2 norm of the error vector), where the predictive hypothesis is linear function in

the basis variables (features). From the probabilistic point of view, the least square method

is maximum likelihood estimate for the case of linear regression model where we assume that

the posterior distribution of values takes form of p(y|x) = N (y|wTx) and samples are drawn

independently.

For the upper bound prediction the LSM is not suitable — the loss function is skewed in

a sense that we do not want to underestimate the true value of z (what will happen when it

is the case will be described later). Moreover, it cannot be expected to have predicted values

exactly equal to the target values, we just want to have them in reasonable small distance

from it. These requirements led us to develop our custom criterion and the whole algorithm

later on. Therefore, it is meaningless to compare achieved criterion values with e.g. LSM,

since we will present below a training algorithm that minimizes the empirical risk.

We designed our criterion as the sum of skewed epsilon insensitivity loss functions (see

Figure 5.1). Additionally, we discount the contribution of older datapoints to the final loss

function by logarithmic factor (see Figure 5.2), since more recent observations are more impor-

tant to us. Moreover, this serves as a regularization and helps to overcome so-called heading-in

effect (see Chapter 6.2.2).

54/83

5 MACHINE LEARNING METHODS

signed distance from optimum
0 0.5 1 1.5 2 2.5

lo
s
s
 [

-]

0

0.5

1

1.5

2

2.5

Figure 5.1: Example of loss function for a

single datapoint, ǫ = 0.5

index of sample
2 4 6 8 10 12 14 16 18 20

d
is

c
o

u
n

t
fa

c
to

r
[-

]

2

4

6

8

10

12

14

Figure 5.2: Discounting function for previ-

ous datapoints

Our model can be trained by the following mathematical program

min
w,r

∑

i∈D

c+i r
+
i + c−i max{r−i − ǫ, 0} (5.2)

subject to

∀i ∈ D : wTxi + r+i − r
−
i = yi (5.3)

∀i ∈ D : r+i , r
−
i ≥ 0 (5.4)

w ∈ R
n (5.5)

where c±i is discounting constant for datapoint i ∈ D. Value of r±i measures error made by

prediction for datapoint i. Then, the predictive hypothesis is given as y = wTx. It can be

shown that problem (5.2)–(5.5) can be posed as a linear program.

Moreover, this model has a connection to the Support Vector Machines (SVM) for re-

gression. If we would alter the objective (5.2) by adding the quadratic term 1
2 ||x||

2
2 we would

essentially get the maximum margin solution, which is produced by SVMs (Murphy, 2012).

However, it would make the training process harder, since it would turn the LP problem to

Quadratic Programming (QP) (although still polynomial) problem.

The method described above can be treated as an online learning problem. We developed

the algorithm for such setting. It is based on both column generation and cutting planes

method. For each new datapoint it adds a variable (column) to the objective function (5.2)

and then a cutting plane (constraint) in form of (5.3) to make sure that predicted value is

close enough to the true value. (Algorithm 2).

The feature values used for the prediction are an important part to discuss. In pseudocode

of the algorithm they are denoted by the mapping φ(γi,π), therefore they are based on the

55/83

5 MACHINE LEARNING METHODS

Algorithm 2: Upper bound prediction for pricing problem

1 do

2 (γi, π)← current dual solution of restricted master problem (RMP)

3 ûb← wTφ(γi,π)

4 yil ← solve pricing problem with upper bound ûb

5 if pricing problem is infeasible then

6 yil ← solve pricing problem with upper bound γi

7 end

8 add column yil into the RMP

9 add new columns r±i into the prediction model

10 add constraint in form of (5.3)

11 w← solution of (5.2)

12 while column with negative reduced cost exists;

dual solution of the master problem. One has to keep in mind the trade off between model

complexity (therefore its predictive power) and the saturation of its parameters. This is even

enhanced by the online setting of the learning. Therefore, the complexity of the model needs

to be as small as possible such that it still provides some reasonable predictions. In our

experience, model predicts good values for n = 3 number of features. One of them is default

bound γ and the others are expected values of πTx for disjunctive parts of the individual

schedule. Although we use uniform distribution over shifts assignments, one can improve this

estimate by the estimation of probabilistic distribution (e.g. by Markov assumption) of shifts

from columns, that are generated for given employee.

If the pricing problem with predicted bound is not able to find any column, it cannot

guarantee that column with negative reduced cost does not exists. In that case, one has

essentially two options. When an optimal solution of the pricing problem is not needed (i.e.

heuristic stage of column generation) it can proceeds with different subproblem (employee).

However, when the proof of non-existence of such column is needed (i.e. before branching for

obtaining lower bound on the integer master objective), it is needed to run pricing solver with

default bound, i.e. γ. Fortunately, it does not need to start completely from the scratch —

partial solutions that were pruned in previous stage due to tighter upper bound can be stored

and re-expanded in this stage.

As it can be seen in (5.2), the criterion is the sum of piecewise linear functions. It is worth

it to note, that there exists a implementation of Simplex method, that is able to handle this

form of the objective natively. It brings significant speedup which can be seen for example

with Gurobi IP/LP solver, which supports this feature since the version 6.0.

56/83

5 MACHINE LEARNING METHODS

5.2.2 Relation to cover cuts

There is an interesting connection between imposing cutting planes into the primal model

and tighten up upper bound on the pricing problem. More precisely, tightening of upper bound

has similar effect as adding the cover cuts for individual schedules in primal model. Assume

that one is able to prove, that in some optimal solution of restricted master problem is not

possible to have some individual schedules selected at the same time. This could happen for

example if we have upper bound on the whole problem (e.g. from initial heuristic solution)

which is lower than a penalty associated with violation of coverage constraints due to a set

of patterns S in the optimum, i.e. when the set S contains patterns that assign employees to

a shift on the same day causing overstaffing for that day.

We impose a constraint which forbids to select this group of individual schedules. Consider

adding cover cut in the following form into the primal problem

∑

(i,l)∈S

yil ≤ |S| − 1 (5.6)

which puts a new variable ξ ≤ 0 into the dual problem. In order to find a column with negative

reduced cost, one has to solve modified pricing problem

γi + ξ > cil − πTx (5.7)

thus, the new upper bound in pricing problem is tighter.

