
COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DRAGON FIRE MODELING
AND SIMULATION IN 3D

FOR COMPUTER
ANIMATION

Diploma thesis

2015 Bc. Jozef Hladký

COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DRAGON FIRE MODELING AND SIMULATION

IN 3D FOR COMPUTER ANIMATION

Diploma thesis

Registration number: ce4faed8-df61-40da-aed9-15ae20583610

Study programme: Applied informatics

Branch of study: 2511 Applied informatics

Educational facility: Department of Applied Informatics

Supervisor: prof. RNDr. Roman Ďurikovič, PhD.

Bratislava, 2015 Bc. Jozef Hladký

I hereby declare that all parts of this thesis have been

written by myself using only the references explicitly

referred to in the text and consultations with my super-

visor.

. .

Bratislava, 2015 Jozef Hladký

Acknowledgements

I would like to thank my advisor prof. RNDr. Roman Ďurikovič, PhD.for his

guidance and invaluable advice throughout my work on this thesis. I would

also like to thank my colleagues from YACGS seminar for useful tips regard-

ing design and implementation of the method. Finally, I want to thank my

family and friends for their support and encouragement during my studies.

v

Abstrakt

V tejto práci predstavujeme systém pre modelovanie dynamiky ohňa s dôrazom

na realistické správanie a š́ırenie ako aj na rozsiahly systém ovládaćıch prvkov.

Náš systém ponúka širokú škálu parametrických a procedurálnych ovládaćıch

prvkov. Š́ırenie ohňa a jeho pohyb je dosiahnutý pomocou diferenciálnych

rovńıc ktoré berú do úvahy vietor, vztlakovú silu, pohyb horiaceho povrchu

ako aj difúzne aspekty. Realistické správanie je dosiahnuté použit́ım stocha-

stických modelov nadnášania a blikania ohňa. V práci tiež implementujeme

veterné polia umožňujúce pŕıdavný kontrolný procedurálny pohyb. Správanie

ohňa pokrýva pohybujúce sa zdroje, blikanie, trhanie a spájanie plameňa.

Kľúčové slová: oheň, plameň, animačné systémy, časticové systémy, fyzikálne

modelovanie, veterné polia

vi

Abstract

In this paper we present system for modeling fire dynamics with emphasis

on realistic behavior and spread as well as extensive controls system. Our

system provides a wide range of parametric and procedural controls. Flame

spread and motion is achieved using differential equations which take account

of wind, buoyancy, diffusion and velocity of the burning surface. Realistic

behavior is achieved using stochastic models of flickering and buoyant dif-

fusion. We also implement wind fields for additional controllable motion.

Flame behavior covers moving sources, flickering, separation and merging.

Keywords: fire, flames, convection, animation systems, particle systems,

physically-based modeling, wind fields

vii

Contents

1 Introduction 1

2 Overview 3

2.1 Autodesk Maya . 3

2.1.1 Dynamics . 4

2.1.2 Fluids method . 4

2.2 3D animation software plugins 6

2.2.1 AfterBurn . 6

2.2.2 FumeFx . 7

2.2.3 TurbulenceFD . 8

2.2.4 SOup upresNode . 9

2.2.5 PhoenixFD . 9

2.3 Shrek (2001) . 10

2.4 The Hobbit (2014) . 11

3 Structural modeling of flames 13

3.1 Method overview . 13

3.2 Essential components . 14

3.3 Base Curve . 16

3.4 Dynamics . 16

3.5 Evolution of the flame . 17

3.6 Separation . 19

3.7 Profiles . 21

viii

CONTENTS ix

4 Proposed method 23

4.1 Weighted dynamics model . 23

4.2 Amortization . 24

4.3 Structural elements . 25

4.3.1 Emitter . 25

4.3.2 Base spline . 26

4.3.3 Base Spline segments 26

4.3.4 NURB as a Spline segment 27

4.3.5 Catmull-Rom spline as Spline segment 28

4.4 Evolution of the flame . 29

4.5 Wind Fields . 30

4.6 Separation and Flickering . 31

4.7 Flame profile generation . 33

4.8 Visualization of the particles 33

5 Implementation 36

5.1 Flame representation . 36

5.1.1 Spline structure . 37

5.2 Parametric controls . 40

5.2.1 Settings and parameters 40

5.2.2 Wind-fields . 41

5.2.3 Simulation step calculation 42

5.3 Key algorithms . 43

5.3.1 Control points re-sampling 43

5.3.2 Box-Müller transformation 43

5.3.3 Wind-Fields transformation 44

5.3.4 Simulation step calculation 44

5.3.5 Integration approximation 44

5.3.6 Spline space mapping 45

5.4 GUI . 46

CONTENTS x

6 Results 48

6.1 Direct control methods . 48

6.1.1 Dominating the movement with wind-fields 49

6.1.2 Smoke simulation . 49

6.1.3 Prolonging the spline 49

6.1.4 Artifacts . 51

7 Conclusion 54

Chapter 1

Introduction

Due to its dramatic nature fire is one of the most demanded elements in

animation and movie industry. In the fantasy genre, fire-breathing creatures

like dragons are nowadays very popular. This creates the demand for mod-

eling the behavior of flame that doesn’t exist in real world. It is a difficult

and complicated task, as no one has ever seen how a dragon fire looks like.

People can imagine that dragon fire looks similar to the flamethrower, but

this is rarely the case, as most artists want to make dragon fire easily distin-

guishable from real fire and make it somewhat special. Due to wide variety

of artistic requirements, sometimes the fire needs to act like a burning gas,

sometimes like burning liquid or something purely out of fantasy. Imagina-

tion has no limits. The flame often needs to react with its surroundings and

with other elements like water or wind. But most of all, it needs to amuse

the viewer. Artists can provide a very detailed idea of the flame behavior

and appearance, but it can be quite complex to transform these ideas into

corresponding mathematical models for correct computation.

In this thesis we present a method for modeling the dynamics of a flame

with a set of behavioral controls. The model is based on particle system

spreading in procedural environmental fields.

First, we provide a brief overview of the methods currently used to model

realistic fire for 3D animation purposes. We present some older methods as

1

CHAPTER 1. INTRODUCTION 2

well as cutting-edge tools used in the production of the latest movies as of

year 2015.

Next, we cover in depth the Structural Modeling method presented by

[LF02]. We cover the structure of the basic elements of the flame as well as

the differential equation describing the dynamics of the whole flame. We also

explain the stochastic elements of the flame separation and flickering as well

as buoyant forces.

Following is our proposed method, which presents modification of the

Structural Modeling method using specific wind fields implementation, mod-

ification of the main differential equation responsible for the movement of

flame particles as well as our own of visualization methods.

In the implementation chapter we present the fundamental structures

essential to implementing our method and also provide pseudocode of key

algorithms.

In results we provide some examples of how to achieve different goals with

our model. We conclude this thesis with proposing few ideas for future work

on this topic.

Chapter 2

Overview

In this chapter we present and summarize some of the existing methods and

tools used to model fire for the purposes of 3D animation. These methods

are among the most frequently used nowadays, used in various feature films

and TV series as well as in the video games industry.

2.1 Autodesk Maya

Autodesk Maya is a 3D computer graphics software used by professionals

in various fields of animation, be it video games, animated films, TV series

or some other 3D application. By default, it provides 2 different ways of

modeling fire - the Fluids method and the Dynamics method. Both are

particle-based and provide control over the fire’s appearance and behavior.

However these methods are not the only ones available in this software. The

functionality of Maya can be extended by various plugins and some of them

offer cutting-edge fire visuals (e.g. fumeFx).

Both Dynamics and Fluids are based on emitting particles into space.

The user can specify various fields to simulate forces like gravity or wind,

add turbulence detail or specify rendering details. The software provides

plenty of controls over every aspect of the fire’s appearance or behavior.

