
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Vojtěch Vorel

Synchronization, Road Coloring, and Jumps

in Finite Automata

Department of Theoretical Computer Science and Mathematical Logic

Supervisor: prof. RNDr. Václav Koubek, DrSc.

Study programme: Computer science

Specialization: Theoretical computer science

Prague 2015

I am grateful to professors Václav Koubek and Tomáš Dvořák for their longstanding support

and professional advice. My thanks also go to Adam Roman, Marek Szyku la, Pavel Panteleev,

François Gonze, Szabolsc Iván, Pavel Martyugin, Frantǐsek Mráz, Peter Černo, Petr Zemek and

anonymous reviewers for sharing their ideas and knowledge.

I declare that I carried out this master thesis independently, and only with the cited sources,

literature and other professional sources. I understand that my work relates to the rights and

obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular

the fact that the Charles University in Prague has the right to conclude a license agreement on

the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, May 7, 2015

Název práce: Synchronizace, barveńı cesty a skoky v konečných automatech

Autor: Vojtěch Vorel

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı diplomové práce: prof. RNDr. Václav Koubek, DrSc.

Abstrakt: Práce shrnuje několik p̊uvodńıch výsledk̊u v teorii automat̊u a formálńıch jazyk̊u.

Studuje kombinatorické otázky a výpočetńıch úlohy z oblasti synchronizačńıch slov a barveńı

cesty. Kromě toho se zabývá skokovými konečnými automaty a souvisej́ıćımi typy přepisovaćıch

systémů.

Kĺıčová slvoa: Synchronizace, Synchronizačńı slova, Barveńı cesty, Skokové konečné automaty,

Restartovaćı automaty

Title: Synchronization, Road Coloring, and Jumps in Finite Automata

Author: Vojtěch Vorel

Department: Department of Theoretical Computer Science and Mathematical Logic

Supervisor: prof. RNDr. Václav Koubek, DrSc.

Abstract: Multiple original results in the theory of automata and formal languages are pre-

sented, dealing mainly with combinatorial problems and complexity questions related to reset

words and road coloring. The other results concern jumping finite automata and related types

of rewriting systems.

Keywords: Synchronization, Reset Word, Road Coloring, Jumping Finite Automata, Restarting

Automata

Contents

Preface 9

1 A Survey of Synchronization and Road Coloring 11

1.1 Motivation and History . 11

1.2 Key Definitions . 12

1.3 Former Results . 16

1.4 Modifications of the Concepts . 20

1.5 Computational Problems . 22

2 Lower Bounds of Synchronization Thresholds 25

2.1 Careful Synchronization and Subset Synchronization 25

2.2 Synchronization Thresholds of Automata with Sink States 35

3 Computing Synchronization Thresholds in DFA 40

3.1 Parameterized Complexity of SYN . 40

3.2 Complexity of SYN Restricted to Eulerian Binary Automata 48

4 Computing Road Colorings 63

4.1 Parameterized Complexity of SRCP . 63

4.2 Fixed Parameter Complexity of SRCW . 70

5 Jumping Finite Automata and Contextual Deleting 84

5.1 Models and their Relations . 84

5.2 Closure Properties of the Class GJFA . 89

5.3 Clearing Restarting Automata with Small Contexts 93

6 Conclusions and Future Work 98

Bibliography 101

Preface

The thesis collects multiple original results in the theory of automata and formal languages.

Most of the results deal with synchronization and road coloring - research fields that are in-

troduced and surveyed in Chapter 1. Besides of that we present contributions to the study of

languages accepted by jumping finite automata and clearing restarting automata. The main

text is organized as follows:

• Chapter 2 deals with lower bounds of synchronization thresholds in multiple types of finite

automata:

– First, we give new lower bounds of the synchronization threshold in partial finite automata

and the subset synchronization threshold in deterministic finite automata, both restricted

to binary alphabets. Besides of the main proof we provide general formulations of auxiliary

facts and discuss consequences and reformulations of the result. The result, presented [103]

at the conference AFL 2014 (Szeged, Hungary), answers a question asked by Martyugin,

2013 [62]. An extended paper was submitted to a journal.

– Second, we present attempts to raise the known lower bound of the synchronization thresh-

old in deterministic automata with sink states. We give new isolated examples of automata

that exceed the currently best lower bound by Martyugin, 2008 [57] and formulate a hy-

pothesis that involves an infinite series of automata based on the examples.

• Chapter 3 consists of two results about a basic computational task (SYN) concerning syn-

chronization of deterministic finite automata:

– First, we prove that SYN does not have a polynomial kernel if parameterized by the

number of states unless polynomial hierarchy collapses. This fills the only remaining gap

in a research of Fernau, Heggernes, and Villanger, 2013 [34] (in the latest version of this

article [35], our result is already cited). A paper [105] containing the proof was published

in Discrete Mathematics and Theoretical Computer Science.

– Second, we prove NP-completeness of SYN restricted to Eulerian automata with binary

alphabets, as it was conjectured by Martyugin, 2011 [60]. The proof was presented [102]

at the conference LATA 2014 (Madrid, Spain). An extended paper was submitted to a

journal.

• Chapter 4 studies two related questions about road coloring. These results come partially

from a collaboration with Adam Roman (Jagiellonian University in Krakow, Poland):

– First, we give a multi-parameter analysis of the basic computational problem called SRCP.

This consists mainly of studying a scale of various restrictions and finishes a work that

was started by Roman and Drewienkowski [78, 79]. The results are contained in the

above-mentioned journal paper [105].

– Second, we give a similar analysis with respect to slightly different computational problem

called SRCW. The results are not complete - they leave much space for a further research.

9

They were presented [104] at the conference LATA 2015 (Nice, France). An extended

version was submitted to a journal.

• Chapter 5 quits the field of synchronization and studies the expressive power of two simple

models for discontinuous analysis of strings: jumping finite automata and clearing restarting

automata.

– First, we complete the initial study of jumping finite automata, which was started in a

former article of Meduna and Zemek [64, 65]. The open questions about basic closure

properties are solved. Besides of that, we correct erroneous results presented in [64, 65].

Finally, we point out important relations between jumping finite automata and other

models studied in the literature. An article presenting these results was submitted to a

journal.

– Second, we deal with clearing restarting automata, which is a class of contextual rewriting

systems. We construct a clearing restarting automaton with two-letter contexts that

accepts a language over a two-letter alphabet lying outside the class CFL, thus closing the

study raised by Černo and Mráz, 2010 [25].

• In Chapter 6 we discuss further research in all the studied directions and formulate open

problems that are closely related to the results of the thesis.

In the following table we give a concise listing of our contributions to the state of art.

Diamonds mark sections that give closing answers to questions formulated in the literature:

Topic Ref. Publ.

Sec. 2.1 Careful Synchronization threshold of binary PFA � [62] [103]

Sec. 2.2 Synchronization thresholds of DFA with sinks [57] -

Sec. 3.1 Polynomial Kernel of SYN � [34] [105]

Sec. 3.2 NP-Completess of SYN restricted to Eulerian automata � [60] [102]

Sec. 4.1 Complexity of SRCP with fixed parameters � [78] [105]

Sec. 4.2 Complexity of SRCW with singleton fixed set of words [78] [104]

Sec. 5.2 Closure properties of the class GJFA � [65] -

Sec. 5.3 A non-CFL binary language accepted by 2-cl-RA � [25] -

Some of the results were presented at the workshop Černý’s Conjecture and Optimization

Problems held in Opava, Czech Republic, 2014 and at a meeting of the Group of Computational

Complexity and Analysis of Algorithms at University of Wroc law.

The research was supported by the Czech Science Foundation grant GA14-10799S and the

GAUK grant No. 52215. The collaborative work with Adam Roman was supported also by the

Polish Ministry of Science and Higher Education grant IP2012 052272.

10

Chapter 1

A Survey of Synchronization and

Road Coloring

1.1 Motivation and History

The central idea of synchronization is very natural: For a given machine, we want to find an

input sequence that gets the machine to a unique state, no matter in which state the machine

initially was. Considering deterministic finite automata (DFA), we get a clear notion of reset

words. A machine that admits a reset word is said to be synchronizing. Reset words for DFA

have been studied since the early times of automata theory. First related studies considered

input sequences that do not necessarily leave the machine in a unique state, but it need to be

possible to infer the resulting state from the observed output [39, 66]. Reset words, as they are

informally defined above, were introduced in 1964 by Černý in [26]. In the 1960’s, the subject

was discussed also by Starke [87] and others, using various systems of terminology.

Most of the research of synchronization of DFA has concerned minimal length of reset words.

For a given synchronizing automaton, one is interested in its shortest reset words. Černý [26]

presented a series of synchronizing n-state automata that required reset words of length at least

(n− 1)
2
. In the same year the Černý conjecture (that appeared in a subsequent article [27])

was formulated, saying that each synchronizing n-state automaton has a reset word of length at

most (n− 1)
2
. Since that, the research of the maximum length of shortest reset words, taken

over n-state DFA, has become a classical topic of automata theory and the Černý conjecture

has become a notorious open problem. So far, the best upper bound of the threshold is n3−n
6

[73].

However, the upper bound (n− 1)
2

or lower has been confirmed for various special classes

of DFA, see Section 1.3.2. Some of the results consist of non-trivial application of advanced

tools from linear algebra and the theory of semigroups. Several generalizations of the Černý

conjecture have been studied, both for DFA and for more general settings, see Section 1.4. For

instance, in subset synchronization one looks for a word that puts a DFA to one particular

state, assuming that initially the DFA was in some state from a given subset of states. Here we

are interested in the worst cases taken over all DFA and all their subsets of states. Most syn-

chronization problems can be formulated as essential problems about transformation monoids

and matrix monoids.

Several fields of mathematics and engineering deal with synchronization:

• Classical applications include model-based testing [28] and equivalence checking [74] of

sequential circuits. Reset words are used to generate effective test patterns. It is char-

acteristic for these applications that the state space of the arising finite automata are

exponential in the number of components that form the hardware under test. Thus, basic

11

computational tasks become hardly feasible and the way of representing the transition

function plays a key role (e.g., binary decision diagrams are used).

• In automated assembling, so-called part orienters are used. Such device consists typically

of a conveyor belt carrying parts that may lie in various positions. One needs to construct

a device that gets a particle to a well-defined position. However, the device should be as

simple and cheap as possible, preferably suitable stable obstacles should be used to push

the particle while it is carried by the conveyor belt. When such obstacles are designed,

one can see its effect on various positions as transitions. In fact, the resulting scheme

corresponds to a DFA and a reliable part orienter corresponds to a reset word. For

details, see e.g. [68].

• In design of control systems modeled by finite automata, one may take into account the

possibility of passing to a wrong state during reading a correct input. For synchronizing

automata, the noise-resistance, i.e. probability of getting back to the right state, is

essentially greater than in general automata and on random inputs it tends to 1 as the

input length goes to infinity [29].

• In information theory, a finite-state information source [96] corresponds formally to a

partial finite automaton, but the transition labels correspond to the output. Reset words,

if appropriately generalized to partial automata, are output sequences that uniquely de-

termine the current state of the information source, if observed.

• Reset words (also known as constants) play a role in studying non-classical representations

of formal languages. See [21] for such a study, motivated by biomolecular processes

Each DFA has a unique underlying graph, which is a directed multigraph where each vertex

has exactly |Σ| outgoing edges, Σ denoting the alphabet of the DFA. On the other other hand,

directed multigraphs with constant out-degrees can be turned into DFA by coloring the edges

with letters. The research of such colorings was originally motivated by symbolic dynamic -

Adler, Goodwyn, and Weiss [1] pointed out in 1977 that certain properties of Markov shifts

depend on whether the edges of a corresponding directed multigraph can be colored such that

a synchronizing DFA arises (see also [14] for a modern survey). They raised the Road coloring

problem, a hypothesis claiming that a trivial necessary condition is also sufficient for a directed

multigraph to admit such a coloring. The hypothesis was confirmed in 2008 by Trahtman [91]

and is known as the Road coloring theorem, see Section 1.3.4.

In the reminder of Chapter 1 we give key definitions and present a survey of former results

in the field. For a more concise (but not fully up-to-date) overview, see [82] or [99].

1.2 Key Definitions

The symbol N denotes the set {0, 1, 2, . . . } of nonnegative integers. For sets A,B, by A×B we

denote the Cartesian product of A and B. By 2A we denote the set of subsets of A. If x is a

real number, ⌊x⌋ and ⌈x⌉ denote the largest integer not greater than x and the smallest integer

not less than x, respectively. If m,n are positive integers, n mod m denotes the remainder after

division of n by m.

1.2.1 Finite Automata, Graphs, and Finite Functions

Definition 1.1. A triple A = (Q,Σ, δ), where Q is a finite set of states and Σ is a finite alphabet,

is:

1. a deterministic finite automaton (DFA) if δ is a total function from Q× Σ to Q,

12

2. a partial finite automaton (PFA) if δ is a partial function from Q× Σ to Q,

3. a non-deterministic finite automaton (NFA) if δ is a total function from Q×Σ to 2Q (i.e.

to the set of subsets of Q).

Clearly, each deterministic automaton is a partial automaton. Partial automata can be equiv-

alently seen as non-deterministic automata with |δ(s, x)| ≤ 1 for each s ∈ Q and x ∈ X. Note

that we consider machines without any form of output and without initial or final states.

We extend transition functions such that they operate also on sets of states and whole words

over the alphabet. We set

δ(S, x) = {δ(s, x) | s ∈ S and δ(s, x) is defined}

in PFA and

δ(S, x) =
⋃

s∈S
δ(s, x)

in NFA for each S ⊆ Q, x ∈ Σ. In both PFA and NFA we set

δ(S,wx) = δ(δ(S,w) , x) ,

δ(s, wx) = δ(δ(s, w) , x) ,

for each S ⊆ Q, s ∈ Q,w ∈ Σ+, x ∈ Σ. Moreover, having a PFA A = (Q,Σ, δ), for each

S ⊆ Q, s ∈ Q and w ∈ Σ⋆ we denote

δ−1(S,w) = {r ∈ Q | δ(r, w) ∈ S} ,
δ−1(s, w) = {r ∈ Q | δ(r, w) = s} .

For a fixed automaton, a word w ∈ Σ⋆ is informally identified with the function δ(, w) : Q→ Q.

Thus, we speak e.g. about words that are permutations or constants, about their ranges and

so on. We define some key notions about graphs, finite transformations, and automata:

Definition 1.2.

• A directed graph is a pair G = (V,E) where V,E are finite sets and E ⊆ V × V .

• A directed multigraph is a tuple G = (V,E, s, t) where V,E are finite sets and s, t are

functions from E to V .

• In a directed multigraph G = (V,E, s, t), s(e) and t(e) are the start and the target of

e ∈ E, respectively.

• In a directed multigraph G = (V,E, s, t), the out-degree and the in-degree of v ∈ V is

|{e ∈ E | s(e) = v}| and |{e ∈ E | t(e) = v}| respectively.

• For a directed multigraph G = (V,E, s, t) and r, s ∈ V , the termdG(r, s) denotes the

length of shortest directed paths from r to s in G.

Definition 1.3. The underlying graph of a DFA A = (Q,Σ, δ) is the directed multigraph GA =

(Q,Q× Σ, s, t), where

s(r, x) = r,

t(r, x) = δ(r, x)

for each (r, x) ∈ Q× Σ.

Definition 1.4. Let Q be an n-element set and let f : Q→ Q be a partial function.

13

• The domain of f is dom(f) = {s ∈ Q | f(s) is defined}.

• The range of f is rng(f) = {f(s) | s ∈ dom(f)}.

• The rank of f is the size of rng(f).

• We say that f is idempotent if f(s) = s for each s ∈ rng(f).

• The graph of f is the directed graph Gf = (Q,E) with E = {(s, f(s)) | s ∈ dom(f)}.

• A cycle of f is the set of vertices of a strongly connected component in Gf .

• A cluster of f is the set of vertices of a weakly connected component in Gf .

• We say that f preserves a binary relation � on Q if s1 � s2 implies f(s1) � f(s2) for

each s1, s2 ∈ Q.

Definition 1.5. Let us introduce some special classes of PFA and DFA together with corre-

sponding notation:

• A PFA A = (Q,Σ, δ) is strongly connected (s.c.)1 if its underlying graph is strongly

connected. The class of strongly connected PFA is denoted by SC.

• A PFA A = (Q,Σ, δ) is incomplete if δ is not total.

• A PFA A = (Q,Σ, δ) is circular if some x ∈ Σ is a total cyclic permutation. The class of

circular PFA is denoted by CY.

• A DFA A = (Q,Σ, δ) is one-cluster if some x ∈ Σ has exactly one cluster. The class of

one-cluster DFA is denoted by OC.

• A DFA A = (Q,Σ, δ) is aperiodic2 if for each w ∈ Σ⋆ there is k ≥ 0 such that δ
(
s, wk

)
=

δ
(
s, wk+1

)
for each s ∈ Q. The class of aperiodic DFA is denoted by AP.

• A DFA A = (Q,Σ, δ) is monotonic if there is a linear order � on Q that is preserved by

each x ∈ Σ. The class of monotonic DFA is denoted by MO.

• A DFA A = (Q,Σ, δ) has a sink state q0 ∈ Q (also known as a zero state) if δ(q0, x) = q0

for each x ∈ Σ. The class of DFA having a sink state is denoted by Z.

• A state s ∈ Q in a PFA A = (Q,Σ, δ) is a merging state if
∣∣δ−1(s, x)

∣∣ ≥ 2 for some x ∈ Σ.

For each integer k ≥ 1, by ALk we denote the class of PFA with alphabets of size k. A PFA is

called unary or binary if it lies in AL1 or AL2 respectively.

1.2.2 Synchronization

There are several different interpretations of the concept of synchronization. In the case of

DFA and PFA, the classical variant says that we are given an automaton with known transition

function but unknown initial state. However, it may be known that the initial state lies in

certain subset of states, i.e. the initial uncertainty is specified. Then we should find an input

word that makes the automaton switch to a target state that is common for all possible initial

states - no uncertainty is left.

Here we introduce a system of notation, which comes from former literature and is compatible

with all the variants of synchronization we study. Thus the most classical notions are presented

as special cases of generalized notions.

1Also known as transitive.
2Also known as counter-free.

14

Definition 1.6. A word w ∈ Σ⋆ is a careful reset word of a PFA A = (Q,Σ, δ) if there is r ∈ Q
such that

δ(s, w) = r

for each s ∈ Q. If there is such w ∈ Σ⋆, we say that A is carefully synchronizing. If A is a DFA,

we just say that such w is a reset word and A is synchronizing.

Definition 1.7. A word w ∈ Σ⋆ is a careful reset word of a subset S ⊆ Q in a PFA A = (Q,Σ, δ)

if there is r ∈ Q such that

δ(s, w) = r

for each s ∈ S. If there is such w ∈ Σ⋆, we say that the subset S is carefully synchronizable. If

A is a DFA, we just say that such w is a reset word of S and S is synchronizable.

Definition 1.8. For each PFA A = (Q,Σ, δ) and each carefully synchronizable S ⊆ Q we denote:

car(A) = min {|w| | w is a careful reset word of A} ,
csub(A,S) = min {|w| | w is a careful reset word of S in A} .

If A is a DFA, we write C(A) and sub(A,S) instead of car(A) and csub(A,S).

Let us define several functions that describe the worst cases of minimum lengths of reset words

depending on the number of states of an automaton. Such functions are informally called

synchronization thresholds. As we describe later, there is a rich research that aims to obtain

upper and lower bounds of these functions.

Definition 1.9. For each n ≥ 1 we denote:

Cn = max {C(A) | A is a DFA with at most n states} ,
subn = max {sub(A,S) | A = (Q,Σ, δ) is a DFA with at most n states and S ⊆ Q} ,
carn = max {car(A) | A is a PFA with at most n states} ,

csubn = max {csub(A,S) | A = (Q,Σ, δ) is a PFA with at most n states and S ⊆ Q} .

Thus, the values Cn, subn, carn, and csubn express the worst cases among all n-state automata

and subsets of their states. The values satisfy the following trivial inequalities, where→ stands

for less or equal:

Cn → carn

↓ ↓

subn → csubn

The following definition formalizes the notation of synchronization thresholds with respect to

special classes of automata.

Definition 1.10. If M is a class of PFA and n ≥ 1, we denote

CM
n = max {C(A) | A ∈M is a DFA with at most n states} ,

subM
n = max {sub(A,S) | A = (Q,Σ, δ) ∈M is a DFA with at most n states, S ⊆ Q} ,

carM
n = max {car(A) | A ∈M is a PFA with at most n states} ,

csubM
n = max {csub(A,S) | A = (Q,Σ, δ) ∈M is a PFA with at most n states, S ⊆ Q} .

In addition, if M is a class of pairs 〈A,S〉 where A is a PFA and S is a subset of its states, we

15

denote

subM
n = max {sub(A,S) | A is a DFA with at most n states and 〈A,S〉 ∈ M} ,

csubM
n = max {csub(A,S) | A is a PFA with at most n states and 〈A,S〉 ∈ M} .

1.2.3 Road Coloring

Road coloring refers to coloring edges of directed multigraph in order to obtain representations

of DFA. The study is motivated mainly by symbolic dynamics. It was initially pointed out in

[1] that a suitable coloring of a directed multigraph corresponds to an almost injective mapping

from a subshift of finite type to a full shift. See also [14] for a modern survey.

Definition 1.11. A DFA A = (Q,Σ, δ) is a coloring of a directed multigraph G if G isomorphic

to the underlying graph of A. We also say that the function δ is a coloring of G.

Definition 1.12. A directed multigraph is:

1. an aperiodic graph if the lengths of its cycles do not have any nontrivial common divisor,

2. an admissible graph if it is aperiodic and all its out-degrees are equal,

3. a road colorable graph if it has a synchronizing coloring.

In [1] it was pointed out as an open problem (the Road Coloring Problem) whether each strongly

connected admissible graph is road colorable. It was solved positively by Trahtman [91, 95] in

2008, see Theorem 1.26.