5.2.3 Impact to performance

For the branch and bound based algorithm (i.e. informed state space pricing, see Chap-

ter 3.3.3) we measured how many nodes are expanded during the search. For MlP pricing

problem (see Chapter 3.3.2) we computed ratio of runtimes. Results are summarized in Ta-

ble 5.1. The numbers in the second column indicate the ratio of visited nodes with to the

visited nodes without applying our approach in the informed state space pricing. Similarly,

the third column represents the ratio of the runtime with to the runtime without applying

our approach in the MIP pricing solver.

In Figures 5.3 and 5.4 one can see example run of the proposed algorithm. It can be

seen, that from the beginning, parameters of the predictive model are not properly estimated.

However, after a few more iterations, the algorithm starts to track bound reasonably well.

57/83

5 MACHINE LEARNING METHODS

Instance visited nodes ratio [-] runtime ratio [-]

Millar-2Shift-DATA1 0.95 -

WHPP 0.75 -

Valouxis-1 - 0.79

Azaiez - 0.55

SINTEF - 0.94

Table 5.1: Impact of upper bound tightening to the performance. Values < 1 indicates a positive speed up.

Iteration [-]
0 5 10 15 20 25 30 35 40 45 50

U
p

p
e

r
b

o
u

n
d

 [
-]

-800

-600

-400

-200

0

200

400

600

800

optimal
baseline bound
prediction

Figure 5.3: Upper bound prediction for subproblems in Millar instance.

5.2.4 Further improvements

The main disadvantage of proposed method is that it uses a hyper parameter ǫ which needs

to be chosen. Well-known methods for its tuning like cross-validation are not easily applicable

to the online setting of learning. Therefore, it is desired to omit it. In future research, we would

like to incorporate it among the other variables which are optimized during training.

Moreover, we would like to investigate the effect of different objective function. In para-

graphs above we proposed linear penalty with larger coefficient for under estimating the

bound. However, it might be useful to penalize predictions below target value using step

function, since this is more closer to our desired criterion. Currently, we minimizes the upper

bound on the error function.

58/83

5 MACHINE LEARNING METHODS

Iteration [-]
5 10 15 20 25

U
p

p
e

r
b

o
u

n
d

 [
-]

×10
4

-8

-6

-4

-2

0

2

4

6

8

10
optimal
baseline bound
prediction

Figure 5.4: Upper bound prediction for subproblems in Azaiez instance.

59/83

6 ADDITIONAL OBSERVATIONS

6 Additional observations

6.1 Motivation

Even though both the column generation and branch and price algorithm have solid

mathematical foundations (as described in previous chapters) and it seems straightforward

how to implement them, actually, there are some caveats in practice.

Column generation, as it is very elegant in theory, tends to be difficult in practice. It is

prone to convergence difficulties, tailing off (Lübbecke and Desrosiers, 2005), dual oscillations

(Du Merle et al., 1999), and many other issues. Therefore, in order to have branch and price

effective in practice, one has to come up with a set of tricks to overcome these problems.

Since there is essentially none published information about the properties of our problem

concerning column generation, we will describe important improvements we had to figure out

in order to make our algorithm fast. Moreover, in this chapter we will discuss some newly

emerged properties of our problem.

6.2 Column generation

6.2.1 Dual variables stabilization

It is commonly known fact that column generation has often problem with the convergence

speed (Lübbecke and Desrosiers, 2005). However, in order to improve the master objective,

one has to generates high-quality columns (i.e. schedules with low penalization which improves

staffing levels). Columns are generated based on the dual prices of the primal constraints, so

it may happen that we generate useless columns just because of poor information about an

estimate of optimal dual variables.

Known observation is that columns in the optimal solution of the primal problem are

usually generated among the last ones (Lübbecke and Desrosiers, 2005), i.e. based on the

information close to optimal dual solution (γ∗,π∗), so it is presumably helpful to not to

spend more time than necessary with earlier iterations and we should rather focus to get an

estimate of the optimal dual solution quickly. We can see this behavior in Figure 6.1, where

the distance between the vector of current dual solution and the optimal one is depicted. For

example, at the iteration 21 we are heading away from the optimal solution and just after a

few iterations we start coming back. The analogy of this phenomenon is the Newton’s method

for finding local minima with poorly set step size which overshoots the minima. If we would

be able to ”smooth out” the sequence of dual solutions, less iterations of column generation

60/83

6 ADDITIONAL OBSERVATIONS

would be needed to solve the master problem.

Iteration [-]
0 5 10 15 20 25 30 35 40 45 50

||
π

 -
 π

*
||

2

0

100

200

300

400

500

600

Figure 6.1: Unstabilized column generation in Millar instance. Distance from current dual solution to optimal

dual solution is not monotonically decreasing. It results in so-called bang-bang behavior.

This issue in column generation is commonly addressed by stabilization methods. The trust

region method (Amor and Desrosiers, 2006) solves this problem by imposing new constraints

on the dual variables of the master problem. Essentially, it forces values of dual variables to

lie within preferred box given by the box constraints (i.e. lb ≤ πmjk ≤ ub). This box is re-

estimated every time after the new column is added to the primal model. Thus, dual solutions

are less likely to oscillate.

However, if the estimation of the preferred box is bad, it could even slow down the con-

vergence. Therefore, we should allow dual solution to leave the box for some penalty, if it is

needed. This modification is called trust region method with ǫ-perturbation (Pigatti et al.,

2005). In order to constraint a variable in the dual problem one has to insert new variables (ar-

tificial columns) into the primal model. We will show the modification on simplified problem.

Consider original (unstabilited) LP and its dual

min
x

cTx

subject to

Ax = b

x ≥ 0

max
π

bTπ

subject to

π ∈ R
n

ATπ ≤ c

Notice that π variables are not constrained. However, putting artificial columns inside

stabilized primal problem above yields to

61/83

6 ADDITIONAL OBSERVATIONS

min
x,z

cTx− δT (z− − z+)

subject to

Ax− z− + z+ = b

x ≥ 0

z± ≤ ǫ

max
π,ω

bTπ − ǫT (ω− + ω+)

subject to

δ − ω− ≤ π ≤ δ + ω+

ATπ ≤ c

ω± ≥ 0

therefore dual variables are now constrained. They are centered inside the hyperbox given

by [δ−ω−, δ+ω+] where ω± are variables that can be used for its enlargement for ǫ penalty.

