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User applications, such as instant messaging or VoIP, may have problems traversing the network

through  middleboxes (NAT gateways, firewalls). Several mitigation techniques exist, including a

relatively new protocol called Port Control Protocol (PCP). PCP allows user applications to receive

IP  address  and  port  mapping  directly  from  the  middleboxes.  Additionally,  PCP  allows  user

applications to optimize the number of keepalive messages sent to the network in order to maintain

the connection, reducing the network load and prolonging battery life in mobile devices. Software

defined  networking  (SDN)  is  a  new  paradigm in  computer  networks  that  allows  the  network

behavior  to  be  programmed.  SDN  networks  increase  flexibility  and  vendor  compatibility  by

providing a standard communication interface for the network elements.  The goal of the diploma

thesis is to implement PCP over an SDN network (using the OpenFlow protocol) and to measure the

reduction of keepalive traffic with PCP enabled in the implemented network, focusing on mobile

networks, where the impact of the reduction of the signaling traffic may be considerable.
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Používateľské  aplikácie,  ako  napr.  rýchle  správy (instant  messaging)  alebo  VoIP,  môžu  mať

problémy s komunikáciou v sieti cez sieťové zariadenia ako napr. brány NAT alebo bezpečnostné

brány.  Na  zmiernenie  problémov  sa  môžu  použiť  existujúce  techniky,  resp.  protokoly,  vrátane

relatívne nového protokolu Port Control Protocol (PCP). Protokol PCP umožňuje používateľským

aplikáciám  získať  informácie  o  mapovaní  IP  adries  a  portov  priamo  z  uvedených  sieťových

zariadení. PCP navyše umožňuje optimalizovať vysielané množstvo tzv. správ keepalive (správy na

udržiavanie spojenia),  čím sa znižuje záťaž siete a predlžuje sa životnosť batérie na mobilných

zariadeniach.  Softvérovo  definované  siete  (SDN),  ako  nový prístup  budovania  a  riadenia  sietí,

umožňujú  naprogramovať  správanie  sa  siete.  Siete  SDN  zabezpečujú  vyššiu  flexibilitu  a

kompatibilitu  medzi  zariadeniami  od  rôznych  výrobcov  vďaka  štandardnému  komunikačnému

rozhraniu medzi týmito zariadeniami. Cieľom diplomovej práce je implementovať protokol PCP v

sieťach  SDN  (s  použitím  protokolu  OpenFlow)  a  určiť  redukciu  množstva  správ  keepalive  s

protokolom PCP v  implementovanej  sieti,  pričom dôraz  je  kladený  na  mobilné  siete,  kde  má

redukcia signalizačnej sieťovej premávky značný vplyv.
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Introduction
User applications running on hosts, such as instant messaging (IM) or VoIP, may have problems

traversing the network through the so called middleboxes placed in computer networks, especially

NAT gateways.  In  order  to  mitigate  the incompatibility of  user  applications  with NAT, several

approaches exist, such as Session Traversal Utilities for NAT (STUN).

With the middleboxes in the network, the user applications have to keep the connections alive to

avoid  the  middleboxes  closing  the  connections  prematurely.  This  is  accomplished  by  sending

keepalive messages from the user applications to the destination host in regular intervals. Given the

fact that the user applications do not know the keepalive timers set on the middleboxes, they tend to

send the keepalives in very short intervals, increasing the network load.

In mobile networks, each message sent over the network causes a substantial number of signaling

messages  to  be  generated  and  sent  over  the  network.  With  a  large  number  of  mobile  devices

connected to the network and running one or more applications, this introduces increased network

load in the network and delay in communication. From the perspective of a mobile device, sending

an excessive amount of keepalives drains its battery life faster.

Port Control Protocol (PCP) is a relatively new protocol that allows user applications to receive

mapping information directly from the middleboxes, including external IP address and port in case

of  NAT  gateways,  and  the  mapping  timer.  The  applications  can  consequently  optimize  their

keepalive timers using this information.

Software defined networking (SDN) is a new paradigm in computer networks that allows the

network behavior to be programmed in a simpler manner. SDN networks increase flexibility and

improve  vendor  compatibility  by  providing  a  standard  communication  interface  between  the

network elements, such as OpenFlow.

The goal of the diploma thesis is to implement PCP over SDN networks and to measure the

keepalive traffic reduction with PCP enabled in the networks, focusing on mobile networks, where

the impact may be considerable.

Chapters 1 and 2 of the document describe middleboxes and their role in the computer networks,

user applications and their traversal issues over the middleboxes and related methods that provide

solutions to the traversal issues.  Chapter  3 focuses on one of the traversal methods – the most

essential part of this thesis – the PCP protocol. Chapter 4 gives a brief overview of mobile networks

and further focuses on 3G networks using the Wideband Code Division Multiple Access (WCDMA)

access technology. Chapter 5, the last part of the analysis, discusses the concept of SDN. Chapter 6

summarizes the analysis and gives an overview of the current state of the networks and issues to be

resolved.

Chapter 7 specifies the goals of the diploma thesis and the requirements for the solution. Chapter

8 describes  the  design  of  the  solution.  Chapter  9 describes  the  most  important  aspects  of  the

implementation of the solution and describes how to verify the solution. Chapter 10 evaluates the

reduction of battery power consumption of mobile devices and the reduction of signaling traffic in

WCDMA networks with PCP deployed in the network.
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1. Middleboxes
Middlebox is a term that refers to “any intermediary device performing functions other than the

normal,  standard  functions  of  an  IP router  on  the  datagram  path  between  a  source  host  and

destination host” [1].

Source [1] identifies several types of middleboxes, mainly:

• NAT gateways,

• firewalls,

• application-level gateways (ALGs).

Generally speaking, IP routing and the corresponding routers are transparent to end hosts. This

transparency is broken by introducing middleboxes in the network, as the middleboxes alter the

packet forwarding. Thus, end hosts must now cope with middleboxes as well when establishing

communication [1].

While ALGs can be classified as middleboxes, they enable end hosts to properly traverse other

middleboxes  –  NAT  gateways  and  firewalls.  Hence,  ALGs  as  one  method  to  traverse  other

middleboxes are described in section 2.2.4.

1.1. NAT Gateway
A NAT gateway is a network device that performs network address translation [2]. A carrier-grade

NAT (CGN) is a NAT gateway located in service-provider networks  [4]. Figure  1.1 illustrates an

example of a packet being subject to translation by a NAT gateway in the network. NAT allows

hosts from private networks (such as 192.168.0.0/16) to communicate with hosts on the Internet –

on the public network with publicly routable IP addresses.

More importantly, NAT can conserve IPv4 address space by translating multiple internal (private)

IP addresses to one external (public) IP address with different transport protocol ports. This type of

NAT is called Network Address and Port Translation (NAPT). When overwriting packet fields, NAT

gateways must recompute the checksum of each relevant header (IP, transport protocol, Ethernet

frame).

In  this  document,  unless  otherwise  specified,  “NAT”  refers  to  the  general  network  address

translation process to simplify discussion. It does not imply NAPT or address translation exclusive

to IP.
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Figure 1.1: Example of address translation by a NAT gateway



The translation between an internal IP address, protocol and port and an external IP address,

protocol  and  port  can  be  referred  to  as  a  mapping.  NAT gateway  stores  mappings  for  each

connection. Mappings can be created statically (manually configured by the network administrator)

or dynamically (created one a packet traverses through the NAT gateway). In case of a dynamic

mapping, the NAT gateway allocates an external IP and an external port from the pool of defined

external IP addresses and ports.

An idle  timer  may be associated for  each mapping.  If  no packet  traverses  through the  NAT

gateway for this connection, the mapping is removed by the gateway. Employing a timer for a

mapping may have several reasons.

NAT gateways do not participate in the end-to-end connection between the communicating hosts.

Hence,  NAT gateways generally cannot determine when the connection is terminated.  For TCP

connections, NAT gateways may track segments with FIN or RST flags, in which case the gateways

may remove the mapping immediately upon receiving such segments. Other transport protocols,

such as UDP, do not indicate when the connection terminates.  Additionally,  the NAT gateways

cannot  detect  one  or  both  communicating  hosts  suddenly  terminating  the  connection  (e.g.  by

crashing) [2]. Another reason to add timers to mappings is to conserve memory on NAT gateways

or keep the NAT pool for dynamic mappings from being depleted too quickly.

According to several vendor devices specified in source  [5], the default timer values for TCP

range from 30 to 150 minutes and for UDP from 60 to 300 seconds.
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2. User Applications
Certain user applications need to communicate with hosts behind NAT or similar middleboxes.

Such applications have problems traversing the middleboxes because of unexpected IP address and

port rewrite on the route to the destination. These applications include VoIP, social networks, instant

messaging or online gaming, and are sometimes referred to as always-on applications.

The data transmitted in these applications are intermittent. That is, no data may be sent for a

certain period of time. This poses another problem for the applications – middleboxes shut down

idle connections and the applications would have to establish the network connections again.

To  avoid  the  network  connections  being  shut  down by middleboxes,  user  applications  send

keepalive messages  [6] to the destination. The keepalives usually contain little to no payload to

conserve network load.

2.1. Keepalives
Keepalives are messages sent by end-user applications to check for broken connections or to

prevent disconnection due to inactivity  [7]. Without keepalives, the connection can be broken if

there are middleboxes on the path between the end hosts, such as NAT gateways. Middleboxes

maintain mapping information for each connection and assign a timeout for the mapping. If no

messages  are  sent  within  the  connection  for  the  time  specified  by the  timeout,  the  middlebox

removes the mapping and the connection is broken.

The  format  of  keepalives  and  their  usage  depends  on  the  communication  protocol  used.

Keepalives tend to be short in length to preserve the network bandwidth [7].

2.1.1. TCP Keepalives

Once established, a TCP connection lasts until it is closed explicitly by either host. There is no

connection timeout associated with the established TCP connection if no messages are sent for a

long time [8]. This implies that if, for example, the remote host crashes, the local host has no way of

learning  that  the  remote  host  no  longer  maintains  the  connection.  Periodically  sending  TCP

keepalives can detect such broken connections [6].

A host desiring to maintain a TCP connection sends an empty ACK segment to the destination

host. The destination host replies with another ACK segment. The size of the segment payload can

be zero (i.e. no data need to be included in the segments) [7].

The implementation of TCP keepalives is optional. If sending TCP keepalives is implemented, it

must be turned off by default [6]. Applications may enable or disable keepalives and may adjust the

keepalive time. By default, the keepalive time must be set to at least two hours [6].

Among the more popular platforms, Windows1, Linux2 and OS X3, support TCP keepalives and

also support setting the keepalive time. Popular platforms for mobile devices, such as Windows

Phone, Android, iOS, also support TCP keepalives and keepalive time, given that these platforms

1 https://msdn.microsoft.com/en-us/library/dd877220%28VS.85%29.aspx
2 http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/usingkeepalive.html
3 http://serverfault.com/questions/216956/how-to-check-tcp-timeout-in-linux-macos/275506#275506
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are based on Windows, Linux and OS X, respectively.

2.1.2. Keepalives and Middleboxes

For communication passing through NAT gateways, IETF requires setting the mapping lifetime

(timeout) for UDP to at least 120 seconds (with 300 seconds recommended) [9] and for TCP to at

least 124 minutes  [10]. For IPSec ESP connections, the keepalive interval is locally configurable,

with the default value of 20 seconds [11].

2.2. Middlebox Traversal Methods

2.2.1. STUN, TURN, ICE

Session Traversal Utilities for NAT (STUN)  [12] is a protocol that helps application protocols

cope with NAT traversal. STUN uses a client-server model for message exchange. STUN can also

be used as a keepalive mechanism.

STUN can be used by hosts – STUN clients – to determine their external IP address and port

allocated by a NAT gateway from a STUN server. The STUN server usually resides on the public

Internet.

The operation of STUN is simple. The STUN client sends a request to the STUN server on the

public Internet.  From the request, STUN server sees the source IP address and port as the external

IP address and port of the STUN client, since the NAT gateway translated the source IP address and

port of the request. The STUN server encapsulates the external IP address and port to the payload of

a response message that is then sent back to the STUN client. The host thus receives its external

mapping information.

The  advantage  of  STUN  is  that  it  does  not  require  modifications  of  NAT  gateways.  The

disadvantage of STUN is that is does not work properly with symmetric NAT4.

Traversal Using Relays around NAT (TURN) [13] defines an intermediate node – a relay (or a

TURN server). End hosts use the relay to forward data traffic through (such as voice). In case of

TURN, it is possible for one host to communicate with multiple other hosts with the same external

IP address and port.  While TURN can support symmetric NAT, the relays are subject to heavy

network load.

Interactive Connectivity Establishment (ICE) [14] is a technique that combines STUN and TURN

and chooses the most effective way of communication between hosts behind a NAT5.

2.2.2. Middlebox Signaling Protocols

This  subsection  gives  a  brief  overview  of  protocols  that,  unlike  the  previously  mentioned

protocols, communicate with middleboxes directly.

NAT Port  Mapping Protocol  (NAT-PMP)  [3] is  the predecessor  to  the  Port  Control  Protocol

(described in chapter  3). NAT-PMP allows the host to receive its external IP address and external

port. NAT-PMP works only on NAT gateways located one hop away from the host.

4 More information at: http://think-like-a-computer.com/2011/09/19/symmetric-nat/
5 More information at: http://www.pjsip.org/pjnath/docs/html/group__PJNATH__ICE.htm
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Two more middlebox signaling protocols include Middlebox Communication Architecture and

Framework (MIDCOM) [15] and NEC's Simple Middlebox Configuration Protocol (SIMCO) [16].

These protocols appear to be outdated as they were not widely deployed in networks despite being

in existence many years.

2.2.3. UPnP IGD

The Internet Gateway Device (IGD) is a device on the edge of a LAN and a WAN network,

allowing end users to connect to the Internet. IGD as a UPnP-based protocol allows users to control

and configure multimedia devices connected to the network, including the configuration of DHCP,

DNS and also the network address translation on the IGD device [17].

2.2.4. Application Layer Gateway

An application layer gateway6 is a software component that manages specific protocols notorious

for having problems with NAT traversal, such as Session Initiation Protocol (SIP) or File Transfer

Protocol (FTP). ALG can examine the payload of packets and determine whether NAT needs to be

performed. The use of ALGs has been discouraged [18].

