
Comenius University, Bratislava
Faculty ofMathematics, Physics and Informatics

Using Transformation in Solving Problems with
Supplementary Information

ACM SPY

2015

Boris Vida

Acknowledgement

I would like to express gratitude to my supervisor Prof. RNDr. Branislav Rovan, PhD. for his

help and advices by writing of this thesis. I would also like to thank my family and friends

for their support during my studies.

ii

Abstract

The main task of this thesis is to examine the use of transformation in solving problems

with supplementary information. The thesis is a continuation of the research devoted to

various aspects of information. It belongs to the part, where the topic of the research is the

"usefulness" of the information, while as a tool used for the measurement of the usefulness

is the descriptional complexity of deterministic finite automata. The results presented to this

date relied on the fact, that the supplementary information is in the form, which can be used

directly.

In this thesis, we propose a framework for studying the possibility to transform the in-

stance of a problem to match the format of the advisory information. A widely used and

quite general transformation device is an a-transducer. It turned out, that it is not always

convenient to allow the use of nondeterminism in transformations. Therefore, we examine

also the case, that the transformation device is a sequential transducer. Both of these devices

are defined and reviewed, e. g., in [2].

The thesis is devoted to the notion of information and to the question, how can its various

aspects be defined, studied and measured. The proposed thesis develops a model for study-

ing the usefulness of information also in cases, where it is not usable directly. This model

allows to consider the earlier results about the usefulness of information as a special case

and therefore allows a direct comparison with the previous model.

Keywords: language transformations, descriptional complexity, a-transducer, informa-

tion

iii

Abstrakt

Hlavným ciel’om tejto práce je skúmat’ využitie transformácie pri riešení problémov s po-

mocnou informáciou. Práca je pokračovaním výskumu týkajúceho sa oblasti skúmania rôz-

nych aspektov informácie. Zapadá do časti, v ktorej sa skúma “užitočnost’” informácie, pri-

čom ako prostriedok pre meranie užitočnosti je používaná popisná zložitost’ deterministic-

kých konečných automatov. Doterajšie výsledky sa spoliehali na skutočnost’, že pomocná

informácie je vo formáte, ktorý vieme priamo využit’.

V našej práci navrhujeme prostredie pre štúdium možnosti transformovat’ inštanciu prob-

lému tak, aby zodpovedala formátu pomocnej informácie. Často používaným a pomerne

všeobecným transformačným modelom je a-prekladač, no ukázalo sa, že nie je vždy vhodné

umožnit’ použitie nedeterminizmu v transformácii. Preto sa zaoberáme aj prípadom, že trans-

formačným modelom je sekvenčný prekladač. Oba tieto modely sú definované a popísané

napr. v [2].

Práca je o výskume pojmu informácia a o tom, ako by sa jej rôzne aspekty dali defino-

vat’, skúmat’ a merat’. V predloženej práci je vybudovaný rámec pre skúmanie užitočnosti

informácie aj pre prípady, že nie je použitel’ná priamo. Tento rámec umožňuje doterajšie

skúmanie užitočnosti informácie chápat’ ako špeciálny prípad a teda umožňuje aj priame

porovnanie s predchádzajúcim modelom.

K ’lúčové slová: transformácie jazykov, popisná zložitost’, a-prekladač, informácia

iv

Contents

Introduction 1

1 Preliminaries 3
1.1 Basic Concepts and Notation . 3

1.2 Transformation Models . 4

1.3 Complexity, Advisors and Decomposition 6

2 Current State of Research 9
2.1 Basic Properties of a-Transducers . 9

2.2 State Complexity of Finite State Devices 11

2.2.1 Finite State Automata . 11

2.2.2 Sequential Transducers . 13

2.3 Decompositions of Finite Automata . 14

3 Complexity of a-Transducers 16
3.1 "Modular-Counting" Languages . 17

4 Indirect Advice 20
4.1 Description of the Framework . 20

4.2 Decomposable and Undecomposable Languages 26

4.3 Closure Properties . 33

4.3.1 T -undecomposable languages . 33

4.3.2 T -decomposable languages . 34

Conclusion 37

v

Introduction

The main task of our thesis is to examine the use of transformation in solving problems

with supplementary information. The thesis is a continuation of the research devoted to

various aspects of information. It belongs to the part, where the topic of the research is

the "usefulness" of information. The tool used for the measurement of usefulness is the

descriptional complexity of deterministic finite automata. The results presented to this date

relied on the fact, that the supplementary information is in the form, which can be used

directly. However, from real life applications we know, that this is not always the case.

In this thesis, we propose a framework for studying the possibility to transform the in-

stance of a problem to match the format of the advisory information. A widely used and

quite general transformation device is an a-transducer. It turned out, that it is not always

convenient to allow the use of non-determinism in transformations. Therefore, we examine

also the case, that the transformation device is a sequential transducer. Both of these devices

are defined and reviewed, e. g., in [2].

The thesis is devoted to the notion of information and to the question, how can its various

aspects be defined, studied and measured. The proposed thesis develops a model for study-

ing the usefulness of information also in cases, where it is not usable directly. This model

allows to consider the earlier results about the usefulness of information as a special case

and therefore allows a direct comparison with the previous model.

In the first chapter of our thesis we present some basic definitions and notation used in our

thesis.

The second chapter contains known results concerning transformation models, state com-

plexity and the previous work in the area of solving problems with supplementary informa-

tions on deterministic finite automata.

In the third chapter we examine the state complexity of a-transducers and present our own

results regarding a particular class of languages, which will be further used in our thesis.

1

CONTENTS 2

In the last chapter of our thesis we propose a framework for studying the possibility to

transform the instance of a problem to match the format of the advisory information. We

study the classes of languages regarding the possibility to simplify their complexity using

the supplementary information. Moreover, we compare our results to those achieved for

supplementary information without the use of transformation.

We assume, that the reader is familiar with the basic concepts of formal languages. If this

is not the case, we recommend to obtain this understanding from [1].

Chapter 1

Preliminaries

In this section, we present some basic notation and terminology used in our thesis.

1.1 Basic Concepts and Notation

Notation. In our thesis we use the following notation: ε denotes an empty string, |w| the

length of a word w (|ε| = 0), |A| the number of elements of a finite set (or a finite language)

A, #a(w) the number of occurences of the symbol a in the word w, 2A the set of all subsets of

A.

Definition 1.1. A homomorphism is a function h : Σ∗1 → Σ∗2, such that

∀u, v ∈ Σ∗1 : h(uv) = h(u)h(v)

Notation. If ∀w , ε : h(w) , ε, we call h an ε-free homomorphism. Usually, we denote

an ε-free homomorphism by hε.

Definition 1.2. An inverse homomorphism is a function h−1 : Σ∗1 → 2Σ∗2 , such that h is a

homomorphism, h : Σ∗2 → Σ∗1, and

∀u ∈ Σ∗1 : h−1(u) = {v ∈ Σ∗2|h(v) = u}

Definition 1.3. A family of languages is an ordered pair (Σ,L), such that

1. Σ is an infinite set of symbols

2. every L ∈ L is a language over some finite set Σ1 ⊂ Σ

3. L , ∅ for some L ∈ L

3

CHAPTER 1. PRELIMINARIES 4

Definition 1.4. A family of languages is called a (full) trio, if it is closed under ε-free

(arbitrary) homomorphism, inverse homomorphism and intersection with regular sets.

Definition 1.5. A (full) trio is called a (full) semi-AFL, if it is closed under union.

Definition 1.6. A (full) semi-AFL is called a (full) AFL, if it is closed under concatena-

tion and +.

1.2 Transformation Models

We shall now define some of the models mentioned in the Introduction. Although the

central point of our interest is an a-transducer, we also introduce the definitions of other

models, which will be used in the next chapters, because they can give us an insight of

language transformations in general and many of the concepts used in results involving them

can be put to use by examination of a-transducers.

Since all transformation models used in our thesis are, in fact, special cases of an a-

transducer, we define it first and then we only specify the differences between a-transducers

and other models.

Definition 1.7. An a-transducer is a 6-tuple M = (K,Σ1,Σ2,H, q0, F), where

• K is a finite set of states,

• Σ1 and Σ2 are the input and output alphabets, respectively,

• H ⊆ K × Σ∗1 × Σ∗2 × K is the transition function, where H is finite,

• q0 ∈ K is the initial state,

• F ⊆ K is a set of accepting states.

If H ⊆ K × Σ∗1 × Σ+
2 × K, we call M an ε-free a-transducer.

Definition 1.8. If H ⊆ K × (Σ1 ∪ {ε})× (Σ2 ∪ {ε})× K, the corresponding a-transducer is

called 1-bounded.

Definition 1.9. A configuration of an a-transducer is a triple (q, u, v), where q ∈ K is a

current internal state, u ∈ Σ∗1 is the remaining part of the input and v is the already written

output.

CHAPTER 1. PRELIMINARIES 5

Definition 1.10. A computational step is a relation ` on configurations defined as fol-

lows:

(q, xu, v) ` (p, u, vy)⇔ (q, x, y, p) ∈ H.

Definition 1.11. An image of a language L by an a-transducer M is a set

M(L) = {w|∃u ∈ L, qF ∈ F; (q0, u, ε) `∗ (qF , ε,w)}

Definition 1.12. For i = 0, 1, 2, 3,w ≡ (x0, x1, x2, x3) ∈ H, we define pri(w) = xi and call

pri the i-th projection .

Definition 1.13. A computation of an a-transducer M is a word h0h1...hm ∈ H∗, such that

1. pr0(h0) = q0 (q0 is the initial state of M),

2. ∀i : pr3(hi) = pr0(hi+1)

3. pr3(hm) ∈ F

Notation. We denote a language of all computations of M by ΠM. Note, that ΠM is

regular ([2]).

Definition 1.14. Alternatively, we can define an image of L by an a-transducer M by

M(L) = {pr2(pr−1
1 (w) ∩ ΠM |w ∈ L}.