In contrast to the master model described in (Burke and Curtois, 2014), our formulation

of it (see Figure 2.3) contains a form of trust region method with ǫ-perturbation by default.

Consider constraints (2.39) and (2.40) of the dual master model in Figure 2.4. It can be

easily shown, that these essentially restrict dual prices as −comjk − φmjk + ψmjk ≤ πmjk ≤

cumjk − φmjk + ψmjk. Thus, π dual variables are restricted to lie within the hyperbox given

by coverage penalties or leave it with the penalty proportional to staffing demands. This key

observation was left unnoticed in both works (Maenhout and Vanhoucke, 2010; Burke and

Curtois, 2014).

We conducted further experiments with different stabilization method (Du Merle et al.,

1999), however, we were not able to obtain any significant improvements. Once again, which

is with contrast to the claimed result by (Burke and Curtois, 2014).

6.2.2 Heading-in effect

Column generation also suffers from the effect known as heading-in (Lübbecke and Desrosiers,

2005). Column generation procedure needs some feasible solution of restricted master prob-

lem to start. In terms of our master model, every employee must have at least one individual

schedule assigned. In our case, these columns come from the initial heuristics (see Chapter 3.4).

Column generation then proceeds with the dual information based on these columns and

starts generating new ones. The issue is, that this dual information can be arbitrarily bad,

thus columns generated based on it have only a little chance to be contained in the optimal

solution (Lübbecke and Desrosiers, 2005). Therefore, solving the pricing problem up to the

optimality is not practical when being in this stage of column generation.

We addressed this issue by the dynamic control of the gap parameter specifying quality

of solutions produced by the pricing algorithm (see Chapter 3.4). Column generation starts

with the gap of 30% which is then further narrowed based on the speed of the convergence of

62/83

6 ADDITIONAL OBSERVATIONS

the master model. The control equation is given by the simple linear relation

gap = c
dz

dt
≈ c

zt−1 − zt
∆

(6.1)

where zt is the objective value of the master problem at the iteration t for some constants c

and ∆.

6.2.3 Tailing off effect

Sometimes column generation procedure suffers from a slow convergence — improvement

of the objective value of the master model is a little or none during large number of iterations.

In that case, it might be useful instead of solving the master model up to the optimality

(generating more and more columns) branch earlier and rather try to solve its child nodes

optimally.

One has to keep in mind that the objective value of the master model, which is not solved

up to the optimality, is not a lower bound on the integer objective. Thus we cannot use it

directly for a comparison to the known upper bound in order to prune its child nodes. How-

ever, we can still use this suboptimal objective value to get a lower bound using Lagrangian

relaxation (see Chapter 4.4).

6.3 MIP pricing

6.3.1 Imposing lower and upper bounds on the objective

One may want to utilize the knowledge he/she has about the objective value of an opti-

mization problem in form of min cTx. If we knew lower and upper bound on the objective

we could impose the constraint lb ≤ cTx ≤ ub in order to prune the search space. However,

when a constraint contains all the variables presented in the problem, this turns out to be

inefficient (in case of ILOG CPLEX7 this would even slow down the computation). Imposing

the constraint over the objective involving complex linear expression complicates the search

space, thus it could make task harder to solve.

More efficient way of incorporating bounds on the objective is to work with nodes in the

branch and bound tree constructed by the IP solver. For example, if the LP relaxation in

some node yields a value greater than the upper bound given in advance, such node can be

cut off. In ILOG CPLEX it can be done by setting parameters CutLo and CutUp to proper

values.

7ILOG CPLEX is an LP/IP solver by IBM.

63/83

6 ADDITIONAL OBSERVATIONS

We use those parameters both in MIP pricing solver (see Chapter 3.3.2) and for resolving

restricted the master problem as an IP (see Chapter 4.6).

6.3.2 Branching priorities for variables

In every integer programming model we can specify priorities over variables for branching.

Simply said, if the continuous relaxation of the model does contain fractional values, the

solver will start branch on the variable with the highest priority. If we had some background

knowledge, which variables have bigger impact on the objective, it would be desired to settle

assignment for them as soon as possible (Gilpin and Sandholm, 2011).

In our MIP model for the pricing problem (see Chapter 3.3.2), variables for assignments

during weekends are more important than other ones in most cases (Maenhout and Vanhoucke,

2010). This fact follows from the typical structure of the constraints which restricts frequently

shift assignments during Saturdays and Sundays in some way.

6.3.3 Solution pool

Although the main aim of integer programming is usually to find a single optimal solu-

tion, MIP-based pricing model described in Chapter 3.3.2 can also provide multiple solutions

(columns) at single iteration.

This can be arranged using technique introduced in (Danna et al., 2007) and implemented

in ILOG CPLEX. After finding an optimal solution the algorithm enters into the second stage,

where it uses information gathered in previous stage such as partial branch and bound tree,

integer solutions found so far and other. During this stage, additional solutions are generated,

which are not necessarily the optimal ones. These solutions are then stored in a data structure

called solution pool.

One can specify various parameters of solutions stored in the pool as well as the parameters

of the pool itself. For example, we can demand to find additional 5 solutions with the best

objective value. Or, as it turns out to be useful for us, store good, diverse solutions (defined

as the average pairwise Hamming distance on the vectors of integer variables).

In our experiments we found out this feature to be very useful even when there is a little

additional time spent for finding another solutions in pool.

64/83

6 ADDITIONAL OBSERVATIONS

6.3.4 Subproblem skipping

As we pointed out in Chapter 3.2, determining whether the column with negative reduced

cost exists is NP-complete problem. Moreover, this problem has to be solved for every em-

ployee separately, since each of them is a subproblem (recall the block-diagonal matrix F in

Chapter 2.2). When we have a master problem to solve with tens of employees, it becomes

difficult even just to check whether the column generation has converged.

