
andrej tokarčík

A N E X E C U TA B L E F O R M A L S E M A N T I C S O F A G D A

A N E X E C U TA B L E F O R M A L S E M A N T I C S O F A G D A

andrej tokarčík

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Master’s Thesis

Faculty of Informatics
Masaryk University

Brno, May 2015

Andrej Tokarčík: An Executable Formal Semantics of Agda,
Master’s Thesis, © 2015

http://creativecommons.org/licenses/by/4.0/

In honour of God our Father, the almighty God,
Creator of all Things, the Most Sublime and Best Father.

Dedicated to Him with a contrite and humble heart.

D E C L A R AT I O N

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

. .

Bc. Andrej Tokarčík

supervisor:
Mgr. Jan Obdržálek, Ph.D.

A C K N O W L E D G M E N T S

I would like to express my gratitude to my supervisor Mgr. Jan Ob-
držálek, Ph.D., for his support and advice. My earnest thanks also go
to my friends and family for their help and care during the period
of writing the thesis.

vii

A B S T R A C T

Agda is an actively developed dependently typed programming lan-
guage and interactive theorem prover based on a variant of Martin-
Löf type theory. This thesis presents an executable formal semantics
of a portion of the language, created using the K semantic framework.
Issues pertaining to formalisation of Agda as well as the key decisions
made during the development of the semantics are discussed.

The core of the project is an implementation of the typechecking
and type inference algorithms together with support for declarations
of inductively defined families of datatypes and dependently typed
functions.

In addition, the covered features also include insertion of metav-
ariables in place of implicit arguments and simplified pattern match-
ing. The work thus demonstrates the ability to provide operational
semantics of dependently typed programming languages without dis-
regarding aspects that make their use practical.

K E Y W O R D S

K, Agda, KAgda, formal semantics, operational semantics, rewriting
logic, type theory, dependent type systems

ix

Z H R N U T I E

Agda je aktívne vyvíjaný programovací jazyk so závislými typmi
a interaktívny dokazovač matematických viet založený na upravenej
teórii typov Martin-Löfa. V práci je predstavená spustitel’ná formál-
na sémantika časti tohto jazyka vytvorená pomocou sémantického
frameworku K. Diskutujú sa jednak otázky týkajúce sa formalizácie
Agdy a druhak kl’účové rozhodnutia učinené počas vývoja jej sé-
mantiky.

Základom projektu je implementácia algoritmov na kontrolu a od-
vodzovanie typov spolu s podporou deklarovania induktívne defino-
vaných rodín dátových typov a závislo typovaných funkcií.

Okrem toho je zahrnuté aj vkladanie metapremenných namiesto
implicitných argumentov a zjednodušený pattern matching. Práca tak
ukazuje, že je možné poskytnút’ operačnú sémantiku závislo typo-
vaných programovacích jazykov aj bez zanedbania vlastností, ktoré
ich robia praktickými na použitie.

K L’ Ú Č O V É S L O VÁ

K, Agda, KAgda, formálna sémantika, operačná sémantika, prepiso-
vacia logika, teória typov, typové systémy so závislými typmi

xi

C O N T E N T S

1 introduction 1

1.1 Contributions 2

1.2 Overview of the Thesis 3

2 k framework 5

2.1 Language Definitions 6

2.2 Rewriting Rules 6

2.3 Evaluation Contexts 7

3 agda 11

3.1 Dependent Types: A Primer 12

3.1.1 Parametrised Datatypes 12

3.1.2 Functions 13

3.1.3 Inductive Families 14

3.1.4 Inaccessible Patterns 16

3.2 Propositions as Types 16

3.3 Decidability of Typechecking 18

4 a k semantics of agda 21

4.1 Core Type Theories 22

4.2 Syntax 23

4.2.1 Parsing and Scope Analysis 23

4.2.2 Desugaring 25

4.3 Semantics: An Entrée 26

4.3.1 Configuration 27

4.4 Declarations 28

4.4.1 Datatypes 29

4.4.2 Function Clauses 30

4.4.3 Local Definitions 31

4.4.4 A Note on Deficient Checks 31

4.5 Normalisation 32

4.5.1 Pattern Matching 33

4.5.2 Phase Distinction 34

4.6 Type System 35

4.6.1 Type Inference 35

4.6.2 Typechecking and Unification 38

4.6.3 Metavariables and Implicit Arguments 39

5 conclusion 41

bibliography 43

a quickstart guide 47

xiii

xiv contents

a.1 Installation of the Dependencies 47

a.2 Working with the Semantics 48

L I S T O F F I G U R E S

Figure 1 Curry-Howard correspondence 17

Figure 2 Scope analysis and operator resolving 24

Figure 3 Desugaring of the identity function 25

Figure 4 KAgda configuration 27

Figure 5 Function type signatures in KAgda 29

Figure 6 Constructors of data declarations in KAgda 29

Figure 7 Signatures for a data declaration 30

Figure 8 Expansion of function clauses in the official
typechecker 33

Figure 9 Type-theoretic inference rule for Π-abstractions 35

Figure 10 KAgda type inference for Π-abstractions 36

Figure 11 Type-theoretic inference rule for function ap-
plications 37

Figure 12 KAgda type inference for function applications 37

T E R M I N O L O G Y

Agda the dependently programming language or specifically
the official type checker, depending on the context

KAgda K semantics of Agda, presented in this thesis

GADT generalised algebraic data type

AST abstract syntax tree

xv

1
I N T R O D U C T I O N

Type theories emerged as an alternative to naïve set theory after it was
shown to be inconsistent. Perhaps the most notable definition that ex-
hibits this inconsistency is that of Russell’s paradox which concerns
a set of all sets that are not members of themselves, R = {X | X ̸∈ X}.
Clearly, R is a member of itself precisely when it is not a member of
itself, which is contradictory. After the possibility of such a contra-
dictory formulation within naïve set theory was discovered, logicians
and mathematicians had to reconsider their basic principles and to
find ways in which set definitions are appropriately restricted.

Type theories, that is, formal approaches to the study of type sys-
tems, are the fruits of one of the directions taken to address this issue.
The notion of type can be understood similarly to the notion of set
except that types belong to a hierarchy of universes that avoids self-
reference: the type of a universe is always of the higher level, it cannot
be a member of itself.

In the meantime, type systems have been also explored and em-
ployed by designers of programming languages. The purpose of types
in this field has been to indicate the intended behaviour of a pro-
gram along with the implementation of that behaviour and to aid
compilers, interpreters and such when it comes to finding errors and
various optimisations prior to the actual execution.

Not all type systems meet those ends equally, though. To take
a stock example, widely used type systems of modern languages al-
low one to state that a sorting function is unary with a list of numbers
as its sole input and that it produces a list of numbers. The statement
certainly does not reveal much about the real reason for why there
is a special category of sorting functions. Indeed, even the identity
function would fit such a vague description!

A driving force behind the interest in type systems in computer
science is grounded in this issue of expressivity. How to state the type
of a sorting function more accurately? Dependent type systems such
as the one discussed in this thesis attempt to give a solution to this
problem by extending the vocabulary spoken in the world of types.
Types then become strikingly similar to logical formulæ, giving way
to a synthesis of the endeavours of logicians and computer scientists.

Refined types mean more automated help when constructing pro-
grams and a higher degree of certainty about their correctness in the
end – but they as well demand more for the machine to be convinced
that the algorithms are in line with the given specification. Sophist-
icated type systems thus might delay the time when a program gets

1

2 introduction

finally executed but once such a state is reached there is a proportion-
ally greater guarantee that the program works as it should. And that
is a most welcome exchange in many cases.

1.1 contributions

This thesis presents a formal operational semantics of the depend-
ently typed functional programming language and interactive the-
orem prover Agda. The semantics is written using the K semantic
framework. The importance of the rigorous mathematical study of
the meaning of programming languages is generally underestimated
because of the perceived lack of its usefulness. K is a powerful form-
alism that generates an interpreter and other analysis tools from lan-
guage definitions and so gives a practical incentive for a semantics-
based approach towards the design and implementation of program-
ming languages.

The main contributions are:

a. a discussion of issues related to formalisation of Agda,

b. the first formal semantics of a portion of Agda in its capacity as
a practical programming language, and

c. the first K semantics of a language featuring a dependent type
system.

The latter two points culminate in a single semantics project named
KAgda whose development and functionality is the subject of the
thesis.

Even though the semantics is most certainly incomplete with re-
spect to the whole of Agda’s features, non-trivial programs that rely
on the power of dependent type systems can be executed. KAgda can
do basic theorem proving, too.

Some features supported by KAgda include:

• typechecking of expressions, including let bindings;
• declarations of (parametrised) datatypes, inductively defined

families and (dependent) functions;
• simplified inference of metavariables and implicit arguments;
• simplified pattern matching over inductively defined families of

datatypes.

The source code of the semantics, the test suite and related files
can be found in the archive enclosed with this thesis or in their most
up-to-date form online at:

https://github.com/andrejtokarcik/agda-semantics

To get more acquainted with the final product and its technical spe-
cifics see the quickstart guide in Appendix A.

https://github.com/andrejtokarcik/agda-semantics

1.2 overview of the thesis 3

1.2 overview of the thesis

The thesis presupposes elementary knowledge of principles of pro-
gramming language design and functional programming. A general
familiarity with theoretical computer science should be a sufficient
background.

Chapter 2 discusses motivation for using K as the semantic frame-
work. Its philosophy, notation, pros and cons are briefly discussed.
The reader will become acquainted with the structure of K language
definitions, basic rewriting rules and methods of argument evalu-
ation.

Chapter 3 is an introduction to features of the Agda language. De-
pendent types and their characteristic attributes are explained and
demonstrated on examples. The relationship between dependent type
systems and constructive logics and the consequences on machine-
checked theorem proving are also examined.

The previous two chapters are to be understood as preliminary
expositions of the technologies that are integrated together within
KAgda. Their purpose is to make the reader capable to follow the
rest of the text that builds upon this basic knowledge. Since the ex-
planations are by no means exhaustive or self-contained, they are sup-
plemented by references to other literature.

The core of the thesis is Chapter 4. After the challenges of defining
Agda’s semantics are stated, I continue with how the syntactic and se-
mantic parts of the semantics are approached, where the latter part is
primary and much longer. The chapter finishes with a section on how
a dependent type theory is realised in KAgda. The correspondence
between the K rewriting rules and the type-theoretic rules is shown
on the examples of type inference for Π-abstractions and dependent
function applications.

Chapter 5 concludes the whole thesis and analyses the achieve-
ments and limitations of the semantic definition.

At last, Appendix A is a technical guide on how to set up the
KAgda system and how to perform typechecking of Agda programs
with it.

2
K F R A M E W O R K

In an ideal world, every programming language has a formal se-
mantic definition that is simple, concise, complete and modular. Fur-
thermore, a variety of tools would be automatically derived from
it: parsers, interpreters, compilers, debuggers, state-space explorers,
model checkers, and so forth. Not only would it be possible to reason
formally about the properties of programs and programming lan-
guages but lots of duplicated effort would be prevented as all the
language-specific software would be replaced by a generic semantics-
based toolset once and for all.

K [31] is a framework for defining operational semantics of pro-
gramming languages that aims to bring this ideal world closer. Its im-
plementation [32], using which the semantics discussed in this thesis
has been created, comprises a collection of software tools for trans-
lating language definitions to rewriting-logic theories and for their
subsequent execution or analysis [18]. Several languages have been
formalised in K , including (in the order of publication) C [14], Py-
thon [17], PHP [15], Java [9], and most recently JavaScript [28].

The main assets of K are its convenient and modular notation for
defining both the syntax and the semantics of a programming lan-
guage on the one hand and its generic tools that work with these
definitions on the other hand. Even though the scope of the K-pro-
vided tools is broader, the following have been used in connection
with the development of KAgda:

• kompile that compiles programming language definitions into
Maude modules;

• krun that works as a parser and interpreter of programs written
in the kompiled programming language;

• ktest that tests the language definition by krunning a set of
programs and comparing their results with expected outcomes.