Finding a balance between all these variables and make the flame suit our

3

CHAPTER 2. OVERVIEW 4

needs is a very demanding task. [Aut14]

2.1.1 Dynamics

Maya dynamics can be used to create effects like steam, fire or rain. Fire-

wise this method is best suitable for burning objects, objects leaving a trail

or fireworks explosions. In the case of burning objects, the whole surface acts

as an emitter. The motion of the flame itself isn’t as realistic as in the Fluid

method, however this method provides much faster computing of simulation

steps and rendering.

Figure 2.1: A burning sphere we created using Maya Dynamics method and

rendered in mentalray.

2.1.2 Fluids method

This method can be used to create clouds, mist, fog, steam, smoke, fire,

molten lava or ocean surface. In the scope of fire, this method is oriented

mainly on creating realistic flame spread. It is best used to create fiery

flamethrower-like projectiles, bonfires, explosions and nuclear blasts.

CHAPTER 2. OVERVIEW 5

Contrast to Dynamics method, the fluid can spread only in a container,

which must also contain the emitter. The motion of the fluid at each time

step is simulated using solvers for the Navier-Stokes fluid dynamics equations.

The extra data needed to define such fluid effect may slow the simulation

exponentially, because more calculations are needed at every step. For this

reason Maya provides non-dynamic fluid effects, in which the flame appear-

ance is created using textures and the flame motion is achieved by keyframing

texture attributes.

For another school project we created animation of a dragon destroying

a city. Our result can be seen on figure 2.2. Base grid resolution is 150x150,

emitting 500 particles per second. To better illustrate the complexity of

such task - the simulation time was 22 minutes, rendering of one frame in

1920x1080 resolution using mental ray on hexa-core AMD Phenom II X6

1090T 3.2GHz was 82 minutes.

Figure 2.2: A flamethrower projectile we created in Maya using Fluid

method and rendered in Mentalray renderer.

CHAPTER 2. OVERVIEW 6

2.2 3D animation software plugins

The following list is a brief overview of some plug-ins aimed for fire modeling

in 3D computer animation software. Most of them are compatible with

at least one of the most used 3D animation software - Maya, 3Ds Max or

Cinema4D.

2.2.1 AfterBurn

AfterBurn is an older plugin for creating volumetric effects. It’s usage lies

mainly in the movie and video games industry of the 2000’s. It was used in

motion pictures like Dracula 2000, Armageddon and Matrix Reloaded and

video games like WarCraft 3 and StarCraft.

The method is based on building volumetric effects around the center of

each particle. Each particle carries plethora of attributes (age, color, temper-

ature, etc...), which can change over time of the animation using interpolation

controllers. The usability and speed of the work flow are enhanced introduc-

ing the Animation Flow Curves (AFC). This tool allows a clear plot-like

overview of how different attributes of the particle change over time. This

method also introduces wind fields (which they called Daemons) that can

change the combustion direction so that the flame appears as progressing in

one direction, swirling around a vortex or explosion in all directions. [d.o06]

Figure 2.3: Example of vortex daemon wind field in AfterBurn.

CHAPTER 2. OVERVIEW 7

2.2.2 FumeFx

FumeFx plugin can achieve one of the most realistic looking smoke and fire

effects. On the top it also offers various improvements of workflow like GPU

accelerated preview or multithreaded simulation. Developed by Sitnisati,

this plugin is available for Maya and 3DsMax. This method was used for

multiple award-winning feature films like The Avengers, Thor or Iron Man.

[d.o13]

Figure 2.4: An example of flames created using FumeFx plugin. Pictures

are from movies Ghost Rider and War Thunder, respectively.

CHAPTER 2. OVERVIEW 8

2.2.3 TurbulenceFD

Developed by Jawset and available for Cinema4D and LightWave 3D (There

is also a 2D version for Adobe After Effects). This system is based on solving

the incompressible Navier Stokes equations. It utilizes a voxel grid to describe

volumetric clouds of particles. The equations solutions describe the motion

of fuid on the grid. Artist can paint sources of emission on any geometric

object or particle system. In addition to fully tweakable fire shader the plugin

provides a preset realistic fire shader based on the Black Body Radiation

model. [Jaw09]

Figure 2.5: An example of a flame created using TurbulenceFD plugin.

[Jaw09]

CHAPTER 2. OVERVIEW 9

2.2.4 SOup upresNode

Animators often want to adjust the flame’s appearance in lower resolutions

because it provides faster turnaround and after achieving desired behavior

they want to increase the resolution to improve detail for the final rendering.

SOup is a set of plugins that extend the procedural capabilities of Maya soft-

ware. The upresNode plugin eliminates one major drawback of Maya’s fluids

- that is, if you change the resolution of the grid the fluid behaves differently.

Because of computational complexity, the tweaking of the flame’s appearance

in high resolution can be very tedious. The plugin offers a new node that in-

creases the resolution and local detail without changing the fluid’s behavior.

It also allows additional detail at post processing by implementing wavelet

turbulence algorithm proposed by [KTJG08]. [ea11]

Figure 2.6: An example of increasing the resolution of the grid using the

SOup upresNode method utilizing Wavelet turbulence algorithm. [KTJG08]

2.2.5 PhoenixFD

PhoenixFD is a plugin developed by ChaosGroup and available for 3DsMax

and Maya. The plugin handles fire, smoke, explosions, liquids, foam and

splashes. It offers a hybrid simulation system including grids and particles

and is optimized to offer flexibility and speed even at very high particle

CHAPTER 2. OVERVIEW 10

count. Fully utilizable with V-Ray renderer it offers proper refraction on

liquids. [gro12]

Figure 2.7: Nuclear explosion created with PhoenixFD.

2.3 Shrek (2001)

This method was developed by DreamWorks and first appeared in the 3D

animated movie Shrek (2001). The system’s main focus is on efficiency and

complete control over visual appearance and behavior. The flame is based

on parametric space curves that evolve over time according to multiple pro-

cedural, hand-defined and physics-based wind fields. Physical properties are

based on statistical measurements of natural diffusion flames. Around these

splines is built an implicit surface with cylindrical profile. In this region the

particles are point-sampled using volumetric falloff function. [LF02]

CHAPTER 2. OVERVIEW 11

Figure 2.8: Screenshot from Shrek (2001). The flame was modeled using

[LF02]. In this screenshot the flame evolves towards camera.

2.4 The Hobbit (2014)

The most complex animation simulation up to date was done by Weta Digital

for the feature film Hobbit: The battle of the five armies. In this completely

digital scene, a dragon destroys a wooden city situated on a lake. Combined

simulations are used to achieve the resulting appearance, consisting of air,

fire, water and rigid bodies simulations. Air flows and wind fields are modeled

as volumes in which every piece of falling debris triggers wind movement,

turbulence and pressure change. The dragon’s fiery breath consists of emitted

particles which act in a fluid stream moving in a water-like simulation. This

fluid then serves as a fuel for the fire itself, which creates viscous appearance

of the fire and napalm-like spread in the environment. [MS13]

CHAPTER 2. OVERVIEW 12

Figure 2.9: Screenshot from the destruction scene in The Hobbit: Battle of

the Five Armies (2014)

.

Chapter 3

Structural modeling of flames

3.1 Method overview

Here we provide an in-depth review of the state-of-the-art method for model-

ing fire presented by [LF02] and used in the motion picture Shrek in the year

2001. This method constructs a flame animating system with emphasis not

only on realism, but also on artistic appearance. It is based on particle sys-

tem with appropriate and effective particle control. This system provides a

range of behavioral controls suitable for artistic animation. Realistic appear-

ance is achieved using stochastic models of flickering and buoyant diffusion.

