Slovak University of Technology Bratislava
Faculty of Informatics and Information Technologies

FIIT-13428-5796

Kamil Burda

PORT CONTROL PROTOCOL IN SOFTWARE DEFINED
NETWORKS

Diploma Thesis

Degree Course: Computer and Communication Systems and Networks
Field of study: 9.2.4 Computer Engineering

Institute: Institute of Computer Systems and Networks, FIIT STU Bratislava
Supervisor: Ing. Martin Nagy

2015, May

Slovak University of Technology Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES

Annotation

Degree Course: Computer and Communication Systems and Networks
Author: Kamil Burda
Diploma Thesis: Port Control Protocol in Software Defined Networks

Supervisor: Ing. Martin Nagy
2015, May

User applications, such as instant messaging or VoIP, may have problems traversing the network
through middleboxes (NAT gateways, firewalls). Several mitigation techniques exist, including a
relatively new protocol called Port Control Protocol (PCP). PCP allows user applications to receive
IP address and port mapping directly from the middleboxes. Additionally, PCP allows user
applications to optimize the number of keepalive messages sent to the network in order to maintain
the connection, reducing the network load and prolonging battery life in mobile devices. Software
defined networking (SDN) is a new paradigm in computer networks that allows the network
behavior to be programmed. SDN networks increase flexibility and vendor compatibility by
providing a standard communication interface for the network elements. The goal of the diploma
thesis is to implement PCP over an SDN network (using the OpenFlow protocol) and to measure the
reduction of keepalive traffic with PCP enabled in the implemented network, focusing on mobile
networks, where the impact of the reduction of the signaling traffic may be considerable.

Slovenska technicka univerzita v Bratislave ,
FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII

Anotacia

Studijny program: Pocitatové a komunikadné systémy a siete
Autor: Kamil Burda
Diplomova praca: Protokol PCP v softvérovo definovanych sietach

Veduci diplomovej prace: Ing. Martin Nagy
maj 2015

Pouzivatel'ské aplikacie, ako napr. rychle spravy (instant messaging) alebo VoIP, mozu mat
problémy s komunikéciou v sieti cez sietové zariadenia ako napr. brany NAT alebo bezpecnostné
brany. Na zmiernenie problémov sa moézu pouzit existujice techniky, resp. protokoly, vratane
relativne nového protokolu Port Control Protocol (PCP). Protokol PCP umoziluje pouzivatel'skym
aplikdcidm ziskat' informacie o mapovani IP adries a portov priamo z uvedenych sietovych
zariadeni. PCP navySe umoziuje optimalizovat’ vysielané mnozstvo tzv. sprav keepalive (spravy na
udrziavanie spojenia), ¢im sa zniZzuje zataz siete a predlzuje sa zivotnost’ batérie na mobilnych
zariadeniach. Softvérovo definované siete (SDN), ako novy pristup budovania a riadenia sieti,
umoznuji naprogramovat’ spravanie sa siete. Siete SDN zabezpecuji vyssiu flexibilitu a
kompatibilitu medzi zariadeniami od rdéznych vyrobcov vdaka Standardnému komunika¢nému
rozhraniu medzi tymito zariadeniami. Ciel'om diplomovej prace je implementovat’ protokol PCP v
sietach SDN (s pouzitim protokolu OpenFlow) a urcit' redukciu mnozstva sprav keepalive s
protokolom PCP v implementovanej sieti, pricom doéraz je kladeny na mobilné siete, kde ma
redukcia signalizacnej sietovej premavky znaény vplyv.

Acknowledgments

I would like to thank my supervisor, Martin Nagy, for consultation regarding the diploma thesis. I
would also like to thank my family for providing moral support.

vi

Contents

IEEOAUCTION. ...ttt ettt ettt e b e b et ea e e bt et e sabeesateeenbeeenbeesnnee 1
L IMIAAIEDOXES. ...ttt ettt ettt b et s et et e e e s ae et e b e ht e e ntt e e enneeenteeenteas 2
L1 INAT GAEEWAY..eeeuevieeiiiieiiieeeite et te et ee ettt e sttt e st e e sitte e st ee e st e e eabeeensteesnsaeesasaeesssaeenaseeensseessseens 2

2. USET APPIICATIONS. ...euvieiieeiieiieeieesiteeteesieeeteeteeeteesteeesbeeseessseesseessseenseessseenseesnsseeeanssesennsseeennsaeens 4
2.1, KEPALIVES. ..ttt ettt ettt ettt et e bt enat e et e e ab e e bt e enaeeteeenbeenbeeennes 4
2,11 TCP KEEPAIIVES. ..c.eveeuiieiiieiieiie ettt ettt ettt et ettt eeabeebeessaeeseessseenseesnneeennsaeens 4
2.1.2. Keepalives and MiddlEDOXES........ccuieiieriiiiiienieeiiesie ettt et 5

2.2. Middlebox Traversal Methods...........coouiriiriirieriiiieieiieieee et 5
2.2.1. STUN, TURN, ICE ..o seee e eeeeens 5
2.2.2. Middlebox Signaling ProtOCOIS.ccuieiiiiiiiiiieeiieiieee et 5
2.2.3. UPNP IGD ..ottt ettt et et e e e e st e e snseeenseeenneeennes 6
2.2.4. Application Layer GateWaY..........ccccueeriierieeiieeieeiieeiee ettt et siee ettt e eseesaeeenneas 6

3. POrt Control PrOtOCOL........oiiiiiieiie ettt e et e et e e ba e e eare e e ssbeeesnseeesnnsnes 7
3.1 PCOP MESSAZES. ...ttt ettt ettt ettt ettt et s et e st e e s et et st et e ennee s 8

T B B o) e AT |] PO UPt 8
3.1.2. PCP RESPOMNSE. ...ueiieeiiiiieeeiiiieeeeiiteeeeeiteeeeeseaeeeeesaaeeeeessaeesesssaeeeesssaeaaeaeeeesseessannnnsssssnnns 9
3.1.3. MAP OPCOUC.....eieeeiieeiiie ettt ettt et e et e e e sae e e ta e e e taeeensaeesssaeeesseeesnseesnnssnaaaeas 10
3.1.4. PEER OPCOUE....ccutiiiiiiieiie ettt ettt ettt e e e e e aae e s e e s steeesnsaeesnsaeensseeennnnnes 11
3.1.5. PCP Server Recovery with ANNOUNCE Opcode.........c.cooevieiiiieiiiiieniieee e 12

T BT 015 107 3 TSP UPUPPRR 12

3.2. PCP Request Processing by PCP SeIVer.........ccvoviiiiiiiiiiiiieieciecieeee et 13
3.2.1. Learning, Modifying and Maintaining Mapping Lifetime............cccceevvvvervirenceeennnnenn. 16

3.3, PCP SeIVET DISCOVETY...ccutiiuiiiiiieiiieeiieiieeteertteete e teeeeteeseessaeesseeesseenseessseeseessseesseesssesseennnes 17
3.4. PCP Client Implementation..........c.ceeecueeeriieeiiieeiieeeieeeeieeesreeesteeesreeensaeessennssneeeesssssnseeeeens 17
3.5. Available PCP SOftWATE......cc.ciiuiiiiiiiieiiesi ettt 18
3.5.1. PCP TEStING TOOL....c.uiiiiieiiieiiieiieeie ettt ettt a e e eenbeesssaaeeennes 18
3.5.2. PCP CHENt LADTAIY.....cc.ieiiiiiiieiieeie ettt ettt st et e e e saae e ensaeeeennaeas 18

3.6. Comparison of PCP and Middlebox Traversal Methods.............cccceevieeiiieniieeieiiieeeieeeeee, 19

4. IMODIIE NEEWOTKS. ...ttt ettt sb et sbe e bt et e et e ebeeenaaeens 20
4.1 3G NEEWOTKS. ¢..etieteeite ettt b ettt b e e st e bt et sa e e bt ente e bt e nbeeenaneennneens 20
4.2. Radio ReSource CONLIOL........ccouiiiiriiiiiiiieniiiieetesie ettt 21
4.2.1. RROC SEAtS.....eiiieiiiieiieeieei ettt ettt ettt et st e sbe e et e et e e e e e e 22
4.2.2. RRC INACtIVILY TIMETS. .. .cerueiuiiriiiniieieeitenieeie ettt ettt ettt et esaae e es 23
4.2.3. RRC State Transitions with Keepalives..........cccccuiriiiriiiniiiiieiiieieeeeeeee e 24

4.3, CONCIUSIONS. ...eeutiieeitieeeieeeeteeesteeestteeeseteeestbeeesseeaseeesssaeesssaeessseeesssesessseeenssaeasseessseesnsseesannns 24

5. Software Defined NetWOTKING..........ccviiiiiiiiiiiiiee e 26
I B 05753 01 23 10)2 USSR 27
5.1.1. OpenFlow SWitCh OVEIVIEW......cc.coviiiiiriiiiiiiiiieetee ettt 27
5.1.2. Communication With COntroller............ooouiiiiiiiiiiiiiie e 28

vil

5. 1.3, FLOW EITIES. ..t e aaeaaeeeeeennnaaeeeaeees 28

5. 14, INSIIUCTIONS. ¢ttt ettt sbe ettt st e bt et sat e bt et e sae e bt et e eatenbeenaneenaeean 29
S LS. POTES et et a e s e 29
5.2, SDIN SOTEWATE.eiuiiiiiiieiteeit ettt sb et sttt e at e s bt et st e s bt enbeesabeesabeeeaee 30
5.2.1. FOTWAIAETS.....uviiiiiieeiiee ettt ettt e et e et e e e taeeeataeesabaeesssee e ssaeensseeensseeensseesnseeenns 30
5.2.2. OpenFlow Controller SOftWare............cocuieiiieiiieiieiiicee e 30
6. ANALYSIS SUMIMATYecciuiiiiiiieeiiee et e ettt e et e e eteeesteeesbeeessseeesbeessseesssseesssseessssaesssaeeasseeenssseeeesnnns 32
) 11 L 1o 150§ OO OO UPRPPTR 34
7 TR € {0 Y SRR 34
7.2, REQUITEIMENLS.eeeutieeiiietie ettt ettt ettt ettt e et et e e bt e seeeabeesseeeabeessbesabeeeennseeeennseeeennnes 34
7.2.1. Port Control ProtoCOL.........coouiiiiiiii et 35
T B 1T T+ OO PU P STPPP 36
8L ATCRILECTUTE. ...ttt ettt et b e et e st et esbe e et e e sateenbeeeneee 36
8.1 1. COMPONENLS. ...eeeieiiiiieeeiiiieeeeiiiee e ettt e e e e tteeeeseaeeeesnntaeeeessstaeeeesssseeseannsaeeeessssaeesesssseeennnes 37
8.1.2. Network Application COMPONENES.......cccuveeriuieerrieeriieerieeesireeesieeesieeesseeesseeesssaeeesannns 38
8.2. PCP Client Mapping Request — PrOCESSING.......ccueievuieieiiieeiieeeiie ettt 39
8.3, EAZE FOTWATAET.......eiiiiiieeiiiece ettt ettt et e et e et e et e e etaeeensaeesnseee s 39
B4 NAT FOrWAIAET. ..ottt ettt et sat e et e st e e saaeeas 40
0. IMPIEMENEALION.ecuviieiiieiiecieeciie et ertte ettt e et et e eteesteeesbeessaeesseesseeasseensseenseensseasseensseenseesnsseeennns 42
9.1. Implementation ENVIFONMENL.........c..coiiiiiiiiiieeiiie ettt et e e e e erae e e e e ssanaaeeees 42
9.2. Implementation DESCIIPLION.eeiuieiiieiieeieeiie ettt et ere et e steeteeeesbeeeesbaeeesnaaeesennaeas 43
0.2.1. ARP MeSSaZE PIOCESSING......eievieiieiiieiieeiiieiee et et e eive et e eaeebeesaaeenseeseseesaeessnseeesnnneas 44
0.2. 2. NAT TaBIC.....eoutiiiieiieteeetee ettt ettt ettt sttt e st e e st eesbeesnreeeas 45
9.2.3. Managing Mapping Lifetime...........cccceeriiiriiiiiiiiieiiesie ettt 46
0.3, VRTIICATION. ...ttt ettt ettt sh et s e sbe ettt e s bt e nbesatesbneens 46
1O, EVAIUATION. ¢ttt ettt et b et sat et e e ebte bt eaaesbeenbeenteesnbeeean 47
10.1. Battery Life EXteNSION.cciiiiiiiiiiiieiie ettt ettt e et e e 48
10.1.1. Battery Power Consumption FiGUIES.........cccceeviieiiiiiiieniieeiieiie et 48
1O 1.2, FOTMUIAS.viiiiiieeiee ettt ettt et e et e e s ae e e aseaesasaeesssaaessaeanssaeensnaeens 48
L0130 RESUIES..ceiieteeesee ettt ettt et sb ettt be e e e e e s 50
10.2. Signaling Traffic REAUCHION.cccuiiiiiiiiiiie e 53
10.2.1. Network Traffic in WCDMA NEtWOTKS........ccovuiiiiiiiiieiieeieeitese et 53
10.2.2. FOTMIULAS.eviiiiii ettt ettt et e e et e e et e e e te e e sssaeesssaaessseeenssaeanssaeens 53
10.2.3. RESUILS....eiieiiiieeiie ettt e ettt e et e et e e etaeesaaeesssaeesasaeeeaseeessseeesnsaeeeanssseeaaaans 53
10.3. CONCIUSIONS. ...ttt ettt ettt et e e bt e et e e sabeeabeessbeenbeesateenbeeeneee 55
10.3.1. Determining PCP Mapping Lifetime..........ccoceeiiiiiiiiiiiiiiiienieeeeee e 56
10011100 F2) oy 2SR 57
COMCIUSTION. .ttt ettt et e s at e et e e s at e e bt e sab e e bt e sabeenbeeesbeenseesnteannbaeeeneeeann 58
RETEIENICES. ...ttt ettt sttt et e e s bt e e sbae e e sbbeeenaes 59
Appendices

viil

A. Attached DVD Contents

.. 63
Bl INSTAIIATION.ecitiiiiiiicciie et ettt e et e et e e et a e e e abee e taee e abee e abeeetaeeeaaeeeraeeaaeeas 64
C. USING the SOTEWATE........iiiiiiiiiiieeeee ettt ettt ettt e et e saeenbeesaeeenseeas 66
D. PLaN OF WOTK....ceiiiiiiiiecee et ettt et e e e e tae e s taeeeabaeesaseeesaseeeeeessnseeaeannes 71
Resumé

X

Abbreviations

ALG
API
ARP
CGN
DHCP
EDGE
EIR
GGSN
GMSC
GPRS
GSM
HLR
HSPA
[ANA
ICE
IETF
1P
[Psec
LTE
MAC
MSC
NAPT
NAT
NAT-PMP
(ON}
PCP
PDN
PSTN
RFC

Application layer gateway, Application-level gateway

Application programming interface
Address Resolution Protocol
Carrier-grade NAT

Dynamic Host Configuration Protocol

Enhanced Data rates for GSM Evolution

Equipment Identity Register
Gateway GPRS Support Node
Gateway Mobile Switching Center

General packet radio service

Global System for Mobile Communications

Home Location Register

High Speed Packet Access

Internet Assigned Numbers Authority
Interactive Connectivity Establishment
Internet Engineering Task Force
Internet Protocol

Internet Protocol Security
Long-Term Evolution

Media Access Control

Mobile Switching Center

Network address and port translation
Network address translation

NAT Port Mapping Protocol
Operating system

Port Control Protocol

Packet data network

Public Switched Telephone Network
Request for Comments

Radio Network Controller

Radio Resource Control

Software defined networking

SGSN
STUN
TURN
UMTS
UPnP
UPnP IGD
VLR

VoIP
WCDMA
XML

Serving GPRS Support Node

Session Traversal Utilities for NAT

Traversal Using Relays around NAT

Universal Mobile Telecommunications System
Universal Plug and Play

Universal Plug and Play Internet Gateway Device
Visitor Location Register

Voice over IP Protocol

Wideband Code Division Multiple Access
Extensible Markup Language

X1

Figures

Figure 1.1: Example of address translation by a NAT GateWay.........ccceeeriieerieeeriieeeeiiiieeeeeniiieeeenn 2
Figure 3.1: Usage of PCP i NEtWOTKS.c..coiiiiiiiiiieiieiesiceieeee et 8
Figure 3.2: PCP request message fOrmat.........c..ooeuiiiiiiiiniieeiiie ettt eiee et eeite e e e aeeesaaeea e e e 9
Figure 3.3: PCP response message fOrmat...........coueieeiirienienienienieeieetesieesie sttt 10
Figure 3.4: Message format for MAP opcode for PCP request..........ccceeveveeniriienieneenieeieeieeenn 11
Figure 3.5: Message format for PEER opcode for PCP request...........coceeverviiniininiinicnenieneeeieee 12
Figure 3.6: Generic header for PCP OPtIONS.......c.cevuiiiiriiriiiiiiieieeiesieeieee st 13
Figure 3.7: Basic processing of a PCP request by the PCP Server.........coccooevviviiniieniiiniciniecnieee 14
Figure 3.8: Building a PCP response from the corresponding PCP request by the PCP server......... 15
Figure 3.9: Processing of PCP MAP and PEER 1€quests.........cccccvvieririiiriinienienicnieciceecsecieeeieee 16
Figure 4.1: Architecture 0f 3G NetWOTKS.......coviiiiiriiiiiiceee e 21
Figure 4.2: Radio Resource Control (RRC) States........ccueruiiiiiiiiieiiieieeie e 23
Figure 4.3: Possible RRC state transitions when sending a single keepalive............ccoceevieniinnnennn. 24
Figure 5.1: SDN architeCture OVETVIEW........cccuvieeuieiiiieeiieeeitteeeitteeeieeesseeesseeesseeessseeessseeassseeeseesnnns 26
Figure 5.2: Overview of an OpenFlow switch (forwarder)..........ccoceeviriiniiiiniininiiiicnecceceeee 27
Figure 5.3: Flow entry structure in an OpenFlow SWitCh...........cceoviiiiiiiiiiiiiiiieeeece e, 28
Figure 6.1: PCP Deployment in Traditional Networks..........cccceviiiiiiiiiiniiiieeeeee e 32
Figure 8.1: Architecture of the NetWork............cooiiiiiiiii e 36
Figure 8.2: NAT table entry fIeldS........cceeeiiiiiiiiiiiieeie ettt e e e e e 38
Figure 8.3: Network application COMPONENLS.........cceruieeriieriiiieeiieeeieeesieeesreeesereeesereeesereessneesseeenns 38
Figure 8.4: PCP request processing by the network application............ccceeeeveeeciieicieeeesciieee e, 39
Figure 8.5: Edge forwarder flow €Ntries.cevieriiieiieniieie ettt 40
Figure 8.6: NAT forwarder flow tables and ntries.c.ceeiiiiiiiiiiiiiiiiicieieeee e 41
Figure 9.1: Test topology fOr VErifiCatioN.coueriirieriiiieiieieee et e 42
Figure 9.2: Forwarder implementation OVEIVIEW..........coiuiiiieiiiierieiiienieeite ettt s 43
Figure 9.3: Example of a MAC overwriting flow entry installation with proxy ARP approach........ 45

Figure 10.1: Amount of battery power saved based on keepalive intervals relative to reference
values and cost 0f 0.15 MA per KeepaliVe...........oocuieiiiiiiiiieiiieiee e 51
Figure 10.2: Amount of battery power saved based on keepalive intervals relative to reference
values and cost of 0.6 MAh per KeepaliVe.........cceiiiiiiiiiiiiiieie e 51
Figure 10.3: Amount of battery lifetime saved based on keepalive intervals relative to reference
values and cost of 0.15 mAh per KeepaliVe.........c.coviriiiiiiiiiiiiiieeceee e 52
Figure 10.4: Amount of battery lifetime saved based on keepalive intervals relative to reference
values and cost of 0.6 mAh per Keepalive.........ccoiiiiiiiiiiiiiiie e 52
Figure 10.5: Number of signaling messages reduced based on keepalive intervals and reference
Values (40 ODSETVEA MESSAZES).....eeerureeeiirieeiiiieeiiieeeiieeeitteesteeesaeeesbeeessaeeessseeessseeasseessseessseeessseeeens 54
Figure 10.6: Number of signaling messages reduced based on keepalive intervals and reference
Values (50 ODSETVEA MESSAZES).....eeeiurieeiiiieeiiiieeiiteeeiteeeiteeesiteeesreeesbeeessaeeessseeesseessseessseessseessssseeeens 54
Figure 10.7: Number of signaling messages reduced based on keepalive intervals and reference

xii

values (20 UNODSETVEA MESSAZES)......eerueeeiieruieeiieriieeteeriee et estteeteesteeeaeesseeeateeseesaseenseesnseenseessseeannns 55

Figure 1: PCP Request processed by the PCP server in the controller............ccccooevieniiienieneenneenne 67
Figure 2: Packet trace from hoSt L.........ooiiiiiiiiriiiiiiiicceeeee et 68
Figure 3: Packet trace from hoSt 2.........coiiiiiiiiiiiiiieeceseee et e 68

Xiii

Tables

Table 4.1: Average current (power consumption) of a mobile device in RRC states [30] [5] [29]....23
Table 10.1: Measured battery power consumption of keepalives in 3G WCDMA networks [5]....... 48
Table 10.2: Amount of battery power consumption saved of a mobile device connected a WCDMA

network given battery capacity and reference values..........cccceeviieiiieniieniiieiieeii e 50
Table 10.3: Reduction of the number of signaling messages given the number of messages per

keepalive and referenCe VAIUES............oocuiiriiiiiiiiiecie ettt ettt e 55
Table 1: Plan of work for the diploma thesis...........ccieriiiiiieriiiiieieeie e 71
Table 2: Plan of WOTK — @SSESSINENL......c..eeiiriiiiiriiiiieieeteeit ettt sttt et e e 71

X1v

Introduction

User applications running on hosts, such as instant messaging (IM) or VoIP, may have problems
traversing the network through the so called middleboxes placed in computer networks, especially
NAT gateways. In order to mitigate the incompatibility of user applications with NAT, several
approaches exist, such as Session Traversal Utilities for NAT (STUN).