However, we can exploit the symmetry of the employees. Consider a subset of employees

having the same working contract, skill competency and working preferences. During the

solution of the root node in branch and bound tree, the algorithm finds out that for some

employee i there is no column with negative reduced cost. The algorithm then switches to

the next employee (subproblem) j. However, when γi ≤ γj holds (i.e. the upper bound on

the pricing problem for j is looser than for the i) there is obviously no column with negative

reduced cost for employee j too. Thus, we do not have to prove the non-existence of a negative

reduced cost column by running the pricing solver. However, this is possible only when no

column was added since the last time the subproblem i yielded with no column with negative

reduced cost, i.e. dual prices π has to be the same.

Similar strategy can be used also in non-root node. However, additional condition for

skipping a subproblem has to be considered, since branching constraints were imposed. One

has to check whether the set of branching constraints for the subproblem (employee) to be

skipped is a super set of the branching constraints for the subproblem which has provably

failed (i.e. no column with negative reduced cost exists).

Essentially, we can skip the subproblem whether its relaxation (less constrained subprob-

lem) failed, thus sometimes, even employees with different working contract, workload and

preferences can be skipped.

6.4 Symmetry breaking

Symmetries in the problem are often a major difficulty when solving combinatorial opti-

mization tasks (Crawford et al., 1996). By the symmetry we refer a property of a problem

(or mathematical model of it) which for the given solution allows us to create a new solution

trivially for example just by swapping assignments for distinguishable objects. To be more

specific, consider famous n-queens problem8. If we find some feasible assignment of the queens

to positions on the chessboard, we can trivially swap two queens to get a different solution.

8It is the problem where we are ask to place n queens on a n× n chessboard in such way, that they do not

threaten each other.

65/83

6 ADDITIONAL OBSERVATIONS

Naturally, we do not really consider this as a different solution because queens are not

distinguishable to us. We do not perceive them individually. However, for a combinatorial

algorithm it is not the case, since the different assignment forms a different state in the state

space.

Existence of symmetries for feasible solutions also implies symmetries for non-solutions

(infeasible solutions). When we place queens on the chessboard in a way that some of them

threat each other, there is a symmetric infeasible solution too. If the algorithm solving the task

is not aware of symmetries in the problem it is forced to repeatedly visits these symmetrical

infeasible parts of state space before finding the actual solution to the problem. Providing this

information to the algorithm can lead to significant improvements (Crawford et al., 1996).

In our problem, symmetries appear in the case we have employees with the same working

contract, skill and working preferences. In this case, employees become indistinguishable to

us. Symmetry breaking in our task is not as easy as in n-queens problem, since it is hard to

reason about shift assignments for a nurse in general. However, under some conditions it can

be done as we will show in chapter below and it leads to the significant performance gain.

6.4.1 Symmetry breaking by fixing some assignments

We have found a way, how to partially break one of the symmetries in the problem caused

by identical employees. To demonstrate it in its simplified form suppose that following three

conditions hold

1. employees are identical9

2. instance consists only of preferred coverages

3. preferred coverages are not violated in some optimal solution

then setting n equal to a minimum of preferred coverages for all days and shifts and fixing

any single shift for any single day for some n distinct employees preserves at least one optimal

solution.

The assumption that coverages are not violated in some optimal solution often holds, since

high-quality schedules usually do not violate this in order to avoid a large penalty that would

incur otherwise. Moreover, we can find out throughout the solving whether our assumption was

correct — when we end up with the solution with lower objective than a penalty for violation

9In the same sense as stated in Chapter 6.3.4.

66/83

6 ADDITIONAL OBSERVATIONS

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

Employee A ? ? E ? ? ? ? ? ? ? ? ? ? ?

Employee B ? ? ? ? ? ? ? ? ? ? ? ? N ?

Employee C ? ? E ? ? ? ? ? ? ? ? ? ? ?

Employee D ? ? ? ? ? ? ? ? ? ? ? ? ? ?
...

Employee Z ? ? ? ? ? ? ? ? ? ? ? ? ? ?

required E 5 5 5 5 5 4 4 5 5 5 5 5 4 4

required D 4 4 4 4 4 3 3 4 4 4 4 4 3 3

required N 4 4 4 4 4 3 3 4 4 4 4 4 3 3

Figure 6.2: An illustrative example of symmetry breaking. It fixes single assignment for 3 different employees.

of a coverage constraint, then it is clear that at least one optimal solution is contained in the

set of solutions without violation of coverage constraints.

This technique can be further extended into the form, where we fix more assignments

than stated above. This can be done by fixing days in a more informed way. For example, one

could fix all assignments for the first day of the schedule (once again, under the assumption

that coverage constraints are not violated). However, we observed that this is not the best

way of doing that. Even though we fix more assignments (and thus we are reducing the

number of free variables), we still preserve symmetry between employees which has the same

shift assigned. Based on our observation it seems, that superior strategy is to fix less shifts,

but rather in diverse way — different days, different shifts. In our opinion, the strategy

mentioned in paragraph above improves the propagation of dual prices for coverage constraints

(in horizontal direction) and, thus, accelerates column generation convergence.

67/83

7 EXPERIMENTAL RESULTS

7 Experimental results

In this chapter we will discuss experimental results. In Chapter 7.1, the standard real-

world benchmark instances will be described. Chapter 7.1.1 provides results of generic branch

and price algorithm under various pricing techniques. We show overall results achieved by

our algorithm in Chapter 7.1.2 and, moreover, we will carry out the comparison of impact of

speedup techniques.

Next, in Chapter 7.2 we will show how we have developed a new real-world benchmark

instance in cooperation with Motol hospital in Prague. We have found an optimal schedule

for the surgery department and proved its optimality. Moreover, the comparison with the

provided hand-made roster shows a significant improvement in roster’s objective.

At last, in Chapter 7.3 we discuss obtained results and questions raised regarding to the

comparison to other works.

7.1 Real-world benchmarks

We ran our algorithm on benchmark instances taken from (Curtois, 2014) (see Table 7.1).

Reported runtimes are measured on a system with 1.3 GHz Intel Core i5 (laptop class)

processor with 8 GB of RAM. The algorithm is implemented in Java 7. Maximum runtime

was set to 120 s.