Implementation of wind fields provides additional procedural control.Flame

behavior includes moving sources, flickering, separation and merging, com-

bustion spread and interaction with stationary objects.

Modeling flame movement as direct numerical simulation is very expen-

sive computation-wise. These models often act in a 3D grid. As the grid res-

olution increases, computational complexity raises by at least O(n3) [FM96]

[SF95]. It is also difficult to implement intuitive control points for a physical

based fire model. In addition, it is very hard for animators to achieve desired

visual effect with numerical simulation, as even a small change in starting

conditions can provide drastically different results.

The Structural modeling method provides different approach. It utilizes

13

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 14

the fact, that most of the visual aspects of the flame can be statistically mod-

eled. By separating the statistic-based visual aspects of the flame, we are left

with a set of structural elements which the animator can directly control by

specified parameters. The statistical properties of the flame were measured

on real flames. The model contains also numerous large-scale procedural

controls such as wind, diffusion, fuel combustion or convection. These con-

trols affect the local behavior of the flame particles. We will briefly cover the

essential components of the model and then focus on the structure, particle

creation and dynamics.

3.2 Essential components

This system utilizes different statistically-controlled or directly controlled

elements. The whole model which can be divided into 8 components:

1. Central spine is formed using the central particles of the flame. The

positions of these particles form a set of points which act as control

points to an interpolating B-Spline curve. This curve defines the spine

of the flame and is the main actor in the shape and behavior of the

flame. As exact structure was not mentioned in [LF02], we in our pro-

posed method decided to further divide the curve into smaller structure

elements, which we will cover later in chapter 4. Although one curve

is sufficient for defining one flame, multiple curves can act in a scene.

When these curves collide with each other, the curve is not affected at

all. However, when the curves are close to each other, the flames these

curves define appear as if they were merging into one.

2. The splines evolve through space in time. Each point of the curve car-

ries data of the flame’s height, age, temperature etc. The evolution

depends on hand-defined, procedural and physics based wind fields.

Some physical terms that affect the spline movement are based on sta-

tistical measurements of real-life flames. The model also covers realistic

adaptation of the flame to the movement of the source.

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 15

3. The curves can break when reaching specified lengths. The separation

is based on the statistic measurements of natural diffusion flames. The

separated segments act as individual splines, but they do not generate

new segments. They convect freely in the environment affected by the

wind field. The separated segments are given limited lifespan which can

be also user-controlled. Along with the heuristic defining the breakaway

height, the limitation of the separated spline lifespan and the rate of

aging are based on engineering observations of real flames.

4. The region where actual particles of the flame are created is build using

a cylindrical profile rotating around the central spline of the flame. The

created particles gain the properties of the respective segments of the

spline that spawned them. This region represents the visible part of

the flame and provides a boundary with the oxidation region.

5. The first level of procedural noise is applied to particles created within

the flame region. This noise is buoyant in nature, as it represents the

combustion fluctuation of the flame base. It spreads up the flame profile

based on the velocities of the structural elements. This noise is not

based on any empirical observations, so Flow Noise is recommended,

as it provided good visuals.

6. Transformation into parametric space of the structural curve is applied

to the particles. Then a second level of noise is applied using a vector

field created using a Kolmogorov frequency spectrum. This second level

of noise simulates turbulent distortion details.

7. The particles are rendered with a volumetric or a fast painterly method.

Thanks to the color adjustments of each particle based on the color

properties of the neighboring particles, the flame elements can merge

realistically.

8. We define procedural controls to account for position, intensity, lifes-

pan, shape, color, size, evolution and behavior of the flames.

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 16

These 8 components form together a complex and general system for

efficient and realistic flame animation along with some other similar natural

fire effects. The computational complexity can be kept on a very low levels

when desired, compared to numerical simulation approaches.

We do not cover the last 4 stages in detail because the main focus of this

thesis is on the dynamics and structure of the flame.

3.3 Base Curve

Each central spline defining one flame is essentially a B-Spline curve with

control points being the particles in the center of the flame. It is the funda-

mental structure for the whole flame, as it affects the appearance and overall

shape of the whole flame.

Figure 3.1: Spline movement impact on the shape of the whole flame.

[LF02]

3.4 Dynamics

The particles in this model advance according to differential dynamics model

describing a combination of physical terms as well as hand-defined procedural

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 17

wind fields. The differential equation is as follows:

∂xp

∂t
= w(xp, t) + d(Tp) + Vp + c(Tp, t) (3.1)

where xp is the position of particle p, w(xp, t) is the displacement vector due

to wind fields, d(Tp) represents Brownian motion scaled by temperature of

the particle, Tp, the temperature of the particle p. Vp is the displacement

due to the motion of the source and c(Tp, t) is the motion due to thermal

buoyancy. The thermal buoyancy term is assumed to be constant over the

lifespan of the particle, therefore

c(Tp, t) = −βtgy(T0 − Tp)t
2
p (3.2)

where βt is the coefficient of thermal expansion, gy is the vertical component

of gravity, T0 is the ambient temperature and tp is the age of the particle.

Because we are working with fire, the particle cannot get hotter than the

environment, thus

∀p : T0 <= Tp

It depends on our cooling heuristic, but in general the t2p term affects the

buoyancy term exponentially while (T0−Tp) decreases linearly, which results

in the rising of older particles despite their cold temperatures.

When a new particle is created at the source, it has initially the default

user-specified parameters. If the source has velocity V , the particle is as-

signed velocity -V . This negative velocity is completely sufficient to create

realistic reaction of the flame to a moving source. You can see examples in

figure 3.2.

3.5 Evolution of the flame

The flame moves according to combination of forces, some of which can be

user-specified (like the procedural physics-based wind-fields) and some of

them are statistical in nature and based on observation of natural diffusion

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 18

Figure 3.2: Torch waved through the air. A demonstration of flame

adaptation to a moving source. [LF02]

flames. The motion is also influenced by hand-defined parameters (like am-

bient temperature) and heuristics (cooling rate, aging rate). The evolution

of the flame goes as follows:

1. In the first frame of the animation, a new particle p0 with initial tem-

perature T is created at the burning surface.

2. In the second frame of the animation, particle p0 is released into the en-

vironment, where it moves according to equation 3.1 using explicit Eu-

ler integration method. [LF02] also mention that Runge-Kutta method

for solving differential equations is sufficient and completely stable in

this case.

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 19

3. A new particle p1 is generated at the surface and an interpolating B-

spline is created between particles p0 and p1. According to preset den-

sity n, n control points are uniformly sampled between them.

4. At the third frame a new particle p2 is created at the burning surface.

A new set of n control points is created between p2 and p1. All the

control points between p0 and p1 along with p0 and p1 themselves are

move according to equation 3.1. The interpolating B-Spline is then

fitted to pass through all of the control points. The control points are

then re-sampled so even distribution along the length of the spline is

achieved. The first and last point of each segment is left unchanged,

only the control points are re-sampled. This enables us to maintain

constant detail along the whole flame.

5. For each additional frame of the animation we continue analogically

with creating new segments. After reaching predefined height, the

spline can separate.

3.6 Separation

In order to model flame separation as a statistical process, we must first divide

the flame into regions according to the height of the flame. The first region

will be the persistent flame region, it’s height denoted Hp. In this region, the

flame will never separate and so the spline will be always continuous. Then

the intermittent region, where we will decide if the flame will or will not

separate. The height of the intermittent region is denoted Hi. And the final

region - the Buoyant plume - will be the part of the flame which is separated

from the base of the flame. The plume will be short-lived and it will convect

in the wind field freely.