With the middleboxes in the network, the user applications have to keep the connections alive to
avoid the middleboxes closing the connections prematurely. This is accomplished by sending
keepalive messages from the user applications to the destination host in regular intervals. Given the
fact that the user applications do not know the keepalive timers set on the middleboxes, they tend to
send the keepalives in very short intervals, increasing the network load.

In mobile networks, each message sent over the network causes a substantial number of signaling
messages to be generated and sent over the network. With a large number of mobile devices
connected to the network and running one or more applications, this introduces increased network
load in the network and delay in communication. From the perspective of a mobile device, sending
an excessive amount of keepalives drains its battery life faster.

Port Control Protocol (PCP) is a relatively new protocol that allows user applications to receive
mapping information directly from the middleboxes, including external IP address and port in case
of NAT gateways, and the mapping timer. The applications can consequently optimize their
keepalive timers using this information.

Software defined networking (SDN) is a new paradigm in computer networks that allows the
network behavior to be programmed in a simpler manner. SDN networks increase flexibility and
improve vendor compatibility by providing a standard communication interface between the
network elements, such as OpenFlow.

The goal of the diploma thesis is to implement PCP over SDN networks and to measure the
keepalive traffic reduction with PCP enabled in the networks, focusing on mobile networks, where
the impact may be considerable.

Chapters 1 and 2 of the document describe middleboxes and their role in the computer networks,
user applications and their traversal issues over the middleboxes and related methods that provide
solutions to the traversal issues. Chapter 3 focuses on one of the traversal methods — the most
essential part of this thesis — the PCP protocol. Chapter 4 gives a brief overview of mobile networks
and further focuses on 3G networks using the Wideband Code Division Multiple Access (WCDMA)
access technology. Chapter 5, the last part of the analysis, discusses the concept of SDN. Chapter 6
summarizes the analysis and gives an overview of the current state of the networks and issues to be
resolved.

Chapter 7 specifies the goals of the diploma thesis and the requirements for the solution. Chapter
8 describes the design of the solution. Chapter 9 describes the most important aspects of the
implementation of the solution and describes how to verify the solution. Chapter 10 evaluates the
reduction of battery power consumption of mobile devices and the reduction of signaling traffic in
WCDMA networks with PCP deployed in the network.

1

1. Middleboxes

Middlebox 1s a term that refers to “any intermediary device performing functions other than the
normal, standard functions of an IP router on the datagram path between a source host and
destination host” [1].

Source [1] identifies several types of middleboxes, mainly:
* NAT gateways,
* firewalls,
* application-level gateways (ALGs).

Generally speaking, IP routing and the corresponding routers are transparent to end hosts. This
transparency is broken by introducing middleboxes in the network, as the middleboxes alter the
packet forwarding. Thus, end hosts must now cope with middleboxes as well when establishing
communication [1].

While ALGs can be classified as middleboxes, they enable end hosts to properly traverse other
middleboxes — NAT gateways and firewalls. Hence, ALGs as one method to traverse other
middleboxes are described in section 2.2.4.

1.1. NAT Gateway

A NAT gateway is a network device that performs network address translation [2]. A carrier-grade
NAT (CGN) is a NAT gateway located in service-provider networks [4]. Figure 1.1 illustrates an
example of a packet being subject to translation by a NAT gateway in the network. NAT allows
hosts from private networks (such as 192.168.0.0/16) to communicate with hosts on the Internet —
on the public network with publicly routable IP addresses.

Packet Packet
source IP: 192.168.0.90/24 source IP: 200.0.0.90/24 /
> > NAT gateway > » [Internet
; rotocol: UDP /
A © protocol: UDP p
Host source port: 1000 source port: 50000

192.168.0.90/24

Figure 1.1: Example of address translation by a NAT gateway

More importantly, NAT can conserve IPv4 address space by translating multiple internal (private)
IP addresses to one external (public) IP address with different transport protocol ports. This type of
NAT is called Network Address and Port Translation (NAPT). When overwriting packet fields, NAT
gateways must recompute the checksum of each relevant header (IP, transport protocol, Ethernet
frame).

In this document, unless otherwise specified, “NAT” refers to the general network address
translation process to simplify discussion. It does not imply NAPT or address translation exclusive
to IP.

The translation between an internal IP address, protocol and port and an external IP address,
protocol and port can be referred to as a mapping. NAT gateway stores mappings for each
connection. Mappings can be created statically (manually configured by the network administrator)
or dynamically (created one a packet traverses through the NAT gateway). In case of a dynamic
mapping, the NAT gateway allocates an external IP and an external port from the pool of defined
external IP addresses and ports.

An idle timer may be associated for each mapping. If no packet traverses through the NAT
gateway for this connection, the mapping is removed by the gateway. Employing a timer for a
mapping may have several reasons.

NAT gateways do not participate in the end-to-end connection between the communicating hosts.
Hence, NAT gateways generally cannot determine when the connection is terminated. For TCP
connections, NAT gateways may track segments with FIN or RST flags, in which case the gateways
may remove the mapping immediately upon receiving such segments. Other transport protocols,
such as UDP, do not indicate when the connection terminates. Additionally, the NAT gateways
cannot detect one or both communicating hosts suddenly terminating the connection (e.g. by
crashing) [2]. Another reason to add timers to mappings is to conserve memory on NAT gateways
or keep the NAT pool for dynamic mappings from being depleted too quickly.

According to several vendor devices specified in source [5], the default timer values for TCP
range from 30 to 150 minutes and for UDP from 60 to 300 seconds.

2. User Applications

Certain user applications need to communicate with hosts behind NAT or similar middleboxes.
Such applications have problems traversing the middleboxes because of unexpected IP address and
port rewrite on the route to the destination. These applications include VoIP, social networks, instant
messaging or online gaming, and are sometimes referred to as always-on applications.

The data transmitted in these applications are intermittent. That is, no data may be sent for a
certain period of time. This poses another problem for the applications — middleboxes shut down
idle connections and the applications would have to establish the network connections again.

To avoid the network connections being shut down by middleboxes, user applications send
keepalive messages [6] to the destination. The keepalives usually contain little to no payload to
conserve network load.

2.1. Keepalives

Keepalives are messages sent by end-user applications to check for broken connections or to
prevent disconnection due to inactivity [7]. Without keepalives, the connection can be broken if
there are middleboxes on the path between the end hosts, such as NAT gateways. Middleboxes
maintain mapping information for each connection and assign a timeout for the mapping. If no
messages are sent within the connection for the time specified by the timeout, the middlebox
removes the mapping and the connection is broken.

The format of keepalives and their usage depends on the communication protocol used.
Keepalives tend to be short in length to preserve the network bandwidth [7].

2.1.1. TCP Keepalives

Once established, a TCP connection lasts until it is closed explicitly by either host. There is no
connection timeout associated with the established TCP connection if no messages are sent for a
long time [8]. This implies that if, for example, the remote host crashes, the local host has no way of
learning that the remote host no longer maintains the connection. Periodically sending TCP
keepalives can detect such broken connections [6].

A host desiring to maintain a TCP connection sends an empty ACK segment to the destination
host. The destination host replies with another ACK segment. The size of the segment payload can
be zero (i.e. no data need to be included in the segments) [7].

The implementation of TCP keepalives is optional. If sending TCP keepalives is implemented, it
must be turned off by default [6]. Applications may enable or disable keepalives and may adjust the
keepalive time. By default, the keepalive time must be set to at least two hours [6].

Among the more popular platforms, Windows', Linux* and OS X?, support TCP keepalives and
also support setting the keepalive time. Popular platforms for mobile devices, such as Windows
Phone, Android, 108, also support TCP keepalives and keepalive time, given that these platforms

1 https://msdn.microsoft.com/en-us/library/dd877220%28VS.85%29.aspx
2 http:/tldp.org/HOWTO/TCP-Keepalive-HOWTO/usingkeepalive.html
3 http://serverfault.com/questions/216956/how-to-check-tcp-timeout-in-linux-macos/275506#275506

4

are based on Windows, Linux and OS X, respectively.

2.1.2. Keepalives and Middleboxes

For communication passing through NAT gateways, IETF requires setting the mapping lifetime
(timeout) for UDP to at least 120 seconds (with 300 seconds recommended) [9] and for TCP to at
least 124 minutes [10]. For IPSec ESP connections, the keepalive interval is locally configurable,
with the default value of 20 seconds [11].

2.2. Middlebox Traversal Methods

2.2.1. STUN, TURN, ICE

Session Traversal Utilities for NAT (STUN) [12] is a protocol that helps application protocols
cope with NAT traversal. STUN uses a client-server model for message exchange. STUN can also
be used as a keepalive mechanism.

STUN can be used by hosts — STUN clients — to determine their external IP address and port
allocated by a NAT gateway from a STUN server. The STUN server usually resides on the public
Internet.

The operation of STUN is simple. The STUN client sends a request to the STUN server on the
public Internet. From the request, STUN server sees the source IP address and port as the external
IP address and port of the STUN client, since the NAT gateway translated the source IP address and
port of the request. The STUN server encapsulates the external IP address and port to the payload of
a response message that is then sent back to the STUN client. The host thus receives its external
mapping information.

The advantage of STUN is that it does not require modifications of NAT gateways. The
disadvantage of STUN is that is does not work properly with symmetric NAT*.

Traversal Using Relays around NAT (TURN) [13] defines an intermediate node — a relay (or a
TURN server). End hosts use the relay to forward data traffic through (such as voice). In case of
TURN, it is possible for one host to communicate with multiple other hosts with the same external
IP address and port. While TURN can support symmetric NAT, the relays are subject to heavy
network load.

Interactive Connectivity Establishment (ICE) [14] is a technique that combines STUN and TURN
and chooses the most effective way of communication between hosts behind a NAT”.

2.2.2. Middlebox Signaling Protocols
This subsection gives a brief overview of protocols that, unlike the previously mentioned

protocols, communicate with middleboxes directly.

NAT Port Mapping Protocol (NAT-PMP) [3] is the predecessor to the Port Control Protocol
(described in chapter 3). NAT-PMP allows the host to receive its external IP address and external
port. NAT-PMP works only on NAT gateways located one hop away from the host.

4 More information at: http://think-like-a-computer.com/2011/09/19/symmetric-nat/
5 More information at: http://www.pjsip.org/pjnath/docs/html/group PJNATH_ICE.htm

5

Two more middlebox signaling protocols include Middlebox Communication Architecture and
Framework (MIDCOM) [15] and NEC's Simple Middlebox Configuration Protocol (SIMCO) [16].
These protocols appear to be outdated as they were not widely deployed in networks despite being
in existence many years.

2.2.3. UPnP IGD

The Internet Gateway Device (IGD) is a device on the edge of a LAN and a WAN network,
allowing end users to connect to the Internet. IGD as a UPnP-based protocol allows users to control
and configure multimedia devices connected to the network, including the configuration of DHCP,
DNS and also the network address translation on the IGD device [17].

2.2.4. Application Layer Gateway

An application layer gateway® is a software component that manages specific protocols notorious
for having problems with NAT traversal, such as Session Initiation Protocol (SIP) or File Transfer
Protocol (FTP). ALG can examine the payload of packets and determine whether NAT needs to be
performed. The use of ALGs has been discouraged [18].

6 More information at: https://www.juniper.net/techpubs/software/junos-es/junos-es93/junos-es-swconfig-
security/application-layer-gateways-algs.html

3. Port Control Protocol

Port Control Protocol (PCP) [18] [19] [20] allows network hosts to communicate directly with
middleboxes (NAT gateways or firewalls). With PCP, the host can receive or explicitly request a
mapping from an internal IP address, protocol and port to an external address, protocol and port.

This way, the host can traverse NAT gateways properly and communicate with other hosts behind
NAT.

PCP does not provide a mechanism to inform the remote host about the host's external mapping.
This responsibility is left to the user application and is usually handled by a rendezvous (proxy)
server, accessible in the public network by both communicating hosts.

The mapping assigned by the middlebox to the host also contains mapping lifetime — the timer
associated with the mapping. PCP also retrieves the lifetime value from the mapping. Given the
mapping lifetime, the application running on the host can optimize the interval of sending
keepalives over the network. Reduced keepalive traffic can extend the battery life of mobile devices
and reduce network traffic overhead [18] [21].

PCP originated as an alternative to application layer gateways (ALGs) [18], existing protocols for
NAT traversal such as STUN’, and existing protocols facilitating communication with middleboxes,
such as UPnP IGD [3]. PCP as a relatively new protocol was standardized by IETF in April 2013 as
RFC 6887 [18] and is the successor to NAT Port Mapping Protocol (NAT-PMP) [3].

PCP can be deployed in several scenarios [18]:
* home networks with NAT gateways (e.g. integrated in routers),
* carrier-grade NAT,

* simple firewalls.

PCP supports both IPv4 and IPv6 address mapping and transport protocols with 16-bit port
numbers. PCP also supports protocols that do not use port numbers (such as [Psec ESP or ICMP)
for firewalls, but not NAT gateways [18].

As defined in RFC 6887, PCP can be operational only in single-homed networks. If a network is
single-homed, only one route exists to the Internet. The recently released RFC 7488 provides
support for multi-homed networks [22].

Figure 3.1 shows the typical deployment and usage of PCP in networks. The host runs a user
application that attempts to connect to the application server. The application retrieves mapping
information from the middlebox in order to establish the connection or optimize the interval of
sending keepalive messages.

The application invokes the PCP client to request mapping information from the middlebox. The
middlebox runs the PCP server, which processes the request of the PCP client and sends back
mapping information.

7 https://datatracker.ietf.org/doc/charter-ietf-pcp/

(| Network
lPCP CEtenl‘
{Applinatinn SewerJ

[User Application] [PCP Server| ‘ . :
-, [Middlebox]— ' Internet —i%

Al
N oo

8 PCP Response

Figure 3.1: Usage of PCP in networks

3.1. PCP Messages

PCP defines two message types: PCP request and PCP response.

PCP messages are sent over UDP and are not acknowledged. PCP request uses destination UDP
port 5351 and PCP response uses source UDP port 5351.

The PCP request is used by the host to request mapping information from the PCP server. The
PCP response is used by the PCP server to inform the PCP client of the state of the mapping,
usually informing the PCP client that the mapping information has been assigned to the PCP client.

PCP can be considered a request/response protocol. This point of view may not be accurate —
unlike other request/response protocols, a PCP request does not necessarily have to be followed by
a PCP response. If a PCP request sent by the PCP client was lost on the path to the PCP server, the
PCP client may retransmit the same message. The PCP client can also use the same PCP request to
renew the mapping information. The PCP server usually generates PCP responses to PCP requests
sent by PCP clients. The PCP server may also send a PCP response to inform the PCP client about
the new state of the mapping, e.g. because of middlebox reconfiguration or failure. Given the
message exchange model, RFC 6887 refers to PCP as a hint/notification protocol [18].

PCP messages contain fields with IP addresses, such as the external IP address of the host
assigned by the PCP server. IP addresses in PCP messages are always formatted as [Pv6 addresses.
IPv4 addresses are represented as [Pv4-mapped [Pv6 addresses:

::ffff:<IPv4 address>

3.1.1. PCP Request

Figure 3.2 shows the common header format for PCP requests.

bytes

Version =2 R Opcode Reserved

Requested Lifetime

PCP Client's IP Address (16 bytes)

Opcode-Specific Information

Options

Figure 3.2: PCP request message format

The PCP request contains the following fields:

Version — for PCP, this value is always set to 2. This field can be used to determine the
supported version of PCP on the PCP server, should newer versions of PCP are defined.

R — 1-bit field — 0 indicates PCP request.

Opcode — 7-bit operation code for the PCP request. In RFC 6887, the following opcodes are
defined: MAP (1), PEER (2) and ANNOUNCE (0). Opcodes are discussed in sections 3.1.3,
3.1.4 and 3.1.5, respectively.

Reserved — zero-padded bits, ignored by PCP server.

Requested Lifetime — mapping lifetime requested by PCP client. If the field is set to zero, the
PCP server deletes the mapping.

PCP Client's IP Address — IP address of the PCP client in IPv6 format. This field is used by
the PCP server to determine additional middleboxes along the path from the PCP client that
do not run the PCP server.

Opcode-Specific Information — additional fields defined by the corresponding opcode.

Options — a set of optional fields in the type-length-value format. Options can be ignored by
the PCP server. A brief overview of options is given in section 3.1.6.

3.1.2. PCP Response

The format of a PCP response message is shown in Figure 3.3.

bytes 1 2 3 4

Version =2 R Opcode Reserved Result Code

Lifetime:

Epoch Time

Reserved (12 bytes)

Opcode-Specific Response Data

Options

Figure 3.3: PCP response message format

The PCP response contains the following fields:
* Jersion — set to 2 by the PCP server.
* R - 1-bit field set to 1, indicating PCP response.
* Opcode — copied from the PCP request.
* Reserved — zero-padded bits.