Definition 1.15. An A-transduction is a function Φ : Σ∗1 → 2Σ∗2 defined as follows:

∀x ∈ Σ∗1 : Φ(x) = M({x}).

We have described the core model of our thesis, namely an a-transducer, and now we

define two similar, but simpler models using the original notation (see e. g. [8]).

Definition 1.16. A sequential transducer is a 7-tuple M = (K,Σ1,Σ2, δ, σ, q0, F), where

• K,Σ1,Σ2, q0, F are like in an a-transducer,

• δ is a transition function, which maps K × Σ1 → K,

• σ is an output function, which maps K × Σ1 → Σ∗2.

CHAPTER 1. PRELIMINARIES 6

A sequential transducer can be seen as a "deterministic" 1-bounded a-transducer, in which

the set H fulfills following conditions:

1. for every pair (q, a) ∈ K × Σ1, there is exactly one element h ∈ H, such that pr0(h) = q

and pr1(h) = a,

2. ∀h ∈ H : pr1(h) , ε.

Notation. By δ̂ and σ̂ we denote an extension of δ (σ) to K × Σ∗1, defined recursively as

follows:

∀q ∈ K,w ∈ Σ∗1, a ∈ Σ1 :

• δ̂(q, a) = δ(q, a), δ̂(q,wa) = δ(δ̂(q,w), a),

• σ̂(q, a) = σ(q, a), σ̂(q,wa) = σ(δ̂(q,w), a).

We omit the definitions of a configuration, computational step and image related to se-

quential transducers, since they are very similar to the a-transducer.

Definition 1.17. A sequential function is a function represented by a sequential trans-

ducer. Formally, if M = (K,Σ1,Σ2, δ, σ, q0, F) is a sequential transducer, then

∀w ∈ Σ∗1, s. t. δ̂(q0,w) ∈ F: fM(w) = σ̂(q0,w).

We conclude this section by a definition of one more model, which can be viewed as a

special case of a sequential transducers.

Definition 1.18. A generalized sequential machine (gsm) is a 6-tuple M = (K,Σ1,Σ2, δ, σ, q0),

where K,Σ1,Σ2, δ, σ, q0 are as in sequential transducer case.

As one can see, a generalized sequential machine is a sequential transducer with F ≡ K

and therefore all other concepts are defined just like in a sequential transducer.

Notation. A sequential function described by a generalized sequential machine is called

a gsm mapping.

1.3 Complexity, Advisors and Decomposition

In this section we define the concept of advisors and decompositions.

CHAPTER 1. PRELIMINARIES 7

Definition 1.19. The state complexity of an a-transducer M = (K,Σ1,Σ2,H, q0, F) (a

sequential transducer M = (K,Σ1,Σ2, δ, σ, q0, F), a finite automaton A = (K,Σ, δ, q0, F)),

denoted by Cstate(T) (Cstate(A)), is the number of its states. Formally

Cstate(T) = |K|.

Definition 1.20. The state complexity of a regular language L, denoted by Cstate(L), is

the state complexity of its minimal deterministic finite automaton. Formally

Cstate(L) = min{Cstate(A)|L(A) = L}.

If L is not regular, we define Cstate(L) = ∞.

Definition 1.21. In a similar way, we can define the sequential (a-)transducer state com-

plexity of a pair of languages L1, L2, denoted by Cstate(L1, L2), as the state complexity of the

minimal sequential (a-)transducer M, which translates language L1 to L2. Formally

Cstate(L1, L2) = min{Cstate(M)|M(L1) = L2}.

Note, that it is possible, that Cstate(L1, L2) , Cstate(L2, L1) and it may happen, that Cstate(L1, L2)

= ∞ (if there is no sequential (a-)transducer M, such that M(L1) = L2).

Now we shall define the acceptance of a language with an advisor and some other concepts

presented in [9].

Definition 1.22. For a language L1 and an automaton A = (K,Σ, δ, q0, F), a language

accepted by A with the advisor L1 is the language

L[L1](A) = {w ∈ L1|(q0,w) `∗A (q, ε), q ∈ F}.

Another way for looking at this fact is, that L[L1](A) = L(A) ∩ L1.

Definition 1.23. Let A′ = (K′,Σ, δ′, q′0, F
′) and A = (K,Σ, δ, q0, F) be deterministic finite

automata. We say, that A′ realizes the the state behavior of A, if there is an injective mapping

α : K → K′, such that:

• ∀a ∈ Σ,∀q ∈ K : δ(α(q), a) = α(δ(q, a)),

• α(q0) = q′0.

Moreover, if ∀q ∈ K : α(q) ∈ F′ ⇔ q ∈ F, we say, that A′ realizes the state and

acceptation behavior of A.

CHAPTER 1. PRELIMINARIES 8

Definition 1.24. Let A1 = (K1,Σ, δ1, q1, F1) and A2 = (K2,Σ, δ2, q2, F2) be deterministic

finite automata. Their parallel connection is an automaton A1||A2 = (K1×K2,Σ, δ, (q1, q2), F1×

F2), where ∀(p1, p2) ∈ K1 × K2, a ∈ Σ : δ((q1, q2), a) = (δ1(p1, a), δ2(p2, a)).

Definition 1.25. We say, that a pair (A1, A2) is a state behavior (SB-) decomposition

of a deterministic finite automaton A, if A1||A2 realizes the state behavior of A. If A1||A2

realizes the state and acceptance behvaior of A, (A1, A2) forms a state and acceptance (ASB-)

behavior decomposition.

If Cstate(A1) < Cstate(A) and Cstate(A2) < Cstate(A), the decomposition is called nontrivial.

Definition 1.26. A language L and its corresponding minimal deterministic finite au-

tomaton A are called (A)SB-undecomposable, if A has no nontrivial (A)SB-decomposition.

The class of all regular (A)SB-undecomposable languages is denoted byUS B (UAS B).

Chapter 2

Current State of Research

In this chapter, we present some known results regarding transformation devices in general

and their complexity aspects.

2.1 Basic Properties of a-Transducers

This section contains few basic results from [2].

Lemma 2.1. R and LCF are closed under a-transduction.

Proof. Let M be an a-transducer and L a regular (context-free) language. We use the

alternative definition of the of image L:

M(L) = {pr2(pr−1
1 (w) ∩ ΠM)|w ∈ L}

Since ΠM is regular and both classes, of regular and of context-free languages are closed un-

der intersection with a regular language, homomorphism and inverse homomorphism ([1]),

they are also closed under a-transduction. ut

Corollary 2.1.1. Since sequential transducers and generalized sequential machines are

just special forms of an a-transducer, this lemma also holds for these devices.

In previous chapter, we have defined a special class of 1-bounded a-transducers. The

following theorem shows, that this is a normal form for a-transducer mappings.

Lemma 2.2. Let M1 be an arbitrary a-transducer. Then there exists a 1-bounded a-

transducer M2, such that ∀L : M2(L) = M1(L).

9

CHAPTER 2. CURRENT STATE OF RESEARCH 10

Proof. Let (q, u, v, p) ∈ H1, u ≡ a1a2...am, v ≡ b1b2...bn. Let m ≥ n (for m < n the

proof is very similar). M2 will have states q, qa1 , qa2 , ..., qan−1 , qan ≡ p and transitions in form

(qai , ai+1, bi+1, qai+1) for 1 ≤ i < n, resp. (qa j , a j+1, ε, qa j+1) for n ≤ j < m. This will be done

for every h ∈ H. It is easy to see, that the a-transduction by M1 and M2 is the same and

therefore ∀L : M2(L) = M1(L). ut

As one can see, this construction can increase the number of states of an a-transducer by a

constant multiple. Sometimes it is more convenient to consider only 1-bounded a-transducer,

since its complexity can be easier compared with other computational models.

Lemma 2.3. For every (ε-free) homomorphism h : Σ∗1 → Σ∗2 there is an (ε-free) a-

transducer M, such that ∀L : M(L) = h(L).

Proof. The a-transducer M = (K,Σ1,Σ2,H, q0, F) will look as follows:

• K = F = {q},

• q0 = q,

• H = {(q, a, h(a), q)|a ∈ Σ1}. ut

Lemma 2.4. For every homomorphism h there is an a-transducer M, such that ∀L :

M(L) = h−1(L).

Proof. As in previous Lemma, except H = {(q, h(a), a, q)|a ∈ Σ1}. ut

Lemma 2.5. For every language L and regular language R, there exists an ε-free a-

transducer M, such that M(L) = L ∩ R.

Proof. Let A = (K,Σ, q0, δ, F) be a non-deterministic finite automaton, such that L(A) =

R. Then M = (K,Σ,Σ,H, q0, F), where H = {(q, a, a, δ(q, a))|q ∈ K, a ∈ Σ}. ut

Notation. For each family L of languages,

M(L) = {M(L)|L ∈ L,M is an ε-free a-transducer}

M̂(L) = {M(L)|L ∈ L,M is an arbitrary a-transducer}

Theorem 2.6. For each family L of languages,M(L) (M̂(L)) is the smallest (full) trio

containing L.

CHAPTER 2. CURRENT STATE OF RESEARCH 11

Proof. Once again, we use the alternative definition of the image of L, M(L) = {pr2

(pr−1
1 (w) ∩ ΠM)|w ∈ L}. Considering previous lemmas,M(L) (M̂(L)) is clearly a (full) trio

(note, that if M is ε-free, pr2 is also ε-free).

Now, letL′ be a (full) trio containingL. Obviously,L′ also containsM(L) (M̂(L)), since

it has to be closed under (ε-free) homomorphism, inverse homomorphism and intersection

with a regular language. Therefore, M(L) (M̂(L)) is the smallest (full) trio containing L.

ut

Notation. If L is a single language, we writeM(L) instead ofM({L}).

In fact, it was shown in [3], thatM(L) (M̂(L)) is the smallest (full) semi-AFL containing

language L.