The separation occurs in the intermittent section. When a particle ex-

ceeds Hi, we periodically test a random number against the probability func-

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 20

Figure 3.3: Illustration of persistent, intermittent and buoyant regions of

the flame. [LF02]

tion

D(h) =
1√

2π(Hi −Hp)/2

∫ h

−∞

e
−

(

h−
|Vc|
f

)

/(2((Hi−Hp)/2)2)dh (3.3)

where h is the height of the flame at which we are testing, Hi is the height

of intermittent flame region, Hp is the height of persistent flame region, |Vc|
is the average velocity of the structural control points. f is the aproximate

breakaway rate in Hz. According to the observations by [Dry01] f = (0.50±
0.04)(gy/2r)

1/2 for circular sources with a radius r. We can also specify

D(h) ≡ 1 for h > Hmax, where Hmax is our desired maximal limit for the

flame height.

When we decide to separate the flame a portion of the spline is cutoff

from the top of the flame. This portion ranges from the top to a randomly

chosen point below. The distribution for this selection is not based on any

observations. Normal distribution N (µ, σ2) proved sufficient with mean µ

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 21

and standard deviation σ chosen as:

µ = Hp + (Hi −Hp)/2 (3.4)

σ = (Hi −Hp)/4 (3.5)

The separated segment of the spline is not re-sampled back to n control

points as this prevents additional local detail appearing in the separated

segment. To account for lack of accurate way of fuel content determination,

the particles in the spline are given a limited life-span of Ai3, where i is a

uniform random variable in the range [0, 1] and A is a length scale ranging

from 1/24th of a second for small flames up to 2 seconds for a large pool fire.

Because of i3 most of the breakaway flames have very short life-span.

3.7 Profiles

At this stage when the spline creation and evolution were covered, we can

now focus on the visible part of the flame. The flame is defined as the region

between the burning surface and an oxidizing agent. We utilize a volumetric

model created by rotation of a 2D normalized profile around the axis of the

Base spline. The profile can be hand-drawn or derived from photograph and

creates a rotationally symmetric surface. In this 3D space fire particles are

point-sampled and transformed into the spline structural curve. Two levels

of procedural noise are added and then the particles are at their correct

positions and are ready to be passed into the rendering stage.

CHAPTER 3. STRUCTURAL MODELING OF FLAMES 22

Figure 3.4: Illustration of movement of the base splines and their impact on

the overall look of the flame. [LF02]

Chapter 4

Proposed method

We propose a method that creates the basic structure and dynamics for a

controllable 3D fire effects. The flame’s motion is achieved by solving differ-

ential equations that take account of procedural environmental factors as well

as statistically measured factors, which are assessed on real-life observation

and can be fine-tuned according to artistic taste.

Our method is based on DreamWork’s method Structural modeling of

flames conceived by Arnauld Lamorlette and Nick Foster [LF02]. As the

paper described this method in outlines and in general was short on details,

we have created our own structure, chosen the wind fields implementation

and heuristics. Parameters allowing greater control were added whenever

reasonable.

4.1 Weighted dynamics model

We extend the Structural modeling dynamics differential equation to follow-

ing form
∂xp

∂t
= αw(xp, t) + βd(Tp) + γVp + δc(Tp, t) (4.1)

where α, β, γ and δ are weights corresponding respectively to the wind field,

diffusion, source motion and buoyancy terms. Setting the weights constant

or interpolating their values over time of the animation creates additional

23

CHAPTER 4. PROPOSED METHOD 24

controls that help us shape the behavior of the flame to our needs.

Figure 4.1: Example of modifying the parameters of equation

4.1. In the left δ = 1, in the right δ = 0.1. This scene has uniform wind

field which blows to the right.

4.2 Amortization

The [LF02] paper was not describing any heuristic for the amortization of

particle attributes. We have decided to use linear techniques of temperature

decay

Tt+1 = max(Tt − c∆t, T0) (4.2)

where Tt+1 is the temperature of the particle in the next time step, Tt is the

temperature in current time step, c is the cooling rate parameter and ∆t

is the size of one time step. T0 is the ambient temperature. Since we are

modeling fire, we have decided that the particle temperature can not drop

below ambient temperature.

Similarly we defined the age amortization as

tt+1 = tt + a∆t (4.3)

CHAPTER 4. PROPOSED METHOD 25

where tt+1 is the age of the particle in the next time step, tt is the temperature

in current time step, a is the parameter specifying aging rate and ∆t is the

length of one time step. We also define maximal age tmax. If age of the

particle reaches tmax, the particle dies.

The values for parameters c and a are chosen to suit our needs and are

used as one of the controls for flame behavior and appearance. They mainly

affect rendering, particle color and buoyancy in the upper stages of the flame.

4.3 Structural elements

As the method described the structure very loosely, we created our own

structures, their hierarchy and attributes. The center spline forming the

spine of the flame still plays major role in the flame appearance and has the

greatest impact on visuals and dynamics.

4.3.1 Emitter

The flame creation is handled by an emitter. It is the most fundamental

element as it carries important parameters required for creation of the Base

splines of the flames. The scene can contain multiple emitters and each

emitter can emit multiple Base splines, which each form an individual flame.

Due to the chosen rendering methods, all the flames emitted from one emitter

appear as if they joined together to form one flame. So while it may look like

each emitter emits only one flame, in fact they are emitting multiple flames

which quickly visually merge. Each emitter has its position, velocity, density

and radius of the burning source surface.

CHAPTER 4. PROPOSED METHOD 26

Table 4.1: Table of emitter attributes

Attribute

name

Notation Description

Origin o Specifies the position of the emitter

Veclocity ~v Velocity of the emitter

Density n Number of Base splines the emitter emits

Radius r Radius of the burning surface

4.3.2 Base spline

The Base spline is emitted from emitter and consists of spline segments. At

every frame, new segment is created at the bottom of the spline and according

to random distribution presented in section 3.6. One or more segments can

partly separate and form a new spline. The length L of the base spline s is

L =
n−1
∑

i=0

lsi (4.4)

where n is the number of segments of the spline and lsi is the length of i-th

segment in the spline.

Figure 4.2: Our visualization of Base spline element. Red points are end

points separating the segments, black points are control points and the

spline is interpolating Catmull-Rom spline.

4.3.3 Base Spline segments

Each spline forms a spine for one individual flame. The individual splines

consist of s segments. Each segment consists of a start point ps, end point

CHAPTER 4. PROPOSED METHOD 27

pe and n control points cp0. . . cpn−1. The density of the control points spec-

ified by n doesn’t need to be uniform in all segments of spline, as when we

introduce flame separation, the spline can break in the middle of a segment,

forming 2 splines with non-uniform density. The number of control points in

the newly created segments can be user-specified to achieve desired balance

between computational complexity and detail level. The segments act as in

a linked list, with the last point of i − 1 -th segment being the start point

of i-th segment, pei−1
= psi . At i-th segment a B-Spline is interpolated from

psi through all control points of that segment arriving at pei . Thus a spline

segment with density n consists of n+2 particles (start point, end point and

n control points) and contains n+ 1 segments.

The length of a spline segment is defined as the length of the spline

starting in ps, passing through every control point and ending in pe. See

equation 4.7

4.3.4 NURB as a Spline segment

It is not exactly stated in [LF02] what properties should the B-Spline curve

have. The first version of our implementation contained a Non-uniform Ra-

tional B-Spline as it offered controls superior to general B-Spline. We used

the general form of NURBs curve

C(u) =

∑k
i=1 Ni,nwipi

∑k
i=1 Ni,nwi

(4.5)

where k is the number of control points p, wi are their corresponding weights

and Ni,n are the recursively-defined basis functions of a NURB spline.

The intention was to control the visuals through the knot vectors, weighted

control points and degree of the NURBs. However in the later phases where

re-sampling of the control point in each frame is required (see 4.4), the NURB

under-performed due to its lack of ability to pass through all the control

points and the whole spline tended to flatten more and more during the

simulation.