1.3 Former Results

1.3.1 A Lower Bound for DFA

In the seminal paper [26], Černý presented the infinite series Cn of automata defined as Cn =

({0, . . . , n− 1} , {a, b} , δ), where

δ(s, a) = (s+ 1) mod n,

δ(s, b) =

{
1 if s = 0,

s otherwise,

for each s ∈ Q, see Figures 1.1 and 1.2. This series is used as a witness in the proof of the

following theorem, which is the higher known lower bound of both Cn and Cn

Theorem 1.13 ([26]). For each n ≥ 1 it holds that Cn ≥ (n− 1)
2
.

Except for the series given by Černý, only isolated examples reaching the bound C(A) = (n− 1)
2

are known, see [77]. However, several infinite series that reach very high values were obtained

from matrices with large exponents, see e.g. [9].

In the paper [27], Theorem 1.13 was turned into the following well known hypothesis:

Conjecture 1.14 (The Černý conjecture). For each n ≥ 1 it holds that Cn = (n− 1)
2
.

1.3.2 Upper Bounds for DFA

The paper [26] presents only a trivial upper bound Cn ≤ 2n−n−1, but it turned out soon that

it is not hard to establish cubic bounds (in [27], this is attributed to [86]). Since that, there

were several improvements of the cubic bound. The following theorem expresses the current

16

0

1

3

2

Figure 1.1: The Černý automaton C4

0

1 3

2

4

Figure 1.2: The Černý automaton C5

best one (an improved upper bound published by Trahtman [93] in 2011 has turned out to be

proved incorrectly [40]). The proof of the following theorem is based on a combinatorial result

of Frankl [37] (see [99] for a history of this result):

Theorem 1.15 (Pin, 1983 [73]). Each n-state synchronizing automaton has a reset word of

length at most n3−n
6 .

One of the key remarks dealing with synchronization of DFA is the following:

Lemma 1.16 (Černý, 1964 [26]). A DFA A = (Q,Σ, δ) is synchronizing if and only if for each

r, s ∈ Q there is w ∈ Σ⋆ such that δ(r, w) = δ(s, w).

It turns out to be advantageous to think about synchronization also in a reversed way. We call

a set S ⊆ Q m-extendable if there is w ∈ Σ⋆ of length at most m such that
∣∣δ−1(S,w)

∣∣ > |S|.
Many upper bounds for special classes of automata (see below) are based on the following

remark:

Lemma 1.17 (folklore). Let A = (Q,Σ, δ) be a PFA with |Q| = n. If each S ⊆ Q ism-extendable,

then C(A) ≤ (n− 2) ·m+ 1.

Corollary 1.18 (folklore). Let A = (Q,Σ, δ) be a PFA with |Q| = n. If each S ⊆ Q is n-

extendable, then C(A) ≤ (n− 1)
2
.

Studying inverse images of subsets is called the extension method. It turns out that Corollary

1.18 cannot be straightforwardly used to prove the Černý conjecture: for each n there is an

n-state synchronizing automaton having a subset that is not (2n− 4)-extandable [16].

Let us mention several groups of former results. In some of their proofs (mainly of the first

three groups) the approach of Lemma 1.17 and Corollary 1.18 is widely used:

• The classes of circular automata has been intensively studied since it turned out that the

Černý’s series of circular automata (see [26]) provides the worst known case of n-state

DFA for each n. Using a clever linear-algebraic approach, it was proven by Pin [72]

that CCY
n ≤ (n− 1)

2
whenever n is prime, Savický and Vaněček [83] then shown that

CCY
n ≤ (n− 1)

2
+ (n− 2)

2
for each n, and finally Dubuc [31] proved the upper bound

(n− 1)
2

for the whole class CY. Several directions of further generalization of this result

arose. First, Béal, Perrin, and Berlinkov [13] provided a quadratic upper bound for COC
n .

Second, Steinberg [89] reached the upper bound (n− 1)
2

of COC
n for prime n. Third,

Berlinkov [18] proved a quadratic upper bound for quasi-one-cluster automata, a strong

generalization of one-cluster automata. Let us mention also the papers [16] and [88],

which both present generalizing ideas concerning various results including most of the the

above-mentioned ones.

17

• Kari [51] (see also [10]) verified Černý conjecture for Eulerian automata, using linear-

algebraic methods as well. After that, the result was generalized to pseudo-Eulerian [88]

and quasi-Eulerian [17] automata by combining former methods with a kind of probabilis-

tic approach. As for lower bounds, there is a series [42] witnessing that CEU
n ≥ n2−3n+4

2

for n ≥ 5.

• There is a spectrum of DFA classes that are defined by preserving relations on states. For

the (already defined) class of monotonic automata there is a tight upper bound CMO
n ≤

n−1, which is a non-trivial result from [6]. In [100], a generalization to weakly monotonic

automata is introduced and the upper bound C(A) ≤
⌊
n(n+1)

6

⌋
is proved for each n-state

weakly monotonic automaton. For the class of oriented automata3, Eppstein [33] gives

a tight bound (n− 1)
2
, whose tightness is witnessed by the above-mentioned series of

Černý. Oriented automata are defined by preserving a cyclic order of states. See also

[101] for results about generalizations of oriented automata.

• Aperiodicity is a well-known and widely studied property of deterministic finite automata.

Let us note two classical publications: First, in 1965 Schützenberger [85] proves an equiv-

alence of two notions, both of them turns out to coincide with the notion of aperiodic

DFA. Second, a book of McNaughton and Papert [63] reveals that the notion is equivalent

to even more definitions coming from different branches of computer science and logic.

Trakhtman [94] proved that CAP
n ≤ n(n−1)

2 for each n ≥ 1. In [100] it is pointed out that

each aperiodic DFA is weakly monotonic and thus CAP
n ≤

⌊
n(n+1)

6

⌋
. It is not hard to

show that each monotonic DFA is aperiodic. Lower bounds for aperiodic automata are

still linear, the best one is n+
⌊
n
2

⌋
− 1, which follows from [5]

• Special attention is paid to the class of DFA that have a sink state, see Definition 1.5.

In Section 2.2 we inspect related techniques and former results, and provide new isolated

examples exceeding the best general lower bound concerning binary DFA.

Finally, the papers [8, 43] study classes of DFA based on the ranks of letters, while in [3, 4] and

other articles, the authors study synchronization thresholds with respect to certain classes of

DFA defined in terms of semigroup theory. All the results listed above may be seen as attempts

to obtain general upper bounds of Cn or even to prove the Černý conjecture.

1.3.3 Lower Bounds for PFA and Subsets in DFA

First results about subset synchronization appeared in 1970’s. The following is actually easy

to prove:

Theorem 1.19 ([23]). For each n ≥ 2 and k ≤ n − 2 there is
(
n−2
k−1

)
-letter DFA with a k-state

subset S such that sub(A,S) ≥
(
n−2
k−1

)
.

Corollary 1.20. sub(n) = Ω
(

2n
√
n

)
.

Proof. Set k = n
2 and use the Stirling’s approximation to check that

lim
n−→∞

(
n
n
2

)
=

√
2

π
· 2n√

n
.

Subset synchronization was discussed also in [87], but an incorrect result is presented in this

book. The threshold car(n) has been initially studied in 1982 by Goralč́ık et al., together with

3Also known as monotonic [33]

18

several related problems. The authors show that for infinitely many n there is a permutation

of n states having order at least (3
√
n)! and they use it to prove the following:

Theorem 1.21 ([41]). car(n) ≥ (3
√
n)!.

The construction can be easily (e.g. using our Lemma 2.1) modified to establish sub(n) ≥ (3
√
n)!

as well, as it was later re-discovered in the paper [54]. Though exceeded by Ω
(

2n
√
n

)
, the later

lower bound of sub(n) remains interesting since the proof uses binary alphabets only.

In 2004, Ito and Shikishima-Tsuji revisited the topic and prove:

Theorem 1.22 ([48]). car(n) ≥ 2
n
2 .

This was subsequently improved by Martyugin:

Theorem 1.23 ([59]). car(n) ≥ 3
n
3 .

Again, the construction can be applied to subsets, so we get sub(n) ≥ 3
n
3 .

For subset synchronization there is only an easy upper bound:

Lemma 1.24. sub(n) ≤ csub(n) ≤ 2n − n− 1.

Proof. The first inequality is trivial. The second one follows from the fact that for a shortest

careful reset word x1 . . . xd ∈ Σ⋆ of A = (Q,Σ, δ), the d sets

Q, δ(Q, x1) , δ(Q, x1x2) , . . . , δ(Q, x1 . . . xd−1)

are pairwise distinct non-empty and non-singleton subsets of Q.

Known upper bounds of careful synchronization come from bounds of the function d3(n), see

Section 1.4.2. Namely, Theorem 1.31 implies that

car= O
(
n2 · 4 n

3

)
.

Chapter 2.1 presents new results concerning lower bounds of subset synchronization and careful

synchronization with respect to the alphabet size.

1.3.4 Road Coloring

Definitions related to road coloring were given in Section 1.2.3.

Lemma 1.25. Let G be a directed multigraph. If G is road colorable, then it is admissible.

Proof. The constant out-degree is clear. As for the cycles of G, let w be a reset word of a

coloring A = (Q,Σ, δ) of G, such that δ(Q,w) = {r}. Choose some x ∈ Σ and consider the

cycles r
v→ r and r

x→ δ(r, x)
v→ r. Their lengths are |v| and |v|+ 1, thus their greatest common

divisor is 1.

Theorem 1.26 (Road Coloring Theorem [91, 95]). Let G be a strongly connected directed

multigraph. Then G is road colorable if and only if it is admissible.

What about directed multigraphs that are not strongly connected? We say that a strongly

connected component of a directed multigraph is the sink component if it is reachable from any

other component. Observe that:

1. If a sink component exists, then it is unique.

2. If G has constant out-degree k, the sink component also has constant out-degree k.

19

Corollary 1.27. Let G be a directed multigraph. Then G is road colorable if and only if it has

constant out-degree and its sink component is admissible.

Proof. For the forward implication, the constant out-degree is trivial. Then, fix a synchronizing

coloring of G and observe that the sink component corresponds to a subautomaton. Trivially, a

subautomaton of a synchronizing DFA is synchronizing, so the sink component is road colorable

and thus admissible due to Lemma 1.25. As for the backward implication - if the sink compo-

nent is admissible, we use Theorem 1.26 to find a synchronizing coloring. Then we extend it

arbitrarily to a coloring of G. Any such extension is synchronizing using a word that maps all

the states into the subautomaton, followed by a reset word of the subautomaton.

Once the Road coloring problem was solved, generalizations appeared, see [22].

1.4 Modifications of the Concepts

1.4.1 Reducing Range Size

Say that k ∈ N is the rank of a DFA A = (Q,Σ, δ) if k is the minimum of ranks of the letters

x ∈ Σ (see Def. 1.4). Pin [71] formulated a generalization of the Černý conjecture, saying

that each DFA of rank at most k has a word of rank at most k and length at most (n− k)
2
.

This conjecture was disproved by Kari [50]. In [56] another formulation was introduced: each

DFA of rank exactly k has a word of rank k and length at most (n− k)
2
. This claim remains

open since the counter-example from [50] has rank 1 (i.e. is synchronizing). In [7] the authors

introduce the class of generalized monotonic DFA and prove that each generalized monotonic

automaton of rank k has a word of rank k and length at most n− k. They also point out that

each generalized monotonic automaton is aperiodic.

1.4.2 Synchronization of NFA

In 1999, Imreh and Steinby [46] introduced three different synchronization thresholds concerning

general non-deterministic finite automata (NFA). The key definitions are the following

Definition 1.28. For an NFA A = (Q,X, δ), a word w ∈ X⋆ is:

• D1-directing if there is r ∈ Q such that δ(s, w) = {r} for each s ∈ Q,

• D2-directing if δ(s1, w) = δ(s2, w) for each s1, s2 ∈ Q,

• D3-directing if there is r ∈ Q such that r ∈ δ(s, w) for each s ∈ Q.

Definition 1.29.

1. By d1(A) ,d2(A) ,d3(A) we denote the length of shortest D1-, D2-, and D3-directing words

for A, or 0 if there is no such word.

2. By d1(n) ,d2(n) ,d3(n) we denote the maximum values of d1(A) ,d2(A) ,d3(A) taken over

all NFA A with at most n states.

Possible restrictions are marked by superscripts as usual.

It is clear that PFA are a special kind of NFA. Any careful reset word of a PFA A is D1-, D2-,

and D3-directing. On the other hand, any D1- or D3-directing word of a PFA is a careful reset

word. Thus, we get

dPFA
2 (n) ≤ dPFA

1 (n) = dPFA
3 (n) = car(n)

and

d1(n) ≥ car(n) , d3(n) ≥ car(n) . (1.1)

20

Note that each D2-directing word w of a PFA A is either a careful reset word of A or satisfies

that δ({s} , w) = ∅ for each s ∈ Q. PFA are of a special importance for the threshold d3(n) due

to the following key lemma:

Lemma 1.30 ([48]). For any n-state NFA A, there is a n-state PFA B such that d3(B) ≥ d3(A).

Thus

d3(n) = dPFA
3 (n) = car(n)

for each n.

It is known that d1(n) = Ω(2n) [48] and d3(n) = Ω
(
3

n
3

)
[59] (for upper bounds and further

details see [38]).

Theorem 1.31 ([38]). It holds that:

1. d1(n) = Θ(2n),

2. d2(n) = Θ(2n),

3. d3(n) = O
(
n2 · 4 n

3

)
.

See [11] and its references for results concerning D2-directing words of unambiguous and local

automata. Certain variant of synchronization of PFA different from the careful synchronization

has been studied in [15, 96].

1.4.3 Composing Functions

It has been pointed out by Arto Salomaa [81] in 2001 that very little was known about the

minimum length of a composition needed to generate a function by a given set of generators. To

be more precise, let us adopt and slightly extend the notation. We denote by Tn the semigroup

of all functions from {1, . . . , n} to itself. Given G ⊆ Tn, we denote by 〈G〉 the subsemigroup

generated by G. Given F ⊆ Tn, we denote by D(G,F) the length k of a shortest sequence

g1, . . . , gk of functions from G such that g1 ◦ · · · ◦ gk ∈ F. Finally, denote

Dn = max
n≤n

max
F,G⊆T

n

F∩〈G〉6=∅

D(G,F) . (1.2)

From basic connections between automata and transformation semigroups it follows that various

synchronization thresholds can be defined alternatively by putting additional restrictions to the

space of considered sets G and F in the definition (1.2) of the threshold Dn:

1. For the basic synchronization threshold of DFA (may be denoted by carDFA(n)), we

restrict F to be exactly the set of n-ary constant functions. Recall that a set G ⊆ Tn
corresponds to a DFA A = ({1, . . . n} ,Σ, δ): Each g ∈ G just encodes the action of certain

x ∈ Σ. Finding a reset word of A then equals composing transitions from G in order to

get a constant.

2. For the threshold sub(n), we restrict F to be some of the sets

FS = {f ∈ Tn | (∀r, s ∈ S) f (r) = f (s)}

for S ⊆ {1, . . . , n}. Therefore it holds that Dn ≥ sub(n) .

3. For car(n), we should consider an alternative formalism for PFA, where the „undefined”

transitions lead to a special error sink state. Let the largest number stand for the error

21

state. A careful reset word should map all the states except for the error state to one

particular non-error state. So, here we restrict

F = {f ∈ Tn | (∀r, s ∈ {1, . . . , n− 1}) f (r) = f (s) 6= n} ,
G ⊆ {g ∈ Tn | g(n) = n} .

However, in the canonical formalism such G ⊆ Tn corresponds to a (n− 1)-state PFA,

so we get Dn ≥ car(n− 1) . Allowing suitable sets FS for S ⊆ {1, . . . , n− 1}, we get

Dn ≥ csub(n− 1) as well.

Arto Salomaa refers to a single nontrivial bound of Dn, namely Dn ≥ (3
√
n)!. In fact, he omits a

construction of Kozen [53, Theorem 3.2.7] from 1977, which deals with lengths of proofs rather

than compositions but witnesses easily that Dn = 2Ω(n
log n). However, the lower bound of car(n)

from [49] revealed soon that Dn = 2Ω(n). Finally, in [70] the following tight bound was derived

from properties of finite groups (see also [45]):

Dn = 2n · e(1+o(1))
√

n
2 lnn.

In the above-mentioned article [41] the authors study an even more general concept: composing

binary relations. Such questions can be equivalently formulated as questions about NFA.

1.5 Computational Problems

1.5.1 Synchronization of DFA

Various basic computational problems arise from the study of DFA synchronization:

• Given an automaton, decide if it is synchronizing. A relatively simple algorithm, which

could be traced back to [26], works in polynomial time.

• Given a synchronizing automaton and a number d, decide if d is the length of shortest reset

words. This has been shown to be both NP-hard [33] and coNP-hard. More precisely, it

is DP-complete [69].

• Given a synchronizing automaton and a number d, decide if there exists a reset word of

length d. This is proven to be NP-complete [33]. It is also NP-complete to decide, whether

d is within a constant [19] or even logarithmic [15] factor from the length of shortest reset

words. Following the notation of [60], we call it Syn.

Assuming that M is a class of automata and membership in M is polynomially decidable, we

define the restricted problem:

Syn(M)

Input: Synchronizing automaton A = (Q,Σ, δ) ∈M, d ∈ N

Output: Does A have a reset word of length d?

Among the above-mentioned facts, the following are the most important for the present thesis.

Corollary 1.33 follows from Theorem 1.32 and Theorem 1.15.

Theorem 1.32 ([26]). There is a polynomial-time algorithm that decides whether a given au-

tomaton is synchronizing.

Corollary 1.33. Syn, if restricted to the instances with d ≥ |Q|3−|Q|
6 , is solvable in polynomial

time.

22

Theorem 1.34 ([33]). Syn is NP-complete, even if restricted to automata with two-letter alpha-

bets.

In Section 3.2 we study the complexity of Syn with restrictions to certain special classes of

automata.

1.5.2 Synchronization of PFA and Subset Synchronization

The first natural problems in these directions are:

Subset synchronizability

Input: n-state DFA A = (Q,Σ, δ), S ⊆ Q

Output: Is there some w ∈ Σ⋆ such that |δ(S,w)| = 1?

Careful synchronizability

Input: n-state PFA A = (Q,Σ, δ),

Output: Is there some w ∈ Σ⋆ such that

(∃r ∈ Q) (∀s ∈ Q) δ(s, w) = r?

Both these problems, in contrast to the synchronizability of DFA, are known to be PSPACE-

complete, which is further discussed in Section :

Theorem 1.35 ([68, 82]). Subset synchronizability is a PSPACE-complete problem.

Theorem 1.36 ([61]). Careful synchronizability is a PSPACE-complete problem.

There are also interesting results about an alternative (non-careful) variant of PFA synchro-

nization. In this case, it has been shown that the basic synchronizability problem is solvable

in polynomial time for strongly connected automata [96] but becomes PSPACE-complete if we

only require all the states to be reachable from one particular state [15].

1.5.3 Road Coloring

As the aperiodicity of a given directed multigraph can be tested in polynomial time, Theorem

1.26 and Corollary 1.27 imply that in polynomial time we can decide whether a graph is road

colorable. For finding an exact synchronizing coloring of a given graph, a cubic time algorithm

was developed by Trahtman [92] and improved to quadratic time by Béal and Perrin [12].

In the present thesis (Chapter 4) we study the following two problems, which deal with more

subtle properties of synchronizing colorings:

SRCP

Input: Alphabet Σ, admissible graph G = (Q,E) with out-degrees

|Σ|, d ∈ N

Output: Is there a coloring δ such that |δ(Q,w)| = 1 for some w ∈ Σ⋆

of length at most d?

SRCW

Input: Alphabet Σ, graph G = (Q,E) with out-degrees |Σ|, W ⊆ Σ⋆

Output: Is there a coloring δ such that |δ(Q,w)| = 1 for some w ∈W?

23

Restrictions of these two problems are denoted by subscripts and superscripts. A term of the

form SRCPM
|Σ|,d denotes the restriction of SRCP to instances with out-degrees |Σ|, number d,

and graphs from a class M. Similarly, a term of the form SRCWM
|Σ|,W denotes the restriction

of SRCW to instances with out-degrees |Σ|, set W of prescribed words, and graphs from a class

M. If a subscript or superscript is omitted, the corresponding parameter is not restricted.

1.5.4 Key Notions of Parameterized Complexity

In most of the paper, we do not need to work with any formal definition of a parameterized

problem. We see it as a classical decision problem where we consider some special numerical

property (parameter) of each input. Parameterized complexity is the study of the way in which

the hardness of an NP-complete problem relies on the parameter. A problem may remain NP-

hard even if restricted to instances with a particular value of the parameter or there may be a

polynomial-time algorithm for each such value. In the second case, if the algorithm is the same

for all the values (a uniform algorithm), the problem is said to lie in the class XP. Moreover, if

the time-bounding polynomials for different values are all of the same degree, we get into the

class FPT :

A parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm that

decides it in time

f(P) · r(|x|)

where x is the input string, P ∈ N its parameter, r is an appropriate polynomial, and f is

any computable function. If there is more than one possible parameter for a problem, one may

consider combinations of the parameters. A problem is FPT with respect to parameters P,Q

if it is decidable in time

f(P,Q) · r(|x|) .

This is typically much less restrictive condition than the previous one, where f depends on P

only.

There is a hierarchy of problems (the W-hierarchy) lying in XP but possibly outside FPT. It

consists of the classes W[1] ,W[2] , . . . :

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊂ XP. (1.3)

Since it has been conjectured that all the inclusions are proper, it is common to use W[k]-

hardness (with respect to an appropriate type of reduction) as an evidence of lying outside

FPT. However, we do not need to define the W-hierarchy here since it is used only to formulate

the preceding results (see Table 3.1), not for the new ones. See the textbook [30] for the

definitions and many other great ideas of parameterized complexity.

A kernel of a parameterized problem is a polynomial-time procedure that transforms any input

x of the problem to another input y such that the length and the parameter of y are bounded

by some function f of the parameter associated with x. Having a kernel is equivalent to lying

in FPT. If the function f is a polynomial, we get a polynomial kernel.

For functions f, g : N → N, the term g = O⋆(f) means that for a suitable polynomial p and

each x ∈ N we have g(x) ≤ f(x) · p(x).