6 More information at: https://www.juniper.net/techpubs/software/junos-es/junos-es93/junos-es-swconfig-
security/application-layer-gateways-algs.html
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3. Port Control Protocol
Port Control Protocol (PCP)  [18] [19] [20] allows network hosts to communicate directly with

middleboxes (NAT gateways or firewalls). With PCP, the host can receive or explicitly request a

mapping from an internal IP address, protocol and port to an external address, protocol and port.

This way, the host can traverse NAT gateways properly and communicate with other hosts behind

NAT.

PCP does not provide a mechanism to inform the remote host about the host's external mapping.

This responsibility is left to the user application and is usually handled by a rendezvous (proxy)

server, accessible in the public network by both communicating hosts.

The mapping assigned by the middlebox to the host also contains  mapping lifetime – the timer

associated with the mapping. PCP also retrieves the lifetime value from the mapping. Given the

mapping  lifetime,  the  application  running  on  the  host  can  optimize  the  interval  of  sending

keepalives over the network. Reduced keepalive traffic can extend the battery life of mobile devices

and reduce network traffic overhead [18] [21].

PCP originated as an alternative to application layer gateways (ALGs) [18], existing protocols for

NAT traversal such as STUN7, and existing protocols facilitating communication with middleboxes,

such as UPnP IGD [3]. PCP as a relatively new protocol was standardized by IETF in April 2013 as

RFC 6887 [18] and is the successor to NAT Port Mapping Protocol (NAT-PMP) [3].

PCP can be deployed in several scenarios [18]:

• home networks with NAT gateways (e.g. integrated in routers),

• carrier-grade NAT,

• simple firewalls.

PCP supports  both  IPv4 and IPv6 address  mapping and  transport  protocols  with  16-bit  port

numbers. PCP also supports protocols that do not use port numbers (such as IPsec ESP or ICMP)

for firewalls, but not NAT gateways [18].

As defined in RFC 6887, PCP can be operational only in single-homed networks. If a network is

single-homed,  only one  route  exists  to  the  Internet.  The  recently released  RFC 7488 provides

support for multi-homed networks [22].

Figure  3.1 shows the typical deployment and usage of PCP in networks. The host runs a user

application that attempts to connect to the application server. The application retrieves mapping

information from the middlebox in order to establish the connection or optimize the interval of

sending keepalive messages.

The application invokes the PCP client to request mapping information from the middlebox. The

middlebox runs the  PCP server,  which processes the request of the PCP client and sends back

mapping information.

7 https://datatracker.ietf.org/doc/charter-ietf-pcp/

7



3.1. PCP Messages
PCP defines two message types: PCP request and PCP response.

PCP messages are sent over UDP and are not acknowledged. PCP request uses destination UDP

port 5351 and PCP response uses source UDP port 5351.

The PCP request is used by the host to request mapping information from the PCP server. The

PCP response is used by the PCP server to inform the PCP client of the state of the mapping,

usually informing the PCP client that the mapping information has been assigned to the PCP client.

PCP can be considered a request/response protocol. This point of view may not be accurate –

unlike other request/response protocols, a PCP request does not necessarily have to be followed by

a PCP response. If a PCP request sent by the PCP client was lost on the path to the PCP server, the

PCP client may retransmit the same message. The PCP client can also use the same PCP request to

renew the mapping information. The PCP server usually generates PCP responses to PCP requests

sent by PCP clients. The PCP server may also send a PCP response to inform the PCP client about

the  new state  of  the mapping,  e.g.  because  of  middlebox reconfiguration or  failure.  Given the

message exchange model, RFC 6887 refers to PCP as a hint/notification protocol [18].

PCP messages  contain  fields  with  IP addresses,  such  as  the  external  IP address  of  the  host

assigned by the PCP server. IP addresses in PCP messages are always formatted as IPv6 addresses.

IPv4 addresses are represented as IPv4-mapped IPv6 addresses:

::ffff:<IPv4 address>

3.1.1. PCP Request

Figure 3.2 shows the common header format for PCP requests.

8
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The PCP request contains the following fields:

• Version – for PCP, this value is always set to 2. This field can be used to determine the

supported version of PCP on the PCP server, should newer versions of PCP are defined.

• R – 1-bit field – 0 indicates PCP request.

• Opcode – 7-bit operation code for the PCP request. In RFC 6887, the following opcodes are

defined: MAP (1), PEER (2) and ANNOUNCE (0). Opcodes are discussed in sections 3.1.3,

3.1.4 and 3.1.5, respectively.

• Reserved – zero-padded bits, ignored by PCP server.

• Requested Lifetime – mapping lifetime requested by PCP client. If the field is set to zero, the

PCP server deletes the mapping.

• PCP Client's IP Address – IP address of the PCP client in IPv6 format. This field is used by

the PCP server to determine additional middleboxes along the path from the PCP client that

do not run the PCP server.

• Opcode-Specific Information – additional fields defined by the corresponding opcode.

• Options – a set of optional fields in the type-length-value format. Options can be ignored by

the PCP server. A brief overview of options is given in section 3.1.6.

3.1.2. PCP Response

The format of a PCP response message is shown in Figure 3.3.

9
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The PCP response contains the following fields:

• Version – set to 2 by the PCP server.

• R – 1-bit field set to 1, indicating PCP response.

• Opcode – copied from the PCP request.

• Reserved – zero-padded bits.

• Result  Code –  value indicating  a successfully processed  PCP request  (0,  SUCCESS) or

processing failure (values 1-14, depending on the type of failure).  The meaning of each

result code is described in RFC 6887 [18].

• Lifetime – mapping lifetime assigned by the PCP server to the PCP client.

• Epoch Time – time in seconds since the PCP server started operation. This is used by the

PCP client to determine whether the PCP server lost state (e.g. if the PCP server crashed and

rebooted). If so, the PCP client recreates its mapping information as per RFC 6887 [18].

• Reserved (12 bytes) – if the PCP request was parsed successfully,  Reserved contains zero

bits. Otherwise, the field contains the last 12 bytes (96 bits) of the PCP Client's IP Address

field in the PCP request.

Opcode-specific information and options for PCP responses are covered in subsequent sections.

3.1.3. MAP Opcode

A PCP client uses a PCP MAP request in case a user application desires to host a server (for

online gaming, a web server, etc.) and listen for incoming traffic from the public network. After the

PCP client received mapping information, it is the responsibility of the application to announce its

external  (public)  IP  address,  protocol  and  port  to  a  rendezvous  server,  as  mentioned  in  the

introduction of this chapter, as PCP does not provide this function [18].

The format of the MAP opcode for a PCP request is shown in Figure 3.4.
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The MAP opcode for PCP requests contains the following fields:

• Mapping Nonce – random value generated by the PCP client. The PCP client uses this value

to validate PCP responses [18].

• Protocol – protocol above the IP header. The protocol numbers are identical to those defined

by IANA8.

• Reserved – zero-padded bits.

• Internal Port – internal port that the user application wishes to use to establish a connection.

• External Port – external port preferred by the user application. If the application does not

require a specific external port, 0 is assigned.

• External IP address – external IP address in IPv6 format preferred by the user application. If

the application does not require a specific external  IP address,  all-zeros IPv6 address is

assigned (i.e. “::”).

The PCP response containing the MAP opcode copies all fields from the corresponding MAP

request  except  External  Port and  External  IP address.  The PCP server  assigns  the external  IP

address and port according to the mapping entry created by the underlying middlebox.

3.1.4. PEER Opcode

A PCP client uses a PCP PEER request if a user application wishes to establish an outbound

connection to an application server (i.e. the application acts as a client) in the public network or in

another local network behind NAT [18].

A PCP PEER request can also be used by the PCP client to query existing mapping, e.g. in case

the middlebox created an implicit mapping without the application communicating with the PCP

server first.

The format of the PCP PEER request is shown in Figure 3.5. The message format is content-wise

almost identical to PCP MAP messages. PCP PEER messages define two additional fields:

• Remote  Peer  Port –  port  of  the  remote  host  the  user  application  wishes  to  establish

connection with.

8 http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

11

Figure 3.4: Message format for MAP opcode for PCP request



• Remote Peer IP address – IP address in IPv6 format of the remote host the user application

wishes to establish connection with.

3.1.5. PCP Server Recovery with ANNOUNCE Opcode

PCP offers a mechanism for recovering mappings if the PCP server lost its state (e.g. crashed and

rebooted). This mechanism allows PCP clients to recover mappings within seconds. Otherwise, the

PCP clients would not know that the state of the PCP server was reset, until they send the next

keepalive,  which  may be  a  long  time  ahead  depending  on  the  keepalive  interval.  This  would

encourage applications to request shorter keepalive intervals, which would increase network load.

Once  the  PCP server  reboots,  it  resets  its  epoch  time to  zero  and sends  PCP ANNOUNCE

response to PCP clients to multicast address 224.0.0.1:5350 (or  [ff02::1]:5350 in case of

IPv6).  A PCP client,  having  received the  PCP response  with  invalid  epoch  time  (set  to  zero),

determines that the PCP server lost its state. The PCP client then sends a PCP request with the

appropriate opcode (MAP or PEER) and include the external IP address and port assigned by the

PCP server before losing its state, reminding the server of the mapping assigned.

The PCP ANNOUNCE request can be used by the PCP client to determine whether the PCP

server is running or maintains its state (by checking the epoch time). PCP ANNOUNCE messages

do not contain any opcode-specific fields [18].

3.1.6. Options

This section briefly introduces the available options  for PCP messages.  A generic format for

options is shown in Figure 3.6. Option Code determines the option type, Option Length defines the

length of the option header and Option Data contains option-specific data.
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THIRD_PARTY

This option allows the PCP client to handle PCP requests on behalf of another host (specified by

the internal IP address in the option data). It is recommended to not use this option due to security

concerns. This option is valid for MAP and PEER opcodes [18].

PREFER_FAILURE

Without  this  option,  if  the PCP client  requires  a  specific  external  IP address  and port  to  be

assigned and the PCP server cannot comply to the request, the PCP server assigns different external

IP address  and  port.  With  this  option,  the  PCP server  will  not  create  a  mapping with  explicit

external IP address and port if it cannot create it and returns a PCP response indicating failure.

This option may be necessary in scenarios where the user application must explicitly specify an

external IP address or port. It is expected that, with the potentially wider deployment of PCP in

networks, this option will be deprecated in the future. This option is valid for MAP and PEER

opcodes [18].

FILTER

This option allows the PCP client to filter incoming traffic with unwanted IP addresses and ports.

To  filter  the  traffic,  the  PCP client  specifies  the  remote  peer  IP address  and  port  which  the

application allows to receive traffic from. All other traffic is filtered by the middlebox. The FILTER

option also allows specifying an entire subnet of remote hosts to be permitted (by using the Prefix

Length field).

The FILTER option is useful for mobile devices that have to change their connection state solely

for  the  purpose  of  rejecting  unwanted  traffic.  Using  the  FILTER  option  prevents  this  and

consequently saves battery life of mobile devices. Connection states and their impact on the battery

life of mobile devices is further discussed in chapter 4.

In practice, the FILTER option can be used by applications hosting a server whose public IP

address and port are known to other hosts on the Internet. One such case may be a game server that

is published in a list of available game servers that the players (other client devices) can connect to.

Filtering unwanted traffic or restricting the traffic to specific players can be desirable.

This option is valid for the MAP opcode only [18].

3.2. PCP Request Processing by PCP Server
This section contains an overview of how the PCP server processes a PCP request. Several details

and edge cases were omitted to focus on the most important aspects of PCP message processing.
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RFC 6887 contains detailed information about PCP message processing [18].

The basic processing steps are shown in Figure  3.7. A request may be invalid due to incorrect

version or invalid length of the message. In that case, the PCP server sends a PCP response back to

the PCP client with the result code corresponding to the type of failure. If a request is valid, the PCP

server processes the opcode-specific data and options, if any. Finally, the PCP server builds a PCP

response according to the flowchart in Figure 3.8 and sends it toward the PCP client. The processing

of MAP and PEER opcode data is shown in Figure 3.9.
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Creating, updating or deleting a mapping entry is the responsibility of the underlying middlebox.

The PCP server provides the middlebox with mapping information according to its configuration. If

the middlebox created a new mapping, the PCP server receives the created mapping and sends it

back to the PCP client.

If the external IP address is 0, the PCP server orders the middlebox to allocate an external IP

address. The same applies to the external port.

If the PCP client explicitly specified an external IP address, the PCP server checks whether the

middlebox can create a mapping with such IP address. If not, the PCP server then allocates a valid

external IP address. If the PREFER_FAILURE option is specified, the PCP server will not allocate a

different  IP  address  and  instead  sends  back  a  PCP  response  with

CANNOT_PROVIDE_EXTERNAL result code [18].

3.2.1. Learning, Modifying and Maintaining Mapping Lifetime

If a user application established connection with a remote host without negotiating a mapping

entry from the PCP server first, the PCP client can then send the PCP PEER request to learn the

mapping lifetime and the application can thus optimize the keepalive interval.
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PCP-PEER-created mappings

Using the PCP PEER request, the PCP client can extend the mapping lifetime (i.e. maintain the

mapping). The PCP PEER request cannot be used to reduce the mapping lifetime or delete the

mapping [18]. To delete the mapping, the PCP client and the PCP server have to let the mapping

entry on the middlebox expire on its own.

To maintain the mapping, the PCP client should send PCP PEER requests regularly to the PCP

server.  The  interval  of  sending  PCP requests  is  1/2  to  5/8  of  the  lifetime  (randomly chosen).

Sending PCP PEER requests to maintain the mapping is not mandatory – if the PCP client does not

send PCP PEER requests, the mapping behaves as a mapping implicitly created by the middlebox

[18].

Assuming that implicitly created mappings on middleboxes that were once maintained by the

PCP server use the same lifetime, it is sufficient for the PCP client to send keepalives to the remote

host (without sending any PCP PEER requests to the PCP server).

PCP-MAP-created mappings

Mappings created by PCP MAP requests can only have their lifetime reduced or deleted.

To maintain a MAP-created mapping, the PCP client must send MAP requests to the PCP server

in the same interval as PCP PEER requests mentioned above. Additionally, as per the requirements

of the user application, the application may have to send keepalives to the remote host (e.g. to check

for connectivity) [18].

3.3. PCP Server Discovery
PCP clients need to know the address of the PCP server in order to be able to request mapping

information. The following alternatives are suggested in RFC 6887:

• PCP clients configure the PCP server address manually,

• PCP clients  receive one ore more PCP server  addresses via  DHCP. RFC 7291 provides

direct support for this approach [23].