CHAPTER 4. PROPOSED METHOD 28

In the end we’ve decided to utilize Catmull-Rom spline, as it proved

sufficient results while allowing us to pass through each control point.

4.3.5 Catmull-Rom spline as Spline segment

We define the Catmull-Rom spline as

p(t) =
(

1, t, t2, t3
)

0 1 0 0

−τ 0 τ 0

2τ τ − 3 3− 2τ −τ

−τ 2− τ τ − 2 τ

pi−2

pi−1

pi

pi+1

(4.6)

where t is the interpolation parameter, τ is the tension and pi−2 . . . pi+1

are points defining the spline. The spline itself is drawn only between points

pi−1 and pi, points pi−2 pi+1 serve only for computing the required tangents.

Note that p(0) = pi−1 and p(1) = pi.

This spline proved sufficient for our implementation and provided satis-

fying results. We define the length of the spline as

L =
n−2
∑

t=0

∥

∥

∥

∥

∥

p

(

t

n− 1

)

− p

(

t+ 1

n− 1

)

∥

∥

∥

∥

∥

(4.7)

where n is our chosen sampling. In our work we found n = 100 sufficient.

Figure 4.3: Example of different tension values for the Catmull-Rom spline.

On the left τ = 0.5, on the right τ = 2.

CHAPTER 4. PROPOSED METHOD 29

4.4 Evolution of the flame

In this section we present detailed description of the modified evolution of

flame in detail:

1. We can have one or multiple flame emitters. Each emitter has it’s

position p, radius r, velocity v and b, which is the number of Base

splines it will produce concurrently. Following steps are the same for

each emitter in the scene.

2. In the first time step of the animation, the emitter creates a new seg-

ment. This segment is created at the present position of the emitter

and consists only of one particle p0 which will gain the user-specified

values of initial temperature Tp0 and initial age tp0 (typically zero). The

particle also inherits the position p and the velocity −v of the emitter.

Gaining the negative velocity of the emitter covers the realistic flame

behavior when the burning surface containing the emitter moves. This

particle acts as the start point and the end point of the segment, while

the segment does not have yet any control points and thus no B-Spline.

3. In the second time step frame of the animation, particle p0 is released

into the environment, where it moves according to 4.1 and is amortized

with the methods proposed in 4.2. New particle p1 is generated at

the origin of the emitter and N control points are uniformly sampled

between the particles p0 and p1. The control points have their age and

temperature linearly interpolated between the values of the points p0

and p1. We have tried also assigning the properties of p0 to all of the

control points, but this provided noticeable visual separation of the

segments. All the particles of the segment then move and amortize

analogically. Every following segment is created and moved in the

scene analogically. The separation and flickering occurs as in described

in section 3.6.

4. The visible part of the flame is defined as a normalized 2D profile.

CHAPTER 4. PROPOSED METHOD 30

We create a normalized 3D profile by symmetrical rotation of the 2D

profile. We then randomly generate s particle positions and test them

against the profile using rejection sampling. The resulting set of parti-

cles is then mapped from the parametric profile space into the space of

the deformed Base spline using cylindrical coordinates. The particles

inherit the age and temperature attributes from the structural elements

on the corresponding level of the spline.

4.5 Wind Fields

We model our wind fields based on the method proposed by [WH91]. We

define 4 types of wind-fields - Uniform, Sink, Source and Vortex. Sink, Source

and Vortex wind fields are circular and have always one fixed axis. Each

acting wind field displaces the position of particle xp. The displacement

vector is affected by time step of our simulation, so it is scaled by ∆t.

Figure 4.4: Schematic describing the sink, vortex, uniform and source types

of the wind fields.

For the Uniform wind-field it is sufficient to specify only the direction and

strength. However for the circular types this is not sufficient, so we specify

the displacement vectors in cylindrical coordinates (r, θ, z). For the Source

wind-field placed at the origin the displacement vector is defined as

vr =
s

2πr
∆t; vθ = 0; vz = 0; (4.8)

CHAPTER 4. PROPOSED METHOD 31

where s is the strength of the wind field and r is the r coordinate of our

particle’s position in cylindrical coordinates and ∆t is size of our chosen time

step. The Sink wind-field produces the same displacement vector as Source

wind-field, except the stength parameter s is set negative.

As the Vortex wind-field rotates the given point around the wind-field’s

origin, it changes only the angle θ in cylindrical representation. The dis-

placement vector for Vortex wind-field placed at origin with strength s is

then given by

vr = 0; vθ =
s

2πr
∆t; vz = 0; (4.9)

where s is the strength of the wind field and r is the r coordinate of our

particle’s position in cylindrical coordinates and ∆t is size of our chosen time

step.

The resulting displacement vector w(xp, t) of equation 4.1 is the sum over

each wind-field in the system.

w(xp, t) =
n

∑

i=0

vi = vvort(xp, t) + vsink(xp, t) + vsource(xp, t) + · · · (4.10)

4.6 Separation and Flickering

The separation stage of the flame is modeled as presented in section 3.6. We

approximate the integral in the probability function in equation 3.3 using

following method

∫ h

−∞

e
−

(

h−
|Vc|
f

)

/(2((Hi−Hp)/2)2)dh =
h− g

N

h
∑

i=g

e
−

(

i−
|Vc|
f

)

/(2((Hi−Hp)/2)2) (4.11)

where g is the chosen lower point from which we start approximating the

integral and N is the number of steps that we wish to sample between g and

h. Satisfying results were obtained using h = −100 and N ≈ 107.

To select the height of the transformation, we model the Gaussian distri-

bution as Box-Müller Transformation. Given variables x1 and x2 which are

CHAPTER 4. PROPOSED METHOD 32

Figure 4.5: Example of flame behavior in combination of Vortex and Source

wind-fields.

uniformly and independently distributed between 0 and 1, we define z1 and

z2 as

z1 =
√

−2 ln x1 cos(2πx2) (4.12)

z2 =
√

−2 ln x1 sin(2πx2) (4.13)

giving z1 and z2 normal distribution with mean µ = 0 and variance σ2 = 1.

Due to our structure, after selecting the proper height of separation, we need

to find the corresponding point on the spline.

CHAPTER 4. PROPOSED METHOD 33

Figure 4.6: Example of spline separation. Evolution of the same spline with

the same settings and wind fields. In the left, the separation is disabled, in

the right it is enabled.

4.7 Flame profile generation

After specifying the 2D normalized flame profile, we create a normalized 3D

cube where we rotate the 2D profile around the Y axis and thus achieve a

symmetric space in which we can create particles. The particles’ positions

are randomly selected using uniform distribution and then tested against the

symmetric 3D profile whether they are accepted or rejected. The number of

accepted samples depends on the shape of the specified 2D profile. For most

of the used profiles, around one half of the samples were rejected.

4.8 Visualization of the particles

As the rendering part of the [LF02] technique was quite complex and out

of the scope of this thesis, we have decided to implement simplified particle

rendering using billboards. We are rendering each particle as a rectangle

CHAPTER 4. PROPOSED METHOD 34

Figure 4.7: Examples of different profiles and their effect on the shape of

the flame. The amortization shader is turned off.

which always faces the camera and is painted with miniature flame particle

texture.

Since we have all the attributes of the painted particle at our disposal, we

modify the color of each particle according to its age and temperature. The

temperature of the particle is affecting red, green and blue channels of the

particle color, while age determines the value of alpha channel responsible

for particle transparency. The amount of darkening of the particle is based

on the color of the texture, but for most textures that we tried we found

suitable this method:

cp = cp
Tp

Ti

4
− T0

where cp is the color of particle p, Tp is the temperature of the particle p, Ti

is the initial temperature which is each particle assigned at the moment of

creation at the base of each emitter and T0 is the ambient temperature.