24

Chapter 2

Lower Bounds of Synchronization

Thresholds

In this chapter we deal mostly with a new lower bound for subset synchronization in binary

DFA and careful synchronization in binary PFA. Specifically, we show that both the thresholds

are of the form 2Ω(n), even if only strongly connected automata are considered. The results

were presented at the conference AFL 2014 [103] and submitted in an extended paper to a

journal.

Besides of that, we include Section 2.2, which deals with the classical synchronization threshold

of DFA, restricted to automata having a sink state - a state with no outgoing transitions except

for loops (also known as a zero state). We inspect former lower bounds and propose certain

generalizations. The proposed methods turn out to be useful - they lead to slightly improved

lower bounds for several small values of the number of states, using computationally verified

examples. Moreover, the examples belong to a simple infinite series of automata, so it seems

very likely that the entire series has the desired properties, which is a topic for further research.

2.1 Careful Synchronization and Subset Synchronization

In Section 1.2.2 we have defined the thresholds carn and subn, while in Section 1.3.3 we have

pointed out that car(n) ≥ 3
n
3 (Theorem 1.23). In fact, sub(n) ≥ 3

n
3 holds as well, since the

proof of Theorem 1.23 can be easily modified in order to operate with subsets of states in DFA

(see Lemma 2.1). However, the proof uses very artificial series of automata to witness this lower

bound:

• In the series, the alphabet size grows linearly with the growing number of states - the result

relies on the convention of measuring the size of an automaton only by the number of

states, ignoring the alphabet size. The result says nothing about the thresholds sub ALk (n)

or car ALk (n) for any fixed k ≥ 2. In 2013, Martyugin [62] proves that

carAL2(n) > 3
n

6·log2 n ,

carALk(n) > 3
n

3·logm−1 n

for each k ≥ 3, which applies in a similar form also to subset synchronization. However,

it remained unclear whether carALk (n) = 2Ω(n) or subALk (n) = 2Ω(n) for some k ≥ 2.

Here we confirm this for k = 2, so for any greater k the claim follows easily.

• In the subset-synchronization form, the series consists of DFA with sink states, two of

them in each automaton. Use of sink states is a very strong tool for designing automata

having given properties, but in practice such automata seem very special. They represent

25

unstable systems balancing between different deadlocks. The very opposite are strongly

connected automata. Does the threshold remain so high if we consider only strongly con-

nected DFA? Unfortunately, we show below that it does, even if we restrict the alphabet

size to a constant. We introduce swap congruences as an alternative to sink states.

Note that in the case of careful synchronization, any lower bound of car(n) applies eas-

ily to carSC(n) using a simple trick from Lemma 2.2. Moreover, for suitable series the

alphabet size is increased only by a constant.

In this chapter we prove that

subAL2∩SC(n) = 2Ω(n),

car AL2∩SC(n) = 2Ω(n),

which shows that the bounds remain high even if restricted to binary, strongly connected

automata. The new bounds are tight in the sense of car(n) = 2Θ(n) and sub(n) = 2Θ(n). This

result has the following consequences:

• The naturally related computational problems are Subset synchronizability and

Careful Synchronizability (see Section 1.5.2). Both these problems, in contrast

to the synchronizability of DFA, are known to be PSPACE-complete. Note that such

hardness is not a consequence of any lower bound of synchronization thresholds, because

an algorithm does not need to produce an explicit reset word. The proofs of both the

theorems above make use of a result of Kozen [53], which establishes that it is PSPACE-

complete to decide if given finite acceptors with a common alphabet accept a common

word. This problem is polynomially reduced to our problems using the idea of two sink

states. Is it possible to avoid the non-connectivity here? In Theorem 2.10 we give a

positive answer: for Careful synchronizability it is in fact a trivial task, and in

the nontrivial case of Subset synchronizability the method of swap congruences is

general enough to perform a suitable reduction.

• It is known that d1(n) = Ω(2n) [49] and d3(n) = Ω
(
3

n
3

)
[59] (for upper bounds and

further details see [38]). Due to the easy relationship similar to (1.1) in Section 1.4.2, our

strongly exponential lower bounds apply directly to the thresholds d1(n) and d3(n) with

the restriction to binary strongly connected NFA:

dAL2∩SC
1 (n) = 2Ω(n), dAL2∩SC

3 (n) = 2Ω(n).

• Like in the case of car(n) and sub(n), the notion of Dn does not concern the size of G,

thus providing a ground for artificial series of bad cases based on growing alphabets. Our

results show that actually the growing size of G is not necessary: a strongly exponential

lower bound of Dn holds even if we restrict G to any nontrivial fixed size.

First, in Sections 2.1.1 to 2.1.4 we prepare the ground for the proof of the results formulated

above by introducing basic principles and relationships concerning the studied thresholds. These

principles are not innovative, except for the method using swap congruences described in Section

2.1.2, dealing with strong connectivity in subset synchronization. The main proof is presented

in Sections 2.1.5 and 2.1.6.

As noted before, many of the lower bounds of car(n) and sub(n) found in the literature were

formulated for only one of the notions but used ideas applicable to the other as well. The key

method used in the present paper for the binary case is of this kind again. However, we are not

able to calculate any of the thresholds from the other exactly.

26

2.1.1 Determinization by adding sink states

The following inequality is not a key tool of the present paper, we prove it in order to illustrate

that even careful subset synchronization is not much harder than subset synchronization itself.

Recall that trivially car(n) ≤ csub(n) and sub(n) ≤ csub(n) for each n.

Lemma 2.1. For each n ≥ 1 it holds that

csub(n) ≤ sub(n+ 2)− 1.

Proof. Take any PFA A = (QA,ΣA, δA) with a carefully synchronizable subset SA ⊆ QA
and choose a shortest careful reset word w ∈ Σ⋆ of SA with δA(s, w) = r0 for each s ∈ SA.

We construct a DFA B = (QB ,ΣB , δB) and a synchronizable subset SB ⊆ QB such that

sub(B,SB) ≥ |w|+ 1. Let us set

QB = QA ∪
{

D,D
}
,

XB = XA ∪ {ω} ,
δB(D, x) = D,

δB
(
D, x

)
= D

for each x ∈ ΣB , and

δB(s, x) =

{
δA(s, x) if defined

D otherwise
δB(s, ω) =

{
D if s = r0

D otherwise

for each s ∈ QA, x ∈ ΣA. Denote SB = SA ∪ {D} . The word wω witnesses that the subset SB
is synchronizable. On the other hand, let v be any reset word of SB . Since D is a sink state

and D ∈ SB , we have δB(v, s) = D for each s ∈ SB . Thus:

• The state D is not active during the application of v.

• There need to be an occurrence of ω in v.

Denote v = v0ωv1, where v0 ∈ Σ⋆A and v1 ∈ Σ⋆B . If |δB(SB , v0) ∩QA| = 1, we are done

since v0 maps all the states of SA to a unique state using only the transitions defined in A,

so |v| ≥ |w| + 1. Otherwise, there is some s ∈ δB(QB , v0) ∩ QA such that s 6= r0, but then

δB(ω, s) = D, which is a contradiction.

2.1.2 Strong connectivity

First we show an easy reduction concerning careful synchronization of strongly connected PFA.

We use a simple trick: A letter that is defined only on a single state cannot appear in a shortest

careful reset word, so one can make a PFA strongly connected by adding such letters. The

number of new letters needed may be reduced by adding special states, but the simple variant

described by Lemma 2.2 is illustrative and strong enough for our purpose.

For each j ≥ 0 we define the class Cj of PFA as follows. A PFA A = (Q,Σ, δ) belongs to Cj if

there are j pairs (r1, q1) , . . . , (rj , qj) ∈ Q×Q such that adding transitions of the form ri −→ qi
for each i = 1, . . . , j makes the automaton strongly connected. Note that C0 = SC.

Lemma 2.2. For each n, k, j ≥ 1 it holds that

carALk∩Cj (n) ≤ carALk+j∩SC(n) .

Proof. Take any PFA A = (Q,ΣA, δA) ∈ ALk∩Cj together with the pairs (r1, q1) , . . . , (rj , qj) ∈
Q × Q from the definition of Cj . We construct a PFA B = (Q,ΣB , δB) where ΣB = ΣA ∪

27

{ψ1, . . . , ψj}, δB(s, x) = δA(s, x) for x ∈ ΣA and s ∈ Q, and

δB(s, ψi) =

{
qi if s = ri

undefined otherwise

for i = 1 . . . , , j′ and s ∈ Q. Now it is easy to check that B is strongly connected and that

car(B) = car(A).

Second, we present an original method concerning subset synchronization of strongly connected

DFA. All the lower bounds applicable to sub(n) that we have found in the literature used

two sink states (deadlocks) to force application of particular letters during a synchronization

process. A common step in such proof looks like „The letter x cannot be applied since that

would make the sink state D active, while another sink state D is active all the time”. In

order to prove a lower bound of subSC(n), we have to develop an alternative mechanism. Our

mechanism relies on swap congruences:

Recall that, given a DFA A = (Q,Σ, δ), an equivalence relation ρ ⊆ Q×Q is a congruence if

rρs⇒ δ(r, x) ρ δ(s, x)

for each x ∈ Σ. We say that a congruence ρ is a swap congruence of a DFA if, for each

equivalence class C of ρ and each letter x ∈ Σ, the restricted function δ : C × {x} → Q is

injective. The key property of swap congruences is the following:

Lemma 2.3. Let A = (Q,Σ, δ) be a DFA, let ρ ⊆ Q2 be a swap congruence and take any S ⊆ Q.

If there are any r, s ∈ S with r 6= s and rρs, the set S is blind.

Proof. Because r and s lie in a common equivalence class of ρ, by the definition of a swap

congruence we have δ(r, w) 6= δ(s, w) for any w ∈ Σ⋆.

Thus, the alternative mechanism relies on arguments of the form „The letter x cannot be applied

since that would make both the states r, s active, while it holds that rρs”. It turns out that our

results based on the method can be derived from more transparent but not strongly connected

constructions by the following reduction principle:

Lemma 2.4. For each n ≥ 1 it holds that

sub(n) ≤ subSC(2n+ 2)− 1.

Moreover, for each n, k ≥ 1 and j ≥ 2 it holds that

subALk∩Cj (n) ≤ subALk+j∩SC(2n+ 2)− 1.

Proof. The first claim follows easily from the second one. So, take any DFA A = (QA,ΣA, δA) ∈
ALk ∩ Cj together with the pairs (r1, q1) , . . . , (rj , qj) ∈ QA ×QA from the definition of Cj and

let S ⊆ QA be synchronizable. We construct a strongly connected DFA B = (QB ,ΣB , δB) and

a subset SB ⊆ QB such that sub (B,SB) ≥ sub (A,SA) + 1. Let us set

QB = {s, s | s ∈ QA} ∪
{

E,E
}
,

XB = XA ∪ {ψ1, . . . , ψj} .

We want the relation

ρ = 〈(s, s) | s ∈ QA ∪ {E}〉 ,

where 〈. . . 〉 denotes an equivalence closure, to be a swap congruence. Regarding this require-

ment, it is enough to define δB on QA ∪ {E}. The remaining transitions are forced by the

28

injectivity on the equivalence classes. We set

δB(s, x) = δA(s, x) , δB(E, x) = E

for any s ∈ QA, x ∈ ΣA, while the letters ψ1, . . . , ψj act as follows:

δB(s, ψI) =

{
qI if s = ri

qI otherwise
, δB(E, ψI) = qI ,

δB(s, ψi) =

{
qi if s = ri

E otherwise
, δB(E, ψi) = E

for s ∈ QA and i 6= I, where I is chosen such that for a reset word w of SA in A with

δA(s, w) = r0, the state rI is reachable from r0. It is easy to see that such I exists for any

r0 ∈ SA. We set SB = SA ∪ {E}.

• First, note that the set SB is synchronizable in B by the word wuψI where u ∈ Σ⋆A such

that δA(r0, u) = rI .

• On the other hand, let v be a reset word of SB in B. The word v necessarily contains

some ψi for i ∈ {1, . . . , j}, so we can write v = v0ψiv1, where v0 ∈ Σ⋆A, v1 ∈ Σ⋆B . If v0 is a

reset word of SA in A, |v| ≥ sub(A,SA) + 1 and we are done. Otherwise there is a state

s 6= ri in δB(S, v0) and we see that both qi and qi (if i = I) or both E and E (if i 6= I) lie

in δB(S, v0ψ1), which is a contradiction with properties of the swap congruence ρ.

The automaton B is strongly connected since the transitions ri
ψi−→ qi and ri

ψi−→ qi for each

i = 1, . . . , j make both the copies of A strongly connected and there are transitions E
ψI−→ qI ,

s
ψi−→ E , E

ψI−→ q2, and s
ψi−→ E for some i 6= I and s 6= ri.

2.1.3 A special case of subset synchronization

We are not aware of any general bad-case reduction from subset synchronization to careful

synchronization. Here we suggest a special class (denoted by MP) of pairs automaton-subset

such that the instances from the class are in certain sense reducible to careful synchronization.

The main construction of the present paper (i.e. the proof of Lemma 2.7) yields instances of

subset synchronization that fit to this class. We use the following definitions:

• Given a PFA A = (Q,Σ, δ) and a carefully synchronizable subset S ⊆ Q, the S-relevant

part of A is

QA,S =
⋃

w∈WS

δ(S,w) ,

where WS is the set of prefixes of careful reset words of S in A. The S-relevant automaton

of A is RA,S = (QA,S ,Σ, δA,S), where

δA,S(s, x) =

{
δ(s, x) if δ(s, x) ∈ QA,S
undefined otherwise

for each s ∈ QA,S and x ∈ Σ.

• The class MP is defined as follows. For any PFA A = (Q,Σ, δ) and any carefully syn-

chronizable S ⊆ Q, the pair 〈A,S〉 lies in MP if there are subsets P1, . . . , P|S| ⊆ Q such

that:

29

– The sets P1, . . . , P|S| are disjoint and
⋃|S|
i=1 Pi = QA,S .

– For each v ∈ Σ⋆ such that δ(s, u) ∈ QA,S for any prefix u of v and any s ∈ S, it

holds that v is a careful reset word of S, or

|δ(S, v) ∩ Pi| = 1

for each i = 1, . . . , |S|. In particular, the choice of empty v implies that

|S ∩ Pi| = 1

must hold for each i = 1, . . . , |S|.

• The class CR
j for j ≥ 0 is defined as follows. For any PFA A = (Q,Σ, δ) and any carefully

synchronizable S ⊆ Q, the pair 〈A,S〉 lies in CR
j if RA,S ∈ Cj .

Lemma 2.5. For each n ≥ 1 it holds that

csubMP(n) ≤ car(n) .

Moreover, for each n, k, j ≥ 1 it holds that

csubALk∩CR
j ∩MP(n) ≤ carALk+1∩Cj (n) .

Proof. The first claim follows easily from the second. So, take any 〈A,S〉 ∈ MP with A =

(Q,ΣA, δA) and S ⊆ Q, together with the sets P1, . . . , P|S| from the definition of MP. By

adding a letter α to the automaton RA,S , we construct a carefully synchronizing PFA B =

(QA,S ,ΣB , δB) with car(B) ≥ csub(A,S). Let ΣB = ΣA ∪ {α} . For each s ∈ QA,S we find the

i such that s ∈ Pi and define

δB(s, α) = qi,

where qi is the only state lying in S ∩Pi, as guaranteed by the membership inMP. The letters

of ΣA act in B as they do in RA,S .

• It is easy to check that the automaton B is carefully synchronizing by αw for any w ∈ Σ⋆A
that is a careful reset word of S in A.

• On the other hand, take a shortest careful reset word v of B. If α does not occur in v,

then v is a careful reset word of S in A, so |v| ≥ csub (A,S). Otherwise, denote v = v0αv1

where v0 ∈ Σ⋆B and v1 ∈ Σ⋆A. By the membership in MP we have |δ(S, v0) ∩ Pi| = 1 for

each i = 1, . . . , |S| and thus δB(S, v0α) = S. It follows that v1 is a careful reset word of

S in A, so |v| ≥ csub (A,S).

2.1.4 Decreasing the alphabet size

The following method is quite simple and has been already used in the literature [19]. It modifies

an automaton in order to decrease the alphabet size while preserving high synchronization

thresholds.

Lemma 2.6. For each n, k ≥ 1 it holds that

1. subALk (n) ≤ subAL2(k · n) and subALk∩SC(n) ≤ subAL2∩SC(k · n) ,

2. carALk (n) ≤ carAL2(k · n) and carALk∩SC(n) ≤ carAL2∩SC(k · n) .

30

Proof. Take a PFA A = (QA,ΣA, δA) with ΣA = {a0, . . . , am}. We define a PFA B =

(QB ,ΣB , δB) as follows: QB = QA × ΣA, ΣB = {α, β}, and

δB((s, ai) , α) =

{
(δA(s, ai) , a0) if δA(s, ai) is defined

undefined otherwise

δB((s, ai) , β) =

{
(s, ai+1) if i < m

(s, am) if i = m

for each i = 0, . . . ,m. The construction of B applies to both the claims:

1. Let A be a DFA. We choose a synchronizable SA ⊆ QA and denote SB = SA × {a0}. It

is not hard to see that reset words of SB in B are in a one-to-one correspondence with

reset words of SA in A. A word ai1 . . . aid ∈ Σ⋆A corresponds to
(
βi1α

)
. . .
(
βidα

)
∈ Σ⋆B .

2. Let A be carefully synchronizing. We can suppose that δA(s, am) is defined on each

s ∈ QA since for a carefully synchronizing PFA there always exists such letter. For any

careful reset word ai1 . . . aid of A, the word βmα
(
βi1α

)
. . .
(
βidα

)
is a careful reset word

of B. On the other hand, any careful reset word of B is also a careful reset word of the

subset QA × {a0} ⊆ QB , whose careful reset words are in a one-to-one correspondence

with careful reset words of A, like in the previous case.

Since δB((s, am) , α) is defined for each s ∈ SA, it is not hard to check that if A is strongly

connected, so is B.

2.1.5 The key construction

Let us present the central construction of this chapter. We build a series of DFA with a constant-

size alphabet and a constant structure of strongly connected components, together with subsets

that require strongly exponential reset words. Moreover, the pairs automaton-subset are of the

special kind represented byMP, so a reduction to careful synchronization of PFA, as introduced

in Lemma 2.5, is possible.

Lemma 2.7. For infinitely many m ≥ 1 it holds that

subAL4∩C2∩CR
2 ∩MP(5m+ logm+ 3) ≥ 2m · (logm+ 1) + 1.

Proof. Suppose m = 2k. For each t ∈ 0, . . . ,m−1 we denote by τ = bin(t) the standard k-digit

binary representation of t, i.e. a word from {0,1}k. By a classical result proved in [36] there

is a De Bruijn sequence ξ = ξ0 . . . ξm−1 consisting of letters ξi ∈ {0,1} such that each word

τ ∈ {0,1}k appears exactly once as a cyclic factor of ξ (i.e. it is a factor or begins by a suffix

of ξ and continues by a prefix of ξ). Let us fix such ξ. By π(i) we denote the number t, whose

binary representation bin(t) starts by ξi in ξ. Note that π is a permutation of {0, . . . ,m− 1}.
Set

Q =
(
{0, . . . ,m− 1} ×

{
0,0↓,1,1↓,1↑}) ∪

{
C0, . . . ,Ck,D,D

}
,

X = {0,1, κ, ω} ,
S = ({0, . . . ,m− 1} × {0}) ∪ {C0,D} .

Figure 2.1 visually distinguishes main parts of A. The states D and D are sink states. Together

with D ∈ S it implies that any reset word of S takes the states of S to D and that the state D

must not become active during its application. The states C0, . . . ,Ck guarantee that any reset

31

{0, . . . ,m− 1} ×
{

0,0
↓
}

{0, . . . ,m− 1} ×
{

1,1
↓
,1

↑
} D

D

C0, . . . ,Ck

Figure 2.1: A connectivity pattern of the automaton A.

C0

Ck−1

κ

0,1
0,1

0,10,1

ωX

X

0,1

0,1

D

D

C1 C2

Ck−2

Ck

Figure 2.2: A part of A. All the outgoing transitions that are not depicted lead to D.

word of S lies in (
{0,1}k κ

)⋆
ωX⋆. (2.1)

Indeed, as defined by Figure 2.2, no other word takes C0 to D. Let the letter ω act as follows:

{0, . . . ,m− 1} × {1} ,C0,D
ω−→ D,

{0, . . . ,m− 1} ×
{

0,0↓,1↓,1↑} ,C1, . . . ,Clogm,D
ω−→ D.

We see that ω maps each state to D or D. This implies that once ω occurs in a reset word of

S, it must complete the synchronization. In order to map C0 to D, the letter ω must occur, so

any shortest reset word of S is exactly of the form

w = (τ1κ) . . . (τdκ)ω, (2.2)

where τj ∈ {0,1}k for each j.

The two biggest parts depicted by Figure 2.1 are very similar to each other. The letters 0 and

1 act on them as follows:

(i,0)
0−→
{

(i+ 1,0) if ξi = 0
(
i+ 1,0↓) if ξi = 1

(i,0)
1−→
{

D if ξi = 0

(i+ 1,0) if ξi = 1

(i,1)
0−→
{

(i+ 1,1) if ξi = 0
(
i+ 1,1↓) if ξi = 1

(i,1)
1−→
{(
i+ 1,1↑) if ξi = 0

(i+ 1,1) if ξi = 1

and (i,b)
0,1−→ (i+ 1,b) for each b = 0↓,1↓,1↑, using the addition modulo m everywhere. For

example, Figure 2.3 depicts a part of A for m = 8 and for a particular De Bruijn sequence

ξ. Figure 2.4 defines the action of κ on the states {i} ×
{

0,0↓,1,1↓,1↑} for any i, so the

automaton A is completely defined.