Instance Employees Shifts Skills Days Constraints

Ozkarahan 14 2 2 7 46

Musa 11 1 3 14 34

LLR 27 3 1 7 216

Millar-2Shift-DATA1 8 3 1 14 88

Millar-2Shift-DATA1.1 8 3 1 14 72

Azaiez 13 3 3 28 143

WHPP 30 4 1 14 450

SINTEF 24 5 1 21 284

Valouxis-1 16 4 1 28 224

Motol-1 12 4 1 29 52

Table 7.1: Parameters of real-world benchmark instances.

Moreover, we created a new real-world benchmark instance in cooperation with Motol

hospital in Prague (see basic parameters in Table 7.1). We restricted maximum runtime to

the 30 minutes, which was the requirement given by the hospital.

68/83

7 EXPERIMENTAL RESULTS

It is worth it to note that difficulty of an instance do not only depends on the numbers

presented in Table 7.1. It is mostly determined by coverage constrains. When these constraints

are not so restrictive (i.e. we have much more employees than desired coverages) one can

expect to find optimal solution quickly. Moreover, when an instance do not impose coverage

constraints across multiple skills, the problem is obviously decoupled. In our experience, the

task become usually harder when penalties for violation of coverage constraints are comparable

to penalties of soft constraints in individual schedules.

7.1.1 Generic branch and price

In this section we show results obtained by generic (vanilla) branch and price working

according to its definition. Results with two different pricing methods are in Table 7.2. In

both cases the Single-pass initiation heuristics (see Chapter 4.2.1) was used. For each pricing

method, the first column contains objective value of the best solution found within the given

time limit. As it can be seen, algorithm performs well only on smaller instances.

Instance State-space search pricing MIP pricing

ub runtime [s] ub runtime [s]

Ozkarahan 0 0.6 0 1.1

Musa 175 0.6 175 0.6

LLR 301 24.9 301 62.3

Millar-2Shift-DATA1 700 120 0 20.7

Millar-2Shift-DATA1.1 700 120 0 11

WHPP – 120 10057 120

Azaiez – 120 > 1 · 105 120

SINTEF – 120 22558 120

Valouxis-1 – 120 20460 120

Table 7.2: Comparison of generic branch and price approach with state-space search pricing solver. Solutions

with proven optimality are in bold.

Results suggest that state-space search based pricing solver (see Chapter 3.3.3) is able to

outperform MIP pricing (see Chapter 3.3.2) on the smaller instances (up to 14 days planning

horizon with 3 shift types). On the other hand, MIP pricing is superior on larger instances.

7.1.2 Overall results

In this section we show results obtained with proposed improvements to the generic branch

and price algorithm. In Table 7.3 we report lower bound proven by our algorithm and the

69/83

7 EXPERIMENTAL RESULTS

best upper bound (solution cost) found. We compared our runtimes to the results published

by (Burke and Curtois, 2014). Their results are obtained on hardware comparable to our and

includes the sum of runtime of initiation heuristic as well as time spent in branch and price

algorithm.

Instance lb ub runtime [s] (Burke and Curtois, 2014) runtime [s]

Ozkarahan 0 0 0.06 5.1

Musa 175 175 0.5 5.1

LLR 301 301 4.3 5.8

Millar-2Shift-DATA1 0 0 0.29 5.1

Millar-2Shift-DATA1.1 0 0 2.02 5.1

WHPP 5 5 20 22.6

Azaiez 0 0 3.3 5.3

SINTEF 0 0 61 15.5

Valouxis-1 20 9260 120 914.6

Motol-1 1485 1485 991 –

Table 7.3: Computational results on real-world benchmark instances. Solutions with proven optimality are

in bold.

In the folllowing sections we will present the performance of the whole proposed algorithm

without specified improvement to show its contribution to the final results (presented in

Chapter 7.1.2.

7.1.3 Effect of improved MIP pricing

By the improved MIP pricing we refer the pricing method which is able to solve problems

up to the specified optimality gap with modified branching priorities for variables (Chap-

ter 6.3). It can be seen it has positive effect on nearly all test instances.

7.1.4 Effect of solution pool

Solution pool is a technique for obtaining multiple solutions for MIP based pricing (see

Chapter 6.3.3). Therefore, we used it for all test instances. The size of the pool was set to 15.

70/83

7 EXPERIMENTAL RESULTS

Instance ub runtime [s]

Ozkarahan 0 0.06

Musa 175 1.6

LLR 301 6.5

Millar-2Shift-DATA1 0 0.29

Millar-2Shift-DATA1.1 0 2.02

WHPP 5 30.2

Azaiez 0 4

SINTEF 0 62

Valouxis-1 18400 120

Table 7.4: Results achieved without the improved MIP pricing. Solutions with proven optimality are in bold.

Instance ub runtime [s]

Ozkarahan 0 0.06

Musa 175 0.5

LLR 301 13.9

Millar-2Shift-DATA1 0 0.29

Millar-2Shift-DATA1.1 0 2.02

WHPP 8045 120

Azaiez 0 70.3

SINTEF 0 62

Valouxis-1 17580 120

Table 7.5: Results achieved without the solution pool. Solutions with proven optimality are in bold.

7.1.5 Effect of primal heuristics

Primal heuristics focus on improving upper bounds on integer solution in a short time.

Therefore, it helps to speed up even the proof of optimality in cases when the Simplex al-

gorithm finds fractional solution even though there are columns capable of forming optimal

integer solution.

7.1.6 Effect of subproblem skipping

In Table 7.7 can be seen that subproblem skipping has overall good influence, especially

on Azaiez instance. However, we believe that the effect similar to the achieved one by this

technique could be done also with some heuristics imposing an order on the subproblems in

which they are solved.

71/83

7 EXPERIMENTAL RESULTS

Instance ub runtime [s]

Ozkarahan 0 1.6

Musa 175 0.6

LLR 301 4.3

Millar-2Shift-DATA1 0 5.8

Millar-2Shift-DATA1.1 0 6.7

WHPP 5 31.2

Azaiez 0 60.3

SINTEF 22558 120

Valouxis-1 21420 120

Table 7.6: Results achieved without the primal heuristics. Solutions with proven optimality are in bold.