Next we change the transparency of the particle. We use

ap = 1− tp
tmax

where ap is the transparency of particle p, tp is age of particle p and tmax is

CHAPTER 4. PROPOSED METHOD 35

the maximal age at which particles die.

Figure 4.8: The effect of amortization shader.

Chapter 5

Implementation

Our method is implemented in C# and developed on operation system Win-

dows 10 Technical Preview. The compiler is .NET 4.5. IDE used is Microsoft

Visual Studio 2013 Ultimate. GUI is implemented using WinForms, the vi-

sualization using OpenGL API v3.3. To access OpenGL in C#, we use

OpenTK library, v1.1.

The data structure can be divided into 3 main parts:

• Flame representation (Emitters, Splines, Particles)

• Parametric controls (Wind-Fields, Settings, Differential equation solver)

• Helper classes (Camera, Settings, GUI elements, Converters, Math

classes)

5.1 Flame representation

Understanding of the flame structure is essential to understand the algo-

rithms and dynamics described later in this chapter. This section covers the

classes that build up the whole flame structure including the particles.

36

CHAPTER 5. IMPLEMENTATION 37

Figure 5.1: Class diagram depicting representation of the flame in our

structure.

5.1.1 Spline structure

Because the structure is not trivial, we present a bottom-to-top explanation

of the whole structure responsible for representation of one burning surface.

We start with describing the basic particle types and move up the structure

until we reach the topmost class.

CHAPTER 5. IMPLEMENTATION 38

Smallest elements

The essential structures are Spline particles, which carry information about

the age, temperature, position and velocity of the particle. The SplineParticle

is an abstract class, we define the different particle types using inehritance.

We have three types of particles: FireParticle for representing the visi-

ble part of the flame, ControlPoint for representing the control points of

each SplineSegment and SplineEndPoint for representing the first and last

point of each SplineSegment. They all all inherit the basic attributes from

SplineParticle class.

The CatmullRomSplineSegment also belongs into the scope of the small-

est elements of our structure. It represents one segment of a Catmull-Rom in-

terpolating spline. Despite being defined by four spline particles pi−2 . . . pi+1,

it represents only the part between particles pi−1 and pi. It contains basic

methods of finding the corresponding point on the spline by implementing

equation 4.6 For details, see section 4.3.5.

Spline Segment

The SplineSegment class contains two SplineEndPoints representing the

first and last particles, a linked list of n ControlPoint particles and a Cat-

mullRomSpline class, which covers the representation of the spline stretching

from the first SplineEndPoint through all the ControlPoints in the linked

list to the last SplineEndPoint. Each segment of this spline is represented

by CatmullRomSplineSegment class.

Spline segment contains functionality responsible for evolution and amor-

tization of its particles as well as methods for computing the length of the

spline or finding a particle at specified height. CatmullRomSpline class is

responsible for re-sampling of the control points.

CHAPTER 5. IMPLEMENTATION 39

Base spline

The BaseSpline class consists of linked list of SplineSegments. It is used

for representing the persistent flame part as well as the separated buoyant

plumes. While the persistent Base Splines have fixed life time specified by

parameter tmax, the separated segments are given limited life-span. This class

is also responsible for drawing itself in the visualization window, so methods

and data structures required to draw points and polylines in OpenGL are

implemented.

Its functionality covers the calculation of the average velocity of all control

points of the spline, the separation of the spline and also a method for finding

particle at specified height.

Spline Emitter

The topmost class in our structure is the SplineEmitter. It has specified

radius r, position p and a spline count s. It also has two linked list structures,

one representing persistent Base Splines and one representing the separated

Base Splines. In the specified interval it emits s new Base Splines. It also

governs functionality responsible for testing whether to separate the spline

and it hosts the ParticleManager class responsible for managing the visible

part of the flame.

Particle manager

The ParticleManager class is responsible for building up the visible part of

the flame by creating the particles represented by FlameParticle class. Every

spline emitter has one instance of ParticleManager. By utilizing the flame

profile represented as an array of floating point numbers, it governs the cre-

ation of the particles for all the splines of the corresponding SplineEmitter.

By using the helper classes that implement the needed transformations be-

tween normalized 3D profile space and structural spline space it outputs the

flame particles with correct attributes and positions. Since it is responsible

CHAPTER 5. IMPLEMENTATION 40

also for the rendering of the particles, this class also covers methods and data

structures necessary to setup OpenGL shaders and buffer objects.

5.2 Parametric controls

In this section we will cover data structures responsible for the dynamics and

control of the fire. We can control the fire by specifying various values for

parameters describing the dynamics model as well as by specifying multiple

wind-field types in the scene.

5.2.1 Settings and parameters

In our application the setting of the constants and parameters are imple-

mented as a singleton classes having private static fields representing each

parameter. Each field is encapsulated with non-static C# getter and setter

to allow binding to controls in the main form.

Following is a table of the parameters we can change through the user

interface to change the behavior of the flame. This is only a digest of the

flame-controlling parameters, as these classes contain more parameters which

are not related to the flame.

Table 5.1: Fire-controlling attributes in class MainMovementEquation

Notation Type Description

α float Wind-Field term weight

β float Diffusion term weight

γ float Source velocity term weight

δ float Buoyancy term weight

βt float Thermal expansion coeficient

T0 float Ambient temperature

∆t f loat Time step size

CHAPTER 5. IMPLEMENTATION 41

Table 5.2: Fire-controlling attributes in class SplineSettings

Notation Type Description

shalpha bool Activated transparency in amortization shader

shdark bool Activated darkening in amortization shader

speed int Simulation speed in ms

growth int Simulation steps needed to create a new seg-

ment

Ssampling int Catmull Rom sampling density

fire

density

int Number of Fire Particles per segment tested in

rejection sampling

start age float Initial age of newly created particles

A float Life time of separated segments.

τ float Tension of the Catmull-Rom splines.

starttemp float Temperature of newly created particles

cooling float Temperature amortization per one time step

aging float Life amortization per one time step

agemax float Maximal life-time of particles

CPcount int Number of control points per one SplineSeg-

ment

Hp float Height of the persistent flame stage

Hi float Height of the intermittent flame stage

Hmax float Height after which the flame always separates

5.2.2 Wind-fields

As in particle implementation, in wind-fields inheritance plays major role and

is essential to the structure. We define one abstract class wind-field which

has key method shared across all types of wind-fields - getDisplacement. This

method returns the displacement vector affecting given position. The uniform

CHAPTER 5. IMPLEMENTATION 42

wind field has only direction and strength attributes. The circular wind-fields

also utilize inheritance, because they all share the same attributes - origin

and strength. The difference is in the getDisplacement function, which each

representation overrides.

Figure 5.2: Class diagram depicting representation of the wind in our

structure.

5.2.3 Simulation step calculation

SplineCalculator is a singleton class responsible for calculation of the main

differential equation in each time step. It also contains a reference to a list

containing all the wind-fields defined in a scene. After taking a SplinePar-

ticle descendant with required parameters such as temperature and age, it

returns the displacement vector calculated by taking into account all four

main equation terms - wind fields, diffusion, source movement and buoyancy,

as well as their corresponding weights.

CHAPTER 5. IMPLEMENTATION 43

5.3 Key algorithms

Here we present some key algorithms we implemented that were essential to

our proposed method. Because of limited size of this thesis we could not

mention all the interesting methods, so we have selected the most important

ones. You can review the rest in the source code, which is attached to this

thesis.

5.3.1 Control points re-sampling

In each time step we need to re-sample the control point positions according

to a Catmull-Rom spline associated with the given segment. This algorithm

takes place in the CatmullRomSpline class, which represents the spline of one

SplineSegment. If the SplineSegment has n control points, the corresponding

CatmullRomSpline contains a linked list of n+1 CatmullRomSplineSegment

instances.