Let w be a shortest reset word of S in A. It is necessarily of the form (2.2), so it makes sense

to denote vt = bin(t)κ and treat w as

w = vt1 . . . vtdω ∈ {v0, . . . , vm−1, ω}⋆ . (2.3)

The action of each vt is depicted by Figure 2.5. It is a key step of the proof to confirm that

Figure 2.5 is correct. Indeed:

• Starting from a state (i,1), a word bin(t) takes us through a kind of decision tree to one

32

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 0,1

0,1
↓

0 0 1 0 1 1 1 0

1 1 1 1

0 0 0 0

0,1
↑

1,1
↑

2,1
↑

3,1
↑

4,1
↑

5,1
↑

6,1
↑

7,1
↑

0,1
↑

1,1
↓

3,1
↓

4,1
↓

5,1
↓

6,1
↓

7,1
↓

0,1
↓

2,1
↓

Figure 2.3: A part of A assuming m = 8 and ξ = 00101110. Bold arrows represent both 0,1.

i,1↑

i,1i− k,1

i,1↓

i,0
i− k,0

i,0↓

Figure 2.4: The action of the letter κ, with
subtraction modulo m.

i,1

i,0

vπ(i)

{vt|t < π(i)}

{vt|t > π(i)}

{vt|t ≤ π(i)}

{vt|t > π(i)}

D

Figure 2.5: The action of v0, . . . , vm−1 on
the i-th switch.

of the states
(
i+ k,1↓) , (i+ k,1) ,

(
i+ k,1↑), depending on whether t is lesser, equal,

or greater than π(i), respectively. This is guaranteed by wiring the sequence ξ into the

transition function, see Figure 2.3. The letter κ then take us back to {i}× {. . . }, namely

to (i,0) or (i,1).

• Starting from a state (i,0), we proceed similarly, but in the case of t > π(i) we fall into

D during the application of bin(t).

It follows that after applying any prefix vt1 . . . vtj of w, exactly one of the states (i,0) , (i,1) is

active for each i. We say that the i-th switch is set to 0 or 1 at time j. Note that QA\
{

D
}

is

the S-relevant part of A and that the sets {i} ×
{

0,0↓,1,1↓,1↑} for i = 0, . . . ,m− 1, together

with the sets {D} and {C0, . . . ,Ck}, can play the role of P1, . . . , Pm+2 in the definition ofMP.

Observe that at time d all the switches are necessarily set to 1 because otherwise the state D

would become active by the application of ω. On the other hand, at time 0 all the switches

are set to 0. We are going to show that in fact during the synchronization of S the switches

together perform a binary counting from 0 (all the switches set to 0) to 2m−1 (all the switches

set to 1). For each i the significance of the i-th switch is given by the value π(i). So the

π−1(m− 1)-th switch carries the most significant digit, the π−1(0)-th switch carries the least

significant digit and so on. The number represented in this manner by the switches at time j

is denoted by bj ∈ {0, . . . , 2m − 1}. We claim that bj = j for each j. Indeed:

• At time 0, all the switches are set to 0, we have b0 = 0.

• Suppose that bj′ = j′ for each j′ ≤ j − 1. We denote

tj = min {π(i) | i-th switch is set to 0 at time j − 1} (2.4)

and claim that tj = tj . Note that tj is defined to be the least significance level at which

there occurs a 0 in the binary representation of bj−1. Suppose for a contradiction that

tj > tj . By the definition of tj the state
(
π−1

(
tj
)
,0
)

lies in δ
(
S, vt1 . . . vtj−1

)
. But vtj

33

takes this state to D, which is a contradiction. Now suppose that tj < tj . In such case

the application of vtj does not turn any switch from 0 to 1, so bj ≤ bj−1 and thus at

time j the configuration of switches is the same at it was at time bj . This contradicts the

assumption that w is a shortest reset word. We have proved that tj = tj and it remains

only to show that the application of vtj performs the addition of 1 and so makes the

switches represent the value bj−1 + 1.

– Consider an i-th switch with π(i) < tj . By the definition of tj , it is set to 1 at time

j − 1 and the word vtj sets it to 0 at time j. This is what we need because such

switches represent a continuous leading segment of 1s in the binary representation

of bj−1.

– The π−1(tj)-th switch is set from 0 to 1 by the word vtj .

– Consider an i-th switch with π(i) > tj . The switch represents a digit of bj−1 which

is more significant than the tj-th digit. As we expect, the word vtj leaves such

switch unchanged.

Because bd = 2m, we deduce that d = 2m and thus |w| = 2m · (k + 1) + 1, assuming that a

shortest reset word w exists. But in fact we have also shown that there is only one possibility

for such w and that it is a true reset word for S. The unique w is of the form (2.3), where tj
is the position of the least significant 0 in the binary representation of j − 1.

The automaton A lies in C2 ∩ CR
2 since the addition of D −→ C0 and D −→ (0,0) makes A

strongly connected, while the addition of D −→ C0 and C0 −→ (0,0) makes RA,S strongly

connected.

2.1.6 The results

The following theorem presents the main results of the present paper:

Theorem 2.8. For infinitely many n ≥ 1 it holds that

1. subAL2∩SC(n) ≥ 2
n
61 ,

2. carAL2∩SC(n) ≥ 2
n
36 .

Proof. Lemma 2.7 says that

2m · (logm+ 1) + 1 ≤ subAL4∩C2∩CR
2 ∩MP(5m+ logm+ 3) (2.5)

for infinitely many m ≥ 1. Now we apply some of the lemmas from the above sections:

1. Lemma 2.4 extends (2.5) with

subAL4∩C2(5m+ logm+ 3) ≤ subAL6∩SC(10m+ 2 · logm+ 8)− 1

and Lemma 2.6 adds

subAL6∩SC(10m+ 2 · logm+ 8)− 1 ≤ subAL2∩SC(60m+ 12 · logm+ 48)− 1.

We chain the three inequalities and deduce

subAL2∩SC(60m+ 12 · logm+ 48) ≥ 2m · (logm+ 1) + 2,

subAL2∩SC(61m) ≥ 2m,

subAL2∩SC(n) ≥ 2
n
61 .

34

2. Lemma 2.5 extends (2.5) with

csubAL4∩CR
2 ∩MP(5m+ logm+ 3) ≤ carAL5∩C2(5m+ logm+ 3) ,

while Lemma 2.2 adds

carAL5∩C2(5m+ logm+ 3) ≤ carAL7∩SC(5m+ logm+ 3)

and Lemma 2.6 adds

carAL7∩SC(5m+ logm+ 3) ≤ carAL2∩SC(35m+ 7 · logm+ 21) .

We chain the four inequalities and deduce:

carAL2∩SC(35m+ 7 · logm+ 21) ≥ 2m · (logm+ 1) + 1,

carAL2∩SC(36m) ≥ 2m,

carAL2∩SC(n) ≥ 2
n
36 .

Note that there are more subtle results for less restricted classes of automata:

Proposition 2.9. It holds that subAL2(n) ≥ 2
n
21 , carAL2(n) ≥ 2

n
26 , subSC(n) ≥ 3

n
6 , and

carSC(n) ≥ 3
n
3 for infinitely many n ≥ 1.

Proof. The first claim follows easily from Lemmas 2.7 and 2.6, the second one requires also

using Lemma 2.5 first. The third and the last claim follow from applying Lemmas 2.1 and 2.4

(or Lemma 2.2 respectively) to the construction from [59].

2.1.7 An Application to Computational Complexity

Theorem 2.10. The following problems are PSPACE-complete:

1. Subset synchronizability restricted to binary strongly connected DFA

2. Careful synchronizability restricted to binary strongly connected PFA

Proof. There are polynomial reductions from the general problems Subset synchronizabil-

ity and Careful synchronizability: Perform the construction from Lemma 2.4 (or Lemma

2.2 respectively) and then the one from Lemma 2.6.

2.2 Synchronization Thresholds of Automata with Sink States

In this short section we leave the field of subset synchronization and careful synchronization

and we inspect a more basic field - synchronization of DFA with a sink state1, see Definition

1.5. First, we formulate the following easy observations:

Lemma 2.11. Let A = (Q,Σ, δ) ∈ Z be a DFA with a sink state q0 ∈ Q.

1. If A is synchronizing, then q0 is the only sink state and δ(Q,w) = {q0} for each reset

word w.

2. A is synchronizing if and only if q0 is reachable from each r ∈ Q.

1The questions can be equivalently expressed in terms of annulation of PFA, see e.g. [5].

35

2 13 0n− 2n− 1
a1

Σ\ {an−1} Σ\ {an−1, an−2} Σ\ {a3, a4} Σ\ {a2, a3} Σ\ {a1, a2} Σ

a2

a2

a3

a3

an−1

an−1

Figure 2.6: The automaton An from Theorem 2.12

Automata with sink states seem much easier to synchronize. Informally, once a state is mapped

to q0, it cannot be re-mapped anywhere else. However, it turns out that some questions about

lengths of shortest reset words remain hard, especially concerning alphabet size. For the whole

class Z the exact synchronization threshold has been already found by Rystsov:

Theorem 2.12 ([80]). For each n ≥ 1 it holds that Cn = n(n−1)
2 .

The proof uses a series of DFA with growing alphabet size. Specifically, for each n ≥ 1 there is

the following automaton An = (Q,Σ, δ) with C(A) = n(n−1)
2 :

Q = {0, . . . , n− 1} ,
Σ = {a1, . . . , an−1} ,

δ(s, x) =

s− 1 if s > 0 and x = as,

s+ 1 if s < n− 1, s 6= 0, and x = as+1,

s otherwise,

see also Figure 2.6.

On the other hand, in [57], Martyugin presents the lower bound
⌈
n2+6n−16

4

⌉
that holds also

with the restriction to binary DFA. Besides of that, he provided a single isolated example of a

10-state automaton that requires resets words of length 37, thus exceeding the bound above.

In the following we introduce an infinite series of automata admitting the Martyugin’s example

as an initial case. This consists of a series B1, B2, . . . of DFA with sink states, together with a

general construction of A〈k, r〉, which informally append a tail of length k to a sink state of a

DFA A ∈ Z, depending on a given non-sink state r of A. Using such notation, the Martyugin’s

10-state example is equal to B1〈3, q1〉, where q1 is a particular state of B1.

The following table lists the first six automata in our series. It was computationally verified

that their synchronization threshold exceeds
⌈
n2+6n−16

4

⌉
, including the Martyugin’s one. As our

automata have even number of states, we write 1
4n

2 + 3
2n− 4 instead of

⌈
n2+6n−16

4

⌉
. Software,

hardware, and assistance for the computations were kindly provided by Marek Szyku la.

automaton A number n of states 1
4n

2 + 3
2n− 4 synchronization

threshold of A

B1〈3, q1〉 10 36 37

B2〈9, q1〉 22 150 151

B3〈15, q1〉 34 336 337

B4〈21, q1〉 46 594 595

B5〈27, q1〉 58 924 925

B6〈33, q1〉 70 1326 1327

36

The table suggests the following conjecture:

Conjecture 2.13. For each j ≥ 1 it holds that C(Bj〈6j − 3, q1〉) = 1
4n

2 + 3
2n − 3, where n =

12j − 2.

Let us define all the notation mentioned above. First, we describe a general concept of adding

a tail of length k ≥ 1 to an automaton with a sink state. Let A = (Q, {a, b} , δ) be a binary

DFA with a unique sink state q0 ∈ Q. Then for each k ≥ 0 and each r ∈ Q the term A〈k, r〉
stands for the following automaton (Q′, {a, b} , δ′) with k additional states:

Q′ = Q ∪ {t0, t1, . . . , tk−1} ,

δ′(s, a) =

δ(s, a) if s ∈ Q\ {q0}
tk−1 if s = q0

t0 if s = t0,

ti−1 if s ∈ {t1, . . . , tk−1} ,

δ′(s, b) =

{
δ(s, b) if s ∈ Q\ {q0} ,
r otherwise,

for each s ∈ Q
′

. Observe that t0 is the new unique sink state. The key property of such

transformation is the following:

Lemma 2.14. Let A = (Q, {a, b} , δ) be a synchronizing binary DFA with a sink state q0 ∈ Q
and k ∈ N. Suppose that:

1. a is a permutation,

2. k ≥ 1 is a common multiple of the lengths of cycles of a,

3. r ∈ Q is the only non-sink state with δ(r, b) = q0,

4. b is a permutation of Q\ {r}.

Then C(A〈k, r〉) = C(A) + nk, where n = |Q|.

Proof. First, we show that C(A〈k, r〉) ≤ C(A)+nk. Let w be a reset word of A. For each d ≥ 1

we denote by ud the shortest prefix u of w satisfying that
∣∣δ−1({q0} , u)

∣∣ ≥ d, which means that

u maps at least d states to q0. Clearly, u1 = ǫ and un = w. Denote

w = v2 . . . vn,

where ud = v2 . . . vd for each 2 ≤ d ≤ n. Let w′ = akv2a
kv3a

k . . . vna
k. It is enough to show

that w′ synchronizes A〈k, r〉, i.e. δ′(s, w′) = t0 for each s ∈ Q′. If s ∈ {t0, t1, . . . , tk−1}, we just

observe that δ′(s, ak
)

= t0. If s ∈ Q, let d be the least integer such that δ(s, ud) = q0. Since

δ(s, u′) 6= q0 for each proper prefix u′ of ud, the definition of δ′ implies that

δ′(s, ud) = δ(s, ud) = q0.

As δ′(q0, a
k
)

= t0, we are done.

Second, we show that C(A) + nk ≤ C(A〈k, r〉). Let w′ be a reset word of A〈k, r〉. For each

s ∈ Q′, denote by u′
s the shortest prefix u′ of w′ with δ′(s, u′) = t0.

1. Observe that whenever s ∈ Q, the word u′
s must be of the form u′

s = v′
sa
k for some v′

s

with δ′(s, v′
s) = q0. Moreover, as q0 /∈ rng(a), each v′

s ends by b or is empty.

37

q4 q3

q6j q2

q1 q0

q5

q6j−1

Figure 2.7: The automaton Bj - solid marks a, dotted marks b

2. Next, we show that v′
p 6= v′

s for each distinct p, s ∈ Q. Otherwise, we have δ(p, v′) =

δ(s, v′) = q0, where v′ = v′
p = v′

s. As r is the only merging state in A〈k, r〉 except for t0,

we have

δ(p, v′′b) = δ(s, v′′b) = r,

for some prefix v′′ of v′ with δ(p, v′′) 6= δ(s, v′′). Because

δ(p, v′′) , δ(s, v′′) ∈ δ−1(r, b) = {t0, t1, . . . , tk−1, q0} ,

we can denote ti = δ(p, v′′) and tj = δ(s, v′′), where i, j ∈ {0, . . . , k} and tk stands for q0.

As p 6= s, we can suppose that p 6= q0 (the case s 6= q0 is symmetrical). From ti = δ(p, v′′)

it follows that v′′ ends with bai. From tj = δ(s, v′′) it follows that v′′ ends with baj or is

equal to aj . As i 6= j, we get a contradiction.

3. Together, each of the distinct prefixes v′
s of w′ for s ∈ Q ends by b and is followed by ak.

Thus, w′ contains at least n disjoint occurrences of the factor ak.

Let w be obtained from w′ by deleting these factors, so we have |w| ≤ |w′| − nk. It remains to

show that w is a reset word of A. Choose s ∈ Q and let w′
s be the shortest prefix u′ of w′ with

δ′(s, u′) = q0. As q0 /∈ rng(a), the word w′
s ends by b or is empty. Thus we can consider the

prefix ws of w obtained by deleting the occurrences of ak from w′
s. As k is a common multiple

of the lengths of cycles of a, the word ak acts as identity on Q\ {q0} in both A〈k, r〉 and A. We

conclude that

δ(s, ws) = δ(s, w′
s) = δ′(s, w′

s) = q0,

which implies easily that δ(s, w) = q0.

Now we define the infinite series Bj that, after adding tails, constitutes the new examples of

automata with high synchronization threshold.

For each j ≥ 1, we fix an automaton Bj = (Q, {a, b} , δ) with Q = {q0, q1, . . . , q6j} according to

the following table, where each qi ∈ Q is shortened to i:

s 0 1 2 3 4 5 · · · 6j − 1 6j

δ(s, a) 0 2 3 1 5 6 · · · 6j 4

δ(s, b) 0 0 3 4 5 6 · · · 6j 2

The automaton is also depicted in Figure 2.7. The key idea of this chapter is to add a tail of

length 6j − 3 to each Bj :

38

q4 q3

q6 q2

q1 q0q5 t2 t1 t0

Figure 2.8: The Martyugin’s automaton B1〈3, q1〉

q4 q3

q2

q1

q7

q8

q6 q5

q9 q10 q11 q12

q0 t8 t1 t0

Figure 2.9: The automaton B2〈9, q1〉

Lemma 2.15. For each j ≥ 1 it holds that

C(Bj〈6j − 3, q1〉) = C(Bj) + 36j2 − 12j − 3.

Proof. We apply Lemma 2.14. The letter a is indeed a permutation and its cycles have lengths

3 and 6j−3, so we can use k = 6j−3. We also observe that r = q1 meets the last two conditions

of the lemma. As Bj has n = 6j + 1 states, it remains to verify that nk = (6j + 1) (6j − 3) =

36j2 − 12j − 3.

See Figures 2.8 and 2.9 that depict the automata B1〈3, q1〉 and B2〈9, q1〉. It was compu-

tationally verified that C(Bj) = 18j − 2 for j = 1, 2, 3, 4, 5, 6. Thus, due to Lemma 2.15,

C(Bj〈6j − 3, q1〉) = 36j2 + 6j − 5 for each such j. The automaton C(Bj〈6j − 3, q1〉) has

n = 12j − 2 states, so we can compute that 36j2 + 6j − 5 = 1
4n

2 + 3
2n− 3. Thus, the automata

Bj〈6j − 3, q1〉 prove Conjecture 2.13 for 1 ≤ j ≤ 6 and witness the following theorem:

Theorem 2.16. For each 1 ≤ j ≤ 6 and n = 12j − 6, it holds that Cn ≥ 1
4n

2 + 3
2n− 3.

Besides the five new computationally verified examples exceeding the bound
⌈
n2+6n−16

4

⌉
, the

main contribution of this section lies in pointing out that it seems very likely for the whole

series Bj〈6j − 3, q1〉 to exceed this bound.

39

Chapter 3

Computing Synchronization

Thresholds in DFA

This chapter presents two results about the classical decision problem SYN introduced in Sec-

tion 1.5.1. First, we prove that unless polynomial hierarchy collapses, SYN does not have a

polynomial kernel if parameterized by the number of states. This concludes a research of Fer-

nau, Heggernes, and Villanger, 2013 [34] (in the latest version of this article [35], our result

is already cited). A paper [105] containing the proof was accepted for publishing in Discrete

Mathematics and Theoretical Computer Science.

Second, we confirm NP-completeness of SYN restricted to Eulerian automata with binary al-

phabets, as it was conjectured by Martyugin, 2011 [60]. The proof was presented [102] at the

conference LATA 2014 (Madrid, Spain), and an extended paper was submitted to a journal.

3.1 Parameterized Complexity of SYN

The result of this section and the former results of Fernau, Heggernes, and Villanger [34, 35]

are summarized by Table 3.1. We have filled the last remaining gap in the corresponding table

in [34, Sec. 3]. Thus, the multi-parameter analysis of SYN is complete in the sense that

NP-complete restrictions are identified and under several standard assumptions we know which

restrictions are FPT and which of them have polynomial kernels.

The following lemma, which is easy to prove using the construction of a power automaton, says

that Syn lies in FPT if parameterized by the number of states:

Parameter
Parameterized Complexity

of SYN
Polynomial Kernel of SYN

d W[2]-hard [34] —

|Σ| NP-complete for
|Σ| = 2, 3, . . .

[33] —

d and |Σ| FPT, running time O⋆(|Σ|d) [triv.] Not unless
NP ⊆ coNP/poly

[34]

n = |Q| FPT, running time O⋆(2n) [triv.] Not unless PH collapses �

Table 3.1: Results of the complete multi-parameter analysis of SYN and SRCP. Diamonds mark
the results of the present paper

40

Lemma 3.1 ([34, 82]). There exists an algorithm that solves SYN in time r(n, |Σ|) · 2n for an

appropriate polynomial r.

But does there exist a polynomial kernel? In this section we use methods developed by Bod-

laender et al. [20] to prove the following:

Theorem 3.2. If Syn parameterized by the number of states has a polynomial kernel, then

PH = Σ3
p.

By PH we denote the union of the entire polynomial hierarchy, so PH = Σ3
p means that

polynomial hierarchy collapses into the third level, which is widely assumed to be false. The

key proof method relies on composition algorithms. In order to use them immediately, we

introduce the formalization of our parameterized problem as a set of string-integer pairs:

LSYN = {(x, n) | x ∈ Σ⋆ encodes an instance of SYN with n ∈ N states} ,

where Σ is an appropriate finite alphabet.

3.1.1 Composition Algorithms

An or-composition algorithm for a parameterized problem L ⊆ Σ⋆ × N is an algorithm that

• receives as input a sequence ((x1, n) , . . . , (xm, n)) with (xi, n) ∈ Σ⋆ × N+ for each 1 ≤
i ≤ m,

• uses time polynomial in
∑m
i=1 |xi|+ n

• outputs (y, n′) ⊆ Σ⋆ × N+ with

1. (y, n′) ∈ L⇔ there is some 1 ≤ i ≤ m with (xi, n) ∈ L,

2. n′ is polynomial in n.

Let L ⊆ Σ⋆ × N be a parameterized problem. Its unparameterized version is

L̂ = {x#an | (x, n) ∈ L} ,

where # /∈ Σ is a special symbol.

Theorem 3.3 ([20]). Let L be a parameterized problem having an or-composition algorithm.

Assume that its unparameterized version L̂ is NP-complete. If L has a polynomial kernel, then

PH = Σ3
p.

The unparameterized version of LSYN is computationally as hard as the classical SYN, so it is

NP-complete. It remains only to describe an or-composition algorithm for LSYN, which is done

in the remainder of this section. For each n ∈ N we denote z(n) = n3−n
6 , which is the Pin’s

upper bound for lengths of shortest reset words, see Theorem 1.15.

3.1.2 Preprocessing

Let the or-composition algorithm receive an input

((A1, d1) , n) , . . . , ((Am, dm) , n)

consisting of n-state automata A1, . . . , Am, each of them equipped with a number di. Assume

that the following easy procedures have been already applied:

41

• For each i = 1, . . . ,m such that di ≥ z(n), use the polynomial-time synchronizability

algorithm from Corollary 1.33 to decide whether ((Ai, di) , n) ∈ LSYN. If so, return

a trivial true instance immediately. Otherwise just delete the i-th member from the

sequence.