* Result Code — value indicating a successfully processed PCP request (0, SUCCESS) or
processing failure (values 1-14, depending on the type of failure). The meaning of each
result code is described in RFC 6887 [18].

* Lifetime — mapping lifetime assigned by the PCP server to the PCP client.

* Epoch Time — time in seconds since the PCP server started operation. This is used by the
PCP client to determine whether the PCP server lost state (e.g. if the PCP server crashed and
rebooted). If so, the PCP client recreates its mapping information as per RFC 6887 [18].

* Reserved (12 bytes) — if the PCP request was parsed successfully, Reserved contains zero
bits. Otherwise, the field contains the last 12 bytes (96 bits) of the PCP Client's IP Address
field in the PCP request.

Opcode-specific information and options for PCP responses are covered in subsequent sections.

3.1.3. MAP Opcode

A PCP client uses a PCP MAP request in case a user application desires to host a server (for
online gaming, a web server, etc.) and listen for incoming traffic from the public network. After the
PCP client received mapping information, it is the responsibility of the application to announce its
external (public) IP address, protocol and port to a rendezvous server, as mentioned in the
introduction of this chapter, as PCP does not provide this function [18].

The format of the MAP opcode for a PCP request is shown in Figure 3.4.

10

bytes 1 2 3 4

Mapping Nonce (12 bytes)

Protocol Reserved

Internal Port External Port

External IP address (16 bytes)

Figure 3.4: Message format for MAP opcode for PCP request

The MAP opcode for PCP requests contains the following fields:

* Mapping Nonce — random value generated by the PCP client. The PCP client uses this value
to validate PCP responses [18].

* Protocol — protocol above the IP header. The protocol numbers are identical to those defined
by TANA®,

* Reserved — zero-padded bits.
» Internal Port — internal port that the user application wishes to use to establish a connection.

» External Port — external port preferred by the user application. If the application does not
require a specific external port, 0 is assigned.

» External IP address — external IP address in IPv6 format preferred by the user application. If
the application does not require a specific external IP address, all-zeros IPv6 address is

.

assigned (i.e. “: :).
The PCP response containing the MAP opcode copies all fields from the corresponding MAP

request except External Port and External IP address. The PCP server assigns the external IP
address and port according to the mapping entry created by the underlying middlebox.

3.1.4. PEER Opcode

A PCP client uses a PCP PEER request if a user application wishes to establish an outbound
connection to an application server (i.e. the application acts as a client) in the public network or in
another local network behind NAT [18].

A PCP PEER request can also be used by the PCP client to query existing mapping, e.g. in case
the middlebox created an implicit mapping without the application communicating with the PCP
server first.

The format of the PCP PEER request is shown in Figure 3.5. The message format is content-wise
almost identical to PCP MAP messages. PCP PEER messages define two additional fields:

* Remote Peer Port — port of the remote host the user application wishes to establish
connection with.

8 http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

11

* Remote Peer IP address — IP address in IPv6 format of the remote host the user application
wishes to establish connection with.

bytes 1 2 3 4

Mapping Nonce (12 bytes)

Protocol Reserved

Internal Port External Port

External IP address (16 bytes)

Remote Peer Port Reserved

Remote Peer IP address (16 bytes)

Figure 3.5: Message format for PEER opcode for PCP request

3.1.5. PCP Server Recovery with ANNOUNCE Opcode

PCP offers a mechanism for recovering mappings if the PCP server lost its state (e.g. crashed and
rebooted). This mechanism allows PCP clients to recover mappings within seconds. Otherwise, the
PCP clients would not know that the state of the PCP server was reset, until they send the next
keepalive, which may be a long time ahead depending on the keepalive interval. This would
encourage applications to request shorter keepalive intervals, which would increase network load.

Once the PCP server reboots, it resets its epoch time to zero and sends PCP ANNOUNCE
response to PCP clients to multicast address 224.0.0.1:5350 (or [££02::1]:5350 in case of
IPv6). A PCP client, having received the PCP response with invalid epoch time (set to zero),
determines that the PCP server lost its state. The PCP client then sends a PCP request with the
appropriate opcode (MAP or PEER) and include the external IP address and port assigned by the
PCP server before losing its state, reminding the server of the mapping assigned.

The PCP ANNOUNCE request can be used by the PCP client to determine whether the PCP
server is running or maintains its state (by checking the epoch time). PCP ANNOUNCE messages
do not contain any opcode-specific fields [18].

3.1.6. Options

This section briefly introduces the available options for PCP messages. A generic format for
options is shown in Figure 3.6. Option Code determines the option type, Option Length defines the
length of the option header and Option Data contains option-specific data.

12

bytes 1 2 3 4

Option Code Reserved Option Length

Option Data

Figure 3.6: Generic header for PCP options

THIRD_PARTY
This option allows the PCP client to handle PCP requests on behalf of another host (specified by

the internal IP address in the option data). It is recommended to not use this option due to security
concerns. This option is valid for MAP and PEER opcodes [18].

PREFER_FAILURE

Without this option, if the PCP client requires a specific external IP address and port to be
assigned and the PCP server cannot comply to the request, the PCP server assigns different external
IP address and port. With this option, the PCP server will not create a mapping with explicit
external IP address and port if it cannot create it and returns a PCP response indicating failure.

This option may be necessary in scenarios where the user application must explicitly specify an
external IP address or port. It is expected that, with the potentially wider deployment of PCP in
networks, this option will be deprecated in the future. This option is valid for MAP and PEER
opcodes [18].

FILTER

This option allows the PCP client to filter incoming traffic with unwanted IP addresses and ports.
To filter the traffic, the PCP client specifies the remote peer IP address and port which the
application allows to receive traffic from. All other traffic is filtered by the middlebox. The FILTER

option also allows specifying an entire subnet of remote hosts to be permitted (by using the Prefix
Length field).

The FILTER option is useful for mobile devices that have to change their connection state solely
for the purpose of rejecting unwanted traffic. Using the FILTER option prevents this and
consequently saves battery life of mobile devices. Connection states and their impact on the battery
life of mobile devices is further discussed in chapter 4.

In practice, the FILTER option can be used by applications hosting a server whose public IP
address and port are known to other hosts on the Internet. One such case may be a game server that
is published in a list of available game servers that the players (other client devices) can connect to.

Filtering unwanted traffic or restricting the traffic to specific players can be desirable.

This option is valid for the MAP opcode only [18].

3.2. PCP Request Processing by PCP Server

This section contains an overview of how the PCP server processes a PCP request. Several details
and edge cases were omitted to focus on the most important aspects of PCP message processing.

13

RFC 6887 contains detailed information about PCP message processing [18].

The basic processing steps are shown in Figure 3.7. A request may be invalid due to incorrect
version or invalid length of the message. In that case, the PCP server sends a PCP response back to
the PCP client with the result code corresponding to the type of failure. If a request is valid, the PCP
server processes the opcode-specific data and options, if any. Finally, the PCP server builds a PCP
response according to the flowchart in Figure 3.8 and sends it toward the PCP client. The processing
of MAP and PEER opcode data is shown in Figure 3.9.

Receive
PCP request

Parse PCP request

[Request is invalid] Send PCP response
(non-SUCCESS result code)

[Request is valid]

[Opcode is ANNOUNCE]

[Opcode is MAP or PEER]

Process opcode data

Y

Process options

Send PCP response
(SUCCESS)

Figure 3.7: Basic processing of a PCP request by the PCP server

14

Set R bitto 1

Y

Calculate epoch time

v

Set fields:
Lifetime
Epoch time
Result code
Version = 2
Reserved =0

[Request was invalid]

[Request was valid]

Set opcode-specific data

l

Y

Set option data

—)C Send message >

Figure 3.8: Building a PCP response from the corresponding
PCP request by the PCP server

15

Middlebox PCP server

[Lifetime is O] [Mapping already exists]
Delete , <
g - -
mapping entry

S [Mapping does not exist]
[Lifetime is not 0]

Update lifetime L [Else]
Y

of mapping entry

[Opgode is MAP and
requested lifetime is greater
than|existing lifetime]

Send PCP response
(non-SUCCESS result code)

Create new [Can create mapping entry]
mapping entry

[Cannot create mapping entry]
\f Send PCP response Send PCP response
'\\ (SUCCESS) (non-SUCCESS result code)

Figure 3.9: Processing of PCP MAP and PEER requests

Creating, updating or deleting a mapping entry is the responsibility of the underlying middlebox.
The PCP server provides the middlebox with mapping information according to its configuration. If
the middlebox created a new mapping, the PCP server receives the created mapping and sends it
back to the PCP client.

If the external IP address is 0, the PCP server orders the middlebox to allocate an external IP
address. The same applies to the external port.

If the PCP client explicitly specified an external IP address, the PCP server checks whether the
middlebox can create a mapping with such IP address. If not, the PCP server then allocates a valid
external IP address. If the PREFER FAILURE option is specified, the PCP server will not allocate a
different I[P address and instead sends back a PCP response with
CANNOT_PROVIDE EXTERNAL result code [18].

3.2.1. Learning, Modifying and Maintaining Mapping Lifetime

If a user application established connection with a remote host without negotiating a mapping
entry from the PCP server first, the PCP client can then send the PCP PEER request to learn the
mapping lifetime and the application can thus optimize the keepalive interval.

16

PCP-PEER-created mappings

Using the PCP PEER request, the PCP client can extend the mapping lifetime (i.e. maintain the
mapping). The PCP PEER request cannot be used to reduce the mapping lifetime or delete the
mapping [18]. To delete the mapping, the PCP client and the PCP server have to let the mapping
entry on the middlebox expire on its own.

To maintain the mapping, the PCP client should send PCP PEER requests regularly to the PCP
server. The interval of sending PCP requests is 1/2 to 5/8 of the lifetime (randomly chosen).
Sending PCP PEER requests to maintain the mapping is not mandatory — if the PCP client does not
send PCP PEER requests, the mapping behaves as a mapping implicitly created by the middlebox
[18].

Assuming that implicitly created mappings on middleboxes that were once maintained by the
PCP server use the same lifetime, it is sufficient for the PCP client to send keepalives to the remote
host (without sending any PCP PEER requests to the PCP server).

PCP-MAP-created mappings
Mappings created by PCP MAP requests can only have their lifetime reduced or deleted.

To maintain a MAP-created mapping, the PCP client must send MAP requests to the PCP server
in the same interval as PCP PEER requests mentioned above. Additionally, as per the requirements
of the user application, the application may have to send keepalives to the remote host (e.g. to check
for connectivity) [18].

3.3. PCP Server Discovery

PCP clients need to know the address of the PCP server in order to be able to request mapping
information. The following alternatives are suggested in RFC 6887:

* PCP clients configure the PCP server address manually,

* PCP clients receive one ore more PCP server addresses via DHCP. RFC 7291 provides
direct support for this approach [23].

* PCP clients assume that the PCP server IP address is the address of the host's default router
(default gateway).

A related RFC draft suggests sending a PCP anycast address to discover PCP servers in the
network [24].

3.4. PCP Client Implementation

RFC 6887 does not specify how the PCP client should be implemented — whether as an OS-level
service or in each user application individually.

Implementing custom modifications of the PCP client outside the scope of the PCP RFC standard
should be avoided since it is not expected that custom features could be widely deployed in PCP
clients.

Implementing the PCP client as an OS-level service requires that operating systems support the
PCP client service. For practical reasons, it is not expected that the current or older versions of

17

operating systems (desktop and mobile alike) will add support for the PCP client service. Each user
application would still have to be PCP-aware in that it would have to interact with the PCP client
service.

It is more practical to implement the PCP client per-application. The potential disadvantage is the
fact that each application may have to determine the PCP server address individually. Using the
DHCP approach mitigates this shortcoming, as it allows any application to determine the PCP
server address.

3.5. Available PCP Software

This section gives a brief overview of chosen software that implements PCP.

3.5.1. PCP Testing Tool

PCP Testing Tool’ is a software tool consisting of two components — a web application and a PCP
client.

The web application allows the user to specify a PCP message by filling in individual fields.
Once the user specified the fields and confirmed to create the message, the web application
generates a message containing XML-formatted fields of a PCP message to the PCP client. The IP
address and port of the PCP client that listens to the requests from the web application can be
configured. The web application requires Apache web server and PHP to run.

The PCP client is a PCP client implementation of PCP. If the PCP client receives a message from
the web application, the PCP client constructs a PCP request from the message to the PCP server
specified in the corresponding configuration file. The configuration file allows to specify IP
addresses in IPv6 format — if an IPv4 address needs to be specified, it must be specified as an [Pv4-
mapped [Pv6 address.

Given its web interface, this tool is user-friendly in the sense that it easily allows the user to build
a PCP message. The disadvantage of this tool may be that it does not provide a command-line
interface to build messages, which may be useful when automating the building of PCP messages
(e.g. via shell scripts).

3.5.2. PCP Client Library

The PCP client library'® contains a library of functions implementing the PCP client that can be
integrated in user applications, a lightweight command-line PCP client application and a module
that allows to build packets using the scapy'' command-line packet builder.

With the application, the user can send a PCP request to a PCP server. An example usage of this
appliction is shown below:

pcp -1 <internal host IP address>:<internal port> -s <PCP server
address> -1 3600

The -i option specifies the address of the internal host that is to be mapped to an external

9 Available at: http://sourceforge.net/projects/pcptestingsuits/
10 Available at: https://github.com/libpcp/pcp
11 Available at: http://www.secdev.org/projects/scapy/

18

address, and an internal port to be mapped to an external port. While it may seem redundant to
specify the internal IP address, the application will not work without it. This is also necessary to
specify in case the host has multiple IP addresses (multiple interfaces). The -1 option specifies the

requested mapping lifetime in seconds.

The command above generates a PCP MAP request for TCP. To specitfy a PCP PEER request, the
remote peer IP address and port have to be specified:

pcp -1 <internal host IP address>:<internal port> -s <PCP server
address> -1 3600 -p <remote peer IP address>:<remote peer port>

The -u option creates a mapping for UDP. An explicit IP address and port can be specified by the
-e option:

pcp —-i <internal host IP address>:<internal port> -s <PCP server

address> -1 <lifetime> -e <external IP address>:<external port>

3.6. Comparison of PCP and Middlebox Traversal Methods

Compared to similar protocols or middlebox-traversal methods, PCP has the following
advantages:

* PCP can optimize keepalive traffic,
* PCP can resolve NAT traversal issues and eliminate the need to deploy ALGs [18],
* PCP has a simple protocol design.
PCP imposes the following requirements on the network, which may be seen as disadvantages:
* cach user application must implement a PCP client,
* each middlebox that is supposed to be PCP-aware must run a PCP server.

While UPnP-IGD allows end users to configure mapping information, even programatically, PCP
transmits fewer messages (therefore is more bandwidth-efficient) and does not need to be
configured by users [3].

While the original PCP RFC [18] states that PCP can be used for simple firewalls, a relatively
recent RFC draft has been published that adds support for new PCP message types that support

advanced firewall functionality in managed networks, such as software defined networks (SDN)
[25].

19

4. Mobile Networks

Mobile networks allow end users to connect to the Internet and communicate with each other in a
wireless manner using mobile devices. Over the decades, several generations of mobile networks
have been developed and deployed to cope with the increasing demand of users staying connected
while moving.

The first generation of networks (developed in the 1980s) allowed users to establish phone calls.
The data transmission in 1G networks was analog, unlike later generations, which used digital data
transmission.

2G networks originated in the later 1980s, of which Global System for Mobile Communications
(GSM) became the most popular and widespread 2G technology. Despite newer mobile network
technologies, GSM is still widely used in the present time due to its widespread coverage and
network stability. GSM uses digital data transmission to allows users to establish phone calls and
send SMS messages. General Packet Radio Service (GPRS) is a 2G technology deployed over GSM
that enables packet-switched transmission of data. Enhanced Data rates for GSM Evolution (EDGE)
1s another popular 2G technology that improves transmission data rate compared to GPRS.

3G networks, of which Universal Mobile Telecommunications System (UMTS) is the most
widely adopted technology, allow higher data rates than 2G networks. UMTS employs the
Wideband Code Division Multiple Access (WCDMA) radio access technology. High Speed Packet
Access (HSPA) technologies improve the data rate even further to a few tens of Mbit/s [26].

Long-Term Evolution (LTE) is a relatively new mobile technology that further improves the
transmission data rate, reduces round-trip time and reduces cost for provisioning networks [26].

The rest of this chapter focuses on 3G networks, particularly on the WCDMA access technology
used in UMTS. In WCDMA networks, mobile devices are in different connection states depending
on the amount of data to be transmitted. Transitioning to a different connection state causes a
considerable number of signaling messages to be generated. Moreover, connection states in which
mobile devices transmit data reduce their battery life. WCDMA thus proves to be a source of
continuous research on how to improve the efficiency of the network and preserve battery life of
mobile devices connected to the network. Connection states are discussed in more detail in section
4.2.

4.1. 3G Networks

Figure 4.1 shows the architecture of 3G networks'?. Mobile devices, known also as user
equipments (UE), connect to the Internet through the radio access network, UTRAN. A UE
communicates wirelessly with a base station, Node B. Multiple Node B stations are connected to
and managed by a single Radio Network Controller (RNC).

RNCs are connected to the core network, which is responsible for forwarding traffic to the
desired destinations and for managing subscribers. Mobile Switching Center (MSC) manages

12 More information at: http://www.radio-electronics.com/info/cellulartelecomms/umts/umts-wcdma-network-
architecture.php

20

circuit-switched connections, such as phone calls. Gateway MSC (GMSC) acts as a public interface
between the network core and a telephone network (Public Switched Telephone Network, PSTN).

Serving GPRS Support Node (SGSN) is responsible for mobility management, session
management (establishing and managing data sessions known as PCP contexts) and billing.

Gateway GPRS Support Node (GGSN) acts as an interface between the core network and the
external packet-switched networks (packet data networks, PDN). From the perspective of the
Internet, GGSN acts as an IP router. For traffic directed toward a UE, GGSN determines the
corresponding SGSN that currently manages the UE.

Other nodes in the core network include Home Location Register (HLR), which is a database
containing information about each subscriber; VLR (Visitor Location Register), which is a subset of
HLR and is used in areas the UE is visiting, and EIR (Equipment Identity Register), which checks
whether a UE is allowed to access the network.

SGSN GGSN ——— [PDN (Internet) L,
User Equipment (UE) Node B 1 e —~ '
” v\
¢ . HLR
e msc [|

GMSC VLR

-PSTN)
Figure 4.1: Architecture of 3G networks

In the radio network, each Node B covers a certain area, known as a cell, with its wireless signal.
When a UE is moving from one cell to another, handover is performed, which transfers control of
the UE from one Node B to another. To track the location of a UE within a cell, Node B establishes
a communication with the UE, also known as paging.

4.2. Radio Resource Control

Radio Resource Control (RRC) is a protocol in WCDMA networks that manages signaling
between a mobile device and the radio access network, UTRAN [27] [5]. RRC, among the
numerous functions it performs [27], provides establishment, maintenance and release of an RRC
connection and its associated radio resources between a mobile device and the radio access
network, and also paging. RRC states also apply to HSPA technologies [28].

21

4.2.1. RRC States

Figure 4.2 shows the possible RRC states and transitions that can occur for a mobile device [27]
[5] [29]. When the device is not connected to the network, it is in the RRC Idle mode. Once the
device wishes to establish a connection with a remote host, the RRC connection between the device
and the network is established first, and the device is now in the RRC Connected mode. Table 4.1
shows the average power consumption of a device in each state.