Instance ub runtime [s]

Ozkarahan 0 0.06

Musa 175 0.5

LLR 301 6

Millar-2Shift-DATA1 0 0.29

Millar-2Shift-DATA1.1 0 2.02

WHPP 5 23.7

Azaiez 0 46.7

SINTEF 0 62

Valouxis-1 18400 120

Table 7.7: Results achieved without the subproblem skipping. Solutions with proven optimality are in bold.

7.1.7 Effect of symmetry breaking

From our test set, the following instances satisfy precondition needed to use the proposed

technique of symmetry breaking. Runtimes and solutions achieved without symmetry breaking

(Chapter 6.4) are presented in Table 7.8.

Instance ub runtime [s]

WHPP 5 28

Valouxis-1 11360 120

Table 7.8: Results achieved without the symmetry breaking. Solutions with proven optimality are in bold.

We excluded Millar instances from this comparison since they are solved and proved to be

optimal due to primal heuristics in the same time even without symmetry breaking. However,

when one disables the primal heuristics the speedup about 50% can be observed.

72/83

7 EXPERIMENTAL RESULTS

7.2 Motol instance

We teamed up with Motol hospital in Prague, Czech Republic, in order to provide to us

rules and coverage requirements for one of their departments. It consists of 12 employees which

are required to be scheduled on one of three shift types (plus off shift) over 29 days horizon.

The rules specify various workloads for individual nurses as well as regulation restrictions

for shifts assignment. Moreover, it specifies preferred coverages for each day and shift type.

Nurses also have their requests for shift assignments (e.g. employee H does not want to have

D shift on Thursdays).

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo

Employee A - - E N - N N - - - - N N - - - N N - D N - - - - - - - -

Employee B - N N - D N - - N N - - N N - N E N - N N - N - - - - N -

Employee C - D D N - - - D E D N - - - - E D - - N - E D N - N - D D

Employee E D - - - - - - - - E D - - - D E D - - - - - - E D - - - E

Employee F - - - - - - - - - D - - - - - N - - D - D E E E N - N - -

Employee G - - E D E D D E D - - - D D - - E E E D - - - D - - - - -

Employee H - - D E E - - D E E E D D D - - - - - - - D D E - - D N -

Employee I D E E - - - D E - - N - - - E D E D N - - - N - - E D D E

Employee J - N - - - D N - N - - E - N - - - - E - D - - - N - N - -

Employee K N - E D N - - N - E D - - - D D E D D - - N - E E D - - D

Employee L E E - - - - - - - E - E - - E - - E - - - - - E E E - - -

Employee M E D E E D - - - D E E D - - N - E - - - - D E D D D - - N

Figure 7.1: Optimal solution forMotol-1 instance. Large consecutive blocks of free days are caused by personal

requests (i.e. vacation).

To compare this new instance to previous ones, we would say that nurses in Motol-1

instance are quite unique (a vast majority of them has own working contract). Moreover, the

minimum number of working hours (workload) must be fulfilled otherwise it yields in large

penalty. On the other hand, working over permitted workload in contract is not penalized

much. Interesting feature is also that a few assignments are frozen — e.g. some employees

must be assigned to given shift on given day.

The Motol hospital also provided their solution — in Table 7.9 we compared it to our

solution, whose optimality is proven. It can be seen that it significantly improved the objective

value and, thus, the overall quality of assignments.

Instance provided solution our solution lower bound†

Motol-1 338585 1485 1485

Table 7.9: Comparison of our solution to the provided one. It significantly improved the given one. Moreover,

it proved that our solution is optimal. † lower bound was obtained by the column generation in root node.

We hope that in future we would be able to cooperate with the hospital on regular basis

in order to improve quality of rosters for their employees and consequently, the health care

quality.

73/83

7 EXPERIMENTAL RESULTS

7.3 Discussion

As it can be seen in Table 7.3, our algorithm performed well on majority test instances. It

struggled on SINTEF instance, which specifies hard coverage constraints. Our master model

models it using a large penalty (so-called Big M) for understaffing and overstaffing. A vast

majority of runtime was spent in column generation, which converged poorly. Therefore, in

our opinion, master model was degenerated which caused slow convergence. We would like to

address this issue in the future development.

Next, we would like to mention an unclarity of the result obtained by (Burke and Curtois,

2014) for WHPP instance. From their published solution can be seen, that they considered

some constraints as hard ones, however, this test instance specifies all constraint as soft ones.

Therefore, it is not clear under what settings authors did solve the instance. Replacing soft

constraints for hard ones would simplify the task. However, we treated constraints as soft

ones.

On the Valouxis-1 instance our algorithm was not able to find an optimal solution in the

given runtime. Even though, the found solution with objective value over 9000 may not seem

good enough, the converse is true. By examining penalties of constraints in this instance it

can be seen that only about 10 soft constraints were violated among all 16 employees over 4

weeks time horizon. Moreover, our algorithm proved that solution with no violation does not

exist.

The results by (Burke and Curtois, 2014) show odd feature which was discussed in Chap-

ter 1.3. For example, for the Valouxis-1 instance, their algorithm finished with suboptimal

results after seemingly random time (i.e. no upper limit for runtime). This can be also ob-

served for the results for different benchmark set (Curtois T., 2014) where the same behavior

occurred multiple times. This behavior was commented by authors as ”. . . [algorithm] often

finding optimal solution. . . ”. Therefore, their algorithm is not complete one and, thus, in-

comparable with ours. Its description is misleading and one could get an impression that it

is an exact method although there is no sentence directly claiming that. Furthermore, our

algorithm was able to derive stronger lower bound.

We would like to stress once again that one has to keep in mind that comparison with the

results by (Burke and Curtois, 2014) is for illustrative purpose only. Their task was simpler

since their approach does not guarantee optimality.

In this chapter we presented results achieved by our proposed algorithm. For nearly all test

instances, the algorithm was able to find optimal solution and prove its optimality in given

time limit. Moreover, to test the suitability of our algorithm for real-world environments,

we attempted to find a solution for roster for March 2015 for the surgery department of

74/83

7 EXPERIMENTAL RESULTS

Motol hospital in Prague. We were able to find the optimal solution in reasonable time, which

improved their original solution’s objective over a factor of 220.