• For each i = 1, . . . ,m, add an additional letter κ to the automaton Ai such that κ acts

as the identical mapping: δi(s, κ) = s.

• For each i = 1, . . . ,m rename the states and letters of Ai such that

Ai = (Qi, Ii, δi) ,

Qi = {1, . . . , n} ,
Ii =

{
κ, ai,1, . . . , ai,|Ii|−1

}
.

After that, our algorithm chooses one of the following procedures according to the length m of

the input sequence:

• If m ≥ 2n, use the exponential-time algorithm from Lemma 3.1: Denote D =∑m
i=1 |(Ai, di)| + n, where we add lengths of descriptions of the pairs. Note that

D ≥ m ≥ 2n and that D is the quantity used to restrict the running time of or-composition

algorithms. By the lemma, in time

m∑

i=1

r (n, |Ii|) · 2n ≤ m · r(D,D) · 2n ≤ D2 · r(D,D)

we are able to analyze all the m automata and decide if some of them have a reset word

of the corresponding length. It remains just to output some appropriate trivial instance

((A′, d′) , n′).

• If m < 2n, we denote q(m) = ⌊log (m+ 1)⌋. It follows that q(m) ≤ n+ 2. On the output

of the or-composition algorithm we put ((A′, d′) , n′), where A′ is the automaton described

in the following paragraphs and

d′ = z(n) + 1

is our choice of the maximal length of reset words to be found in A′.

3.1.3 Construction of A′ and Its Ideas

Here we describe the automaton A′ that appears in the output of our or-composition algorithm.

We set

A′ = (Q′, I ′, δ′) ,

Q′ = {1, . . . , n} ∪ {D} ∪ ({0, . . . , z(n)} × {0, . . . , q(m)} × {T,F}) ,

Σ′ =

(
m⋃

i=1

Σi

)
∪ {α1, . . . , αm} ∪ {ω1, . . . , ωn} .

On the states {1, . . . , n} the letters from
⋃m
i=1 Σi act simply:

s
xi,j−→ δi(s, xi,j)

for each s = 1, . . . , n, i = 1, . . . ,m, j = 1, . . . , |Σi|. In other words, we let all the letters from all

the automata A1, . . . , Am act on the states 1, . . . , n just as they did in the original automata.

42

The additional letters act on {1, . . . , n} simply as well:

s
αi−→ s s

ωs−→
{

D if s = s

s otherwise.

for each s, s = 1, . . . , n, i = 1, . . . ,m. The state D is a sink state, which means that

D
y−→D

for each y ∈ Σ′. Note that any reset word of A′ have to map all the states of Q′ to D.

The remaining 2 · (z(n) + 1) · (q(m) + 1) states form what we call a guard table. Its purpose is

to guarantee that:

(C1) Any reset word of A′ has to be of length at least d′ = z(n) + 1.

(C2) Any reset word w of A′, having length exactly z(n) + 1, is of the form

w = αiy1 . . . ydi
κz(n)−1−diωs (3.1)

for some i ∈ {1, . . . ,m}, y1, . . . , ydi
∈ Σi, and s ∈ {1, . . . , n}, such that y1 . . . ydi

is a reset

word of Ai.

(C3) Any word w

• of length d′ = z(n) + 1,

• of the form (3.1),

• and satisfying δi(Qi, y1 . . . ydi
) = {s}

is a reset word of A′.

If the guard table manages to guarantee these three properties of A′, we are done: Is is easy to

check that they imply all the conditions given in the definition of a composition algorithm. So,

let us define the action of the letters from Σ′ on the states from {0, . . . , z(n)}×{0, . . . , q(m)}×
{T,F}. After that the automaton A′ will be complete and we will check the properties C1, C2,

C3.

The actions of the letters α1, . . . , αm should meet the following two conditions:

• Any reset word w of length z(n) + 1 has to start by some αi.

• In such short reset word, right after the starting αi, there must occur at least z(n) − 1

consecutive letters from Σi. Informally, by applying αi we choose the automaton Ai.

How to do that? The number m may be quite large and each of α1, . . . , αm needs to have a

unique effect. The key tool is what we call activity patterns. Let us work with the set

R = {0, . . . , q(m)} ,

which matches „half of a row” of the guard table. Subsets of R correspond in a canonical

way to binary representations of numbers 0, . . . , 2q(m)+1 − 1. We will actually represent only

the numbers 1, . . . ,m. These does not include any of the extreme values corresponding to the

empty set and whole R, because we have m < 2q(m)+1 − 1. So let the mapping

b : {1, . . . ,m} → 2R

assign the corresponding subset of R to a number. For instance, it holds that

b(11) = {0, 1, 3}

43

κ κ κ κ κ κ κ κ

0,T 1,T 2,T 3,T 0,F 1,F 2,F 3,F

0

1

2

3

4

5

6

7

8

9

10

Σ6

Σ6 Σ6

Σ6

Σ6 Σ6

Σ6 Σ6

Σ6 Σ6 Σ6 Σ6

Σ6 Σ6 Σ6 Σ6

α6 α6 α6 α6 α6 α6

α6
α6

D

κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ

1

2

3
4

ω1

ω3
ω4

ω2

ω1, ω2, ω3, ω4

Σ6

Σ6 Σ6

Σ6

Σ6 Σ6

Σ6 Σ6

Σ6

Σ6 Σ6

Σ6

Σ6 Σ6

Σ6 Σ6

Σ6

Σ6 Σ6

Σ6

Σ6 Σ6

Σ6 Σ6

Figure 3.1: Some transitions of the example automaton described in Section 3.1.4. Grey states
remain active after applying α6.

44

because 11 = 20 + 21 + 23. For each i = 1, . . . ,m we define specific pattern functions

πT
i , π

F
i : R→ R

such that

rng πT
i = b(i) ,

rng πF
i = R\b(i)

for each i. It is irrelevant how exactly are πT
i and πF

i defined. It is sure that they exist, because

the range is never expected to be empty. The action of the letters α1, . . . , αm is

(h, k,T)
αi−→

(
1, πT

i (k) ,T
)
,

(h, k,F)
αi−→

(
1, πF

i (k) ,F
)
,

for each i = 1, . . . ,m, h = 0, . . . , z(n), and k = 0, . . . , q(m).

Note that each αi maps the entire guard table, and in particular the entire row 0, into the row

1. In fact, all „downward” transitions within the guard table will lead only one row down, and

the only transitions escaping from the guard table will lead from the bottom row. Thus any

reset word will have length at least d′ = z(n) + 1. Moreover, during its application, at time l

the rows 0, . . . , l− 1 will have to be all inactive. This is a key mechanism that the guard table

uses for enforcing necessary properties of short reset words.

Let us define how the letters xi,j act on the guard table. Choose any i ∈ {1, . . . ,m}. The

action of xi,j within the guard table does not depend on j, all the letters coming from a single

automaton act identically here:

• for the rows h ∈ {1, . . . , di} we set

(h, k,T)
xi,j−→

{
(h+ 1, k,T) if k ∈ b(i) ,

(0, k,T) otherwise,

(h, k,F)
xi,j−→

{
(h+ 1, k,F) if k /∈ b(i) ,

(0, k,F) otherwise,

• for the remaining rows h ∈ {0} ∪ {di + 1, . . . , z(n)} we set

(h, k,T)
xi,j−→ (0, k,T) ,

(h, k,F)
xi,j−→ (0, k,F) .

Recall that sending an activity marker along any transition ending in the row 0 is a „suicide”.

A word that does this cannot be a short reset word. So, if we restrict ourselves to letters from

some Σi, the transitions defined above imply that only at times 1, . . . , di the forthcoming letter

can be some xi,j . In the following z(n)−di−1 steps the only letter from Σi that can be applied

is κ.

The letter κ maps all the states of the guard table simply one state down, except for the rows

0 and z(n). Set

(h, k,T)
κ−→ (h+ 1, k,T) ,

(h, k,F)
κ−→ (h+ 1, k,F)

45

for each h = 1, . . . , z(n)− 1, and

(0, k,T)
κ−→ (0, k,T) ,

(0, k,F)
κ−→ (0, k,F) ,

(z(n) , k,T)
κ−→ (0, k,T) ,

(z(n) , k,F)
κ−→ (0, k,F) .

It remains to describe actions of the letters ω1, . . . , ωn on the guard table. Set

(z(n) , k,T)
ωs−→D,

(z(n) , k,F)
ωs−→D

for each k = 0, . . . , q(m), s = 1, . . . , n, and

(h, k,T)
ωs−→ (0, k,T) ,

(h, k,F)
ωs−→ (0, k,F)

for each h = 0, . . . , z(n) − 1, k = 0, . . . , q(m), and s = 1, . . . , n. Now the automaton A′ is

complete.

3.1.4 An Example

Consider an input consisting of m = 12 automata A1, . . . , A12, each of them having n = 4

states. Because z(4) = 10 and q(12) = 3, the output automaton A′ has 93 states in total. In

Figure 3.1 all the states are depicted, together with some of the transitions. We focus on the

transitions corresponding to the automaton A6, assuming that d6 = 5.

The action of α6 is determined by the fact that 6 = 21 + 22 and thus

rng πT
6 = b(6) = {1, 2} ,

rng πF
6 = R\b(6) = {0, 3} .

If the first letter of a reset word is α6, after its application only the states

(1, 1,T) , (1, 2,T) , (1, 0,F) , (1, 3,F)

remain active within the guard table. Now we need to move their activity markers one row down

in each of the following z(n)− 1 = 9 steps. The only way to do this is to apply d6 = 5 letters of

Σ6 and then z(n)−1−d6 = 4 occurrences of κ. Then we are allowed to apply one of the letters

ω1, . . . , ωn. But before that time, there should remain only one active state s ∈ {1, . . . , n}, so

that we could use ωs. The letter κ does not affect the activity within {1, . . . , n} so we need to

synchronize these states using d6 = 5 letters from Σ6.

So, any short reset word of A′ starting with α6 has to contain a short reset word of A6.

3.1.5 The Guard Table Works

It remains to use ideas informally outlined in Section 3.1.3 to prove that A′ has the properties

C1, C2, and C3 from Section 3.1.3.

C1. As it has been said, for each letter x ∈ Σ′ and each state (h, k,Q), where Q ∈ {T,F} and

h ∈ {0, . . . , z(n)− 1}, it holds that

(h, k,Q)
x−→ (h′, k′,Q) ,

46

where h′ < h or h′ = h+ 1. So the shortest paths from the row 0 to the state D have length at

least z(n) + 1.

C2. We should prove that any reset word w, having length exactly z(n) + 1, is of the form

w = αiy1 . . . ydiκ
z(n)−1−diωs,

such that, moreover, y1 . . . ydi
is a reset word of Ai. The starting αi is necessary, because

α1, . . . , αm are the only letters that map states from the row 0 to other rows. Denote the

remaining z(n) letters of w by y1, . . . , yz(n).

Once an αi is applied, there remain only |R| = q(m) + 1 active states in the guard table, all in

the row 1, depending on i. The active states are exactly from

{1} × b(i)× {T} and {1} ×R\b(i)× {F} ,

because this is exactly the range of αi within the guard table. Let us continue by an induction.

We claim that for 0 ≤ τ < di it holds what we have already proved for τ = 0:

1. If τ ≥ 1, the letter yτ lies in Σi. Moreover, if τ > di, it holds that wτ = κ.

2. After the application of yτ the active states within the guard table are exactly from

{τ + 1} × b(i)× {T} and {τ + 1} ×R\b(i)× {F} .

For τ = 0 both the claims hold. Take some 1 ≤ τ < di and suppose that the claims hold for

τ − 1. Let us use the second claim for τ − 1 to prove the first claim for τ . So all the states from

{τ} × b(i)× {T} and {τ} ×R\b(i)× {F}

are active. Which of the letters could appear as yτ? The letters ω1, . . . , ωn and α1, . . . , αm
would map all the active states to the rows 0 and 1, which is a contradiction. Consider any

letter xk,j for k 6= i. It holds that b(i) 6= b(k), so there is some c ∈ R lying in their symmetrical

difference. For such c it holds that

(τ, c,T)
xk,j−→ (0, c,T) if c ∈ b(i) \b(k)

or

(τ, c,F)
xk,j−→ (0, c,F) if c ∈ b(k) \b(i)

which necessarily activates some state in the row 0, which is a contradiction again. So, yτ ∈ Σi.

Moreover, if τ > di, the letters from Σi\ {κ} map the entire row τ into the row 0, so the only

possibility is yτ = κ.

The letter yτ maps all the active states right down to the row τ + 1, so the second claim for τ

holds as well.

C3. It is easy to verify that no „suicidal” transitions within the guard table are used, so during

the application of

y1 . . . ydi
κz(n)−1−di

the activity markers just flow down from the row 1 to the row z(n). Since y1 . . . ydi
is a reset

word of Ai, there also remains only one particular state s within {1, . . . , n}. Finally the letter

ωs is applied which maps s and the entire row z(n) directly to D.

47

3.2 Complexity of SYN Restricted to Eulerian Binary Automata

An automaton A = (Q,Σ, δ) is Eulerian if

∑

x∈Σ

|{r ∈ Q | δ(r, x) = q}| = |Σ|

for each q ∈ Q. Informally, there should be exactly |Σ| transitions incoming to each state. An

automaton is binary if |Σ| = 2. The class of Eulerian automata is denoted by EU .

Previous results about various restrictions of Syn can be found in [33, 58, 60]. Some of these

problems turned out to be polynomially solvable, others are NP-complete. In [60] Martyugin

conjectured that Syn(EU ∩ AL2) is NP-complete. This conjecture is confirmed in the rest of

this section.

3.2.1 Proof Outline

We prove the NP-completeness of Syn(EU ∩AL2) by a polynomial reduction from 3-SAT. So,

for arbitrary propositional formula φ in 3-CNF we construct an Eulerian binary automaton A

and a number d such that

φ is satisfiable ⇔ A has a reset word of length d. (3.2)

For the rest of the paper we fix a formula

φ =

m∧

i=1

∨

λ∈Ci

λ

on n variables where each Ci is a three-element set of literals, i.e. subset of

Lφ = {x1, . . . , xn,¬x1, . . . ,¬xn} .

We index the literals λ ∈ LΦ by the following mapping κ:

λ x1 x2 . . . xn ¬x1 ¬x2 . . . ¬xn

κ(λ) 0 1 . . . n− 1 n n+ 1 . . . 2n−1

Let A = (Q,Σ, δ), Σ = {a, b}. Because the structure of the automaton A will be very het-

erogeneous, we use an unusual method of description. The basic principles of the method

are:

• We describe the automaton A via a labeled directed multigraph G, representing the

automaton in a standard way: edges of G are labeled by single letters a and b and carry

the structure of the function δ. Paths in G are thus labeled by words from {a, b}⋆.

• There is a collection of labeled directed multigraphs called templates. The graph G is one

of them. Another template is SINGLE, which consists of one vertex and no edges.

• Each template T6=SINGLE is expressed in a fixed way as a disjoint union through a set

PARTST of its proper subgraphs (the parts of T), extended by a set of additional edges

(the links of T). Each H ∈ PARTST is isomorphic to some template U. We say that H is

of type U.

48

• Let q be a vertex of a template T, lying in subgraph H ∈ PARTST which is of type U

via vertex mapping ρ : H → U. The local address adrT(q) is a finite string of identifiers

separated by „|”. It is defined inductively by

adrT(q) =

{
H | adrU(ρ(q)) if U 6= SINGLE

H if U = SINGLE.

The string adrG(q) is used as a regular vertex identifier.

Having a word w ∈ Σ⋆, we denote a t-th letter of w by wt and define the set St = δ(Q,w1 . . . wt)

of active states at time t. Whenever we depict a graph, a solid arrow stands for the label a and

a dotted arrow stands for the label b.

3.2.2 Description of the Graph G

Let us define all the templates and informally comment on their purpose. Figure 3.2 defines

the template ABS, which does not depend on the formula φ.

in

out

r2r1

q1 q2 q3

Figure 3.2: The template ABS Figure 3.3: A barrier of ABS parts

The state out of a part of type ABS is always inactive after application of a word of length

at least 2 which does not contain b2 as a factor. This allows us to ensure the existence of a

relatively short reset word. Actually, large areas of the graph (namely the CLAUSE(. . .) parts)

have roughly the shape depicted in Figure 3.3, a cylindrical structure with a horizontal barrier

of ABS parts. If we use a sufficiently long word with no occurrence of b2, the edges outgoing

from the ABS parts are never used and almost all states become inactive.

in

out

sbsa

in

out

sbsa

s2

sd

s1

Figure 3.4: The templates CCA, CCI and PIPE(d) respectively

Figure 3.4 defines simple templates CCA, CCI and PIPE(d) for each d ≥ 1. The activity of

an out state depends on the last two letters applied. In the case of CCA it is inactive if (and

typically only if) the two letters were equal. In the case of CCI it works oppositely, equal letters

correspond to active out state. One of the key ideas of the entire construction is the following.

Let there be a subgraph of the form

49

part of type PIPE(d)

↓ a, b

part of type CCA or CCI

↓ a, b

part of type PIPE(d).

(3.3)

Before the synchronization process starts, all the states are active. As soon as the second letter

of an input word is applied, the activity of the out state starts to depend on the last two letters

and the pipe below keeps a record of its previous activity. We say that a part H of type PIPE(d)

records a sequence B1 . . . Bd ∈ {0,1}d at time t, if it holds that

Bk = 1⇔ H|sk /∈ St.

In order to continue with defining templates, let us define a set Mφ containing all the literals

from Lφ and some auxiliary symbols:

Mφ = Lφ ∪ {y1, . . . , yn} ∪ {z1, . . . , zn} ∪ {q, q′, r, r′} .

We index the 4n+ 4 members ν ∈Mφ by the following mapping µ:

ν q r y1 x1 y2 x2 . . . yn xn

µ(ν) 1 2 3 4 5 6 . . . 2n+1 2n+2

ν q′ r′ z1 ¬x1 z2 ¬x2 . . . zn ¬xn

µ(ν) 2n+3 2n+4 2n+5 2n+6 2n+7 2n+8 . . . 4n+3 4n+4

The inverse mapping is denoted by µ′. For each λ ∈ Lφ we define templates INC(λ) and

NOTINC(λ), both consisting of 12n+ 12 SINGLE parts identified by elements of {1, 2, 3} ×Mφ.

As depicted by Figure 3.5a, the links of INC(λ)are:

(1, ν)
a−→
{

(2, λ) if ν = λ or ν = r

(2, ν) otherwise

(2, ν)
a−→
{

(3, q) if ν = r or ν = q

(3, ν) otherwise

(1, ν)
b−→
{

(2, r) if ν = λ or ν = r

(2, ν) otherwise

(2, ν)
b−→
{

(3, r) if ν = r or ν = q

(3, ν) otherwise

Note that we use the same identifier for an one-vertex subgraph and for its vertex. As it is

clear from Figure 3.5b, the links of NOTINC(λ) are:

(1, ν)
a−→ (2, λ)

(2, ν)
a−→
{

(3, q) if ν = q or ν = λ

(3, ν) otherwise

(1, ν)
b−→ (2, r)

(2, ν)
b−→
{

(3, λ) if ν = q or ν = λ

(3, ν) otherwise

The key property of such templates comes to light when we need to apply some two-letter

word in order to make the state (3, λ) inactive assuming (1, r) inactive. If also (1, λ) is initially

inactive, we can use the word a2 in both templates. If it is active (which corresponds to the

idea of unsatisfied literal λ), we discover the difference between the two templates: The word

50

1, x1

2, x1

3, x1

1, λ

2, λ

3, λ

1,¬x1

2,¬x1

3,¬x1

1, r

2, r

3, r

1, q

2, q

3, q

(a) INC(λ)

1, x1

2, x1

3, x1

1, λ

2, λ

3, λ

1,¬x1

2,¬x1

3,¬x1

1, r

2, r

3, r

1, q

2, q

3, q

(b) NOTINC(λ)

Figure 3.5: The templates INC(λ) and NOTINC(λ)

part levelx2
of type

{

INC(x) if x2 ∈ Ci

NOTINC(x) otherwise

part levelλ of type

{

INC(λ) if λ ∈ Ci

NOTINC(λ) otherwise

part level
¬xn

of type

{

INC(¬xn) if ¬xn ∈ Ci

NOTINC(¬xn) otherwise

part levelx1
of type

{

INC(x) if x1 ∈ Ci

NOTINC(x) otherwise

Figure 3.6: The template TESTER

51

s6n−6,0 s6n−6,1 s6n−6,2 s6n−6,3

q1,0

s0
s1,0

s2,0

s3,0

s4,0

s5,0

s2,1

s3,1

s4,1

s5,1

s3,2

s4,2

s5,2

s4,3

s5,3

r1,0

q1,1

r1,1

q1,2

r1,2

q2n+1,0

q2n+1,0

s6n−4,0 s6n−4,1 s6n−4,2 s6n−4,3

s6n−5,0 s6n−5,1 s6n−5,2 s6n−5,3

s6n−3,0 s6n−3,1 s6n−3,2 s6n−3,3

s6n−2,0 s6n−2,1 s6n−2,2 s6n−2,3

q2,0

r2,0

q2,1

r2,1

q2,2

r2,2

q2n+1,1

r2n+1,1

q2n+1,2

r2n+1,2

Figure 3.7: The templates FORCER and LIMITER respectively

a2 works if the type is NOTINC(λ), but fails in the case of INC(λ). Such failure corresponds to

the idea of unsatisfied literal λ occurring in a clause of φ.

For each clause (each i ∈ {1, . . . ,m}) we define a template TESTER(i). It consists of 2n serially

linked parts, namely levelλ for each λ ∈ Lφ, each of type INC(λ) or NOTINC(λ). The particular

type of each levelλ depends on the clause Ci as seen in Figure 3.6, so exactly three of them

are always of type INC(. . .). If the corresponding clause is unsatisfied, each of its three literals

is unsatisfied, which causes three failures within the levels. Three failures imply at least three

occurrences of b, which turns up to be too much for a reset word of certain length to exist.

Clearly we still need some additional mechanisms to realize this vague vision.

Figure 3.7 defines templates FORCER and LIMITER. The idea of template FORCER is simple.