CELL_DCH (Dedicated Channel) state is used when the device transmits data over the network,
unless the amount of data is very small. For the CELL DCH state, the network allocates a dedicated
data channel for the mobile device [5]. The average power consumption of a device in this state is
the highest, as shown in Table 4.1.

In CELL_FACH (Forward Access Channel) state, the device shares a channel with other
devices. This state is used if there is a small amount of data to be transmitted by the device. Source
[30] states that a data rate low enough to be transmitted in the CELL_FACH state is up to 64 kbit/s
for downlink transmissions and up to 8-16 kbit/s for uplink transmissions, although these values are
dependent on the implementation of the RNC. If the data rate (traffic volume) exceeds a defined
threshold, the devices transitions to the CELL DCH state [31].

In CELL_PCH (Paging Channel) state, the device is not capable of sending or receiving
packets. This state is used by the network for paging. If a packet is sent towards the device, the
device enters the CELL_FACH or CELL_DCH state. This state consumes very little battery power
compared to the CELL FACH or CELL DCH states. Not all networks currently use the
CELL _PCH state [5] [30].

URA_PCH (UTRAN Registration Area Paging Channel) state, similar to the CELL PCH state,
does not allow data to be transmitted. URA_PCH is beneficial in cases where the device is moving
fast and changing cells frequently as a result'*'* [29]. URA_PCH has approximately the same power
consumption as CELL_PCH. Given that the URA PCH state is not known to be implemented in
mobile networks [5] [30] and it can be considered equivalent to CELL PCH in terms of power
consumption and inactivity timers [30], this state is not further referenced in this document.

In RRC Idle mode, the device does not have an RRC connection, but the network can still
communicate with the device via paging. The power consumption is comparable to that of
CELL PCH and URA_ PCH states [5].

13 More information at: http://www.telecomsource.net/showthread.php?2428-Difference-between-URA PCH-and-
CELL PCH

14 More information at: http://www.telecomsource.net/showthread.php?1737-What%20is%20URA%20and
%20URA_PCH%?20state?

22

RRC Connected mode

CELL_DCH

7

Traffic volume
threshold exceeded J

\
CELL_FACH
o
Activity T2
detected
Y
T2
CELL_PCH
T3
\
\ \ | / /

Establish RRC Connection Release RRC Connection

AN y v ¥

RRC Idle mode

Figure 4.2: Radio Resource Control (RRC) states

Table 4.1: Average current (power consumption) of a mobile device in RRC states [30] [5] [29]

RRC State Power consumption
CELL PCH, URA PCH approx. 5 mA
CELL FACH 100 — 150 mA
CELL DCH 200 — 400 mA

4.2.2. RRC Inactivity Timers

If the device persists in an RRC state for a certain amount of time without sending any data, it
descends to a lower-power RRC state. Each such transition is associated with an inactivity timer.
These inactivity timers, as shown in Figure 4.2, can be referred to as T1, T2 and T3 [30] [5].

T1 timer is used in the CELL._DCH state. If the connection is idle for T1 seconds, or the data rate
1s low enough, the device transitions to CELL FACH state. The data rate threshold is dependent on
the concrete implementation of the RNC in the network. If there is traffic exceeding the threshold
data rate, the T1 timer is reset and the device remains in the CELL. DCH state. Typical values for
the T1 timer range up to 5 seconds [30] [5].

T2 timer is used in the CELL FACH state. If no packets are sent over T2 seconds, the device
transitions to the CELL PCH state. In case the network does not support the CELL_PCH state, the
device releases its RRC resources and enters the RRC Idle mode. As with T1, typical values for T2

23

timer range up to 5 seconds [30].

If no packets are sent and the device stays in the CELL PCH state for T3 seconds, the device
transitions from the CELL PCH state to RRC Idle mode and releases its RRC resources. T3 value
ranges typically from a few minutes to a few tens of minutes [30] [5].

4.2.3. RRC State Transitions with Keepalives

If a device sends a single keepalive message toward a destination host, there are a few possible
state transitions to consider, which are illustrated in the decision tree in Figure 4.3. Transitioning to
CELL FACH or CELL DCH depends on the network configuration. Is it assumed that, before
sending a keepalive, the device is in /dle mode or CELL_PCH state and that no other data packets
are sent over the network at that time.

Transition to

CELL_FACH
CELL_PCH - CELL_FACH - CELL_PCH - ...
Network supports
CELL_PCH ol
Transition to
CELL_DCH
CELL_PCH - CELL_DCH - CELL_FACH - CELL_PCH - ...
[:l Transition to
CELL_FACH
—»[—> Idle ~ CELL_FACH - Idle - ...
Network does not
support CELL_PCH

a [
"—:l Transition to

CELL_DCH

Idle - CELL_DCH - CELL_FACH - Idle - ...

Figure 4.3: Possible RRC state transitions when sending a single keepalive

If a user application sends a keepalive that should be acknowledged (such as a TCP keepalive, or
an application keepalive over UDP), then the device may have to return to a higher RRC state or
repeat the cycle of state transitions again, depending on the round-trip time of that keepalive. In
case the round-trip time is greater than the timer for the active RRC state the device is currently in
(CELL DCH or CELL FACH), the device transitions to a lower state and, upon receiving the
acknowledgment, back to the higher state. This increases the power consumption of the device and
generates more signaling traffic due to more state transitions.

4.3. Conclusions

With an increasing amount of smartphones connected to mobile networks, the amount of
signaling traffic increases significantly, especially considering the widespread usage of always-on
applications such as social networks or instant messaging. One cause of the increased signaling
overhead is the frequent transmission of keepalives, which generates signaling messages due to
RRC state transitions of mobile devices. The increased signaling overhead imposes considerably

24

higher processing requirements on mobile network elements and may eventually cause slower data
rate or network congestion.

Due to sending keepalives frequently, mobile devices remain longer in the active RRC states
(CELL_DCH and CELL_FACH), which contributes to higher battery power consumption of mobile
devices.

A new concept in the field of computer networks called software defined networking (SDN) has a
great potential of improving the effectiveness and scalability of computer networks, including
mobile networks. SDN is discussed in the next chapter.

25

5. Software Defined Networking

Software defined networking (SDN) is a relatively new concept in the field of computer
networks. SDN emerged from the requirements of enterprises and end users that today's traditional
networks cannot cope with [32] [33].

The main idea of SDN is to separate the control and the data planes of network nodes. The
control plane is logically centralized in an element called the controller and the data plane remains
in the network nodes, which are now called forwarders. Forwarders usually perform packet
forwarding and basic packet processing, such as overwriting fields in packet headers [34].

Figure 5.1 shows the basic architecture of SDN networks [34]. The controller manages
forwarders via a standard communication interface, such as OpenFlow" or NETCONF [35]. This is
also called the southbound interface. Network applications are software programs that define the
network behavior (hence the term “software defined networking”), ranging from very basic
programs, such as packet switching, to more advanced applications, such as a firewall. The
controller accepts requests from the network applications and translates them to low-level
commands that the forwarders are able to process. Each network application communicates with the
controller via a separate northbound interface.

P
o
s
o
=
=
QD
=]
=2
=
2
o
=]
P
g
o
=
=
Q
=]
=2
=
2
Qo
=]
>
©
=3
5
+})
=
o
=
9
Q
=
(1]

! I
| |
! Controller Control Plane |

|
' |
|

Southbound interface

Forwarder

Data Plane

Forwarder Forwarder

Figure 5.1: SDN architecture overview

In general, SDN networks have the following advantages over traditional networks [32] [33]:

15 More information at: https://www.opennetworking.org/sdn-resources/openflow/57-sdn-resources/onf-
specifications/openflow?layout=blog

26

» ease of adding new or modifying existing network applications,
* improved automation and management of network devices,

* given the standard communication protocol between the controller and the forwarders,
network devices from multiple vendors can be deployed in networks,

* improvement of the user experience due to the ability of SDN networks to easily adapt to the
needs of end users.

Migration from a traditional network to a pure SDN network may be costly. Is it not uncommon
to for hybrid SDN networks to exist that contain a mix of traditional network elements, forwarders
and one or more controllers [32].

5.1. OpenFlow

OpenFlow is a popular standard for communication between a controller and forwarders.
Forwarders are referred to as OpenFlow switches. OpenFlow protocol and switch are defined by the
OpenFlow switch specification [36].

At the time of writing this thesis, the most recent version of the OpenFlow specification is 1.5.1
[37]. Given that the solution described in this thesis uses SDN controller and forwarder software
compatible with OpenFlow 1.3.0, this section discusses the OpenFlow specification 1.3.0 [36]. This
section covers only the components of an OpenFlow switch used in the thesis.

5.1.1. OpenFlow Switch Overview

Figure 5.2 shows the basics of an OpenFlow switch. The switch communicates with the controller
via the OpenFlow protocol. When a packet is received on an ingress port, it is processed through a
set of flow tables. The packet processing is also called the pipeline. Each flow table contains a set of
rules called flow entries.

Controller

IOpenFlow protocol

OpenFlow switch

Packet in

A

Packet out
> Flow table 0 Flow table 1 Flow table n >
{ Switch pipeline

Figure 5.2: Overview of an OpenFlow switch (forwarder)

Datapath refers to a part of the OpenFlow switch that comprises the ports, flow tables and the
pipeline. Control channel refers to the communication interface between the switch and the
controller. Each datapath is defined by a unique 64-bit datapath ID. The lower 48 bits define the

27

MAC address of the switch and the upper 16 bits are implementation-specific [36].

5.1.2. Communication with Controller

The communication of the OpenFlow switch and the controller is provided by the control
channel. Using the control channel, the controller and the switch exchange control messages or
forward data packets to and from the controller.

The message delivery between the controller and the switch is guaranteed. There is no need for a
network application to explicitly check and acknowledge that a message sent from the controller to
the switch was received successfully.

Features message is sent by the controller during the establishment of the control channel to
query the switch about its capabilities. Modify-State messages are sent by the controller to add,
modify or remove flow entries or to modify the properties of ports. Packet-Out messages are used
by the controller to send packets through the switch to the destination. Packet-In messages are sent
by the switch to forward packets to the controller (via the reserved CONTROLLER port).

If a controller installs a flow entry on a switch with the OFPFF SEND FLOW REM flag set and the
flow entry expires or is deleted by the controller, the switch informs the controller that the flow
entry has been removed by sending a Flow-Removed message to the controller.

5.1.3. Flow Entries

Each flow entry contains components shown in Figure 5.3.

Match fields Priority Counters Instructions Timeouts Cookie

Figure 5.3: Flow entry structure in an OpenFlow switch

Match fields determine whether a packet matches the flow entry. If so, the instructions for this
flow entry are executed. Match fields may contain the following [36]:

* ingress port ID,

* header fields (e.g. EtherType from the Ethernet frame header, 7ime To Live from the IPv4
header),

* metadata specified by a previous table.

A match for a flow entry must contain all its associated prerequisites. For example, to match a
UDP datagram with a specified destination port, the match must also contain the corresponding
lower-layer protocols — in this case, EtherType field for IPv4 (0x0800) and IPv4 Protocol field for
UDP (0x11). If the prerequisites are not specified, the switch sends an error message to the
controller with OFPET BAD MATCH type and OFPBMC_ BAD PREREQ flags set. A flow entry that
matches any packet and has priority equal to O is called the table-miss flow entry.

Priority defines the precedence of a flow entry. If a packet matches multiple flow entries, only the
flow entry with the highest priority is considered and other entries are discarded. If there are

28

multiple flow entries with the same priority, the behavior of the switch is undefined (not even
OpenFlow 1.5.1 defines this behavior). It is assumed that this behavior is defined by a concrete
implementation of the switch software. The controller may prevent adding flow entries with the
same priority and intersecting matches by setting the OFPFF CHECK OVERLAP flag in Modify-State
messages.

Counters are incremented every time a packet matches the flow entry. Examples of per-flow-
entry counters include the number received packets or received bytes. Other types of counters are
defined e.g. per flow table or per port.

If a packet matches the flow entry, a set of instructions is executed. Instructions are discussed in
section 5.1.4.

Timeouts are optional and are used by the controller to set the flow entry to expire after a
specified amount of time in seconds. If hard timeout is set, the flow entry expires after the
specified number of seconds since its addition to the switch. If idle timeout is set, the flow
entry expires after the specified number of seconds if no packet matched this flow entry for
idle timeout seconds.

Coofkie is a value that the controller associates with the flow entry. Cookie can be used by the

controller to filter messages dealing with flow modification, flow deletion or flow statistics.

5.1.4. Instructions
Generally speaking, instructions modify the packet, the set of actions or the pipeline processing.
Commonly used instructions are the following:

* Write-Action — adds the specified actions into the action set.

* Apply-Actions — applies the action set to the packet immediately, without modifying the
action list. This can be used to execute the action set multiple times.

* Clear-Actions — clears the action set.
* Goto-Table — causes the pipeline to jump to the flow table specified by its ID. The flow table

ID must be greater than the current flow table ID.

Actions

The action set is a list of actions applied to the packet. The action set can be modified by
instructions, such as those mentioned above. Some commonly used actions include:

* Set-field — modify a header field. While this action is not specified as mandatory in the
OpenFlow switch specification, its inclusion in the implementations of OpenFlow switches
greatly improves the usefulness of the switches. The set-field action allows to overwrite IP
addresses and ports, thus allowing to implement a simple NAT.

* Qutput — send the packet out the specified port.

5.1.5. Ports

OpenFlow defines several types of switch ports, including the following:

29

* Physical ports — these ports correspond to the physical interfaces on the switch.
* Logical ports — these ports can be used to represent e.g. VLAN ports or loopback interfaces.

* Reserved ports — these ports have a special meaning in the context of packet forwarding.
CONTROLLER port represents the port (the control channel) to the controller and can be used
to forward packets to the controller. TABLE port can be used by controller when the
controller sends a packet to a switch and desires to process the packet through the flow
tables in the switch. IN PORT can be used to send a packet out the ingress port on a switch.

5.2. SDN Software

This section briefly reviews existing software for SDN controllers and forwarders.

5.2.1. Forwarders

CPqD OFSoftswitch
CPgD OFSoftswitch'® is a forwarder implementation compatible with OpenFlow 1.3. It consists
of the following main components:

* ofdatapath —the OpenFlow switch implementation,
* ofprotocol — the control channel between the switch and a controller,

* dpctl —acommand-line tool to query information about the switch or modify the switch.

OFSoftswitch has a well-documented source code and supports timeouts and modifying packet
headers (i.e. the Set-Field action). OF SoftSwitch resolves multiple matching flow entries with the
same priority by considering only the flow entry added as the first'”"'®, When installing a Set-Field
action on a flow entry, OFSoftSwitch automatically recomputes the checksums of relevant headers
(TCP/UDP, IP, Ethernet).

5.2.2. OpenFlow Controller Software

Ryu

Ryu is a framework to create a custom SDN controller. Ryu also allows to write custom network
applications over the controller. Ryu is written in Python language — being a high-level language, it
allows for rapid prototyping and easy writing of programs.

Ryu is provided with a well-documented API". If the documentation is missing information or it
is unclear how to use certain classes or functions, examining the source code is another option as it
is likewise well-structured and documented. Ryu supports OpenFlow 1.0, 1.2 and 1.3, and also
NETCONF and OF-Config 1.1.

Despite Ryu being a framework and not a controller per se, the available documentation and the

16 Available at: https://github.com/CPqD/ofsoftswitch13

17 https://github.com/CPgD/ofsoftswitch13/blob/2836522¢c1fdd2d5a0b759935c8b914abf4 1af441/udatapath/flow_tabl
e.h#1.43

18 https://github.com/CPgD/ofsoftswitch13/blob/c532¢3167523564d4ea919754628900a0¢96000f/udatapath/flow_tabl
e.c#L.107

19 More information at: https://ryu.readthedocs.org/en/latest/

30

ease of writing a controller and network applications compensate for the minor inconvenience of
not being provided with a proper controller.

31

6. Analysis Summary

This chapter reviews the topics described in the analysis and discusses existing issues with
middleboxes, keepalive traffic, SDN and PCP.

Figure 6.1 shows the typical deployment of PCP in traditional networks.

o —
e —

; 4
PCP Chenl‘ /

;

= T
£ N\
/ \
PCP CI

ienl-‘ \
/ | Access Network]

I /
b /
: \'--..‘___ _,//\
PCP Client \\
— b
~

Figure 6.1: PCP Deployment in Traditional Networks

Core Network

Internet

i

L

e = —

Hosts with PCP clients are connected through an access network to the core network containing a
middlebox on its edge to an external network. The middlebox runs a PCP server to process requests
from PCP clients.

In traditional networks without PCP, user applications have to utilize other protocols or methods
to traverse the middleboxes. Software defined networking (SDN) allows to centralize the control of
the network and define the network behavior programmatically. Beside other advantages, SDN
increases the flexibility and vendor device compatibility in the networks. SDN as a concept is still
in its early stages and is not widely deployed in networks.

In SDN networks, separating the control and the data plane of a middlebox fosters greater
scalability and flexibility of the network. For example, instead of a single middlebox in traditional
networks (such as a carrier-grade NAT), multiple forwarders with only the middlebox data plane
can be installed, which reduces network load.

Middleboxes usually set table entries to expire over time if they are idle. In SDN networks,
OpenFlow switches support flow entry expiration (by setting the idle timeout field) and
notifying the controller that a flow entry has expired (by enabling the OFPFF SEND FLOW REM
flag). Without these functions on the forwarders, it would not be possible to separate the control and
data plane of a middlebox. In such case, if the middlebox were to be installed in an SDN network, it
would have to be provided with a communication interface with the SDN controller, such as the
aforementioned OpenFlow standard.

Keepalive traffic sent by user applications increases network load. Mobile networks require a
substantial amount of signaling traffic for each packet sent, therefore amplifying the network load

32

and reducing the battery life on mobile devices.

Compared to traditional networks, implementing PCP over SDN has the following advantages:
* Middleboxes do not need to run a PCP server, thereby reducing their computation overhead.

* The lack of the PCP server on middleboxes increases vendor compatibility and avoids the

need to upgrade the middleboxes or purchase new ones to support PCP server functionality.

« If multiple, separate middleboxes are placed in the network, such as a NAT gateway and a
firewall, mapping lifetime does not have to be determined from each middlebox
individually, but rather from one central point — the SDN controller.

* Middleboxes remain transparent to the client, because the PCP server is installed on the
controller rather than on the middleboxes.

NAT gateways mitigate insufficient IPv4 address space. It is expected that IPv4 and IPv6 will
coexist for several years. Even though NAT gateways may be redundant in pure IPv6 deployments,
firewalls will still exist in core networks. The role of PCP is therefore still valid for pure IPv6
deployments.

33

7. Specification

This chapter specifies goals of the diploma thesis and requirements for the solution.

7.1. Goals

This diploma thesis aims to fulfill the following goals:
* implement PCP protocol over SDN networks,

» allow end-user applications to receive address and port mapping information directly from
NAT gateways in order to be able to facilitate communication with nodes in other networks
behind NAT,

* reduce the amount of keepalives sent by the end-user applications to the network in order to

reduce network load and prolong battery life of mobile devices.

To verify the goals, the following will be performed:

* Using PCP, verify that a user application on a host behind NAT successfully establishes

communication with another host in a public network.

* Quantify the amount of battery power saved in WCDMA networks when reducing keepalive
traffic with PCP.

* Quantify the reduction of signaling messages in WCDMA networks when reducing
keepalive traffic with PCP.

7.2. Requirements
The implementation of PCP must support at least the following components from the PCP RFC:

* PCP client requesting mapping information from the PCP server,
* PCP client attempting to explicitly set mapping information on the PCP server,
* PCP server processing PCP requests and sending PCP responses back to the PCP client.