75/83

8 CONCLUSION

8 Conclusion

In this thesis, an exact algorithm for Nurse Rostering Problem was introduced. We studied

the generic Branch and Price method in details. The properties of Nurse Rostering Problem

were studied as well. We designed a Branch and Price based algorithm for solving Nurse

Rostering Problem allowing expressive both coverage constraints and working regulations

constrains. Properties of the problem were exploited in order to speed up the algorithm. A

number of improvements for generic Branch and Price algorithm was developed also. Those

exploited properties of our problem resulted in tractability of proving optimality on medium-

sized real-world instances.

Since we have shown that medium-sized instances can be solved up to the optimality in

a range of seconds to minutes, the only benefit of metaheuristic approaches (i.e. runtime) for

them is discarded. Furthermore, we tested our algorithm on the new real-world benchmark

instance, which we created in cooperation with employees of a large hospital in Prague.

Moreover, we have shown that the information derived by machine learning algorithms

during the number of iterations of NP-hard problems can be used in order to speed up

the optimization algorithm in the future while preserving exactness of the algorithm. This

unveils a great opportunity for improving the performance on related problem instances using

information taught in the past.

To the best of our knowledge, this work represents the only exact Branch and Price based

algorithm for Nurse Rostering Problem applied to real-world instances with soft constraints.

Moreover, it was able to outperform current best solution times for public benchmark in-

stances.

8.1 Future work

In this work, we focused on the possibility of gaining information about hard optimization

problems by observing, i.e. feature-based machine learning. The next work should focus on

gaining information by reasoning, i.e. deriving logically correct properties of given problem

instance which are not contained explicitly in the given problem.

In future research we would like to investigate the question how to automatically derive

constraints (i.e. cuts, symmetry breaking constraints, etc.) for the given problem instance.

Especially, how to automatically break symmetries in such instances. The approach based

on searching for graph isomorphisms described in (Crawford et al., 1996) has been used

successfully for derivation of symmetry breaking predicates in Pigeonhole problem and n-

queens problem. The question is, whether it is possible to apply it for integer programming

76/83

8 CONCLUSION

problems.

Moreover, a large number of possible improvements of the Branch and Price algorithm

are left unexplored. One of them is designing a of different objective function for the pricing

problem, since the selection of solution with the minimal reduced cost does not guarantee the

fastest convergence of column generation. The other thing that needs to be addressed is the

choice of the algorithm for the master problem. The Simplex algorithm finds solutions of the

restricted master problem at some vertex of feasibility polyhedron while e.g. the interior point

method tends to find solutions in the middle of its face. It was reported (CGC, 2014), that these

different dual solutions may have a significant effect on the convergence behavior (intuitively,

when the dual solution is placed in the middle of a face, it is more likely that a cutting plane

cuts off more space than in the case of the vertex placement). This is indirectly connected

with the open question, which order the subproblems should be solved in. In our experience,

proper ordering of pricing problems (i.e. problems for individual nurses) has positive influence

on the speed of convergence of the column generation. However, in this work, we did not study

its effect in details.

Some improvements can be done for the MIP pricing model too. An interesting opportunity

is to use lazy constraints for checking pattern matches. Typically, only a few of them are active

in the optimum, thus all of them do not necessary need to be present in the model.

Another interesting modification of our algorithm is to turn it into a powerful heuristic

— e.g. do not branch, round up almost decided assignments, solve pricing problem in more

relaxed way, etc. Since we know the lower bound given by column generation, we are able to

determine the quality of such suboptimal solutions. This is a great advantage over various

metaheuristics, which are not able to establish how far their solution is from the optimal one.

With this knowledge, one can drive the decision, whether the additional solution time is likely

to improve the objective in a considerable way.

We believe, that all those further improvements and other unmentioned ones will lead to

the computational tractability of proving optimality of solutions on the largest instances.

77/83

8 CONCLUSION

78/83

9 BIBLIOGRAPHY

9 Bibliography

Uwe Aickelin and Kathryn Dowsland. Exploiting problem structure in a genetic algorithm

approach to a nurse rostering problem. Journal of Scheduling, 3(3):139–153, 2000.

Uwe Aickelin and Kathryn A Dowsland. An indirect genetic algorithm for a nurse-scheduling

problem. Computers & Operations Research, 31(5):761–778, 2004.

Farid Alizadeh. Interior point methods in semidefinite programming with applications to

combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.

Hatem Ben Amor and Jacques Desrosiers. A proximal trust-region algorithm for column

generation stabilization. Computers & Operations Research, 33(4):910–927, 2006.

Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and

Pamela H Vance. Branch-and-price: Column generation for solving huge integer programs.

Operations research, 46(3):316–329, 1998.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,

2004.

Edmund Burke, Patrick De Causmaecker, and Greet Vanden Berghe. A hybrid tabu search

algorithm for the nurse rostering problem. In Simulated evolution and learning, pages

187–194. Springer, 1999.

Edmund Burke, Peter Cowling, Patrick De Causmaecker, and Greet Vanden Berghe. A

memetic approach to the nurse rostering problem. Applied intelligence, 15(3):199–214,

2001.

Edmund K Burke and Tim Curtois. New approaches to nurse rostering benchmark instances.

European Journal of Operational Research, 237(1):71–81, 2014.

Edmund K Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik Van Lan-

deghem. The state of the art of nurse rostering. Journal of scheduling, 7(6):441–499, 2004.

Edmund K Burke, Jingpeng Li, and Rong Qu. A hybrid model of integer programming and

variable neighbourhood search for highly-constrained nurse rostering problems. European

Journal of Operational Research, 203(2):484–493, 2010.

Yair Censor. Pareto optimality in multiobjective problems. Applied Mathematics and Opti-

mization, 4(1):41–59, 1977.

CGC. Acceleration strategies and column generation heuristics. Summer School on Column

Generation, 2014.

79/83

9 BIBLIOGRAPHY

Brenda Cheang, Haibing Li, Andrew Lim, and Brian Rodrigues. Nurse rostering problems—-a

bibliographic survey. European Journal of Operational Research, 151(3):447–460, 2003.

James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-breaking

predicates for search problems. KR, 96:148–159, 1996.

T. Curtois. Employee shift scheduling benchmark data sets. http://www.cs.nott.ac.uk/

~tec/NRP/, 2014. Accessed: 2014-10-14.