Imagine a situation when q1,0 or r1,0 is active and we need to deactivate the entire forcer by a

word of length at most 2n+ 3. Any use of b would cause an unbearable delay, so if such a word

exists, it starts by a2n+2.

The idea of LIMITER is similar, but we tolerate some occurrences of b here, namely two of

them. This works if we assume s1,0 active and it is necessary to deactivate the entire limiter

by a word of length at most 6n+ 1.

We also need a template PIPES(d, k) for each d, k ≥ 1. It consists just of k parallel pipes of

length d. Namely there is a SINGLE part sd′,k′ for each d′ ≤ d, k′ ≤ k and all the edges are of

the form sd′,k′ −→ sd′+1,k′ .

The most complex templates are CLAUSE(i) for each i ∈ {1, . . . ,m}. Denote

αi = (i− 1) (12n− 2) ,

βi = (m− i) (12n− 2) .

As shown in Figure 3.8, CLAUSE(i) consists of the following parts:

• Parts sp1, . . . , sp4n+6 of type SINGLE.

• Parts abs1, . . . , abs4n+6 of type ABS. The entire template has a shape similar to Figure

3.3, including the barrier of ABS parts.

52

sp4n+4 sp4n+5 sp4n+6

q

r

y1

x1

y2

x2

yn

xn

q ′

r ′

z1

¬x1

z2

¬x2

zn

¬xn

x1 x2 xn ¬x1 ¬x2 ¬xn

pipes2

pipes3

tester

forcer

sp4n+6

sp2

sp1
sp2n+8

sp2n+9

sp2n+6

sp2n+7

sp2n+4

sp2n+5

abs3

abs4

abs5

abs6

abs7

abs8

abs1

abs2

abs2n+4 abs2n+6

abs2n+5 abs2n+7

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8

abs2n+8 abs2n+10

abs2n+9 abs2n+11

abs4n+6

sp4

sp3

sp6

sp5

sp8

sp7

sp2n+11

sp2n+10

limiter

cca cci

pipes1

pipe3pipe2

pipe5

pipe4

pipe7pipe6

pipe8

pipe1

pipe9

Figure 3.8: The template CLAUSE(i)

53

• Parts pipe2, pipe3, pipe4 of types PIPE(2n− 1) and pipe6, pipe7 of types PIPE(2n+ 2).

• Parts cca and cci of types CCA and CCI respectively. Together with the pipes above

they realize the idea described in (3.3). As they form two constellations which work

simultaneously, the parts pipe6 and pipe7 typically record mutually inverse sequences.

We interpret them as an assignment of the variables x1, . . . , xn. Such assignment is then

processed by the tester.

• A part ν of type SINGLE for each ν ∈Mφ.

• A part tester of type TESTER(i).

• A part λ of type SINGLE for each λ ∈ Lφ. While describing the templates INC(λ) and

NOTINC(λ) we claimed that in certain case there arises a need to make the state (3, λ)

inactive. This happens when the border of inactive area moves down through the tester

levels. The point is that any word of length 6n deactivates the entire tester, but we need to

ensure that some tester columns, namely the κ(λ)-th for each λ ∈ Lφ, are deactivated one

step earlier. If some of them is still active just before the deactivation of tester finishes,

the state λ becomes active, which slows down the synchronization process.

• Parts pipes1, pipes2 and pipes3 of types PIPES(αi, 4n + 4), PIPES(6n − 2, 4n + 4) and

PIPES(βi, 4n+4) respectively. There are multiple clauses in φ, but multiple testers cannot

work in parallel. That is why each of them is padded by a passive PIPES(. . .) part of

size depending on particular i. If αi = 0 or βi = 0, the corresponding PIPES part is not

present in cli.

• Parts pipe1, pipe5, pipe8, pipe9 of types PIPE(12mn+ 4n− 2m+ 6), PIPE(4), PIPE(αi +

6n− 1), PIPE(βi) respectively.

• The part forcer of type FORCER. This part guarantees that only the letter a is used in

certain segment of the word w. This is necessary for the data produced by cca and cci

to safely leave the parts pipe3, pipe4 and line up in the states of the form ν for ν ∈ Mφ,

from where they are shifted to the tester.

• The part limiter of type LIMITER. This part guarantees that the letter b occurs at most

twice when the border of inactive area passes through the tester. Because each unsatisfied

literal from the clause requests an occurrence of b, only a satisfied clause meets all the

conditions for a reset word of certain length to exist.

Links of CLAUSE(i), which are not clear from Figure 3.8 are

ν
a−→
{

pipes1|s1,µ(ν) if ν = ¬xn
µ′(µ(ν) + 1) otherwise

ν
b−→ pipes1|s1,µ(ν)

for each ν ∈Mφ and

pipes3|sβi,k
a,b−→
{
µ′(k) if µ′(k) ∈ Lφ
absk+2|in otherwise

λ
a,b−→ absµ(λ)+2|in

for each k ∈ {1, . . . , 4n+ 4}, λ ∈ Lφ.

We are ready to form the whole graph G, see Figure 3.9. For each i, k ∈ {1, . . .m} there

are parts clk, absk of types CLAUSE(i) and ABS respectively and parts qk, rk, r
′
k, s1, s2 of type

SINGLE. The edge incoming to a cli part ends in cli|sp1, the outgoing one starts in cli|sp4n+6.

When no states outside ABS parts are active within each CLAUSE(. . .) part and no out, r1 nor r2

state is active in any ABS part, the word b2ab4n+m+7 takes all active states to s2 and completes

the synchronization. Graph G does not fully represent the automaton A yet because there are

54

r ′1

r ′2

r ′m

cl1

clm

abs1

abs2

absm

cl2

cl1

clm−1

clm

cl2

r1

r2

rm

q1

q2

qm

s1 s2

clm−1r ′m−1 absm−1
qm−1 rm−1

Figure 3.9: The graph G

• 8mn+ 4m vertices with only one outgoing edge, namely cli|absk|out and cli|spl for each

i ∈ {1, . . . ,m} , k ∈ {1, . . . , 4n+ 6} , l ∈ {7, . . . , 4n+ 4},

• 8mn + 4m vertices with only one incoming edge: cli|ν and cli|pipes1| (1, ν′) for each

i ∈ {1, . . . ,m} , ν ∈Mφ\ {q, q′} , ν′ ∈Mφ\ {xn,¬xn}.

But we do not need to specify the missing edges exactly, let us just say that they somehow

connect the relevant states and the automaton A is complete. Let us set

d = 12mn+ 8n−m+ 18

and prove that the equivalence (3.2) holds.

3.2.3 From an Assignment to a Word

First let us suppose that there is an assignment ξ1, . . . , ξn ∈ {0,1} of the variables x1, . . . , xn
(respectively) satisfying the formula φ and prove that the automaton A has a reset word w of

length d. For each j ∈ {1, . . . , n} we denote

σj =

{
a if ξj = 1

b if ξj = 0

and for each i ∈ {1, . . . ,m} we choose a satisfied literal λi from Ci. We set

w = a2 (σna) (σn−1a) . . . (σ1a) aba2n+3b
(
a6n−2v1

)
. . .
(
a6n−2vm

)
b2ab4n+m+7,

where for each i ∈ {1, . . . ,m} we use the word

vi = ui,x1
. . . ui,xn

ui,¬x1
. . . ui,¬xn

,

denoting

ui,λ =

{
a3 if λ = λi or λ /∈ Ci
ba2 if λ 6= λi and λ ∈ Ci

for each λ ∈ Lφ. We see that |vi| = 6n and therefore

|w| = 4n+ 8 +m (12n− 2) + 4n+m+ 10 = 12mn+ 8n−m+ 18 = d.

55

Let us denote

γ = 12mn+ 4n− 2m+ 9

and

St = Q\St
for each t ≤ d. Because the first occurrence of b2 in w starts by the γ-th letter, we have:

Lemma 3.4. Each state of a form cl ...|abs...|out or abs...|out lies in S2 ∩ · · · ∩ Sγ .

Let us fix an arbitrary i ∈ {1, . . . ,m} and describe a growing area of inactive states within cli.

We use the following method of verifying inactivity of states: Having a state s ∈ Q and t, k ≥ 1

such that any path of length k ending in s uses a member of St−k ∩ · · ·∩St−1, we easily deduce

that s ∈ St. In such case let us just say that k witnesses that s ∈ St. The following claims

follow directly from the definition of w. Note that Claim 7 relies on the fact that b occurs only

twice in vi.

Lemma 3.5.

1.
{

cli|sp1, . . . , cli|sp4n+6

}
⊆ S2 ∩ · · · ∩ Sγ

2. cli|pipe2 ∪ cli|pipe3 ∪ cli|pipe4 ⊆ S2n+1 ∩ · · · ∩ Sγ

3. cli|cca ∪ cli|cci ∪ cli|pipe5 ⊆ S2n+5 ∩ · · · ∩ Sγ

4. cli|pipe6 ∪ cli|pipe7 ∪ cli|forcer ⊆ S4n+7 ∩ · · · ∩ Sγ

5. {cli|ν : ν ∈Mφ} ⊆ S4n+8 ∩ · · · ∩ Sγ

6. cli|pipes1 ∪ cli|pipes2 ∪ cli|pipe8 ⊆ S10n+αi+6 ∩ · · · ∩ Sγ

7. cli|limiter ∪ cli|tester ⊆ S16n+αi+6 ∩ · · · ∩ Sγ

8. cli|pipe1 ∪ cli|pipe9 ∪ cli|pipes3 ⊆ Sγ−1 ∩ Sγ

Proof.

1. Claim:
{

cli|sp1, . . . , cli|sp4n+6

}
⊆ S2 ∩ · · · ∩ Sγ .

We have w1w2 = a2 and there is no path labeled by a2 ending in any cli|sp... state, so

such states lie in S2. For each t = 3, . . . , γ we can inductively use k = 1 to witness the

memberships in St. In the induction step we use Lemma 3.4, which excludes the out

states of the ABS parts from each corresponding St−1.

2. Claim: cli|pipe2 ∪ cli|pipe3 ∪ cli|pipe4 ⊆ S2n+1 ∩ · · · ∩ Sγ .

All the memberships are witnessed by k = 2n− 1, because any path of the length 2n− 1

ending in such state must use a cli|sp... state and such states lie in S2 ∩ · · · ∩ Sγ by the

previous claim.

3. Claim: cli|cca ∪ cli|cci ∪ cli|pipe5 ⊆ S2n+5 ∩ · · · ∩ Sγ .

We have w2n+2 . . . w2n+5 = a2ba, which clearly maps each state of cli|cca, cli|cci or

cli|pipe5 out of those parts. Each path of length 4 leading into the parts from outside

starts in S2n+1, so it follows that all the states lie in S2n+5. To prove the rest we

inductively use the witness k = 1.

4. Claim: cli|pipe6 ∪ cli|pipe7 ∪ cli|forcer ⊆ S4n+7 ∩ · · · ∩ Sγ .

In the cases of cli|pipe6 and cli|pipe7 we just use the witness k = 2n + 2. In the case of

56

cli|forcer we proceed the same way as in the previous claim. We have w2n+6 . . . w4n+7 =

a2n+2. Because also w2n+5 = a, only the states q...,0 can be active within the part

cli|forcer in time 2n+6. The word w2n+7 . . . w4n+7 maps all such states out of cli|forcer .

Each path of length 2n+2 leading into cli|forcer from outside starts in S2n+5, so it follows

that all states from cli|forcer lie in S4n+7. To handle t = 4n+ 8, . . . , γ we inductively use

the witness k = 1.

5. Claim: {cli|ν : ν ∈Mφ} ⊆ S4n+8 ∩ · · · ∩ Sγ .

In the cases of cli|q and cli|q′ we use the witness 1. We have w4n+8 = b and the only edges

labeled by b incoming to remaining states could be some of the 8mn + 4m unspecified

edges of G. But we have w4n+6w4n+7 = a2, so each out state of any ABS part lies in S4n+7

and thus no unspecified edge starts in a state outside S4n+7.

6. Claim: cli|pipes1 ∪ cli|pipes2 ∪ cli|pipe8 ⊆ S10n+αi+6 ∩ · · · ∩ Sγ .

We use witnesses k = αi for cli|pipes1, k = 6n− 2 for cli|pipes2 and k = αi + 6n− 1 for

cli|pipe8.

7. Claim: cli|limiter ∪ cli|tester ⊆ S16n+αi+6 ∩ · · · ∩ Sγ .

Because

w4n+αi+9 . . . w10n+αi+6 = a6n−2,

there are only states of the form cli|limiter |s...,0 in the intersection of cli|limiter and

S10n+αi+6. Together with the fact that there are only two occurrences of b in vi it

confirms that the case of cli|limiter holds. The case of cli|tester is easily witnessed by

k = 6n.

8. Claim: cli|pipe1 ∪ cli|pipe9 ∪ cli|pipes3 ⊆ Sγ−1 ∩ Sγ .

We use witnesses k = 12mn+ 4n−2m+ 6 for cli|pipe1 and k = βi for cli|pipe9, cli|pipes3.

For each λ ∈ Lφ we ensure by the word ui,λ that the κ(λ)-th tester column is deactivated in

advance, namely at time t = 16n+ αi + 5. The advance allows the following key claim to hold

true.

Lemma 3.6.
{

cli|λ : λ ∈ Lφ
}
⊆ Sγ−1 ∩ Sγ .

Proof. For each such λ we choose

k = 6n− 3κ(λ) + βi + 1

as a witness of cli|λ ∈ Sγ−1. There is only one state where a path of length k ending in λ

starts: the state

s = cli|tester |levelλ| (3, λ) .

It holds that

s ∈ S10n+αi+3κ(λ)+6 ∩ · · · ∩ Sγ ,

as is easily witnessed by k′ = 3κ(λ) using Claim 6 of Lemma 3.5. But we are going to show

also that

s ∈ S10n+αi+3κ(λ)+5, (3.4)

which will imply that k is a true witness of λ ∈ Sγ−1, because

(γ − 1)− k = 10n+ αi + 3κ(λ) + 5.

So let us prove the membership (3.4). We need to observe, using the definition of w, that:

57

• At time 2n+ 5 the part pipe6 records the sequence

0,1, ξ1, ξ1, ξ2, ξ2, . . . , ξn, ξn

and the part pipe7 records the sequence of inverted values. Because

w2n+6 . . . w4n+7 = a2n+2,

at time 4n + 7 the states q, r′ are active, the states q′, r are inactive and for each j ∈
{1, . . . , n} it holds that

xj ∈ S4n+7 ⇔ yj ∈ S4n+7 ⇔ ¬xj ∈ S4n+7 ⇔ zj ∈ S4n+7 ⇔ ξj = 1.

Because w4n+8 = b, at time 10n+αi + 6 we find the whole structure above shifted to the

first row of cli|tester , so particularly for λ ∈ Lφ:

cli|tester |levelx1
| (1, λ) ∈ S10n+αi+6 ⇔ λ is satisfied by ξ1, . . . , ξn.

• From a simple induction on tester levels it follows that

cli|tester |levelλ| (1, r) ∈ S10n+αi+3κ(λ)+3.

Note that

w10n+αi+3κ(λ)+4w10n+αi+3κ(λ)+5w10n+αi+3κ(λ)+6 = ui,λ

and distinguish the following cases:

• If λ = λi, we have λ ∈ Ci, the part cli|tester |levelλ is of type INC(λ) and ui,λ = a3. We

also know that λ is satisfied, so

cli|tester |levelx1 | (1, λ) ∈ S10n+αi+6.

The state above is the only state, from which any path of length 3κ(λ) − 3 leads to

cli|tester |levelλ| (1, λ), so we deduce that

cli|tester |levelλ| (1, λ) ∈ S10n+αi+3κ(λ)+3.

We see that each path labeled by a2 ending in cli|tester |levelλ| (3, λ) starts in

cli|tester |levelλ| (1, λ) or in cli|tester |levelλ| (1, r), but each of the two states lies in

S10n+αi+3κ(λ)+3. So the membership (3.4) holds.

• If λ /∈ C, the part cli|tester |levelλ is of type NOTINC(λ) and ui,λ = a3.

Particularly w10n+αi+3κ(λ)+5 = a but no edge labeled by a comes to

cli|tester |levelλ| (3, λ) and the membership (3.4) follows trivially.

• If λ 6= λi and λ ∈ Ci, the part cli|tester |levelλ is of type INC(λ) and ui,λ = ba2. Partic-

ularly

w10n+αi+3κ(λ)+4w10n+αi+3κ(λ)+5 = ba,

but no path labeled by ba comes to cli|tester |levelλ| (3, λ), so we reach the same conclusion

as in the previous case.

We have proven that cli|λ lies in Sγ−1. From Claim 8 of Lemma 3.5 it follows directly that it

lies also in Sγ .

58

We see that within cli only states from the ABS parts can lie in Sγ−1. Since wγ−2wγ−1 = a2,

no state r1, r2 or out from any ABS part lies in Sγ−1. Now we easily check that all the states

possibly present in Sγ−1 are mapped to s2 by the word wγ . . . wd = b2ab4n+m+7.

3.2.4 From a Word to an Assignment.

Since now we suppose that there is a reset word w of length

d = 12mn+ 8n−m+ 18.

The following lemma is not hard to verify.

Lemma 3.7.

1. Up to labeling there is a unique pair of paths, both of a length l ≤ d − 2, leading from

cl1|pipe1|s1 and cl2|pipe1|s1 to a common end. They are of length d− 2 and meet in s2.

2. The word w starts by a2.

Proof.

1. The leading segments of both paths are similar since they stay within the parts cl1 and

cl2:

pipe1|s1
a,b−→ . . .

a,b−→ pipe1|s12mn+4n−2m+6
a,b−→ abs1|in b−→

b−→ abs1|r1
b−→ abs1|out

a−→ sp1
b−→ . . .

b−→ sp4n+6.

Once the paths leave the parts cl1 and cl2, the shortest way to merge is the following:

cl1|sp4n+6
b−→ q1

b−→ q2
b−→ . . .

b−→ qm−1
b−→ qm

b−→ s1
b−→

cl2|sp4n+6
b−→ q2

b−→ q3
b−→ . . .

b−→ qm
b−→ s1

b−→ s2
b−→

s2

Having the description above it is easy to verify that the length is d − 2 and there is no

way to make the paths shorter.

2. Suppose that w1w2 6= a2. Any of the three possible values of w1w2 implies that

{
cli|sp3, . . . , cli|sp4n+6

}
⊆ S2

for each i. It cannot hold that w = w1w2b
d−2, because in such case all cl ...|cca|sb states

would be active in any time t ≥ 3. So the word w has a prefix w1w2b
ka for some k ≥ 0.

If k ≤ 4n + 3, it holds that cli|sp4n+6 ∈ Sk+2 and therefore cli|pipe1|s1 ∈ Sk+3, which

contradicts the first claim. Let k ≥ 4n + 4. Some state of a form cli|forcer |q1,... or

cli|forcer |r1,... lies in Sk+2 for each i. This holds particularly for i = 1 and i = 2, but

there is no pair of paths of length at most

d− (4n+ 4) ≥ d− k

leading from such two states to a common end.

The second claim implies that cli|pipe1|s1 ∈ S2 for each i ∈ {1, . . . ,m}, so it follows that

δ (Q,w) = {s2} .

59

Let us denote

d = 12mn+ 4n− 2m+ 11

and

w = w1 . . . wd.

The following lemma holds because no edges labeled by a are available for final segments of the

paths described in the first claim of Lemma 3.7.

Lemma 3.8.

1. The word w can be written as w = wb4n+m+7 for some word w.

2. For any t ≥ d, no state from any cl ... part lie in St, except for the sp... states.

Proof.

1. Let us write w = w1w2w
′. From Lemma 3.7 it follows that

δ (cl1|pipe1|s1, w
′) = δ (cl2|pipe1|s1, w

′)

and w′ have to label some of the paths determined up to labeling in Lemma 3.7(1). The

final 4n+m+ 7 edges of the paths lead from cl1|sp1 and cl2|sp1 to s2. All the transitions

used here are necessarily labeled by b.

2. The claim is easy to observe, since the first claim implies that St is a subset of

S′ =
{
s ∈ Q | (∃d ∈ N) δ

(
s, bd

)
= s2

}
.

The next lemma is based on properties of the parts cl ...|forcer but to prove that no more a follows

the enforced factor a2n+1 we also need to observe that each cl ...|cca|out or each cl ...|cci|out lies

in S2n+4.

Lemma 3.9. The word w starts by ua2n+1b for some u of length 2n+ 6.

Proof. At first we prove that w starts by ua2n+1. Lemma 3.7(2) implies that cl1|pipe2|s1 ∈ S2,

so obviously some of the states cl1|forcer |q1,0 and cl1|forcer |r1,0 lies in S2n+6. If w2n+6+k = b

for some k ∈ {1, . . . , 2n+ 1}, it holds that cli|forcer |qk,2 or cli|forcer |rk,2 lies in S2n+6+k. From

such state no path of length at most 2n + 3 − k leads to cli|pipe8|s1 and therefore no path of

length at most

(2n+ 3− k) + (αi + 6n− 1) + (6n− 2) + βi + 3 = d− (2n+ 6 + k)

leads into S′, which contradicts Lemma 3.8(2). It remains to show that there is b after the prefix

ua2n+1. Lemma 3.7(2) implies that both cl1|cca|in and cl1|cci|in lie in S2n+1, from which it is

not hard to deduce that cl1|cca|out or cl1|cci|out lies in S2n+4 and therefore cl1|q or cl1|r lies

in S4n+7. Any path of length d− (4n+ 7) leading from cl1|q or cl1|r into S starts by an edge

labeled by b.

Now we are able to write the word w as

w = ua2n+1b (v1v
′
1c1) . . . (vmv

′
mcm)w

d−2wd−1wd,

where |vk| = 6n−2, |v′
k| = 6n−1 and |ck| = 1 for each k and denote di = 10n+αi+6. At time

2n + 5 the parts cl ...|pipe6 and cl ...|pipe7 record mutually inverse sequences. Because there is

the factor a2n+1 after u, at time di we find the information pushed to the first rows of testers:

60

Lemma 3.10. For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} it holds that

cli|tester |levelx1
| (1, xj) ∈ Sdi

⇔
cli|tester |levelx1 | (1,¬xj) /∈ Sdi ⇔ w2n−2j+2 6= w2n−2j+3.