2.2 State Complexity of Finite State Devices

The topic of descriptional complexity of finite state devices has been widely researched in

connection with finite state automata. Some results have been introduced also for sequential

transducers. This section contains the achievements for these simpler devices, which can be

later useful when dealing with our main model, an a-transducer.

2.2.1 Finite State Automata

We occupy ourselves with the question, how to find Cstate(L) for a regular language L. Or,

otherwise stated, what is the relation between the properties of a regular language and the

state count of its minimal finite automaton?

For deterministic finite automata, the answer was given by Nerode in [5]. We present his

result in a slightly modified form, which suits our purposes better.

Theorem 2.7. Let L be a regular language over an alphabet Σ. Let RL be a relation on

strings from Σ∗ defined as follows:

xRLy⇔ ∀z ∈ Σ∗ : xz ∈ L↔ yz ∈ L.

Let k be a number of equivalence classes of RL. If A is a deterministic finite automaton

accepting L, then A has at least k states.

CHAPTER 2. CURRENT STATE OF RESEARCH 12

Proof. Let A = (K,Σ, δ, q0, F). We can construct a relation R′ based on automaton A as

follows:

for x, y ∈ Σ∗, xR′y⇔ δ(q0, x) = δ(q0, y).

Since A is deterministic, it is easy to see, that ∀z ∈ Σ∗ : xR′y ⇔ xzR′yz. Moreover, the

number of its equivalence classes is exactly the number of reachable states of A. Now, we

will show, that the relation R′ is a refinement of RL (i. e., each equivalence class of R′ is

contained in a equivalence class of RL).

Assume xR′y. As stated before, also xzR′yz. That means, that δ(q0, xz) ∈ F) ⇔ δ(q0, yz)

and therefore xRLy. It follows, that whole equivalence class of R′ containing x (later denoted

as [x]L) is a subclass of an equivalence class of RL and hence R′ has not less equivalence

classes than RL. ut

Important observation is, that this lower bound is tight, i. e., there really exists a DFA A′

accepting L with k states. We can construct it from relation RL as A′ = (K′,Σ, δ′, q′0, F
′):

• K′ is the set of equivalence classes of RL,

• δ([x], a) = [xa],

• q′0 = [ε],

• F′ = {[z]|z ∈ L}.

It is easy to see, that L(A′) = L and A′ has exactly k states.

A similar result was achieved for non-deterministic automata in [6]. However, the lower

bound presented there is not always tight (i. e., sometimes the minimal number of states of

NFA is even bigger) and moreover, it is not practically computable, since the problem, wheter

there is an NFA with at most k states equivalent to a given DFA is PS PACE-complete ([7]).

The following theorem was introduced in [6].

Theorem 2.8. Let L ⊆ Σ∗ be a regular language and suppose there exists a set of pairs

P = {(xi,wi) : 1 ≤ i ≤ n} such that

1. xiwi ∈ L for 1 ≤ i ≤ n,

2. x jwi < L for 1 ≤ i, j ≤ n and i , j.

Then any non-deterministic finite automaton accepting L has at least n states.

CHAPTER 2. CURRENT STATE OF RESEARCH 13

Proof. Let A = (K,Σ, δ, q0, F) be a NFA accepting L. Now, let S = {q|∃i, 1 ≤ i ≤

n : δ(q0, xi) 3 q}. For every i, there must by a state pi ∈ S , such that pi ∈ δ(p0, xi) and

δ(pi,wi) ∩ F , ∅ (since xiwi ∈ L).

Now it is sufficient to show, that all states pi are distinct. Indeed, if pi = p j, then δ(pi,wi) =

δ(p j,wi). Especially, δ(pi,wi) ∩ F , ∅ ⇔ δ(p j,wi) ∩ F , ∅. It follows, that x jwi ∈ L, which

is contradiction with definition of P.

Since |S | ≥ n, A has at least n states. ut

2.2.2 Sequential Transducers

The natural question arises, how can be these results extended if we add an output function, in

other words, what is the lower bound for the number of states of a (sequential, a-) transducer,

which transforms a language L1 to a language L2? Unfortunately, we do not have an answer

in such a general form yet. However, in the case of sequential transducers, in [8] was given

an answer to a simplified question: what is the minimal number of states of a sequential

transducer representing a sequential function?

Notation. If f is a sequential function (see Chapter 1), we denote

• Dom(f) is a set of strings w, for which f (w) is defined,

• D(f) = {u ∈ Σ∗|∃w ∈ Σ∗ : uw ∈ Dom(f)}.

Notation. By \ we denote the operation of a left quotient.

Definition 2.1. For a sequential function f we define a relation R f on D(f) as follows:

∀(u, v) ∈ D(f) × D(f) : uR f v ⇐⇒

∃(x, y) ∈ Σ∗2 × Σ∗2 : ∀w ∈ Σ∗1, uw ∈ Dom(f)⇔ vw ∈ Dom(f)∧

∧uw ∈ Dom(f)⇒ x \ f (uw) = y \ f (vw).

Theorem 2.9. A number of states of a sequential transducer M representing a sequential

function f is greater or equal to a number of equivalence classes of R f .

CHAPTER 2. CURRENT STATE OF RESEARCH 14

Proof. Let M = (K,Σ1,Σ2, δ, σ, q0, F). Choosing x = σ(q0, u) and y = σ(q0, v), it is easy

to see, that

∀(u, v) ∈ D(f) × D(f), δ(q0, u) = δ(q0, v)⇒ uR f v.

Moreover, δ(q0, u) = δ(q0, v) also defines an equivalence relation on D(f). As we can see,

this relation is just a special case of R f , which means, that its number of equivalence classes

(ergo the number of states of M) is greater or equal to the number of equivalence classes of

R f . ut

It was also shown, that this lower bound is tight, i. e., there is a sequential transducer

realizing f with |K| equal to the number of equivalence classes of R f . However, we do

not present the proof of this claim, since it is quite technical and we shall not use these

technicalities in our thesis.

As mentioned above, we do not know, how to apply this result to a pair of languages L1

and L2, if we do not have the exact sequential function transforming the former to the latter.

2.3 Decompositions of Finite Automata

When we consider advisory information which is "checkable" by finite automata, we

can view acceptance using advice as (centrain type of) finite automata decomposition. We

present here some definitions and results from [9].

Theorem 2.10. Let A be a deterministic finite automaton. If there exists a nontrivial

ASB-decomoposition of A, then there exists a regular language L and an automaton A′, such

that L(A) = L[L](A′) and both Cstate(L) < Cstate(A) and Cstate(A′) < Cstate(A).

Proof. We claim, that for any nontrivial decomposition of A on (A1, A2), L = L(A1) and

A′ = A2. We show, that L[L(A1)](A2) = L(A) in two containments:

• L[L(A1)](A2) ⊆ L(A): Since A1||A2 realizes the state and acceptance behavior of A,

we know, that any word w ∈ L(A) is accepted by A1||A2. Moreover, the accepting

computation of A1||A2 can be decomposed into accepting computations of A1 and A2

(as we can see from the definition). Therefore w ∈ L(A1) = L and w ∈ L(A2), which

implies w ∈ L[L(A1)](A2).

• L[L(A1)](A2) ⊇ L(A): The proof of this containment is similar, except we join the

computations of A1 and A2 on a word w ∈ L(A1) ∩ L(A2) into the computation of

A1||A2, which gives us a corresponding accepting computation of A.

CHAPTER 2. CURRENT STATE OF RESEARCH 15

ut

To present the aforementioned condition, we first need som additional definitions.

Definition 2.2. A partition π on a finite set S is a set {S 1, S 2, ..., S k}, such that ∀i : S i , ∅

and
⋃k

i=1 S i = S .

Notation. We denote the trivial partition of S = {s0, s1, ..., sk} into {s0}, {s1}, ..., {sk} by 0.

Definition 2.3. Let A = (K,Σ, δ, q0, F) be a deterministic finite automaton. We say, that

a partition π of K has a substitution property (S. P.), if

∀p, q ∈ K : p ≡π⇒ (∀a ∈ Σ : δ(p, a) ≡ δ(q, a)).

Definition 2.4. For a given pair of partitions π1 and π2 of a set S , then π1.π2 is a parition

of S , such that a ≡π1.π2 b⇔ a ≡π1 b ∧ a ≡π2 b.

Definition 2.5. Let A = (K,Σ, δ, q0, F) be a deterministic finite automaton. We say, that

the partitions π1 = {S 1, S 2, ..., S k} and π2 = {T1,T2, ...,Tl} on K separate the final states of A,

if there are two sets of indices i1, ..., im and j1, ..., jn, such that (S i1∪...∪S im)∩(T j1∪...∪T jn) =

F.

Now we can finally proceed to the necessary and sufficient condition on (A)SB-decomposability.

Theorem 2.11. Let A = (K,Σ, δ, q0, F) be a deterministic finite automaton. A is SB-

decomposable if and only if there are two nontrivial partitions π1, π2 of K with substitution

property, such that π1.π2 = 0. Moreover, if π1 and π2 separate the final states of A, this

decomposition is an ASB-decomposition.

The proof of this claim can be found in [9].

Chapter 3

Complexity of a-Transducers

In this thesis we initiated the study of usefulness of information in situations, where the ad-

visory information has to be transformed into some usable form (indirect advice, see Chapter

4). The transformation we shall consider are both deterministic and nondeterministic. It shall

be crucial to know the complexity of the a-transducer involved. We identified a simple type

of languages (see Section 3.1) which suffices to exhibit possible behaviour of such advice

utilisation.

This section is thus devoted to the complexity of a-transducers. Since the majority of the

results published to this date involve sequential transducers and sequential functions, we try

to investigate two new concepts in this area - nondeterminism and the fact, that we deal with

pairs of languages, without exactly defined transduction.