For more details on their usage refer to Appendix A.2 at page 48.
Perhaps the greatest disadvantage has to do with performance is-

sues. It is indeed true that K’s generic tools are given ‘for free’ once
the semantics is created but it does not follow that these would be
ipso facto comparable or even preferable to the tailored compilers,
typecheckers, etc. Performance loss is not always negligible and must
be taken into account.

This chapter explains the basics of the K formalism and notation
that are necessary to understand the portions of KAgda discussed in
the rest of the thesis. For a more thorough exposition of the frame-
work, see its overview [31] and take its tutorial [30].

5

6 k framework

2.1 language definitions

A language definition consists of a syntax and a semantics of the
language. In K , a syntax is comprised of syntactic sorts given using
BNF annotated with semantics attributes. A semantics is given as a set
of rewriting rules over a configuration. A configuration is an algebraic
structure holding all information about the program state, organised
as a (possibly nested) set of cells (fast-forward to Figure 4 at page 27Cells are containers

of data on which the
semantics operates.

for an example).
The k cell is especially important in this regard. It encloses a se-

quence of computations to be performed, usually pieces of the semi-
processed program text, with the top (or leftmost) item determining
the current computation phase. Items of the sequence are delimited
by ‘↷’ with the unit •K . The unit matches on any position in the se-
quence: for instance, the sequence K ↷ . . . is matched by the pattern
that expects K to be at the top of the sequence but also by the pattern
that expects •K ↷ K to be at the top.1

Since the k cell is initialised with the text of an input program, the
rules generate an input-dependent transition system. A single path in
the system characterises one possible way to interpret the particular
program.

2.2 rewriting rules

Rewriting rules contain patterns to match the contents of configura-
tion cells. A rule that matches can be triggered with the effect of the
configuration’s being updated as specified by the rule.

We consider the following rule:

rule var-lookup

X

V

k

X ↦→ N

env

N ↦→ V

store

The rule is immediately observed to involve three configuration
cells. If there are any other cells in the configuration, they are as-
sumed to be irrelevant and match automatically.

What exactly is being matched here, though? To clear up possible
confusion in advance, the ‘↦→’ symbol does not refer to the rewriting
relation. Instead, the relation is shown as the horizontal line below
X, whereas ‘ ↦→’ is used to denote items of a map: the env and store

cells therefore both store a map. A cell with no horizontal line is only
read but not rewritten by the rule, which is again the case of env and
store. Variables start with a capital letter.

1 The latter pattern is useful for putting new items in front of the current k top as in
the 2nd rule from Figure 10 at page 36.

2.3 evaluation contexts 7

Also notice the ‘torn’ sides of the cells conveying that the cell can
contain data besides those items listed. The left side of the k cell is
not torn, however, and so the left boundary must correspond with the
left end of the data structure: for the sequence in k it means that X

must be precisely its leftmost (or top) item. On the other hand, since
env and store are ruptured from both sides, the matched map items
can be located wherever in the map. If we wanted to be redundantly
explicit we could rewrite the rule with additional variables thus:

rule var-lookup-explicit

X

V

↷ KRest

k

EnvRest (X ↦→ N)

env

StoreRest (N ↦→ V)

store

All in all, both of the rules say that if the top of k is some thing
X, which is a key for another thing N in the env map, which in turn What if X and V

turned out to be
equal?

is also a key for yet another thing V in store, then X in k should be
rewritten into V . In more human terms, the rule performs a two-level
lookup. If we took the rule’s name seriously, we could deduce that
the programming language that is being described contains variables
and the things looked up and stored are in fact these variables. The
env cell could be then understood as mapping variables to addresses
while store would be mapping addresses to actual values. Voilà, we
really seem to have just defined the semantics of a variable lookup!

The example has already touched upon an important aspect of how
K promotes modularity: that not all the configuration cells are re-
quired to be mentioned in rules and even then only the relevant por-
tions of those mentioned have to be explicitly included.

2.3 evaluation contexts

Now we examine the two rules for the conditional expression:

rule if-true

if B then E else —

E

requires B =K true

rule if-false

if B then — else E

E

requires B =K false

The rules do not reference any cell at all, how come? Such rules are
understood simply to match on the k cell by default. The symbol ‘—’
represents a wildcard pattern that always matches and about whose
value we don’t care.

Side conditions are also attached to the rules here. Each of the rules
can get triggered only if its side condition is met, i. e., it evaluates as

8 k framework

true. The conditions here are quite elementary, though, so one might
wonder why bother and not use pattern matching directly. Indeed,
we could equivalently say:

rule if-true-matching

if true then E else —

E

rule if-false-matching

if false then — else E

E

Remarkably, the rules seem to presuppose their condition expres-
sion to be booleans in their canonical forms2 only, contrary to the
intuition that ifs with a condition like 2 ⩽ 3 should certainly evalu-
ate to the first branch as if the condition were directly true. The rules
seem to accept nothing else but the two trivial cases.

That argument would hold if the rules were intended to be self-
sufficient. Far from it: they are usually coupled with another set of
rules that takes care of evaluation of the arguments into their ‘final’
form. In other words, there are supplementary rules that secure that
a language construct is strict in its arguments, i. e., the arguments are
evaluated before dealing with the construct itself.

For the if construct, the correct evaluation strategy is guaranteed
by the pair of rules:

rule if-heat

•K

C

↷ if C

□

then — else —

requires isBool(C) ̸=K true
rule if-cool

C

•K

↷ if □

C

then — else —

requires isBool(C) =K true

The first rule is a ‘heating’ rule that is executed only if the condition
C is not a final result (here a canonical boolean). In such a case, C
gets lifted on top of the k computation stack with its position in the
original expression marked by a ‘hole’ (□).

Being on top, C is matched by other rewriting rules that (hope-
fully) reduce it into a canonical boolean value. When the transform-
ations finish, the second, ‘cooling’ rule is triggered, which brings the
produced boolean back to its original context. Afterwards, the actual
rules for the if construct from the beginning of the section are guar-
anteed to match.

Since the heating/cooling rules are very commonly required yet
can be very tedious to write, K aids the semanticist by providing
him with more concise means to specify evaluation requirements of a

2 Elements of sorts or types are generally said to be in canonical form when they are
built solely by constructors, whereas non-canonical elements may contain defined
functions.

2.3 evaluation contexts 9

language construct. For instance, the if heating/cooling rules could
be equivalently replaced by the following:

context

if □ then — else —
[result(Bool)]

Such evaluation context statements must contain a single hole that
indicates which subexpression is to be evaluated, whereas the syn-
tactic sort deemed to be final (used within side conditions of the gen-
erated rules) is given as an attribute in square brackets.

In some situations, the expression in need of evaluation should not
be rewritten according to the same rules used to handle the top of k
but according to a different set of rules specific for the evaluation of
the argument in question.

For example, suppose that expressions by default evaluate to their
values. Within an assignment statement, however, the variable in the
left-hand side should evaluate to an address, not value. Therefore, the
context hole is wrapped so that a different, special set of rewriting
rules would apply:

context

□

lvalue (□)

= —

[result(Addr)]

This context would then generate a heating/cooling pair:

rule assign-heat

•K

lvalue (L)

↷ L

□

= —

requires isAddr(L) ̸=K true

rule assign-cool

lvalue (L)

•K

↷ □

L

= —

requires isAddr(L) =K true

The lvalue wrapper is in this case responsible for transforming L

into a value of sort Addr.

3
A G D A

Most strongly typed programming languages are based on a vari-
ant of the Hindley-Milner type system that includes only paramet-
rised types, not dependent types.1 Agda [11], on the other hand, is
a strongly typed, pure, functional programming language with de-
pendent types, based on a type theory à la Martin-Löf [24]. Due to the
Curry-Howard correspondence that is to be explained in Section 3.2,
Agda can also serve as an interactive theorem prover, allowing to
prove mathematical theorems (in a constructive setting) and to check
and run such proofs as algorithms.

Agda is the latest in the tradition of languages developed in the pro-
gramming logic group at Chalmers University of Technology in Göte-
borg, Sweden, that dates back to 1983 [2]. The group of languages
is known as the ALF family after its very first representative [21]
(in temporal order). Some other Chalmers languages are Agda 1 [1]
(a precursor to the current Agda system whose full name used to
be ‘Agda 2’ before it replaced Agda 1 altogether) and Cayenne [7].
Dependently typed languages/proof assistants outside the Chalmers
tradition are, e. g., Coq [8] and Idris [12].

Agda has been mainly developed by Ulf Norell with the goal of
bridging the gap between the theoretical presentations of type theory
and the requirements of a practical programming language [25]. The
language comes with many practical features such as pattern match-
ing over algebraic datatypes and type-safe treatment of metavariables
but also with its Emacs interactive development mode.

The syntax of Agda is very plain with a very few special characters.
In many aspects it is (superficially) reminiscent of Haskell including
the fact that it is whitespace-sensitive: declarations are delimited by
newlines with their scope indented. The most remarkable differences
are support for mixfix operators (such as if_then_else_) and unicode
identifiers.

For this reason, the next immediate section is already devoted to
the question of why there is so much ado about dependent types at
all.

Thompson’s Type Theory and Functional Programming [34] in spite of
its age is still a good book on the subject of dependent type theory
and its connection to constructive mathematics. For a fully-fledged
introduction to Agda, see the introductions of Bove and Dybjer [10]
and Norell [26]. Finally, the versatileness of programming with de-
pendent types is shown by Oury and Swierstra [27].

1 Haskell can simulate some aspects of dependent typing. [22]

11

12 agda

3.1 dependent types : a primer

The key novelty that a functional programmer must grasp with re-
gards to dependent types and their impact is the generalisation from
simple function spaces S → T to dependent function spaces (x : S) → T

(also known as Π-abstractions) where T may involve x. The crux of
the culture shock lies precisely in this: a type can depend on a value
that itself does not have to be a type. Hence it is possible to have types
that refer not just to other types but also to numbers, strings, etc. An-
other aspect of this phenomenon is that when a function is applied,
the value of the argument can be reflected in the resulting type.

Dependently typed programming can be also understood as pro-
gramming with data that maintain invariants verified via typecheck-
ing. With a richer type system, more complex behaviours can be ex-
pressed compactly as types. Functions that inhabit those types are
guaranteed to be correct with respect to the specified behaviours by
virtue of having typechecked.

For the purposes of demonstration, we take the canonical example
of lists (first without and then with internalised length invariants)
and define some functions working with them.

3.1.1 Parametrised Datatypes

The following examples are part of a single literate Agda file that can
be typechecked either with the official Agda system or with KAgda.
Each Agda file is required to have a top-level module – all the pro-
gram’s declarations go inside it.

We introduce a new datatype straight ahead:

module DepStructs whereDatatypes
are written

in GADT-style. infixr 5 _::_
data List (A : Set) : Set where

[] : List A
:: : A → List A → List A

Set is a universe, i. e., a type whose inhabitants can be used as
types.2 That constitutes the sole difference between what would oth-
erwise be considered value-level expressions and types, since both
values and types are expressions in Agda: only those expressions
whose type is a universe can be themselves used as types of other
expressions.

2 Obviously, if the typing relation should not fall prey to self-referential contradictions
of Russell’s kind, it must not admit Set to be its own type – it cannot hold that Set
: Set. For this reason, the universe to which Set belongs is of a higher level, Set1,
which in turn belongs to Set2, and so on ad (countable) infinitum. This organisation
is called a predicative hierarchy of universes. In addition, Agda’s hierarchy is non-
cumulative: it does not follow from A : Setα that A : Setβ for some β ⩾ α, each A
inhabits only its particular universe.

3.1 dependent types : a primer 13

The introduced datatype is List parametrised by another type A.
Such a parametric declaration introduces a collection of datatypes
each of which could be in principle declared separately.