• PCP clients assume that the PCP server IP address is the address of the host's default router

(default gateway).

A related RFC draft  suggests  sending a PCP anycast  address  to  discover  PCP servers  in  the

network [24].

3.4. PCP Client Implementation
RFC 6887 does not specify how the PCP client should be implemented – whether as an OS-level

service or in each user application individually.

Implementing custom modifications of the PCP client outside the scope of the PCP RFC standard

should be avoided since it is not expected that custom features could be widely deployed in PCP

clients.

Implementing the PCP client as an OS-level service requires that operating systems support the

PCP client service. For practical reasons, it is not expected that the current or older versions of
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operating systems (desktop and mobile alike) will add support for the PCP client service. Each user

application would still have to be PCP-aware in that it would have to interact with the PCP client

service.

It is more practical to implement the PCP client per-application. The potential disadvantage is the

fact that each application may have to determine the PCP server address individually. Using the

DHCP approach mitigates  this  shortcoming,  as  it  allows any application  to  determine the  PCP

server address.

3.5. Available PCP Software
This section gives a brief overview of chosen software that implements PCP.

3.5.1. PCP Testing Tool

PCP Testing Tool9 is a software tool consisting of two components – a web application and a PCP

client.

The web application allows the user to specify a PCP message by filling in individual fields.

Once  the  user  specified  the  fields  and  confirmed  to  create  the  message,  the  web  application

generates a message containing XML-formatted fields of a PCP message to the PCP client. The IP

address and port of the PCP client that listens to the requests from the web application can be

configured. The web application requires Apache web server and PHP to run.

The PCP client is a PCP client implementation of PCP. If the PCP client receives a message from

the web application, the PCP client constructs a PCP request from the message to the PCP server

specified  in  the  corresponding  configuration  file.  The  configuration  file  allows  to  specify  IP

addresses in IPv6 format – if an IPv4 address needs to be specified, it must be specified as an IPv4-

mapped IPv6 address.

Given its web interface, this tool is user-friendly in the sense that it easily allows the user to build

a PCP message. The disadvantage of this tool may be that it does not provide a command-line

interface to build messages, which may be useful when automating the building of PCP messages

(e.g. via shell scripts).

3.5.2. PCP Client Library

The PCP client library10 contains a library of functions implementing the PCP client that can be

integrated in user applications, a lightweight command-line PCP client application and a module

that allows to build packets using the scapy11 command-line packet builder.

With the application, the user can send a PCP request to a PCP server. An example usage of this

appliction is shown below:

pcp -i <internal host IP address>:<internal port> -s <PCP server 

address> -l 3600

The  -i option specifies the address  of  the internal  host  that  is  to  be mapped to an external

9 Available at: http://sourceforge.net/projects/pcptestingsuits/
10 Available at: https://github.com/libpcp/pcp
11 Available at: http://www.secdev.org/projects/scapy/
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address, and an internal port to be mapped to an external port. While it may seem redundant to

specify the internal IP address, the application will not work without it. This is also necessary to

specify in case the host has multiple IP addresses (multiple interfaces). The -l option specifies the

requested mapping lifetime in seconds.

The command above generates a PCP MAP request for TCP. To specify a PCP PEER request, the

remote peer IP address and port have to be specified:

pcp -i <internal host IP address>:<internal port> -s <PCP server 

address> -l 3600 -p <remote peer IP address>:<remote peer port>

The -u option creates a mapping for UDP. An explicit IP address and port can be specified by the

-e option:

pcp -i <internal host IP address>:<internal port> -s <PCP server 

address> -l <lifetime> -e <external IP address>:<external port>

3.6. Comparison of PCP and Middlebox Traversal Methods
Compared  to  similar  protocols  or  middlebox-traversal  methods,  PCP  has  the  following

advantages:

• PCP can optimize keepalive traffic,

• PCP can resolve NAT traversal issues and eliminate the need to deploy ALGs [18],

• PCP has a simple protocol design.

PCP imposes the following requirements on the network, which may be seen as disadvantages:

• each user application must implement a PCP client,

• each middlebox that is supposed to be PCP-aware must run a PCP server.

While UPnP-IGD allows end users to configure mapping information, even programatically, PCP

transmits  fewer  messages  (therefore  is  more  bandwidth-efficient)  and  does  not  need  to  be

configured by users [3].

While the original PCP RFC [18] states that PCP can be used for simple firewalls, a relatively

recent RFC draft has been published that adds support for new PCP message types that support

advanced firewall functionality in managed networks, such as software defined networks (SDN)

[25].
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4. Mobile Networks
Mobile networks allow end users to connect to the Internet and communicate with each other in a

wireless manner using mobile devices. Over the decades, several generations of mobile networks

have been developed and deployed to cope with the increasing demand of users staying connected

while moving.

The first generation of networks (developed in the 1980s) allowed users to establish phone calls.

The data transmission in 1G networks was analog, unlike later generations, which used digital data

transmission.

2G networks originated in the later 1980s, of which Global System for Mobile Communications

(GSM) became the most popular and widespread 2G technology. Despite newer mobile network

technologies,  GSM is still  widely used in  the present  time due to  its  widespread coverage and

network stability. GSM uses digital data transmission to allows users to establish phone calls and

send SMS messages. General Packet Radio Service (GPRS) is a 2G technology deployed over GSM

that enables packet-switched transmission of data. Enhanced Data rates for GSM Evolution (EDGE)

is another popular 2G technology that improves transmission data rate compared to GPRS.

3G  networks,  of  which  Universal  Mobile  Telecommunications  System (UMTS)  is  the  most

widely  adopted  technology,  allow  higher  data  rates  than  2G  networks.  UMTS  employs  the

Wideband Code Division Multiple Access (WCDMA) radio access technology. High Speed Packet

Access (HSPA) technologies improve the data rate even further to a few tens of Mbit/s [26].

Long-Term Evolution (LTE) is  a  relatively new mobile  technology that  further  improves  the

transmission data rate, reduces round-trip time and reduces cost for provisioning networks [26].

The rest of this chapter focuses on 3G networks, particularly on the WCDMA access technology

used in UMTS. In WCDMA networks, mobile devices are in different connection states depending

on the amount of  data to  be transmitted.  Transitioning to  a different  connection state  causes  a

considerable number of signaling messages to be generated. Moreover, connection states in which

mobile  devices  transmit  data reduce their  battery life.  WCDMA thus proves  to  be a  source  of

continuous research on how to improve the efficiency of the network and preserve battery life of

mobile devices connected to the network. Connection states are discussed in more detail in section

4.2.

4.1. 3G Networks
Figure  4.1 shows  the  architecture  of  3G  networks12.  Mobile  devices,  known  also  as  user

equipments (UE),  connect  to  the  Internet  through  the  radio  access  network,  UTRAN.  A UE

communicates wirelessly with a base station,  Node B. Multiple Node B stations are connected to

and managed by a single Radio Network Controller (RNC).

RNCs are  connected  to  the  core  network,  which  is  responsible  for  forwarding  traffic  to  the

desired  destinations  and  for  managing  subscribers.  Mobile  Switching  Center  (MSC)  manages

12 More information at: http://www.radio-electronics.com/info/cellulartelecomms/umts/umts-wcdma-network-
architecture.php
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circuit-switched connections, such as phone calls. Gateway MSC (GMSC) acts as a public interface

between the network core and a telephone network (Public Switched Telephone Network, PSTN).

Serving  GPRS  Support  Node  (SGSN)  is  responsible  for  mobility  management,  session

management (establishing and managing data sessions known as PCP contexts) and billing.

Gateway GPRS Support Node (GGSN) acts as an interface between the core network and the

external  packet-switched  networks  (packet  data  networks,  PDN).  From the  perspective  of  the

Internet,  GGSN acts  as  an  IP router.  For  traffic  directed  toward  a  UE,  GGSN determines  the

corresponding SGSN that currently manages the UE.

Other nodes in the core network include Home Location Register (HLR), which is a database

containing information about each subscriber; VLR (Visitor Location Register), which is a subset of

HLR and is used in areas the UE is visiting, and EIR (Equipment Identity Register), which checks

whether a UE is allowed to access the network.

In the radio network, each Node B covers a certain area, known as a cell, with its wireless signal.

When a UE is moving from one cell to another, handover is performed, which transfers control of

the UE from one Node B to another. To track the location of a UE within a cell, Node B establishes

a communication with the UE, also known as paging.

4.2. Radio Resource Control
Radio  Resource  Control  (RRC)  is  a  protocol  in  WCDMA networks  that  manages  signaling

between  a  mobile  device  and  the  radio  access  network,  UTRAN  [27] [5].  RRC,  among  the

numerous functions it performs [27], provides establishment, maintenance and release of an RRC

connection  and  its  associated  radio  resources between  a  mobile  device  and  the  radio  access

network, and also paging. RRC states also apply to HSPA technologies [28].
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4.2.1. RRC States

Figure 4.2 shows the possible RRC states and transitions that can occur for a mobile device [27]

[5] [29]. When the device is not connected to the network, it is in the  RRC Idle mode. Once the

device wishes to establish a connection with a remote host, the RRC connection between the device

and the network is established first, and the device is now in the RRC Connected mode. Table 4.1

shows the average power consumption of a device in each state.

CELL_DCH (Dedicated Channel) state is used when the device transmits data over the network,

unless the amount of data is very small. For the CELL_DCH state, the network allocates a dedicated

data channel for the mobile device [5]. The average power consumption of a device in this state is

the highest, as shown in Table 4.1.

In  CELL_FACH (Forward  Access  Channel)  state,  the  device  shares  a  channel  with  other

devices. This state is used if there is a small amount of data to be transmitted by the device. Source

[30] states that a data rate low enough to be transmitted in the CELL_FACH state is up to 64 kbit/s

for downlink transmissions and up to 8-16 kbit/s for uplink transmissions, although these values are

dependent on the implementation of the RNC. If the data rate (traffic volume) exceeds a defined

threshold, the devices transitions to the CELL_DCH state [31].

In  CELL_PCH (Paging  Channel)  state,  the  device  is  not  capable  of  sending  or  receiving

packets. This state is used by the network for paging. If a packet is sent towards the device, the

device enters the CELL_FACH or CELL_DCH state. This state consumes very little battery power

compared  to  the  CELL_FACH  or  CELL_DCH  states.  Not  all  networks  currently  use  the

CELL_PCH state [5] [30].

URA_PCH (UTRAN Registration Area Paging Channel) state, similar to the CELL_PCH state,

does not allow data to be transmitted. URA_PCH is beneficial in cases where the device is moving

fast and changing cells frequently as a result13,14 [29]. URA_PCH has approximately the same power

consumption as CELL_PCH. Given that the URA_PCH state is not known to be implemented in

mobile networks  [5] [30] and it can be considered equivalent to CELL_PCH in terms of power

consumption and inactivity timers [30], this state is not further referenced in this document.

In  RRC Idle mode,  the  device  does  not  have an  RRC connection,  but  the  network  can  still

communicate  with  the  device  via  paging.  The  power  consumption  is  comparable  to  that  of

CELL_PCH and URA_PCH states [5].

13 More information at: http://www.telecomsource.net/showthread.php?2428-Difference-between-URA_PCH-and-
CELL_PCH

14 More information at: http://www.telecomsource.net/showthread.php?1737-What%20is%20URA%20and
%20URA_PCH%20state?
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Table 4.1: Average current (power consumption) of a mobile device in RRC states [30] [5] [29]

RRC State Power consumption

CELL_PCH, URA_PCH approx. 5 mA

CELL_FACH 100 – 150 mA

CELL_DCH 200 – 400 mA

4.2.2. RRC Inactivity Timers

If the device persists in an RRC state for a certain amount of time without sending any data, it

descends to a lower-power RRC state. Each such transition is associated with an  inactivity timer.

These inactivity timers, as shown in Figure 4.2, can be referred to as T1, T2 and T3 [30] [5].

T1 timer is used in the CELL_DCH state. If the connection is idle for T1 seconds, or the data rate

is low enough, the device transitions to CELL_FACH state. The data rate threshold is dependent on

the concrete implementation of the RNC in the network. If there is traffic exceeding the threshold

data rate, the T1 timer is reset and the device remains in the CELL_DCH state. Typical values for

the T1 timer range up to 5 seconds [30] [5].

T2 timer is used in the CELL_FACH state. If no packets are sent over T2 seconds, the device

transitions to the CELL_PCH state. In case the network does not support the CELL_PCH state, the

device releases its RRC resources and enters the RRC Idle mode. As with T1, typical values for T2
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timer range up to 5 seconds [30].

If no packets are sent and the device stays in the CELL_PCH state for T3 seconds, the device

transitions from the CELL_PCH state to RRC Idle mode and releases its RRC resources. T3 value

ranges typically from a few minutes to a few tens of minutes [30] [5].

4.2.3. RRC State Transitions with Keepalives

If a device sends a single keepalive message toward a destination host, there are a few possible

state transitions to consider, which are illustrated in the decision tree in Figure 4.3. Transitioning to

CELL_FACH or CELL_DCH depends on the network configuration.  Is it  assumed that,  before

sending a keepalive, the device is in Idle mode or CELL_PCH state and that no other data packets

are sent over the network at that time.

If a user application sends a keepalive that should be acknowledged (such as a TCP keepalive, or

an application keepalive over UDP), then the device may have to return to a higher RRC state or

repeat the cycle of state transitions again, depending on the round-trip time of that keepalive. In

case the round-trip time is greater than the timer for the active RRC state the device is currently in

(CELL_DCH or CELL_FACH), the device transitions  to  a lower state  and,  upon receiving the

acknowledgment, back to the higher state. This increases the power consumption of the device and

generates more signaling traffic due to more state transitions.

4.3. Conclusions
With  an  increasing  amount  of  smartphones  connected  to  mobile  networks,  the  amount  of

signaling traffic increases significantly, especially considering the widespread usage of always-on

applications such as social networks or instant messaging. One cause of the increased signaling

overhead is the frequent transmission of keepalives, which generates signaling messages due to

RRC state transitions of mobile devices. The increased signaling overhead imposes considerably
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Figure 4.3: Possible RRC state transitions when sending a single keepalive
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higher processing requirements on mobile network elements and may eventually cause slower data

rate or network congestion.

Due to sending keepalives frequently,  mobile devices remain longer in the active RRC states

(CELL_DCH and CELL_FACH), which contributes to higher battery power consumption of mobile

devices.