Algorithm 5.1 Re-Sampling of the control points

spline = new CatmullRomSpline(SplineEndPoints, ControlPoints)

newSegmentLength = spline.Length/CatmullRomSplineSegments.Count

height = 0

for i=0 to CatmullRomSplineSegments.Count-2 do

height += currentSegment.Length

newPosition = spline.getPointAtHeight(height)

newControlPointPositions.Add(newPosition)

end for

return return newControlPointPoisitions

5.3.2 Box-Müller transformation

We use Box-Müller transformation principle in determining the separation

height of the spline. Using two uniformly distributed random variables we

can return a random variable with given mean and standard deviation.

CHAPTER 5. IMPLEMENTATION 44

Algorithm 5.2 Box-Müller transformation

Input: mean, standardDeviation

r1 = uniform random in range [0,1]

r2 = uniform random in range [0,1]

randNormal =
√−2 log r1 sin 2πr2

return mean+standardDeviation*randNormal

5.3.3 Wind-Fields transformation

Each wind-field affects the position of the particle in cylindrical coordinates.

Here we present general algorithm depicting the necessary transformations

for circular wind-fields.

Algorithm 5.3 Wind-Fields transformation

Input: position

positionInWFcoords = position - windfield.origin

cylindricalPos = CartesianToCylindrical(positionInWFcoords)

cylindricalDisplacement = ∆t wf.getDisplacementVector

newCylindricalPos = cylindricalPos + cylindricalDisplacement

newCartesianInWFPos = CylindricalToCartesian(newCylindricalPos)

return (newCartesianInWFPos+origin) - position

5.3.4 Simulation step calculation

This algorithm takes place in SplineCalculator class. The input parameter

is a SplineParticle instance. The method returns new velocity for the given

particle.

5.3.5 Integration approximation

Here we cover our approximation of the integration needed in testing whether

to separate spline at a given height. In the final release this method was re-

CHAPTER 5. IMPLEMENTATION 45

Algorithm 5.4 Simulation step calculation

Input: particle

displacement = (0,0,0)

for all windfield in windFields do

displacement += α windfield.getDisplacement(particle.position)

end for

displacement += β normalizedRandomVector*particle.Temperature

displacement += γ particle.SourceVelocity

displacement += δ
(

−βtgy (T0 − particle.temperature) particle.age2∆t
)

return displacement

placed with double exponential transformation fromMathNet library because

it provided better calculation times.

The following algorithm takes min and max as input parameters spec-

ifying the range at which we want to calculate the integration. stepsize is

are also among input parameters. Step size is directly proportional to com-

putation error and inversely proportional to time complexity. func(x) is the

desired function we wish to integrate.

Algorithm 5.5 Integration approximation

Input: min; max; stepSize, funct(x)

result = 0

for step = min; min <max; step+= stepSize do

result += funct(step) * timeStep;

end for

return result

5.3.6 Spline space mapping

The 5.6 algorithm is used in each time step to map the FireParticle instances

into the space of the structural spline curve. It also sets the correct values for

the particles age and temperature based on their height on the spline. The

CHAPTER 5. IMPLEMENTATION 46

input parameters are position of the particle in normalized 3D space profile

and spline to which we wish to map the position.

Algorithm 5.6 Spline space mapping

Input: position, spline

cylindrical = CartesianToCylindrical(position)

particle = spline.getParticleAtHeight(cylindrical.Z*spline.Length)

nextStep = min(cylindrical.Z+0.001, 1)

particle2 = spline.getParticleAtHeight(nextStep*spline.Length)

newZVector = normalize(particle2.position - particle.position)

unitX = (1,0,0)

unitY = (0,1,0)

helpingVector = (newZVector == UnitX) ? UnitY : UnitX

newXVector = normalize(cross(newZVector, newZVector+helpingVector))

radialDisplacement = (newXVector*spline.radius)*cylindrical.r

radialDisplacement = radialDisplacement * CreateRotationMatrixFro-

mAxisAngle(newZVector, cylindrical.θ)

particle.position += radialDisplacement;

return particle

5.4 GUI

We provide user interface covering a wide range of controls. The controls

are logically divided based into 5 panels arranged as tabs in a TabControl

instance. Thanks to implementing the settings classes as singletons with

public encapsulated fields we can directly bind the specified fields to their

GUI elements. The logical values are represented via checkboxes, numerical

parameters are utilizing numericUpDown controls.

The GUI also contains controls allowing adding and removing wind fields

and emitters.

CHAPTER 5. IMPLEMENTATION 47

Figure 5.3: Example of GUI elements for controlling the dynamics and

separation of the flame.

Chapter 6

Results

The implemented method was tested on a notebook with Intel Core i3 350m

processor 2.26Ghz (2 cores), 4Gb of RAM and an ATI Radeon 5145 graphics

card with 512Mb of memory. The simulation ran above 30 frames per second

with one emitter containing one spline. The spline contained up to 15 spline

segments active and testing 100 particles per segment. Increased particle

or segment count led to a rapid drop in frames per second. The method

proved controllable and usable up to 100 000 particles per segment, although

when populating the scene with this many particles, the application FPS

count started to incline towards fps of applications using complex numerical

solutions and offline rendering methods.

6.1 Direct control methods

One of the main goals of this work was to provide wide range of controls

over the flame behavior and appearance. In professional applications the fire

simulations are controlled via multitude of parameters and even slight change

can produce drastically different results. Our application shares this feature.

In this section we provide a few examples of achieving different goals with

our simulation. Some of these results can be achieved by different settings,

each of which produces different side-effects. This feature is also present in

48

CHAPTER 6. RESULTS 49

professional methods.

6.1.1 Dominating the movement with wind-fields

Should we want to boost the effect of wind-fields, we simply increase the

wind-field weight α in the main differential equation. If we would like to

boost only one specific wind-field, we increase its strength parameter. In our

application we found that in order to see this effect in a bigger scope, often

prolonging the spline is needed. For examples on this topic, see section 6.1.3.

As the buoyancy term is exponentially proportional to the flame age, it easily

overpowers the wind-fields effect in the main equation. If we want to model

loops of fire or bend the flame towards one point using wind-fields, we need

to suppress the buoyancy term. Values in the range [0, 0.1] for buoyancy

term δ proved usable.

6.1.2 Smoke simulation

Due to amortization shader, the colder the particles are, the darker texture

they render in our billboarding visualization. If we want to boost the dark-

ening the tip of the flame, we need to ensure that these particles are colder.

Since the amortization shader takes account of the temperature span of the

particles, reducing the initial temperature is not the right way to do this. We

can achieve this effect by increasing the cooling rate. The side effects of this

cooling are that the flame temperature can more quickly drop to the levels

of ambient temperature, at which the buoyancy term of the main equation

entirely loses its effect.

6.1.3 Prolonging the spline

Most common requirement for the flame behavior would be to prolong it’s

length. In order to achieve this, the user must first understand when are the

end segments of the flame destroyed. Basically, the main precursor for de-

stroying the end segments is their current age affected by life-span parameters

CHAPTER 6. RESULTS 50

Figure 6.1: Direct control using wind-fields. In the first image we see

uniform wind field colliding with source wind-field. The second image is

combination of uniform and vortex wind-fields. Both examples have

diffusion and buoyant terms suppressed to ≈ 0.1

- initial age and aging rate. With flame separation disabled, increasing the

initial age and decreasing the aging rate is sufficient to increase the length

of the flame. However the separation is often needed and it complicates

achieving what might at first seem like a simple task. While the sufficient

life-span is required, the length of the spline comes into play. As the sep-

arated segments maximum life-span gets modified and scaled by a cubed

uniform random variable in the range [0,1], once the separation occurs, the

flames are short-lived and thus the flame appears shorter. One way of fixing

CHAPTER 6. RESULTS 51

Figure 6.2: Example of darkening by increased cooling. The first image has

cooling set to -0.5, the second has cooling -2.0

this issue is changing the lengths describing the persistent and intermittent

height, as well as specifying the maximum length at which the separation oc-

curs with 100% probability. The other way is increasing the apparent length

of the flame by suppressing the diffusion factor. This effectively flattens the

Catmull-Rom spline in between the segment end points, thus providing a

shorter segment and in turn increasing the amount of segments which fall

under the persistent and intermittent flame regions.