Qu R. Curtois T. Computational results on new staff scheduling benchmark instances. Techni-

cal report, ASAP Research Group, School of Computer Science, University of Nottingham,

2014.

Emilie Danna, Mary Fenelon, Zonghao Gu, and Roland Wunderling. Generating multiple

solutions for mixed integer programming problems. In Integer Programming and Combina-

torial Optimization, pages 280–294. Springer, 2007.

Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. Springer, 2005.

Olivier Du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabilized column

generation. Discrete Mathematics, 194(1):229–237, 1999.

Andrew Gilpin and Tuomas Sandholm. Information-theoretic approaches to branching in

search. Discrete Optimization, 8(2):147–159, 2011.

Atsuko Ikegami and Akira Niwa. A subproblem-centric model and approach to the nurse

scheduling problem. Mathematical Programming, 97(3):517–541, 2003.

Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints. Springer,

2005.

Andrzej Jaszkiewicz. A metaheuristic approach to multiple objective nurse scheduling. Foun-

dations of Computing and Decision Sciences, 22(3):169–184, 1997.

Brigitte Jaumard, Frederic Semet, and Tsevi Vovor. A generalized linear programming model

for nurse scheduling. European journal of operational research, 107(1):1–18, 1998.

Bernhard Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization. Springer,

2002.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Operations

research, 14(4):699–719, 1966.

Marco E Lübbecke and Jacques Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007–1023, 2005.

80/83

http://www.cs.nott.ac.uk/~tec/NRP/
http://www.cs.nott.ac.uk/~tec/NRP/

9 BIBLIOGRAPHY

Broos Maenhout and Mario Vanhoucke. Branching strategies in a branch-and-price approach

for a multiple objective nurse scheduling problem. Journal of Scheduling, 13(1):77–93, 2010.

Julien Menana and Sophie Demassey. Sequencing and counting with the multicost-regular

constraint. In Integration of AI and OR Techniques in Constraint Programming for Com-

binatorial Optimization Problems, pages 178–192. Springer, 2009.

Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & Opera-

tions Research, 24(11):1097–1100, 1997.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Panos M Pardalos and Jue Xue. The maximum clique problem. Journal of global Optimiza-

tion, 4(3):301–328, 1994.

Sanja Petrovic, Gareth Beddoe, and Greet Vanden Berghe. Storing and adapting repair

experiences in employee rostering. In Practice and Theory of Automated Timetabling IV,

pages 148–165. Springer, 2003.

Alexandre Pigatti, Marcus Poggi De Aragão, and Eduardo Uchoa. Stabilized branch-and-cut-

and-price for the generalized assignment problem. Electronic Notes in Discrete Mathemat-

ics, 19:389–395, 2005.

Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach. Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs, 25, 1995.

Haroldo G Santos, Túlio AM Toffolo, Rafael AM Gomes, and Sabir Ribas. Integer program-

ming techniques for the nurse rostering problem. Annals of Operations Research, pages

1–27, 2014.

Barabara M Smith, Kostas Stergiou, and Toby Walsh. Modelling the golomb ruler problem.

Research report series — University of Leeds School of Computers Studies LP SCS RR,

1999.

James M Tien and Angelica Kamiyama. On manpower scheduling algorithms. Siam Review,

24(3):275–287, 1982.

Christos Valouxis and Efthymios Housos. Hybrid optimization techniques for the workshift

and rest assignment of nursing personnel. Artificial Intelligence in Medicine, 20(2):155–175,

2000.

Marjan van den Akker, Han Hoogeveen, and Steefvan de Velde. Combining column generation

and lagrangean relaxation to solve a single-machine common due date problem. INFORMS

Journal on Computing, 14(1):37–51, 2002.

81/83

9 BIBLIOGRAPHY

D Michael Warner. Scheduling nursing personnel according to nursing preference: A mathe-

matical programming approach. Operations Research, 24(5):842–856, 1976.

D Michael Warner and Juan Prawda. A mathematical programming model for scheduling

nursing personnel in a hospital. Management Science, 19(4-part-1):411–422, 1972.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learn-

ing. the MIT Press, 2(3):4, 2006.

82/83

APPENDIX A CD CONTENT

Appendix A CD Content

In Table A.1 are listed names of all root directories on CD.

Directory name Description

thesis Master’s thesis in pdf format.

thesis sources latex source codes

code source code of implemented algorithm

Table A.1: CD Content

83/83

	List of Figures
	Introduction
	Problem statement
	Difficulties in practice
	Computational complexity

	Related work
	Summary
	Contribution
	Outline

	Branch and price method
	General overview
	Original formulation
	Reformulation for Nurse Rostering Problem
	Primal model
	Additional coverage constraints

	Dual model
	Column generation
	Derivation

	Algorithmic description

	Pricing problem
	Definition
	Computational complexity
	Exact solution methods
	Branch and bound with domination rules
	Mixed-Integer Linear Programming
	Informed state space search
	Constraint programming

	Heuristic methods
	Heuristic MIP

	Lower bound
	Tighter bound via Semidefinite Programming

	Upper bound
	Additional remarks

	Master problem
	Definition
	Initial solution
	Single-pass heuristics
	Pattern pump heuristics

	Lower bound
	Lagrangian relaxation
	Branching methods
	Branching on master variables
	Branching on original variables
	Variable selection
	0–1 branching
	1/../S branching
	Constraint branching
	Strong branching
	Impact to performance

	Upper bound
	Column management

	Machine learning methods
	Motivation
	Improving upper bound in pricing problem
	Robust regression problem
	Relation to cover cuts
	Impact to performance
	Further improvements

	Additional observations
	Motivation
	Column generation
	Dual variables stabilization
	Heading-in effect
	Tailing off effect

	MIP pricing
	Imposing lower and upper bounds on the objective
	Branching priorities for variables
	Solution pool
	Subproblem skipping

	Symmetry breaking
	Symmetry breaking by fixing some assignments

	Experimental results
	Real-world benchmarks
	Generic branch and price
	Overall results
	Effect of improved MIP pricing
	Effect of solution pool
	Effect of primal heuristics
	Effect of subproblem skipping
	Effect of symmetry breaking

	Motol instance
	Discussion

	Conclusion
	Future work

	Bibliography
	Appendix CD Content