A new concept in the field of computer networks called software defined networking (SDN) has a

great  potential  of  improving  the  effectiveness  and  scalability  of  computer  networks,  including

mobile networks. SDN is discussed in the next chapter.
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5. Software Defined Networking
Software  defined  networking  (SDN)  is  a  relatively  new  concept  in  the  field  of  computer

networks. SDN emerged from the requirements of enterprises and end users that today's traditional

networks cannot cope with [32] [33].

The main idea of SDN is to separate the control and the data planes of network nodes.  The

control plane is logically centralized in an element called the controller and the data plane remains

in  the  network  nodes,  which  are  now  called  forwarders.  Forwarders  usually  perform  packet

forwarding and basic packet processing, such as overwriting fields in packet headers [34].

Figure  5.1 shows  the  basic  architecture  of  SDN  networks  [34].  The  controller  manages

forwarders via a standard communication interface, such as OpenFlow15 or NETCONF [35]. This is

also called the  southbound interface.  Network applications are software programs that define the

network  behavior  (hence  the  term  “software  defined  networking”),  ranging  from  very  basic

programs,  such  as  packet  switching,  to  more  advanced  applications,  such  as  a  firewall.  The

controller  accepts  requests  from  the  network  applications  and  translates  them  to  low-level

commands that the forwarders are able to process. Each network application communicates with the

controller via a separate northbound interface.

In general, SDN networks have the following advantages over traditional networks [32] [33]:

15 More information at: https://www.opennetworking.org/sdn-resources/openflow/57-sdn-resources/onf-
specifications/openflow?layout=blog
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• ease of adding new or modifying existing network applications,

• improved automation and management of network devices,

• given  the  standard  communication  protocol  between  the  controller  and  the  forwarders,

network devices from multiple vendors can be deployed in networks,

• improvement of the user experience due to the ability of SDN networks to easily adapt to the

needs of end users.

Migration from a traditional network to a pure SDN network may be costly. Is it not uncommon

to for hybrid SDN networks to exist that contain a mix of traditional network elements, forwarders

and one or more controllers [32].

5.1. OpenFlow
OpenFlow  is  a  popular  standard  for  communication  between  a  controller  and  forwarders.

Forwarders are referred to as OpenFlow switches. OpenFlow protocol and switch are defined by the

OpenFlow switch specification [36].

At the time of writing this thesis, the most recent version of the OpenFlow specification is 1.5.1

[37]. Given that the solution described in this thesis uses SDN controller and forwarder software

compatible with OpenFlow 1.3.0, this section discusses the OpenFlow specification 1.3.0 [36]. This

section covers only the components of an OpenFlow switch used in the thesis.

5.1.1. OpenFlow Switch Overview

Figure 5.2 shows the basics of an OpenFlow switch. The switch communicates with the controller

via the OpenFlow protocol. When a packet is received on an ingress port, it is processed through a

set of flow tables. The packet processing is also called the pipeline. Each flow table contains a set of

rules called flow entries. 

Datapath refers to a part of the OpenFlow switch that comprises the ports, flow tables and the

pipeline.  Control  channel refers  to  the  communication  interface  between  the  switch  and  the

controller. Each datapath is defined by a unique 64-bit  datapath ID. The lower 48 bits define the
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MAC address of the switch and the upper 16 bits are implementation-specific [36].

5.1.2. Communication with Controller

The  communication  of  the  OpenFlow  switch  and  the  controller  is  provided  by  the  control

channel. Using the control channel, the controller and the switch exchange control messages or

forward data packets to and from the controller.

The message delivery between the controller and the switch is guaranteed. There is no need for a

network application to explicitly check and acknowledge that a message sent from the controller to

the switch was received successfully.

Features message is sent by the controller during the establishment of the control channel to

query the switch about its capabilities. Modify-State messages are sent by the controller to add,

modify or remove flow entries or to modify the properties of ports. Packet-Out messages are used

by the controller to send packets through the switch to the destination. Packet-In messages are sent

by the switch to forward packets to the controller (via the reserved CONTROLLER port).

If a controller installs a flow entry on a switch with the OFPFF_SEND_FLOW_REM flag set and the

flow entry expires or is deleted by the controller, the switch informs the controller that the flow

entry has been removed by sending a Flow-Removed message to the controller.

5.1.3. Flow Entries

Each flow entry contains components shown in Figure 5.3.

Match fields determine whether a packet matches the flow entry. If so, the  instructions for this

flow entry are executed. Match fields may contain the following [36]:

• ingress port ID,

• header fields (e.g.  EtherType from the Ethernet frame header,  Time To Live from the IPv4

header),

• metadata specified by a previous table.

A match for a flow entry must contain all its associated prerequisites. For example, to match a

UDP datagram with a specified destination port, the match must also contain the corresponding

lower-layer protocols – in this case, EtherType field for IPv4 (0x0800) and IPv4 Protocol field for

UDP (0x11).  If  the  prerequisites  are  not  specified,  the  switch  sends  an  error  message  to  the

controller with  OFPET_BAD_MATCH type and  OFPBMC_BAD_PREREQ flags set.  A flow entry that

matches any packet and has priority equal to 0 is called the table-miss flow entry.

Priority defines the precedence of a flow entry. If a packet matches multiple flow entries, only the

flow entry with  the  highest  priority  is  considered  and other  entries  are  discarded.  If  there  are
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Figure 5.3: Flow entry structure in an OpenFlow switch
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multiple flow entries with the same priority,  the behavior of the switch is  undefined (not even

OpenFlow 1.5.1 defines this behavior). It is assumed that this behavior is defined by a concrete

implementation of the switch software. The controller may prevent adding flow entries with the

same priority and intersecting matches by setting the OFPFF_CHECK_OVERLAP flag in Modify-State

messages.

Counters are incremented every time a packet matches the flow entry. Examples of per-flow-

entry counters include the number received packets or received bytes. Other types of counters are

defined e.g. per flow table or per port.

If a packet matches the flow entry, a set of instructions is executed. Instructions are discussed in

section 5.1.4.

Timeouts are  optional  and are  used  by the  controller  to  set  the  flow entry to  expire  after  a

specified amount of time in seconds. If  hard_timeout is  set,  the flow entry expires after the

specified number of seconds since its addition to the switch. If  idle_timeout is set,  the flow

entry  expires  after  the  specified  number  of  seconds  if  no  packet  matched  this  flow  entry  for

idle_timeout seconds.

Cookie is a value that the controller associates with the flow entry. Cookie can be used by the

controller to filter messages dealing with flow modification, flow deletion or flow statistics.

5.1.4. Instructions

Generally speaking, instructions modify the packet, the set of actions or the pipeline processing.

Commonly used instructions are the following:

• Write-Action – adds the specified actions into the action set.

• Apply-Actions – applies the action set to the packet immediately,  without modifying the

action list. This can be used to execute the action set multiple times.

• Clear-Actions – clears the action set.

• Goto-Table – causes the pipeline to jump to the flow table specified by its ID. The flow table

ID must be greater than the current flow table ID.

Actions

The  action set is  a  list  of  actions applied  to  the  packet.  The action  set  can be  modified  by

instructions, such as those mentioned above. Some commonly used actions include:

• Set-field – modify a header field.  While this action is not specified as mandatory in the

OpenFlow switch specification, its inclusion in the implementations of OpenFlow switches

greatly improves the usefulness of the switches. The set-field action allows to overwrite IP

addresses and ports, thus allowing to implement a simple NAT.

• Output – send the packet out the specified port.

5.1.5. Ports

OpenFlow defines several types of switch ports, including the following:
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• Physical ports – these ports correspond to the physical interfaces on the switch.

• Logical ports – these ports can be used to represent e.g. VLAN ports or loopback interfaces.

• Reserved ports – these ports have a special meaning in the context of packet forwarding.

CONTROLLER port represents the port (the control channel) to the controller and can be used

to  forward  packets  to  the  controller.  TABLE port  can  be  used  by  controller  when  the

controller sends a packet to a switch and desires to process the packet through the flow

tables in the switch. IN_PORT can be used to send a packet out the ingress port on a switch.

5.2. SDN Software
This section briefly reviews existing software for SDN controllers and forwarders.

5.2.1. Forwarders

CPqD OFSoftswitch

CPqD OFSoftswitch16 is a forwarder implementation compatible with OpenFlow 1.3. It consists

of the following main components:

• ofdatapath – the OpenFlow switch implementation,

• ofprotocol – the control channel between the switch and a controller,

• dpctl – a command-line tool to query information about the switch or modify the switch.

OFSoftswitch has a well-documented source code and supports timeouts and modifying packet

headers (i.e. the  Set-Field action). OFSoftSwitch resolves multiple matching flow entries with the

same priority by considering only the flow entry added as the first17,18. When installing a Set-Field

action on a flow entry, OFSoftSwitch automatically recomputes the checksums of relevant headers

(TCP/UDP, IP, Ethernet).

5.2.2. OpenFlow Controller Software

Ryu

Ryu is a framework to create a custom SDN controller. Ryu also allows to write custom network

applications over the controller. Ryu is written in Python language – being a high-level language, it

allows for rapid prototyping and easy writing of programs.

Ryu is provided with a well-documented API19. If the documentation is missing information or it

is unclear how to use certain classes or functions, examining the source code is another option as it

is  likewise well-structured and documented.  Ryu supports  OpenFlow 1.0,  1.2 and 1.3,  and also

NETCONF and OF-Config 1.1.

Despite Ryu being a framework and not a controller per se, the available documentation and the

16 Available at: https://github.com/CPqD/ofsoftswitch13
17 https://github.com/CPqD/ofsoftswitch13/blob/2836522c1fdd2d5a0b759935c8b914abf41af441/udatapath/flow_tabl

e.h#L43
18 https://github.com/CPqD/ofsoftswitch13/blob/c532c3167523564d4ea9f9754628900a0e96000f/udatapath/flow_tabl

e.c#L107
19 More information at: https://ryu.readthedocs.org/en/latest/
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ease of writing a controller and network applications compensate for the minor inconvenience of

not being provided with a proper controller.
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6. Analysis Summary
This  chapter  reviews  the  topics  described  in  the  analysis  and  discusses  existing  issues  with

middleboxes, keepalive traffic, SDN and PCP.

Figure 6.1 shows the typical deployment of PCP in traditional networks.

Hosts with PCP clients are connected through an access network to the core network containing a

middlebox on its edge to an external network. The middlebox runs a PCP server to process requests

from PCP clients.

In traditional networks without PCP, user applications have to utilize other protocols or methods

to traverse the middleboxes. Software defined networking (SDN) allows to centralize the control of

the  network and define the  network behavior  programmatically.  Beside  other  advantages,  SDN

increases the flexibility and vendor device compatibility in the networks. SDN as a concept is still

in its early stages and is not widely deployed in networks.

In  SDN networks,  separating  the  control  and  the  data  plane  of  a  middlebox  fosters  greater

scalability and flexibility of the network. For example, instead of a single middlebox in traditional

networks (such as a carrier-grade NAT), multiple forwarders with only the middlebox data plane

can be installed, which reduces network load.

Middleboxes usually set table entries to expire over  time if  they are idle.  In SDN networks,

OpenFlow  switches  support  flow  entry  expiration  (by  setting  the  idle_timeout field)  and

notifying the controller that a flow entry has expired (by enabling the  OFPFF_SEND_FLOW_REM

flag). Without these functions on the forwarders, it would not be possible to separate the control and

data plane of a middlebox. In such case, if the middlebox were to be installed in an SDN network, it

would have to be provided with a communication interface with the SDN controller, such as the

aforementioned OpenFlow standard.

Keepalive traffic sent by user applications increases network load. Mobile networks require a

substantial amount of signaling traffic for each packet sent, therefore amplifying the network load
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and reducing the battery life on mobile devices.

Compared to traditional networks, implementing PCP over SDN has the following advantages:

• Middleboxes do not need to run a PCP server, thereby reducing their computation overhead.

• The lack of the PCP server on middleboxes  increases vendor compatibility and avoids the

need to upgrade the middleboxes or purchase new ones to support PCP server functionality.

• If multiple, separate middleboxes are placed in the network, such as a NAT gateway and a

firewall,  mapping  lifetime  does  not  have  to  be  determined  from  each  middlebox

individually, but rather from one central point – the SDN controller.

• Middleboxes remain transparent to the client, because the PCP server is installed on the

controller rather than on the middleboxes.

NAT gateways mitigate insufficient IPv4 address space. It is expected that IPv4 and IPv6 will

coexist for several years. Even though NAT gateways may be redundant in pure IPv6 deployments,

firewalls will still exist in core networks. The role of PCP is therefore still valid for pure IPv6

deployments.
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7. Specification
This chapter specifies goals of the diploma thesis and requirements for the solution.

7.1. Goals
This diploma thesis aims to fulfill the following goals:

• implement PCP protocol over SDN networks,

• allow end-user applications to receive address and port mapping information directly from

NAT gateways in order to be able to facilitate communication with nodes in other networks

behind NAT,

• reduce the amount of keepalives sent by the end-user applications to the network in order to

reduce network load and prolong battery life of mobile devices.

To verify the goals, the following will be performed:

• Using PCP, verify that a user application on a host behind NAT successfully establishes

communication with another host in a public network.

• Quantify the amount of battery power saved in WCDMA networks when reducing keepalive

traffic with PCP.

• Quantify  the  reduction  of  signaling  messages  in  WCDMA  networks  when  reducing

keepalive traffic with PCP.

7.2. Requirements
The implementation of PCP must support at least the following components from the PCP RFC:

• PCP client requesting mapping information from the PCP server,

• PCP client attempting to explicitly set mapping information on the PCP server,

• PCP server processing PCP requests and sending PCP responses back to the PCP client.

The implementation of the PCP server will not support the following components from the PCP

RFC:

• recovery of PCP server (e.g. after a reboot),

• processing of options in PCP messages by the PCP server.

In order to verify PCP-supported NAT traversal by end-user applications and the reduction of

keepalives, NAT gateway functionality will be implemented in the SDN network. Firewall will not

be implemented, because there are no expected differences in results between a NAT gateway and a

firewall.

The NAT gateway should support at least the following:

• IPv4-to-IPv4 address translation,
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• dynamic IP address and transport protocol port translation (NAPT),

• UDP and TCP as transport protocols.

The access network used to evaluate the signaling traffic reduction and battery life extension is

WCDMA.