6.1.4 Artifacts

With many parameters and many ways to control our model, many ways

to break the model emerge. While we tried to restrict the inputs for the

parameters in a safe manner, the number of different parameter combinations

allow for unpredicted behavior. One particularly interesting effect comes with

CHAPTER 6. RESULTS 52

Figure 6.3: Example of flattening the spline by reducing the diffusion term

β. The left image has β = 1, in the second β = 0.1

the Catmull-Rom tension τ > 1. In this case the control points are quickly

CHAPTER 6. RESULTS 53

displaced around the whole scene, making the Catmull-Rom spline stretch

to great lengths and create random shapes. While by restricting the spline

length we can produce a chaotic fireball effect, prolonging the spline with

uniform profile provides a tentacles-from-hell like appearance.

Figure 6.4: The tentacles of hell achieved by setting Catmull-Rom tension

τ = 2 and setting the particles tested against each segment to 100 000.

During this simulation the FPS was essentially zero

Chapter 7

Conclusion

In this thesis we have presented a method for modeling dynamics of fire.

We have presented an improvement of the structural modeling method and

implemented usable application with a wide range of user controls for al-

tering the behavior and visualization of the flame. The desired effect can

be achieved by multiple paths and different configurations, which can pro-

duce different side-effects. This principle is present across all state-of-the-art

flame modeling software. Because of this complexity, complete control over

the flame requires at least a shallow understanding of dynamics principles

presented in this thesis.

In the future work we need to enhance the generation of fire particles

with noise and displacement to produce more realistic flame profiles. Wind

fields could be enhanced to allow for more complex wind flows changing

over time. Collision with objects in the scene needs to be added. Export

to external rendering software such as Maya could prove beneficial. More

complex visualization and high-quality offline rendering would also be useful.

There is always space for optimization and parallelization.

54

Bibliography

[Aut14] Autodesk. Maya 2015 user guide. http://help.autodesk.com/

view/MAYAUL/2015/ENU/, 2014. [Online; accessed 21-April-2015].

[d.o06] Sitni Sati d.o.o. AfterBurn plugin. https://www.afterworks.

com/AfterBurn.asp?ID=2, 2006. [Online; accessed 21-April-

2015].

[d.o13] Sitni Sati d.o.o. FumeFx plugin. https://www.afterworks.com/

FumeFX_Maya/Overview.asp?ID=1, 2013. [Online; accessed 21-

April-2015].

[Dry01] Dougal Drysdale. Intro to Fire Dynamics. Wiley, 2 2001.

[ea11] Peter Shipkov et al. SOup plugin. http://www.soup-dev.com/

examples2_1.htm, 2011. [Online; accessed 21-April-2015].

[FM96] Nick Foster and Dimitri Metaxas. Realistic animation of liquids.

Graph. Models Image Process., 58(5):471–483, September 1996.

[gro12] Chaos group. PhoenixFD plugin. http://www.chaosgroup.

com/en/2/phoenix_maya.html, 2012. [Online; accessed 21-April-

2015].

[Jaw09] Jawset. TurbulenceFD plugin. https://www.jawset.com/, 2009.

[Online; accessed 21-April-2015].

[KTJG08] Theodore Kim, Nils Thürey, Doug James, and Markus Gross.

Wavelet turbulence for fluid simulation. In ACM SIGGRAPH

55

BIBLIOGRAPHY 56

2008 Papers, SIGGRAPH ’08, pages 50:1–50:6, New York, NY,

USA, 2008. ACM.

[LF02] Arnauld Lamorlette and Nick Foster. Structural modeling of

flames for a production environment. In Proceedings of the 29th

Annual Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’02, pages 729–735, New York, NY, USA,

2002. ACM.

[MS13] Jason Diamond Mike Seymour, Matt Walin. The

VFX show. http://www.fxguide.com/thevfxshow/

the-vfx-show-177-the-hobbit-the-desolation-of-smaug/,

2013. [Online; accessed 21-April-2015].

[SF95] Jos Stam and Eugene Fiume. Depicting fire and other gaseous

phenomena using diffusion processes. In Proceedings of the 22Nd

Annual Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’95, pages 129–136, New York, NY, USA,

1995. ACM.

[WH91] Jakub Wejchert and David Haumann. Animation aerodynam-

ics. In Proceedings of the 18th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’91, pages 19–

22, New York, NY, USA, 1991. ACM.

List of Figures

2.1 A burning sphere we created using Maya Dynamics method

and rendered in mentalray. 4

2.2 A flamethrower projectile we created in Maya using Fluid

method and rendered in Mentalray renderer. 5

2.3 Example of vortex daemon wind field in AfterBurn. 6

2.4 An example of flames created using FumeFx plugin. Pictures

are from movies Ghost Rider and War Thunder, respectively. . 7

2.5 An example of a flame created using TurbulenceFD plugin.

[Jaw09] . 8

2.6 An example of increasing the resolution of the grid using the

SOup upresNode method utilizing Wavelet turbulence algo-

rithm. [KTJG08] . 9

2.7 Nuclear explosion created with PhoenixFD. 10

2.8 Screenshot from Shrek (2001). The flame was modeled using

[LF02]. In this screenshot the flame evolves towards camera. . 11

2.9 Screenshot from the destruction scene in The Hobbit: Battle

of the Five Armies (2014) . 12

3.1 Spline movement impact on the shape of the whole flame. [LF02] 16

3.2 Torch waved through the air. A demonstration of flame adap-

tation to a moving source. [LF02] 18

3.3 Illustration of persistent, intermittent and buoyant regions of

the flame. [LF02] . 20

57

LIST OF FIGURES 58

3.4 Illustration of movement of the base splines and their impact

on the overall look of the flame. [LF02] 22

4.1 Example of modifying the parameters of equation 24

4.2 Our visualization of Base spline element. Red points are end

points separating the segments, black points are control points

and the spline is interpolating Catmull-Rom spline. 26

4.3 Example of different tension values for the Catmull-Rom spline.

On the left τ = 0.5, on the right τ = 2. 28

4.4 Schematic describing the sink, vortex, uniform and source

types of the wind fields. 30

4.5 Example of flame behavior in combination of Vortex and Source

wind-fields. 32

4.6 Example of spline separation. Evolution of the same spline

with the same settings and wind fields. In the left, the sepa-

ration is disabled, in the right it is enabled. 33

4.7 Examples of different profiles and their effect on the shape of

the flame. The amortization shader is turned off. 34

4.8 The effect of amortization shader. 35

5.1 Class diagram depicting representation of the flame in our

structure. 37

5.2 Class diagram depicting representation of the wind in our

structure. 42

5.3 Example of GUI elements for controlling the dynamics and

separation of the flame. 47

6.1 Direct control using wind-fields. In the first image we see

uniform wind field colliding with source wind-field. The second

image is combination of uniform and vortex wind-fields. Both

examples have diffusion and buoyant terms suppressed to ≈ 0.1 50

6.2 Example of darkening by increased cooling. The first image

has cooling set to -0.5, the second has cooling -2.0 51

LIST OF FIGURES 59

6.3 Example of flattening the spline by reducing the diffusion term

β. The left image has β = 1, in the second β = 0.1 52

6.4 The tentacles of hell achieved by setting Catmull-Rom tension

τ = 2 and setting the particles tested against each segment to

100 000. During this simulation the FPS was essentially zero . 53