Proof. From the definition of CCA and CCI it follows that at time 2n + 5 the parts pipe6 and

pipe7 record the sequences B(2n+3) . . . B(2) and B′
(2n+3) . . . B

′
(2) respectively, where

B(k) =

{
1 if wk = wk+1

0 otherwise
B′

(k) =

{
0 if wk = wk+1

1 otherwise.

Whatever the letter w2n+6 is, Lemma 3.9 implies that

cli|xj ∈ S4n+7 ⇔ cli|¬xj /∈ S4n+7 ⇔ w2n−2j+2 6= w2n−2j+3,

from which the claim follows easily using Lemma 3.9 again.

Let us define the assignment ξ1, . . . , ξn ∈ {0,1}. By Lemma 3.10 the definition is correct and

does not depend on i:

ξj =

{
1 if cli|tester |levelx1

| (1, xj) /∈ Sdi

0 if cli|tester |levelx1
| (1,¬xj) /∈ Sdi

.

The following lemma holds due to cl ...|limiter parts.

Lemma 3.11. For each i ∈ {1, . . . ,m} there are at most two occurrences of b in the word v′
i.

Proof. It is easy to see that cli|limiter |s1,0 ∈ S10n+αi+6 and to note that

v′
i = w10n+αi+7 . . . w16n+αi+5.

Within the part cli|limiter no state except for s6n−2,0 can lie in S16n+αi+5, because from such

states there is no path of length at most

d− (16n+ αi + 5) = βi + 4

leading into S′.

The shortest paths from s1,0 to s6n−2,0 have length 6n− 3 and each path from s1,0 into S′ uses

the state s6n−2,0. So there is a path P leading from s1,0 to s6n−2,0 labeled by a prefix of v′.

We distinguish the following cases:

• If P is of length 6n− 3, we just note that such path is unique and labeled by a6n−3. No

b occurs in v′ except for the last two positions.

• If P is of length 6n− 2, it uses an edge of the form sk,0
b−→ sk+1,1. Such edges preserve

the distance to s6n−2, so the rest of P must be a shortest path from sk+1,1 to s6n−2,0.

Such paths are unique and labeled by a6n−2−k. Any other b can occur only at the last

position.

• If P is of length 6n− 1, it is labeled by whole v′. Because any edge labeled by b preserves

or increases the distance to s6n−2, the path P can use at most two of them.

Now we choose any i ∈ {1, . . . ,m} and prove that the assignment ξ1, . . . , ξn satisfies the clause∨
λ∈Ci

λ. Let p ∈ {0, 1, 2, 3} denote the number of unsatisfied literals in Ci.

61

As we claimed before, all tester columns corresponding to any λ ∈ Lφ have to be deactivated

earlier than other columns. Namely, if cli|tester |levelx1
| (1, λ) is active at time di, which happens

if and only if λ is not satisfied by ξ1, . . . , ξn, the word v′
ici must not map it to cli|pipes3|s1,µ(λ).

If cli|tester |levelλ is of type INC(λ), the only way to ensure this is to use the letter b when the

border of inactive area lies at the first row of cli|tester |levelλ. Thus each unsatisfied λ ∈ Ci
implies an occurrence of b in corresponding segment of v′

i:

Lemma 3.12. There are at least p occurrences of the letter b in the word v′
i.

Proof. Let λ1, . . . , λp be the unsatisfied literals of Ci. From Lemma 3.10 it follows easily that

cli|tester |levelλk
| (1, λk) ∈ Sdi+3κ(λk)

for each k ∈ {1, . . . , p}. The part cli|tester |levelλk
is of type INC(λk), which implies that any

path of the length (
d− 3

)
− (di + 3κ(λk))

starting by a takes cli|tester |levelλk
| (1, λk) to the state cli|λ, which lies outside S

d−3, as it is

implied by Lemma 3.8(2). We deduce that wdi+3κ(λk)+1 = b.

By Lemma 3.11 there are at most two occurrences of b in v′
i, so we get p ≤ 2 and there is at

least one satisfied literal in Ci.

62

Chapter 4

Computing Road Colorings

This chapter deals with computational problems related to road coloring. First, we give a multi-

parameter analysis of the basic computational problem called SRCP. This consists mainly of

studying a scale of various restrictions and finishes a work that was started by Roman and

Drewienkowski [78, 79]. The results are contained in the above-mentioned paper [105].

Second, we give a similar analysis with respect to slightly different computational problem

called SRCW. The results are not complete - they leave much space for a further research.

They were presented [104] at the conference LATA 2015 (Nice, France). An extended version

was submitted to a journal.

4.1 Parameterized Complexity of SRCP

The results of this section, as well as former results of Roman and Drewienkowski [78, 79],

are summarized by Tables 4.1 and 4.2. We have filled all the remaining gaps in the second

table (cf. [79, Sec. 6]), so the multi-parameter analysis of SRCP is complete in the sense that

NP-complete restrictions are identified and under several standard assumptions we know which

restrictions are FPT and which of them have polynomial kernels.

Parameter Parameterized Complexity Polynomial Kernel

d NP-complete for d = 4, 5, . . . [79] —

|Σ| NP-complete for
|Σ| = 2, 3, . . .

� —

d and |Σ| See Table 4.2 —

n FPT, running time O⋆(2|Σ|) � Yes �

Table 4.1: The complete multi-parameter analysis of SRCP, new results marked by diamonds

d = 2 d = 3 d = 4, 5, . . .

|Σ| = 2 P [78] P � NPC �

|Σ| = 3 P [78] P [79] NPC [78]

|Σ| = 4, 5, . . . P [78] P [79] NPC [78]

Table 4.2: Complexity of SRCP and SRCPSC restricted to particular values of d and |Σ|

63

By SC and Z we denote the classes of strongly connected graphs and of graphs with a state

having no outgoing edges expect for loops, respectively. All the NP-completeness results hold

for both the problems SRCP and SRCPSC .

4.1.1 Parameterization by the Number of States

We point out that SRCP parameterized by the number of states has a polynomial kernel, so it

necessarily lies in FPT.

Theorem 4.1. There is a polynomial kernel for SRCP parameterized by n = |Q|.

Proof. The algorithm takes an instance of SRCP, i.e., an alphabet Σ, an admissible graph

G = (Q,E) with out-degrees |Σ|, and a number d ∈ N. It produces another instance of size

depending only on n = |Q|. If d ≥ z(n), we just solve the problem using Corollary 1.33 and

output a trivial instance. Otherwise the output instance is denoted by Σ′, G′ = (Q′, E′) , d′,

where

Q′ = Q,

k′ = k,

|I ′| = min {|Σ| , t · (z(t)− 1)} ,

and the algorithm just deletes appropriate edges in order to reduce the out-degree to |Σ′|. Let

us use a procedure that:

• takes an admissible graph with out-degree c > n · (z(n)− 1)

• for each of its vertices:

– finds an outgoing multiedge with the largest multiplicity (which is at least z(n)),

– deletes one edge from the multiedge.

Clearly the resulting graph has out-degree c − 1. We create the graph G′ by repeating this

procedure (starting with G) until the out-degree is at most n · (z(n)− 1).

Now we claim that

(I,G, k) ∈ SRCP

m
(I ′, G′, k′) ∈ SRCP.

The upward implication is trivial since any coloring of G′ can be extended to G and the

appropriate reset word can be still used. On the other hand, let us have a coloring δ of G such

that |δ(Q,w)| = 1 for a word w of length at most d < z(n), so it uses at most z(n)− 1 letters

from Σ. If we delete from G all the edges labeled by non-used letters, we get a subgraph of

G′ because during the reduction of edges we have reduced only multiedges having more than

z(n) − 1 edges. So we are able to color G′ according to the used letters of G and synchronize

it by the word w.

Corollary 4.2. SRCP parameterized by n = |Q| lies in FPT.

4.1.2 Restriction to |Σ| = 2 and d = 3

Here we prove that SRCP2,3 (i.e. SRCP restricted to |Σ| = 2 and d = 3) is decidable in

polynomial time. If G = (Q,E) is a graph, by Vi(q) we denote the set of vertices from which

64

there is a path of length i leading to q and there is no shorter one. For any w ∈ Σ∗, Gw denotes

the set of graphs with outdegree 2 that admit a coloring δ such that δ(Q,w) = {q} for some

q ∈ Q.

Lemma 4.3. A graph G = (Q,E) lies in Gaaa if and only if there is a state q ∈ Q such that

(q, q) ∈ E and there is a path of length at most 3 from each r ∈ Q to q.

Proof. If there is a coloring δ with δ(Q, aaa) = {q}, both the claims follow immediately. On

the other hand, if the loop (q, q) and all the paths leading to q are colored by a, we obtain a

suitable coloring.

Lemma 4.4. Let G = (Q,E) ∈ Gabb\Gaaa. Then at least one of the following two conditions

holds:

1. There is a vertex q ∈ Q such that each vertex has an outgoing edge leading into V2(q), or

2. G ∈ Gaba.

Proof. Let G = (Q,E) ∈ Gabb\Gaaa. Thus G admits a coloring δ such that

δ(Q, abb) = {q}

for a state q ∈ Q.

• If the coloring δ satisfies q /∈ δ(Q, a), notice that each edge labeled by a has to lead into

V2(q). Indeed:

– It cannot lead to q due to q /∈ δ(Q, a).

– It cannot lead into any r ∈ V1(q) because in such case, using q /∈ δ(Q, a), it would

hold that δ(r, b) = q and thus q ∈ δ (Q, ab). Hence it would be necessary that

δ (q, b) = q. According to Lemma 4.3, a loop on q guarantees that G ∈ Gaaa, which

is a contradiction.

– It cannot lead to V3(q), because there is no path of length 2 from V3(q) to q.

Thus, the condition (1) holds.

• Otherwise the coloring δ satisfies q ∈ δ(Q, a). Denote

W = {s ∈ Q | δ(s, b) = q} .

Now define another coloring δ′ by switching the colors of the two edges leaving each state

of W . Elsewhere, δ′ and δ coincide. We claim that

δ′(Q, aba) = {q}

and so the condition (2) holds. Indeed:

– Take s ∈ V3(q). In δ there is a path

s
a−→ t

b−→ u
b−→ q. (4.1)

Because s ∈ V3(q), it holds that t ∈ V2(q) and u ∈ V1(q). It follows that t /∈W,u ∈
W and thus in δ′ there is a path

s
a−→ t

b−→ u
a−→ q. (4.2)

– Take s ∈ V2(q). In δ there is a path (4.1).

65

∗ If t ∈ V2(q), we get again that t /∈ W,u ∈ W and thus in δ′ there is a path

(4.2).

∗ Otherwise we have t ∈ V1(q). Because G /∈ Gaaa, there is no loop on q, thus

u 6= q and t /∈W . But u ∈W , so we get a path (4.2) again.

– Take s ∈ V1(q). In δ′ there is always an edge s
a−→ q, so we need just δ′(q, ba) = q.

Because we assume that q ∈ δ(Q, a), in δ there has to be a cycle q
b−→ r

b−→ q for

some r ∈ V1(q). In δ′ we have q
b−→ r

a−→ q.

– For s = q we apply the same reasoning as for s ∈ V2(q).

Lemma 4.5. For each G with outdegree 2 it holds that

G ∈ Gabb\ (Gaba ∪Gaaa)

if and only if

• it holds that G /∈ Gaba ∪Gaaa, and

• there is a vertex q ∈ Q such that each vertex has an outgoing edge leading into V2(q).

Proof. The downward implication follows easily from Lemma 4.4. For the upward one we need

only to deduce that G ∈ Gabb. We construct the following coloring δ:

• The edges leading into V2(q) are labeled by a. If two such edges start in a common vertex,

they are labeled arbitrarily.

• The other edges are labeled by b.

This works because from any state s ∈ V2(q) there is an edge leading to some t ∈ V1(q), and

from t there is an edge leading to q. We have labeled both these edges by b. It follows that

wherever we start, the path labeled by abb leads to q.

Theorem 4.6. The problem SRCP2,3 in P.

Proof. Let the algorithm test the membership of a given graph G for the following sets:

1. Gaaa,

2. Gaab\Gaaa,

3. Gaba\Gaaa,

4. Gabb\ (Gaba ∪Gaaa).

For the sets 1, 2, 3 the membership is polynomially testable due to results from [79]. Lemma

4.5 provides a polynomially testable characterization of the set 4. It is easy to see that a graph

G should be accepted if and only if it lies in some of the sets.

66

D3

Cj,0

Cj,1 Cj,2

lj,3lj,2lj,1

Cj⊕1,0

Cj,3 Cj,4

Figure 4.1: A part Cj . Note the three
edges that depend on Φ: they end in ver-
tices labeled by literals from Cj .

xi
xi

D6Wi

Figure 4.2: A part Vi

D7D6

D3D2D1D0 D4 D5

C1,0

Figure 4.3: The part D

4.1.3 Restriction to |Σ| = 2 and d = 4

Theorem 4.7. The problem SRCPSC
2,4 is NP-complete.

Let us perform a reduction from 3-SAT. Consider a propositional formula of the form

Φ =

m∧

j=1

Cj ,

where Cj = lj,1∨lj,2∨lj,3 and lj,k ∈ {x1, . . . , xp, x1, . . . , xp} for each j ∈ {1, . . . ,m}, k ∈ {1, 2, 3}.
We construct a directed multigraph GΦ = (Q,E) with

|Q| = 5m+ 3n+ 8

states, each of them having exactly two outgoing edges. We describe the set Q as a disjoint

union of the sets

Q = C1 ∪ · · · ∪Cm ∪V1 ∪ · · · ∪Vp ∪D,

where

Cj = {Cj,0,Cj,1,Cj,2,Cj,3,Cj,4} ,
Vi = {xi, xi,Wi} ,
D = {D0, . . . ,D7} ,

for each j ∈ {1, . . . ,m} and i ∈ {1, . . . , p}. The parts Cj correspond to clauses, the parts Vi

correspond to variables. In each Vi there are two special states labeled by literals xi and xi.

All the edges of GΦ are defined by Figures 4.1, 4.2, 4.3. Figure 4.4 gives an overall picture of

GΦ. Let us prove that

Φ is satisfiable

m
some labeling of GΦ has a reset word of length 4.

67

C1 C2 C3 Cm

V1 V2 V3 Vp

D

Φ

x1x1 x2x2 x3x3 xpxp

D4

Figure 4.4: The entire GΦ

The Upward Implication

Suppose that there is a labeling δ by letters a (solid) and b (dotted) such that a word

w = y1 . . . y4 ∈ {a, b}4

satisfies

|δ(Q,w)| = 1.

Let a be the first letter of w. By a k-path (resp. k-reachable) we understand a path of length

exactly k (resp. reachable by a path of length exactly k).

Lemma 4.8. The synchronization takes place in D4.

Proof. From D1 only states from D are 4-reachable. From D0 the only states within D that

are 4-reachable are D2,D3,D4. From C1,0 only D4 is 4-reachable.

Lemma 4.9. All edges outgoing from states of D are labeled as in Figure 4.5.

Proof. Since D4 is not 3-reachable from D0 nor D6, all the edges incoming to D0 and D6 are

labeled by b. The remaining labeling follows easily.

Corollary 4.10. It holds that

w = aba2.

Lemma 4.11. For each j = 1, . . . ,m we have

δ(Cj,0, ab) ∈ {x1, . . . , xn, x1, . . . , xn} .

Proof. None of the other states 2-reachable from Cj,0 offers a 2-path leading to D4.

Lemma 4.12. There are no j, l ∈ {1, . . . ,m} and i ∈ {1, . . . , p} such that

δ(Cj,0, ab) = xi

68

C1 C2 C3 Cm

V1 V2 V3 Vp

D

Φ

x1x1 x2x2 x3x3 xpxp

D4

Figure 4.5: The entire GΦ with the edges outgoing from D colored. Bold arrows: a, dotted
arrows: b.

C1 C2 C3

V1 V2 V3 V4

D

x1x1 x2x2 x3x3 x4x4

D4

Figure 4.6: An example of GΦ for Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4). The
filling marks states that are active after applying y1y2 = ab.

69

and

δ(Cl,0, ab) = xi.

Proof. If both xi and xi are active after applying y1y2 = ab, there have to be 2-paths labeled

by a2 from both the states xi, xi to D4. It is easy to see that it is not possible to find such

labeling.

Corollary 4.13. There is a partial assignment making all the literals

δ(C1,0, ab) , δ(C2,0, ab) , . . . , δ(Cm,0, ab)

satisfied, because none of them is the negation of another. Each clause contains some of these

literals.

We are done, the existence of a satisfying assignment is guaranteed.

The Downward Implication

For a given satisfying assignment we make a coloring based on the above-mentioned ideas and

the example given by Figure 4.6.

• For each j, the coloring of edges outgoing from Cj,0,Cj,1,Cj,2 depends on which of the

three literals of the clause Cj are satisfied by the assignment (the example assigns x1 =

1, x2 = 0, x3 = 0, x4 = 1). The 2-path from Cj,0 labeled by ab should lead to a state

labeled by a satisfied literal. The edges outgoing from Cj,3 and Cj,4 are always colored

the same way.

• For each i, all the edges outgoing from the states of the Vi part are colored in one of two

ways depending on the truth value assigned to xi.

• The edges outgoing from the states of D admit the only possible coloring.

Note that in our example the edges outgoing from the states of V3 could be colored in the

opposite way as well. None of the literals x3, x3 is chosen by the coloring to satisfy a clause.

Strong Connectivity

If there is a non-negated occurrence of each xi in Φ, the graph GΦ is strongly connected. This

assumption can be easily guaranteed by adding tautological clauses like xi ∨ xi ∨ xi.

4.2 Fixed Parameter Complexity of SRCW

In this section we study the problem SRCW restricted to fixed values of both the alphabet

size |Σ| and the set of prescribed reset words W . We show that the problem SRCW becomes

NP-complete even if restricted to |Σ| = 2 and W = {abb} or to |Σ| = 2 and W = {aba}, which

may seem surprising. Moreover, we provide a complete classification of sets W = {w} where w

is a binary word: The NP-completeness holds for |Σ| = 2 and any w ∈ {a, b}⋆ that does not

equal ak, bk, akb, nor bka for any k ≥ 1. On the other hand, for any w that matches some of

these patterns, the restricted problem is solvable in polynomial time. Finally, we give partial

results about SRCW restricted to strongly connected graphs. Table 4.3 summarizes the results

(including the notion of a sink device from Definition 4.20).

First, we prove a basic lemma, which is useful in our classifications of words: adding a prefix

to a prescribed reset word preserves NP-completeness:

Lemma 4.14. Let |Σ| ≥ 1 and u,w ∈ {a, b}⋆. Then:

70

|Σ| = 2 |Σ| = 3, 4, . . .

general S. C. general S.C.

w = ak (k ≥ 1) P P P P

w = akb (k ≥ 1) P P P P

w = abb NPC P

? ?
w = ava

(
v /∈ a⋆

)
NPC NPC

w 6= akbl with a s.c.
incomplete sink device

NPC NPC

otherwise NPC ?

Table 4.3: Complexity of SRCW

1. If SRCWk,{w} is NP-complete, so is SRCWk,{uw}.

2. If SRCWZ
k,{w} is NP-complete, so is SRCWZ

k,{uw}.

Proof. We perform a polynomial-time reduction from SRCWk,{w} to SRCWk,{wu}. For a given

graph G = (Q,E) we construct a suitable graph G =
(
Q,E

)
, with the additional property that

G ∈ Z whenever G ∈ Z. Let

Q = Q ∪ (Q× {1, . . . , |u|})

and let E consist of E and the additional edges

(s, 1) ⇒ (s, 2) ⇒ · · ·⇒ (s, |u|) ⇒ s

for each s ∈ Q. Suppose that there is a coloring δ of G such that |δ(Q,w)| = 1. If we use

the coloring δ in G to color the edges within E, we get a unique coloring δ of G that satisfies∣∣δ
(
Q, uw

)∣∣ = 1. On the other hand, let δ be a coloring of G such that
∣∣δ
(
Q, uw

)∣∣ = 1. Observe

that δ
(
Q, u

)
= Q and thus

∣∣δ(Q,w)
∣∣ = 1. The coloring δ, restricted to Q, gives a coloring of G

with |δ(Q,w)| = 1.

4.2.1 A Complete Classification of Binary Words According to Complexity of

SRCW2,{w}

The theorem below presents one of the main results of the present paper. Assuming that P does

not equal NP, it introduces an exact dichotomy concerning the words over binary alphabets.

Let us fix the following partition of {a, b}⋆:

T1 =
{
ak, bk | k ≥ 0

}
,

T2 =
{
akb, bka | k ≥ 1

}
,

T3 =
{
albk, blak | k ≥ 2, l ≥ 1

}
,

T4 = {a, b}⋆ \ (T1 ∪ T2 ∪ T3) .

For the NP-completeness reductions throughout the present paper we use a suitable variant

of the satisfiability problem. The following is proved in Section 4.2.3 using the Schaefer’s

dichotomy theorem:

Lemma 4.15. It holds that W-SAT is NP-complete.

71

W-SAT

Input: Finite set X of variables, finite set Φ ⊆ X4 of clauses.

Output: Is there an assignment ξ : X → {0,1} such that for each

clause (z1, z2, z3, z4) ∈ Φ it holds that:

(1) ξ(zi) = 1 for some i,

(2) ξ(zi) = 0 for some i ∈ {1, 2},
(3) ξ(zi) = 0 for some i ∈ {3, 4}?

In this section we use reductions from W-SAT to prove the NP-completeness of SRCW2,{w}
for each w ∈ T3 and w ∈ T4. In the case of w ∈ T4 the reduction produces only graphs having

sink states. This shows that for w ∈ T4 the problem SRCWZ
2,{w} is NP-complete as well, which

turns out to be very useful in Section 4.2.2, where we deal with strongly connected graphs. For

w ∈ T3 we also prove NP-completeness, but we use automata without sink states. We show

that the cases with w ∈ T1 ∪ T2 are decidable in polynomial time.

In all the figures below we use bold solid arrows and bold dotted arrows for the letters a and b

respectively.

Theorem 4.16. Let w ∈ {a, b}⋆.