List has two constructors [] (which creates a list of zero length) and
:: (which adds an element at the beginning of another list; the un-
derscores indicate that it is an infix operator while the infixr keyword
says that it is right-associative with priority 5).

Since Agda as such comes with no base types, we have to define
some ourselves in order to provide List with an actual parameter.
What about Peano-style natural numbers?

data N : Set where
zero : N

succ : N → N

Now we can create a list of natural numbers like this:

[1,0,2] = one :: zero :: succ one :: []
where one = succ zero

The example exploits the fact that basically any continuous string
of characters counts as identifier in Agda. The name [1,0,2] that we
just let denote the list-valued nullary function is as good as any other
name that would not clash with a keyword or an already defined
name.

3.1.2 Functions

The way of defining functions should be familiar to functional pro-
grammers. A major difference is that in Agda any pattern-matching
function (a function with at least one argument listed in the left-hand
side) must be equipped with an explicit type signature as dependent
function spaces cannot be inferred automatically from the defining
clauses [26]. Functions can be introduced either by λ-terms or claus-
ally by left-hand-side patterns built up from variables and data con-
structors. Function applications β-reduce as usual.

If we wanted to define a function looking up an i-th element of
a given list at this point, we would be forced to wrap its result into
a polymorphic option type that encapsulates ‘meaningful’ results in
addition with a ‘null’ value.3

The definition of the lookup function is virtually identical to its
Haskell variant, it is defined recursively with the result wrapped
within Maybe. With regard to the recursive part, we recognise two
cases: a base case for where the position is zero and where we return
the head of the list, and a step case where the position is matched

3 More formally, an option type is a tagged union of a unit type and the encapsulated
type.

14 agda

with succ i that leads to a recursive call of the lookup function on
structurally smaller inputs.

data Maybe (A : Set) : Set where
just : A → Maybe A
nothing : Maybe A

infixl 4 _!!_
!! : {A : Set} → List A → N → Maybe A
[] !! _ = nothing
(x :: _) !! zero = just x
(_ :: xs) !! (succ i) = xs !! i

The first argument of _!!_, being enclosed inside a pair of curly
brackets, is understood to be implicit. The implicit function space has
the same meaning as the standard function space (with round brack-
ets) except that when applying the _!!_ function the first argument
(i. e., the type parameter A for List) does not have to be explicitly sup-
plied and the typechecker will attempt to figure out its value. This
effectively renders the function as (parametrically) polymorphic.

Should we need to provide a specific value for the implicit argu-
ment, we write the function in its prefix form and provide the value
in curly brackets:

centre = _!!_ {N} [1,0,2] zeroMetavariables are
special meta-level

variables not bound
anywhere in the

program.

To imitate the default automatic behaviour we could put a metav-
ariable in place of the term that Agda should infer on its own:

centre’ = _!!_ {_} [1,0,2] zero

The underscore represents a non-interactive, ‘go figure’ metavari-
able (as opposed to the other kinds of metavariables used during
interactive development that we do not discuss here). Also note that
an underscore occurring in the left-hand side works as a wildcard
pattern or an anonymous variable that matches any input, not as an
actual metavariable.

The disadvantage of _!!_ is that its user is always left with the
burden of manual extraction of the actual result even when an empty
list is certain to be never passed in. Such annoyances are unavoidable
with lists because they do not contain the structure’s length as part
of their type information. Put simply, any function that accepts a List
must cover all possible lengths of the input.

3.1.3 Inductive Families

With dependent types we can internalise the length information as an
index of the datatype that consequently allows for the function’s type
to be more articulate and to exclude, say, empty structures. The Maybe

3.1 dependent types : a primer 15

workaround is not needed anymore because the type itself demands
that the function gets applied to non-empty structures exclusively.

infixr 5 _,_
data Vec (A : Set) : N → Set where

<> : Vec A zero
, : {n : N} → A → Vec A n → Vec A (succ n)

The declaration introduces an inductively defined family of data-
types indexed by the length. In addition to being parametrised like
List (parameters are to the left of the colon in the type declaration), a
vector is also indexed by a natural number (to the right of the colon)
that encodes the length of the particular data structure.

For instance, one member of this family is the type Vec N (succ
zero). The expression zero , <> has this type. On the contrary, neither
<> (its index is zero, not one) nor (just zero) , <> (it is parametrised
by Maybe N instead of plain N) are expressions of that type.

The parameter differs from the vector in that the former is invariant
and fixed while the latter varies and is defined locally per constructor
so that all possible values for the index are targeted. It is not possible
anymore to define each member of the inductive family independ-
ently of others as it was with collections of parametrised datatypes.

Now we may proceed to the definition of the lookup function for
vectors whose safety is guaranteed by the type checker. First, we call
the datatype of finite sets to our aid:

data Fin : N → Set where
fzero : {n : N} → Fin (succ n)
fsucc : {n : N} → Fin n → Fin (succ n)

Fin n contains exactly n elements. The idea is that the lookup func-
tion accepts only elements of a finite set {0, 1, . . . ,n− 1} as positions
to be looked up in a vector of length n:

infixl 4 _[_]
[] : {A : Set} {n : N} → Vec A n → Fin n → A
<> [()]
(x , _) [fzero] = x
(_ , xs) [fsucc i] = xs [i]

The first clause has the absurd pattern ‘()’ to signify that the case is to
be rejected by the type checker because no suitable constructors can
be used (in this case, there are no constructors for Fin zero). Naturally,
no right-hand side needs to be provided in such a case. A well-typed
application of _[_] is thus guaranteed to involve a non-empty vector
and to evaluate to an element4 of the vector.

4 The type per se does not capture the fact that the result is the vector’s i-th element –
a function that ignores the position and always returns the first element is a term of
that type, too.

16 agda

3.1.4 Inaccessible Patterns

In the last function definition, the vector indicies were all conveni-
ently implicit. If we tried to make it implicit, we would soon find out
that the typechecker complains about a variable occurring multiple
times in a left-hand side. Agda requires patterns to be linear, that is,
the same variable must not occur more than once. This is not a big
deal in languages without dependent types that can consider each
of the arguments independently. Here, however, the issue of pattern
non-linearity necessarily arises due to mutually related datatype in-
dices. We lose the ability to match each argument separately since
pattern-matching on one argument can enforce the value of other ar-
guments by instantiation of datatype indices.

That is when inaccessible patterns, prefixed with a dot, come into
play:

[]’ : {A : Set} {n : N} → Vec A n → Fin n → A
[]’ {A} {zero} <> ()
[]’ {A} {succ .n} (_,_ {n} x _) fzero = x
[]’ {A} {succ .n} (_,_ {n} _ xs) (fsucc i) =

[]’ {A} {n} xs i

The accessible portion of the left-hand side must form a linear pat-
tern. The inaccessible parts are used only for typechecking; they are
discarded at run time during actual pattern matching as they are cer-
tain to match once they have typechecked [10].

3.2 propositions as types

A series of observations made by Haskell Curry and William Howard
from the 1930’s until the mid-twentieth century led to establishing a
link between the typed λ-calculus (i. e., a model of computation) and
constructive propositional logic (i. e., a proof system), which is a logic
that does not admit the law of the excluded middle as an axiom. Un-
der the isomorphism, types are in one-to-one correspondence with
propositions and terms of those types with proofs of those proposi-
tions. It is sometimes called the propositions-as-types principle.

Dependent types were introduced in order to extend the corres-
pondence from propositional to predicate logic. After further work,
the correspondence became the building block for Martin-Löf’s intu-
itionistic type theory [24] which in turn represents the origins of the
modern development of dependently typed programming languages.

The logic view as opposed to the programming view is summar-
ised in Figure 1. Each proposition or predicate formula is interpreted
as a set of its proofs. For example, a conjunction of two propositions
is identified with a cartesian product of the two sets of proofs: all
proofs of A∧ B have the form ⟨a,b⟩ where a is the proof of A and b

is a proof of B.

3.2 propositions as types 17

Logic Programming

(true) formula (inhabited) type

proof of a formula term of a type

universal quantification dependent function space

existential quantification dependent pair

conjunction cartesian product

disjunction disjoint union

implication function type

negation function type to the uninhabited type

modus ponens function application

provability of formula inhabitation of type

proof checking type checking

interactive theorem proving interactive term construction

Figure 1: Summary of the Curry-Howard correspondence.

Any programming language with dependent types can thus model
the constructive predicate calculus. Given that typechecking is decid-
able (as discussed for Agda in the next section), any such language
can be used as a theorem prover under the Curry-Howard corres-
pondence.

To make it more clear, let us prove a simple theorem in Agda. We
will show that zero is a right identity element with respect to addition
of natural numbers.

First, we define the addition itself by primitive recursion in the first
argument:

infixl 6 _+_
+ : N → N → N

zero + m = m
(succ n) + m = succ (n + m)

Further we need a means to reason about equality within Agda
types because we cannot directly prove any properties of Agda’s built-
in definitional equality:5

infix 4 _≡_
data _≡_ {A : Set} (x : A) : A → Set where

refl : x ≡ x

≡ is the diagonal relation on A. In set theory, it would be defined
as the least binary relation on a set A such that x ≡ x for all x ∈ A. In
type-theoretic terms it is a family of proofs of “being propositionally
equal to x” that is inhabited only when the index is definitionally equal
to x; refl is the witness that the two terms of type A are equal. We have

5 The internal notion of equality views those terms as equal that normalise to the same
value [5]. Normalisation involves β-reduction and rewriting according to function
clauses (by pattern matching). Fast-forward to Section 4.5 for more technical details.

18 agda

thus exposed the internal notion of equality so that it is amenable to
be a component of types/propositions.

The equality relation is also a congruence in the sense that it is
compatible with unary functions:

cong : {A B : Set} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y
cong _ refl = refl

Beware that refl in the left-hand side is not identical to the con-
structor of the same name in the right-hand side. What we match on
is the witness that x and y are equal, whereas refl to the right is the
witness of f x ≡ f y. This constellation is certain to typecheck thanks
to the fact that x ≡ y (which is proven by the input witness) and the
fact that f is a function (any function gives the same value whenever
it is applied to the same/equal argument).

Now that we have everything prepared we can come to grips with
the desired theorem:The type can

be read as
∀n ∈ N .n+ 0 ≡ n. thm : (n : N) → n + zero ≡ n

thm zero = refl
thm (succ n) = cong succ (thm n)

The proof is by induction on n. The base case is most simple: zero
+ zero reduces to zero and so all we need to prove is that zero ≡ zero.

In the step case, we get succ (n + zero) after reduction per the
second clause of _+_. We then rely on the hypothesis that the the-
orem holds for the structurally smaller number, namely n, to build
up a proof of succ (n + zero) ≡ succ n using the congruence property.

Note that the theorem does not take advantage of the way in which
addition is defined. On the other hand, if the theorem was formulated
with zero + n ≡ n, the function application would immediately get
reduced in accordance with the first clause of _+_. The proof thereof
would be trivial, too:

thmEasy : (n : N) → zero + n ≡ n
thmEasy _ = refl

Both theorems show that Agda can and does normalise open ex-
pressions (containing free variables) during typechecking. In non-
dependent functional languages, this kind of normalisation is per-
formed only during proper execution of the program (their types do
not involve usual function applications) and even then only to sim-
plify closed expressions [10, sec. 5.2].

All in all, programming really ends up to be proving.

3.3 decidability of typechecking

The price paid for the expressivity of dependent types is the complex-
ity of their typechecking. Since any expression can occur as part of
a type and types in turn need to be evaluated or normalised in or-
der to determine their equality, computation routinely occurs during

3.3 decidability of typechecking 19

typechecking with dependent types. For the typechecking to be de-
cidable it is therefore necessary to guarantee that all computations
eventually terminate. In other words, the underlying term language
must be strongly normalising.