The implementation of the PCP server will not support the following components from the PCP
RFC:

* recovery of PCP server (e.g. after a reboot),
» processing of options in PCP messages by the PCP server.

In order to verify PCP-supported NAT traversal by end-user applications and the reduction of
keepalives, NAT gateway functionality will be implemented in the SDN network. Firewall will not
be implemented, because there are no expected differences in results between a NAT gateway and a
firewall.

The NAT gateway should support at least the following:

e [Pv4-to-IPv4 address translation,

34

* dynamic IP address and transport protocol port translation (NAPT),
* UDP and TCP as transport protocols.

The access network used to evaluate the signaling traffic reduction and battery life extension is
WCDMA.

7.2.1. Port Control Protocol

Scalability

In networks with a very large number of connected hosts, issues with scalability in the core
network may occur in conjunction with PCP. Considering that each application implementing the
PCP client requests a mapping for each connection to the middlebox (which is also called per-flow
mapping), a very high number of PCP messages may be sent to the network. PCP scalability
concerns will not be addressed in this diploma thesis.

Security

Security of PCP is not resolved and is currently under discussion [20] [18]. An RFC draft exists
that specifies PCP authentication mechanism [38]. Security of PCP will not be addressed in this
diploma thesis.

35

8. Design

This chapter describes the design of the solution. The solution comprises a network application
implemented in an SDN core network.

8.1. Architecture

Figure 8.1 shows the architecture of the network. Generally speaking, there is no dedicated
middlebox in the proposed design. The control plane of a middlebox resides in the controller as a
network application, and the data plane of a middlebox resides in a forwarder. In case of NAT
gateway functionality in the network, the control and data plane is split to the NAT control plane
and the NAT forwarder, respectively.

While the architecture could be generalized to any middlebox, including a firewall, other
middleboxes may have their own specifics that would have to be integrated into the architecture.

I

Core Network I

|
|
|

[PCP Server] |L [Handler]

L ~ Controller

i : ey —
PPNt fj \‘\ i NAT Data Plane | = .
S j ._
u—‘. Access Network |Edge Forwarder|-—- i : | External
: | . Network ;

B e e J

\
L FrRsesE sy RoASERE S —== i

Figure 8.1: Architecture of the network

The architecture assumes that only one NAT forwarder is installed in the network. Therefore,
only one NAT table is maintained in the NAT control plane and there is no need to use unique
identifiers for each pair of a NAT forwarder and a NAT table.

The network application, comprising the PCP server and the NAT control plane, is integrated into
the controller. The communication between the controller and the network application is restricted
to an application programming interface (API) for better source code manageability.

The architecture is not concerned with IP routing to the external network and with packet
forwarding from the core network to hosts through the access network. These network features are
redundant for the evaluation of the solution and are therefore omitted from the architecture.

The components of the architecture are introduced in section 8.1.1 and some of them are further
described in subsequent sections. To avoid ambiguity of the terms “controller” and “PCP server”,
the term “controller” will be used when referring to the SDN elements — forwarders and controllers
— and the term “PCP server” when referring to the PCP elements — PCP client and PCP server.

OpenFlow is used as the standard to implement PCP over SDN. OpenFlow is widely supported

36

by vendors. Existing, freely available OpenFlow-compliant software for controllers and forwarders
will be used (as described in section 5.2).

8.1.1. Components

PCP Client

A host located behind NAT runs user applications that try to establish communication with
another host in an external network. Applications use the PCP client to receive or explicitly request
mapping information from the PCP server.

Edge Forwarder

The edge forwarder is an OpenFlow switch that resides on the edge of the core network and the
access network. The edge forwarder:

» forwards PCP messages between the PCP client and the PCP server,

* forwards other packets, according the configuration set by the controller, toward the external
network through the NAT forwarder.

Controller
The SDN controller:

* manages forwarders (e.g. by adding, modifying or removing flow entries),
* runs network applications, including the PCP server and the NAT control plane.
PCP Server
The PCP server:
* processes PCP requests sent by the PCP client,
* instructs the NAT control plane to create a mapping for the PCP client,
* generates PCP responses to the PCP client.

NAT Control Plane

The NAT control plane contains the control logic of the NAT gateway. To better manage the
complexity of the design, the NAT control plane is split into two subcomponents: NAT handler and
NAT table.

NAT handler:
* processes requests from the PCP server to create new NAT table entries,
* removes NAT table entries whose lifetime expired on the NAT forwarder,

* instructs the controller to add or remove flow entries on the NAT forwarder corresponding to
the NAT table entries.

NAT table stores NAT table entries. NAT table lets the NAT handler determine the available
external IP addresses and ports that can be assigned to the applications. Each NAT table entry
contains fields shown in Figure 8.2. IP address family can be IPv4 or IPv6. As per the requirements

37

specification (in chapter 7), only IPv4 address family is currently supported. Protocol refers to the
protocol above the IP header — as per the specification, only TCP and UDP are currently supported.

| IP address family | Protocol | Internal IP address | Internal port | External IP address | External port | Mapping lifetime |

Figure 8.2: NAT table entry fields

NAT table entries are uniquely identified by two pairs — source IP address and source port. Each
NAT table entry is added as a flow entry to the NAT forwarder.

NAT table also defines a pool of internal and external IP addresses and ports to be involved in
translation.

NAT Forwarder

The NAT forwarder is an OpenFlow switch containing flow entries that perform NAT, i.e. rewrite
IP addresses and transport protocol ports in incoming packets. These flow entries are managed by
the NAT control plane using the NAT table. The NAT forwarder resides on the edge of the core
network and the external network.

8.1.2. Network Application Components

Figure 8.3 shows the components of the network application in more detail. NAT installer is a
part of the NAT handler that manages flow entries on the NAT forwarder. PCP message processor
parses received PCP requests from the PCP client and builds PCP responses that the PCP server
then sends to the PCP client. PCP installer installs flow entries on the edge forwarder that forward
PCP messages.

Network application entry point, as its name suggests, is the main entry point for the application.
This component receives PCP messages forwarded by the edge forwarder and control messages
between the forwarders and the controller (Packet-In messages). One such type of control messages
is the OpenFlow Features message, which are received when the presence of each forwarder is
detected by the controller.

NAT table NAT installer

NAT handler

PCP message
processor

PCP installer

PCP server

Network application
entry point

Figure 8.3: Network application components

38

8.2. PCP Client Mapping Request — Processing

Figure 8.4 describes the process of the PCP client determining its external IP address and port. To
simplify the description of the process, it is assumed that the PCP client already knows the IP
address of the PCP server. When the controller receives the PCP request, is passes the request to the
PCP server.

€
% Send PCP request
o
O
[
Y [Packet is

g PCP request] Forward PCP request Forward PCP response
§ to controller (PCP server) to PCP client
S [Packet is not A
° PCP request]
>
g Forward packet

to the network
g Y
e}
: Parse PCP request Build PCP response
g A
[}
c
<
o
5 Y
§ Add NAT table entry »| Install NAT flow entries
'_
<
P4

Figure 8.4: PCP request processing by the network application

Updating and uninstalling flow entries is handled similarly — instead of adding a new NAT table
entry and installing new NAT flow entries, the existing ones are updated or removed. Processing the
PCP request, including parsing the request and building the response closely follow the processes
described and depicted in section 3.2.

8.3. Edge Forwarder

Flow entries on the edge forwarder, shown in Figure 8.5, detect PCP request and PCP response
messages, respectively. in_port matches ingress ports, pcp_server _address is the IP address of the
PCP server that the PCP client uses to send PCP requests, and port 5351 is the UDP port for PCP
communication assigned by IANA®.

The Packet Forwarding flow table is an abstraction that denotes additional packet processing
(such as switching or routing). This allows the edge forwarder to be integrated to an existing SDN

network.

When forwarding the PCP response, the send to access network action does not specify which

20 http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

39

access port is used as the egress port. This is implementation-dependent — it can be the same port as
the port on which the PCP request was received, or it could be a different port in case the network
implements additional network mechanisms such as load balancing.

Controller

lcontroller port

LT TS ~o access port 1 L (TR
7 N
/ AN PCP Message Forwarding

/ \

! 2 . .
,' \W‘ Match fields Action
I Access Network | Packet
\ / PCP Request send to controller [... —> :

\ , Forwarding
\

AN //_access portn PCP Response | send to access network

AN ,/\Q
S~ -7 no match go to the next table

PCP Request: in_port=<access ports>, dest_ip=pcp_server_address,
protocol=UDP, dest_port=5351

PCP Response: in_port=<controller port>, src_ip=pcp_server_address,
protocol=UDP, src_port=5351

Figure 8.5: Edge forwarder flow entries

8.4. NAT Forwarder

NAT forwarder comprises the data plane of a NAT gateway. A detailed structure of the NAT

forwarder is shown in Figure 8.6.

The first flow table determines whether the port is an external port. If so, the packet is subject to
translation (flow table 3) — its destination IP address and port is translated to the corresponding
internal IP address and port. For non-external ports (i.e. ports within the core network), the
translation is reversed (flow table 2) — source IP address and port is translated to the corresponding
external IP address and port. As on the edge forwarder, the Packet Forwarding table is an abstract
flow table that handles additional packet processing.

To ensure that an idle connection is closed, each flow entry has a idle timeout timer initially
set to the mapping lifetime specified in the corresponding NAT table entry. If a flow entry expires,
the NAT forwarder sends the Flow-Removed message to the controller so that the NAT control plane
can remove the NAT table entry. This table entry can thus be reused later for another connection.

The mapping lifetime from the corresponding NAT table entry is directly tied to idle timeout
timeout on the flow entries. This way, the NAT entries on the forwarder, including their timeout
values, are fully under the control of the PCP server.

40

NAT table

Address family Protocol | Internal IP | Internal port | External IP |Externai port | Mapping lifetime

| Controller |

controller port

"

NAT Forwarder

Table 1: Port Matching

Ingress port Action

external port 1 go to Table 3 Table 2:

translation

external portn | goto Table 3

no match go to Table 2

Table 3:

> Internal - external > External — internal

translation

Forwarding

. external port 1

J
external port 2 (
—_ - @
Packet L)

external port n H\M /—/

VS

[Internet

Table 2: Internal —+ external translation

Table 3: External — internal translation

Matching fields Actions Idle timeout Matching fields Actions Idfe timeout
set IP and port to external; Mapping set IP and port to internal; Mapping
(E.pretovel purt go to Packet Forwarding lifetime I pretocol, port go to Packet Forwarding lifetime
no match go to Packet Forwarding [- no match ‘ go to Packet Forwarding -

Figure 8.6: NAT forwarder flow tables and entries

41

' e “\

)
/

9. Implementation

This chapter describes the implementation of the solution introduced in previous chapters. The
chapter focuses only on the more important aspects of the implementation. The complete
documentation for each module, class and method implemented in the software is embedded in the
source code.

9.1. Implementation Environment

The following software is used for the implementation:
« controller: ryu framework?',
 forwarder: ofsoftswitch 1.3%,
* PCP client library®,
* nmap command suite*, of which the nping command is used to test TCP/UDP
communication between hosts.

The network application is implemented over the ryu framework in Python language and
developed in Eclipse IDE* with PyDev*® add-on.

In order to verify the functions of the network application, a test topology is created as shown in
Figure 9.1. The test topology is created and run on a virtual machine with Ubuntu Server, 14.04.1,
64-bit. The virtual machine runs on VirtualBox*'. In the virtual machine, Host 1 and Host 2 are
virtual hosts created by the ip-netns® command.

Virtual Machine

172.16.0.1/24

| |
| |
| |
| |
| |
| |
| |
| PCP Server NAT Control Plane !
| |
| |
| Controller |
| |
I |PCP Client :
| |
| r__] |
| Host 1 | | Forwarder | Host 2 !
| |
| |
| 172.16.0.100/24 200.0.0.200/24 |
| |

Figure 9.1: Test topology for verification

21 Available at: https://github.com/osrg/ryu

22 Available at: https://github.com/CPqgD/ofsoftswitch13

23 Available at: https://github.com/libpcp/pep

24 Available at: https://nmap.org/

25 More information at: https://eclipse.org/

26 More information at: http://pydev.org/

27 More information at: https://www.virtualbox.org/

28 More information at: http://man7.org/linux/man-pages/man8/ip-netns.8.html

42

To simplify the installation of the software required to create, run and test the network, user
documentation and scripts from the UnifyCore® project are used.

Although the PCP Testing Tool has a more user-friendly interface, the PCP client library is faster
to work with, especially when repeating the same command (by retrieving it from the command
history in the shell environment).

9.2. Implementation Description

The architecture of the network solution, as shown in Figure 8.1, contains two separate
forwarders — edge forwarder and NAT forwarder — each having their distinct roles. In the
implementation, both forwarders were merged into one forwarder with multiple flow tables. This
simplifies implementation and, consequently, its verification. Figure 9.2 shows the overview of the
implementation on the only forwarder in the test network.

Flow entries for PCP message forwarding and NAT forwarding are managed separately to
emphasize the fact that they are separate components, conceptually. This is achieved by managing
the flow entries in two separate modules — NAT installer and PCP installer, as shown in Figure 8.3.

Virtual Machine

1
|
|

PCP Server NAT Control Plane
Controller
lcontroller port
PCP Client Forwarder
Host 1 access port dd q " external port
I Tableo | Addressand | gf Packet
! Port Translation Forwarding
|
|
—— T —_——_—_—_—_—_—_————— = S |
Table 0 Packet forwarding
Flow entries Priority Match Action
PCP message forwarding (edge forwarder flow entries) 3 in_port=access port send out external port
ARP message forwarding 2 in_port=external port send out access port
MAC address overwriting 1
no match 0

Figure 9.2: Forwarder implementation overview

Given that only one access port exists in the network, the PCP message forwarding behavior is
greatly simplified — the forwarder sends the PCP response out the same port the corresponding PCP
request was received on.

The NAT flow tables (represented as Address and Port Translation in Figure 9.2) do not contain a
table-miss flow entry. That is, if a packet does not match any flow entry in the internal-to-external
or external-to-internal NAT flow tables, the packet is not forwarded to the Packet Forwarding flow

29 More information at: http://www.unifycore.com/

43

table and is consequently dropped. This effectively means that the packet cannot be forwarded if no
matching NAT flow entries for that packets are installed, i.e. the internal host did not request a
mapping from the PCP server.

9.2.1. ARP Message Processing

While the network design addresses the desired network behavior (message forwarding, IP
address and port translation), it does not cope with one important feature of IP networks —
destination MAC address resolution (ARP processing).

When a host tries to establish connection with another host, it must first know its MAC address if
the second host is on the same local network, or the MAC address of the default gateway if the
second host is in a different network. In order to determine the MAC address, the host sends an ARP
request and expects an ARP reply with the correct MAC address.

Although the ARP message forwarding is seemingly handled automatically by network switches
or routers (when considering traditional networks), this behavior is missing in pure SDN networks
and must be implemented.

Two approaches to ARP processing were considered in the implementation — proxy ARP and
routing — of which the former was eventually implemented.

Proxy ARP
This implementation forwards ARP requests to the controller, which handles the requests on

behalf of the source host. The process is illustrated in Figure 9.3 where Host 1 requests the MAC
address of Host 2.

The ARP handler is responsible for processing ARP messages and installing flow entries on the
forwarder that overwrite MAC addresses. Additionally, the ARP handler stores ARP entries in order
to associate the source MAC address with the destination host MAC address.

This implementation assumes that a host requests the MAC address of the destination host, even
if the destination host is in another network. To simulate this scenario in the test topology, both
hosts must have a default static route set:

route add -net '0.0.0.0' netmask '0.0.0.0"

44

PCP Server ARP handler

Network application

Controller

A
Forwarder

© ARP Request for Host 2 MAC address overwriting - flow entries

@ ARP Reply: destination MAC = Forwarder MAC Match Actions

© ARP Request for Host 2 in_port=access_port, src_mac=Host1_mac, | src_mac=Forwarder_mac,

© ARP Reply: destination MAC = Host 2 dest_mac=Forwarder_mac dest_mac=Host2_mac

© Install flow entr _J in_port=external_port, src_mac=Host2_mac, | src_mac=Forwarder_mac,
y dest_mac=Forwarder_mac dest_mac=Host1_mac

Figure 9.3: Example of a MAC overwriting flow entry installation with proxy ARP approach

The advantage of this approach is its simpler implementation and faster packet forwarding — there
1s no need to wait for the first data packet to trigger the ARP process for the destination host.

Without NAT, this approach works properly. Once NAT is introduced in the network, Host 1 to
Host 2 communication also works properly. The problem arises when Host 2 first tries to
communicate with Host 1. Host 2 requests the MAC address for the external IP address of Host 1.
Although the controller can possibly translate the external IP address to the associated internal 1P
address, ports must also be considered. It may happen that for two distinct connections, Host 1's
external IP addresses are different. In such case, the translation is ambiguous and thus cannot be
performed. The second approach does not have this issue. Due to time constraints, the second
approach was not implemented.

The second approach effectively implements IP routing in the network. The first host sends ARP
request to its default gateway (in this case, the controller) and the gateway responds with its MAC
address (forwarder MAC address). When the first host sends the first packet, the controller receives
this packet and sends an ARP request to the external network, using the source IP address of the
default gateway for the external network and the source MAC address of the forwarder. The
destination host sends back ARP reply to the controller. The controller then installs corresponding
flow entries that correctly translate MAC addresses of incoming packets.

9.2.2. NAT Table

Flow entries that translate IP addresses and ports have a higher priority set than the no-match
flow entry in order to ensure that the NAT flow entries have a precedence.

The NAT table defines a NAT pool — range of internal and external IP addresses and ports
involved in the translation. If the PCP client requests an external IP address or port that is already
assigned or is outside the defined pool, the PCP server assigns a valid external IP address and port.
External IP addresses and ports are both allocated using the round-robin algorithm.

45

The NAT table is represented by a dictionary (hash table). The key to each table entry is defined
by a concatenation of the internal IP address and internal port.

9.2.3. Managing Mapping Lifetime

PCP server is responsible for determining the mapping lifetime. Assuming that the host is a
mobile device connected to a WCDMA network, the lifetime is expected to be high enough to
reduce the battery power consumption and the amount of signaling traffic to an acceptable
minimum. Further assuming that mappings created by PCP MAP and PCP PEER requests exhibit
different traffic patterns (see section 3.2.1 for more information), two different lifetime values need
to be defined for PCP MAP and PCP PEER mappings. Acceptable lifetime values for WCDMA
networks are determined in chapter 10.

9.3. Verification

This section describes how to verify the implementation. The verification comprises the
following:

» Verify that a user application running a PCP client can request mapping information from
the PCP server.

* Verify that, with the mapping information acquired by the PCP client, two hosts can
communicate with each other, with the first host being behind a NAT.

Figure 9.1 shows the test topology for verification. Assuming the topology is set and the network
application is running, the verification can be performed in the following steps:

1. Host 1 generates a PCP request using the pcp command from the PCP client library.
Currently, the implemented forwarder does not consider what IP address the PCP client
specifies as the PCP server address, so the PCP client may choose an arbitrary address. PCP
server running on the controller parses the PCP request, instructs the NAT handler to create a
table entry and install flow entries on the forwarder, and finally sends back a PCP response
to the PCP client. The pcp command now displays the mapping returned by the PCP server.