However, at this time we do not have any universal way of proving the minimality of an

a-transducer (with respect to the number of states). For our purposes it suffices to consider a

special class of languages and present the results concerning these. This allows to present the

basic concepts and opens a possibility to initiate similar study for other types of languages.

It is easy to see that for a regular language R there always exists an a-transducer with

Cstate(R) states, which generates R "from scratch", regardless of the (nonempty) input. It

suffices to take the minimal finite automaton for R and alter its transition function from

reading to generating symbols.

Formally, for an automaton A = (K,Σ, δ, q0, F) we can construct an a-transducer M =

(K,Σ,Σ,H, q0, F), where H = {(p, ε, a, q)|δ(p, a) = q} ∪ {(qF , a, ε, qF)|a ∈ Σ, qF ∈ F}. We

can look at the computation of A as a sequence of pairs (q, a), where in each step, A is in the

state q and reads symbol a. The a-transducer M will work in the same way, except instead

of reading symbol a, M reads in each step ε and writes a on the output. Then, in the final

16

CHAPTER 3. COMPLEXITY OF A-TRANSDUCERS 17

state, M consumes the whole input without generating any output. It is easy to see, that for

any nonempty language L, M(L) = R.

3.1 "Modular-Counting" Languages

We look for a simple class of languages, which would be used in the next chapter as a

series of examples applied to show the basic properties of our framework. Such a suitable

class of languages are "modular counting languages". By modular counting languages we

understand languages in the form

Lk = {ak|k ≡ 0 (mod k)}.

We would now like to present our results concerning the minimum complexity of an a-

transducer for a pair of modular counting languages.

Notation. By gcd(k, l) we denote a greatest common divisor of integers k, l, by lcm(k, l)

their lowest common multiple.

Lemma 3.1. For a pair of languages Lk, Ll, the minimal state complexity of an a-transudcer

M, such that M(Lk) = Ll, is

1. l, if k and l are coprime integers,

2. l
gcd(k,l) , if k ≤ l,

3. min(l, k
gcd(k,l)), if l < k < l2,

4. l, if k ≥ l2.

Proof. For the sake of clarity, we prove the four parts of the Lemma separately. However,

as stated before, l states are always sufficient, so we have a natural upper bound for parts 1.

and 4.

1. Let M = (K, {a}, {a},H, q0, F) be an a-transducer, such that M(Lk) = Ll. Let M have

l−1 states. Now, let us look at an accepting computation (in this case the corresponding

sequence of states) of M on some sufficiently long word x ∈ Lk (|x| ≥ l), on which M

generates a word y ∈ Ll. Clearly, there has to be a cycle, i. e. the computation has a

form q0, q1, ..., qi, ..., q j, ..., qF , where qF ∈ F and qi = q j, where j < i + l (we assume

that this is the shortest cycle in the computation, during which M generates a non-

empty output). In this cycle, M reads a subword ar and generates an output as for

some r, s; 1 ≤ r, s ≤ l − 1.

CHAPTER 3. COMPLEXITY OF A-TRANSDUCERS 18

Now, let us take two longer inputs x′ = x.ak.r and x′′ = x.a2k.r. On these two inputs,

M generates outputs y′ = y.ak.s and y′′ = y.a2k.s, respectively. Since k and l are coprime

integers and s < l, k.s is not divisible by l (the least common multiple of two coprimes

is their product), therefore at least one of these outputs does not belong to Ll, while

both x′, x′′ ∈ Lk. We have generated an incorrect output, thus M cannot have less than

l states.

2. Since the case gcd(k, l) = 1 was treated in 1, we can assume gcd(k, l) > 1. Therefore,

in what follows we assume, that l
gcd(k,l) < l.

First we will show, that l
gcd(k,l) states suffice. We can construct an a-transducer M =

(K, {a}, {a},H, q0, F), where

• K = {q0, q1, ..., q l
gcd(k,l)−1}

• F = q0

• H = {(qi, a, a, qi+1)|0 ≤ i < k
gcd(k,l) − 1} ∪ {(qi, ε, a, qi+1)| k

gcd(k,l) − 1 ≤ i < l
gcd(k,l) −

2} ∪ {(q l
gcd(k,l)−1, ε, a, q0)}.

It is easy to see, that the number of iterations of this cycle on a correct input (from

Lk) is divisible by gcd(k, l). Each iteration creates l
gcd(k,l) symbols a on the output,

therefore M(Lk) = Ll.

Now we need to prove, that this number really forms a lower bound for the state

count. Suppose, that there is an a-transducer M′ = (K, {a}, {a},H, q0, F) with at most
l

gcd(k,l) − 1 states, such that M′(Lk) = Ll. Similarly to the proof of part 1., we look for

a cycle, in this case of the length of at most l
gcd(k,l) − 1 states. With very similar series

of arguments, we can construct two inputs x′ = x.ak.r and x′′ = x.a2k.r, which produce

outputs y′ = y.ak.s and y′′ = y.a2k.s, respectively. If both |y′|, |y′′| were divisible by l,

then also k.s would be divisible by l. However, this is not possible, since s < l
gcd(k,l)

and as we know from the number theory, lcm(k, l) = k.l
gcd(k,l) .

3. Just like in part 2., we show, that if k > l ∧ k < l2, then k
gcd(k,l) states is enough. The

corresponding a-transducer will look as follows: M = (K, {a}, {a},H, q0, F), where

• K = {q0, q1, ..., q k
gcd(k,l)−1}

• F = q0

• H = {(qi, a, a, qi+1)|0 ≤ i < l
gcd(k,l) − 1} ∪ {(qi, a, ε, qi+1)| l

gcd(k,l) − 1 ≤ i < k
gcd(k,l) −

2} ∪ {(q k
gcd(k,l)−1, ε, a, q0)}.

CHAPTER 3. COMPLEXITY OF A-TRANSDUCERS 19

For similar reason as in part 2., it is clear, that M(Lk) = Ll.

However, the second part of the proof is a little bit different. We will not show, that

an a-trandsucer M′ = (K′, {a}, {a},H′, q′0, F
′) with fewer states, such that M′(Lk) = Ll,

generates an incorrect output, but we claim, that it is not able to generate all correct

outputs (i. e., all words from language Ll). Let us consider the shortest nonempty

word, that we can generate from Lk using M′.

We have assumed, that k < l2, therefore we can also state, that k
gcd(k,l) < l. Once

again, we look for a cycle in the computation of M′. Since |Q′| < l, to produce an

output of length l the computation must have a form q′0, q
′
1, ..., q′i , ..., q

′
j, ..., q

′
F , where

q′F ∈ F′ and q′i = q′j for some i and j, where j < i + k
gcd(k,l) . In each iteration of this

cycle, M′ has to output at least one symbol a.

We claim, that in each iteration of the cycle (i. e. in any of all possible cycles in its

computation), M′ has to generate at least l
gcd(k,l) symbols a. Really, in the proof of the

second part of our Lemma we have seen, that if the number s - the number of output

symbols generated in one iteration of the cycle - is smaller than l
gcd(k,l) , M′(Lk)∩Lc

l , ∅,

which leads to a contradiction.

Moreover, since |Q′| < k
gcd(k,l) , we also know, that in one iteration of each cycle, M′

reads less than k
gcd(k,l) symbols. Now, the shortest nonempty word from Lk (if M′(ε) ,

∅, it could be trivially proven, that M′(Lk) contains also words not from Ll) is ak. The

total number of iterations of all cycles is hence more than k
k

gcd(k,l)
= gcd(k, l). However,

as we have claimed, every cycle generates at least l
gcd(k,l) symbols. Then, the smallest

output length n > gcd(k, l). l
gcd(k,l) = l, hence we have no way to generate the word

al ∈ Ll.

4. The correctness of the lower bound l is clear from the construction based on its fi-

nal automaton (see above). The impossibility of existence of a smaller a-transducer

follows directly from previous part of Lemma - if k ≥ l2, then l ≤ k
gcd(k,l) .

ut

As a direct consequence of Lemma 3.1 we obtain the following theorem.

Theorem 3.2. Cstate(Lk, Ll) = min(l, max(k,l)
gcd(k,l)).

Chapter 4

Indirect Advice

4.1 Description of the Framework

We now proceed to definitions associated to the central matter of our thesis, which is the

framework for using transformation in problem solving with advisory information. We en-

rich the framework studied in [9] by allowing the advice to be on some transformation of the

input. We shall consider three particular cases. The first two cases shall be based on general

a-transducers and the third case shall be based on deterministic sequential transducers. The

results of this chapter provide the comparison of these cases.

Notation. Let M be an a-transducer and L be a language. Then M−1
∀

(L) is the set of all

words, such that all their images belong to L. Formally

M−1
∀

(L) = {w|M(w) , ∅ ∧ M(w) ⊆ L}.

Notation. Let M be an a-transducer and L be a language. Then M−1
∃

(L) is the set of

words w, such that there is at least one image of w belonging to L. Formally

M−1
∃

(L) = {w|M(w) ∩ L , ∅}.

Example 4.1. Let M = ({q0, q1}, {a}, {b},H, q0, {q0, q1}) be an a-transducer, where H =

{(q0, a, b, q1), (q1, ε, b, q0)}. Moreover, let L = {b2}∗. Every word ak ∈ {a}+ has two images:

M(ak) = {b2k−1, b2k} and M(ε) = {ε}. Therefore, M−1
∃

(L) = {a}∗, while M−1
∀

(L) = {ε}.

Definition 4.1. Let Ldec be a regular language. Let Ψ ∈ {∀,∃}. A pair (Ladv,M), where

Ladv is a regular language and M an a-transducer is called an indirect advice. The indirect

advice is called and NTΨ-advice for a regular language Ldec and an finite automaton A if there

exists a deterministic finite automaton A′, such that Ldec = L[M−1
Ψ

(Ladv)](A′). Moreover,

(Ladv,M) is called effective, if Cstate(A′) + Cstate(M) + Cstate(Ladv) ≤ Cstate(Ldec).