7.2.1. Port Control Protocol

Scalability

In networks with a very large number of connected hosts,  issues with scalability in the core

network may occur in conjunction with PCP. Considering that each application implementing the

PCP client requests a mapping for each connection to the middlebox (which is also called per-flow

mapping),  a  very high  number  of  PCP messages  may be  sent  to  the  network.  PCP scalability

concerns will not be addressed in this diploma thesis.

Security

Security of PCP is not resolved and is currently under discussion [20] [18]. An RFC draft exists

that specifies PCP authentication mechanism  [38]. Security of PCP will not be addressed in this

diploma thesis.
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8. Design
This chapter describes the design of the solution. The solution comprises a network application

implemented in an SDN core network.

8.1. Architecture
Figure  8.1 shows the  architecture  of  the  network.  Generally  speaking,  there  is  no  dedicated

middlebox in the proposed design. The control plane of a middlebox resides in the controller as a

network application,  and the data plane of a middlebox resides in a forwarder.  In case of NAT

gateway functionality in the network, the control and data plane is split to the NAT control plane

and the NAT forwarder, respectively.

While  the  architecture  could  be  generalized  to  any  middlebox,  including  a  firewall,  other

middleboxes may have their own specifics that would have to be integrated into the architecture.

The architecture assumes that only one NAT forwarder is installed in the network. Therefore,

only one NAT table is maintained in the NAT control plane and there is no need to use unique

identifiers for each pair of a NAT forwarder and a NAT table.

The network application, comprising the PCP server and the NAT control plane, is integrated into

the controller. The communication between the controller and the network application is restricted

to an application programming interface (API) for better source code manageability.

The  architecture  is  not  concerned  with  IP routing  to  the  external  network  and  with  packet

forwarding from the core network to hosts through the access network. These network features are

redundant for the evaluation of the solution and are therefore omitted from the architecture.

The components of the architecture are introduced in section 8.1.1 and some of them are further

described in subsequent sections. To avoid ambiguity of the terms “controller” and “PCP server”,

the term “controller” will be used when referring to the SDN elements – forwarders and controllers

– and the term “PCP server” when referring to the PCP elements – PCP client and PCP server.

OpenFlow is used as the standard to implement PCP over SDN. OpenFlow is widely supported
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by vendors. Existing, freely available OpenFlow-compliant software for controllers and forwarders

will be used (as described in section 5.2).

8.1.1. Components

PCP Client

A host  located  behind  NAT runs user  applications  that  try  to  establish  communication  with

another host in an external network. Applications use the PCP client to receive or explicitly request

mapping information from the PCP server.

Edge Forwarder

The edge forwarder is an OpenFlow switch that resides on the edge of the core network and the

access network. The edge forwarder:

• forwards PCP messages between the PCP client and the PCP server,

• forwards other packets, according the configuration set by the controller, toward the external

network through the NAT forwarder.

Controller

The SDN controller:

• manages forwarders (e.g. by adding, modifying or removing flow entries),

• runs network applications, including the PCP server and the NAT control plane.

PCP Server

The PCP server:

• processes PCP requests sent by the PCP client,

• instructs the NAT control plane to create a mapping for the PCP client,

• generates PCP responses to the PCP client.

NAT Control Plane

The NAT control plane contains the control logic of the NAT gateway. To better manage the

complexity of the design, the NAT control plane is split into two subcomponents: NAT handler and

NAT table.

NAT handler:

• processes requests from the PCP server to create new NAT table entries,

• removes NAT table entries whose lifetime expired on the NAT forwarder,

• instructs the controller to add or remove flow entries on the NAT forwarder corresponding to

the NAT table entries.

NAT table stores NAT table entries.  NAT table lets  the NAT handler determine the available

external  IP addresses and ports  that  can be assigned to the applications.  Each NAT table entry

contains fields shown in Figure 8.2. IP address family can be IPv4 or IPv6. As per the requirements
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specification (in chapter 7), only IPv4 address family is currently supported. Protocol refers to the

protocol above the IP header – as per the specification, only TCP and UDP are currently supported.

NAT table entries are uniquely identified by two pairs – source IP address and source port. Each

NAT table entry is added as a flow entry to the NAT forwarder.

NAT table also defines a pool of internal and external IP addresses and ports to be involved in

translation.

NAT Forwarder

The NAT forwarder is an OpenFlow switch containing flow entries that perform NAT, i.e. rewrite

IP addresses and transport protocol ports in incoming packets. These flow entries are managed by

the NAT control plane using the NAT table. The NAT forwarder resides on the edge of the core

network and the external network.

8.1.2. Network Application Components

Figure  8.3 shows the components of the network application in more detail.  NAT installer is a

part of the NAT handler that manages flow entries on the NAT forwarder. PCP message processor

parses received PCP requests from the PCP client and builds PCP responses that the PCP server

then sends to the PCP client. PCP installer installs flow entries on the edge forwarder that forward

PCP messages.

Network application entry point, as its name suggests, is the main entry point for the application.

This component receives PCP messages forwarded by the edge forwarder and control messages

between the forwarders and the controller (Packet-In messages). One such type of control messages

is the OpenFlow  Features message, which are received when the presence of each forwarder is

detected by the controller.
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Figure 8.2: NAT table entry fields
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8.2. PCP Client Mapping Request – Processing
Figure 8.4 describes the process of the PCP client determining its external IP address and port. To

simplify the description of the process, it  is assumed that the PCP client already knows the IP

address of the PCP server. When the controller receives the PCP request, is passes the request to the

PCP server.

Updating and uninstalling flow entries is handled similarly – instead of adding a new NAT table

entry and installing new NAT flow entries, the existing ones are updated or removed. Processing the

PCP request, including parsing the request and building the response closely follow the processes

described and depicted in section 3.2.

8.3. Edge Forwarder
Flow entries on the edge forwarder, shown in Figure 8.5, detect PCP request and PCP response

messages, respectively.  in_port matches ingress ports, pcp_server_address is the IP address of the

PCP server that the PCP client uses to send PCP requests, and port 5351 is the UDP port for PCP

communication assigned by IANA20.

The  Packet Forwarding flow table is an abstraction that denotes additional packet processing

(such as switching or routing). This allows the edge forwarder to be integrated to an existing SDN

network.

When forwarding the PCP response, the  send to access network action does not specify which

20 http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
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Figure 8.4: PCP request processing by the network application
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access port is used as the egress port. This is implementation-dependent – it can be the same port as

the port on which the PCP request was received, or it could be a different port in case the network

implements additional network mechanisms such as load balancing.

8.4. NAT Forwarder
NAT forwarder comprises the data plane of a NAT gateway. A detailed structure of the NAT

forwarder is shown in Figure 8.6.

The first flow table determines whether the port is an external port. If so, the packet is subject to

translation (flow table 3) – its destination IP address and port is translated to the corresponding

internal  IP  address  and  port.  For  non-external  ports  (i.e.  ports  within  the  core  network),  the

translation is reversed (flow table 2) – source IP address and port is translated to the corresponding

external IP address and port. As on the edge forwarder, the Packet Forwarding table is an abstract

flow table that handles additional packet processing.

To ensure that an idle connection is closed, each flow entry has a idle_timeout timer initially

set to the mapping lifetime specified in the corresponding NAT table entry. If a flow entry expires,

the NAT forwarder sends the Flow-Removed message to the controller so that the NAT control plane

can remove the NAT table entry. This table entry can thus be reused later for another connection.

The mapping lifetime from the corresponding NAT table entry is directly tied to idle_timeout

timeout on the flow entries. This way, the NAT entries on the forwarder, including their timeout

values, are fully under the control of the PCP server.

40

Figure 8.5: Edge forwarder flow entries

Edge Forwarder

Controller

Access Network Packet

Forwarding

PCP Message Forwarding

send to access network

Action

send to controller

Match fields

PCP Request

PCP Response

PCP Request: in_port=<access ports>, dest_ip=pcp_server_address,

protocol=UDP, dest_port=5351

go to the next tableno match

...

PCP Response: in_port=<controller port>, src_ip=pcp_server_address,

protocol=UDP, src_port=5351

controller port

access port 1

access port 2

access port n

...



41

Figure 8.6: NAT forwarder flow tables and entries



9. Implementation
This chapter describes the implementation of the solution introduced in previous chapters. The

chapter  focuses  only  on  the  more  important  aspects  of  the  implementation.  The  complete

documentation for each module, class and method implemented in the software is embedded in the

source code.

9.1. Implementation Environment
The following software is used for the implementation:

• controller: ryu framework21,

• forwarder: ofsoftswitch 1.322,

• PCP client library23,

• nmap command  suite24,  of  which  the  nping command  is  used  to  test  TCP/UDP

communication between hosts.

The  network  application  is  implemented  over  the  ryu framework  in  Python  language  and

developed in Eclipse IDE25 with PyDev26 add-on.

In order to verify the functions of the network application, a test topology is created as shown in

Figure 9.1. The test topology is created and run on a virtual machine with Ubuntu Server, 14.04.1,

64-bit.  The virtual machine runs on  VirtualBox27. In the virtual machine,  Host 1 and  Host 2 are

virtual hosts created by the ip-netns28 command.

21 Available at: https://github.com/osrg/ryu
22 Available at: https://github.com/CPqD/ofsoftswitch13
23 Available at: https://github.com/libpcp/pcp
24 Available at: https://nmap.org/
25 More information at: https://eclipse.org/
26 More information at: http://pydev.org/
27 More information at: https://www.virtualbox.org/
28 More information at: http://man7.org/linux/man-pages/man8/ip-netns.8.html
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Figure 9.1: Test topology for verification
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To simplify the installation of the software required to create, run and test  the network, user

documentation and scripts from the UnifyCore29 project are used.

Although the PCP Testing Tool has a more user-friendly interface, the PCP client library is faster

to work with, especially when repeating the same command (by retrieving it from the command

history in the shell environment).

9.2. Implementation Description
The  architecture  of  the  network  solution,  as  shown  in  Figure  8.1,  contains  two  separate

forwarders  –  edge  forwarder  and  NAT  forwarder  –  each  having  their  distinct  roles.  In  the

implementation, both forwarders were merged into one forwarder with multiple flow tables. This

simplifies implementation and, consequently, its verification. Figure 9.2 shows the overview of the

implementation on the only forwarder in the test network.

Flow  entries  for  PCP message  forwarding  and  NAT forwarding  are  managed  separately  to

emphasize the fact that they are separate components, conceptually. This is achieved by managing

the flow entries in two separate modules – NAT installer and PCP installer, as shown in Figure 8.3.

Given that only one access port exists in the network, the PCP message forwarding behavior is

greatly simplified – the forwarder sends the PCP response out the same port the corresponding PCP

request was received on.

The NAT flow tables (represented as Address and Port Translation in Figure 9.2) do not contain a

table-miss flow entry. That is, if a packet does not match any flow entry in the internal-to-external

or external-to-internal NAT flow tables, the packet is not forwarded to the Packet Forwarding flow

29 More information at: http://www.unifycore.com/
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Figure 9.2: Forwarder implementation overview
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table and is consequently dropped. This effectively means that the packet cannot be forwarded if no

matching NAT flow entries for that packets are installed, i.e. the internal host did not request a

mapping from the PCP server.

9.2.1. ARP Message Processing

While  the  network  design  addresses  the  desired  network  behavior  (message  forwarding,  IP

address  and  port  translation),  it  does  not  cope  with  one  important  feature  of  IP  networks  –

destination MAC address resolution (ARP processing).

When a host tries to establish connection with another host, it must first know its MAC address if

the second host is on the same local network, or the MAC address of the default gateway if the

second host is in a different network. In order to determine the MAC address, the host sends an ARP

request and expects an ARP reply with the correct MAC address.

Although the ARP message forwarding is seemingly handled automatically by network switches

or routers (when considering traditional networks), this behavior is missing in pure SDN networks

and must be implemented.

Two approaches to ARP processing were considered in the implementation – proxy ARP and

routing – of which the former was eventually implemented.

Proxy ARP

This  implementation forwards ARP requests  to  the controller,  which handles  the requests  on

behalf of the source host. The process is illustrated in Figure 9.3 where Host 1 requests the MAC

address of Host 2.

The ARP handler is responsible for processing ARP messages and installing flow entries on the

forwarder that overwrite MAC addresses. Additionally, the ARP handler stores ARP entries in order

to associate the source MAC address with the destination host MAC address.

This implementation assumes that a host requests the MAC address of the destination host, even

if the destination host is in another network. To simulate this scenario in the test topology, both

hosts must have a default static route set:

route add -net '0.0.0.0' netmask '0.0.0.0'
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The advantage of this approach is its simpler implementation and faster packet forwarding – there

is no need to wait for the first data packet to trigger the ARP process for the destination host.

Without NAT, this approach works properly. Once NAT is introduced in the network, Host 1 to

Host  2  communication  also  works  properly.  The  problem  arises  when  Host  2  first  tries  to

communicate with Host 1. Host 2 requests the MAC address for the external IP address of Host 1.

Although the controller can possibly translate the external IP address to the associated internal IP

address, ports must also be considered. It may happen that for two distinct connections, Host 1's

external IP addresses are different. In such case, the translation is ambiguous and thus cannot be

performed.  The second approach does  not  have this  issue.  Due to time constraints,  the second

approach was not implemented.

The second approach effectively implements IP routing in the network. The first host sends ARP

request to its default gateway (in this case, the controller) and the gateway responds with its MAC

address (forwarder MAC address). When the first host sends the first packet, the controller receives

this packet and sends an ARP request to the external network, using the source IP address of the

default  gateway  for  the  external  network  and  the  source  MAC address  of  the  forwarder.  The

destination host sends back ARP reply to the controller. The controller then installs corresponding

flow entries that correctly translate MAC addresses of incoming packets.

9.2.2. NAT Table

Flow entries that translate IP addresses and ports have a higher priority set than the no-match

flow entry in order to ensure that the NAT flow entries have a precedence.

The NAT table  defines  a  NAT pool  –  range of  internal  and external  IP addresses  and ports

involved in the translation. If the PCP client requests an external IP address or port that is already

assigned or is outside the defined pool, the PCP server assigns a valid external IP address and port.

External IP addresses and ports are both allocated using the round-robin algorithm.
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The NAT table is represented by a dictionary (hash table). The key to each table entry is defined

by a concatenation of the internal IP address and internal port.