2. Host 2 runs the nping command as a server and listens to incoming TCP connections.

3. Host 1 runs the nping command as a client and sends test TCP segments to Host 2. Host 2
replies back to Host 1.

If the communication is successful, the implementation functions properly. To verify that the
addresses are translated properly, one can capture traces from both hosts to separate pcap files using
the tcpdump command and determine that the IP addresses for the TCP segments are translated
properly.

Appendix B contains a user guide that replicates the above steps in detail.

To verify the communication in the topology without PCP, there is no need for the implemented
SDN network solution. The verification can be performed with the use of the iptables program,
which includes rules for address and port translation™.

30 Examples of NAT configuration using iptables can be found at:
http://www.karlrupp.net/en/computer/nat_tutorial

46

10. Evaluation

This chapter evaluates how much PCP can reduce battery power consumption of mobile devices

and the amount of signaling traffic in WCDMA networks.

As discussed in chapter 4, sending frequent keepalives causes increased battery power drain and

generates a considerable number of signaling messages. If the keepalive interval is increased, the

battery of the mobile device consumes less power and the network generates fewer signaling

messages over time.

In order to ensure that mobile devices can send keepalives in increased intervals while still

maintaining mapping entries on middleboxes, the mobile devices can use PCP to determine the

mapping lifetime and consequently optimize their keepalive interval.

The goal of the evaluation is to:

determine how much battery life and signaling traffic can be saved by increasing the

keepalive interval,

determine the acceptable mapping lifetime that PCP server should assign to the PCP client
based on the computed keepalive interval.

The evaluation is subject to the following restrictions:

Only one always-on user application runs on the mobile device.

With PCP enabled, the overhead of sending a PCP request and receiving a PCP response
prior to establishing a connection is ignored, as the connection itself is assumed to be
established immediately afterwards, during which several more messages are exchanged.
Given that these messages do not correspond to the traffic pattern of sending a single
keepalive, their presence is ignored to avoid distorting the results.

Only keepalives, PCP messages and the signaling messages associated with them are sent

over the network.

Any signaling unrelated to sending keepalives is ignored (such as signaling associated with

handovers).

If CELL FACH is enabled in the network, PCP messages are considered small enough for
the device to transition only to the CELL._FACH state instead of the CELL._DCH state. In
this case, PCP messages behave as keepalives, such as in case of PCP MAP mappings (see
section 3.2.1 for more information), hence their presence cannot be ignored.

When the device sends keepalives with acknowledgments (such as TCP keepalives) or PCP
requests followed by PCP responses, the acknowledgments/responses are received after a
delay, causing the RRC inactivity timer to be refreshed. For the sake of simplicity, the
round-trip time is assumed to be small enough that the additional time the mobile device
stays in its RRC state can be neglected. This applies to the evaluation of the battery power
consumption.

Any other sources of battery power consumption are not considered. One consequence of

47

this restriction the fact that the display of the mobile device must be turned off.

The rest of this chapter is structured as follows. Section 10.1 determines the impact of keepalives
on the battery power consumption of mobile devices. Section 10.2 determines the impact of
keepalives on the number of signaling messages generated in the network. Section 10.3 determines
the acceptable lifetime values for PCP-aware mappings given the results from the previous sections.

10.1. Battery Life Extension

Battery charge and power consumption can be measured by several methods, such as by voltage
levels or by ampere-hours® (or, more commonly, milliampere-hours, mAh). The latter is used in
this section.

10.1.1. Battery Power Consumption Figures

Source [5] specifies measured values for battery power consumption. One set of values (Table 2
from source [5]) was measured with varying keepalive intervals, with T2 = 2 s and with
CELL PCH power state enabled in the network. A different set of values (Table 3 from source [5])
was measured in a different mobile network (implying different network conditions, signaling, etc.)
with varying T2 timers and with the keepalive interval of 40 s. Table 10.1 contains the results of the
measurements for a single keepalive from source [5].

Table 10.1: Measured battery power consumption of keepalives in 3G WCDMA networks [5]

Average current in CELL_FACH state | Cost of a single keepalive in
[mA] 3G [mAh]

2 120 0.15-0.6

Timer T2 [s]

10.1.2. Formulas

In order to quantify the battery power consumption reduction, reference values must be defined.
For example, suppose that an application currently uses a keepalive interval of 20 seconds (such as
IPsec ESP [11]). If the keepalive interval is increased, the mobile device consumes that much less
battery power compared to the original (reference) keepalive interval. Furthermore, a fixed time
period must be defined over which keepalives are sent.

Given the criteria above, the following parameters can be defined:
* T —time period over which the keepalives are sent
t.r— original (reference) keepalive interval without PCP
* 1w —new keepalive interval with PCP

» cost — cost of a single keepalive (in mAh)

The number of keepalives n sent over time period 7 given the interval ¢, can be determined as
follows:

31 http://www.otherpower.com/otherpower_battery metering.html

48

1
n=T.— (1)

1
where t— is the number of keepalives sent per second.

new

The amount of battery consumption saved (in mAh) can be determined as follows:

1 1 1 1
=k .—k= -n)- t=(T-—-T-—). t= t-T(———
)=K o (n,,;—n)-cost=(;)-cost=cost-T (:))

ref new ref new

reduction (t

new

where £ is the total cost of keepalives over time period 7, i.e. the number of keepalives sent
multiplied by the cost of a single keepalive:

k= n cost (3)
In order to determine the relative amount of battery power saved given the desired and reference

keepalive intervals (#.. and ¢, respectively), the battery capacity C of the mobile device (in mAh)
must be known.

The relative amount of battery used when sending keepalives can be determined as follows:

k
e 4)
In other words, if the relative amount is multiplied by 100%, the keepalives consume

k :
rol 100% of the battery over time 7.

The relative reduction of the battery power consumption (i.e. the battery power saved) given the
battery capacity C can then be determined as follows:

ks k _Kk.~k _reduction(t
c C ¢C C
From the last formula, one can conclude that, by using a higher keepalive interval #,.,, such

new) (5)

battery power saved =

percentage of battery consumption was saved over time 7.

From the end-user perspective, an alternative measure may better indicate the power consumption
reduction — how much longer the battery will last before recharging it. Suppose that the following
values are known:

. cost — cost of a single keepalive,

. Iieepaive — average current while sending a single keepalive.

From these two values, one can compute the amount of time the battery life is shortened by
sending a single keepalive:

cost

=7 (6)

keepalive

The total time of the battery life saved can then be computed given the cost of a single keepalive,

the measuring time period 7, the reference keepalive interval 7., and the new keepalive interval #,.,:

49

cost _reduction(t

battery lifetime saved=(n,,~n)-1=(n,,~n)-= new) o

I keepalive Tkeepalive
As seen from the formula, the battery lifetime saved does not depend on the battery capacity.

ref

10.1.3. Results

Figures 10.1 and 10.2 show the battery power saved with increasing keepalive interval, given the
time period, cost of a single keepalive, battery capacity and several values of the reference
keepalive interval (z_ref'in the figures).

Table 10.2 contains the battery power saved given chosen values for the battery capacity. Typical
smartphones can thus save 1-4% of the battery life, while smart watches with 3G capabilities can
significantly benefit from the keepalive reduction by saving as much as 34.2% of the battery life.
The increase in the keepalive interval proves to be much less substantial for devices with relatively
high battery capacity, such as tablets (0.35%—1.4%).

Table 10.2: Amount of battery power consumption saved of a mobile device connected a WCDMA
network given battery capacity and reference values

Reference values: t..,,= 20 s, t,., =400 s, T=3600 s, cost: 0.15-0.6 mAh

Battery capacity Battery power saved
300 mAh (Samsung Gear S smart watch?) 8.5-34.2%
2550 mAh (Samsung Galaxy S6 phone™) 1-4%
7340 mAh (iPad Air 2 tablet™) 0.35-1.4%

As seen in Figures 10.3 and 10.4, approx. 13-52 minutes of battery life can be saved for the cost
ranging from 0.15 to 0.6 mAh, the average current of 120 mA and the reference interval of 20
seconds.

The percentage of the battery power and the battery lifetime saved increase significantly when the
keepalive interval is increased by the first few tens of seconds from the reference interval. Above
400-600 seconds, the difference in the increase starts to be negligible.

32 https://www.samsung.com/uk/consumer/mobile-devices/wearables/gear/SM-R7500ZKABTU
33 http://arstechnica.com/gadgets/2015/04/samsung-galaxy-s6-review-its-whats-on-the-outside-that-counts/
34 http://arstechnica.com/apple/2014/10/the-ipad-air-2-a-host-of-hidden-upgrades-in-one-skinny-package/

50

1.2
battery charge saved [%]
t ref=20s
41
0.3 time period: 3600 s
cost of a single keepalive: 0.15 mAh
Lo battery capacity: 2550 mAh
t ref=40s
404
t ref=80s
—+0:2
t ref=120s
A=t
50 150 200 250 300 350 400 450 5(
keepalive interval [s]

Figure 10.1: Amount of battery power saved based on keepalive intervals relative to
reference values and cost of 0.15 mAh per keepalive

battery charge saved [%] t ref=20s

43
time period: 3600 s
cost of a single keepalive: 0.6 mAh
) battery capacity: 2550 mAh t ref=40s
41 t ref=80s
t ref=120s

0
o

| | | | | | | |
1 | 1 1 1 1 1 1 1 |
50 150 200 250 300 350 400 450 5(
keepalive interval [s]

Figure 10.2: Amount of battery power saved based on keepalive intervals relative to
reference values and cost of 0.6 mAh per keepalive

51

battery lifetime saved [s] t ref=20s
1800 —

+700
time period: 3600 s
1600 : .
cost of a single keepalive: 0.15 mAh
L 500 average current while sending keepalives: 120 mA
L 40 t ref=40s
3
n t ref=80s
t ref=120s
+100

| |

1 | | | | | | | | |

190 200 300 400 500 600 700 800 900 10
keepalive interval [s]

Figure 10.3: Amount of battery lifetime saved based on keepalive intervals relative to
reference values and cost of 0.15 mAh per keepalive

battery lifetime saved [s]

—3500
t ref=20s
—3000
| 1500 time period: 3600 s
cost of a single keepalive: 0.6 mAh
L 500 average current while sending keepalives: 120 mA
t ref=40s
|
—1P00
t ref=80s
t ref=120s

| | |
1 1 1 1 1 1 1 1 1
0 200 300 400 500 600 700 800 900 10
keepalive interval [s]

Figure 10.4: Amount of battery lifetime saved based on keepalive intervals relative to
reference values and cost gf 0.6 mAh per keepalive

10.2. Signaling Traffic Reduction
10.2.1. Network Traffic in WCDMA Networks

Source [30] contains measurements performed in two 3G WCDMA networks, observing the
number of signaling messages generated in the networks and the battery power consumption in
mobile devices.

The data and signaling traffic was captured on mobile devices. A certain amount of signaling
traffic was generated in the core network that cannot be observed on mobile devices (referred to as
“unobserved” signaling traffic in source [30]).

In one of the measurements, the mobile devices sent keepalive messages to the network. In the
observed networks, the mobile devices entered the CELL DCH state when sending a keepalive.

According to the results, sending one keepalive causes 40-50 observed signaling messages to be
exchanged between a mobile device and the network, and estimated 20 unobserved signaling
messages [30].

10.2.2. Formulas
To determine the reduction of the number of signaling messages, the following parameters need
to be defined:

* T—time period over which the keepalives are sent

* t,r— original (reference) keepalive interval without PCP

* tww—new keepalive interval with PCP

* cost— cost of a single keepalive (in mAh)

* s —number of signaling messages per a single keepalive

* §—total number of signaling messages sent over 7 given keepalive interval #,.,,
Using the formulas defined in section 10.1, S can be computed as

S=ns (8)
The number of signaling messages reduced in the network can then be computed as:

1 1
reduction(t ,)=S _.—-S=(n_,—-n)-s=(——-—)-s-T
ucti (new) ref (ref) (t t) (9)

ref new

10.2.3. Results

As seen in Figures 10.5, 10.6 and 10.7, the reduction of the number of signaling messages grows
rapidly up to the keepalive interval of approx. 400 seconds. The growth of the reduction starts to be
negligible from approx. 1800 seconds, which can considered an acceptable keepalive interval for
WCDMA networks. Table 10.3 quantifies the results for reference keepalive intervals of 20 s and
120 s.

53

reduction of signaling messages t ref=20s
—7000

60
time period: 3600 s

number of observed signaling messages: 40

—#000

t ref=40s
H3000
I t ref=80s
t ref=120s
keepalive interval [s]
ZQO 490 6(?0 890 IOIOO IZIOO 14|00 16|00 18|00 ZOIOO 22|00 24|00 26|00 28|00 30|00
P71 | | | | | | | | | | | | | |

Figure 10.5: Number of signaling messages reduced based on keepalive intervals and reference
values (40 observed messages)

reduction of signaling messages t ref=20s
9000 =

time period: 3600 s

number of observed signaling messages: 50

t ref=40s
t ref=80s
t ref=120's
keepalive interval [s]
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
77 1 | | | 1 | | 1 | | | | | | |

Figure 10.6: Number of signaling messages reduced based on keepalive intervals and reference
values (50 observed messages)

54

L 4000 reduction of signaling messages
t ref=20s
+3500
+30
time period: 3600 s
L koo number of unobserved signaling messages: 20
+£2000
t ref=40s
- t ref=80s
t ref=120s
1300
/_7 keepalive interval [s]
L 2?0 4?0 6?0 8?0 10I00 I%IOO 14I00 16I00 ISIOO 20I00 22I00 24I00 26I00 ZSIOO |

Figure 10.7: Number of signaling messages reduced based on keepalive intervals and reference
values (20 unobserved messages)

Table 10.3: Reduction of the number of signaling messages given the number of messages per
keepalive and reference values

Reference values: t,., = 1800 s, 7= 3600 s

Number of signaling Reference Reduction of Reference Reduction of
messages per keepalive signaling keepalive signaling
keepalive interval messages interval messages
40 (observed) 20 s 7120 120's 1120
50 (observed) 20 s 8900 120's 1400
20 (unobserved) 20 s 3560 120's 560

It should be noted that the reduction of the number of signaling messages was computed for one
mobile device running a single application. Considering that hundreds of thousands of mobile
devices are connected to a network, each running one or more always-on applications, the decrease
in the network load on elements in the network core may prove to be significant.

10.3. Conclusions

From the perspective of a mobile device and its battery life, the keepalive interval of 400-600
seconds is suitable for most applications. The higher the keepalive interval, the smaller the amount
of battery power is saved. When considering the amount of signaling traffic generated in a mobile
network, the keepalive interval of approx. 1800 seconds is sufficient to greatly reduce the signaling
traffic caused by sending keepalives over the network.

55

The amount of battery power saved by using higher keepalive intervals is more significant in
devices with relatively small battery capacity, such as smartphones and smart watches. Tablets with
greater battery capacity benefit little from the increase keepalive interval. By observing the amount
of battery lifetime saved instead (which does not depend on the battery capacity), the extra minutes
in stand-by mode can prove helpful for the user before the battery charge is depleted.

Higher keepalive intervals further reduce the battery consumption, but too high values may fail to
determine connections that died between sending two consecutive keepalives. With higher
keepalive intervals, middleboxes keep the mapping entries longer, which may result in reaching
their memory limits, causing in turn to prematurely remove mapping entries.

10.3.1. Determining PCP Mapping Lifetime

In order to ensure that the applications will increase their keepalive intervals, they need to utilize
PCP to request or receive mapping lifetime.

For PCP mappings created by PCP PEER requests (i.e. user applications function as clients), the
mapping lifetime should be somewhat higher than the keepalive interval in order to allow the
application to send keepalives early enough. Given the relatively high keepalive interval of 1800
seconds, it may be sufficient for the application to send the keepalives 7/8 of the mapping lifetime.
Therefore, the mapping lifetime for PCP PEER mappings could be approx. 2060 seconds.

For PCP MAP mappings (i.e. user applications functioning as servers), user applications need to
send PCP MAP messages at the interval of at least 1/2 of the mapping lifetime. In order to sustain
the interval of 1800 seconds, the mapping lifetime for PCP MAP mappings should be at least 3600
seconds. Beside PCP MAP requests, applications may still have to send keepalives to the
destination host to maintain the end-to-end connection.

Given the determined lifetime values above, the following recommendations apply to WCDMA
networks with PCP and the custom solution described in this thesis:

* For mappings created by PCP MAP requests, send PCP MAP requests and keepalives at the

same time to avoid frequent RRC state transitions.

* For mappings created by PCP PEER requests, send only keepalives to the remote host and
do not send any PCP PEER requests to the PCP server. Given the design of the solution
described in this thesis, the PCP server has complete control over the middleboxes,
including the timeouts of the flow entries, hence the PCP client does not have to be
concerned about any special behavior of the middlebox.

It is expected that, given the widespread use of always-on applications such as social networks,
hosts establish outbound connections more commonly than hosting servers (i.e. establish inbound
connections). Hence, PCP messages with the PEER opcode are expected to be more common than
PCP MAP messages, which is more beneficial for the network, as PCP PEER mappings may send
fewer messages in total than PCP MAP mappings.

56

Summary

The goal of the diploma thesis was to implement Port Control Protocol (PCP) in software defined
networks (SDN), specifically the PCP server, and to quantify how much battery life of mobile
devices can be saved and how much signaling traffic can be reduced if PCP is deployed in mobile
networks. To verify the implementation of the PCP server in SDN networks, NAT was implemented
in the network.

PCP can be used by a host to receive external-to-internal address and port mapping information
from middleboxes (firewall, NAT gateway), including the mapping lifetime. Once the host knows
about the lifetime of its mapping, it is able to optimize the interval of sending keepalives to the
destination host.

The potential of keepalive optimization proved to be significant in mobile networks, specifically
the WCDMA networks. Given the measured values from sources [5] and [30], a suitable keepalive
interval for WCDMA networks proves to be 1800 seconds. Given the keepalive interval of 400-600
seconds, mobile devices running an always-on application can save roughly up to 52 minutes of
battery life per hour when the devices are in stand-by mode and the application is only sending
keepalives to the network. Moreover, increasing the keepalive interval to 1800 seconds can reduce
the number of signaling messages by thousands in one hour, only when considering one mobile
device running one always-on application.

SDN, while flexible, requires effort to implement basic packet processing, such as ARP message
processing, packet switching or routing. One may not realize this fact until the phase of the network
application implementation. In traditional networks, these functions are provided automatically by
switches and routers.

57

Conclusion

This diploma thesis is concerned with the implementation of the Port Control Protocol (PCP)
over software defined networks (SDN). PCP allows end-user applications, such as instant
messaging or VolIP, to receive mapping information directly from middleboxes (such as a NAT
gateway) in order to properly traverse through the middleboxes without workarounds and to reduce
application keepalives.

The SDN network solution separates the control plane and the data plane of a middlebox with a
PCP server to an OpenFlow controller and forwarders, respectively, which allows for greater
flexibility and vendor device compatibility of the network and avoids the need to install PCP server
in each middlebox.

In today's networks, especially considering the mobile networks, the keepalive intervals may still
be largely unoptimized. Reducing application keepalives can be considered a software-based
method to reduce network traffic overhead and to reduce battery power consumption of mobile
devices. Increasing the keepalive interval to as high as 1800 seconds can considerably reduce the
amount of signaling traffic, especially considering that millions of mobile devices may be
connected to the network at the same time.

The diploma thesis can be further expanded upon in the future by addressing the related topics
described below.

The solution for the NAT functionality designed and implemented in this thesis can be further
expanded upon by providing support for [Pv6, more upper-layer protocols, such as ICMP, [Psec
ESP, SCTP or DCCP, or the automatic deletion of TCP sessions by tracking the TCP RST and FIN
segments.