20

CHAPTER 4. INDIRECT ADVICE 21

Notation. We remind, that L[M−1
Ψ

(Ladv)](A′) = L(A′) ∩ M−1
Ψ

(Ladv).

Example 4.2. Let Ldec = {a12k|k ≥ 0}. Let M = ({q0, q1}, {a}, {a},H, q0, {q0}), where

H = {(q0, a, a, q1), (q1, a, ε, q0)} and Ladv = {a2k|k ≥ 0}. M shortens every word from a∗

to half of its length, so it is easy to see, that M−1
∀

(Ladv) = M−1
∃

(Ladv) = {a4k|k ≥ 0}. We

now construct a simpler finite automaton A′ for the language Lsimple = {a3k|k ≥ 0}. Clearly,

Cstate(A′) + Cstate(M) + Cstate(Ladv) = 3 + 2 + 2 ≤ 12 = Cstate(Ldec) and L[M−1
∀

(Ladv)](A′) =

L[M−1
∃

(Ladv)](A′) = Ldec which means, that Ladv with M is an effective NT∀- and NT∃-advice

with regard to Ldec.

Example 4.3. Let Ldec = {a3k|k ≥ 0} ∪ {a5k|k ≥ 0}. Now, let M be an a-transducer

from Figure 4.1, Ladv = Lsimple = {a}∗. We can see, that M has accepting computations

only on words from Ldec and so M−1
∃

(Ladv) = M−1
∀

(Ladv) = Ldec. Cstate(M) + Cstate(Lsimple) +

Cstate(Ladv) = 11, while Cstate(Ldec) = 15 (this could be proven by Myhill-Nerode theorem),

so (Ladv,M) is an effective NT∀- and NT∃-advice with regard to Ldec.

Figure 4.1: a-transducer M

In the last example, the whole advice was in some sense contained in the transformation

and the efficiency was achieved just through the nondeterminism of the a-transducer. We

would like to prevent such misuse of nondeterminism, so the saving of state count would

mirror the actual possibility to disassemble the problem into some smaller subproblems,

such that their results combined yield the solution of the task.

CHAPTER 4. INDIRECT ADVICE 22

At first sight the previous example seems to imply, that the problem is due to the fact,

that M does not have to generate the whole language Ladv. One possible solution is to add

a condition, that the filtering of words not from Ldec should not happen only in M, but also

in Ldec (and since the complexity of Ldec is the state count of its minimal deterministic au-

tomaton, the nondeterminism could not be misused). Formally, a pair (Ladv,M) is a (NT∀-)

NT∃-advice with regard to Ldec, if it fulfills the condition from the original definitions and

moreover, we demand, that Ladv ⊆ M(Σ∗Ldec
).

However, if we alter the a-transducer M, so that each traversal of the form (qi, a, a, q j) will

be altered to (qi, a, ε, q j), we can take Ldec = {ε}. Again, M−1
∃

(Ladv) = M−1
∀

(Ladv) = Ldec and

the complexity of the advice has increased by 1 (since Cstate({ε}) = 2), so (Ladv,M) is still an

effective advice for Ldec. However, our problem with the misuse of nondeterminism is still

apparent. Adding this simple condition did not help at all.

For aforementioned reason, we present the third possible definition of our framework,

where the transformation model is not an a-transducer, but a (deterministic) sequential trans-

ducer. However, unlike by a-transducer, one-bounded sequential transducers are not a normal

form of sequential transducers. It is easy to see, that with this restriction, we cannot generate

an output word, which is longer than the input. However, this shortcoming can be easily

solved by a small modification in the definition:

• δ is a partial transition function, that maps K × (Σ1 ∪ {ε})→ K,

• σ is a partial output function, that maps K × (Σ1 ∪ {ε})→ Σ2,

• however, the ε-transition and ε-output in a state q ∈ K are possible only if q ∈ F (this

transition has to be mandatory) there are no other transitions and outputs in this state,

and

• since δ and σ are partial functions, we demand, that for a ∈ Σ1 ∪ {ε} and q ∈ K, δ(q, a)

is defined, if and only if σ(q, a) is defined.

It can be easily shown, that this modified definition is a normal form of sequential trans-

ducers. The proof is straightforward and we do not include it in our thesis.

Definition 4.2. Let M be a sequential transducer and L be a language. Then M−1
D (L) is

the set of all words, such that their images belong to L. Formally

M−1
D (L) = {w|M(w) ∈ L}.

CHAPTER 4. INDIRECT ADVICE 23

Definition 4.3. Let Ldec be a regular language. A pair (Ladv,M), where Ladv is a regular

language and M a sequential transducer is called a T-advice with regard to Ldec, if there exists

a deterministic finite automaton A′, such that Ldec = L[M−1
D (Ladv)](A′). Moreover, (Ladv,M)

is called effective, if Cstate(A′) + Cstate(M) + Cstate(Ladv) ≤ Cstate(Ldec).

Example 4.4. We can see, that the a-transducer M from Example 4.2 has neither ε-

transitions, nor multiple transitions from one state on the same symbol. Moreover, the tran-

sition function is complete (the set H contains an element for every combination of a source

state and an input symbol), so the corresponding sequential transducer MD and its transition

function δ and output function σ can be easily constructed. Therefore, the pair (Ladv,M)

from Example 4.2 is an effective T -advice with regard to Ldec.

Remark. We shall often use this view of a sequential transducer - considering it a spe-

cial case of an a-transducer. When it will be suitable, we shall identify a sequential trans-

ducer with an a-transducer in which the set H fulfills the aforementioned conditions (no

ε-transitions and for each combination of state and input symbol precisely one element in H)

without the formal definition of its δ and σ functions. We state their construction here.

∀h ∈ H : δ(pr0(h), pr1(h)) = pr3(h)

∀h ∈ H : σ(pr0(h), pr1(h)) = pr2(h)

The correctness of the definition of these functions follows from the "determinism" of H.

We have defined three alternative ways to look at the use of transformation in solving

problems with advisory information, which differ in the definition of the language M−1(L).

This brings up the following question: for a given language L and an a-transducer M, how

to get the languages M−1
∀

(L), M−1
∃

(L) and M−1
D (L)? The answer was quite easy to find in

previous two examples (and, in fact, for all languages in the form {(ak)∗} and transducers,

which just manipulate the number of symbols a). We now search for the answer in general.

Lemma 4.1. Let M = (K,Σ1,Σ2,H, q0, F) be an a-transducer and L be a language.

Moreover, let L′ = M−1
∃

(L). Then ∀w ∈ L′c : M(w) = ∅ ∨ M(w) ⊆ Lc. The mapping

M−1
∃

can be simulated by an a-transducer M′ dual to M, such that M′(L) = L′, where

Cstate(M′) = Cstate(M).

Proof. The first part is quite easy to see, since by definition, M−1
∃

(L) contains all words,

such that at least one of their images by a-transducer M belongs to L. If for a word v ∈ L′c

CHAPTER 4. INDIRECT ADVICE 24

there is a word u, such that u ∈ M(v) and u < Lc, then u ∈ L and by definition, v ∈ L′, which

leads to a contradiction.

We prove the second part of our Lemma constructively. Let M′ = (K,Σ2,Σ1,H′, q0, F),

where

H′ = {(p, x, y, q)|(p, y, x, q) ∈ H}.

Clearly, Cstate(M) = Cstate(M′). It remains to show, that M′ simulates M−1
∃

, namely that

M′(L) = L′ (since L′ = M−1
∃

(L)).

• L′ ⊆ M′(L): Take an arbitrary word u ∈ L′. By definition of M−1
∃

, there is a word

v ∈ L, such that v ∈ M(u). Now, let us look at this computation of M on u as

a word h ∈ ΠM (see Chapter 1). Since this computation is accepting and its out-

put is v, we can rewrite h as a sequence of quadruples (q0, x1, y1, p1) (p1, x2, y2, p2)...

(pi−1, xi, yi, pi)...(pn−1, xn, yn, qF), where pr1(h) = u, pr2(h) = v and qF ∈ F. We

now present the computation of M′, which shows, that u ∈ M′(v). The computation

is h′ ≡ (q0, y1, x1, p1)(p1, y2, x2, p2)... (pi−1, yi, xi, pi)...(pn−1, yn, xn, qF). The correct-

ness of this computation follows from the construction of M′. We have shown, that

u ∈ M′(L) and therefore L′ ⊆ M′(L).

• M′(L) ⊆ L′: Once again, let us take a word u ∈ M′(L). There is a word v ∈ L,

such that u ∈ M′(v). Again, we can look at the respective computation of M′ on v

as a word h′ ≡ (q0, y1, x1, p1)(p1, y2, x2, p2)... (pi−1, yi, xi, pi)...(pn−1, yn, xn, qF), where

pr1(h′) = v and pr2(h′) = u. We construct the computation h of M in the same way

as in the previous part of the proof. The computation h shows, that v ∈ M(u) and

therefore M(u) ⊆ L (whole M(u), since all words v, such that u ∈ M′(v) have to belong

to L according to the first part of Lemma). From the definition of M−1
∃

it follows, that

u ∈ M−1
∃

(L) = L′.

ut

Very similar result can be stated for the setting with a sequential transducer. For a se-

quential transducer M and a language L, M−1
D (L) = M−1

∃
(L), since every word w ∈ M−1

D (L)

has exactly one image M(w) ∈ L. This means, that we can find L using the same dual

a-transducer M′. Note, that this dual machine is not necessarily a sequential transducer, be-

cause the mapping by M is not necessarily injective (and even if it is, the functions δ and

σ do not say anything about uniqueness of the combination of output symbol and result-

ing state). However, the determinism of the sequential transducer allows us to state some

additional claims.

CHAPTER 4. INDIRECT ADVICE 25

Lemma 4.2. Let M = (K,Σ1,Σ2, δ, σ, q0, F) be a sequential transducer and L be a lan-

guage. Moreover, let L′ = M−1
D (L). Then, M(L′) ⊆ L and ∀w ∈ L′c : M(w) = ∅ ∨ M(w) ∈ Lc.