Because of this, all functions in Agda programs are required be
total: they must be terminating and defined on all possible combin-
ations of inputs. Obviously, due to the undecidability of the halting
problem, it is not possible to precisely delineate the set of total func-
tions. Even if necessarily incomplete, the solution can be conservative:
if a function is accepted as total it is sure to be so but some of those
rejected can be in fact total.6

The official Agda typechecker takes this approach and enforces to-
tality by three relatively simple yet conservative checks [19]:

• function clauses must cover the whole domain of the function
space;

• recursion is restricted to calls with structurally smaller argu-
ments;

• data constructors must be strictly positive.

The strict positivity condition rules out declarations in which a data-
type lies to the left of an arrow in the type of its constructor’s argu-
ment. The ubiquitous example is the datatype Bad that gets rejected
by the typechecker:

data Bad : Set where
bad : (Bad → SomeType) → Bad

One of the consequences of the non-termination checks is that Agda
has uninhabited types for which there is absolutely no way to con-
struct values. In Haskell, for instance, which allows possibly non-
terminating general recursive functions, non-strictly positive datatypes
and also has the undefined constant, all types are inhabited because
a non-terminating function inhabits any type.

A common use of a datatype with no elements is the trivially false
proposition:

data ⊥ : Set where

Note that if every type was inhabited, it would by Curry-Howard
mean that every formula is provable, which is the very definition of
an inconsistent theory in logic. A type system in which all types are
inhabited cannot therefore correspond to a consistent logic.

6 Termination checking for such false negatives can be deactivated on a case-by-
case basis by the pragmas {-# OPTIONS NON_TERMINATING #-} and {-# OPTIONS

NO_TERMINATION_CHECK #-}.

4
A K S E M A N T I C S O F A G D A

The task of giving a formal semantics to any programming language
is intrinsically concerned with assigning exact meaning (semantics)
to syntactic constructs of the language. In order to avoid ambigu-
ities of ordinary human language, the result needs to be formulated
within a mathematically rigorous formal system. The K framework
further extends the meaning of formal descriptions and derives soft-
ware tools from them in an automated way.

Agda as such has no formal semantic definition besides this work.
Much of the semantics development is thus driven and informed by
sources that are not specifically intended to this end. The source ma-
terial consists of the following:

• articles concerning semantics of particular type theories such
as those discussed in the next section or the tutorial by Löh
et al. [20];

• the reference manual available at the Agda wiki [3];
• a great variety of tutorials and real-world code written in Agda;
• the code base, tests and examples distributed with the official

Agda typechecker.

Any effort to give a formal semantics of Agda in the present state
necessarily goes hand in hand with the process of synthesising in-
formation acquired from these sources. Moreover, properties pertain-
ing to the official implementation of Agda rather than Agda as a lan-
guage need to be distinguished. Validity of the semantics is primarily
verified by testing for correspondence of behaviour with the official
typechecker, which makes the tools automatically generated by K

indispensable.
The situation is quite similar to the one faced by the developers of

the K PHP semantics; my attitude was influenced by theirs and so
their own explanation deserves to be quoted in full [15, sec. 1] (with
references omitted):

“Some programming languages, such as Standard ML,
already come with a formal specification. Others, such
as C and JavaScript are specified in English prose with
varying degrees of rigour and precision, and have recently
been formalised. PHP is only implicitly defined by its
de facto reference implementation (the Zend Engine), and
the (informal) PHP reference manual. Due to the lack of
a document providing a precise specification of PHP, de-
fining its formal semantics is particularly challenging. We

21

22 a k semantics of agda

have to rely on the approximate information available on-
line, and a substantial amount of testing against the refer-
ence language implementation. We do not to [sic] base our
semantics on the source code of the Zend Engine in order
to avoid bias towards inessential implementation choices.”

This chapter presents an executable semantics of Agda written in K

as well as its major components and some key decisions made dur-
ing its development. The next section is devoted to a possible altern-
ative approach to the problem of Agda semantics, putting the work
into a broader perspective. I continue with details on parsing the con-
crete syntax of Agda programs in relation to KAgda. The rest of the
chapter covers individual constructs of the Agda language, normal-
isation and the dependent type system (i. e., the typechecking and
type inference algorithms) as they are realised in KAgda.

4.1 core type theories

It is a common practice when implementing typecheckers for func-
tional languages to elaborate the concrete high-level syntax into a small
yet sufficiently expressive typed intermediate language, i. e., a core
type theory.1 Among the advantages of such an approach is that theElaboration usually

involves desugaring
and annotation

of untyped
expressions with

types.

core theory, unlike the ‘verbose’ source language, is well-understood,
is easily reasoned about, comes with a trusted code base, and, most
importantly for the topic at hand, very often has an explicitly defined
formal semantics.

The official Agda typechecker, on the contrary, does not utilise elab-
oration. The extensions to UTTΣ, which is considered as Agda’s core
type theory in Norell [25, sec. 1.3], are implemented directly, rather
than in terms of primitive constructs.

This is not utterly unreasonable: the method of elaboration comes
with a price, and thus it is not always preferable to have recourse
to it. For example, one of the consequences of elaboration is that
errors get detected in code that is not actually given by the user,
which may cause significant difficulties for error reporting. A key
feature of Agda– its interactive development mode – is similarly af-
fected since it depends on code-passing between the user and the
typechecker.

Furthermore, Agda is designed with emphasis on practical use. For
a practical language the ‘user-friendliness’ of a feature is important
than its theoretical foundation, which suggests that at times it could
be beneficial to introduce a new feature even if its elaboration was not
possible, hence undermining the concept of having a core theory at
all. (Too frequent modifications of the core language also go against

1 For instance, Haskell’s GHC internally translates into System FC [33], while Idris,
a language even more akin to Agda than Haskell, is elaborated to a dependently
typed λ-calculus ⊤⊤ [12].

4.2 syntax 23

its being trusted and well-understood.) Some useful features may not
admit straightforward theoretical formulation whatsoever.

Still, there have been attempts to determine precisely a core lan-
guage into which Agda could be elaborated. Specifically, Agda de-
veloper Andreas Abel proposed in his DTP 2011 talk [4] to derive
a core for Agda from the dependently typed core language ΠΣ [6].
Another effort in this direction is Mini-TT by Thierry Coquand et
al. [13]. To my knowledge, none of these attempts allow for Agda to
be completely elaborated, mainly due to its various advanced features
such as metavariables, implicit arguments or even pattern matching.
A theory that allows for representation of all these features runs the
risk of being overly complicated, thereby not fulfilling its purpose
as the very raison d’être of elaboration is to simplify the process of
typechecking.

The K approach to semantics definitions seems to solve these prob-
lems quite conveniently. With K, rewriting rules for the language con-
structs get specified directly, while retaining the potential for theoret-
ical analysis within the broader context of the rewriting logic [23].
It ceases to be necessary to impose restrictions on the language itself
so that it can be expressed in the core theory under all circumstances
– it becomes possible to convey exact meaning of all language con-
structs, including the more advanced or practical ones, with no need
of elaboration.

4.2 syntax

4.2.1 Parsing and Scope Analysis

As part of the kompile process, K generates a parser based on the syn-
tax module that contains the grammar of the programming language.
The resulting parser transforms programs into K abstract syntax tree
(AST) format [9] that is consequently accepted by other K tools such
as krun.

Given that the primary focus of K is semantics, it is not surprising
that K’s capabilities to describe syntax are sometimes insufficient. In
the case of Agda, an issue one encounters virtually immediately is the
impossibility to determine how to treat whitespace. This is a problem
because the layout of Agda programs must be examined in order
to delineate declarations and their scope. The parser generated by
K, however, cannot be instructed about interpreting the whitespace
characters: they are always viewed as mere token separators. The K semantics of

the whitespace-
sensitive language
Python [17] employs
an external parser,
too. . .

In anticipation of such situations, K tools can be provided with
an external, user-specified parser in lieu of the default, automatic-
ally generated one. To this end, I have adapted the official Agda
typechecker and its built-in parser so that it produces K AST. The

24 a k semantics of agda

one = succ zero
inc = ń x → x + one

(a) The input for the external parser.

onename = succname zeroname

incname =
ń xvar → ((_+_name xvar) onename)

(b) The output of the external parser.

Figure 2: Scope analysis and infix/mixfix operator resolving.

modifications introduce a new type class KShow, an analogue of the
Pretty class that the typechecker uses for pretty-printing.

The official Agda typechecker does not internally operate on con-
crete Agda code as the programmer writes it. Instead, the concrete
syntax is translated into its abstract representation by performing
scope analysis, resolving infix operator applications and additional
minor desugaring: the typechecker then works with these abstract
structures. Should a need to pretty-print arise afterwards – say, an
error occurs – a reverse translation is carried out, i. e., translation
from the abstract syntax to its concrete counterpart. The result is a
(slightly cleaner) variant of the programmer’s original input, recog-
nisable enough to aid with debugging.

With respect to syntax, I take advantage of as much functionality
of the official typechecker as possible. Some aspects of the concrete-
to-abstract translation would belong to the desired functionality al-
lowing KAgda to skip these aspects of scope analysis etc. Yet, con-
structing the final K AST out of the abstract syntax directly is not an
option since the syntax is too tied in with the internal mechanisms
of the official typechecker. Too much bias would be brought in if the
abstract representation was taken as input to KAgda, which is to be
an autonomous formalisation of Agda’s semantics after all.

Thus, a dilemma enters the stage: on the one hand it is appropriate
to translate from concrete to abstract while on the other hand the con-
crete syntax ought to remain the base for the output of the external
parser. The answer is surprisingly simple. Just translate back from
abstract to concrete!

This certainly sounds like codswallop to the attentive reader, so
an explanation is in order. The point is that the subsequent, abstract-
to-concrete translation has been altered: even though the scope data
are still dropped, some portions of them get embedded in the con-
crete syntax. The concrete syntax obtained after the translations is
thus substantially different from the original concrete syntax and con-
tains original information. It now stores ‘hard’ names (i. e., identifiersThe scope analyser

distinguishes
between the kinds

of names all of which
are at first parsed
simply as names

with no distinction.

of functions, datatypes, modules, etc.) and variables separately. Also,
the infix/mixfix operators are guaranteed to be in their prefix form,
which does not hold for the original concrete syntax.

Figure 2 shows the effect of scope analysis and operator resolving
that the external parser performs in addition to the parsing. The iden-

4.2 syntax 25

module Id where
id : (A : Set) → A → A
id = ń A x → x
(a) A simple Agda module.

module IdDesugared where
id : (A : Set) → (v : A) → A
id = ń (A : _) → ń (x : _) → x

(b) The same module, desugared.

Figure 3: Desugaring of the generic identity function.

tifiers that were originally undifferentiated are now subscripted as
the scope analysis has matched them to their declarations (in which
case they are annotated as names) or bindings (variables). The infix
notation of the addition function is also converted into its prefix form.

To be more precise then, the dilemma is solved by extending the
concrete syntax in such a way that it can keep some useful bits oth-
erwise characteristic for the abstract representation. When this exten-
ded concrete syntax is KShow-printed, the output is the K AST, which
is in turn the input for KAgda itself.

4.2.2 Desugaring

Some language constructs can be equivalently formulated in terms
of others, of which the former is just a particular application. The
reason for having such redundant language constructs at all is to pro-
tect the programmer’s sanity because the more general formulations
tend to be quite verbose. Besides, the syntactic sugar may be most
worthwhile with in regard to readability and maintainability of pro-
grams.

When giving semantics, though, no redundancy is welcome. All
non-fundamental constructs are therefore desugared in order to re-
duce the variability of cases that have to be covered explicitly in the
semantics.

None of the changes made to the official typechecker simplify the
syntax in preparation for easier processing. With the exception of
some that are performed by the official type checker itself during the
concrete-to-abstract conversion, all such behaviour-preserving trans-
formations are done exclusively by means of K macros.

The most notable of these transformations are:

• annotation of untyped (domain-free) bindings with metavari-
ables (Section 3.1.2) playing the rôle of types, and

• conversion of non-dependent function spaces into dependent
ones.