9.2.3. Managing Mapping Lifetime

PCP server  is  responsible for determining the mapping lifetime.  Assuming that  the host  is  a

mobile device connected to a WCDMA network, the lifetime is expected to be high enough to

reduce  the  battery  power  consumption  and  the  amount  of  signaling  traffic  to  an  acceptable

minimum. Further assuming that mappings created by PCP MAP and PCP PEER requests exhibit

different traffic patterns (see section 3.2.1 for more information), two different lifetime values need

to be defined for PCP MAP and PCP PEER mappings. Acceptable lifetime values for WCDMA

networks are determined in chapter 10.

9.3. Verification
This  section  describes  how  to  verify  the  implementation.  The  verification  comprises  the

following:

• Verify that a user application running a PCP client can request mapping information from

the PCP server.

• Verify  that,  with  the  mapping  information  acquired  by  the  PCP client,  two  hosts  can

communicate with each other, with the first host being behind a NAT.

Figure 9.1 shows the test topology for verification. Assuming the topology is set and the network

application is running, the verification can be performed in the following steps:

1. Host  1  generates  a  PCP request  using  the  pcp command  from the  PCP client  library.

Currently,  the implemented forwarder does not consider what IP address the PCP client

specifies as the PCP server address, so the PCP client may choose an arbitrary address. PCP

server running on the controller parses the PCP request, instructs the NAT handler to create a

table entry and install flow entries on the forwarder, and finally sends back a PCP response

to the PCP client. The pcp command now displays the mapping returned by the PCP server.

2. Host 2 runs the nping command as a server and listens to incoming TCP connections.

3. Host 1 runs the nping command as a client and sends test TCP segments to Host 2. Host 2

replies back to Host 1.

If the communication is  successful, the implementation functions properly.  To verify that the

addresses are translated properly, one can capture traces from both hosts to separate pcap files using

the  tcpdump command and determine that the IP addresses for the TCP segments are translated

properly.

Appendix B contains a user guide that replicates the above steps in detail.

To verify the communication in the topology without PCP, there is no need for the implemented

SDN network solution. The verification can be performed with the use of the iptables program,

which includes rules for address and port translation30.

30 Examples of NAT configuration using iptables can be found at: 
http://www.karlrupp.net/en/computer/nat_tutorial
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10. Evaluation
This chapter evaluates how much PCP can reduce battery power consumption of mobile devices

and the amount of signaling traffic in WCDMA networks.

As discussed in chapter 4, sending frequent keepalives causes increased battery power drain and

generates a considerable number of signaling messages. If the keepalive interval is increased, the

battery  of  the  mobile  device  consumes  less  power  and  the  network  generates  fewer  signaling

messages over time.

In order  to  ensure  that  mobile  devices  can  send keepalives  in  increased  intervals  while  still

maintaining mapping entries on middleboxes, the mobile devices can use PCP to determine the

mapping lifetime and consequently optimize their keepalive interval.

The goal of the evaluation is to:

• determine  how  much  battery  life  and  signaling  traffic  can  be  saved  by  increasing  the

keepalive interval,

• determine the acceptable mapping lifetime that PCP server should assign to the PCP client

based on the computed keepalive interval.

The evaluation is subject to the following restrictions:

• Only one always-on user application runs on the mobile device.

• With PCP enabled, the overhead of sending a PCP request and receiving a PCP response

prior  to  establishing  a  connection  is  ignored,  as  the  connection  itself  is  assumed to  be

established immediately afterwards,  during which several more messages are exchanged.

Given  that  these  messages  do  not  correspond  to  the  traffic  pattern  of  sending a  single

keepalive, their presence is ignored to avoid distorting the results.

• Only keepalives, PCP messages and the signaling messages associated with them are sent

over the network.

• Any signaling unrelated to sending keepalives is ignored (such as signaling associated with

handovers).

• If CELL_FACH is enabled in the network, PCP messages are considered small enough for

the device to transition only to the CELL_FACH state instead of the CELL_DCH state. In

this case, PCP messages behave as keepalives, such as in case of PCP MAP mappings (see

section 3.2.1 for more information), hence their presence cannot be ignored.

• When the device sends keepalives with acknowledgments (such as TCP keepalives) or PCP

requests followed by PCP responses, the acknowledgments/responses are received after a

delay,  causing  the RRC inactivity timer  to  be refreshed.  For  the sake of  simplicity,  the

round-trip time is assumed to be small enough that the additional time the mobile device

stays in its RRC state can be neglected. This applies to the evaluation of the battery power

consumption.

• Any other sources of battery power consumption are not considered. One consequence of
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this restriction the fact that the display of the mobile device must be turned off.

The rest of this chapter is structured as follows. Section 10.1 determines the impact of keepalives

on  the  battery  power  consumption  of  mobile  devices.  Section  10.2 determines  the  impact  of

keepalives on the number of signaling messages generated in the network. Section 10.3 determines

the acceptable lifetime values for PCP-aware mappings given the results from the previous sections.

10.1. Battery Life Extension
Battery charge and power consumption can be measured by several methods, such as by voltage

levels or by ampere-hours31 (or, more commonly, milliampere-hours, mAh). The latter is used in

this section.

10.1.1. Battery Power Consumption Figures

Source [5] specifies measured values for battery power consumption. One set of values (Table 2

from  source  [5])  was  measured  with  varying  keepalive  intervals,  with  T2  =  2  s  and  with

CELL_PCH power state enabled in the network. A different set of values (Table 3 from source [5])

was measured in a different mobile network (implying different network conditions, signaling, etc.)

with varying T2 timers and with the keepalive interval of 40 s. Table 10.1 contains the results of the

measurements for a single keepalive from source [5].

Table 10.1: Measured battery power consumption of keepalives in 3G WCDMA networks [5]

Timer T2 [s]
Average current in CELL_FACH state

[mA]

Cost of a single keepalive in

3G [mAh]

2 120 0.15 – 0.6

10.1.2. Formulas

In order to quantify the battery power consumption reduction, reference values must be defined.

For example, suppose that an application currently uses a keepalive interval of 20 seconds (such as

IPsec ESP [11]). If the keepalive interval is increased, the mobile device consumes that much less

battery power compared to the original (reference) keepalive interval. Furthermore, a fixed time

period must be defined over which keepalives are sent.

Given the criteria above, the following parameters can be defined:

• T – time period over which the keepalives are sent

• tref – original (reference) keepalive interval without PCP

• tnew – new keepalive interval with PCP

• cost – cost of a single keepalive (in mAh)

The number of keepalives n sent over time period T given the interval tnew can be determined as

follows:

31 http://www.otherpower.com/otherpower_battery_metering.html
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n=T ⋅
1

t new
(1)

where 
1

t new
is the number of keepalives sent per second.

The amount of battery consumption saved (in mAh) can be determined as follows:

reduction (t new )=k ref−k=(nref−n )⋅cost=(T ⋅
1

tref
−T ⋅

1

t new
)⋅cost=cost ⋅T (

1

t ref
−
1

t new
) (2)

where  k is the total cost of keepalives over time period  T,  i.e. the number of keepalives sent

multiplied by the cost of a single keepalive:

k= n⋅ cost (3)

In order to determine the relative amount of battery power saved given the desired and reference

keepalive intervals (tnew and tref, respectively), the battery capacity C of the mobile device (in mAh)

must be known.

The relative amount of battery used when sending keepalives can be determined as follows:

k

C
(4)

In  other  words,  if  the  relative  amount  is  multiplied  by  100%,  the  keepalives  consume

k

C
⋅ 100% of the battery over time T.

The relative reduction of the battery power consumption (i.e. the battery power saved) given the

battery capacity C can then be determined as follows:

battery power saved=
kref

C
−
k

C
=
k ref−k

C
=
reduction (t new )

C
(5)

From the last  formula,  one can conclude that,  by using a higher  keepalive interval  tnew, such

percentage of battery consumption was saved over time T.

From the end-user perspective, an alternative measure may better indicate the power consumption

reduction – how much longer the battery will last before recharging it. Suppose that the following

values are known:

• cost – cost of a single keepalive,

• I keepalive – average current while sending a single keepalive.

From these two values, one can compute the amount of time the battery life is shortened by

sending a single keepalive:

τ=
cost

I keepalive
(6)

The total time of the battery life saved can then be computed given the cost of a single keepalive,

the measuring time period T, the reference keepalive interval tref and the new keepalive interval tnew:
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battery lifetimesaved=(nref−n)⋅τ=(nref−n)⋅
cost

I keepalive
=
reduction (t new)

I keepalive
(7)

As seen from the formula, the battery lifetime saved does not depend on the battery capacity.

10.1.3. Results

Figures 10.1 and 10.2 show the battery power saved with increasing keepalive interval, given the

time  period,  cost  of  a  single  keepalive,  battery  capacity  and  several  values  of  the  reference

keepalive interval (t_ref in the figures).

Table 10.2 contains the battery power saved given chosen values for the battery capacity. Typical

smartphones can thus save 1-4% of the battery life, while smart watches with 3G capabilities can

significantly benefit from the keepalive reduction by saving as much as 34.2% of the battery life.

The increase in the keepalive interval proves to be much less substantial for devices with relatively

high battery capacity, such as tablets (0.35%–1.4%).

Table 10.2: Amount of battery power consumption saved of a mobile device connected a WCDMA

network given battery capacity and reference values

Reference values: tref = 20 s, tnew = 400 s, T = 3600 s, cost: 0.15-0.6 mAh

Battery capacity Battery power saved

300 mAh (Samsung Gear S smart watch32) 8.5-34.2%

2550 mAh (Samsung Galaxy S6 phone33) 1-4%

7340 mAh (iPad Air 2 tablet34) 0.35-1.4%

As seen in Figures 10.3 and 10.4, approx. 13-52 minutes of battery life can be saved for the cost

ranging from 0.15 to 0.6 mAh, the average current of 120 mA and the reference interval of 20

seconds.

The percentage of the battery power and the battery lifetime saved increase significantly when the

keepalive interval is increased by the first few tens of seconds from the reference interval. Above

400-600 seconds, the difference in the increase starts to be negligible.

32 https://www.samsung.com/uk/consumer/mobile-devices/wearables/gear/SM-R7500ZKABTU
33 http://arstechnica.com/gadgets/2015/04/samsung-galaxy-s6-review-its-whats-on-the-outside-that-counts/
34 http://arstechnica.com/apple/2014/10/the-ipad-air-2-a-host-of-hidden-upgrades-in-one-skinny-package/
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Figure 10.2: Amount of battery power saved based on keepalive intervals relative to

reference values and cost of 0.6 mAh per keepalive
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Figure 10.1: Amount of battery power saved based on keepalive intervals relative to

reference values and cost of 0.15 mAh per keepalive
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Figure 10.4: Amount of battery lifetime saved based on keepalive intervals relative to

reference values and cost of 0.6 mAh per keepalive
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Figure 10.3: Amount of battery lifetime saved based on keepalive intervals relative to

reference values and cost of 0.15 mAh per keepalive
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10.2. Signaling Traffic Reduction

10.2.1. Network Traffic in WCDMA Networks

Source  [30] contains  measurements  performed in  two 3G WCDMA networks,  observing the

number of signaling messages generated in the networks and the battery power consumption in

mobile devices.

The data and signaling traffic was captured on mobile devices. A certain amount of signaling

traffic was generated in the core network that cannot be observed on mobile devices (referred to as

“unobserved” signaling traffic in source [30]).

In one of the measurements, the mobile devices sent keepalive messages to the network. In the

observed networks, the mobile devices entered the CELL_DCH state when sending a keepalive.

According to the results, sending one keepalive causes 40-50 observed signaling messages to be

exchanged  between  a  mobile  device  and  the  network,  and  estimated  20  unobserved  signaling

messages [30].

10.2.2. Formulas

To determine the reduction of the number of signaling messages, the following parameters need

to be defined:

• T – time period over which the keepalives are sent

• tref – original (reference) keepalive interval without PCP

• tnew – new keepalive interval with PCP

• cost – cost of a single keepalive (in mAh)

• s – number of signaling messages per a single keepalive

• S – total number of signaling messages sent over T given keepalive interval tnew

Using the formulas defined in section 10.1, S can be computed as

S= n⋅ s (8)

The number of signaling messages reduced in the network can then be computed as:

reduction (t new )=Sref−S=(nref−n)⋅s=(
1

tref
−
1

t new
)⋅s⋅T (9)

10.2.3. Results

As seen in Figures 10.5, 10.6 and 10.7, the reduction of the number of signaling messages grows

rapidly up to the keepalive interval of approx. 400 seconds. The growth of the reduction starts to be

negligible from approx. 1800 seconds, which can considered an acceptable keepalive interval for

WCDMA networks. Table 10.3 quantifies the results for reference keepalive intervals of 20 s and

120 s.
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Figure 10.5: Number of signaling messages reduced based on keepalive intervals and reference

values (40 observed messages)
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Figure 10.6: Number of signaling messages reduced based on keepalive intervals and reference

values (50 observed messages)
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Table 10.3: Reduction of the number of signaling messages given the number of messages per

keepalive and reference values

Reference values: tnew = 1800 s, T = 3600 s

Number of signaling

messages per

keepalive

Reference

keepalive

interval

Reduction of

signaling

messages

Reference

keepalive

interval

Reduction of

signaling

messages

40 (observed) 20 s 7120 120 s 1120

50 (observed) 20 s 8900 120 s 1400

20 (unobserved) 20 s 3560 120 s 560

It should be noted that the reduction of the number of signaling messages was computed for one

mobile  device  running a  single  application.  Considering  that  hundreds  of  thousands  of  mobile

devices are connected to a network, each running one or more always-on applications, the decrease

in the network load on elements in the network core may prove to be significant.

10.3. Conclusions
From the perspective of a mobile device and its battery life, the keepalive interval of 400–600

seconds is suitable for most applications. The higher the keepalive interval, the smaller the amount

of battery power is saved. When considering the amount of signaling traffic generated in a mobile

network, the keepalive interval of approx. 1800 seconds is sufficient to greatly reduce the signaling

traffic caused by sending keepalives over the network.

55

Figure 10.7: Number of signaling messages reduced based on keepalive intervals and reference

values (20 unobserved messages)
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The amount of battery power saved by using higher keepalive intervals is more significant in

devices with relatively small battery capacity, such as smartphones and smart watches. Tablets with

greater battery capacity benefit little from the increase keepalive interval. By observing the amount

of battery lifetime saved instead (which does not depend on the battery capacity), the extra minutes

in stand-by mode can prove helpful for the user before the battery charge is depleted.