The mapping M−1
D can be simulated by an a-transducer M′ dual to the sequential trans-

ducer M, such that M′(L) = L′ and ∀w ∈ Lc : M′(w) = ∅ ∨ M′(w) ⊆ L′c. Moreover,

Cstate(M′) = Cstate(M).

Proof. We prove just those parts of our Lemma, which are different from the claims in

the previous one. In the first part, we state, that M(L′) ⊆ L. This claim follows directly

from the fact, that every word w ∈ L′ has only one image M(w) and by definition, this image

belongs to L (otherwise w < L′). Moreover, since the image of a word w by a sequential

transducer is a word, instead of a set, the condition on words from L′c changes accordingly.

We provide the formal construction of the a-transducer M′, since we construct it from the

sequential transducer M. Again, M′ = (K,Σ1,Σ2,H, q0, F), where

H = {q, a, σ(a), δ(q)|∀q ∈ K, a ∈ Σ1}.

The proof of the claim, that M′(L) = L′, is very similar to the proof of previous Lemma.

We provide the arguments for the last part of Lemma, i. e. ∀w ∈ Lc : M′(w) = ∅ ∨ M′(w) ⊆

L′c: Assume there is a word w ∈ Lc, such that M′(w) = u ∧ u ∈ L′. From the previous

part of Lemma it follows, that u ∈ M′(L). However, then w = M(u) ⊆ L, which leads to a

contradiction. ut

We have seen, that finding the sets M−1
∃

(L) and M−1
D (L) for a given language L and a-

transducer M is quite easy using a dual a-transducer M′. However, the situation with M−1
∀

is

not that simple. The main problem is, that if some word w ∈ Σ∗L′ has an image in L, it can

also have other images in Lc, therefore w < L′. However, if we used a dual a-transducer M′

from the previous Lemmas on L, the word w will be constructed, since w ∈ M′(L). We now

present the solution to this issue.

Lemma 4.3. Let M = (K,Σ1,Σ2,H, q0, F) be an a-transducer and L be a language.

Moreover, let L′ = M−1
∀

(L). Then, M(L′) ⊆ L. The mapping M−1
∀

can be simulated by

an a-transducer M′ dual to the sequential transducer M, such that L′ = M′(L) − M′(Lc) and

∀w ∈ Lc : M′(w) = ∅ ∨ M′(w) ⊆ L′c. Moreover, Cstate(M′) = Cstate(M).

Proof. The first part (M(L′) ⊆ L) follows from the definition. If a word w belongs to L′,

all of its images by M are in L, therefore whole of M(w) ⊆ L and furthermore M(L′) ⊆ L.

CHAPTER 4. INDIRECT ADVICE 26

Now we prove the second claim in three steps, using the same construction of the dual

a-transducer M′ as before.

• L′ ⊆ M′(L) − M′(Lc): Let w ∈ L′. By definition, M(w) , ∅ ∧ M(w) ⊆ L, therefore,

there is a word u ∈ M(w)∧ u ∈ L. By the construction of M′, it can be easily seen (and

proven similarly to the proof of the M−1
∃

case), that w ∈ M′(u) ⊆ M′(L). Furthermore,

if w ∈ M′(Lc), it means, that there is a word v ∈ Lc, such that w ∈ M′(v). However,

then v ∈ M(w) and since v < L, then M(w) * L and by definition w < L′.

• M′(L)−M′(Lc) ⊆ L′: Let w ∈ M′(L)−M′(Lc). Since w ∈ M′(L), we know, that there is

at least one word u, such that u ∈ L∩M(w). The second part, i. e. w < M′(Lc) secures,

that Lc ∩ M(w) = ∅ (if there was a word u ∈ Lc ∩ M(w), then w ∈ M′(u) ⊆ M(Lc)).

Thus, w fulfills the definition of M−1
∀

(L), therefore w ∈ L′.

• ∀w ∈ Lc : M′(w) = ∅ ∨ M′(w) ⊆ L′c: This claim follows directly from the fact, that

L′ ∩ M′(Lc) = ∅.

ut

We conclude this section by a note, which will later be useful for comparing our three

settings to each other. This claim follows directly from the fact, that a sequential transducer

is a special case of an a-transducer and the definition of M−1
D fulfills the definitions for both

M−1
∀

and M−1
∃

.

Remark. Every (effective) T -advice is also a NT∀-advice. Every (effective) T -advice is

a NT∃-advice.

4.2 Decomposable and Undecomposable Languages

In the previous section, we have defined the notion of an effective advice. Now we present

another related concept, namely the T -, NT∀− and NT∃ decomposability of regular lan-

guages.

Definition 4.4. The language L is called T-decomposable, if there is a sequential trans-

ducer M and a regular language Ladv, such that (Ladv,M) is an effective T -advice for L.

Otherwise, we say L is T-undecomposable.

CHAPTER 4. INDIRECT ADVICE 27

Definition 4.5. Let Ψ ∈ {∃,∀}. The language L is called NTΨ-decomposable, if there is

an a-transducer M and a regular language Ladv, such that (Ladv,M) is an effective NTΨ-advice

for L. Otherwise, we say L is NTΨ-undecomposable.

Lemma 4.4. Every T -decomposable language is NT∀- and NT∃-decomposable. Every

NT∀- and NT∃-undecomposable language is T -undecomposable.

Proof. The proof follows directly from the final remark in the previous section. ut

Later we shall see, that the reverse implication does not hold. We now compare our set-

tings to the setting presented by [9] (see Section 2.3). To make the comparison more mean-

ingful, we have to strengthen the condition presented in [9] in the following way:

Definition 4.6. A language L is called A-decomposable, if there exists an advisor L1 and

an automaton A, such that Cstate(L1) + Cstate(A1) < Cstate(L) and L[L1](A) = L.

Notation. For Ψ ∈ {A,T,NT∃,NT∀}, we denote the class of Ψ-decomposable languages

by DΨ and the class of Ψ-undecomposable languages by UΨ.

For the sake of clarity, we present just the comparison of A-decomposable and T -decomposable

languages, since the relations to NT∀ and NT∃ follow similarly.

Theorem 4.5. DA ⊆ DT .

Proof. The proof follows easily by using a sequential transducer computing the identity.

ut

However, the next theorem shows, that the reverse implication does not hold.

Theorem 4.6. DT * DA.

Proof. Such languages are for example the singleton languages Ln = {an} for n ≥ 10 and

even.

We prove this claim in two steps. First, we need to show, that Ln is T -decomposable. It is

easy to see, that a DFA accepting Ln needs at least n + 2 states, therefore Cstate(Ln) = n + 2.

CHAPTER 4. INDIRECT ADVICE 28

Now we can use an advice to simplify the accepting automaton as follows: our sequential

transducer M will encode each pair of letters a into one new letter b using two states, where

the first state is accepting. Formally, M = ({q0, q1}, {a}, {b}, δ, σ, q0, {q0}), where

δ(q0, a) = q1; δ(q1, a) = q0, and

σ(q0, a) = b;σ(q1, a) = ε.

Consider the advisory language is Ln,adv = {b
n
2 }, while Cstate(Ln,adv) ≤ n

2 + 2.

We need to construct an automaton A, such that L[M−1
D (Ln,adv)](A) = Ln. Let L(A) = {a}∗.

Clearly, M−1
D (Ln,adv) = Ln, so the advice gives the full information about Ln. Altogether, we

used 2 + n
2 + 2 + 1 states, therefore for n ≥ 10 is (Ln,adv,M) an effective T -advice with regard

to Ln.

Our next goal is to show, that Ln is not A-decomposable. As we have said before, a

minimal DFA A for Ln has n + 2 states and its states correspond to the equivalence classes

of the relation defined by Myhill-Nerode theorem (see Section 2.2.1). These equivalence

classes are:

1. [c0] = {ε},

2. [ci] = {ai} for 1 ≤ i ≤ n,

3. [cn+1] = {ak|k > n}.

We proceed by contradiction, therefore we assume, that we can find an automaton A′ and a

language Ladv (with an automaton Aadv), such that Cstate(A′) + Cstate(Ladv) < Cstate(Ln) = n + 2

and L[Ladv](A′) = Ln. We will show, that both A′ and Aadv need at least n states, otherwise

they would accept an input from [cn+1], which leads to a contradiction, since Cstate(A′) +

Cstate(Ladv) ≥ n + n ≥ n + 2 = Cstate(Ln).

Let us now look at the minimal deterministic finite automaton Aadv of Ladv. Since the

inequality holds, Aadv has at most n states. Also, Aadv accepts the language Ln, that means, in

our case, the word an. Clearly, by reading an, Aadv runs in a cycle. Without loss of generality,

assume that in one iteration of the shortest cycle Aadv reads al. Therefore, it accepts also

incorrect outputs in the form an+s.l, s ≥ 1.

The same argument can be used for A′. Assume, that it accepts also words an+s.k, s ≥ 1.

However, this means, that an+s.k.l ∈ Ladv and also an+s.k.l ∈ L(A′) and our model accepts the

word an+s.k.l. However, an+s.k.l < Ln. ut

CHAPTER 4. INDIRECT ADVICE 29

Corollary 4.6.1. DA (DT .

Corollary 4.6.2. There are infinitely many T -decomposable languages.

Corollary 4.6.3. There are infinitely many NT∀- and NT∃-decomposable languages.

We have seen, that adding the possibility of transformation in solving problems with sup-

plementary information can help us to also decompose some languages, that are not decom-

posable without the use of transformation. Further we show, that also adding the possibility

to use nondeterminism in the transformation gives us more power (i. e. the settings which

use nondeterministic transformation yield bigger classes of decomposable languages).

Theorem 4.7. DT (DNT∃

Proof. We have already seen, that every T -decomposable language is also NT∃-decomposable.

We now show, that the reverse containment is not true.