1. If w ∈ T1 ∪ T2, the problem SRCW2,{w} is solvable in polynomial time.

2. If w ∈ T3∪T4, the problem SRCW2,{w} is NP-complete. Moreover, if w ∈ T4, the problem

SRCWZ
2,{w} is NP-complete.

Proof for w ∈ T1. It is easy to see that G ∈ Gak if and only if there is q0 ∈ Q such that there

is a loop on q0 and for each s ∈ Q we have dG(s, q0) ≤ k.

Proof for w ∈ T2. For a fixed q0 ∈ Q, we denote Q1 = {s ∈ Q | s −→ q0} and

R = {s ∈ Q1 | H1 has a cycle reachable from s} ,

where H1 is obtained from G[Q1] by decreasing multiplicity by 1 for each edge ending in q0. If

q0 /∈ Q1, we have H1 = G[Q1]. Let us prove that G ∈ Gakb if and only if there is q0 ∈ Q such

that:

1. It holds that dG(s, q0) ≤ k + 1 for each s ∈ Q.

2. For each s ∈ Q there is a q ∈ R such that dG(s, q) ≤ k.

First, check the backward implication. For each r ∈ R, we color by b an edge of the form

r −→ q0 that does not appear in H1. Then we fix a forest of shortest paths from all the vertices

of Q\R into R. Due to the second condition above, the branches have length at most k. We

color by a the edges used in the forest. We have completely specified a coloring of edges. Now,

for any s ∈ Q a prefix aj of akb takes us into R, the factor ak−j keeps us inside R, and with

the letter b we end up in q0.

As for the forward implication, the first condition is trivial. For the second one, take any s ∈ Q
and denote sj = δ

(
s, aj

)
for j ≥ 0. Clearly, sk ∈ Q1, but we show also that sk ∈ R, so we

can set q = sk in the last condition. Indeed, whenever sj ∈ Q1 for j ≥ k, we remark that

δ
(
sj−k+1, a

k
)

= q0 and thus sj+1 ∈ Q1 as well. Since j can grow infinitely, there is a cycle

within Q1 reachable from sk.

72

Proof for w ∈ T3. Due to Lemma 4.14, it is enough to deal with w = abk for each k ≥ 2. For a

polynomial-time reduction from W-SAT, take an instance X = {x1, . . . , xn}, Φ = {C1, . . . , Cm},
where Cj = (zj,1, zj,2, zj,3, zj,4) for each j = 1, . . . ,m. We construct the graph Gk,φ = (Q,E)

defined by Figure 4.7. Note that:

• In Fig. 4.7, states are represented by discs. For each j = 1, . . . ,m, the edges outgoing

from C′
i and C

′′

i represent the formula Φ by leading to the states zj,1, zj,2, zj,3, zj,4 ∈
{x1, . . . , xn} ⊆ Q.

• In the case of k = 2 the state Vi,2 does not exist, so we set xi −→ D0 and Vi,1 −→ D0

instead of xi −→ Vi,2 and Vi,1 −→ Vi,2.

We show that Gk,Φ ∈ Gabk if and only if there is an assignment ξ : X → {0,1} satisfying the

conditions given by Φ. The presented construction of Gk,Φ can be obviously performed in time

polynomial in the size of X and Φ.

First, let there be a coloring δ of Gk,Φ such that
∣∣δ
(
Q, abk

)∣∣ = 1. Necessarily δ
(
Q, abk

)
= {D0},

while there is no loop on D0. Indeed, let Cj and Cj′ be clauses that do not share any variable.

Due to possible adding of artificial clauses to Φ, we can assume that Cj and Cj′ exist. It is easy

to see that D0 is the only vertex reachable from Cj and Cj′ by paths of length at most k + 1.

We use this fact to observe that whenever xi ∈ δ(Q, a), the edges outgoing from

xi,Vi,1, . . . ,Vi,k−1 must be colored according to Figure 4.8, but if xi ∈ δ(Q, ab), then they

must be colored according to Figure 4.9. Indeed: First, let xi ∈ δ(Q, a). Then we have

δ
(
xi, b

k
)

= D0. Since there is no loop on D0, there are at most two paths of length k leading

from xi to D0. The first one is

xi −→ Vi,1 −→ Vi,2 −→ · · · −→ Vi,k−1 −→ D0.

If we label this path by bk, we get exactly Figure 74. If k > 2, there is also the second path

xi −→ Vi,2 −→ Vi,2 −→ Vi,3 −→ · · · −→ Vi,k−1 −→ D0,

which uses the loop on Vi,2. But labeling this path by bk involves labeling both the edges

outgoing from Vi,2 by b, which is a contradiction. Second, let xi ∈ δ(Q, ab). The path

xi −→ Vi,2 −→ Vi,3 −→ · · · −→ Vi,k−1 −→ D0

is the only path of length k − 1 leading from xi to D0, so it is necessarily labeled by bk−1 and

we get the coloring depicted by Figure 74.

Let ξ(xi) = 1 if xi ∈ δ(Q, ab) and ξ(xi) = 0 otherwise. Choose any j ∈ {1, . . . ,m} and observe

that

ξ(δ(Cj , ab)) = 1, ξ
(
δ
(
C′
j , a
))

= 0, ξ
(
δ
(
C′′
j , a
))

= 0.

Indeed, δ(Cj , ab) = xi ∈ δ(Q, ab), so ξ assigns 1 to xi by definition. The remaining two claims

are similar.

Thus we can conclude that all the conditions from the definition of W-SAT hold for the clause

Cj . Indeed, the graph Gk,Φ is constructed such that

δ(Cj , ab) ∈ {zj,1, zj,2, zj,3, zj,4} ,
δ
(
C′
j , a
)
∈ {zj,1, zj,2} ,

δ
(
C′′
j , a
)
∈ {zj,3, zj,4} .

On the other hand, let ξ be a satisfying assignment of Φ. For each j we color the edges

outgoing from Cj ,C
′
j ,C

′′
j such that the ab-path from Cj leads to the zj,p with ξ(zj,p) = 1

and the a-paths from C′
j ,C

′′
j lead to the zj,p′ and zj,p′′ with ξ(zj,p′) = 0, ξ(zj,p′′) = 0, where

73

x1 V1,1

V1,2

V1,3

V1,k−2

V1,k−1

x2 V2,1

V2,2

V2,3

V2,k−2

V2,k−1

xn Vn,1

Vn,2

Vn,3

Vn,k−2

Vn,k−1

D0

D1 D2

z1,1 z1,2 z1,3 z1,4 z2,1 z2,2 z2,3 z2,4 zm,1 zm,2 zm,3 zm,4

C1 C2 Cm

C′

1
C′′

1
C′

2
C′′

2
C′

m C′′

m

Figure 4.7: The graph Gk,Φ reducing W-SAT to SRCW|Σ|=2,W={abk} for k ≥ 2

D0

Figure 4.8: A coloring cor-
responding to ξ(xi) = 0

D0

Figure 4.9: A coloring cor-
responding to ξ(xi) = 1

D0

D1 D2

D0

D1 D2

Figure 4.10: Colorings for k
even (top) and odd (bottom)

74

p′ ∈ {1, 2} , p′′ ∈ {3, 4}. For the edges outgoing from xi,Vi,1, . . . ,Vi,k−1 we use Figure 4.8 if

ξ(xi) = 0 and Figure 4.9 if ξ(xi) = 1. The transitions within D0,D1,D2 are colored according

to Figure 4.10, depending on the parity of k. Observe that for each i ∈ {1, . . . , n} we have

xi /∈ δ(Q, ab) if ξ(xi) = 0, (4.3)

xi /∈ δ(Q, a) if ξ(xi) = 1. (4.4)

Indeed: first, let ξ(xi) = 0. For the edges outgoing from xi,Vi,1, . . . ,Vi,k−1 we used Figure

4.8, so any possible ab-path ending in xi starts in some Cj . But any ab-path starting in some

Cj ends in the zj,i with ξ(zj,i) = 1. Second, let ξ(xi) = 1. For the edges outgoing from

xi,Vi,1, . . . ,Vi,k−1 we used Figure 4.9, so any possible a-transition ending in xi starts in some

C′
j or C′′

j . But any a-transition starting in some C′
j or C′′

j ends in the zj,i′ and zj,i′′ with

ξ(zj,i′) = 0 and ξ(zj,i′′) = 0.

Using (4.3) and (4.4) we can check that δ(Q,w) = {D0}: First, recall that w = abk and describe

the set δ(Q, ab). We have

Cj
ab−→ xi for some i with ξ(xi) = 1,

C′
j

ab−→ Vi,1 for some i with ξ(xi) = 0,

C′′
j

ab−→ Vi,1 for some i with ξ(xi) = 0,

xi
ab−→

Vi,3 if ξ(xi) = 0 and k ≥ 4,

D0 if ξ(xi) = 0 and k = 3,

D2 if ξ(xi) = 0 and k = 2,

xi if ξ(xi) = 1,

Vi,1
ab−→

Vi,3 if ξ(xi) = 1 and k ≥ 4,

D0 if ξ(xi) = 1 and k = 3,

D2 if ξ(xi) = 1 and k = 2,

Vi,1 if ξ(xi) = 0,

Vi,h
ab−→

{
Vi,3 if k ≥ 4

D0 if k = 3
for h ∈ {2, . . . , k − 1} ,

D0,D1,D2
ab−→

{
D2 if k is even,

D0 if k is odd.
,

Thus, we can easily observe that

δ(Q, ab) ⊆ {Vi,1,Vi,3 | ξ(xi) = 0} ∪ {xi,Vi,3 | ξ(xi) = 1} ∪ {Dp} ,

where p = 2 for k even and p = 0 for k odd. Now it is easy to conclude that δ
(
s, bk−1

)
= D0

for each s ∈ δ(Q, ab).

Proof for w ∈ T4. Any w ∈ T4 can be written as w = vajbkal or w = vbjakbl for j, k, l ≥ 1.

Due to Lemma 4.14 it is enough to deal with w = abkal for each k, l ≥ 1. Take an instance of

W-SAT as above and construct the graph Gw,Φ = (Q,E) defined by Figure 4.11. Note that:

• In the case of l = 1, the state Zi,1 does not exist, so we set W′
i −→ D0 and Vi,k−1 −→ D0

instead of W′
i −→ Zi,1 and Vi,k−1 −→ Zi,1.

• In the case of k = 1, the state Vi,1 does not exist, so we set xi −→ Zi,1 (or xi −→ D0 if

l = 1) and xi −→Wi instead of xi ⇒ Vi,1.

75

z1,1 z1,2 z1,3 z1,4 z2,1 z2,2 z2,3 z2,4 zm,1 zm,2 zm,3 zm,4

C1 C2

D0

V1,1

x1

V1,k−1 W1

W′

1Z1,1

Z1,l−1

V2,1

x2

V2,k−1 W2

W′

2

Z2,l−1

Vn,1

xn

Vn,k−1

Zn,l−1

Wn

W′

nZ2,1 Zn,1

C′

1
C′′

1
C′

2
C′′

2

Cm

C′

m C′′

m

Figure 4.11: The graph Gw,Φ reducing W-SAT to SRCWZ
|Σ|=2,W={abkal} for k, l ≥ 1

Let there be a coloring δ of Gw,Φ such that |δ(Q,w)| = 1. Observe that δ(Q,w) = {D0}.
(Indeed, let Cj and Cj′ be clauses that does not share any variable. It is easy to see that D0 is

the only vertex reachable from Cj and Cj′ by paths of length at most k + l + 1).

Next, we claim that

xi ∈ δ(Q, a) ⇒ Vi,k−1
b−→ Zi,1, (4.5)

xi ∈ δ(Q, ab) ⇒ Vi,k−1
a−→ Zi,1. (4.6)

Note that if k = 1 or l = 1, the claim should hold for xi instead of Vi,k−1 or D0 instead of Zi,1
respectively. As for (4.5), let xi ∈ δ(Q, a). If k ≥ 2, we have Vi,k−1 ∈ δ

(
abk−1

)
and there is

exactly one path of length at most l + 1 leading from Vi,k−1 to D0:

Vi,k−1 −→ Zi.1 −→ · · · −→ Zi,l−1 −→ D0. (4.7)

Thus, we have Vi,k−1
b−→ Zi,1. If k = 1, we use the fact that there is exactly one path of

length at most l + 1 leading from xi to D0. As for (4.6), let xi ∈ δ(Q, ab). If k ≥ 2, we have

Vi,k−1 ∈ δ
(
abk
)
. The path (4.7) above is the only path of length at most l leading from Vi,k−1

to D0. Thus, we have Vi,k−1
a−→ Zi,1. If k = 1, we use the unique path of length at most l

leading from xi to D0.

Let ξ(xi) = 1 if xi ∈ δ(Q, ab) and ξ(xi) = 0 otherwise. We choose any j ∈ {1, . . . ,m} and

observe that

ξ(δ(Cj , ab)) = 1, ξ
(
δ
(
C′
j , a
))

= 0, ξ
(
δ
(
C′′
j , a
))

= 0.

Then we conclude that all the conditions from the definition of W-SAT hold for the clause Cj ,

since

δ(Cj , ab) ∈ {zj,1, zj,2, zj,3, zj,4} ,
δ
(
C′
j , a
)
∈ {zj,1, zj,2} ,

76

δ
(
C′′
j , a
)
∈ {zj,3, zj,4}

due to the construction of Gk,Φ.

On the other hand, let ξ be a satisfying assignment of Φ. For each j, we color the edges outgoing

from Cj ,C
′
j ,C

′′
j as we did in the case of T3. For each i, we put Vi,k−1

a−→ Zi,1,Vi,k−1
b−→Wi

if ξ(xi) = 1 and the reversed variant if ξ(xi) = 0. Note that if k = 1 or l = 1, we consider xi
instead of Vi,k−1 or D0 instead of Zi,1 respectively. Let us show that δ(Q,w) = {D0}. Denote

C =
{

Cj ,C
′
j ,C

′′
j | j = 1, . . . ,m

}

and observe that from any vertex s of Q\C, all the paths of length k+ l+ 1 starting in s end in

D0. Thus, it is enough to show that δ(C,w) = {D0}. Choose any j = 1, . . . ,m. First, observe

that δ (Cj , ab) = xi such that ξ(xi) = 1. Thus, the edge Vi,k−1 −→ Zi,1 is labeled by a and the

path

Cj
ab−→ xi

b−→ Vi,1
b−→ · · · b−→ Vi,k−1

a−→ Zi,1

guarantees that δ
(
Cj , ab

ka
)

= Zi,1 and thus δ
(
Cj , ab

kal
)

= D0. Second, choose s ∈
{

C′
j ,C

′′
j

}

and observe that δ (s, ab) = Vi,1 such that ξ(xi) = 0. Thus, the edge Vi,k−1 −→ Zi,1 is labeled

by b and the path

s
ab−→ Vi,1

b−→ · · · b−→ Vi,k−1
b−→ Zi,1

guarantees that δ
(
Cj , ab

k
)

= Zi,1 and thus δ
(
Cj , ab

kal
)

= D0.

4.2.2 A Partial Classification of Binary Words According to Complexity of

SRCWSC
2,{w}

Clearly, for any w ∈ T1 ∪ T2 we have SRCWSC
2,{w} ∈ P. In Section 4.2.2 we show that

SRCWSC
2,{abb} ∈ P,

which is a surprising result because the general SRCW2,{w} is NP-complete for any w ∈ T3,

including w = abb. We are not aware of any other words that witness this difference between

SRCWSC and SRCW.

In Section 4.2.2 we introduce a general method using sink devices that allows us to prove the

NP-completeness of SRCWSC
2,{w} for infinitely many words w ∈ T4, including any w ∈ T4 with

the first and last letter being the same. However, we are not able to apply the method to each

w ∈ T4.

A Polynomial-Time Case

A graph G = (Q,E) is said to be k-lifting if there exists q0 ∈ Q such that for each s ∈ Q there

is an edge leading from s into Vk(q0). Instead of 2-lifting we just say lifting.

Lemma 4.17. If G is a k-lifting graph, then G ∈ Gabk .

Proof. We produce a suitable coloring of G = (Q,E) as follows: For each s ∈ Q choose an

edge leading from s into Vk(q0) and color it by a. All the other edges are colored by b. Then

δ(a,Q) ⊆ V2(q0) and δ
(
abk
)

= {q0}.

Lemma 4.18. If G is strongly connected, G is not lifting, and G ∈ Gabb via δ and q0, then δ has

no b-transition ending in V2(q0) ∪ V3(q0). Moreover, V3(q0) = ∅.

Proof. First, suppose for a contradiction that some s ∈ V2(q0) ∪ V3(q0) has an incoming b-

transition. Together with its outgoing b-transition we have

r
b−→ s

b−→ t,

77

where s 6= q0 and t 6= q0. Due to the strong connectivity there is a shortest path P from q0 to r

(possibly of length 0 if r = q0). The path P is made of b-transitions. Indeed, if there were some

a-transitions, let r′ a−→ r′′ be the last one. The abb-path outgoing from r′ ends in δ(r′′, bb),

which either lies on P or in {s, t}, so it is different from q0 and we get a contradiction.

It follows that δ(q0, b) 6= q0 and δ(q0, bb) 6= q0, so there cannot be any a-transition incoming to

q0. Hence for any s ∈ V1(q0) there is a transition s
b−→ q0 and thus there is no a-transition

ending in V1(q0). Because there is also no a-transition ending in V3(q0), all the a-transitions

end in V2(q0) and thus G is lifting, which is a contradiction.

Second, we show that V3(q0) is empty. Suppose that s ∈ V3(q0). No a-transition comes to

s since there is no path of length 2 from s to q0. Thus, s has no incoming transition, which

contradicts the strong connectivity.

Theorem 4.19. SRCWSC
2,{abb} is decidable in polynomial time.

Proof. As the input we have a strongly connected G = (Q,E). Suppose that q0 is fixed (we can

just try each q0 ∈ Q) and so we should decide if there is some δ with δ(Q, abb) = {q0}. First

we do some preprocessing:

• If G is lifting, according to Lemma 4.17 we accept.

• If V3(q0) 6= ∅, according to Lemma 4.18 we reject.

• If there is a loop on q0, we accept, since due to V3(q0) = ∅ we have G ∈ Gbb.

If we are still not done, we try to find some labeling δ, assuming that none of the three

conditions above holds. We deduce two necessary properties of δ. First, Lemma 4.18 says that

we can safely label all the transitions ending in V2(q0) by a. Second, we have q0 ∈ δ(Q, a).

Indeed, otherwise all the transitions incoming to q0 are labeled by b, and there cannot be any

a-transition ending in V1(q0) because we know that the b-transition outgoing from q0 is not a

loop. Thus G is lifting, which is a contradiction.

Let the sets B1, . . . , Bβ denote the connected components (not necessarily strongly connected)

of G[V1(q0)]. Note that maximum out-degree in G[V1(q0)] is 1. Let e = (r, s) , e′ = (s, t) be

consecutive edges with s, t ∈ V1(q0) and r ∈ Q. Then the labeling δ has to satisfy

e is labeled by a ⇔ e′ is labeled by b.

Indeed:

• The left-to-right implication follows easily from the fact that there is no loop on q0.

• As for the other one, suppose for a contradiction that both e′, e are labeled by b. We

can always find a path P (possibly trivial) that starts outside V1(q0) and ends in r.

Let r be the last vertex on P that lies in δ(Q, a). Such vertex exists because we have

V2(q0)∪ {q0} ⊆ δ(Q, a) and V3(q0) = ∅. Now we can deduce that δ(r, bb) 6= q0, which is a

contradiction.

It follows that for each Bi there are at most two possible colorings of its inner edges (fix variant 0

and variant 1 arbitrarily). Moreover, a labeling of any edge incoming to Bi enforces a particular

variant for whole Bi.

Let the set A contain the vertices s ∈ V2(q0) ∪ {q0} whose outgoing transitions lead both into

V1(q0). Edges that start in vertices of (V2(q0) ∪ {q0}) \A have only one possible way of coloring

due to Lemma 4.18, while for each vertex of A there are two possibilities. Now any possible

coloring can be described by |A|+ β Boolean propositions:

xs ≡ es is labeled by a

yB ≡ B is labeled according to variant 1

78

for each s ∈ A and B ∈ {B1, . . . , Bβ}, where es is a particular edge outgoing from s. Moreover,

the claim δ(Q, abb) = {q0} can be equivalently formulated as a conjunction of implications of

the form xs → yB , so we reduce the problem to 2-SAT: For each s ∈ A, with es, e
′
s leading into

B,B′ respectively, we construct two implications. For s 6= q0 they are

xs →
{

yB if labeling es by a enforces variant 1 for B

¬yB if labeling es by a enforces variant 0 for B

¬xs →
{

yB′ if labeling e′
s by a enforces variant 1 for B′

¬yB′ if labeling e′
s by a enforces variant 0 for B′

Now, δ(Q, abb) = {q0} is equivalent to the conjunction of all the implications. Indeed, from the

claims above it follows easily that the implications are necessary for δ being abb-synchronizing.

On the other hand, a satisfying assignment of the variables induces a labeling of G that, as can

be easily checked, is abb-synchronizing.

NP-Complete Cases

We introduce a method based on sink devices to prove the NP-completeness for a wide class of

words even under the restriction to strongly connected graphs.

In the proofs below we use the notion of a partial finite automaton (PFA), which can be defined

as a triple P = (Q,Σ, δ), where Q is a finite set of states, Σ is a finite alphabet, and δ is a

partial function Q×Σ→ Q which can be naturally extended to Q×Σ⋆ → Q. Again, we write

r
x−→ s instead of δ (r, x) = s. We say that a PFA is incomplete if there is some undefined

value of δ. A sink state in a PFA has a defined loop for each letter.

Definition 4.20. Let w ∈ {a, b}⋆. We say that a PFA B = (Q, {a, b} , δ) is a sink device for w,

if there exists q0 ∈ Q such that:

1. δ(q0, u) = q0 for each prefix u of w,

2. δ(s, w) = q0 for each s ∈ Q.

Note that the trivial automaton consisting of a single sink state is a sink device for any w ∈
{a, b}⋆. However, we are interested in strongly connected sink devices that are incomplete. In

Lemma 4.21 we show how to prove the NP-completeness using a non-specific sink device in the

general case of w ∈ T4 and after that we construct explicit sink devices for a wide class of words

from T4.

Lemma 4.21. