
P. J. Safarik University

Faculty of Science

WEB BASED DATA-MINING

ASSISTANT

THESIS

Field of Study: Computer Science

Institute: Institute of Computer Science

Tutor: RNDr. Tomáš Horváth, PhD.

Košice 2015 Bc. Štefan Bocko

Thanks

Thanks to my supervisor RNDr. Tomáš Horváth, PhD. for his

valuable efforts in supervising this project.

Abstrakt

Cieľom práce je implementovať tzv. proof-of-concept webovskú ap-

likáciu na manažovanie a podporu data mining projektov. Hlavná

požiadavka na systém je jeho jednoduchosť ako aj identifikovanie

hlavných prekážok a slabých stránok takéhoto systému.

Abstract

The goal of the thesis is to implement a proof-of-concept pilot

of a web-based system for managing and supporting data mining

projects. The main requirement is that the system should be very

simple and user-friendly. Also, main challenges and obstacles of

such a system should be detected in the thesis.

Contents

Introduction 6

Requirements . 6

Existing solutions . 7

Thesis structure . 8

1 Data preprocessing 9

1.1 Data cleaning . 9

1.2 Data transformation . 10

2 Data-mining algorithms 13

2.1 k-nearest neighbor . 13

2.2 Logistic regression . 15

2.3 Decision tree . 17

2.3.1 TDIDT Algorithm . 19

2.4 Support vector machines . 20

2.4.1 Linearly separable data . 21

2.4.2 Linearly inseparable data . 24

3 Model recommendation 27

3.1 Definitions . 27

3.2 Gridsearch . 28

3.3 Meta-learning . 30

3.3.1 Statistical characterization approach 32

3.3.2 Landmarking approach . 33

3.4 Hybrid approach . 34

3.5 Experiments . 35

3.5.1 Initial setup . 36

3.5.2 Performance . 39

4

4 Design and implementation 48

4.1 The CRISP-DM methodology . 48

4.2 Project design . 50

4.3 Use case . 53

4.4 Implementation . 62

4.4.1 Web application . 63

4.4.2 Database . 66

4.4.3 Computational server . 67

Conclusion 70

Resumé 72

Bibliography 74

Attachments 77

5

Introduction

Nowadays there are many situations that require knowledge of data analysis. Exam-

ples include students who have to analyze data measured during their experiments.

Mostly they are not data mining experts nor have experience in data analysis. They

do not want to study numerous algorithms and techniques for acquiring knowledge

from datasets.

Various software exist for solving data mining tasks, such as Weka, RapidMi-

ner. . . The problem is, that all of them are designed for technical users, who have at

least minimum knowledge of data mining algorithms. This assumption is not true

in our case. We will assume, that our users do not have any experience with data

analysis.

In this thesis we design and implement a proof-of-concept pilot of a web-based

system for managing and supporting data mining projects.

Requirements

Our application should guide a user through data-mining process step by step in a

way that is clear even for non technical user. We can not assume that the user has

knowledge about data preprocessing or modelling. We will assume, that our user has

a single file with his measurements and he wants to perform some analyzes on it.

The basic use case can look like this:

• User visits our web application from his browser

• User uploads file with data for analysis

• Our software will analyze given data to decide, which algorithm fits the best

• Our software will make an analysis of a given dataset

• The user-friendly report is generated as an output.

6

There are several problems, which we have to solve. First of all, there is a problem

of finding suitable algorithm for analysis. This is because data mining algorithm,

which performs great for a given dataset can perform poorly for another one. This

is basically known as “no free lunch” theorem. Then if we choose an algorithm, there

is another problem of finding its exposed hyperparameters for given dataset. We

proposed a solution of this problem in Chapter 3.

Other problem is the process of gaining knowledge from a user about his data,

taking into account, that the user does not understand data mining terminology. We

have to take this into account, when displaying the results too.

Existing solutions

There are many data-mining tools available today. They can be divided into two

major groups

• Desktop applications – Weka, RapidMiner . . .

• Web applications – OpenML, BigML . . .

Desktop applications are intended to be used by professionals. They are very

complex and require deep data-mining knowledge. They are quite difficult to install

and run for non-technical users.

Therefore, we will focus in this section on web applications like OpenML [20]

and BigML [21]. These applications have similar concept like our prototype. They

are intended to be easy to use directly from web browser without any additional

installations.

BigML is online tool for managing data mining projects as well as our prototype

or OpenML. However, it is intended for professionals and technical users who can

program their analyzes on their own. It is suitable for those who need to perform

some analysis, but do not want to install complex tools. This tool simplifies the

analysis process, but also offers many additional business and enterprise tools.

OpenML builds on its community. Datasets are shared between the community

and anyone can access them and perform various analyzes. Other users can view

these results. Therefore, there is a big chance that the dataset will be examined by an

expert user. This is helpful especially for beginners who do not know which method

to use. On the other side, users dataset can stay unnoticed for weeks, because it does

7

not look interesting for other users. Our system lacks the expert interaction, but it

tries to automate the whole process and replace the expert support. Advantages and

disadvantages of our system are summarized in the SWOT analysis below.

S W

automation of the process missing expert support

accessible from web browser

performance

simple UI

O T

include more models small user interest

community support existing systems

Figure 1: SWOT analysis of our prototype design.

Thesis structure

In Chapters 1 and 2 we describe mathematical and algorithmic background of pre-

processing methods and data-mining models used in our solution. Chapter 3 formally

defines a problem of model and hyperparameter recommendation. We analyze current

approaches to this problem and we also propose our custom solution, that best fits

our requirements.

In the second part of this work, we have implemented the proposed prototype

application. The implementation overview is given in Chapter 4. There we describe

the proposed system in more details from user as well as architectural point of view.

8

Chapter 1

Data preprocessing

One of the most difficult and time consuming data-mining step is preprocessing. At

the same time it is a step that is crucial to the success of the whole process. The main

goal of this step is to create such a data representation that is suitable for chosen

processing method. In our case this is even more difficult, because we do not have

specific data mining method at this point. We will use several data-mining techniques

instead of just one to increase the accuracy of result.

In this chapter, we describe several known techniques of data preprocessing which

we used in our system. These techniques include data cleaning, data transformation

and discretization.

1.1 Data cleaning

Real-world datasets are often incomplete. Some values are not set, they are called

missing values. Often, there is a special symbol defined which represents them (e.g.

”?” or ”missing”). These values are not eligible for data-mining modelling, because

these models either can not be applied on such dataset or they give poor results.

Therefore several approaches were developed to handle this problem.

In most cases, missing values are replaced by adequate values. For example one

can create a list of all values in an attribute and replace its missing data with most

common value. This can be further improved by creating a separate list for every

class and then replacing with the most common value of class in which the instance

belongs to. This method is most suitable for attributes with small number of distinct

values such a boolean attributes with only two possible values.

Specifically for numeric attributes a mean value can be computed for an attribute

9

and missing data are replaced by this value. Also a simple constant value can be used.

There is no generally suitable methods for handling the missing values. Effective-

ness of these techniques are highly dependant on attribute characteristics and type of

data.

1.2 Data transformation

Data in datasets are mostly represented in a form that is more suitable for reading by

humans. However, for machine-learning algorithms it is more convenient to represent

data in different form (e.g. numeric attributes in 0–1 range). Every data-mining al-

gorithm has specific needs about data representation. Therefore, there is no universal

algorithm for data transformation. The known methods for transforming data include

binarization, normalization, discretization . . .

Normalization and discretization are techniques which apply to numeric attributes.

Numeric attribute is an attribute whose value consists of numbers (e.g. real, natural or

integer). Discretization is the process of transferring continuous attributes (numeric)

into their discrete counterparts (nominal attributes). We considered two discretization

algorithms which differ in the way they divide the attribute data into discrete groups.

1. Equidistant – this method divides the range into n intervals of equal size. If

l and h are the lowest and highest attribute values, the width of intervals will

be w = (h�l)
n

. It is the most straightforward method, but outliers may distort

results. Also skewed data is not handled well.

2. Equipotent – also known as equal frequency partitioning, divides the range

into n intervals, each containing approximately the same number of samples.

The advantage of this technique is that it scales data well.

Normalization is a technique of adjusting the values with various ranges to more

standard range like [0, 1] or [−1, 1]. This data representation is more suitable for

data-mining models, because attributes have equal weight when they are normalized.

For example, one attribute measured in milimeters have much bigger values than

similar attribute measured in meters and this can cause inequality during analysis.

Therefore, normalization is very important preprocessing method [1]. We considered

two different methods.

10

1. zero–one – this type normalizes the values to [0, 1] range using the equation

below

vi =
xi −min (x)

max (x)−min (x)
,

where vi is the ith normalized value, xi is the original value at position i, min(x)

is the minimum value of attribute x and max(x) is the maximum. For example

if attribute can obtain values from 10 to 20 and we are normalizing value 15,

the new value will be v = 15�10
20�10

= 1
2
.

2. z-score – attribute values are normalized based on the attribute mean and

standard deviation. Value xi of an attribute x is normalized to vi by calculating

vi =
xi − x̄

σx

,

where x̄ is mean and σx is standard deviation of x. Standard deviation can be

computed using the equation

σx =

v

u

u

t

1

n

n
X

i=1

(xi − x̄)2.

Lets suppose that we want to normalize attribute with mean value of 1200

and standard deviation equal to 350. A value x = 1100 is normalized to v =

1100�1200
350

= −
2
7
.

Another technique for data-preprocessing is called binarization. This method can

be applied to any type of attribue (numeric, nominal, . . .). It is intended to transform

arbitrary attribute into its boolean counterpart based on a specific attribute value.

Lets assume, that we have dataset with attribute risk which can contain three

different values (low, medium and high) as shown in Figure 1.2. The original data are

shown in table on the left. Suppose we only want to avoid high risk cases. Hence,

the values low and medium are equally good for us so we do not need to distinguish

between them. Thus, we can binarize this attribute with respect to high value. A

completely new attribute will be created with value 1 if the previous value was high or

0 otherwise. The original attribute is then replaced with this new one. On the right

side of Figure 1.2 is binarized attribute which corresponds to the original attribute

with respect to high value.

11

. . . risk . . .

medium

high

high

low

. . . medium . . .

low

low

high

medium

low

→

. . . risk–high . . .

0

1

1

0

. . . 0 . . .

0

0

1

0

0

Figure 1.2: Binarization of attribute. Original values are shown on the left. New

attribute binarized with target value high is shown on the right.

More advanced type of binarization creates a new attribute for each value. The

example is shown on Figure 1.3. Attribute risk is replaced by three new attributes

(risk–low, risk–medium and risk–high). For each row, exactly one of these attributes

has value 1 in accordance with original value and the rest of them have 0.

. . . risk . . .

medium

high

high

low

. . . medium . . .

low

low

high

medium

low

→

. . . risk–low risk–medium risk–high . . .

0 1 0

0 0 1

0 0 1

1 0 0

. . . 0 1 0 . . .

1 0 0

1 0 0

0 0 1

0 1 0

1 0 0

Figure 1.3: Advanced binarization method. New attribute is created for every value

of original attribute.

12

Chapter 2

Data-mining algorithms

Data mining comprises the algorithms that enable us to gain fundamental insights

and knowledge from massive data. It is an interdisciplinary field merging concepts

from areas like databases, statistics, pattern recognition, . . . In fact, data mining is a

part of larger knowledge discovery process, which includes pre-processing tasks like

data extraction, data cleaning, data reduction and feature construction, as well as

post-processing steps like model interpretation, hypothesis confirmation and so on.

This process tends to be highly iterative and interactive. The algebraic, geometric

and probabilistic viewpoints of data play a key role in data mining methods. There are

a lot of types of algorithms which solve data-mining tasks. They include exploratory

data analysis, frequent pattern discovery, data clustering and classification models [3].

Our prototype of web based data mining assistant now supports four classification

algorithms. We could integrate many more algorithms into our system, but this is

out of the scope of this prototype design. These four algorithms are namely k-nearest

neighbor, Logistic regression, Decision tree and Support vector machines. Next we

describe these algorithms in detail, because they play an important role in our solution.

2.1 k-nearest neighbor

The k-nearest neighbor algorithm belongs among the simplest data-mining models.

Nearest-neighbor classifiers are based on learning by analogy, that is, by comparing

a given test tuple with training tuples that are similar to it. The training tuples are

described by n attributes. Each tuple represents a point in an n-dimensional space. In

this way, all the training tuples are stored in an n-dimensional pattern space. When

given an unknown tuple, a k-nearest neighbor classifier searches the pattern space for

13

the k training tuples that are closest to the unknown tuple. These k training tuples

are the k ”nearest neighbors” of the unknown tuple.

”Closeness” is defined in terms of a distance metric, such as Euclidean distance.

The Euclidean distance between two points or tuples, e.g. X1 = (x1,1, x1,2, . . . , x1,n)

and X2 = (x2,1, x2,2, . . . , x2,n), is computed as follows

dist (X1, X2) =

v

u

u

t

n
X

i=1

(x1,i − x2,i)
2
. (2.1)

In other words, for each numeric attribute, we take the difference between the

corresponding values of that attribute in tuple X1 and in tuple X2, square this differ-

ence, and accumulate it. The square root is taken of the total accumulated distance

count. Basically, we normalize the values of each attribute before using Eq. 2.1. This

helps to prevent attributes with initially large ranges (e.g. price) from outweighing

attributes with initially smaller ranges (e.g. binary attributes). Min-max normaliza-

tion can be used to transform a value v of a numeric attribute A to v0 in the range

[0, 1] by computing

v0 =
v −minA

maxA −minA

(2.2)

where minA and maxA are the minimum and maximum values of attribute A.

The previous metrics assumes that the attributes used to describe the tuples are

all numeric. For nominal attributes (e.g. color), a simple method is to compare

the corresponding value of the attribute in tuple X1 with that in tuple X2. If the

two are identical, then the difference between the two is taken as 0. If the two are

different, then the difference is considered to be 1. Other methods may incorporate

more sophisticated schemes for differential grading (e.g., where a larger difference

score is assigned for example for blue and white color than for blue and black color).

For k-nearest neighbor classification, the unknown tuple is assigned the most com-

mon class among its k-nearest neighbors. When k = 1, the unknown tuple is assigned

the class of the training tuple that is closest to it in pattern space. Nearest neighbor

classifiers can also be used for numeric prediction, that is, to return a real-valued

prediction for a given unknown tuple. In this case, the classifier returns the average

value of the real-valued labels associated with the k-nearest neighbors of the unknown

tuple [2].

The exposed parameter k can be used to obtain more precise results on the same

dataset with this method just by taking into account more or less number of nearest

14

neighbors. In general, the larger the number of training tuples, the larger the value

of k will be, so it is highly dependent on concrete dataset.

2.2 Logistic regression

To describe the Logistic regression model we have to understand the Linear regression

first, because Logistic regression is based on this method. Linear regression belongs

to regression methods which are designed to predict numerical attributes. The main

difference between classification and regression is that in classification there are count-

able many types of classes to choose from. On the other side, in regression there are

infinite number of them (e.g. real numbers).

When all the attributes are numeric, we can use linear regression technique, which

is a staple method in statistics too. The idea is to express the class as a linear

combination of the attributes, with predetermined weights

x = w0 + w1a1 + w2a2 + · · ·+ wkak, (2.3)

where x is the class, a1, a2, ..., ak are the attribute values and w0, w1, ..., wk are

weights. The weights are calculated from the training data. The predicted value for

the first instance’s class can be written as follows

w0a
(1)
0 + w1a

(1)
1 + w2a

(1)
2 + · · ·+ wka

(1)
k =

k
X

j=0

wja
(1)
j , (2.4)

where the superscript denotes that it is the first instance. Moreover, it is notation-

ally convenient to assume an extra attribute a0, with a value that is always 1. The

value from (2.4) is predicted, not the actual value for the class. The difference between

the predicted and actual values is important and should be as small as possible. The

goal of the linear regression method is to choose the coefficients wj to minimize the

sum of the squares of these differences over all the training instances. If there are n

training instances then the sum of the squares of differences is

n
X

i=0

x(i)
−

k
X

j=0

wja
(i)
j

!2

(2.5)

where the expression inside the parentheses is the difference between the actual

class of the ith training instance and its predicted class.

15

Linear regression can easily be used for classification in domains with numeric

attributes. The trick is to perform a regression for each class, setting the output

equal to 1 for training instances that belong to the class and 0 for those that do not.

The result is a linear expression for the class. Then, given a test example of unknown

class, calculate the value of each linear expression and choose the one that is the

largest.

This approach often yields good results in practice. However, it has two drawbacks.

First, the membership values it produces are not proper probabilities because they can

fall outside the range [0, 1]. Second, least-squares regression assumes that the errors

are statistically independent and also normally distributed with the same standard

deviation, an assumption that is violated when the method is applied to classification

problems because the training examples only take on the values 0 or 1.

A Logistic regression technique does not suffer from these problems. Instead of

approximating the 0 and 1 values directly, logistic regression builds a linear model

based on a transformed target variable. Lets suppose first that we have only two

classes. Logistic regression replaces the original target variable

P [1|a1, a2, . . . , ak] (2.6)

by variable

log

✓

P [1|a1, a2, . . . , ak]

1− P [1|a1, a2, . . . , ak]

◆

(2.7)

which is no longer constrained to the interval [0, 1], but can lie anywhere between

negative and positive infinity. Now we can approximate the transformed variable using

a linear function just like the ones generated by Linear regression. The resulting model

is

P [1|a1, a2, . . . , ak] =
1

1 + exp (−w0 − w1a1 − · · ·− wkak)
, (2.8)

where w are weights.

In Logistic regression model weights are found using the log-likelihood of the model

instead of using the squared error like in Linear regression. This is given by formula

n
X

i=1

�

1− x(j)
�

log
⇣

1− P
h

1|a
(1)
1 , a

(2)
2 , . . . , a

(k)
k

i⌘

, (2.9)

where x(i) are either 0 or 1.

16

The weights wi have to be chosen to maximize the log-likelihood. This can be

done for example by iteratively solving a sequence of weighted least-squares regression

problems until the log-likelihood converges to a maximum.

One can generalize Logistic regression to several classes by approach described

above for Multiresponse Linear regression by performing Logistic regression indepen-

dently for each class [4].

The Logistic regression classifier implemented in Weka package exposes two hyper-

parameters to fine tune its results. First hyperparameter corresponds to the maximum

number of iterations given to algorithm for finding the maximum of log-likelihood of

the model. If the algorithm does not find the maximum of log-likelihood after spe-

cific number of iterations, then the best weights found so far are used. The Logistic

regression classifier implemented in Weka uses penalized maximum likelihood estima-

tion with a quadratic penalty function. This likelihood estimation exposes the second

hyperparameter of this model. It is the penalty hyperparameter, which stands for

the weight of the penalty. The higher the value of the penalty parameter (aka ridge

parameter) the closer to zero are the penalized maximum likelihood estimates.

2.3 Decision tree

In this section we look at a widely-used method of constructing a model from a

dataset in the form of a set of decision rules. This representation of the data has the

advantage compared with other approaches of being meaningful and easy to interpret.

Therefore we explain this model using the example below.

The Table 2.1 contains data about a golfer who decides whether or not to play

each day on the basis of the weather. First four attributes are related to weather

and the last attribute is a golfer’s decision to play or not to play. There are two

numerical attributes, namely Temp and Humidity, and three categorical attributes.

Attribute Outlook can contain these three possible values: sunny, overcast or rain.

Attribute Windy is a boolean attribute, which means that it can contain only true

or false values. Class attribute is a classification attribute and can contain only two

possible values: play or don’t play.

If we assume that the golfer is acting consistently, how can be the rules that

determine the decision whether or not to play each day defined? One way of answering

this is to construct a decision tree such as the one shown in Figure 2.4.

17

Outlook Temp (�F) Humidity (%) Windy Class

sunny 75 70 true play

sunny 80 90 true don’t play

sunny 85 85 false don’t play

sunny 72 95 false don’t play

sunny 69 70 false play

overcast 72 90 true play

overcast 83 78 false play

overcast 64 65 true play

overcast 81 75 false play

rain 71 80 true don’t play

rain 65 70 true don’t play

rain 75 80 false play

rain 68 80 false play

rain 70 96 false play

Table 2.1: Data for the Golf Example.

Figure 2.4: Decision tree for the golfer example [5].

A decision tree is created by a splitting on the value of attributes, i.e. testing the

value of an attribute and then creating a branch for each of its possible values. In the

case of continuous attributes the value is tested against less than or equal to or greater

than comparison with a given split value. The splitting process continues until each

branch can be labelled with just one classification.

A decision tree can be viewed as not just equivalent of the original training set

but as a generalization of it which can be used to predict the classification of other

18

instances. For example if we want to determine the classification for the new set of

weather conditions from this tree, the first look is at the value of Outlook attribute.

1. If the value of Outlook is sunny, the next attribute we consider is Humidity. If

the value is less than or equal to 75, the decision is play. Otherwise, the decision

is don’t play.

2. If the value of Outlook is overcast, then the decision is play.

3. If the value of Outlook is rain, the next attribute we consider is Windy. If the

value is true the decision is don’t play, otherwise the decision is play.

2.3.1 TDIDT Algorithm

A Weka tool uses the TDIDT algorithm for constructing a decision tree from a training

set. It is a very popular method for constructing decision trees. TDIDT stands for

Top-Down Induction of Decision Trees. Below is the pseudocode of this algorithm.

Algorithm 1: TDIDT – Basic Algorithm

if all the instances in the training set belong to the same class then

return the value of the class;

else

(1) select an attribute A to split on (never select an attribute twice in the

same branch);

(2) sort the instances in the training set into subsets, one for each value of

attribute A;

(3) return a tree with one branch for each non-empty subset, each branch

having a descendant subtree or a class value produced by applying the

algorithm recursively;

end

This method produces decision rules in the implicit form of a decision tree. These

trees are generated by repeatedly splitting on the values of attributes, which is also

known as recursive partitioning.

At each non-leaf node an attribute is chosen for splitting. Selection of this attribute

is arbitrary, except that the same attribute must not be chosen twice or more times in

19

the same branch. Obviously, each split on the value of an attribute extends the length

of the corresponding branch by one, but the maximum possible length for a branch is

H terms, if there are H attributes. So the algorithm is guaranteed to terminate.

TDIDT algorithm has one important condition, which must be met, and that is

the consistency of the training data. That means that no two instances with the same

values of all the attributes may belong to different classes. Under this condition the

algorithm is guaranteed to terminate and any selection of attributes (even random)

will produce a decision tree, provided that an attribute is never selected twice in the

same branch [5].

An implementation of TDIDT algorithm in Weka package exposes three major

hyperparameters to fine tune the results. First hyperparameter (M) determines the

minimum number of instances per leaf in a decision tree. This guarantees that the

path from the root to the leaf of a decision tree describes at least M instances of

a respective class. The two other hyperparameters are related to the method for

adjusting a decision tree called pruning.

Pruning means generating a tree with fewer branches than would otherwise be

the case (known as pre-pruning) or removing parts of a tree that has already been

generated (known as post-pruning). This will give a smaller and simpler tree, which

may be able to predict the correct classification more accurately for unseen data.

On the other side this decision tree is unlikely to be able to predict correctly the

classification of some of the instances in the training set. As we already know what

those values are, this is of little or no importance.

The first hyperparameter related to pruning is just a simple boolean variable,

which determines whether the pruning will be used or not. The second hyperpa-

rameter is considered only if the pruning is used. This parameter is called pruning

confidence factor. The value of this hyperparameter affects how pessimistically the

tree is pruned back. That means how big error do we accept on the training data

because of pruning. The value of this hyperparameter can acquire any real value from

interval [0, 1]. Smaller confidence factors result in further tree pruning.

2.4 Support vector machines

Support vector machines (SVMs) is a classification method for linear, but also non-

linear data. SVM algorithm works with two classes, but it is easily extensible to

classify multiple classes using the approach described in Section 2.2. SVM uses a

20

nonlinear mapping for transforming a training data into a higher dimension. Within

this dimension, it searches for the linear separating hyperplane.

A hyperplane is a subspace one dimension smaller than its surrounding space.

Hyperplane for 2–dimensional space is a line, for 3–dimensional space it is a 2D plane,

and so on.

This hyperplane can be interpreted as a decision boundary, which separates the

tuples of one class from another. It is important to note that with a sufficiently high

dimension, data from two classes can always be separated by a hyperplane. The SVM

finds this hyperplane using support vectors (important data points from a training set)

and margins, which are defined by the support vectors. The algorithm is described in

detail below.

2.4.1 Linearly separable data

Lets look at the case when the data are linearly separable first. A dataset D is defined

as follows

D = {(X1, y1), (X2, y2), . . . , (X|D|, y|D|)}

where Xi is the set of training tuples and yi are associated class labels. Each yi can

represent one of the two values, either 1 or −1, corresponding to the class of the tuple

Xi. Let’s consider an example dataset with two attributes, namely A1 and A2. These

two attributes define the class of each instance as shown on Figure 2.5. Gray dots

represent instances which belong to a first class and white dots mark the instances of

a second class.

This data are linearly separable, because a straight line can be drawn to separate

all the tuples of one class from the other. Dashed lines represent possible placement

of a separating hyperplanes. There are possibly an infinite number of them.

Our goal is to find the best separating hyperplane. That is the one that will have

the minimum classification error on previously unseen instances. SVM algorithm

solves this problem by searching for the maximum marginal hyperplane.

21

A2

A1

Figure 2.5: Example of a linearly separable dataset.

Consider Figure 2.6, which illustrates two different separating hyperplanes and

their associated margins. Both hyperplanes correctly classify all the data instances,

however, we expect that the hyperplane with the larger margin can classify future

instances more accurate than the hyperplane with much smaller margin. The hyper-

plane with the largest margin is called the maximum marginal hyperplane (MMH).

Margin associated with this hyperplane gives the largest distance between these two

classes.

A2

A1

small margin

A2

A1

large margin

Figure 2.6: Possible separating hyperplanes and margins associated for them.

22

A separating hyperplane can be defined as follows

W ·X + b = 0, (2.10)

where W is a weight vector for attributes, X are training tuples and b is a scalar

called bias. Considering our example with two attributes A1 and A2. We can rewrite

equation (2.10) as

w0 + w1x1 + w2x2 = 0, (2.11)

where w0 is a bias and x1 and x2 are the values of attributes A1 and A2 respectively.

Therefore, we know that any point that lies above the separating hyperplane satisfies

equation (2.12)

w0 + w1x1 + w2x2 > 0 (2.12)

and point that lies below the separating hyperplane satisfies equation (2.13)

w0 + w1x1 + w2x2 < 0. (2.13)

We can define the sides of the margin by adjusting the weights in equations (2.12)

and (2.13) respectively

H1 : w0 + w1x1 + w2x2 ≥ 1, (2.14)

H2 : w0 + w1x1 + w2x2 ≤ −1. (2.15)

Combining these two inequalities we get

H : yi (w0 + w1x1 + w2x2) ≥ 1, (2.16)

where yi ∈ [−1, 1] are class labels. All training data instances that satisfy equation

(2.16) are called support vectors. Support vectors are training tuples which are

equally close to the maximum marginal hyperplane.

To find the support vectors and the MMH, SVM algorithm transforms the equation

(2.16) to convex quadratic optimization problem. More details are beyond the scope

of this thesis, but this problem is well known and many algorithms exists for solving

it. The equation (2.16) can be redefined as follows

23

d
�

XT
�

=
l
X

i=1

yiαiXiXT + b0 (2.17)

where l is the number of support vectors, Xi is a support vector, XT is a test tuple

and αi and b0 are numeric constants. For an unseen instance XT we substitute the

values into equation (2.17) and check the sign of the result. If it is possitive, then the

instance XT lies on or above the MMH and its class is 1. If the sign is negative, then

XT lies on or below the MMH and its class is −1.

2.4.2 Linearly inseparable data

Now we discuss the case, when the data are not linearly separable. Figure 2.7 shows

an example of linearly inseparable dataset. It is clear, that it is not possible to draw

a single line that completely separates the classes. Now we describe the approach of

extending the linear SVMs to nonlinear SVMs, which can classify linearly inseparable

data instances.

A2

A1

Figure 2.7: Example of a linearly inseparable data.

Firstly, we have to transform the original data instances into a space with a higher

24

dimension, where they can be separated by a hyperplane. This is done by nonlinear

mapping. Lets assume, that we have n–dimensional vector X for training tuples.

We use nonlinear transformation of X to m–dimensional space Z (n < m) using the

transformation φ. A separating hyperplane in the new space is

d (Z) = WZ + b (2.18)

where W and Z are vectors. The equation (2.18) is linear, so we can solve it and

transform back to the original space. The separating hyperplane in a transformed

space corresponds to a nonlinear polynomial in the original space. Transformed space

can be much bigger than the original space, hence the computation of dot products

in this space can be very expensive. For solving the quadratic optimization problem,

the SVM algorithm uses a kernel function. Thanks to a kernel function, we are able

to provide computations in the original space that are mathematically equivalent to

the computations in the transformed space. Kernel function looks like this

K (Xi, Xj) = φ (Xi) · φ (Xj) , (2.19)

where φ (X) is a nonlinear function applied to training tuples. Because the training

tuples appears everywhere in a form of dot products, we can substitute them with

K (Xi, Xj) and make all calculations in the original space. In addition, we do not

have to know how the transformation φ looks like.

There are many different kernel types. For example

• Linear kernel: K (Xi, Xj) = Xi ·Xj

• Sigmoid kernel: K (Xi, Xj) = tanh (κXi ·Xj − δ)

• Polynomial kernel of degree h: K (Xi, Xj) = (Xi ·Xj + 1)h

• Gaussian radial basis function (RBF) kernel: K (Xi, Xj) = eγkXi�Xjk
2

.

Last step is to find the maximum marginal hyperplane. This is similar to the

approach described above. The only difference is that a user has to specify the upper

bound constant c (complexity constant) for Lagrange multipliers αi manually. The

MMH found in the transformed space corresponds to a nonlinear separating hyper-

surface in the original space.

SVMs are highly accurate, because of their ability to model complex nonlinear

decision boundaries. They are also much less suspectible to overfitting. On the other

25

side, the training time of SVMs can be extremely slow comparing to the other methods

we described in this chapter [2].

An implementation of SVM algorithm in LibSVM package exposes several hyper-

parameters to improve the results. We describe three of them, which we used in

our experiments. First hyperparameter determines the kernel function used in the

algorithm (one of mentioned above).

Hyperparameter c stands for a complexity constant mentioned above. This pa-

rameter tells the SVM optimization how much you want to avoid misclassifying each

training example. For large values of parameter c, the optimization will choose a

smaller margin decision hyperplane, if that hyperplane does a better job of getting all

the training points classified correctly. Conversely, a very small value of c will cause

the optimizer to look for a larger margin decision hyperplane, even if that hyperplane

misclassifies more points.

The last parameter is γ. It is considered when the SVM algorithm uses RBF

kernel. In the equation for RBF kernel function gamma has a value of

γ = −
1

2σ2
,

where σ is a free parameter defined by the user.

26

Chapter 3

Model recommendation

In this chapter we formally define Combined selection and hyperparameter opti-

mization (CASH) problem. Then we present several solutions for selection and hy-

perparameter optimization of algorithms. They vary in time complexity and accuracy

depending on the algorithm used. At the beginning we describe simple approach used

in Gridsearch algorithm and then some more sophisticated solutions which include

Meta-learning features. At the end of this chapter we present our own algorithm

designed for the best time/accuracy ratio.

3.1 Definitions

Combined selection and hyperparameter optimization problem can be defined as

follows: given a dataset, simultaneously choose a learning algorithm and set its hy-

perparameters to optimize empirical performance. At present, high attention is given

to this concept [6].

The goal of model selection is to determine the algorithm A⇤ ∈ A with optimal

generalization performance for given set of learning algorithms A and training data

D = {(x1, y1), . . . , (xn, yn)}. Model selection can be written as

A⇤
∈ argmin

A2A

1

k

k
X

i=1

L
⇣

A,D
(i)
train,D

(i)
valid

⌘

, (3.1)

where D
(i)
train and D

(i)
valid are disjoint training and validation sets acquired by split-

ting training data D. Loss function L
⇣

A,D
(i)
train,D

(i)
valid

⌘

represents the misclasification

27

rate achieved by algorithm A when trained on D
(i)
train and evaluated on D

(i)
valid. K-fold

cross validation is used as a validation technique.

Hyperparameter optimization problem can be defined as follows: for given learning

algorithm A find appropriate values for its hyperparameters λ ∈ ∧. This can be

written as

λ⇤
∈ argmin

λ2^

1

k

k
X

i=1

L
⇣

Aλ,D
(i)
train,D

(i)
valid

⌘

. (3.2)

As you can see from equations (3.1) and (3.2), these two problems are conceptually

similar. The difference between them is that hyperparameter space is often high

dimensional and continuous. Correlation property between hyperparameter values

λ1,λ2 ∈ ∧ can be exploited during the optimization process.

CASH problem can be defined as follows: given a set A = {A(1), . . . , A(k)} of

algorithms with their hyperparameter spaces ∧(1), . . . ,∧(k), the goal is to compute

A⇤λ⇤
∈ argmin

A(j)2A,λ2^(j)

1

k

k
X

i=1

L
⇣

A
(j)
λ ,D

(i)
train,D

(i)
valid

⌘

. (3.3)

This problem can be reformulated as a single combined hierarchical hyperparame-

ter optimization problem with ∧ = ∧(1)∪ · · ·∪∧(k)∪{λr}, where λr is a new top level

hyperparameter which represents the choice of learning algorithm.

3.2 Gridsearch

The most simple approach of solving CASH problem is using Gridsearch algorithm.

This algorithm simply searches whole hyperparameter space of a given data mining

algorithm. We describe the principle of the algorithm on its sample source code listed

below.

/**

* @param data - dataset with data instances

* @return best hyperparameter values for given data

mining method and dataset

*/

public SearchResult gridSearch(DataInstances data) {

double minError = Double.MAX_VALUE;

28

double bestValueForParam1;

int bestValueForParam2;

for (double param1 = LOWER_BOUND_FOR_PARAM_1; param1 <

UPPER_BOUND_FOR_PARAM_1; param1 += STEP_FOR_PARAM_1)

{

for (int param2 = LOWER_BOUND_FOR_PARAM_2; param2

< UPPER_BOUND_FOR_PARAM_2; param2 ++) {

double error = dataMiningAlgorithm(data ,

param1 , param2);

if (error < minError) {

minError = error;

bestValueForParam1 = param1;

bestValueForParam2 = param2;

}

}

}

SearchResult bestResult = new SearchResult(param1 ,

param2);

return bestResult;

}

Code of above-mentioned gridSearch() method finds the best hyperparameter

settings for concrete data mining algorithm represented by dataMiningAlgorithm()

method whose arguments are specific values of its hyperparameters and also dataset

analyzed by this algorithm. In this concrete case our data mining algorithm has two

hyperparameters, namely param1 and param2, for which the grid search algorithm

searches the hyperparameter space. Both hyperparameters have their lower and upper

bounds, which restrict the space of their reasonable values. As you can see above,

these parameters can be of various types. Because it is not always possible to search

all hyperparamenter space value by value, such as the space of real numbers, in this

case the algorithm uses a constant value, which increases a value of hyperparameter in

every interation of the algorithm. The value of such constant should be small enough

to not worsen the quality of result too much, but large enough to finish in a reasonable

29

computation time.

Results are compared according to the error (eg. root mean square error), which

reaches a data mining algorithm on a given dataset with given hyperparameters. Ob-

viously, smaller error means the better result. During the execution of the Gridsearch

algorithm, error of the best result so far is stored in minError variable. Hyper-

parameter values pertaining to that result are stored in bestValueForParam1 and

bestValueForParam2 variables. These values are returned by the gridSearch()

method at the end of the algorithm run.

The advantage of this approach is that you will get very accurate results for hy-

perparameter setting. It is also very easy to extend this algorithm to recommend

not just hyperparameter setting but a data mining algorithms as well. You can run

Gridsearch algorithm for every data mining algorithm you want to recommend and

return the best result overall.

The main disadvantage is that you can not use this approach, if you want real

time recommendation for CASH problem. Hyperparameter space can be very large

for data mining algorithms with more than one or two hyperparameters, even if you

have just tens or hundreds values for a single parameter. If you multiply five or more

of such parameters you get hundreds of thousands possible combinations and so as

many calculations. Therefore, such an algorithm can run for several hours or days.

For the user of our system it is not feasible to wait so long.

Nevertheless, we decided to use this approach for background analysis which is

completely independent from real-time interaction with a user. This analysis can run

for very long time, because the user will interact with results from our Meta-learning

approach. The data from Gridsearch analysis will serve us as a background knowledge

for our Meta-learning algorithm in the future experiments.

3.3 Meta-learning

Meta-learning as a subfield of Machine learning is a discipline where metadata

from previous experiments are used to improve experiments in the future. In our case

we can define Meta-learning task as a task of recommending an algorithm and its

hyperparameters for new dataset based on the recommendations for other datasets in

the past. These Meta-learning algorithms uses various metadata information about

datasets. They can be divided into several groups as follows [7]:

30

• Dataset Characterization

The central idea is that high-quality dataset characteristics or meta-features pro-

vide some information to differentiate the performance of a set of given learning

strategies.

• Statistical and Information-Theoretic Characterization

Much work in dataset characterization has been concentrated on extracting

statistical and information-theoretic parameters estimated from the training set.

Measures include number of classes, number of features, ratio of examples to

features, degree of correlation between features and target concept, average

class entropy and class-conditional entropy, skewness, kurtosis, signal–to-noise

ratio, etc.

• Model-Based Characterization

In addition to statistical measures, a different form of dataset characteriza-

tion exploits properties of the induced hypothesis as a form of representing the

dataset itself. As an example, one can build a decision tree from a dataset

and collect properties of the tree (e.g. nodes per feature, maximum tree depth,

shape, tree imbalance, etc.), as a means to characterize the dataset.

• Landmarking

Another source of characterization falls within the concept of landmarking. The

idea is to exploit information obtained from the performance of a set of sim-

ple learners (i.e. learning systems with low capacity) that exhibit significant

differences in their learning mechanism. The accuracy (or error rate) of these

landmarkers is used to characterize a dataset and identify areas where each of

the simple learners can be regarded as an expert. Another idea related to land-

marking is to exploit information obtained on simplified versions of the data

(e.g. samples). Accuracy results on these samples serve to characterise individ-

ual datasets and are referred to as sub-sampling landmarks. This information

is subsequently used to select an appropriate learning algorithm.

We have decided to study further Meta-learning algorithms for solving CASH

problem described in this Chapter. One such algorithm was presented by Kazík

et al on 11th International Conference on Machine Learning and Applications [8].

Further we describe this approach, because it will serve us as a baseline. Later in

this chapter we compare the success rate of our design with this algorithm. The main

31

idea behind both algorithms is that for very similar datasets perform well same data

mining methods. A difference between these two algorithms is in the methodology of

computing the similarity of datasets.

3.3.1 Statistical characterization approach

Algorithm presented by Kazík recommends data mining method and its hyperparam-

eter settings based on the comparison of datasets by their statistical characteristics.

Therefore it requires certain background knowledge. This knowledge consists of a

set of entries for previously analyzed datasets. Any such entry contains values of

observed dataset metadata and the recommended algorithm and its hyperparameter

settings. For determining the compatibility of datasets authors decided to use these

meta information about dataset

• number of attributes – attributes that specify data characteristics

• number of instances – number of records in a dataset

• data type – refers to all values of all attributes in the dataset. Possible values

are integer, real, categorical or multivariate

• default task – type of a task that is connected with the data. Algorithm

distunguishes between the classification and regression types of tasks, but in

our experiments we focused only on classification tasks so this meta attribute

does not affect the results. Therefore we omited it.

• missing values – number of missing values in a dataset.

The distance between the two datasets is defined by a metadata metric. If all the

meta attribute values are the same, the distance equals to zero and it is the largest

when the two datasets differ the most. The exact distance is computed as follows

d(m1,m2) =
n
X

i=1

wi · di(m1[i],m2[i]), (3.4)

where m1 and m2 are the two compared datasets, n is the number of observed

meta attributes, i stands for the particular meta attribute, wi is the weight for the

particular meta attribute and di is the distance of the two values of the ith meta

attribute.

32

The distance function di of the two meta attributes values differs according to the

type of the meta attribute. In case of the categorical and boolean meta attribute

type, where the value is one of the given set of values, the following formula is used

di(v1, v2) =

8

>

<

>

:

0 if v1 = v2;

1 otherwise,
(3.5)

where v1 and v2 are the the particular values of ith meta attribute. For numerical

attributes, the following formula is used

di(v1, v2) =
|v1 − v2|

max(v)v2V [i] −min(v)v2V [i]

, (3.6)

where V [i] stands for all possible values of a meta attribute i.

The proposed metric is similar to metric in other Meta-learning systems like MetaL

[9]. This metric also exposes hyperparameters wi to further optimize recommendations

by setting weights to every particular meta attribute.

The algorithm calculates the distance of the new dataset from datasets from back-

ground knowledge and chooses the closest one. The recommended model for the new

dataset is a method and its hyperparameters which performed the best on that clos-

est dataset. Therefore, basic knowledge have to contain the recommended models for

individual datasets.

This algorithm is much faster comparing to a Gridsearch since it performs only sim-

ple statistical calculations, not a sophisticated data-mining computations like Grid-

search approach. On the other hand this algorithm does not search all possible com-

binations so the results are less accurate.

3.3.2 Landmarking approach

Landmarking as a subfield of Meta-learning exploits the information obtained from

the performance of data mining algorithms on previously analyzed datasets. Our

motivation for studying this approach was the idea that we will achieve more accurate

results when we focus on comparing datasets according to their performance on data

mining algorithms instead of comparing their statistical characteristics.

In this section we describe our own algorithm design which is based on a Meta-

learning approach with usage of Landmarking features. The main goal of our al-

gorithm is to significantly speed up the process of selection and hyperparamenter

33

optimization while maintaining the reliability of results within reasonable limits at

the same time.

The idea behind this algorithm is similar to the algorithm described above, but in-

stead of statistical characteristics we used landmarking features for computing dataset

distances. We think that the datasets that behave similarly for predetermined models

with given hyperparameters also behave similarly in the rest of hyperparameter space

for these models. We compute the exact distance between datasets m1 and m2 as

follows

d (m1,m2) =
X

a2A

wa · da (m1,m2) , (3.7)

where A is a set of considered data-mining methods with predetermined hyper-

parameter settings, wa is weight of individual model and da is a distance between

datasets m1 and m2 for particular model a ∈ A defined by equation (3.8)

da (m1,m2) = |erra (m1)− erra (m2)| , (3.8)

where erra is an arbitrary error function of a given model. To obtain the best

performance, the computation of error function for a set of considered models is done

just for a new dataset. For datasets in background knowledge, one can preserve

this information as a part of this knowledge. So when a new dataset is added to a

background knowledge, this information is saved with it.

We would like to note, that our algorithm has the same property as the previous

one, that is, if datasets are the same, then they behave equally for every data-mining

model and their distance is therefore equal to zero. The more different the beviour of

datasets is, the greater is their mutual distance.

Presented algorithm is slower than the algorithm based on statistical characteris-

tics regarding to the speed of computation, because it requires to run several data-

mining methods to determine dataset distances. On the other hand, it is still signif-

icantly faster than Gridsearch, because it does not use backtrack approach. We will

present the accuracy of this approach later in this chapter.

3.4 Hybrid approach

We also combined two approaches described above and designed a hybrid algorithm

which uses both, statistical characteristics and landmarking features. It uses both

34

types of background knowledge from datasets analyzed in the past to make recom-

mendations for new dataset. This algorithm recommends a data-mining method and

hyperparameter settings using the metadata about dataset as well as its performance

in data-mining models. It finds a dataset from a set of already analyzed datasets that

is most similar (with the smallest distance) to a new one and recommends the method

which performed best on that closest dataset. The advantage of this algorithm is that

an imprecision at the computed distance of one method may be balanced by a more

precise distance of the second method which results in a higher overall accuracy.

The dataset distance between datasets m1 and m2 is a sum of distances defined

by equation (3.4) and equation (3.7)

d (m1,m2) =
n
X

i=1

wi · di(m1[i],m2[i]) +
X

a2A

wa · da (m1,m2) , (3.9)

where n stands for the number of observed meta attributes, i is the particular

meta attribute, wi is the weight for the particular meta attribute and di is a distance

of two values of the ith meta attribute defined by equation (3.5) for categorical meta

attribute and equation (3.6) for numerical attribute, A is a set of observed data-mining

methods with its hyperparameter settings, wa is weight of individual model and da is

a dataset distance for particular model a ∈ A defined by equation (3.8).

A diversity of distance measurement metrics in this equation can be compensated

by setting the appropriate weights wi and wa. The bigger the weight is, the higher is

an impact of observed meta parameter.

With almost no additional computational cost (statistical calculations are much

faster than complex data-mining computations) compared to our original design,

which uses solely landmarking features, this algorithm has a higher accuracy as we

present in next section.

3.5 Experiments

To verify the accuracy of our algorithms we performed several experiments that we

describe in this section. We compared four presented algorithms, namely Gridsearch,

Meta-learning algorithm presented by Kazík [8], our custom Landmarking algorithm

and a hybrid algorithm which combines both Meta-learning approaches. We focused

on the accuracy of the last three algorithms because their time complexity is approx-

imately the same and they can recommend a data-mining method in a few seconds.

35

This is an acceptable waiting time for our user unlike the running time of Gridsearch

algorithm, which can run for multiple hours.

We use results from Gridsearch for the measurement of accuracy. That means,

if an algorithm recommends particular data-mining method for a dataset, we look

at the results from Gridsearch algorithm for this dataset and count the number of

models which performed better than this recommendation. Thus, we can roughly

determine how accurate the recommendation is. Because the Gridsearch searches the

entire hyperparameter space evenly, the results can be regarded as authoritative.

3.5.1 Initial setup

All tested algorithms require a certain background knowledge. This knowledge con-

sists of a set of meta information about datasets, which these algorithms use for

recommendation. We used datsets from UCI Machine Learning Repository [19]. This

repository contains real, publicly available datasets from various areas. We chose

these 52 datasets intended to classification

• adult+stretch.data

• adult-stretch.data

• agaricus-lepiota.data

• anneal.data

• audiology.standardized.data

• auto-mpg.data-original

• bezdekIris.data

• bridges.data.version2

• car.data

• crx.data

• ecoli.data

• flag.data

• flare.data1

• german.data

• horse-colic.data

• house-votes-84.data

• housing.data

• hungarian.data

• ionosphere.data

• iris.data

• kinship.data

• kr-vs-kp.data

• lenses.data

• long-beach-va.data

• nursery.data

• o-ring-erosion-only.data

36

• o-ring-erosion-or-blowby.data

• post-operative.data

• reprocessed.hungarian.data

• sensor_readings_2.data

• sensor_readings_24.data

• sensor_readings_4.data

• soybean-small.data

• sponge.data

• switzerland.data

• synthetic_control.data

• test1.data

• test2.data

• test3.data

• test4.data

• test5.data

• tic-tac-toe.data

• train2.data

• train3.data

• train4.data

• train5.data

• train6.data

• vowel-context.data

• yacht_hydrodynamics.data

• yeast.data

• yellow-small+adult-stretch.data

• yellow-small.data.

For each dataset we calculated its statistical characteristics required by Kazík’s

algorithm. These characteristics consist of number of attributes, number of instances,

data type and number of missing values. Also it is necessary to store the method with

hyperparameters, which performed best for particular dataset. We use this model,

which performed best for a closest dataset as a recommendation for a new one. We

measured the accuracy of data-mining models by a root mean squared error function,

which is defined as

rmseerr =

v

u

u

t

1

n

n
X

i=1

(yi − ŷi)
2
, (3.10)

where yi is the real value of a given data point and ŷi is the predicted one. We

also use root mean squared error as an error function in our Landmarking algorithm.

Also, to avoid overfitting, we evaluated the results using the K-fold cross validation.

It is a well known technique in which a dataset is divided into K equally large parts.

One part is considered as a test set and the other K − 1 parts are used for training

37

a model. Then the error rate is stated based on the performance on a test set. This

step is repeated for every selection of a test and train sets and the average of these

error rates is returned as a final result.

To obtain the best method with its hyperparameter settings for a particular

dataset, the Gridsearch algorithm is used. In fact, that algorithm does not give

the best possible result, but it searches the whole hyperparameter space equally, so

the returned value is very close to optimum. This gives us a complex view of the

accuracy of the algorithm for given dataset. Since our system recommends one of

four different algorithms, we ran Gridsearch for each one. Therefore we considered

different hyperparameter spaces.

For k-nearest neighbor algorithm the hyperparameter space is quite simple. We

just iterated the k value from 1 to 100 and ran the algorithm.

Decision tree has three important hyperparameters. Gridsearch iterated the hy-

perparameter value for minimum number of instances per leaf from 0 to 1000 with

iteration step of 5. For pruning confidence hyperparameter we tried all values from 0

to 0.5 with a step of 0.05. Pruning hyperparameter has only two possible values true

and false, so we tried both of them.

Logistic regression function exposes two major hyperparameters. First one is the

maximum number of iterations. We decided not to limit it and give to algorithm

enough time to converge to result. The ridge hyperparameter can obtain values from

0 to 1. Gridsearch iterated hyperparameter value within those limits with a step of

0.05.

SVM has the most complex hyperparameter space from these four algorithms. As

a kernel function we considered a Radial bases function and a Linear function. For

complexity constant, Gridsearch algorithm iterated the values from 0 to 10 with a

step of 0.1. Hyperparameter γ is the only one, which has multiplicative iteration step

instead of additive. We iterated its value from 10�5 to 10 with multiplicative step of

10.

This will add up to several thousands of different calculations for each dataset.

The considered hyperparameter values were selected to cover as much space of fea-

sible results as possible. The last part of the background knowledge is a set A of

considered data-mining methods with its hyperparameter settings for our Landmark-

ing algorithm. We decided to use each of the four data-mining methods once with its

default hyperparameter settings. Default values perform the best in general cases. It

would be interesting to try also another hyperparameter settings (best, worst, . . .),

38

but it is beyond the scope of this thesis. In our case, the set A consists of these models

1. k-nearest neighbor

• k: 3

2. Decision tree

• minimum number of instances per leaf: 2

• pruning: true

• pruning confidence: 0.25

3. Logistic regression

• maximum number of iterations: not limited

• ridge: 0.05

4. SVM

• kernel: RBF

• complexity constant: 0.1

• γ: 0.1

All of the information above forms the background knowledge for our experiments.

3.5.2 Performance

As it was stated above, the performance of data-mining methods is measured by their

root mean squared error. To measure the accuracy of recommendations, we decided

to use different methodology, since the root mean squared error does not give us

comparable results for different datasets. For example, best root mean squared error

possible for one dataset with our four methods is 0.15, but for another dataset you

can not get better than 0.4. Therefore, the accuracy of recommendation can not be

measured by the value of root mean squared error. To estimate the correctness of the

recommendation we used the results from Gridsearch.

Firstly the root mean squared error of the recommended model is calculated and

then it is compared to the errors of models from Gridsearch. The recommendation

error is defined by a number of models with lower root mean squared error divided by

the total number of models in Gridsearch for given dataset. This defines the position

39

of our recommendation in the model space. For example, if Gridsearch tried 1000

different models and 50 of them have better accuracy than our recommendation, then

the recommendation error is 50
1000

= 1
20

.

One experiment consists of recommendations for each of 52 datasets. It is impor-

tant to note that Gridsearch results for the currently analyzed dataset were hidden

from our recommendation methods. For each dataset, its distance to the rest 51

datasets was calculeted and the model was recommended based on the closest one.

Finally we calculated the recommendation error as was defined above.

To compare our Landmarking approach with the Statistical approach we had to

estimate the weights in both algorithms to optimize their performance. Therefore, we

defined the general error of an experiment as follows

err =

P

d2D

better (md, d)

P

d2D

total (d)
, (3.11)

where D is a set of our 52 considered datasets, d is one particular dataset, function

better (md, d) represents a number of models in Gridsearch results with smaller error

than the recommended model md for datset d and total (d) is the total number of

Gridsearch results for dataset d. For example, if we have two datasets where rec-

ommended model for the first one is on the 11th place from 1000 and recommended

model for a second one is on the 142nd from 1500 places, then the general error of

recommendation algorithm for this experiment is

10 + 141

1000 + 1500
=

151

2500
.

We used this function for performance comparison of recommendation methods

with various weight settings. We performed an experiment as was described above for

each recommendation method with different weight settings and chose the best one.

We iterated every particular weight from 0.0 to 1.0 with an iteration step of 0.05.

Moreover we considered only those weight settings of which the sum of weights is

equal to 1. That is, because it does not have any sense to consider all weights equal to

1 in one experiment and equal to 0.25 in another. The ratio is the same and so are the

results. We have examined 1680 different weight settings for Kazík’s algorithm (four

weights), 1680 different weight settings for our Landmarking algorithm (four weights)

and 15075 possibilities for the combined approach with eight different weights. All

the weight settings and their accuracy are attached with this thesis.

40

For algorithm of Kazík, these weights performed the best

• data type: 0.65

• number of instances: 0.15

• number of attributes: 0.2

• number of missing values: 0.0

For our Landmarking design these weights were selected

• Decision tree: 0.35

• Logistic regression: 0.3

• SVM: 0.25

• k-nearest neighbor: 0.1 .

These two approaches are compared in experiment shown in Table 3.1. First col-

umn represents a dataset for which the recommendation was made. Second column is

for dataset with the smallest distance to currently analyzed dataset according to our

recommendation algorithm based on Landmarking features. Third column represents

a dataset which is closest to analyzed dataset according to Kazík’s algorithm based

on statistical approach. Next three columns represent the root mean squared error

(RMSE) values. First of them contains the best value overall for analyzed dataset from

Gridsearch. Second one contains the RMSE of recommended method applied to an-

alyzed dataset, where the recommendation was made by our Landmarking approach.

The last one is the same as previous, but the recommendation was made by statistical

approach of Kazík’s algorithm. Last two columns contain the recommendation errors

of Landmarking and statistical approaches for analyzed datasets respectively.

41

Dataset Landmarking Metadata Best rmse Landm. rmse Meta. rmse Landm. r.e. Meta. r.e.

car.data bezdekIris.data tic-tac-toe.data 0.06133 0.27690 0.16128 1398/3520 204/3520

lenses.data o-ring-erosion-or-blowby.data o-ring-erosion-or-blowby.data 0.21300 0.21300 0.21300 0/3560 0/3560

adult+stretch.data yellow-small.data adult-stretch.data 0.44472 x 0.44472 3554/3554 152/3554

german.data vowel-context.data vowel-context.data 0.03165 0.03165 0.03165 0/3560 0/3560

horse-colic.data reprocessed.hungarian.data reprocessed.hungarian.data 0.05793 0.05793 0.05793 0/3560 0/3560

flare.data1 reprocessed.hungarian.data ecoli.data 0.07280 0.07280 0.07280 0/3560 0/3560

long-beach-va.data yeast.data train5.data 0.02625 0.02625 0.02625 0/3560 0/3560

auto-mpg.data-original yacht_hydrodynamics.data kinship.data 0.05662 0.05662 0.05662 0/3558 0/3558

bridges.data.version2 flag.data post-operative.data 0.26162 0.27725 0.32136 74/3549 190/3549

kr-vs-kp.data car.data anneal.data 0.06359 0.12255 0.07030 133/3356 6/3356

hungarian.data long-beach-va.data train2.data 0.02312 0.02312 0.02312 0/3560 0/3560

iris.data bezdekIris.data bezdekIris.data 0.06689 0.06689 0.06689 0/3542 0/3542

adult-stretch.data adult+stretch.data adult+stretch.data 0.45640 0.45640 0.45640 55/3554 55/3554

kinship.data o-ring-erosion-or-blowby.data auto-mpg.data-original 0.20029 0.20029 0.20029 0/3555 0/3555

bezdekIris.data iris.data iris.data 0.06689 0.06689 0.06689 0/3542 0/3542

housing.data test1.data synthetic_control.data 0.04454 0.04454 0.04454 0/3560 0/3560

house-votes-84.data post-operative.data crx.data 0.34425 0.34763 0.39019 75/3547 172/3547

anneal.data audiology.standardized.data ionosphere.data 0.13579 0.13775 0.26300 1/3513 436/3513

crx.data house-votes-84.data house-votes-84.data 0.32073 0.33280 0.33280 111/3493 111/3493

flag.data bridges.data.version2 ionosphere.data 0.26284 0.28257 0.39974 127/3538 3024/3538

agaricus-lepiota.data o-ring-erosion-or-blowby.data sensor_readings_24.data 0.22288 0.22544 0.22332 180/3356 61/3356

audiology.standardized.data anneal.data sponge.data 0.11255 0.11258 0.15942 26/3542 803/3542

ecoli.data auto-mpg.data-original flare.data1 0.05472 0.05472 0.05472 0/3560 0/3560

ionosphere.data flag.data soybean-small.data 0.22645 0.34620 0.29005 590/3524 323/3524

o-ring-erosion-or-blowby.data o-ring-erosion-only.data o-ring-erosion-only.data 0.21797 0.21797 0.21797 0/3560 0/3560

o-ring-erosion-only.data o-ring-erosion-or-blowby.data o-ring-erosion-or-blowby.data 0.21797 0.21797 0.21797 0/3560 0/3560

reprocessed.hungarian.data horse-colic.data horse-colic.data 0.05852 0.05852 0.05852 0/3560 0/3560

post-operative.data house-votes-84.data bridges.data.version2 0.33141 0.33193 0.33604 2016/3553 2050/3553

nursery.data kr-vs-kp.data agaricus-lepiota.data 0.01756 0.09674 0.09102 207/3356 195/3356

sponge.data lenses.data anneal.data 0.13245 0.22435 0.18497 960/3552 797/3552

test4.data test2.data test5.data 0.02722 0.02722 0.02722 0/3560 0/3560

test2.data test5.data test3.data 0.02717 0.02717 0.02717 0/3560 0/3560

test3.data test4.data test5.data 0.02729 0.02729 0.02729 0/3560 0/3560

soybean-small.data flare.data1 ionosphere.data 0.10314 0.26976 0.10314 202/3551 29/3551

sensor_readings_24.data kr-vs-kp.data agaricus-lepiota.data 0.03828 0.03946 0.03946 2/3356 8/3356

sensor_readings_4.data sensor_readings_2.data sensor_readings_2.data 0.02324 0.02324 0.02324 0/3356 0/3356

test1.data housing.data yeast.data 0.04320 0.04320 0.04320 0/3560 0/3560

synthetic_control.data test1.data housing.data 0.04089 0.04089 0.04089 0/3560 0/3560

sensor_readings_2.data sensor_readings_4.data sensor_readings_4.data 0.02324 0.02324 0.02324 0/3356 0/3356

switzerland.data vowel-context.data german.data 0.03337 0.03337 0.03337 0/3560 0/3560

42

train2.data yeast.data hungarian.data 0.02660 0.02660 0.02660 0/3560 0/3560

train6.data train4.data train4.data 0.03008 0.03008 0.03008 0/3560 0/3560

test5.data test2.data test3.data 0.02714 0.02714 0.02714 0/3560 0/3560

train3.data train4.data train4.data 0.02980 0.02980 0.02980 0/3560 0/3560

vowel-context.data german.data german.data 0.03181 0.03181 0.03181 0/3560 0/3560

train5.data train6.data train6.data 0.03058 0.03058 0.03058 0/3560 0/3560

tic-tac-toe.data flag.data post-operative.data 0.32495 0.23145 0.43240 20/3493 391/3493

train4.data train6.data train6.data 0.03004 0.03004 0.03004 0/3560 0/3560

yellow-small+adult-stretch.data crx.data adult+stretch.data 0.42572 0.50206 0.66234 118/3554 3120/3554

yellow-small.data adult+stretch.data adult+stretch.data 0.25234 0.45052 0.45052 154/3554 154/3554

yacht_hydrodynamics.data auto-mpg.data-original horse-colic.data 0.05717 0.05717 0.05717 0/3560 0/3560

yeast.data long-beach-va.data test1.data 0.02617 0.02617 0.02617 0/3560 0/3560

10003/183484 12281/183484

Table 3.1: Performance comparison of Meta-learning algorithm presented by

Kazík with our custom Landmarking algorithm.

43

It may be observed that the total number of Gridsearch results are different for

each dataset. This is because the data have different character and for some hyper-

parameter settings it was not possible to analyze the dataset. This is why for dataset

adult+stretch.data our algorithm has value x in the RMSE field. Our algorithm per-

formed bad for this dataset and recommended a model, which could not be applied to

this dataset. Therefore we set the error for that recommendation to maximum. In 18

cases both algorithms identified as the most similar same dataset so the recommended

model was the same and so were the results. In 17 cases the algorithms identified dif-

ferent datasets as most similar, but the recommended models performed equally well.

Different datasets were identified as most similar in remaining 17 cases. That table

rows are highlighted. In these cases also the recommended models performed differ-

ently. Our approach overcame the statistical approach in 9 cases and it was worse in

8 ones. Our presented algorithm thus successfuly competed with Kazík’s algorithm.

Moreover, if we look at the comparison of their general errors, the accuracy of our

algorithm was nearly by 20% higher with general error of 10003
183484

compared to 12281
183484

.

With minimal increase in computational time, we were able to improve the accuracy

of the recommendations.

Next we compared these two approaches with a hybrid algorithm which combines

both, statistical and Landmarking features for recommendation. This combined al-

gorithm performed best with these weight settings

• number of instances: 0.5

• Logistic regression: 0.3

• k-nearest neighbor: 0.1

• data type: 0.1

• Decision tree: 0.0

• SVM: 0.0

• number of attributes: 0.0

• number of missing values: 0.0 .

The data above shows, that the gratest emphasis is on the number of instances

and a Logistic regression model. Also k-nearest neighbor algorithm and data type are

44

considered. On the other hand, Decision tree and SVM are excluded which reduces

the overall computation time of recommendation, because these two methods may not

be considered.

Table 3.2 shows the results of this experiment compared to previous two methods.

First column contains analyzed dataset as in the previous table. Next three columns

contain the closest dataset accorting to Landmarking, statistical and combined ap-

proach, respectively. Last three columns represent the recommendation error of these

three models.

In most cases, the hybrid model chose the same dataset as one of first two methods.

From 17 datasets where were differences in recommendations between models, the

combined approach chose 8 times better or equal model than other two methods and

9 times worse one. However, this model performed better in general. Its general error

is just 6829
183484

. This is more than 30% accuracy increase compared to Landmarking

approach and almost 45% compared to pure statistical approach. Moreover, the

computational complexity of this model with adduced weight settings is about the half

compared to pure Landmarking approach. In most cases, all three recommendation

models calculated results in a few seconds depending on dataset size.

The experiments have shown, that our design of recommendation algorithm for

solving CASH problem is competitive to other existing solutions. Morover the hy-

brid approach outperformed them by almost 45% in accuracy while remaining the

computantional time on the acceptable level.

45

Dataset Landmarking Metadata Combined Landm. r.e. Meta. r.e. Comb. r.e.

car.data bezdekIris.data tic-tac-toe.data tic-tac-toe.data 1398/3520 204/3520 204/3520

lenses.data o-ring-erosion-or-blowby.data o-ring-erosion-or-blowby.data o-ring-erosion-or-blowby.data 0/3560 0/3560 0/3560

adult+stretch.data yellow-small.data adult-stretch.data adult-stretch.data 3554/3554 152/3554 152/3554

german.data vowel-context.data vowel-context.data vowel-context.data 0/3560 0/3560 0/3560

horse-colic.data reprocessed.hungarian.data reprocessed.hungarian.data reprocessed.hungarian.data 0/3560 0/3560 0/3560

flare.data1 reprocessed.hungarian.data ecoli.data reprocessed.hungarian.data 0/3560 0/3560 0/3560

long-beach-va.data yeast.data train5.data train5.data 0/3560 0/3560 0/3560

auto-mpg.data-original yacht_hydrodynamics.data kinship.data ecoli.data 0/3558 0/3558 0/3558

bridges.data.version2 flag.data post-operative.data flag.data 74/3549 190/3549 74/3549

kr-vs-kp.data car.data anneal.data car.data 133/3356 6/3356 133/3356

hungarian.data long-beach-va.data train2.data train2.data 0/3560 0/3560 0/3560

iris.data bezdekIris.data bezdekIris.data bezdekIris.data 0/3542 0/3542 0/3542

adult-stretch.data adult+stretch.data adult+stretch.data adult+stretch.data 55/3554 55/3554 55/3554

kinship.data o-ring-erosion-or-blowby.data auto-mpg.data-original o-ring-erosion-or-blowby.data 0/3555 0/3555 0/3555

bezdekIris.data iris.data iris.data iris.data 0/3542 0/3542 0/3542

housing.data test1.data synthetic_control.data synthetic_control.data 0/3560 0/3560 0/3560

house-votes-84.data post-operative.data crx.data crx.data 75/3547 172/3547 172/3547

anneal.data audiology.standardized.data ionosphere.data tic-tac-toe.data 1/3513 436/3513 3/3513

crx.data house-votes-84.data house-votes-84.data house-votes-84.data 111/3493 111/3493 111/3493

flag.data bridges.data.version2 ionosphere.data bridges.data.version2 127/3538 3024/3538 127/3538

agaricus-lepiota.data o-ring-erosion-or-blowby.data sensor_readings_24.data sensor_readings_24.data 180/3356 61/3356 61/3356

audiology.standardized.data anneal.data sponge.data iris.data 26/3542 803/3542 754/3542

ecoli.data auto-mpg.data-original flare.data1 yacht_hydrodynamics.data 0/3560 0/3560 0/3560

ionosphere.data flag.data soybean-small.data flag.data 590/3524 323/3524 590/3524

o-ring-erosion-or-blowby.data o-ring-erosion-only.data o-ring-erosion-only.data o-ring-erosion-only.data 0/3560 0/3560 0/3560

o-ring-erosion-only.data o-ring-erosion-or-blowby.data o-ring-erosion-or-blowby.data o-ring-erosion-or-blowby.data 0/3560 0/3560 0/3560

reprocessed.hungarian.data horse-colic.data horse-colic.data horse-colic.data 0/3560 0/3560 0/3560

post-operative.data house-votes-84.data bridges.data.version2 house-votes-84.data 2016/3553 2050/3553 2016/3553

nursery.data kr-vs-kp.data agaricus-lepiota.data agaricus-lepiota.data 207/3356 195/3356 195/3356

sponge.data lenses.data anneal.data lenses.data 960/3552 797/3552 960/3552

test4.data test2.data test5.data test5.data 0/3560 0/3560 0/3560

test2.data test5.data test3.data test3.data 0/3560 0/3560 0/3560

test3.data test4.data test5.data test5.data 0/3560 0/3560 0/3560

soybean-small.data flare.data1 ionosphere.data reprocessed.hungarian.data 202/3551 29/3551 340/3551

sensor_readings_24.data kr-vs-kp.data agaricus-lepiota.data sensor_readings_4.data 2/3356 8/3356 594/3356

sensor_readings_4.data sensor_readings_2.data sensor_readings_2.data sensor_readings_2.data 0/3356 0/3356 0/3356

test1.data housing.data yeast.data yeast.data 0/3560 0/3560 0/3560

synthetic_control.data test1.data housing.data housing.data 0/3560 0/3560 0/3560

sensor_readings_2.data sensor_readings_4.data sensor_readings_4.data sensor_readings_4.data 0/3356 0/3356 0/3356

switzerland.data vowel-context.data german.data german.data 0/3560 0/3560 0/3560

46

train2.data yeast.data hungarian.data hungarian.data 0/3560 0/3560 0/3560

train6.data train4.data train4.data train4.data 0/3560 0/3560 0/3560

test5.data test2.data test3.data test3.data 0/3560 0/3560 0/3560

train3.data train4.data train4.data train4.data 0/3560 0/3560 0/3560

vowel-context.data german.data german.data german.data 0/3560 0/3560 0/3560

train5.data train6.data train6.data train6.data 0/3560 0/3560 0/3560

tic-tac-toe.data flag.data post-operative.data anneal.data 20/3493 391/3493 83/3493

train4.data train6.data train6.data train6.data 0/3560 0/3560 0/3560

yellow-small+adult-stretch.data crx.data adult+stretch.data post-operative.data 118/3554 3120/3554 31/3554

yellow-small.data adult+stretch.data adult+stretch.data adult-stretch.data 154/3554 154/3554 154/3554

yacht_hydrodynamics.data auto-mpg.data-original horse-colic.data horse-colic.data 0/3560 0/3560 0/3560

yeast.data long-beach-va.data test1.data test1.data 0/3560 0/3560 0/3560

10003/183484 12281/183484 6829/183484

Table 3.2: Performance comparison of Meta-learning algorithm presented by

Kazík, our custom Landmarking algorithm and a hybrid algorithm, which com-

bines both Meta-learning approaches.

47

Chapter 4

Design and implementation

Next we present the general overview of our project and its functionality. Our

goal is to design a prototype system for managing data mining projects that is simple

and user–friendly even for people, who are not familiar with such methods and data

mining terminology. In data-mining, a CRISP-DM methodology is widely considered

as a standard for data analysis. In our system, we will stick to this methodology so

we briefly describe it.

4.1 The CRISP-DM methodology

Cross Industry Standard Process for Data Mining (CRISP-DM) is a standard method-

ology used by data mining experts. This methodology describes steps of solving data-

mining tasks. These are

• Business understanding

This is the initial phase of the whole process. It focuses on understanding the

objectives and requirements of the project from a business perspective. These

knowledge is then transformed to data mining problems and objectives.

• Data understanding

This phase deals with data collection and understanding of the data with respect

to domain knowledge.

• Data preparation

Data preparation is closely related to data understanding. It covers activities

48

such as attribute selection, transformations, cleaning data, . . . The goal is to

construct final dataset from initial data.

• Modelling

In modelling phase appropriate data-mining techniques and methods are selected

and applied to dataset. Various parameters of these techniques are adjusted to

suit the particular dataset.

• Evaluation

This step evaluates the quality of model from business objectives. Before de-

ployment is necessary to review the whole process and determine next steps.

• Deployment

The knowledge gained during the process is presented to customer in a way that

the customer can understand and work with it.

Figure 4.8: Relationship between the individual steps of the CRISP-DM methodology

[18].

As Figure 4.8 shows, tasks are not independent. They are tightly linked together.

Even the sequence of the phases is not strict and moving back and forth between

different phases is always required [18].

49

4.2 Project design

Our system should guide a user through every step of CRISP-DM process in a way

that is simple to understand.

The goal of business and data understanding phase is to determine the background

of the data. This is the most challenging phase, because it requires a close cooperation

with user. Firstly we need to know the user objectives. Whether he wants to perform

classification, regression, pattern mining, . . . This can be achieved by simple conver-

sational system like one we designed for data preprocessing phase or by explaining to

user what are the objectives of these methods and simply ask him what he wants to

do. Since our project is just a prototype we focused only on classification problems.

However, the project is implemented in a way which allows easy addition of models in

future. Also, there is a problem of understanging data domain, because next phases

are dependent on this knowledge. In order to preserve our system as general as pos-

sible, we could not specialize only on one data domain (e.g. medical data). Because

each domain is different and there are almost infinitely many of them, we could not

use a conversational system with predefined questions to determine domain details.

We omitted the step od determining the domain from user and proposed a solution,

which is more convenient to the user.

Data preparation step is crucial for model selection, its performance and thus the

overall result. The goal of this process is to use the knowledge gained in previous

phases, determine the best data-mining model and prepare data for it. Since we do

not have any specific domain knowledge about data and also no data-mining model

specified so far, we designed a simple conversational system. This system can gener-

ate questions based on user’s dataset characteristics. As an example we implemented

a system, which analyzes a number of different values in data attributes and when

an attribute has less than 5% of such values (considering total number of instances),

our assumption is that this attribute data are independent (without ordering). These

values can represent some code or flag and therefore they should be binarized. To

confirm our assumption, the system will generate a question to determine, if an at-

tribute should be binarized or not. Answer can be either yes or no. If user selects yes,

then the attribute is binarized, in the other case not.

An example of such generated form is shown in Figure 4.9. Our system determined,

that three attributes have just few different values and could be binarized, so our tool

generated questions for user to confirm the assumption. User selected one of these

50

attributes for binarization, so this attribute will be binarized and the other two will

not.

Figure 4.9: An example of form generated by a conversational system for

determining whether an attribute should be binarized.

Data are preprocessed as generally as possible to cover wide variety of possible

models in next step. First of all the missing values are handled. For discrete attribute,

the missing values are replaced with major value of that attribute. Numeric attributes

has two options for handling missing values. First one replaces the values with major

value of attribute. The second one replaces missing value with attribute mean. So if

dataset contains a numeric attribute with missing values, two different datasets are

created. One with values replaced with mean and one with major value. Naturally,

other attributes are copied. Missing values in boolean attribute are replaced just with

its major value.

Datasets generated during the process of removing the missing values continue

to transformation phase. In this phase, the attributes marked for binarization are

binarized. These attributes remain untouched for the rest of this process. Numeric

attributes are normalized and discretized. For every numeric attribute, the dataset

is multiplied four times. On first copy, the z-score normalization is applied to given

attribute. Second copy uses the zero–one normalization for a given attribute. Last two

datasets use equidistant and equipotent discretization. We also remain the original

dataset as a case when the attribute should not be preprocessed. That means, that

51

for each numeric attribute, five new copies are created and then the preprocessing

continue for next attribute in dataset.

Lets imagine that we have a dataset about cars with these attributes

• number of doors – numeric

• drive – discrete {gasoline, diesel, lpg}

• trunk volume – numeric

• max speed – numeric

• engine volume – numeric (with missing values)

• buy – boolean {true, false}

Lets say, that our conversational system asked user about the drive attribute and

he confirmed, that it should be binarized. The preprocessing phase will look like

this. From the original dataset, two new files are created in phase of handling the

missing values, because there are two methods of replacing the missing values in

numeric attribute (engine volume). Next, for each of these two datasets, the numeric

attributes are preprocessed (four new datasets are created for each attribute + one

original dataset). That sums up to 2 × 54 = 1250 different datasets. At the end of

this phase, attribute drive is binarized in each dataset. These preprocessed datasets

continue to the modelling phase. Having so many differently preprocessed datasets

will help us to choose the right model without close user interaction, which user is

not willing to make.

The main problem in modelling phase is to choose the correct model for user data

in a short time. This is especially hard if we have so many datasets to process from

the previous phase. We note that we do not have any knowledge about dataset which

could help us to determine the right model. Normally in such situation a Gridsearch

algorithm is used to solve it. This is unacceptable in our situation, because Gridsearch

algorithm is very time consuming even for one dataset and we need to process hundreds

of them.

Therefore we designed and implemented custom recommendation algorithm which

solves this problem partially. Based on experiments we decided to use a hybrid recom-

mendation algorithm presented in Chapter 3 which uses both, statistical and Land-

marking features for model recommendation. This algorithm is fast enough to rec-

ommend a method for one dataset in a few seconds. However, it is still too slow for

52

hundreds of datasets. On the other side, our user would be confused if we show him

thousands of results for just one analysis. The results would be difficult to understand

and interpret for him. So we only show to the user top 5 data files generated from his

original dataset based on their performance.

Once the analysis process starts, our algorithm runs four data-mining algorithms

(described in Chapter 2) with default hyperparameters (results are used for our rec-

ommendation algorithm) to determine performance on original dataset. Next, the

recommendation is made for this dataset and recommended algorithm is applied to

data. These five results (four default and one recommended) are presented to the user.

While the user examines the results, same process is applied to other datafiles which

were generated from user’s dataset. The results are available to the user immediately

after elaboration on per datafile basis. The user has results available almost in real

time. The more accurate results accure later.

During the evaluation phase a user can examine the results for variously prepro-

cessed data files. If he recognizes that some file performed well during the initial

analysis, he can download particular file and look how it was generated during pre-

processing phase. Also he can start precise analysis for this file using Gridsearch

algorithm. Because it may take some time to get results, the user can close session

and he will be notified by an email once it will be done. On the other side when he

recognizes that no analysis was good enough, he can repeat the process again with ad-

justed original dataset or just answering differently on questions at our conversational

system in preprocessing phase.

Our system is tied to the CRISP-DM methodology as we described above. Now

we describe a typical use case of our system to better explain the system as a whole.

Next, we describe its architecture and implementation details.

4.3 Use case

This section describes a typical use case of our system. We note that it is a web

application. It is compatible with all major web browsers (Firefox 36 and later,

Chrome 41 and later, Safari 8 and later, Internet Explorer 11 and later).

When user opens our web application for the first time, he will see a simple welcome

screen as shown on Figure 4.10. There is a big green call to action button in the center

of it. When the user is logged in, this button redirects him to a dashboard. Otherwise

he will be redirected to the login screen (Figure 4.11), where he has to provide his

53

username and password.

Figure 4.10: The welcome screen of our prototype called Winston.

If user is not registered, he can do so by clicking on the registration button. He

has to provide his email, username and password.

Figure 4.11: Login screen for user authentication. Also user registration is accessible

from here.

54

A confirmation email will be sent to confirm email address. After this step the

registration is complete. Login screen also contains a button for users who forgot their

passwords. After successful login, user is redirected to his dashboard, where he can see

an overview of his datasets. Dashboard is also always accessible from navigation menu

at the top. Datasets are not shared between users, so each user can see only datasets

which he uploaded. On the other side, to exploit the knowledge from new analyzes,

the metadata are shared on the background. That is, if one dataset is analyzed in

detail by Gridsearch algorithm, it is included into background knowledge for future

recommendations for other datasets by our recommendation algorithm.

Figure 4.12: Dashboard with datasets, their description and statistical information.

Also, there is an option to upload new dataset in a dashboard. This form is shown

on Figure 4.13. User fills the information in a form and saves the data by clicking to

Upload button. Dataset title and description are not required by our recommendation

system nor any other part of our prototype. They serve just for the user to write some

notes about the data to find and understand later more easily.

Using the file picker, user can choose and upload the data file which he wants to

analyze. Currently, we support data in .csv format. Each line of this file contains

one instance and attributes are separated by comma (,) sign. First line of this file

contains the attribute names also separated by comma. User can also fill in the mark

for missing values, if a dataset contains missing values, which are specially marked.

55

This field can be blank. In that case, dataset is considered to be without missing

values.

Figure 4.13: Form for uploading a new dataset.

Immediately after the form is submitted, the system quickly process the dataset.

If there is an error while parsing the file, upload process is canceled and the user is

informed, that the file has wrong format. Otherwise, dataset file is sent to backend

server and early statistical analysis is performed. Number of instances, number of at-

tributes and number of missing values are counted. Also, type of attributes (numeric,

categorical or boolean) is determined. For categorical attributes, number of distinct

values is calculated. For numeric attribute, statistical characteristics like minimum,

maximum and average is calculated and also distinct values are counted. For boolean

attribute, number of false and true values is counted.

After submitting the form user is redirected to an overview of his dataset, where

all the information mentioned above is presented in a user-friendly way. One such

screen is shown on Figure 4.14. Morover, if there are analyzes for this dataset, they

are shown at the bottom of this screen. It would not make any sense to present

thousands of analyzes for variously preprocessed data file. Therefore only top five

analyzes (based on root mean squared error) are shown.

After uploading and inicial processing of a dataset there are no analyzes for this

dataset. User will create one by clicking the Analyze button. This process consists of

56

two steps.

Figure 4.14: An overview of dataset, its attributes and list of performed analyzes.

Firstly, user has to choose target attribute for analysis. This is the attribute, for

which the prediction will be made. Since he does not have any knowledge about data-

mining, he would not understand what information we need from him. Therefore,

we provided a quick description of a data-mining task, which will be performed on

his data. User should be capable of choosing the right attribute for classification

after reading these instructions. A sample screen of this step for Iris dataset is shown

on Figure 4.15. When the user chooses target attribute, our system analyzes other

57

attributes. If there are some attributes, for which our conversational system generated

questions, the user continue to the second step.

Figure 4.15: Target attribute selection screen for dataset analysis.

In second phase of analysis, user has to answer the questions about his data. These

questions are dynamically generated based on attribute characteristics. An example

if presented on Figure 4.16. The page includes a simple description of the importance

of this step, which is related to preprocessing. The questions are formulated in a way,

which should be clear even for non-technical user. When user answers the questions

and submits a form, the analysis process starts.

Dataset information and user input are sent to backend server for processing.

Based on that input, the original dataset file is preprocessed in many different ways.

Result datasets are saved in Attribute–Relation File Format (ARFF), which is stan-

dard format for data representation in data-mining software like Weka. It is similar

to CSV format and algorithms exist for transforming file from one format to another.

We used this format at backend just for compatibility with data-mining libraries.

Firstly, our recommendation algorithm runs four basic models to determine the

58

most similar dataset from background knowledge and then a new model is recom-

mended and applied. These five results for original dataset are saved to database and

then the user is redirected to dataset overview where he can view these results. Mean-

while, the recommendation process is applied to all the data files from preprocessing

step. The results are saved in database periodically, so if the user refreshes page, he

can see new results immediately as they are computed on the backend. The whole

process can take several minutes or hours, so user has to be notified when it finish.

Figure 4.16: Subsidiary questions about user’s data generated by conversational

system.

Therefore, we will send him an email from backend server with a notification

59

that the analysis finished. User can view analyzes from dataset overview page. An

analysis corresponds to a single file created in preprocessing phase. Multiple analyzes

are created from one analysis process from the user point of view. On each analysis,

multiple models are trained and evaluated. An example of such analysis is shown

below.

Figure 4.17: Analysis detail with performance on default models.

Figure 4.17 shows one particular analysis for dataset Car custom. On this page,

user can see the performance of this file on several models. Also, he can download

this file (in ARFF format) and see how it was preprocessed. If he considers, that the

initial results are good, he can start the deep analysis of this file using the Gridsearch

algoritm. This algorithm starts on our backend server. User will be notified when the

60

results are computed by an email as in the previous case. The best results will be

shown in a table on page with analysis overview.

User can also further examine the details about evaluated model. Model perfor-

mance page (Figure 4.18) contains type of data-mining method, its hyperparameter

settings and performance details such root mean squared error or mean absolute er-

ror. For non-technical users who do not understand these terms, there are indexes

like number of correctly and incorrectly classified instances. For advanced users who

are used to work with data-mining software like Weka, there is a complete output

summary formatted in the same way like in Weka software.

Figure 4.18: Model performance overview for a given method, hyperparameter

settings and analysis.

As shown above, the user interface is simple and easy to use for everyone. Each

page contains call to action element, which guides a user through all steps of data-

mining process.

61

4.4 Implementation

In this section we provide a deep overview of system architecture and technology

used. The whole system consists of three main components: web server, backend

computational cluster and a database server. A general overview is described on

Figure 4.19. Web server serves the user requests. For simple requests when the user

wants just to display a data it connects directly to database server and load required

data. Complex requests, which include data processing and modelling are sent to the

computational cluster at the backend. They are processed on this cluster, data are

saved into a database and the backend notifies a webserver, that it can load required

data from database.

Figure 4.19: System architecture design.

This design allows us to isolate data, computational and user interface (UI) parts.

This is due to the fact, that our system should be extendible. It will include more

data-mining tasks and methods in the future and also UI will evolve. Using this

design one can modify just one specific component (e.g. change database technology)

without affecting the rest of the system. Also deployment and maintenance is easier,

because the system can be distributed on several physical machines to distribute the

62

load. Simple tasks can run on slow webserver and complex requests are processed on

high performance machine.

Next, we describe single components of our system from an implementation point

of view.

4.4.1 Web application

We had a number of requirements on technology used for our web application frame-

work. The main requirement was that it should support quick and easy prototyping,

because in the beginnings of the project the whole idea was just forming and it evolved

during the time. The other requirement was, that it should support a large variety

of libraries, which could be used in our system. We were also looking for technology

which is well documented and have a big comunity support. Good documentation

simplify the development process and community support is useful when dealing with

bugs.

We considered several JavaScript frameworks, Grails framework and also Ruby on

Rails. The pros of JavaScript is that it is intended directly for web development and

it has many different libraries. However, it does not support application prototyping

in a way that we demanded.

Ruby on Rails uses Ruby programming language, a dynamic language with focus

on simplicity and productivity. Because of this, it is easy to create a functional

prototype easily. It also has many plugins available to use. On the other side, for our

early prototypes, we had to be able to use data-mining libraries (mostly written in

Java) directly from the web application. Ruby on Rails does not run on Java Virtual

Machine (JVM), so it could not be possible to use it. There is also JRuby on Rails

which gives a Java functionality to Ruby on Rails, but it is more complicated to start

with than using Grails.

Grails is a Groovy–based web application framework for the JVM. Groovy is op-

tionally typed and dynamic language, with static typing and static compilation ca-

pabilities, for the Java platform. It can be treated as a simplified Java language

with some extra features. Therefore, it is very easy to learn this language for people

familiar with Java.

The biggest advantage of this framework is its prototyping capabilities. A sim-

ple empty project is fully usable web application with dynamic in-memory database

and dynamically created views. It is possible to start development just with local

63

installation of Grails. No database or development web server is required.

Also, Grails has many useful plugins, for example security plugins, which provide

user authentication, plugins for sending e-mails . . . Plugins can be easily integrated

to the project just by adding the plugin name to the configuration file. After project

compilation, plugin is installed and ready to use. Last but not the least, it has an

excellent documentation.

Grails deeply uses the Model View Controller (MVC) pattern to make clean and

manageable code. MVC design pattern is a software architecture that encourages

separation of concerns into three main components:

• Model – handles data representation and operations. Classes that represents

entities (e.g. customer, product) and business logic/functionalities (e.g. create

product record), represents the model. Below is an example of Model in Grails

framework.

class Customer {

Long id

String firstName , lastName

Date birthday

String gender

}

• View – handles how data is viewed by the user. Grails views are written using

HTML and GSP tags in files with .gsp extension. Below is an example code for

showing a table with customer name and gender.

<table >

<tr><th>Name</th><th>Gender </th></tr>

<g:each in="${customerList }" var="cust">

<tr><td>${cust.lastName} ${cust.firstName}</ td

><td>${cust.gender}</td></tr>

</g:each>

</table >

• Controller – handles the code that links user in the system and responds to his

actions. Controller receives requests from the user, prepares data and invokes

proper methods. Then it returns the view that represents the result of user

64

actions. Below is a Controller for Customer model which responds to action

called list. The controller is invoked whenever the URI /customer/list is invoked.

class CustomerController {

def list() {

def list = Customer.list()

[list:list]

}

}

Our web application consists of fourteen domain classes (models). These are

• Dataset – stores all information about the user’s dataset like name, description,

name of data file and statistical information like number of attributes, number

of instances . . .

• Attribute – represents a general information about attribute such title, position

in data file and number of missing values. This class is a common superclass for

concrete types of attributes. We consider these three types

– BooleanAttribute – stores information about number of true and false val-

ues in particular attribute in addition to the information from general At-

tribute class.

– NumericAttribute – contains additional information related to numeric val-

ues in a given attribute.

– StringAttribute – includes also the number of distinct values. Every at-

tribute which type is none of the two above is considered as string attribute.

• Analysis – corresponds to one single file generated during the preprocessing

phase. It stores the data such a file name, data type, number of attributes . . .

• AnalysisResult – stands for general result of a single data-mining model. It

stores data like root mean squared error, mean absolute error, number of cor-

rectly and incorrectly classified instances and an overall performance summary.

Its subclasses below contains concrete method and hyperparameter values.

– KnnResult

– DecisionTreeResult

65

– LogisticRegressionResult

– SvmResult.

• Role, User, UserRole – store all information related to user authentication. We

used Spring Security plugin for Grails to provide this functionality, because

Spring Security is a widely used authentication framework.

All of these models have their corresponding controllers and views which provide

described functionality altogether. It is not necessary to write code for communication

with database, because Grails can manage it their own way. All other functionality

like communication with a computational cluster is implemented in Grails services.

4.4.2 Database

As already mentioned above, we used a MySQL database. We did not make any

research about the most suitable database for our application, because it is not a

crucial component of our prototype. Since it is an isolated part of our system and

is independent from business logic, it can be replaced by a more suitable database

technology in the future easily.

We also did not create a database schema for our prototype on our own. It was

automatically generated by a Grails framework as part of its prototyping capabilities.

Grails require just a configuration file with database type, address and authentication

information. Schema is generated based on the domain classes and relationships de-

fined between them. Figure 4.20 shows a generated database schema of our prototype.

Tables database and analysis corresponds to the respective domain classes. Table at-

tribute integrates all types of attributes (numeric, string and boolean) into a single

table. Dataset attribute type is determined from parameter class. Also, modelling

results are integrated in single table analysis_result and particular type is determined

from class attribute. Tables user, role and user_role serve for user authentication

and determining his rights in system. Finally, table registration_code stores the reg-

istration codes for users who just registered and did not confirm his email address so

far.

As you can see, we do not save real dataset data into database. Instead of this we

save just file names and real data are saved in a directory on computation cluster. This

option reduces database load, because the database contains only meta information.

We use this technique for dataset files as well as for files from preprocessing step.

66

Figure 4.20: Database schema of the system.

4.4.3 Computational server

Last component of the system is a backend server for performing complex operations.

These computations are difficult in terms of time and also computational resources.

Because of these demands, it would not be possible to run them on standard web

server. The calculations would consume all resources for a long time and the web

server would fall down. In early stage of the project we performed all computations

on a web server through Grails, because we needed just to test the concept as a

whole. Later we detached costly calculations to separate component. Because the

calculations were written in Groovy combined with pure Java, we decided to use Java

language for this part as well to minimize a migration effort.

All data-mining algorithms described in Chapter 2 including their evaluation on a

67

given dataset are already implemented in various data-mining software libraries. So

we did not implement them on our own. Instead of this we used implementations of k-

nearest neighbor, Decision tree and Logistic regression algorithms from Weka library

written in Java. This library is also used in data-mining software of the same name.

For k-nearest neighbor algorithm we used IBk class, for Decision tree J48 class and

for Logistic regression Logistic class of this library. The concrete implementation of

evaluation method for Decision tree algorithm in our project is shown below

/**

* @param dataInstances analysis instances

* @param m minimum number of instances

per leaf

* @param c pruning confidence

* @param unpruned whether tree should be

unpruned or not

* @return evaluation

*/

public Evaluation j48DecisionTreeAnalysis(Instances

dataInstances , int m, float c, boolean unpruned) {

J48 j48 = new J48();

j48.setMinNumObj(m);

j48.setConfidenceFactor(c);

j48.setUnpruned(unpruned);

Evaluation evaluation;

try {

evaluation = new Evaluation(dataInstances);

evaluation.crossValidateModel(j48 ,

dataInstances , 10, new Random (1));

} catch (Exception e) {

return null;

}

return evaluation;

}

This code performes j48 decision tree algorithm and evaluates results 10 times with

10-fold cross validation method. The Evaluation object for given model is returned.

68

Support vector machines algorithm has a faster implementation in LibSVM library

written in C language, but there is also Java wrapper of this library, so we used this

one.

Communication with web application is implemented through a simple web socket.

Web server connects to the socket and sends a request information. Then it dis-

connects, if it does not require the results immediately or waits for the response.

Computational server receives the request and immediately creates a new thread for

calculations. Currently we support three types of request

• PREPROCESS – web server sends the dataset information and user answers

from conversational system and backend server generates the preprocessed data

files and performes simple analysis using the recommendation system.

• GRIDSEARCH – computational server performes deep Gridsearch analysis for

a given file based on the request from web server.

• FILE_REQUEST – file for a given analysis is sent to web server from backend,

because of the user request for its download.

Calculations can take a long time. So to serve requests, the system runs every

calculation on a separate thread in parallel. This component runs on computational

cluster with 128 processors and 128 GB of RAM, so it has enough power for our needs.

69

Conclusion

In this thesis, we dealt with systems for managing of data mining projects. We

proposed our custom design of such tool. The main focus is on ease of use, even

for users with no or minimum knowledge about data-mining. This tool guides a

user through all steps of CRISP-DM methodology and performes required actions

automatically based on his input. It contains a simple conversational system to gain

the knowledge from user and also a recommendation system for recommending suitable

data-mining models.

The whole area of study is too wide, therefore we do not take some parts into

account. For example, we decided to take into account only the selected data mining

methods for classification in the modelling phase. Nevertheless, system design allows

us to implement them later.

We successfully implemented our proposal into a web application. This application

is available online and several users have already made their first experiments. In the

future we plan to analyze their feedback and try to improve our system based on their

experience.

During the elaboration of this thesis we dealt with many challenges and we pro-

posed several solutions for them. At the same time, we identified many weaknesses of

these systems.

For example there are many opened questions about the user interface. Our pro-

totype contains very simple UI, because it is comfortable for users. Can the UI be

better? Is it even possible to build such a UI that is simple and user friendly on the

one side and complex and comprehensive on the other side? The main subject of

these questions is if there are some hidden problems after the simplicity of the UI.

There is also one very important question. Is it even possible to automate data-

mining tasks and tools? Hyperparameter search and model selection tasks are very

sensitive to data. Therefore, it is very hard to recommend good model and its hyper-

parameter settings. Our prototype performs many calculations in real time. Despite

70

of it, user has to wait for the complete results, because data-mining models are very

complex and time consuming. Also, it requires some user interaction to gain a back-

ground knowledge. Is it possible to eliminate this interaction?

We remain these questions opened for now, because they require further study

and analysis. Solving problems which we identified can definitely help to build better

data-mining systems in the future.

71

Resumé

V tejto práci sme sa zaoberali systémami pre správu projektov v oblasti dolovania dát.

Naším cieľom bolo navrhnúť a implementovať prototyp webovej aplikácie na dolo-

vanie dát určený pre užívateľov bez pokročilých technických znalostí z tejto oblasti.

Tento nástroj prevedie užívateľa všetkými krokmi CRISP-DM procesu a automaticky

vykoná príslušné akcie na základe pokynov užívateľa.

V prvej a druhej kapitole sme popísali techniky a terminológiu dolovania dát

použitú počas práce. V tretej kapitole sme zadefinovali problém algoritmizácie odpo-

rúčania výpočtového modelu pre konkrétny dataset. Takisto sme popísali existujúce

riešenia pre tento problém. Na ich základe sme navrhli a implementovali vlastný

prístup k riešeniu, ktorý sme experimentálne porovnali s publikovanými prístupmi. Z

tohto experimentu vyplynulo, že naše riešenie sa vyrovná prezentovaným prístupom.

Spojením týchto algoritmov sme dokázali ďalej zlepšiť vhodnosť odporúčania.

V druhej časti práce sme navrhli a implementovali prototyp webovej aplikácie.

Užívateľovi umožňuje nahrať dáta vo formáte .csv, ktoré následne zanalyzuje a zo-

brazí mu štatistické informácie o jednotlivých atribútoch ako napríklad typ atribútu,

počet chýbajúcich hodnôt . . . Následne užívateľ môže nechať tieto dáta analyzovať

algoritmami na dolovanie dát, pričom v súčasnosti nástroj pracuje s algoritmami

k-NN, Logistic regression, Decision tree a tiež SVM. Na získanie doplňujúcich in-

formácií od užívateľa sme implementovali jednoduchý konverzačný systém, ktorý na

základe prvotnej analýzy vygeneruje otázky pre užívateľa. Ten na ne odpovie pomo-

cou webového formulára. Na základe týchto odpovedí sa predspracujú dáta a odporučí

sa najvhodnejší algoritmus spolu s konkrétnymi nastaveniami hyperparametrov. Po

dobehnutí analýz sa zobrazia výsledky spolu s vybraným algoritmom a jeho hyper-

parametrami.

V závere sme zhrnuli nevýhody takýchto systémov, ktoré sme identifikovali počas

práce na tejto aplikácii. Takýmto problémom je napríklad používateľské rozhranie.

Na jednej strane musí byť čo najjednoduchšie pre používateľa, ale na druhej strane

72

prílišnou jednoduchosťou obmedzujeme jeho možnosti interakcie so systémom. Rieše-

nie identifikovaných problémov si vyžaduje ďalší výskum v tejto oblasti.

Zdrojové kódy aplikácie sú k dispozícii v prílohe tejto práce.

73

Bibliography

[1] BERKA, P. Dobývání znalostí z databází. Vyd. 1. Praha: Academia, 2003, 366 s.

ISBN 80-200-1062-9.

[2] JIAWEI HAN, M. K. Data mining: concepts and techniques. 3rd ed. Amsterdam:

Elsevier/Morgan Kaufmann, 2012. ISBN 0123814790.

[3] ZAKI, M. J., WAGNER, M. Data mining and analysis: fundamental concepts and

algorithms. Cambridge: Cambridge University Press. 593 p. ISBN 9780521766333.

[4] WITTEN, I., EIBE, F., HALL, A. M. Data mining: practical machine learning

tools and techniques. 3rd ed. Burlington, MA: Morgan Kaufmann, 2011, 629 p.

Morgan Kaufmann series in data management systems. ISBN 0123748569.

[5] BRAMER, M. Principles of data mining. 2nd ed. London: Springer, 2013. ISBN

1447148835.

[6] THORTON, C., HUTTER, F., HOOS, H. H., LEYTON-BROWN, K. Auto-

WEKA: Combined Selection and Hyperparameter Optimization of Classification

Algorithms. Proceedings of the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’13, Chicago, Illinois, USA, 2013, p.

847–855. ISBN 978-1-4503-2174-7.

[7] VILALTA, R., GIRUARD-CARRIER, C., BRAZDIL, P. SOARES, C. Using

Meta-Learning to Support Data Mining. International Journal of Computer Science

& Applications, Vol. I, No. 1, p. 31–45. 2004.

[8] KAZÍK, O., PEŠKOVÁ, K., PILÁT, M., NERUDA, R. Combining parameter

space search and meta-learning for data-dependent computational agent recom-

mendation. 11th International Conference on Machine Learning and Applications

(ICMLA 2012): Boca Raton, Florida, USA, 12-15 December 2012. 2 volumes. ISBN

9781467346511.

74

[9] BRAZDIL, P., SOARES, C., DA COSTA, J. P. Ranking learning algorithms:

Using IBL and meta-learning on accuracy and time results, Machine Learning, Vol.

50, p. 251–277, 2003.

[10] DASU, T., JOHNSON, T. Exploratory data mining and data cleaning. New York:

Wiley-Interscience, 2003, 203 p. ISBN 978-0-471-26851-2.

[11] HAND, D., MANNILA, H., SMYTH P. Principles of data mining. Cambridge,

Mass.: MIT Press, 2001, 546 p. Adaptive computation and machine learning. ISBN

026208290x.

[12] GUO, Y., GROSSMAN, R. High performance data mining: scaling algorithms,

applications, and systems. Boston: Kluwer Academic, 1999, 105 p. ISBN 0-7923-

7745-1.

[13] HORNICK, M. F., MARCADÉ, E., VENKAYALA, S. Java data mining: strat-

egy, standard, and practice: A practical guide for architecture, design, and imple-

mentation. Amsterdam: Elsevier/Morgan Kaufmann, 2007, 520 p. Morgan Kauf-

mann series in data management systems. ISBN 978-0-12-370452-8.

[14] RAJARAMAN, A., ULLMAN, J. D. Mining of massive datasets. Cambridge:

Cambridge University Press, 2012, 315 p. ISBN 9781107015357.

[15] SULLIVAN, R. Introduction to data mining for the life sciences. New York: Hu-

mana Press, 2012, 635 p. ISBN 978-1-58829-942-0.

[16] ANDERSON, R. K. Visual data mining: the VisMiner approach. Hoboken, N.J.:

Wiley, 2012, 196 p. ISBN 978-1-119-96754-5.

[17] LANDER, J. P. R for Everyone: Advanced Analytics and Graphics. Addison-

Wesley Professional. 2013, 432 p. ISBN 978-0321888037.

[18] Cross Industry Standard Process for Data Mining. Available from Inter-

net [accessed 29-May-2014]: http://en.wikipedia.org/wiki/Cross_Industry_

Standard_Process_for_Data_Mining/

[19] UCI Machine Learning Repository. Available from Internet [accessed 28-May-

2014]: http://openml.org

[20] OpenML. Available from Internet [accessed 14-April-2015]: http://archive.

ics.uci.edu/ml/

75

[21] BigML. Available from Internet [accessed 14-April-2015]: https://bigml.com

76

Attachments

A CD with source code of web application and backend application, several database

dumps with measurement data and electronic copy of this thesis.

77