Each of the languages Lp = {(ap)∗}, where p is a prime number, is T -undecomposable.

It is easy to see, that Cstate(Lp) = p. We want to decompose Lp to get a simpler automaton

A′. Let Lsimple = L(A′). Moreover, we will be looking for an advisory language Ladv and a

sequential transducer M. Let Ltrans = M−1
D (Ladv).

Now, we present some constraints on the aforementioned languages. From the definition

of the framework, we know, that L[Ltrans](A′) = Lp and therefore Lp = Lsimple ∩ Ltrans. We

claim, that Cstate(Lsimple) ≥ p or Cstate(Ltrans) ≥ p. This can be proven using a series of argu-

ments, which have been already used several times in our thesis - since both languages must

contain Lp as their subset, if both finite automata have fewer than p states, their computation

on a word ap runs in a cycle of some lengths k, l. Then, both automata would accept the word

ap+k.l, which however does not belong to Lp (because k, l < p and p is a prime number).

On the other side, since we claim, that Lp is T -decomposable, it must hold, that Cstate(Lsimple)

< p−1 (together with another two devices, the total number of states is at most p). It follows,

that Cstate(Ltrans) ≥ p. What do we know about the complexity of Ladv? For similar reasons

as for Lsimple, also for Ladv it has to hold, that Cstate(Ladv) < p − 1.

CHAPTER 4. INDIRECT ADVICE 30

Moreover, we claim, that Lsimple contains every word of the form ak for k ≥ p. Assume

this is not the case and there is a word al, such that al < Lsimple. Since Cstate(Asimple) < p, the

sequence of states in the computation of Asimple on al contains a cycle of length r < p. This

means, that for every i, the computation of Asimple on al+i.r is not accepting, too. From the

group theory we know, that Zp is a cyclic group, where every m , 0 (mod p) is a generator.

Since 0 < r < p, also r is a generator, therefore there is a number s, such that s.r is an

inverse element of l in Zp. This means, that al+s.r ∈ Lp, but from aforementioned it follows,

that Asimple does not accept al+s.r, which further means, that al+s.r < Lsimple ∩ Ltrans, which

leads to a contradiction.

That means, that in fact, we want to encode the language Ltrans into the language Ladv

with a smaller complexity using a sequential transducer M. However, we not only need, that

M(Ltrans) = Ladv. Lemma 4.2 gives us another supplementary condition on M: M(Lc
adv) ∩

Ltrans = ∅ (this is just another notation of condition from Lemma 4.2).

Now, let us consider a sequential transducer M with aforementioned properties and the

language M(Ltrans). We know, that Ltrans contains all words of the form (ap)∗ and all this

words have to be transduced by M to words from Ladv(M(Ltrans)). Since M has fewer than

p states, the computation of M on such words contains a cycle. Let us now take the accept-

ing computations on ap. This computation has a form (q0, x0, y0, qi1), ..., (qi j , x j, y j, qi j+1), ...,

(qin , xn, yn, qF), ..., (qi j , x j, y j, qi j+1), ..., (qin , xn, yn, qF), where qF ∈ F and ∀k : xk ∈ {ε, a}. It

can be seen, that this computation contains a cycle starting and ending in qF . Of course, qF

is not necessarily the first state, that occurs in our computations two times, but since M is a

sequential transducer (i. e. its transition function is deterministic) and p > Cstate(M), if the

computations ends in qF , this state occurs in this computation repeatedly. Let the input and

the output of one iteration of this cycle be as and u, respectively.

Since the transition and output functions of M are deterministic, the computation on a

word ap+s also ends in qF , because the computation differs only in the number of iterations of

our considered cycle. The same holds for every ap+i.s, i ≥ 0. Moreover, M(ap+i.s) = M(a).ui.

Let us now look at the classes of equivalence relation from Myhill-Nerode theorem (see

Section 2.2.1) of Ltrans. We have already shown, that Lsimple ⊇ {ak|k ≥ p}. This leads to a

claim, that ∀k > p, k , 0 (mod p) : Ltrans = ak. From this wee see, that the equivalence

classes of Lp are also equivalence classes of Ltrans. We remind, that these classes correspond

to individual remainder classes mod p.

CHAPTER 4. INDIRECT ADVICE 31

We claim, that for every one of these classes, there is a word in this class, such that the

computation of this word on M ends in qF . To prove this, we once again use the same

observation from group theory as above - s (the length of the cycle input) is a generator in

Zp. This means, that for i = 1, 2, ..., p, every ap+i.s belongs to another equivalence class, but

the computation on every of these word ends in qF . Hence, the claim is proven.

We have shown, that Cstate(Ladv) < p. From Dirichlet’s principle it follows, that there are

two values 1 < i1 < i2 < p, such that [M(ap+i1.s)] = [M(ap+i2.s)]. We once again use the

fact, that s is a generator of Zp. This means, that there are numbers 0 < j1, j2 < p, such

that s. j1 and s. j2 are inverse elements to i1.s and i2.s in Zp, respectively. Let us now take the

words ap+i1.s+ j1.s and ap+i2.s+ j1.s. We know, that ap+i1.s+ j1.s ∈ Ltrans and ap+i2.s+ j1.s < Ltrans (since

p - | j1 − j2|.s); moreover, M(ap+i1.s+ j1.s) = M(ap+i1.s).u j
1 and M(ap+i1.s+ j2.s) = M(ap+i1.s).u j

2.

However, M(ap+i1.s).u j
1 ∈ Ladv ⇔ M(ap+i1.s).u j

2 ∈ Ladv (because [M(ap+i1.s)] = [M(ap+i2.s)]).

We have found a word, such that w ∈ Ltrans ∧ M(w) < Ladv, or w < Ltrans ∧ M(w) ∈ Ladv,

which contradicts the conditions on sequential transducer M.

To finish the proof of our theorem, we prove the NT∃-decomposability of Lp for every

p ≥ 7. Let M′ be the a-transducer from Figure and L′p;adv = (ab
p
2 c.b)∗. What is the language

M
′−1
∃

(L′p;adv) like? We can find this language using an a-transducer M′′ dual to M′ according

to Lemma 14. Clearly, for a word (ab
p
2 c.b)k, M′′ outputs two symbols a for every a on

the input and one symbol a for every b on the input. This being said, it is easy to see,

that M′′((ab
p
2 c.b)k) = ak.p, therefore from L′p;adv, M′′ generates exactly the language Lp.

Therefore, (L′p;adv,M
′) is an NT∃-advice with regard to Lp, while the automaton Asimple, such

that L[M
′−1
∃

(L′p;adv)](Asimple) = Lp, needs to accept the language {a}∗.

Figure 4.2: a-Transducer M′

Clearly, Cstate(M′) = 2, Cstate(Asimple) = 1 and Cstate(Lp;adv) = b
p
2 c + 2 (we look for the

iteration of a string of length b p
2 c+ 2 and one additional state is for words with b in incorrect

positions). For p ≥ 11, Cstate(M′) + Cstate(Asimple) + Cstate(Lp;adv) ≤ p. ut

CHAPTER 4. INDIRECT ADVICE 32

Remark. We could prove the T -undecomposability of the languages Lp = {(ap)+}, where

p is a prime number (with Kleene plus instead of the star) in the same way.

Similar result can be obtained for the class of NT∀-decomposable languages.

Theorem 4.8. DT (DNT∃

Proof. The witness languages for this claim are the complements of Lp’s from the pre-

vious Theorem. The T -undecomposability of Lc
p can be proven in a similar way to the proof

of T -undecomposability of Lp. We show just the first part of the proof, since the rest follows

the same pattern as in the aforementioned result.

Assume, that Lc
p is T -decomposable. This means, that we can decompose Lc

p into two

languages Lp;trans and Lp;simple, such that Lp;trans ∩ Lp;simple = Lc
p. As we see, Lc

p ⊆ Lsimple.

However, since the finite automaton for Lc
p has fewer than p states, it is easy to see, that

Lsimple ⊇ {a∗} (otherwise at least one of the words a, aa, ..., ap−1 would be rejected). It follows,

that Ltrans∩{ak|k = 0 (mod p)} = ∅. As we have said, the rest of the proof is almost identical

to the proof of Theorem 4.7.

It remains to show, that for p ≥ 11, Lc
p is NT∀-decomposable. Once again, we use the

a-transducer M′ from Figure 4.2 and this time, let L′p;adv = {a, b}∗ \ (ab
p
2 c.b)∗. We can find the

language M
′−1
∀

(L′p;adv) according to Lemma 16 as M′′(L′p;adv)−M′′(L
′c
p;adv) for an a-transducer

M′′ dual to M′. It can be seen, that M′′(L′p;adv) = {a}∗ (in fact, to show this, it is sufficient to

consider only the images of words from b∗). The language M′′(L
′c
p;adv) was shown in the proof

of previous Theorem - it is exactly Lp. Therefore, M′′(L′p;adv)−M′′(L
′c
p;adv) = {a}∗\Lp, which is

exactly Lc
p. Moreover Lsimple = {a}∗ and for p ≥ 11, Cstate(M′)+Cstate(Lsimple)+Cstate(Lp;adv) =

2 + 1 + b
p
2 c + 2 ≤ p = Cstate(Lp) and it follows, that Lc

p is NT∀-decomposable. ut

Theorem 4.9. DNT∀ (R, DNT∃ (R.

Proof. The definition of Ψ-decomposability for Ψ ∈ {NT∃,NT∃} contains a requirement,

that Ldec = L[M−1
Ψ

(Ladv)](A′) for some a-transducer M, regular language Ladv and finite au-

tomaton A′. This condition can be rewritten as Ldec = L(A′) ∩ M−1
Ψ

(Ladv). We have already

seen, that M−1
Ψ

(Ladv) can be found with an a-transducer M′ dual to M. It is well known, that

the class of regular languages is closed under a-transduction, complement and intersection,

so the claim, that DNT∀ ⊆ R and DNT∃ ⊆ R follows.