NAT functionality in the architecture can be abstracted away — i.e. a generic interface for
middleboxes can be defined so that other types of middleboxes, such as firewalls, can be
implemented.

Further improvements in the architecture can be made by addressing the scalability of PCP in
SDN networks, adding support for multihoming or addressing the security of PCP.

Finally, the keepalive reduction can be evaluated in different types of widely used mobile
networks, such as GPRS or LTE.

58

References
[1] Brim, S.W., CarpenTER, B.E.: Middleboxes: Taxonomy and Issues. RFC 3234. 2002.

[2] Anatomy: A Look Inside Network Address Translators - The Internet Protocol Journal - Volume
7, Number 3. Cisco [online]. [Accessed 11 December 2014]. Available from:
http://www.cisco.com/web/about/ac123/ac147/archived _issues/ipj 7-3/anatomy.html.

[3] KrocumAL, M., CHESHIRE, S.: NAT Port Mapping Protocol (NAT-PMP). RFC 6886. 2013.

[4] Understanding Carrier Grade NAT. Network World [online]. 4 September 2009. [Accessed 11
December 2014]. Available from: http://www.networkworld.com/article/2237054/cisco-
subnet/understanding-carrier-grade-nat.html.

[5] Haverinen, H. et al.: Energy Consumption of Always-On Applications in WCDMA Networks.
In: Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th. April 2007. p. 964-968.

[6] BraDEN, R.: Requirements for Internet Hosts - Communication Layers. RFC 1122. 1989.

[7] TCP keepalive overview. [online]. [Accessed 14 March 2015]. Available from:
http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/overview.html.

[8] PostEL, J.: Transmission Control Protocol. RFC 793. 1981.

[9] JenninGs, C., Aupkr, F.: Network Address Translation (NAT) Behavioral Requirements for
Unicast UDP. RFC 4787. 2007.

[10] SrisuresH, P. et al.: NAT Behavioral Requirements for TCP. RFC 5382. 2008.
[11] HurTtunen, A. et al.: UDP Encapsulation of IPsec ESP Packets. RFC 3948. 2005.

[12] WiNG, D. et al.: Session Traversal Utilities for NAT (STUN). [online]. October 2008. [Accessed
11 December 2014]. Available from: http://tools.ietf.org/html/rfc5389.

[13] MartrEws, P. et al.: Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN). RFC 5766. 2010.

[14] ROSENBERG, J.: Interactive Connectivity Establishment (ICE): A Methodology for Network
Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC 5245. 2010.

[15] SrisuresH, P. et al.: Middlebox communication architecture and framework. RFC 3303. 2002.

[16] QuitTek, J. et al.: NEC's Simple Middlebox Configuration (SIMCQO) Protocol Version 3.0. RFC
4540. 2006.

[17] TscHoreni, H. et al.: 4 Survey of Protocols to Control Network Address Translators and
Firewalls. Internet-Draft draft-eggert-middlebox-control-survey-01. 2007.

[18] Boucapar, M. et al.: Port Control Protocol (PCP). RFC 6887. 2013.

[19] Port Control Protocol - The Internet Protocol Journal, Volume 14, No. 4. Cisco [online].
[Accessed 16 October 2013]. Available from:

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj 14-4/144 pcp.html.

59

[20] WinG, D.: Port Control Protocol. The Internet Protocol Journal [online]. Vol. 14. [Accessed 29
November 2013]. Available from:
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_14-4/ipj 14-4.pdf.

[21] Port Control Protocol Overview - Technical Documentation - Support - Juniper Networks.
[online]. [Accessed 22 October 2013]. Available from:
http://www.juniper.net/techpubs/en_US/junos/topics/concept/nat-port-control-protocol.html.

[22] Reppy, T. et al.: Port Control Protocol (PCP) Server Selection. RFC 7488. 2015.
[23] Boucapamr, M. et al.: DHCP Options for the Port Control Protocol (PCP). RFC 7291. 2014.

[24] Penno, R. et al.: Port Control Protocol (PCP) Anycast Addresses. Internet-Draft draft-ietf-pcp-
anycast-04. 2015.

[25] Reppy, T. et al.: PCP Firewall Control in Managed Networks. Internet-Draft draft-reddy-pcp-
sdn-firewall-00. 2014.

[26] Sauter, M.: From GSM to LTE-Advanced: An Introduction to Mobile Networks and Mobile
Broadband. Revised Second Edition edition. Chichester, West Sussex, United Kingdom: Wiley,
2014. ISBN 9781118861950.

[27] 3rD GENERATION PARTNERSHIP PROJECT (3GPP): Universal Mobile Telecommunications System
(UMTS),; Radio Resource Control (RRC), Protocol Specification. 3GPP Technical Specification
25.331.2015.

[28] Horma, H., Toskara, A.: HSDPA/HSUPA for UMTS: High Speed Radio Access for Mobile
Communications [online]. John Wiley & Sons, 2006. [Accessed 7 April 2015]. ISBN 978-0-470-
01884-2. Available from: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470018844.html.

[29] PeraLa, P.H.J. et al.: Theory and Practice of RRC State Transitions in UMTS Networks. In:
2009 IEEE GLOBECOM Workshops. November 2009. p. 1-6.

[30] SionaLs Research Grour, LCC: Smartphones and a 3G network, reducing the impact of
smartphone-generated signaling traffic while increasing the battery life of the phone through the
use of network optimization techniques. 2010.

[31] Horma, H., Toskara, A.: WCDMA for UMTS: HSPA Evolution and LTE. 5 edition. Hoboken:
Wiley, 2010. ISBN 9780470686461.

[32] Napeau, T.D., Gray, K.: SDN: Software Defined Networks. O’Reilly Media, 2013. ISBN 978-1-
4493-4230-2.

[33] Open NETWORKING Founparion: Software-Defined Networking: The New Norm for Networks.
[online]. [Accessed 30 November 2013]. Available from:
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-
newnorm.pdf.

[34] Open NETWORKING Founpation: SDN Architecture Overview 1.1 [online]. [Accessed 1 May
2015]. Available from: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf.

[35] Enns, R. et al.: NETCONF Configuration Protocol. [online]. [Accessed 11 December 2014].
60

Available from: https://tools.ietf.org/html/rfc6241.

[36] OpeN NETWORKING Founpartion: OpenFlow Switch Specification, version 1.3.0 [online].
[Accessed 5 December 2014]. Available from:

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.0.pdf.

[37] OpenFlow Switch Specification, version 1.5.1 [online]. [Accessed 1 May 2015]. Available
from: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-switch-v1.5.1.pdf.

[38] Reppy, T. et al.: Port Control Protocol (PCP) Authentication Mechanism. [online]. [Accessed
10 December 2014]. Available from: http://tools.ietf.org/html/draft-ietf-pcp-authentication-06.

61

Appendices

A. Attached DVD Contents

The attached DVD contains the following files:

Burda PCP in SDN Diploma Thesis.pdf — this document in PDF format,
Burda PCP in SDN Diploma Thesis.odt — this document in ODT format,
ofsoftswitchl3 — directory containing the source code for OF Softswitchl3

pcp_sdn — directory containing the source code of the solution and Unix shell scripts to
execute the test scenario,

pcp-client — directory containing the source code for the PCP client library
ryu — directory containing the source code for the »yu controller framework,

unifycore-scripts — directory containing install scripts from the UnifyCore project
to simplify installation

VM — directory containing a virtual machine with a test topology

63

B. Installation

From the CD, copy the pcp sdn source and scripts directories to a directory named
pcp sdn anywhere on the disk_. -
Download and install VirtualBox>.
Download the PCP client library®® and extract the contents to pcp_sdn/pcp-client directory.
Download Ubuntu Server 14.04.1, 64-bit>’.
Download UnifyCore install scripts® and extract the contents to pcp sdn/unifycore
directory.
Run VirtualBox and create a virtual machine from Ubuntu Server and name it PCP_SDN.
Configure the PCP_SDN virtual machine as follows:

* use the bridged adapter and set the MAC address to the MAC address of the host

computer (this is necessary in order for the virtual machine to install packages from the
Internet),

* add pcp_ sdn as a shared directory.

Run the PCP_SDN virtual machine and install Ubuntu Server. Remember the log-in credentials
to the virtual machine.

Install VirtualBox guest additions to be able to access the pcp sdn directory from the virtual
machine®’.
Mount the pcp sdn directory:
mount -t vboxsf -o defaults pcp sdn [home directory]/pcp sdn
To run the previous command automatically on startup, open the /etc/rc.local file and insert
the following lines:
mount -t vboxsf -o defaults pcp sdn [home directory]/pcp sdn
exit O
Ensure that the /etc/rc.local file is executable:
chown +x /etc/rc.local
Install UnifyCore-related packages and files:
unifycore/support/install core.sh
Install nmap (later to be used to test the communication between hosts):
sudo apt-get install iperf nmap

Power off the virtual machine, set the adapter to host-only adapter and start the virtual machine

35
36
37
38
39

Available at: https://www.virtualbox.org/wiki/Downloads

Available at: https://github.com/libpcp/pcp

Available at: http://www.ubuntu.com/download/server

Auvailable at: https://github.com/unifycore/unifycore

Installation instructions are available at: https://www.virtualbox.org/manual/ch04.html

64

again.

Compiling the PCP client

Change working directory to pcp-client:

cd ~/pcp_sdn/pcp-client
Compile the PCP client:

./autogen.sh

./configure

make

sudo make install

65

C. Using the Software

This section describes how to use the software step by step.

The solution allows two hosts between a NAT gateway in a test network to communicate with
each other. The hosts cannot communicate unless a mapping entry in the PCP server is created and
the corresponding flow entries (translating IP addresses and ports) are installed on the forwarder in
the test network.

Preparing the Environment

1. Create three terminal instances and connect to the virtual machine in each instance. These
terminal instances are used to display output from each command necessary to run the
network (ryu-manager, ofdatapath and ofprotocol).

On Windows, one may use putty® to connect to the virtual machine. Use the IP address of
the host adapter and the log-in credentials (name and password) to access the virtual
machine.
2. In each of these terminal instances, run
pcp sdn/scripts/read command output.sh <command>

where <command> is ryu-manager, ofdatapath, and ofprotocol, respectively.

This and the previous step are not optional, otherwise the commands executed in the
pcp_sdn_test topology.sh script will not be operational. The reason is that the output

from the commands is redirected to separate named pipes. If no processes read from the
named pipes, the commands are blocked.

3. Create another terminal instance and run the script that creates the test topology and
initializes the forwarder, the controller and the network application:
pcp sdn/scripts/pcp sdn test topology.sh
4. To observe the messages sent in the network, create two additional terminal instances and
capture output from each host:

sudo ip netns exec 'hostl' tcpdump -i 'hostl fw' -w
~/pcp_sdn/test pcp sdn hostl fw.pcap

sudo ip netns exec 'host2' tcpdump -i 'host2 fw' -w
~/share/test pcp sdn host2 fw.pcap

Running the Test Scenario
Host 1 to Host 2

1. Generate a PCP request for a TCP connection to the PCP server:

sudo ip netns exec 'hostl' pcp -i <hostl IP address>:<port> -1 3600
-t -s <PCP server IP address>

The network application currently accepts any PCP server address as the forwarder in the

40 Available at: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

66

network does not consider the IP address when forwarding PCP messages.

The -i option specifies the internal IP address (in this case, host1 IP address) and the

internal port (the <port> argument).

The PCP server then generates a PCP response and assigns an external IP address and port
from the NAT pool defined in the network application. The output in Figure 1 shows that the
PCP client received the external IP address and port highlighted in red. In this example, the
PCP server address was setto 172.16.0.1.

£

F igre 1: PCP Request processed by the PCP server in the controller

2. On host2 (the external host), run the nping server:
sudo ip netns exec 'host2' nping --echo-server 'test' -v4
3. Onhost1 (the internal host), send TCP segments to host2:
sudo ip netns exec 'hostl' nping --echo-client 'test' --tcp
--source-port <port> -v4 <host2 IP address>
The <port> argument is the internal port specified when generating the PCP request from
hostl.

nping first establishes a management TCP connection between the client and the server and
then establishes another connection to send “ping” segments.

The packet trace for both host1 and host2 are shown in Figures 2 and 3, respectively. As
seen from the traces, the IP addresses and ports in the highlighted packets are properly
translated by the forwarder in the network. For example, host1 sends the first packet with
its internal IP address and port as the source IP address and port, while host2 receives the
packet with the corresponding external source IP address and port. Likewise, when host?2

replies to host1, the external (destination) address and port are properly translated to their

67

internal counterparts.

6 0.741827 172.16.0.100 200.0.0.200 TCP 210 5555-+9929 |PSH, ACK] Seq=1 Ack=97 Win=29056 L
7 0.757001 200.0.0.200 172.16.0.100 TCP 66 9929-5555 [ACK] Seg=97 Ack=145 Win=30080 Len=
8 0.762217 200.0.0.200 172.16.0.100 TCP 178 9929-5555 [PSH, ACK] Seg=97 Ack=145 wWin=3008C
9 0.763051 172.16.0.100 200.0.0.200 TCP 226 5555-9929 [PSH, ACK] Seq =145 Ack=209 W'Ir'l 2905

Q ¥, 0929-535233 ACK A v

0

0 B0-5555

0

72.16.0.100 B0-5555 [RST, ACK] feq—l m:k—l W'lrl—o LEI‘I—O_
. 200 172.16.0.100 TCP 162 9929-5555 [P5H, ACK] Seq=353 Ack=305 win=311C

Figure 2: Packet trace from host 1

6 0.723261 200.0.0.2 200.0.0.200 TCP 210 49152-9929 [PSH, ACK] Seq=1 Ack=97 wWin=29056
7 0.73232271 200.0.0.200 200.0.0.2 TCP 66 9929-49152 [ACK] Seq=97 Ack=145 win=30080 Ler
8 0.740568 200.0.0.200 200.0.0.2 TCP 178 9929-49152 [PSH, ACK] S5eq=97 Ack=145 win=300¢
9 0.754072 200.0.0.2 200.0.0.200 TCP 226 49152-9929 [PSH, ACK] Seq =145 ack=209 W'Ir'l 29(

0 754507 0.0 0.0 2 ICE 114 992949752 ACK

0.768735 0.0 ciHe 7

0 0.0 e e &

0 0.0 L HELHE

L LT3
. 799183

6 0.0.2 0.0. 8049153 [RST, ACK:I Seq=1 Ack=1 Win=0 Ler— =3
5 200.0.0.200 .0.0. TCP 162 9929-49152 [PSH, ACK] 5eg=353 Ack=305 Win=311

: Packet trace from host 2

4. To review flow entries installed on the forwarder, run the following command:

sudo dpctl 'unix:/tmp/fw.socket' stats-flow | sed 's/, \
({table=\)/,\n\n\1/g"’

The output contains information about each flow entry on a separate line for easier reading.

Host 2 to Host 1

This scenario can be repeated by running the nping server on hostl and sending “ping”
segments from host2. In this case, the management port on which nping listens to incoming
connections is now hidden behind NAT. In order to facilitate communication between the hosts, the
management port must be translated as well. Therefore, host1 must send another PCP request to
the PCP server to translate the management port.

It is assumed that the steps in the previous section were already performed.
1. Generate a PCP request for the management port for nping:

sudo ip netns exec 'hostl' pcp -i <hostl IP address>:<management
port> -1 3600 -t -s 172.16.0.254

The management port can be chosen arbitrarily.
2. On host1, run the nping server:

sudo ip netns exec 'hostl' nping --echo-server 'test' -v4 -echo-
port <management port>

3. Onhost2, send TCP segments to host1:

sudo ip netns exec 'host2' nping --echo-client 'test' --tcp

68

—--source-port <port> --echo-port <management port> -v4 <host2 IP
address>

4. Observe the nping output or the packet traces to see that the packets are properly translated
by the forwarder.

Additional Commands for Manipulating Mapping Entries

Specifying explicit external IP address and port
To specify an explicit external IP address and port when creating a mapping via PCP, run

sudo ip netns exec 'hostl' pcp -i <hostl IP address>:<existing port>
-1 <lifetime> -t -s <PCP server IP address> -e <external
IP>:<external port>

If the external IP address lies outside the NAT pool defined in the controller, the PCP server will
assign a valid IP address from the pool. The same behavior applies to the external port.

If the host already has a mapping assigned, the PCP server merely returns the existing external IP
address and port assigned to the host.

Modifying mapping lifetime
To modify the lifetime of an existing mapping, run

sudo ip netns exec 'hostl' pcp -i <hostl IP address>:<existing port>
-1 <new lifetime> -t -s <PCP server IP address>

If the lifetime value is small, e.g. 5 seconds, one can observe from the controller output that the
mapping expired after 5 seconds. Examining flow entries via dpctl also proves that the

corresponding flow entries were removed from the forwarder.

Deleting mapping by PCP client
To delete an existing mapping explicitly by the PCP client, run

sudo ip netns exec 'hostl' pcp -i <hostl IP address>:<existing port>
-1 0 -t -s <PCP server IP address>

Creating PEER requests

Previous examples of the pcp command generated a PCP MAP request to the PCP server. To
generate a PEER request, specify the remote peer (host2) IP address and port on which the
connection is going to be established:

sudo 1p netns exec 'hostl' pcp -i <hostl IP address>:<existing port>
-1 0 -t -s <PCP server IP address> -p <host2 IP address>:<port>

In the current implementation, the PCP server does not distinguish between MAP and PEER
requests.

Cleaning up after Running the Test Scenario

1. Stop the execution of following programs or scripts by pressing ctrl+C in the

corresponding terminal windows:

69

° tcpdump for each host,
° read command output.sh for each command,
° pcp_sdn test topology.sh.
2. Close all terminal windows connected to the virtual machine.

3. Log out of the virtual machine.

4. Power off the virtual machine.

70

D. Plan of Work

Table 1 contains the original plan of work for the diploma thesis.

Table 1: Plan of work for the diploma thesis

Month (year) Description
October (2013)))
Analysis of PCP and the problems it can solve
November
December Complete the document for DT 0 submission
January
February Analysis of PCP, user applications, middleboxes, NAT traversal, keepalives,
March available SDN controllers and forwarders
April
May Complete the document for DT I submission
June
July Analysis summary, requirements specification
August
Choosing the controller and forwarder for implementation, requirements
September . :
specification
October (2014)))))) _
Prototype implementation, high-level design and architecture of the solution
November
December Finish implementing the prototype, complete the document for DT II submission
January o o
Detailed design, implementation, verification
February
March Complete the implementation, verify the implementation, evaluate battery life
April saved using PCP
May Complete and submit the final document, prepare for the presentation in June
June (2015) Presentation preparation

Table 2 contains the assessment of the plan per each unit of work.

Table 2: Plan of work — assessment

Unit of work

Fulfillment

Analysis of middleboxes

Partially done

Analysis of user applications and keepalives Partially done
Analysis of NAT traversal methods Partially done
Analysis of PCP Done

Analysis of WCDMA networks

Partially done — missing analysis of signaling

71

traffic impact on RRC
Design Done
Implementation — PCP server Done
Implementation — NAT Done
Verification Done
Evaluation Partially done

The analytical part of the thesis, especially middleboxes, user applications and NAT traversal
methods, was not provided with sufficient details due to time constraints (additional school subjects
and post-Imagine-Cup work and presentations taking most of the time).

The implementation is finished as per the constraints of the requirements and the design of the
solution. Of course, many enhancements, be it small improvements or new features, may be
incorporated into the solution at some point.