Higher keepalive intervals further reduce the battery consumption, but too high values may fail to

determine  connections  that  died  between  sending  two  consecutive  keepalives.  With  higher

keepalive intervals, middleboxes keep the mapping entries longer, which may result in reaching

their memory limits, causing in turn to prematurely remove mapping entries.

10.3.1. Determining PCP Mapping Lifetime

In order to ensure that the applications will increase their keepalive intervals, they need to utilize

PCP to request or receive mapping lifetime.

For PCP mappings created by PCP PEER requests (i.e. user applications function as clients), the

mapping lifetime should be somewhat higher  than the keepalive  interval  in  order  to  allow the

application to send keepalives early enough. Given the relatively high keepalive interval of 1800

seconds, it may be sufficient for the application to send the keepalives 7/8 of the mapping lifetime.

Therefore, the mapping lifetime for PCP PEER mappings could be approx. 2060 seconds.

For PCP MAP mappings (i.e. user applications functioning as servers), user applications need to

send PCP MAP messages at the interval of at least 1/2 of the mapping lifetime. In order to sustain

the interval of 1800 seconds, the mapping lifetime for PCP MAP mappings should be at least 3600

seconds.  Beside  PCP  MAP  requests,  applications  may  still  have  to  send  keepalives  to  the

destination host to maintain the end-to-end connection.

Given the determined lifetime values above, the following recommendations apply to WCDMA

networks with PCP and the custom solution described in this thesis:

• For mappings created by PCP MAP requests, send PCP MAP requests and keepalives at the

same time to avoid frequent RRC state transitions.

• For mappings created by PCP PEER requests, send only keepalives to the remote host and

do not send any PCP PEER requests to the PCP server. Given the design of the solution

described  in  this  thesis,  the  PCP  server  has  complete  control  over  the  middleboxes,

including  the  timeouts  of  the  flow  entries,  hence  the  PCP client  does  not  have  to  be

concerned about any special behavior of the middlebox.

It is expected that, given the widespread use of always-on applications such as social networks,

hosts establish outbound connections more commonly than hosting servers (i.e. establish inbound

connections). Hence, PCP messages with the PEER opcode are expected to be more common than

PCP MAP messages, which is more beneficial for the network, as PCP PEER mappings may send

fewer messages in total than PCP MAP mappings.

56



Summary
The goal of the diploma thesis was to implement Port Control Protocol (PCP) in software defined

networks (SDN), specifically the PCP server,  and to quantify how much battery life of mobile

devices can be saved and how much signaling traffic can be reduced if PCP is deployed in mobile

networks. To verify the implementation of the PCP server in SDN networks, NAT was implemented

in the network.

PCP can be used by a host to receive external-to-internal address and port mapping information

from middleboxes (firewall, NAT gateway), including the mapping lifetime. Once the host knows

about the lifetime of its mapping, it is able to optimize the interval of sending keepalives to the

destination host.

The potential of keepalive optimization proved to be significant in mobile networks, specifically

the WCDMA networks. Given the measured values from sources [5] and [30], a suitable keepalive

interval for WCDMA networks proves to be 1800 seconds. Given the keepalive interval of 400-600

seconds, mobile devices running an always-on application can save roughly up to 52 minutes of

battery life per hour when the devices are in stand-by mode and the application is only sending

keepalives to the network. Moreover, increasing the keepalive interval to 1800 seconds can reduce

the number of signaling messages by thousands in one hour, only when considering one mobile

device running one always-on application.

SDN, while flexible, requires effort to implement basic packet processing, such as ARP message

processing, packet switching or routing. One may not realize this fact until the phase of the network

application implementation. In traditional networks, these functions are provided automatically by

switches and routers.
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Conclusion
This diploma thesis is concerned with the implementation of the Port Control Protocol (PCP)

over  software  defined  networks  (SDN).  PCP  allows  end-user  applications,  such  as  instant

messaging or VoIP, to  receive mapping information directly from middleboxes (such as a NAT

gateway) in order to properly traverse through the middleboxes without workarounds and to reduce

application keepalives.

The SDN network solution separates the control plane and the data plane of a middlebox with a

PCP server  to  an  OpenFlow  controller  and  forwarders,  respectively,  which  allows  for  greater

flexibility and vendor device compatibility of the network and avoids the need to install PCP server

in each middlebox.

In today's networks, especially considering the mobile networks, the keepalive intervals may still

be  largely  unoptimized.  Reducing  application  keepalives  can  be  considered  a  software-based

method to reduce network traffic overhead and to reduce battery power consumption of mobile

devices. Increasing the keepalive interval to as high as 1800 seconds can considerably reduce the

amount  of  signaling  traffic,  especially  considering  that  millions  of  mobile  devices  may  be

connected to the network at the same time.

The diploma thesis can be further expanded upon in the future by addressing the related topics

described below.

The solution for the NAT functionality designed and implemented in this thesis can be further

expanded upon by providing support for IPv6,  more upper-layer protocols, such as ICMP, IPsec

ESP, SCTP or DCCP, or the automatic deletion of TCP sessions by tracking the TCP RST and FIN

segments.

NAT functionality  in  the  architecture  can  be  abstracted  away  –  i.e.  a  generic  interface  for

middleboxes  can  be  defined  so  that  other  types  of  middleboxes,  such  as  firewalls,  can  be

implemented.

Further improvements in the architecture can be made by addressing the scalability of PCP in

SDN networks, adding support for multihoming or addressing the security of PCP.

Finally,  the  keepalive  reduction  can  be  evaluated  in  different  types  of  widely  used  mobile

networks, such as GPRS or LTE.
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Appendices



 A. Attached DVD Contents
The attached DVD contains the following files:

• Burda_PCP_in_SDN_Diploma_Thesis.pdf – this document in PDF format,

• Burda_PCP_in_SDN_Diploma_Thesis.odt – this document in ODT format,

• ofsoftswitch13 – directory containing the source code for OFSoftswitch13

• pcp_sdn – directory containing the source code of the solution and Unix shell scripts to

execute the test scenario,

• pcp-client – directory containing the source code for the PCP client library

• ryu – directory containing the source code for the ryu controller framework,

• unifycore-scripts – directory containing install scripts from the UnifyCore project

to simplify installation

• VM – directory containing a virtual machine with a test topology
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 B. Installation
From the  CD,  copy  the  pcp_sdn_source and  scripts directories  to  a  directory  named

pcp_sdn anywhere on the disk.

Download and install VirtualBox35.

Download the PCP client library36 and extract the contents to pcp_sdn/pcp-client directory.

Download Ubuntu Server 14.04.1, 64-bit37.

Download  UnifyCore install  scripts38 and  extract  the  contents  to  pcp_sdn/unifycore

directory.

Run VirtualBox and create a virtual machine from Ubuntu Server and name it PCP_SDN.

Configure the PCP_SDN virtual machine as follows:

• use  the  bridged  adapter  and  set  the  MAC address  to  the  MAC address  of  the  host

computer (this is necessary in order for the virtual machine to install packages from the

Internet),

• add pcp_sdn as a shared directory.

Run the PCP_SDN virtual machine and install Ubuntu Server. Remember the log-in credentials

to the virtual machine.

Install  VirtualBox guest additions to be able to access the  pcp_sdn directory from the virtual

machine39.

Mount the pcp_sdn directory:

mount -t vboxsf -o defaults pcp_sdn [home directory]/pcp_sdn

To run the previous command automatically on startup, open the /etc/rc.local file and insert

the following lines:

mount -t vboxsf -o defaults pcp_sdn [home directory]/pcp_sdn

exit 0

Ensure that the /etc/rc.local file is executable:

chown +x /etc/rc.local

Install UnifyCore-related packages and files:

unifycore/support/install_core.sh

Install nmap (later to be used to test the communication between hosts):

sudo apt-get install iperf nmap

Power off the virtual machine, set the adapter to host-only adapter and start the virtual machine

35 Available at: https://www.virtualbox.org/wiki/Downloads
36 Available at: https://github.com/libpcp/pcp
37 Available at: http://www.ubuntu.com/download/server
38 Available at: https://github.com/unifycore/unifycore
39 Installation instructions are available at: https://www.virtualbox.org/manual/ch04.html
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again.

Compiling the PCP client
Change working directory to pcp-client:

cd ~/pcp_sdn/pcp-client

Compile the PCP client:

./autogen.sh

./configure

make

sudo make install
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 C. Using the Software
This section describes how to use the software step by step.

The solution allows two hosts between a NAT gateway in a test network to communicate with

each other. The hosts cannot communicate unless a mapping entry in the PCP server is created and

the corresponding flow entries (translating IP addresses and ports) are installed on the forwarder in

the test network.

Preparing the Environment
1. Create three terminal instances and connect to the virtual machine in each instance. These

terminal  instances  are used to  display output  from each command necessary to  run the

network (ryu-manager, ofdatapath and ofprotocol).

On Windows, one may use putty40 to connect to the virtual machine. Use the IP address of

the  host  adapter  and  the  log-in  credentials  (name  and  password)  to  access  the  virtual

machine.

2. In each of these terminal instances, run

pcp_sdn/scripts/read_command_output.sh <command>

where <command> is ryu-manager, ofdatapath, and ofprotocol, respectively.

This  and  the  previous  step  are  not  optional,  otherwise  the  commands  executed  in  the

pcp_sdn_test_topology.sh script will not be operational. The reason is that the output

from the commands is redirected to separate named pipes. If no processes read from the

named pipes, the commands are blocked.

3. Create  another  terminal  instance  and  run  the  script  that  creates  the  test  topology  and

initializes the forwarder, the controller and the network application:

pcp_sdn/scripts/pcp_sdn_test_topology.sh

4. To observe the messages sent in the network, create two additional terminal instances and

capture output from each host:

sudo ip netns exec 'host1' tcpdump -i 'host1_fw' -w 

~/pcp_sdn/test_pcp_sdn_host1_fw.pcap

sudo ip netns exec 'host2' tcpdump -i 'host2_fw' -w 

~/share/test_pcp_sdn_host2_fw.pcap

Running the Test Scenario

Host 1 to Host 2

1. Generate a PCP request for a TCP connection to the PCP server:

sudo ip netns exec 'host1' pcp -i <host1 IP address>:<port> -l 3600

-t -s <PCP server IP address>

The network application currently accepts any PCP server address as the forwarder in the

40 Available at: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
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network does not consider the IP address when forwarding PCP messages.

The  -i option specifies the internal IP address (in this case,  host1 IP address) and the

internal port (the <port> argument).

The PCP server then generates a PCP response and assigns an external IP address and port

from the NAT pool defined in the network application. The output in Figure 1 shows that the

PCP client received the external IP address and port highlighted in red. In this example, the

PCP server address was set to 172.16.0.1.

2. On host2 (the external host), run the nping server:

sudo ip netns exec 'host2' nping --echo-server 'test' -v4

3. On host1 (the internal host), send TCP segments to host2:

sudo ip netns exec 'host1' nping --echo-client 'test' --tcp 

--source-port <port> -v4 <host2 IP address>

The <port> argument is the internal port specified when generating the PCP request from

host1.

nping first establishes a management TCP connection between the client and the server and

then establishes another connection to send “ping” segments.

The packet trace for both host1 and host2 are shown in Figures 2 and 3, respectively. As

seen from the traces,  the IP addresses and ports  in the highlighted packets are properly

translated by the forwarder in the network. For example, host1 sends the first packet with

its internal IP address and port as the source IP address and port, while host2 receives the

packet with the corresponding external source IP address and port. Likewise, when host2

replies to host1, the external (destination) address and port are properly translated to their
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internal counterparts.

4. To review flow entries installed on the forwarder, run the following command:

sudo dpctl 'unix:/tmp/fw.socket' stats-flow | sed 's/, \

({table=\)/,\n\n\1/g'

The output contains information about each flow entry on a separate line for easier reading.

Host 2 to Host 1

This  scenario  can  be  repeated  by  running  the  nping server  on  host1 and  sending  “ping”

segments from  host2.  In this  case,  the management port  on which  nping listens to incoming

connections is now hidden behind NAT. In order to facilitate communication between the hosts, the

management port must be translated as well. Therefore,  host1 must send another PCP request to

the PCP server to translate the management port.

It is assumed that the steps in the previous section were already performed.

1. Generate a PCP request for the management port for nping:

sudo ip netns exec 'host1' pcp -i <host1 IP address>:<management 

port> -l 3600 -t -s 172.16.0.254

The management port can be chosen arbitrarily.

2. On host1, run the nping server:

sudo ip netns exec 'host1' nping --echo-server 'test' -v4 –echo-

port <management port>

3. On host2, send TCP segments to host1:

sudo ip netns exec 'host2' nping --echo-client 'test' --tcp 
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Figure 3: Packet trace from host 2



--source-port <port> --echo-port <management port> -v4 <host2 IP

address>

4. Observe the nping output or the packet traces to see that the packets are properly translated

by the forwarder.

Additional Commands for Manipulating Mapping Entries

Specifying explicit external IP address and port

To specify an explicit external IP address and port when creating a mapping via PCP, run

sudo ip netns exec 'host1' pcp -i <host1 IP address>:<existing port> 

-l <lifetime> -t -s <PCP server IP address> -e <external 

IP>:<external port>

If the external IP address lies outside the NAT pool defined in the controller, the PCP server will

assign a valid IP address from the pool. The same behavior applies to the external port.

If the host already has a mapping assigned, the PCP server merely returns the existing external IP

address and port assigned to the host.

Modifying mapping lifetime

To modify the lifetime of an existing mapping, run

sudo ip netns exec 'host1' pcp -i <host1 IP address>:<existing port> 

-l <new lifetime> -t -s <PCP server IP address>

If the lifetime value is small, e.g. 5 seconds, one can observe from the controller output that the

mapping  expired  after  5  seconds.  Examining  flow  entries  via  dpctl also  proves  that  the

corresponding flow entries were removed from the forwarder.

Deleting mapping by PCP client

To delete an existing mapping explicitly by the PCP client, run

sudo ip netns exec 'host1' pcp -i <host1 IP address>:<existing port> 

-l 0 -t -s <PCP server IP address>

Creating PEER requests

Previous examples of the  pcp command generated a PCP MAP request to the PCP server. To

generate  a  PEER request,  specify  the  remote  peer  (host2)  IP address  and  port  on  which  the

connection is going to be established:

sudo ip netns exec 'host1' pcp -i <host1 IP address>:<existing port> 

-l 0 -t -s <PCP server IP address> -p <host2 IP address>:<port>

In the current implementation,  the PCP server does not distinguish between MAP and PEER

requests.