Their purpose is to allow the actual semantics to be concerned only
with the general form of typed bindings, ignoring the syntactic sugar
altogether. Figure 3 gives an example in which the code (b) is derived
from (a). The name v is an instance of a fresh variable, it might as well

26 a k semantics of agda

be a w, ω, or any other name that would not capture or be captured.
The underscores in the typed bindings are metavariables for types
that should be automatically inferred.

An effect to be especially stressed is that all λ-abstractions, as they
occur in KAgda, are annotated with explicit type labels. Even though
such an approach may cause unnecessary duplication of type inform-
ation, it is outweighed by the gained capability to type the abstrac-
tions directly.Other semantics, e.g.

[9], manipulate the
AST nodes directly
and therefore their

rules cannot be
followed so easily.

The macros along with the syntax of KAgda in general strive to
imitate Agda’s own syntax to the maximum degree, which in effect
facilitates comprehension of the semantic rules, at the very least for
those familiar with regular Agda code.

4.3 semantics : an entrée

The tutorials [30] bundled with K Framework dealing with type sys-
tems have had a great impact on the development of KAgda. The
type systems there are all non-dependent, though, and so they can
afford to forget about an expression once its type has been determ-
ined. Not so with Agda. In a dependent setting it is still necessary to
remember the expression even after it has been typed since type of
a (dependently typed) function may very well depend on the value
of the argument. Rather than keeping the type exclusively at the ex-
pense of the value, KAgda has to consider both of them as the result
of typing.

The typing procedure thus yields a pair, the notation for which is⟨︀
E ↓ T

⟩︀
. Its meaning is that the type that has been inferred for the

expression E is T .
A related important idea – shared among most of KAgda oper-

ations – is that a problem can be solved by analysing as much in-
formation as extractable from the components of its input. Therefore,
context statements (recall from Section 2.3) are often used to infer and
pre-process the types of the components.

One way in which the type inference result is inspected is to guar-
antee that an expression can serve as a type of another expression,
i. e., that its type is a universe. This need is so commonplace that it
was generalised as a separate evaluation context called checkSetType.
If the context evaluates successfully, the type-inference pair obtained
from it is surely of the form Setα where α is a universe level. Rules
may further inquire about the universe level (as with the pattern in
Figure 6).

4.3 semantics : an entrée 27

configuration

$PGM : Program
k

•Map

sig
•Map

ctx
•List

ctx-stack
•Map

fun

•Map

meta
•Map

ncat
•Mgu

mgu

Figure 4: KAgda configuration.

4.3.1 Configuration

The KAgda configuration (Figure 4) consists of eight cells in total:

1. k is the cell in which the rewriting primarily takes place as ex-
plained in Section 2.1. The cell is initialised with the parsed
input program.

2. sig is the map of type signatures, assigning types to globally
defined datatypes, constructors and functions.

3. ctx is the typing context, i. e., a map with variables as keys and
their respective types as values.

4. ctx-stack is an auxiliary cell storing a list of the typing con-
texts so that they can be later restored after the construct being
processed is dealt with. The cell works as a stack with saveCtx

and loadCtx as its push and pop operations.

5. fun maps function names to their bodies, which can be either
usual expressions (λ-abstractions) or, if the function is spread
over multiple clauses, a ’fc-list of the clauses (see page 30).

6. meta contains metavariables (covered in Section 3.1.2) and their
types. In contrast with ctx and sig, the values are not merely
types but a pair of an expression and its type. The idea is to
monitor the value of the metavariable, not just the type, as it
changes through imposition of unification constraints.

7. ncat associates general Names with their specific category. The
external parser distinguishes only between variable and non-
variable names, cf. page 23. In the semantics, however, it is
appropriate to distinguish among the categories of the non-
variables themselves. The map thus contains items of the form:

• Name(N) ↦→ Data(N), where N is an identifier of a type
constructor (e. g., List);

• Name(N) ↦→ Con(N) for data constructors (e. g., _::_);
• Name(N) ↦→ Fun(N) for functions (e. g., _!!_).

28 a k semantics of agda

After a name is added to the name-category map ncat, any gen-
eral Name occurrences of it are replaced with the more specific
name that indicates its category.

8. mgu is an acronym for ‘most general unifier’. In this cell, the
various unification constraints are accumulated.

The configuration determines the state during execution. The k cell
gets repeatedly rewritten as long as possible with three possible out-
comes:

a. either reaching •K that signifies that the program has been
wholly consumed, which is a necessary but not sufficient condi-
tion of a completely successful run;

b. or getting stuck if, at some point, no rules match the current
configuration, implying there is an error in the program or in
the semantics itself;

c. or looping indefinitely, e. g., when one rule produces a config-
uration that is matched by another that in turn produces a con-
figuration that is matched by the first one.

4.4 declarations

Declarations in KAgda are all processed in accordance with the scheme:

1. The declaration is checked to be well-formed, namely:

• that all its variables are bound (guaranteed by Agda’s scope
analyser from Section 4.2.1),

• that those constituents that are supposed to be types really
belong to a universe, and

• that conditions pertaining to the particular kind of declar-
ation are satisfied.

2. The configuration cells are updated accordingly and the rest
of the program is treated with reference to this new configura-
tion.

The most elementary declaration is a type signature for a function,
which comes with virtually no additions to the two steps mentioned
in the scheme, cf. Figure 5. First, the expression after the colon purpor-
ted to be a type is checked to ensure that it is an actual type, i. e., that
it belongs to a universe. If the check passes, the signature itself gets
consumed while the new item is added to the signature map. The
renameBoundVariables function that replaces bound variables with
fresh variables is used to prevent name clashes during unification.

The other kinds of declarations handled in KAgda – datatypes and
functions (as in a list of function clauses without the signature) – are
described in the rest of this section.

4.4 declarations 29

1.
context

— : □

checkSetType (□)

[result(SetTypedExpr)]

2.
rule process-type-sig

N :
⟨︀
E ↓ Set—

⟩︀
•K

k

Σ •Map

N ↦→ renameBoundVariables (E)

sig

requires ¬Bool(N in keys (Σ))

Figure 5: KAgda implementation of adding of a function type signature.

rule add-data-con

addDataCon (DPs, Name (C),
⟨︀
T ↓ Set—

⟩︀
)

•K

k

NCat •Map

Name (C) ↦→ Con (C)

ncat

•Map

Con (C) ↦→ renameBoundVariables (T)

sig

requires ¬Bool(Name (C) in keys (NCat))∧Bool T constructorOf DPs

Figure 6: KAgda implementation of adding of a data constructor’s signa-
ture.

4.4.1 Datatypes

The ability to define custom datatypes is a central feature of Agda, or
of any dependently typed language for that matter. In Agda, data-
types are introduced by a data declaration consisting of the new
type’s name, the list of its parameters, function space and the list
of its constructors with their respective type signatures.

During processing of a data declaration, the types of the construct-
ors are checked for being genuine types, i. e., if they, after being pre-
pended with the datatype’s parameters, do typecheck against a uni-
verse. The constructors are similarly checked for being constructors
of the type they claim to be. The actual adding of a data constructor
is then shown in Figure 6.

If everything goes well, the sig and the con cells are populated: the
former with the checked types of the constructors and the latter with

30 a k semantics of agda

data Vec (A : Set) : N → Set where
<> : Vec A zero
, : {n : N} → A → Vec A n → Vec A (succ n)

(a) Datatype Vec.

Vec : Set → N → Set
<> : {A : Set} → Vec A zero
, : {A : Set} → {n : N} → A → Vec A n → Vec A (succ n)

(b) Vec-derived constructors.

Figure 7: Type signatures derived from a data declaration.

the list of data constructors associated to the datatype they construct.
Signatures similar to those of Figure 7 would be added to sig.

Inductively defined families of datatypes constitute just a special
case of this approach towards data declarations. They are likewise
only prepended with the datatype’s parameters and added to the con-
figuration cells with the sole difference that the base function space
of type constructors for inductive families would be non-trivial.

4.4.2 Function Clauses

Functions are defined as a block of function clauses with each left-
hand side starting with the function name, followed by patterns that
the actual arguments are supposed to match.

As in Haskell, the order of the clauses matters and must be re-
membered (they are tried from top to bottom). In KAgda they are
stored in an ordered list of function clauses wrapped in the ’fc label.
After processing a function clause declaration the clause is stored in
the fun map: either by initialising a new list of clauses or by updating
a pre-existent one.

When a function clause is encountered, the type of the left-hand
side of the clause is inferred by means of the rules of the type theory.
The left-hand side is thus interpreted simply as an ordinary function
application. The function that has its type from the type signature is
gradually applied to the patterns of the left-hand side and the types
of the formed applications attempted to be typed. At the same time,
the types of the automatically typed variables are spelled out as the
rôle of arguments forces constraints upon them. It is important to
note that the patterns do not get explicitly checked against their types
from the function’s type signature.

Provided that the left-hand side has been typed successfully, the
type of the right-hand side is inferred. The types of the left-hand and
right-hand sides are checked to be unifiable against the target type of
the function as well as against each other. If one of the checks fail, the

4.4 declarations 31

actual return type of the function and the function’s signature are not
consistent, and the K rewriting cannot continue.

At last, the function clause is appended to the list of clauses as-
sociated with the function. It is stored in its basically original form,
including the inaccessible patterns. Some wildcard patterns standing
for implicit arguments inserted. A more important modification con-
sists in that the function name in the left-hand side is replaced with a
fresh variable for the purposes of pattern matching (to be explained
in Section 4.5.1).

Also note that in its current state KAgda does not check whether
absurd patterns (marked ‘()’) are really absurd – they are simply ig-
nored, not even included among the list of a function’s clauses. The
proper approach would be to verify that there truly are no suitable
constructors to be used in the context.

4.4.3 Local Definitions

There are two ways of declaring a local definition in Agda: let and
where. The difference between them is that a let binding is a stand-
ard expression like a λ-abstraction but a where binding is a special
language construct attached to a function clause declaration. Both are
supported by KAgda.

In order to support the local definitions, the syntax of expressions
had to be extended so that it contain the local definitions affixed to
the expressions that refer to them. The local definitions are not stored
in a separate cell of the configuration.

Before a local definition is processed, KAgda saves the names al-
ready present in the sig map. The local definitions are then propag-
ated to the top of the k cell to be processed as though they were
global definitions, updating the sig and fun cells of the configuration
as per usual. The newly introduced names are afterwards filtered out
by way of comparison with the saved names. The new names with
their signatures and values are then incorporated in the expressions
that refer to them using the extended syntax.

Configuration data that were created by the local definitions are
discarded. At the end, the configuration holds exclusively global in-
formation whereas the local data are stored as annotations of the
related expressions.

4.4.4 A Note on Deficient Checks

KAgda does not recognise when one function’s clauses should have
been completely listed, it simply consumes any function clause with
no regard to what declarations occurred between the present and
the last clause belonging to the function. In other words, KAgda
typechecks each clause individually and not as components of a block.

32 a k semantics of agda

This simple approach gives rise to certain issues. Insofar as these is-
sues pertain to scope analysis – which, as a matter of fact, the de-
scribed issue of intermingling clauses does – they get caught dur-
ing the ‘parsing’ stage (see Section 4.2.1), not reaching the very per-
missive KAgda. Still, situations like unreachable classes (e. g., due to
the same constructor pattern’s having been used twice) that trigger an
error in the official type checker are not detected as faulty in KAgda.

In addition, Agda is a total language, i. e., all functions are re-
quired to be terminating and their left-hand sides to cover all possible
cases that are correct with respect to the arguments’ types. However,
KAgda itself currently does not perform any coverage or termination
checks, they are left out entirely.

The totality of Agda further implies that non-strictly-positive data-
type declarations must be ruled out but again no checks for strict
positivity are done by KAgda. In particular, the Bad example of Sec-
tion 3.3 is (wrongly) accepted by KAgda without any issues.