72

Resumeé

1. Uvod

Tento dokument obsahuje resumé diplomovej prace na tému Protokol PCP v softvérovo
definovanych sietach.

2. Analyza

PouZivatel'ské aplikacie, ako napr. VoIP alebo rychle spravy, maju problémy s komunikaciu cez
tzv. zariadenia middlebox (d’alej len ,brana‘“), napr. brana NAT alebo bezpe¢nostna brana. Brany
obsahuju informécie o mapovani, ako napr. internd IP adresa, interny port, externa IP adresa,
externy port a ¢asovac. Ak ¢asovac vyprsi (t.J. ziaden paket nie je vyslany pocas trvania Casovaca),
brana informdcie zo svojej internej tabul'ky zmaZe a tym znemozni zariadeniam komunikovat’. Aby
aplikacie tomuto javu zabranili, vysielaju spravy na udrziavanie spojenia (tzv. spravy keepalive).
Kedze aplikacie hodnotu Casovaca nepoznaju, snazia sa vysielat spravy keepalive vo vel'mi
kratkych intervaloch, o zatazuje sietové prostriedky, najmd v mobilnych sietach, a znizuju
zivotnost’ batérie mobilnych zariadeni.

Relativne novy sietovy protokol Port Control Protocol (PCP) [1] umoZiuje koncovému
zariadeniu riadne komunikovat’ cez brany tak, ze mu PCP poskytne informécie o mapovani priamo
z bran, ako je to znazornené na obr. 2.1. Tymto sa koncové zariadenie dozvie o Casovaci mapovania
a dokaze tak optimalizovat’ vysielanie sprav keepalive.

{] W Siet’
PCP Klient

‘ Aplikacia I

| Aplikacny server

PCP Server v

g— ----------------- ~[Brana — [Internet

el

A N ~’g

® PCP Response

Obr. 2.1: Wutzitie protokolu PCP v sietach

Pri vyZiadani mapovacich informécii pre aplikaciu, PCP klient najprv vysle spravu PCP Request.
PCP server spracuje poZiadavku, nariadi brane, aby tomuto spojeniu umoznila komunikovat’ a vysle
naspét’ spravu PCP response s mapovacimi informaciami.

V porovnani s podobnymi protokolmi, resp. metddami (STUN, TURN, alebo UPnP-IGD) na
komunikaciu cez brany, je protokol PCP pomerne jednoduchy a rychly (spociva vo vymene iba
dvoch sprav) a umoziiuje zariadeniam optimalizovat’ interval vysielania sprav keepalive.
Potencialnou nevyhodou je, Ze na kazdej brane musi byt’ nainStalovany PCP server, ¢o nemusi byt
vyhovujice pre vyrobcov zariadeni.

Mobilné siete, vzhl'adom na zabezpecenie akceptovatelnej kvality v bezdrotovej komunikécii,

1

generuju velké mnozstvo signalizaénych sprav pre kazda uzito¢na spravu vyslani z mobilného
zariadenia. Vel'mi kratke intervaly sprav keepalive spdsobia generovanie velkého mnoZstva
signaliza¢nych sprav v sieti, ¢im sa zahlcuje siet’, a zaroven skracujui Zivotnost’ batérie mobilnych
zariadeni. ZvySenim intervalu posielania sprav keepalive je mozné uSetrit vel'ké mnozstvo
sietovych prostriedkov a batériu zariadeni. ZvySenie intervalu keepalive je mozné dosiahnut’ prave
pomocou protokolu PCP.

Softvérovo definované siete (SDN) [2] je novodoby koncept v pocitacovych sietach, ktory
umoziiuje naprogramovat spravanie sa siete, ¢im sa zvySi napr. jej flexibilita a dlhodoba
udrzatelnost’. Implementacia PCP servera v sietach SDN umoziiuje umiestnit’ PCP server na riadi¢
(controller), ¢im je brana odbremenena od PCP servera a zabezpecuje sa tak vysSia kompatibilita
medzi vyrobcami r6znych bran.

Cielom diplomovej prace je implementovat protokol PCP v sietach SDN, ur¢it mnoZstvo
signalizacie, ktoré sa d4 zredukovat” pomocou protokolu PCP a kvantifikovat' zvySenie vydrze
batérie pomocou protokolu PCP.

3. Navrh

Obr. 3.1 zobrazuje architektiru navrhovaného rieSenia. Sucastou rieSenia je implementacia brany
NAT v sietach SDN, aby bolo mozné overit’ implementaciu PCP servera. Zaroven je rozdelenie
brany NAT na riadiacu a datovl rovinu prilezitostou optimalizovat’ siete. PCP server a riadiaca
rovina NAT spolu tvoria sietovt aplikaciu nad riadicom.

Jadro siete

Riadiaca rovina NAT

|

i i

| |

PCP server] [[ManaZér II

P . Riadié&

4 \ _
= / \ = Ry ~
PCP klient | \ | Datova rovina NAT | iz

i | R .
' i a siet | |:>rm"aiw§F | _ il
e Prictiimnmnia ol B R o e e e e e e e
Q | Pristupova siet epogiaiit : Preposielag I ‘ siet

Obr: 3.1: Architektura navrhovaného riesenia

Riadi¢ a preposielace komunikuji sietovym protokolom OpenFlow. Ako PCP klient je vyuzita
vol'ne dostupna kniznica, ktord zaroven obsahuje prikaz na generovanie PCP sprav (t.j. PCP klient).
Okrajovy preposiela¢ presmeruvava PCP spravy medzi PCP klientom a PCP serverom. Preposielac,
ktory pokryva datovi rovinu NAT (d’alej len ,,preposiela¢ NAT*), obsahuje pravidla, ktoré prepisuju
IP adresy a porty z externych na interné a naopak. PCP server spracuva spravy PCP request a
nariadi riadiacej rovine NAT, aby vytvorila mapovanie pre PCP klienta.

Riadiaca rovina NAT obsahuje manazéra, ktory inStaluje pravidla do preposielaca NAT a tabul’ku,

v ktorej sa nachadzaju mapovania priradené jednotlivym PCP klientom. DetailnejSie fungovanie
riadiacej a datovej roviny NAT je znazornené na obr. .

Tabulka NAT

Rodina IP adries | Protokol | Interna IP | Interny port | Externa IP |Extern3,'r portI Zivotnost mapovania

port k riaditu
NAT Forwarder
Tabulka 1: Hl'adanie portov
Ingress port Action o externy port 1 -
'__.__ RSN . - ™
external port 1 go to Table 3 Tabulka 2: Tabulka 3: Preposielanie ‘ﬂt_eﬂ?_pirt}__ £ \
—» preklad z internej > preklad z externej [paketov .-" Internet (,-'
do externej do internej ﬁ% \‘.\ ~
external port n goto Table 3 9 .
no match goto Table 2
Tabulka 2: preklad z internej do externej Tabul'ka 3: preklad z externej do internej
Hladané polia Akcie Casovac nedinnosti Hrfadané polia Akcie Casovad nedinnost
hastav !P a port na_ exte_rne Sivotrast nastav IP a port na_a |nte_rne; Zivotnost
IP, protokal, port chod' na Preposielanie ; IP, protokol, port chod na Preposielanie :
mapovania mapovania
paketov paketov
nie je zhoda chod' na Preposielanie - nie je zhoda chod na Preposielanie -
paketov paketov

Obr. 3.2: Riadiaca a datova rovina NAT

4. Implementacia

Na overenie implementacie je implementovana sietova topoldgia zndzornena na obr. 4.1.

Virtualny stroj

172.16.0.1/24

| |
| |
| |
| |
| |
| |
| |
! PCP server Riadiaca rovina NAT !
I I
! Riadi& I
| |
| | PCP klient !
| |
|] - |
! Host' 1 Preposielaé Host' 2 !
| |
| |
| 172.16.0.100/24 200.0.0.200/24 |
| |

Obr. 4.1: Testovacia topologia na overenie

V ramci implementacie boli vyuzité nasledovné nastroje: pracovné prostredie na vyvoj riadica
ryu', preposielad ofsofiswitch 1.3% kniznica pre PCP klient’, sada prikazov nmap®. Na overovanie
implementacie interny Host' 1 vygeneruje spravu PCP request a prijme spravu PCP response.
Nasledne Host” 2 spusti server nping a Host’ 1 vysSle testovacie segmenty TCP Hostovi 2. Ak
komunikacia prebieha (t.j. Host' 1 dostane odpovede od Hosta 2), implementacia je uspesSne
overena.

Pri implementacii bolo dodato¢ne zistené, ze je potrebné implementovat’ spracovanie a riadenie
sprav ARP. V tradi¢nych siet’ach je to samozrejma funkcionalita, no v sietach SDN je potrebné tato
funkciu implementovat’ nanovo (pripadne najst existujucu sietovu aplikaciu, ak existuje).
Spracovanie ARP sprav je implementované podl'a obr. 4.2.

https://github.com/osrg/ryu
https://github.com/CPqD/ofsoftswitch13
https://github.com/libpcp/pep
https://nmap.org/

W —

PCP server manazér ARP

Sietova aplikacia

Riadi¢
3]
)
Host' 2

© ARP Request pre Hosta 2 Prepisovanie MAC adries = pravidla
@ ARP Reply: cielova MAC = MAC preposielata Hfadané polia Akcie
© ARP Request pre Hosta 2 in_port=access_port, src_mac=Host1_mac, | src_mac=Forwarder_mac,
© ARP Reply: ciefova MAC = Host 2 dest_mac=Forwarder_mac dest_mac=Host2_mac
@ Indtalscia pravidisl _J in_port=external_port, src_mac=Host2_mac, | src_mac=Forwarder_mac,

P dest_mac=Forwarder_mac dest_mac=Host1_mac

Obr. 4.2: Implementacia ARP v rieseni

5. Vyhodnotenie

V mobilnych sietach 3G s pristupovou technolégiou WCDMA maju mobilné zariadenia stavy
pripojenia Radio Resource Control (RRC, dalej len ,stavy pripojenia®) podla mnozstva
prendsanych dat. Prili§ casté vysielanie sprav keepalive spdsobuje, Ze mobilné zariadenia
spotrebuiivaju nezanedbatel'né mnozstvo vykonu, ked’ze sa CastejSie nachadzaji v stavoch pripojenia
s vysSou spotrebou.

Prechody medzi stavmi pripojenia je potrebné oznamovat sieti. Casté medzistavové prechody
generuju nezanedbatel'né mnozstvo signalizacnych sprav, dosledkom ¢oho je zvysSena zat'az v sieti a
zhorSena odozva.

Jednym zo spdsobov, ako obmedzit’ vysielanie sprav keepalive, je zvysit’ interval ich vysielania.
ZvySenim intervalu na 400-600 sekind je mozné dosiahnut’ celkom znac¢né znizenie spotreby
batérie, ako je to znazornené na obr. 5.1 a uvedené v tab. 5.1. t,, oznacuje pdvodny interval
keepalive, ¢ znaci novy interval keepalive, T je Cas merania, pocas ktorého boli vysielané iba spravy
keepalive, a cena je spotreba batérie na jednu spravu keepalive v mAh. Udaje o spotrebe boli
prevzaté zo zdroja [3].

Tab. 5.1: Znizenie spotreby batérie mobilného zariadenia pripojeného k sieti WCDMA pri danych
kapacitach batérie a referencnych hodnotach

Referencné hodnoty: #,,,=20s, t =400 s, T= 3600 s, cena: 0.15-0.6 mAh

Kapacita batérie ZniZenie spotreby batérie
300 mAh (chytré hodinky Samsung Gear S°) 8.5-34.2%
2550 mAh (telefon Samsung Galaxy S6°) 1-4%
7340 mAh (tablet iPad Air 27) 0.35-1.4%
uSetrena vydrz batérie [%] t ref=20s
44
43
¢as merania: 3600 s
cena jednej spravy keepalive: 0.6 mAh
1, kapacita batérie: 2550 mAh t ref=40s
11 t ref=80s
t ref=120s
P T L 1 R P AT N
50 150 200 250 300 350 400 450 5(
interval keepalive [s]

Obr. 5.1: Znizenie spotreby batérie mobilnych zariadeni v sietach 3G WCDMA s referencnymi
hodnotami

ZvySenim intervalu keepalive na priblizne 1800 sekund je mozné dosiahnut’ zna¢né zniZenie
poctu signaliza¢nych sprav, ako je to zndzornené na obr. 5.2 a v tab. 5.2. ZnizZenie poctu sprav bolo
vyjadrené iba pre jednu mobilna aplikaciu jedného mobilného zariadenia. Pre miliény mobilnych
zariadeni pripojenych do siete naraz to moze predstavovat’ vyrazné znizenie zat'aze siete.

5 https://www.samsung.com/uk/consumer/mobile-devices/wearables/gear/SM-R7500ZKABTU
6 http://arstechnica.com/gadgets/2015/04/samsung-galaxy-s6-review-its-whats-on-the-outside-that-counts/
7 http://arstechnica.com/apple/2014/10/the-ipad-air-2-a-host-of-hidden-upgrades-in-one-skinny-package/

6

redukcia poctu signaliza¢nych sprav t ref=20s

—+7000

¢as merania: 3600 s

pocet pozorovanych signaliza¢nych sprav: 40

t ref=40s
43000
T t tef=80s
t ref=120s
interval keepalive [s]
bl 2?0 4?0 6?0 8?0 IOIOO 12I00 14I00 16I00 ISIOO ZOIOO 22I00 24I00 26I00 ZSIOO 30IOO

Obr. 5.2: Redukcia poctu signalizacnych sprav v sietach 3G WCDMA s referencnymi hodnotami

Tab. 5.2: Redukcia poctu signalizacnych sprav vzhladom na pocet signalizacnych sprav na jednu
spravu keepalive a referencné hodnoty

Referencné hodnoty: = 1800 s, 7= 3600 s

Pocet signalizacnych Pévodny Redukcia poctu Pévodny Redukcia poctu
sprav na jednu interval signaliza¢nych interval signaliza¢nych
spravu keepalive keepalive sprav keepalive sprav
40 (pozorované) 20 s 7120 120's 1120
50 (pozorované) 20 s 8900 120's 1400
20 (nepozorované) 20s 3560 120 s 560

Na zaklade vysledkov je mozné skonStatovat’, ze vhodny interval keepalive pre siete WCDMA je
priblizne 1800 sektind. Zivotnost’ mapovania, ktoré by mal protokol PCP nastavit, by mala byt o
isti hodnotu vysSia ako Ziaduci interval keepalive — priblizne aspont 2000 sekind. Pre mapovania,
ktoré st vytvorené spravou PCP MAP, by Zivotnost’ mapovania mala byt nastavend na dvojnasobok
intervalu keepalive, t.j. 3600 sektind.

Zhrnutie

Protokol PCP dokéze riesit’ problémy aplikécii s prechodom cez brany NAT alebo bezpecnostné
brany a zaroven umoziuje aplikdciam ziskavat, resp. si explicitne vyziadat’ Zivotnost’ mapovania na
branach, vd’aka comu st schopné optimalizovat’ interval vysielania sprav keepalive.

V sucasnych mobilnych sietach m6zu mat’ pouzivatel'ské aplikacie stadle pomerne nizky interval
keepalive. Znizenie poctu sprav keepalive mdze byt povazované za softvérovi metddu redukcie
neziaducej rézie v sieti a zniZenie spotreby batérie na mobilnych zariadeniach. ZvySenim intervalu
je mozné docielit’ zna¢né znizenie signalizacnej réZie, obzvlast, ak su k sieti naraz pripojené
miliény mobilnych zariadeni.

Implementéacia PCP v SDN zabezpecuje vysSiu flexibilitu a kompatibilitu medzi zariadeniami od
réznych vyrobcov. Vzhl'adom na suc¢asnll implementaciu je mozné rozsirit’ architekturu o nové typy
bran, integrovat’ bezpecnost PCP, alebo implementovat’ tzv. viacdomovost v sieti (angl.
multihoming).

Literatura

[1] BOUCADAIR, M. et al. 6887: Port Control Protocol (PCP) [online]. RFC. 2013. [cit. 2013-16-
10]. Dostupné na Internete: http://tools.ietf.org/html/rfc6887.

[2] NADEAU, T.D., GRAY, K. SDN: Software Defined Networks. O’Reilly Media, 2013.
ISBN 978-1-4493-4230-2.

[3] HAVERINEN, H. et al. Energy Consumption of Always-On Applications in WCDMA
Networks. In : Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th. April 2007.
p. 964-968.

	Introduction
	1. Middleboxes
	1.1. NAT Gateway

	2. User Applications
	2.1. Keepalives
	2.1.1. TCP Keepalives
	2.1.2. Keepalives and Middleboxes

	2.2. Middlebox Traversal Methods
	2.2.1. STUN, TURN, ICE
	2.2.2. Middlebox Signaling Protocols
	2.2.3. UPnP IGD
	2.2.4. Application Layer Gateway

	3. Port Control Protocol
	3.1. PCP Messages
	3.1.1. PCP Request
	3.1.2. PCP Response
	3.1.3. MAP Opcode
	3.1.4. PEER Opcode
	3.1.5. PCP Server Recovery with ANNOUNCE Opcode
	3.1.6. Options
	THIRD_PARTY
	PREFER_FAILURE
	FILTER

	3.2. PCP Request Processing by PCP Server
	3.2.1. Learning, Modifying and Maintaining Mapping Lifetime
	PCP-PEER-created mappings
	PCP-MAP-created mappings

	3.3. PCP Server Discovery
	3.4. PCP Client Implementation
	3.5. Available PCP Software
	3.5.1. PCP Testing Tool
	3.5.2. PCP Client Library

	3.6. Comparison of PCP and Middlebox Traversal Methods

	4. Mobile Networks
	4.1. 3G Networks
	4.2. Radio Resource Control
	4.2.1. RRC States
	4.2.2. RRC Inactivity Timers
	4.2.3. RRC State Transitions with Keepalives

	4.3. Conclusions

	5. Software Defined Networking
	5.1. OpenFlow
	5.1.1. OpenFlow Switch Overview
	5.1.2. Communication with Controller
	5.1.3. Flow Entries
	5.1.4. Instructions
	Actions

	5.1.5. Ports

	5.2. SDN Software
	5.2.1. Forwarders
	CPqD OFSoftswitch

	5.2.2. OpenFlow Controller Software
	Ryu

	6. Analysis Summary
	7. Specification
	7.1. Goals
	7.2. Requirements
	7.2.1. Port Control Protocol
	Scalability
	Security

	8. Design
	8.1. Architecture
	8.1.1. Components
	PCP Client
	Edge Forwarder
	Controller
	PCP Server
	NAT Control Plane
	NAT Forwarder

	8.1.2. Network Application Components

	8.2. PCP Client Mapping Request – Processing
	8.3. Edge Forwarder
	8.4. NAT Forwarder

	9. Implementation
	9.1. Implementation Environment
	9.2. Implementation Description
	9.2.1. ARP Message Processing
	Proxy ARP

	9.2.2. NAT Table
	9.2.3. Managing Mapping Lifetime

	9.3. Verification

	10. Evaluation
	10.1. Battery Life Extension
	10.1.1. Battery Power Consumption Figures
	10.1.2. Formulas
	10.1.3. Results

	10.2. Signaling Traffic Reduction
	10.2.1. Network Traffic in WCDMA Networks
	10.2.2. Formulas
	10.2.3. Results

	10.3. Conclusions
	10.3.1. Determining PCP Mapping Lifetime

	Summary
	Conclusion
	References
	1. Úvod
	2. Analýza
	3. Návrh
	4. Implementácia
	5. Vyhodnotenie
	Zhrnutie
	Literatúra