Cleaning up after Running the Test Scenario
1. Stop  the  execution  of  following  programs  or  scripts  by  pressing  ctrl+C in  the

corresponding terminal windows:
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◦ tcpdump for each host,

◦ read_command_output.sh for each command,

◦ pcp_sdn_test_topology.sh.

2. Close all terminal windows connected to the virtual machine.

3. Log out of the virtual machine.

4. Power off the virtual machine.
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 D. Plan of Work
Table 1 contains the original plan of work for the diploma thesis.

Table 1: Plan of work for the diploma thesis

Month (year) Description

October (2013)
Analysis of PCP and the problems it can solve

November

December Complete the document for DT 0 submission 

January

Analysis of PCP, user applications, middleboxes, NAT traversal, keepalives,
available SDN controllers and forwarders

February

March

April

May Complete the document for DT I submission

June

Analysis summary, requirements specificationJuly

August

September
Choosing the controller and forwarder for implementation, requirements

specification

October (2014)
Prototype implementation, high-level design and architecture of the solution

November

December Finish implementing the prototype, complete the document for DT II submission

January
Detailed design, implementation, verification

February

March Complete the implementation, verify the implementation, evaluate battery life
saved using PCPApril

May Complete and submit the final document, prepare for the presentation in June

June (2015) Presentation preparation

Table 2 contains the assessment of the plan per each unit of work.

Table 2: Plan of work – assessment

Unit of work Fulfillment

Analysis of middleboxes Partially done

Analysis of user applications and keepalives Partially done

Analysis of NAT traversal methods Partially done

Analysis of PCP Done

Analysis of WCDMA networks Partially done – missing analysis of signaling
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traffic impact on RRC

Design Done

Implementation – PCP server Done

Implementation – NAT Done

Verification Done

Evaluation Partially done

The analytical part of the thesis, especially middleboxes, user applications and NAT traversal

methods, was not provided with sufficient details due to time constraints (additional school subjects

and post-Imagine-Cup work and presentations taking most of the time).

The implementation is finished as per the constraints of the requirements and the design of the

solution.  Of  course,  many  enhancements,  be  it  small  improvements  or  new  features,  may  be

incorporated into the solution at some point.
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Resumé



1. Úvod
Tento  dokument  obsahuje  resumé  diplomovej  práce  na  tému  Protokol  PCP  v  softvérovo

definovaných sieťach.

2. Analýza
Používateľské aplikácie, ako napr. VoIP alebo rýchle správy, majú problémy s komunikáciu cez

tzv. zariadenia  middlebox (ďalej len „brána“), napr. brána NAT alebo bezpečnostná brána. Brány

obsahujú  informácie  o  mapovaní,  ako  napr.  interná  IP adresa,  interný  port,  externá  IP adresa,

externý port a časovač. Ak časovač vyprší (t.j. žiaden paket nie je vyslaný počas trvania časovača),

brána informácie zo svojej internej tabuľky zmaže a tým znemožní zariadeniam komunikovať. Aby

aplikácie tomuto javu zabránili, vysielajú správy na udržiavanie spojenia (tzv. správy  keepalive).

Keďže  aplikácie  hodnotu  časovača  nepoznajú,  snažia  sa  vysielať  správy  keepalive  vo  veľmi

krátkych  intervaloch,  čo  zaťažuje  sieťové  prostriedky,  najmä  v  mobilných  sieťach,  a  znižujú

životnosť batérie mobilných zariadení.

Relatívne  nový  sieťový  protokol  Port  Control  Protocol  (PCP)  [1] umožňuje  koncovému

zariadeniu riadne komunikovať cez brány tak, že mu PCP poskytne informácie o mapovaní priamo

z brán, ako je to znázornené na obr. 2.1. Týmto sa koncové zariadenie dozvie o časovači mapovania

a dokáže tak optimalizovať vysielanie správ keepalive.

Pri vyžiadaní mapovacích informácií pre aplikáciu, PCP klient najprv vyšle správu PCP Request.

PCP server spracuje požiadavku, nariadi bráne, aby tomuto spojeniu umožnila komunikovať a vyšle

naspäť správu PCP response s mapovacími informáciami.

V porovnaní  s  podobnými protokolmi,  resp.  metódami (STUN, TURN, alebo UPnP-IGD) na

komunikáciu cez brány, je protokol PCP pomerne jednoduchý a rýchly (spočíva vo výmene iba

dvoch  správ)  a  umožňuje  zariadeniam  optimalizovať  interval  vysielania  správ  keepalive.

Potenciálnou nevýhodou je, že na každej bráne musí byť nainštalovaný PCP server, čo nemusí byť

vyhovujúce pre výrobcov zariadení.

Mobilné siete,  vzhľadom na zabezpečenie akceptovateľnej kvality v bezdrôtovej komunikácii,
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generujú veľké množstvo signalizačných správ pre každú užitočnú správu vyslanú z mobilného

zariadenia.  Veľmi  krátke  intervaly  správ  keepalive  spôsobia  generovanie  veľkého  množstva

signalizačných správ v sieti, čím sa zahlcuje sieť, a zároveň skracujú životnosť batérie mobilných

zariadení.  Zvýšením  intervalu  posielania  správ  keepalive  je  možné  ušetriť  veľké  mnozštvo

sieťových prostriedkov a batériu zariadení. Zvýšenie intervalu keepalive je možné dosiahnuť práve

pomocou protokolu PCP.

Softvérovo  definované  siete  (SDN)  [2] je  novodobý  koncept  v  počítačových  sieťach,  ktorý

umožňuje  naprogramovať  správanie  sa  siete,  čím  sa  zvýši  napr.  jej  flexibilita  a  dlhodobá

udržateľnosť. Implementácia PCP servera v sieťach SDN umožňuje umiestniť PCP server na riadič

(controller), čím je brána odbremenená od PCP servera a zabezpečuje sa tak vyššia kompatibilita

medzi výrobcami rôznych brán.

Cieľom  diplomovej  práce  je  implementovať  protokol  PCP v  sieťach  SDN,  určiť  množstvo

signalizácie,  ktoré  sa  dá  zredukovať  pomocou  protokolu  PCP a  kvantifikovať  zvýšenie  výdrže

batérie pomocou protokolu PCP.

3. Návrh
Obr. 3.1 zobrazuje architektúru navrhovaného riešenia. Súčasťou riešenia je implementácia brány

NAT v sieťach SDN, aby bolo možné overiť implementáciu PCP servera. Zároveň je rozdelenie

brány NAT na riadiacu a dátovú rovinu príležitosťou optimalizovať siete. PCP server a riadiaca

rovina NAT spolu tvoria sieťovú aplikáciu nad riadičom.

Riadič a preposielače komunikujú sieťovým protokolom OpenFlow. Ako PCP klient je využitá

voľne dostupná knižnica, ktorá zároveň obsahuje príkaz na generovanie PCP správ (t.j. PCP klient).

Okrajový preposielač presmeruváva PCP správy medzi PCP klientom a PCP serverom. Preposielač,

ktorý pokrýva dátovú rovinu NAT (ďalej len „preposielač NAT“), obsahuje pravidlá, ktoré prepisujú

IP adresy a porty z externých na interné a naopak. PCP server  spracúva správy PCP request  a

nariadi riadiacej rovine NAT, aby vytvorila mapovanie pre PCP klienta.

Riadiaca rovina NAT obsahuje manažéra, ktorý inštaluje pravidlá do preposielača NAT a tabuľku,
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v ktorej sa nachádzajú mapovania priradené jednotlivým PCP klientom. Detailnejšie fungovanie

riadiacej a dátovej roviny NAT je znázornené na obr. .

4. Implementácia
Na overenie implementácie je implementovaná sieťová topológia znázornená na obr. 4.1.
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V rámci implementácie boli využité nasledovné nástroje: pracovné prostredie na vývoj riadiča

ryu1, preposielač  ofsoftswitch 1.32, knižnica pre PCP klient3, sada príkazov nmap4. Na overovanie

implementácie  interný Hosť  1  vygeneruje  správu  PCP request a  prijme správu  PCP response.

Následne Hosť 2 spustí  server  nping a  Hosť  1 vyšle  testovacie  segmenty TCP Hosťovi  2.  Ak

komunikácia  prebieha  (t.j.  Hosť  1  dostane  odpovede  od  Hosťa  2),  implementácia  je  úspešne

overená.

Pri implementácii bolo dodatočne zistené, že je potrebné implementovať spracovanie a riadenie

správ ARP. V tradičných sieťach je to samozrejmá funkcionalita, no v sieťach SDN je potrebné túto

funkciu  implementovať  nanovo  (prípadne  nájsť  existujúcu  sieťovú  aplikáciu,  ak  existuje).

Spracovanie ARP správ je implementované podľa obr. 4.2.

1 https://github.com/osrg/ryu
2 https://github.com/CPqD/ofsoftswitch13
3 https://github.com/libpcp/pcp
4 https://nmap.org/
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5. Vyhodnotenie
V mobilných sieťach 3G s prístupovou technológiou WCDMA majú mobilné zariadenia stavy

pripojenia  Radio  Resource  Control (RRC,  ďalej  len  „stavy  pripojenia“)  podľa  množstva

prenášaných  dát.  Príliš  časté  vysielanie  správ  keepalive  spôsobuje,  že  mobilné  zariadenia

spotrebúvajú nezanedbateľné množstvo výkonu, keďže sa častejšie nachádzajú v stavoch pripojenia

s vyššou spotrebou.

Prechody medzi stavmi pripojenia je potrebné oznamovať sieti.  Časté medzistavové prechody

generujú nezanedbateľné množstvo signalizačných správ, dôsledkom čoho je zvýšená záťaž v sieti a

zhoršená odozva.

Jedným zo spôsobov, ako obmedziť vysielanie správ keepalive, je zvýšiť interval ich vysielania.

Zvýšením intervalu  na  400-600  sekúnd  je  možné  dosiahnuť  celkom značné  zníženie  spotreby

batérie,  ako je  to  znázornené  na  obr.  5.1 a  uvedené  v  tab.  5.1.  tref označuje  pôvodný  interval

keepalive, t značí nový interval keepalive, T je čas merania, počas ktorého boli vysielané iba správy

keepalive,  a  cena je  spotreba batérie  na jednu správu keepalive v mAh.  Údaje o spotrebe boli

prevzaté zo zdroja [3].
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Tab. 5.1: Zníženie spotreby batérie mobilného zariadenia pripojeného k sieti WCDMA pri daných

kapacitách batérie a referenčných hodnotách

Referenčné hodnoty: tref = 20 s, t = 400 s, T = 3600 s, cena: 0.15-0.6 mAh

Kapacita batérie Zníženie spotreby batérie

300 mAh (chytré hodinky Samsung Gear S5) 8.5-34.2%

2550 mAh (telefón Samsung Galaxy S66) 1-4%

7340 mAh (tablet iPad Air 27) 0.35-1.4%

Zvýšením intervalu  keepalive na  približne 1800 sekúnd je  možné dosiahnuť značné zníženie

počtu signalizačných správ, ako je to znázornené na obr. 5.2 a v tab. 5.2. Zníženie počtu správ bolo

vyjadrené iba pre jednu mobilnú aplikáciu jedného mobilného zariadenia. Pre milióny mobilných

zariadení pripojených do siete naraz to môže predstavovať výrazné zníženie záťaže siete.

5 https://www.samsung.com/uk/consumer/mobile-devices/wearables/gear/SM-R7500ZKABTU
6 http://arstechnica.com/gadgets/2015/04/samsung-galaxy-s6-review-its-whats-on-the-outside-that-counts/
7 http://arstechnica.com/apple/2014/10/the-ipad-air-2-a-host-of-hidden-upgrades-in-one-skinny-package/
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Obr. 5.1: Zníženie spotreby batérie mobilných zariadení v sieťach 3G WCDMA s referenčnými

hodnotami
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Tab. 5.2: Redukcia počtu signalizačných správ vzhľadom na počet signalizačných správ na jednu

správu keepalive a referenčné hodnoty

Referenčné hodnoty: t = 1800 s, T = 3600 s

Počet signalizačných

správ na jednu

správu keepalive

Pôvodný

interval

keepalive

Redukcia počtu

signalizačných

správ

Pôvodný

interval

keepalive

Redukcia počtu

signalizačných

správ

40 (pozorované) 20 s 7120 120 s 1120

50 (pozorované) 20 s 8900 120 s 1400

20 (nepozorované) 20 s 3560 120 s 560

Na základe výsledkov je možné skonštatovať, že vhodný interval keepalive pre siete WCDMA je

približne 1800 sekúnd. Životnosť mapovania, ktoré by mal protokol PCP nastaviť, by mala byť o

istú hodnotu vyššia ako žiaduci interval keepalive – približne aspoň 2000 sekúnd. Pre mapovania,

ktoré sú vytvorené správou PCP MAP, by životnosť mapovania mala byť nastavená na dvojnásobok

intervalu keepalive, t.j. 3600 sekúnd.

Zhrnutie
Protokol PCP dokáže riešiť problémy aplikácii s prechodom cez brány NAT alebo bezpečnostné

brány a zároveň umožňuje aplikáciám získavať, resp. si explicitne vyžiadať životnosť mapovania na

bránach, vďaka čomu sú schopné optimalizovať interval vysielania správ keepalive.
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Obr. 5.2: Redukcia počtu signalizačných správ v sieťach 3G WCDMA s referenčnými hodnotami
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V súčasných mobilných sieťach môžu mať používateľské aplikácie stále pomerne nízky interval

keepalive.  Zníženie počtu správ  keepalive  môže byť považované za softvérovú metódu redukcie

nežiaducej réžie v sieti a zníženie spotreby batérie na mobilných zariadeniach. Zvýšením intervalu

je  možné  docieliť  značné  zníženie  signalizačnej  réžie,  obzvlášť,  ak  sú  k  sieti  naraz  pripojené

milióny mobilných zariadení.

Implementácia PCP v SDN zabezpečuje vyššiu flexibilitu a kompatibilitu medzi zariadeniami od

rôznych výrobcov. Vzhľadom na súčasnú implementáciu je možné rozšíriť architektúru o nové typy

brán,  integrovať  bezpečnosť  PCP,  alebo  implementovať  tzv.  viacdomovosť  v  sieti  (angl.

multihoming).
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