4.5 normalisation

Many of the K rules working with typed expressions presuppose that
the types are in weak head normal form whnf or normal form nf.2

Normalisation is implemented in KAgda by means of K contexts
(explained in Section 2.3). It means that syntactic sorts Nf and Whnf

(both subsorts of the sort of expressions) are defined to characterise
the final evaluation results of the contexts.

The whnf and nf contexts both perform normalisation by β-reduct-
ion on the expressions as such, in an untyped way. The reduction
relation is understood as usual, that is,

(λx.s)t →β s[t/x],

where s[t/x] denotes the standard, capture avoiding substitution of t
for x in s.

Even though the same reduction technique is used in both whnf

and nf, the difference between the contexts lies in the choice of subex-
pressions that get reduced. In whnf, only the subexpressions along the
spine of the expression, i. e., the leftmost branch of its applications,
need to be reduced, whereas the other subexpressions can be left un-
reduced. On the other hand, in a normal form all subexpressions are
reduced.

A related yet still more mundane task the whnf/nf contexts are
charged with is to replace occurrences of function names with their
bodies according to the fun map. A function name (as opposed to
names of datatypes or constructors) is not considered to be in normal
form; it must be substituted with its body that gets further normal-
ised as any other expression if necessary.

2 Meaning β-(weak head) normal forms, not βη-(weak head) normal forms.

4.5 normalisation 33

∨ : Bool → Bool → Bool
false ∨ false = false
x ∨ y = true

(a) An Agda definition of disjunction.

∨ : Bool → Bool → Bool
false ∨ false = false
false ∨ true = true
true ∨ false = true
true ∨ true = true
(b) After expansion of (a).

Figure 8: An illustration of expansion of overlapping function clauses, per-
formed internally in the official Agda typechecker [5].

If the function body is not a plain λ-abstraction but has multiple
clauses, the ’fc-list found in fun is wrapped in a FunClauses together
with the relevant function name (to facilitate reverse type inference)
along with the actual clauses. The container belongs to the sort of ex-
pressions and is considered to be in a normal form if it is not applied
to a sufficient number of arguments or the match is found to be in-
conclusive as explained in the next section. That is to say, FunClauses
behave as a function except that is reduced by pattern matching in-
stead of β-reduction.

4.5.1 Pattern Matching

While other implementations of dependent type theory elaborate de-
pendent pattern matching in terms of more fundamental elimination
operators [16], Agda instead treats pattern matching as a primitive.
In the official typechecker, the objective of pattern matching is to con-
struct an effective case tree for each pattern-matching function based
on its clauses [25, sec. 2.2]. If possible, overlapping clauses are trans-
formed into equations that constitute definitional equalities within
the type theory during the construction process, as depicted in Fig-
ure 8. Such a tree is then traversed during pattern matching in order
to determine which right-hand side of the function to return.

As hinted at in Section 4.4.2, though, KAgda does not construct
case trees out of function clauses and stores them virtually identic-
ally to Figure 8a. Instead, the last step of processing a function clause
is to append the clause (with minor modification to how it was given
by the programmer) to the list of function clauses associated with the
function, which is feasible because KAgda takes a simple, operational
view on pattern matching: it just attempts to match the actual applic- As with unification,

the simplified
pattern matching is
implemented using
K’s built-in
modules.

ation expressions with the required number of arguments against the
left-hand sides of the stored clauses one by one.

To allow for pattern-matching functions to occur in expressions,
the clauses are stored in the FunClauses container. Pattern matching
requires the left-hand sides of the clauses to be linear (Section 3.1.4)
and therefore the list in FunClauses cannot store inaccessible patterns

34 a k semantics of agda

in their original form suitable for typechecking rather than pattern
matching. When constructing the FunClauses object the inaccessible
patterns are hence replaced with wildcard patterns so that no variable
occurs more than once in the left-hand side as desired.

The left-hand side of the first FunClauses clause is matched against
the whole application expression with all arguments taken together.
Two possibilities arise:

a. There is a mismatch in the sense that this clause’s left-hand side
cannot be unified with the given arguments at all. For example,
with the first clause of _∨_ from Figure 8a the application false
∨ true would result in a definitive mismatch that cannot be re-
solved. The next FunClauses clause is tried in such a case.

b. There is an inconclusive match. The arguments could be unified
with the left-hand side but are too underspecified, for example
as in false ∨ neut where neut is a variable, the first clause could
still match. The normalisation of the function application is then
suspended and the expression is preserved in its unnormalised
form, since an inconclusive application of FunClauses is defined
as a special normal form. Once the arguments become more
concrete through imposition of constraints during typechecking,
the application will reduce.

4.5.2 Phase Distinction

Most statically typed programming languages perform typechecking
prior to and independently of the actual execution phase and are
therefore said to respect the phase distinction [29, sec. 8.4]. In this sense
dependently typed languages may be said to violate the phase distinc-
tion since they may require some normalisation to take place during
typechecking (as discussed in Section 3.3).

However, the way in which programs are executed at runtime (closed
expressions only, after type erasure, highly optimised) is distinguished
from the way they are executed during typechecking (reduction of
open expressions, with custom datatypes) even in dependently typed
settings. There is indeed no distinction between terms and types qua
syntactic categories yet the two execution models are still maintained
to address their specific purposes and concerns – although now oper-
ating on the same underlying term language.

KAgda does not implement a genuine runtime execution model.
All normalisation is performed only in order to acquire a (weak head)
normal form of types. If an expression never occurs within a type, it
is likewise never an object of normalisation. Both functions and types
are stored unnormalised after processing their declaration.

4.6 type system 35

Γ ⊢ e1 ↓ S1 ⇝ T1
S1 →whnf Setα

Γ , x : T1 ⊢ e2 ↓ S2 ⇝ T2
S2 →whnf Setβ

Γ ⊢ (x : e1) → e2 ↓ Setα⊔β ⇝ (x : T1) → T2

Figure 9: Type inference rule for Π-abstractions as presented by Norell [25,
p. 20].

4.6 type system

The foundation of Agda is a dependent type theory. Still, as discussed
in Section 4.1, Agda cannot be properly said to be based on a specific
core theory. A type theory relates to Agda only to the extent it mod-
els Agda’s basic functionality and serves as a groundwork on top of
which Agda’s peculiar features are developed.

It follows that in such a context the particular choice of type theory
is not crucial but during the development of KAgda I have still tried
to remain faithful to the theory chosen by Norell [25]. The reader may
wish to contrast the K rules described below with the type inference
and checking rules in Section 1.4 of Norell’s thesis, Figures 1.4 and 1.5
in particular.

4.6.1 Type Inference

Upon encountering an untyped expression, KAgda attempts to infer
its most general type in accordance with the available3 types of its
subexpressions. To expose the manner in which the type theory is
realised in KAgda, I first discuss KAgda implementation of type in-
ference for dependent function spaces or, equivalently, Π-abstractions,
and then more briefly the inference procedure for function applica-
tions.

The original type-theoretic inference rule for Π-abstractions can be
seen in Figure 9. The notation Γ ⊢ e ↓ T ⇝ t reads as “the type
of e has been inferred as T with resulting term t”. Notice how the
judgement Γ ⊢ Ti : Setα is verified to determine whether Ti can be
used to type the bound variable in the final expression. (α⊔β stands
for the maximum of α and β.)

The K rules based on the type-theoretic rule are then themselves
displayed in Figure 10. The final type is obtained in four rewriting
rules invoked in succession.

First of all it is necessary to verify that the typed binding is valid,
which is assured by the contextual evaluation of checkSetType that
checks that the type of the expression is a universe (1st stage). If the
context has evaluated successfully, we may safely bind the variable

3 Including both previously automatically inferred types and types provided by the
programmer via type signatures etc.

36 a k semantics of agda

1.
context

(— : □

checkSetType (□)

) → —

[result(SetTypedExpr)]

2.
rule bind-Π

•K

saveCtx (Γ) ↷ bound!

↷ (X :
⟨︀
T1 ↓ Set—

⟩︀
) → — ↷ •K

loadCtx

k

Γ

Γ [T1 / X]

ctx

3.
context

bound!↷ (— : —) → □

checkSetType (□)

[result(SetTypedExpr)]

4.
rule infer-Π
bound!

•K

↷ (X :
⟨︀
T1 ↓ Setα

⟩︀
) →

⟨︀
T2 ↓ Setβ

⟩︀⟨︀
(X : T1) → T2 ↓ Setα⊔β

⟩︀
Figure 10: KAgda implementation of type inference for Π-abstractions.

4.6 type system 37

Γ ⊢ e1 ↓ S1 ⇝ s S1 →whnf (x : T) → T ′ Γ ⊢ e2 ↑ T ⇝ t

Γ ⊢ e1 e2 ↓ C[t/x]⇝ s t

Figure 11: Type inference rule for function applications as presented
by Norell [25, p. 20].

rule infer-app-explicit ⟨︀
E1 ↓ (X : T) → T ′⟩︀ ⟨︀

E2 ↓ T2
⟩︀

T == T2 ↷ unify (
⟨︀
E1 E2 ↓ T ′⟩︀) ↷ tsubst (X ↦→ dedot (E2)) ↷ unifyConf↷ killMgu

requires isImplicit(T2) ̸=K true∧Bool canUnify (T , T2)

Figure 12: KAgda implementation of type inference for function applica-
tions.

for the inner type of the Π-abstraction by updating the typing context
with the given type of the variable (2nd stage). To make the variable
bound only within the scope of the Π-abstraction and not beyond, the
auxiliary instructions saveCtx and loadCtx are used to save and re-
store the typing context, respectively. In addition, the blocker bound!
is pushed at the top of k to prevent the binding rule to be executed
more than once. The blocker is dissolved later when the type infer-
ence is finished.

The fact that we need to store the variable’s type before we proceed
to the body of the function space is the mark of type dependency.
This would not be needed with non-dependent types because they
refer only to other types. A dependent type can involve a variable
whose type must hence be known in order to infer the type of the
inner type.

Once bound the inner expression can be therefore checked whether
it is a well-formed type as it should (3rd stage). Provided that it really
is a type, the type of the whole Π-abstraction can be inferred from the
as a Set of the greater of the two universe levels associated with the
constituents of the whole expression (4th stage).

Another rule that is characteristically distinctive of dependent type
systems is the inference rule for function applications. Its type-theor-
etic formulation is in Figure 11 while the corresponding K rule is
displayed in Figure 12.

The third premise with ‘↑’ is a typechecking judgment. The first
item of the K rule T==T2 adds a new unification constraint to the
mgu cell. Obviously, there is a relationship between typechecking and
unification – further explored in the next section.

If it is possibly to resolve them, the unify instruction applies the
constraints accumulated so far. The mgu cell is not cleared up at that
point. It is used once again to unify the contents of the configuration

38 a k semantics of agda

(e. g., a metavariable in a type signature may get refined in this way)
and just then mgu is emptied by the killMgu instruction.

The key part is tsubst that stands for ‘type substitution’. If the vari-
able X occurs in T ′, it is substituted with the value of the argument
E2, which is the very reason why dependent functions are called de-
pendent. The dedot call is significant only when inferring the type
of a left-hand side of a function clause – the same machinery is used
for typing of the left-hand sides as for other function applications (see
Section 4.4.2).

Hence, if the type of the argument as expected by the function and
as given actually match, the application reduces to

⟨︀
E1E2 ↓ T ′⟩︀ with

all the unification constraints applied and with the variable replaced
with the value of the argument if the occurred in the type of the func-
tion.

4.6.2 Typechecking and Unification

Typechecking
= type inference
+ normalisation

+ unification

Checking of an expression E against its supposed type T consists of
the following:

1. The type T ′ of E is inferred as described in the previous subsec-
tion.

2. The expressions T and T ′ are transformed into their normal
forms Tnf and T ′

nf respectively, cf. Section 4.5.

3. The expressions Tnf and T ′
nf are attempted to be unified. If the

attempt is successful, E typechecks against T . Otherwise it does
not typecheck.