CHAPTER 4. INDIRECT ADVICE 33

Moreover, the language {a}∗ is clearly regular, but since Cstate({a}∗) = 1, we cannot de-

compose it into three models (a regular language, an a-transducer and a DFA), since each of

them has at least one state. Therefore {a}∗ < DNT∀ ∪DNT∃ . ut

Previous theorems can be summarized in the following diagram:

DA (DT
(DNT∀ (
(

DNT∃ (
R

As we have seen, the classes of regular languages using T -decomposability differ from the

classes of A-decomposable and A-undecomposable languages. In the next part of our thesis,

we investigate some properties of these classes.

4.3 Closure Properties

When looking at a new class of languages, one of the first natural questions, that arise,

are its closure properties. In this section, we examine the closure of T -decomposable and

T -undecomposable languages under some basic operations.

4.3.1 T -undecomposable languages

In this part, we mainly use two types of T -undecomposable languages. First of them are

languages of type Lp = {apk|k ≥ 0} for p a prime number. The T -undecomposability of these

languages is proved in the previous section. The second type is the language L = {a}∗. This

language is clearly undecomposable, since Cstate(L) = 1 and all three devices contained in

our indirect advice concept have non-zero number of states.

Theorem 4.10. The class of T -undecomposable languages is not closed under

(a) (non-erasing) homomorphism,

(b) intersection,

(c) union.

Proof.

(a) Consider an undecomposable language La = {a13k|k ≥ 0} and a homomorphism h :

{a}∗ → {a}∗, such that h(a) = aa. Clearly, h(La) = {a26k|k ≥ 0} and this language can

be decomposed in a following way: let us take a sequential transducer Ma computing

CHAPTER 4. INDIRECT ADVICE 34

the identity mapping and a language L′a = {a2k|k ≥ 0}. These two items form the

desired effective T -advice for La, since we only have to construct a DFA A, such that

L(A) = {a13k|k ≥ 0}, resulting in L[M−1
a,D(L′a)](A) = La.

Since this homomorphism is non-erasing, our class is not closed even under nonerasing

homomorphism.

(b) Consider two languages, Lb1 = {a13k|k ≥ 1} and Lb2 = {a2k|k ≥ 1}. As stated before,

both of these languages are T -undecomposable. However, Lb1 ∩ Lb2 = {a26k|k ≥ 1} is a

T -decomposable language, as we have seen in the first part of this proof.

(c) Let us take two languages, Lc1 = {ak|k , 0 (mod 5)} and Lc2 = {ak|k , 0 (mod 7)}.

The T -undecomposability of these languages was shown in Theorem 4.8.

Figure 4.3: Sequential transducer Mc

Now we claim, that the language Lc3 = Lc1 ∪ Lc2 = {ak|k , 0 (mod 35)} is T -

decomposable. Clearly, Cstate(Lc3) = 35. Take the sequential transducer Mc from

Figure 4.2. It can be seen, that the image of a word ak is a word from {a, b}∗ with

the same length and if and only if 5 | k, the last symbol of this output is b. Now, let

Ladv = {a, b}∗ \ ({a, b}7k−1.{b}). Clearly, M−1
c;D(Ladv) = Lc3. Then, Lsimple = {a}∗ and

clearly, (Ladv,Mc) is an effective T -advice with regard to Lc3.

ut

4.3.2 T -decomposable languages

Theorem 4.11. The class of T -decomposable languages is not closed under

(a) (non-erasing) homomorphism,

CHAPTER 4. INDIRECT ADVICE 35

(b) inverse homomorphism,

(c) Kleene star, Kleene plus,

(d) intersection,

(e) union.

Proof.

(a) Let us take the language La = {w|w ∈ {a, b}∗ ∧ #a(w) ≡ 0 (mod 42)}. Clearly, the

language L′a = {w|w ∈ {a, b}∗ ∧ #a(w) ≡ 0 (mod 14)} with a sequential transducer Ma

computing the identity mapping is an effective advice for La.

Let us now consider the homomorphism h : {a, b}∗ → {a}∗, defined by h(a) = a, h(b) =

a. Note, that h is a non-erasing homomorphism. It easy to see, that h(La) = {a}∗,

however, as stated earlier, this language is T -undecomposable.

(b) Consider the language Lb = {a26k|k ≥ 1}. The decomposition of this language was

shown in the proof of previous theorem. The desired homomorphism is h : {a}∗ → {a}∗,

where h(a) = aa. Now, h−1(Lb) = {a13k|k ≥ 1}, which is T -undecomposable.

(c) The counterexample is given by the language Lc = {a11}. Let us take the language

L′c = {a5}; the sequential transducer Mc = ({q0, q1, q2}, {a}, {a}, δ, σ, q0, {q1}), where

δ(q0, a) = q1;σ(q0, a) = ε

δ(q1, a) = q2;σ(q1, a) = ε

δ(q2, a) = q1;σ(q2, a) = a

and the automaton Ac = ({q0}, {a}, δ, q0, {q0}), where δ(q0, a) = q0. Clearly, M−1
c;D(L′3) =

Lc and Cstate(L′c) + Cstate(T) + Cstate(Ac) = 5 + 3 + 1 ≤ 9 = Cstate(Lc), therefore Lc

is T -decomposable. Though, (Lc)+ = {a11k|k ≥ 1} and (Lc)∗ = {a11k|k ≥ 0} are T -

undecomposable.

(d) Let us take a look at two languages, Ld1 = {a}∗ ∪ {b15k|k ≥ 1} and Ld2 = {a}∗ ∪ {c15k|k ≥

1}. We show the decomposition of Ld1, since that of Ld2 is very similar.

Let L′d1 = {a}∗∪{b3k|k ≥ 1} and let Md1 compute the identity mapping. With this advice,

we need to check just the language L′′d1 = {a}∗ ∪ {b5k|k ≥ 1} with an automaton A′′d1. It

is easy to see (and provable by Myhill-Nerode theorem), that a DFA for language Ld1

needs at least 18 states. However, Cstate(L′d1) + Cstate(M) + Cstate(L′′d1) = 6 + 1 + 8 = 15

and clearly L[L′d1](A′′d1) = Ld1, which means, that Ld1 is T -decomposable.

However, if we take the language Ld = Ld1 ∩ Ld2 = {a}∗, we get a T -undecomposable

language, therefore our class is not closed under intersection.

CHAPTER 4. INDIRECT ADVICE 36

(e) In the previous section we have seen, that the languages Le1 = {a10} and Le2 = {a12}

are T -decomposable. Now we show, that also their complements are T -decomposable.

Let Me = ({q0, q1, q2}, {a}, {a, b},H, q0, {q0, q2}), where H = {(q0, a, ε, q1), (q1, a, b, q0),

(q0, a, a, q2)}. It can be easily seen, that Me(a2k) = bk and Me(a2k+1) = bka. Now,

the effective advice for Lc
e1 consists of Me and Le1,adv = {b5}c. Clearly, Cstate(Me) +

Cstate(Le1,adv) + Cstate({a}∗) = 3 + 7 + 1 ≤ 12 = Cstate(Lc
e1) and Lc

e1 = M−1
e (Le1,adv)∩ {a}∗.

The effective advice for Lc
e2 can be constructed in the same way.

However Lc
e1∪Lc

e2 = {a}∗ and since Cstate({a}∗) = 1, this language is T -undecomposable.

ut

Conclusion

In our thesis we studied the use of indirect advice in solving problems with supplementary

information. We have presented three formalizations of this idea using deterministic finite

automata and sequential and a-transducers. We have briefly examined these three frame-

works and compared some of the corresponding classes of decomposable and undecompos-

able languages, i. e., the classes of languages where the corresponding type of indirect advice

does not help. We have moreover compared these classes to the previously know class of

A-decomposable languages and to the class of regular languages R. Furthermore, we have

presented an original result concerning the complexity of a-transducers. In the last Section

we have examined closure properties of T-decomposable languages under some basic oper-

ations.

There are many possibilities for further research in this area. One of them is to examine

further properties of presented classes of languages. Another one is to find the necessary

and/or sufficient conditions on T -, NT∀- and NT∃-decomposability of regular languages.

Moreover, an interesting direction of research would be looking for classes of languages,

that can be decomposed with similar advice, or with the use of a fixed type of transformation

(e. g., change of the alphabet).

37

Bibliography

[1] J.E. Hopcroft and J.D. Ullman. Formal Languages and Their Relation to Automata.

Addison-Wesley Pub. Co., 1969.

[2] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages. Else-

vier Science Inc., New York, NY, USA, 1975.

[3] S. Ginsburg and S. Greibach. Principal AFL. J. Comput. Syst. Sci. 4, 4 (August 1970),

308-338.

[4] B. Rovan. Proving Containment of Bounded AFL. J. Comput. Syst. Sci. 11, 1 (August

1975), 1-55.

[5] A. Nerode. Linear Automaton Transformations. Proceedings of the American Mathe-

matical Society, 9, 4 (Aug., 1958), 541-544.

[6] I. Glaister, J. Shallit. A Lower Bound Technique for the Size of Nondeterministic Finite

Automata. Inf. Process. Lett. 59, 2 (July 1996), 75-77.

[7] T. Jiang and B. Ravikumar. 1993. Minimal NFA problems are hard. SIAM J. Comput.

22, 6 (December 1993), 1117-1141.

[8] M. Mohri. Minimization Algorithms for Sequential Transducers. Theor. Comput. Sci.

234, 1-2 (March 2000), 177-201.

[9] P. Gaži. Parallel Decompositions Of Finite Automata. Master’s thesis, Faculty of Math-

ematics, Physics and Informatics, Comenius University, Bratislava (2006).

[10] W. J. Chandler. Abstract families of deterministic languages. Proceedings of the first

annual ACM symposium on Theory of computing (STOC ’69). ACM, New York, NY,

USA (1969), 21-30.

38