The problem of typechecking is thus reduced to determining if two
expressions in their normal forms are unifiable. Normal forms are
necessary because weak head normal forms are normalised merely
along their spine (cf. Section 4.5) and in consequence can generally
fail to unify in regard to those subexpressions left unreduced. Normal
forms make the two expressions conform to each other as much as
possible.4

KAgda takes advantage of K’s built-in unification module for
unification, with enhancements on top of it to cover certain specific
issues. For instance, the normalisation needed to be done before the
unification itself is not implemented in the generic module.

Moreover, a unification problem can fail to be resolved just because
it involves an unnormalised pattern-matching function with some of
its patterns not matched because the arguments are underspecified,

4 Recall from Section 3.3 that Agda is strongly normalising and hence the necessity
of computing normal forms is not problematic. In the particular case of KAgda,
though, the statement must be qualified with remarks from Section 4.4.4.

4.6 type system 39

see Section 4.5.1. The unification problem, however, can provide ad-
ditional information being of consequence to the concrete form of
the arguments. Namely, if the other expression that the function ap-
plication ought to be unified with can be unified with one of the
right-hand sides of the function then the function’s arguments are
instantiated in such a way that they match the respective left-hand
side, resolving the overall problem. Should one of the function’s ar-
guments also contain a pattern-matching function with inconclusive
matching, the algorithm is invoked recursively.

4.6.3 Metavariables and Implicit Arguments

KAgda internally requires a great amount of explicit type informa-
tion. The types of declarations’ constituents are supposed to be known,
λ-abstractions need to be typed, and so forth. However, much of these
data can be safely omitted in the actual Agda programs since they can
be inferred automatically. To this end, metavariables are inserted in
lieu of the missing terms, the position of which is either indicated by
the programmer (e. g., with Agda’s ‘go figure’ underscore), or detec-
ted and inserted automatically during typechecking.

KAgda recognises several situations in which the underscore metav-
ariables are inserted into expressions:

1. if a type of the right-hand side of a function clause ends up to
be an implicit Π-abstraction, an implicit metavariable is inserted
at its end;

2. if a function is applied to an explicit argument while it ex-
pects an implicit argument, an implicit metavariable is inserted
between them;

3. when the type of a function argument is an implicit Π-abstract-
ion and the function expects another type, the argument itself
gets applied to an implicit metavariable.

When an underscore is to be typed, KAgda generates two fresh
expressions: one as a metavariable to be used in place of the under-
score itself and the other to serve as its type. These fresh expres-
sions are successively refined as their surrounding expressions en-
force more and more unification constraints. Ultimately, the metav-
ariable becomes the most general expression possible to occur in the
position for the whole program to be well-typed.

KAgda does not currently implement algorithm for typechecking
with metavariables as given by Norell [25, sec. 3.3]. Instead, it handles
metavariables using the K-provided unification algorithm with the
constraints generated during type inference.

5
C O N C L U S I O N

In the previous chapters, I described a fragment of the the depend-
ently typed functional programming language and interactive the-
orem prover Agda with emphasis on its type system. KAgda – an
executable and testable formal semantics written in K – was presen-
ted. To my knowledge, there is no other attempt to formally describe
Agda qua practical language so far, nor has another dependently
typed language been formalised in K.

KAgda in its present state allows for typechecking of non-trivial
Agda programs. KAgda understands declarations of parametrised
datatypes, inductively defined families, dependent functions and local
definitions. It can infer metavariables and insert implicit arguments
when needed. It can perform simple pattern matching in the depend-
ently typed setting with the simultaneous instantiation of patterns
that refer to datatype indices.

Still, there are many aspects in which KAgda is lacking. From the
standpoint of a K expert, the KAgda configuration could be restruc-
tured to use nested cells and group together data related to a single
declaration instead of having them distributed across different maps
as now. (Nevertheless, the advantage of the current approach is that it
follows ordinary presentations of type theories which have the typing
context, the function environment, etc., as maps.)

He would be perhaps interested in how KAgda measures against
the official Agda typechecker with respect to performance. The an-
swer would not be entirely positive. In some cases KAgda takes sev-
eral minutes to process a file which is typechecked in seconds by the
official system.

From the standpoint a proficient Agda user, the greatest obstacle
to an immediate, practical use of KAgda is the absence of a genuine
error reporting mechanism. If a program contains a typing error, its
rewriting just gets stuck at the point when the unification constraints
cannot be resolved. The cause can be easily deduced in many cases
but one has to be more familiar with KAgda in order to do that
swiftly.

The Agda user would also miss features that KAgda does not sup-
port: records,1 the module system,2 the with keyword, pragmas, in-
stance arguments, universe polymorphism, inductive-recursive defin-
itions and coinductive datatypes. These limitations, however, could

1 They can be still introduced as standard datatypes, sans η-equality.
2 Module declarations are ignored, their content is processed directly.

41

42 conclusion

be overcome by extending the current code without any fundamental
problems.

In spite of the fact that not a few features fall beyond the scope of
this thesis, it is my hope that this effort should serve as a suitable
basis for any future work to the end of creating a fully complete se-
mantics of Agda as well as an aid conducive to better understanding
of dependently typed programming languages.

B I B L I O G R A P H Y

[1] Agda (ver. 1) official web site, January 2009. URL http://wiki.

portal.chalmers.se/agda/pmwiki.php?n=Main.History. [On-
line; accessed 07-May-2015]. (Cited on page 11.)

[2] The Agda wiki: History, April 2014. URL http://wiki.portal.

chalmers.se/agda/pmwiki.php?n=Main.History. [Online; ac-
cessed 07-May-2015]. (Cited on page 11.)

[3] The Agda wiki: Reference manual, December 2014. URL
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=

ReferenceManual.TOC. [Online; accessed 07-May-2015]. (Cited
on page 21.)

[4] Andreas Abel. Towards a total dependently typed core lan-
guage, September 2011. URL http://www.nii.ac.jp/shonan/

seminar007/files/2011/09/talkDTP2011.pdf. Slides for a talk
given at Dependently Typed Programming Workshop, Shonan
Village Center, near Tokyo, Japan [Online; accessed 07-May-
2015]. (Cited on page 23.)

[5] Andreas Abel. Agda: Equality, July 2012. URL http://www2.

tcs.ifi.lmu.de/~abel/Equality.pdf. Lecture notes [Online; ac-
cessed 07-May-2015]. (Cited on pages 17 and 33.)

[6] Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and
Nicolas Oury. ΠΣ: Dependent types without the sugar. In Func-
tional and Logic Programming, pages 40–55. Springer, 2010. (Cited
on page 23.)

[7] Lennart Augustsson. Cayenne — a language with depend-
ent types. In Advanced Functional Programming, pages 240–267.
Springer, 1999. (Cited on page 11.)

[8] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Construc-
tions. Springer, 2004. (Cited on page 11.)

[9] Denis Bogdănaş and Grigore Roşu. K-Java: A complete se-
mantics of Java. In Proceedings of the 42nd Symposium on Principles
of Programming Languages (POPL’15), pages 445–456. ACM, Janu-
ary 2015. doi: 10.1145/2676726.2676982. (Cited on pages 5, 23,
and 26.)

[10] Ana Bove and Peter Dybjer. Dependent types at work. In Lan-
guage engineering and rigorous software development, pages 57–99.
Springer, 2009. (Cited on pages 11, 16, and 18.)

43

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.History
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.History
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.History
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.History
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.TOC
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.TOC
http://www.nii.ac.jp/shonan/seminar007/files/2011/09/talkDTP2011.pdf
http://www.nii.ac.jp/shonan/seminar007/files/2011/09/talkDTP2011.pdf
http://www2.tcs.ifi.lmu.de/~abel/Equality.pdf
http://www2.tcs.ifi.lmu.de/~abel/Equality.pdf

44 bibliography

[11] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview
of Agda — a functional language with dependent types. In The-
orem Proving in Higher Order Logics, pages 73–78. Springer, 2009.
(Cited on page 11.)

[12] Edwin Brady. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of
Functional Programming, 23(05):552–593, 2013. (Cited on pages 11

and 22.)

[13] Thierry Coquand, Yoshiki Kinoshita, Bengt Nordström, and
Makoto Takeyama. A simple type-theoretic language: Mini-TT.
From Semantics to Computer Science; Essays in Honour of Gilles Kahn,
pages 139–164, 2009. (Cited on page 23.)

[14] Chucky Ellison and Grigore Roşu. An executable formal se-
mantics of C with applications. In Proceedings of the 39th Sym-
posium on Principles of Programming Languages (POPL’12), pages
533–544. ACM, 2012. doi: 10.1145/2103656.2103719. (Cited
on page 5.)

[15] Daniele Filaretti and Sergio Maffeis. An executable formal se-
mantics of PHP. In ECOOP 2014–Object-Oriented Programming,
pages 567–592. Springer, 2014. (Cited on pages 5 and 21.)

[16] Healfdene Goguen, Conor McBride, and James McKinna. Elim-
inating dependent pattern matching. In Algebra, Meaning, and
Computation, pages 521–540. Springer, 2006. (Cited on page 33.)

[17] Dwight Guth. A formal semantics of Python 3.3. Master’s thesis,
University of Illinois at Urbana-Champaign, July 2013. (Cited
on pages 5 and 23.)

[18] Dorel Lucanu, Traian Florin Şerbănuţă, and Grigore Roşu.
K Framework distilled. In 9th International Workshop on Rewriting
Logic and its Applications, volume 7571 of Lecture Notes in Com-
puter Science, pages 31–53. Springer, 2012. Invited talk. (Cited
on page 5.)

[19] Andres Löh. Programming with universes, generically, January
2012. URL http://www.andres-loeh.de/DGP-Agda.pdf. Slides
for a talk given at the University of Tübingen [Online; accessed
07-May-2015]. (Cited on page 19.)

[20] Andres Löh, Conor McBride, and Wouter Swierstra. A tutorial
implementation of a dependently typed lambda calculus. Funda-
menta informaticae, 102(2):177–207, 2010. (Cited on page 21.)

[21] Lena Magnusson and Bengt Nordström. The ALF proof editor
and its proof engine. In Types for proofs and programs, pages 213–
237. Springer, 1994. (Cited on page 11.)

http://www.andres-loeh.de/DGP-Agda.pdf

bibliography 45

[22] Conor McBride. Faking it: Simulating dependent types in
Haskell. Journal of Functional Programming, 12(4-5):375–392, 2002.
(Cited on page 11.)

[23] José Meseguer and Grigore Roşu. The rewriting logic semantics
project: A progress report. Information and Computation, 231:38–
69, 2013. (Cited on page 23.)

[24] Bengt Nordström, Kent Petersson, and Jan M. Smith. Program-
ming in Martin-Löf’s Type Theory, volume 200. Oxford University
Press Oxford, 1990. (Cited on pages 11 and 16.)

[25] Ulf Norell. Towards a Practical Programming Language Based on
Dependent Type Theory. PhD thesis, Department of Computer Sci-
ence and Engineering, Chalmers University of Technology, SE-
412 96 Göteborg, Sweden, September 2007. (Cited on pages 11,
22, 33, 35, 37, and 39.)

[26] Ulf Norell. Dependently typed programming in Agda. In Ad-
vanced Functional Programming, pages 230–266. Springer, 2009.
(Cited on pages 11 and 13.)

[27] Nicolas Oury and Wouter Swierstra. The power of pi. In ACM
Sigplan Notices, volume 43, pages 39–50. ACM, 2008. (Cited
on page 11.)

[28] Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A com-
plete formal semantics of JavaScript. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15), pages 428–438. ACM, June 2015. doi:
10.1145/2737924.2737991. (Cited on page 5.)

[29] Benjamin C. Pierce. Advanced Topics in Types and Programming
Languages. The MIT Press, 2004. ISBN 0262162288. (Cited
on page 34.)

[30] Grigore Roşu. K tutorial, January 2015. URL http://www.

kframework.org/index.php/K_Tutorial. [Online; accessed 07-
May-2015]. (Cited on pages 5 and 26.)

[31] Grigore Roşu and Traian Florin Şerbănuţa. K overview and
SIMPLE case study. In Proceedings of International K Workshop
(K’11), volume 304 of ENTCS, pages 3–56. Elsevier, June 2014.
doi: 10.1016/j.entcs.2014.05.002. (Cited on page 5.)

[32] Traian Florin Şerbănuţa, Andrei Arusoaie, David Lazar, Chucky
Ellison, Dorel Lucanu, and Grigore Roşu. The K primer (ver-
sion 3.3). Technical report, 2014. (Cited on page 5.)

http://www.kframework.org/index.php/K_Tutorial
http://www.kframework.org/index.php/K_Tutorial

46 bibliography

[33] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton
Jones, and Kevin Donnelly. System F with type equality co-
ercions. In Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, TLDI
’07, pages 53–66, New York, NY, USA, 2007. ACM. ISBN 1-59593-
393-X. doi: 10.1145/1190315.1190324. (Cited on page 22.)

[34] Simon Thompson. Type Theory and Functional Programming. In-
ternational computer science series. Addison-Wesley, 1991. ISBN
978-0-201-41667-1. (Cited on page 11.)

A
Q U I C K S TA RT G U I D E

The versions of software used during the development of KAgda are:

• K Framework, version 3.4 (released 15-Oct-2014);
• the official Agda distribution, version 2.4.2.2 (released 26-Nov-

2014).

KAgda should be best set up with these versions. The next sec-
tion explains how these should be installed with the functionality
of KAgda itself demonstrated subsequently.

The actual KAgda code and other necessary files are to be found in
the archive provided together with this or in the Git repository living
at https://github.com/andrejtokarcik/agda-semantics. The struc-
ture of the project repository is self-explanatory.

a.1 installation of the dependencies

K Framework can be downloaded in the form of precompiled binar-
ies from http://www.kframework.org/index.php/K_tool_binaries.

Agda, however, must be compiled from source because it serves
as the parser and scope analyser for KAgda, which requires some
changes to be made within the code of the official typechecker as
per Section 4.2.1. The relevant Agda archive can be obtained at http:
//wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Download.

After the archive is downloaded and extracted, the patch agda-2.4.

2.2-kshow.diff from the KAgda package should be applied.
You can patch the Agda sources by going into the clean agda-2.4.

2.2 directory and running this command in shell:

$ cd [path to the agda-2.4.2.2 directory]

$ patch -p1 < [path to agda-2.4.2.2-kshow.diff]

the output should be:

patching file Agda.cabal

patching file src/full/Agda/Interaction/Imports.hs

patching file src/full/Agda/KShow.hs

patching file src/full/Agda/Syntax/Concrete/KShow.hs

patching file src/full/Agda/Syntax/Concrete/Name.hs

patching file src/full/Agda/Syntax/Concrete/Pretty.hs

patching file src/full/Agda/Syntax/Concrete.hs

patching file src/full/Agda/Syntax/Translation/

AbstractToConcrete.hs

47

https://github.com/andrejtokarcik/agda-semantics
http://www.kframework.org/index.php/K_tool_binaries
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Download
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Download

48 bibliography

The code then needs to be built as it would normally be, according
to the README file from the Agda archive.1 Afterwards copy the res-
ulting binary located at dist/build/agda/agda so that it is present in
the shell’s path as agda-kshow. KAgda’s scripts expect the external
parser to exist under this name specifically.

Note that the patched version of Agda cannot be directly employed
in its capacity as typechecker – its execution flow is stopped prema-
turely to return the AST for KAgda. The patched version should be
therefore installed in parallel with a vanilla distribution of the Agda
system.

a.2 working with the semantics

Once both K and Agda are prepared, KAgda can be also given a few
CPU cycles. Go to the directory with the semantics files. It should
contain a file named agda.k which is the entry point to the whole lan-
guage definition. First we need to compile it for which the kompile.

sh script bundled with KAgda comes in handy. You could use K’s
kompile executable directly but the script wraps around kompile ex-
ecutable in order to supply some useful options. Keep in mind, though,
that the process can eat up two gigabytes of memory, or even more.

$ cd [path to the agda-semantics directory]

$./kompile.sh

reports info about files about stages of the compilation,

concluding with:

Number of Modules = 13

Number of Sentences = 350

Number of Productions = 207

Number of Cells = 8

The kompile process produces the agda-kompiled subdirectory. With
the definition compiled it is now possible to let some real Agda pro-
grams typecheck (or not) with KAgda.

The script krun.sh instructs the standard krun tool to use the manu-
ally compiled Agda system for parsing (with scope analysis done as
a ‘side effect’). It also saves the krun output (which tends to be pretty
large) to the out file in the current directory while still printing to the
console.

Take the literate Agda file of Section 3.1 that is included in the test
suite for example. The krun output is quite unordered and verbose
and so the data are regrouped to aid comprehension. Moreover, only
those parts pertaining to the vector lookup function are displayed:

$./krun.sh ./tests/DepStructs.lagda

...

<k>

1 Long story short, make sure you have all the software prerequisites installed and
then run cabal install in the patched directory.

bibliography 49

.K

</k>

<mgu>

subst(.KList)

</mgu>

<ctx-stack>

.List

</ctx-stack>

<sig>

Data ("8469") |-> Set (0) # the number is a code for N

Con ("zero") |-> Data ("8469")

Con ("succ") |-> (#symVariable(30) : Data ("8469")) ->

Data ("8469")

Data ("Fin") |-> (#symVariable(466) : Data ("8469")) ->

Set (0)

Con ("fzero") |-> { #symVariable(475) : Data ("8469") }

-> (Data ("Fin") (Con ("succ") #symVariable(475)))

Con ("fsucc") |-> { #symVariable(489) : Data ("8469") }

-> (#symVariable(488) : (Data ("Fin") #symVariable

(489))) -> (Data ("Fin") (Con ("succ") #symVariable

(489)))

Data ("Vec") |-> (#symVariable(432) : Set (0)) -> (

#symVariable(431) : Data ("8469")) -> Set (0)

Con ("<>") |-> { #symVariable(441) : Set (0) } -> ((Data

("Vec") #symVariable(441)) Con ("zero"))

Con ("_,_") |-> { #symVariable(465) : Set (0) } -> {

#symVariable(464) : Data ("8469") } -> (#symVariable

(462) : #symVariable(465)) -> (#symVariable(463) : ((

Data ("Vec") #symVariable(465)) #symVariable(464))) ->

((Data ("Vec") #symVariable(465)) (Con ("succ")

#symVariable(464)))

Fun ("_[_]") |-> { #symVariable(505) : Set (0) } -> {

#symVariable(504) : Data ("8469") } -> (#symVariable

(502) : ((Data ("Vec") #symVariable(505)) #symVariable

(504))) -> (#symVariable(503) : (Data ("Fin")

#symVariable(504))) -> #symVariable(505)

...

</sig>

<ctx>

.Map

</ctx>

<meta>

.Map

</meta>

<ncat>

Name ("8469") |-> Data ("8469")

Name ("zero") |-> Con ("zero")

Name ("succ") |-> Con ("succ")

50 bibliography

Name ("Fin") |-> Data ("Fin")

Name ("fzero") |-> Con ("fzero")

Name ("fsucc") |-> Con ("fsucc")

Name ("Vec") |-> Data ("Vec")

Name ("<>") |-> Con ("<>")

Name ("_,_") |-> Con ("_,_")

Name ("_[_]") |-> Fun ("_[_]")

...

</ncat>

<fun>

Fun ("_[_]") |-> 'fc(

((((#symFunClauses(647) { (DotP (#symVariable(643))) })

{ (Con ("succ") DotP (#symExpr(635))) }) ((((Con (

"_,_") { #symVariable(643) }) { (DotP (#symExpr

(635))) }) Var ("x")) #symExpr(539))) (Con ("fzero

") { #symExpr(635) })) = Var ("x"),,

((((#symFunClauses(793) { (DotP (#symVariable(789))) })

{ (Con ("succ") 'DotP (#symExpr(747))) }) ((((Con

("_,_") { #symVariable(789) }) { (DotP (#symExpr

(747))) }) #symExpr(658)) Var ("xs"))) ((Con ("

fsucc") { #symExpr(747) }) Var ("i"))) = ((((Fun (

"_[_]") { #symVariable(789) }) { #symExpr(747) }) Var

("xs")) Var ("i")))

...

</fun>

There are obviously some discrepancies between the presentation
in the rest of the thesis and this pile of characters. These should
be cleared up immediately. The KAgda configuration cells of Sec-
tion 4.3.1 are here displayed as XML tags in ASCII format. The ‘ ↦→’
symbol used in maps is written as ‘|->’. The ‘#sym’ things were cre-
ated as fresh variables of the corresponding syntactic sort. Also, since
K is no friend with unicode (in total contrast to Agda), a numeric
code is used instead of ‘N’ as the identifier for the type of natural
numbers. To be able to decipher KAgda outputs in general may need
some additional practice but these remarks should be sufficient to get
you started.

The contents of the k cell is ‘.K’, which is the ASCII notation for •K

, which in turn implies that the input program has been completely
consumed. The fact that the k cell contains no leftovers indicates that
KAgda considers the program to be well-typed. The ctx, meta and
mgu cells have been also cleared up, as expected of a successful run.
The type signatures gathered during the typechecking are stored in
the sig cell for examination, whereas the function bodies are in the
fun cell. For further details on how these are determined and repres-
ented refer to Section 4.4.

Finally, the semantics comes with a set of Agda programs under
the tests directory many of which were collected from various Agda
tutorials. The set works as a test suite that can be executed simply
with the command:

bibliography 51

$./ktest.sh

The script runs the test suite and for each test input compares its
present KAgda output with the expected result. If all the test cases
pass, the script finishes with a green SUCCESS printed to the console.

The tests directory is divided into covered and beyond. The former
subdirectory contains programs that use only those Agda features
that are implemented in KAgda whereas the latter contains Agda
files that fall beyond the scope of KAgda in one way or another. One
can examine the cases in beyond to get an idea about the limitations
of the KAgda typechecker. Only the covered Agda programs are ex-
ecuted by the ktest script.

colophon

This document was typeset using LATEXwith the typographical look-
and-feel classicthesis developed by André Miede. The style was
inspired by Robert Bringhurst’s seminal book on typography The Ele-
ments of Typographic Style. classicthesis is available:

http://code.google.com/p/classicthesis/

Final Version as of 25th May 2015 (classicthesis version 4.1).

http://code.google.com/p/classicthesis/

	Dedication
	Declaration
	Acknowledgments
	Abstract
	Keywords
	Zhrnutie
	Klúcové slová
	Contents
	List of Figures
	Terminology

	1 Introduction
	1.1 Contributions
	1.2 Overview of the Thesis

	2 K Framework
	2.1 Language Definitions
	2.2 Rewriting Rules
	2.3 Evaluation Contexts

	3 Agda
	3.1 Dependent Types: A Primer
	3.1.1 Parametrised Datatypes
	3.1.2 Functions
	3.1.3 Inductive Families
	3.1.4 Inaccessible Patterns

	3.2 Propositions as Types
	3.3 Decidability of Typechecking

	4 A K Semantics of Agda
	4.1 Core Type Theories
	4.2 Syntax
	4.2.1 Parsing and Scope Analysis
	4.2.2 Desugaring

	4.3 Semantics: An Entrée
	4.3.1 Configuration

	4.4 Declarations
	4.4.1 Datatypes
	4.4.2 Function Clauses
	4.4.3 Local Definitions
	4.4.4 A Note on Deficient Checks

	4.5 Normalisation
	4.5.1 Pattern Matching
	4.5.2 Phase Distinction

	4.6 Type System
	4.6.1 Type Inference
	4.6.2 Typechecking and Unification
	4.6.3 Metavariables and Implicit Arguments

	5 Conclusion
	Bibliography
	A Quickstart Guide
	A.1 Installation of the Dependencies
	A.2 Working with the Semantics

	Colophon

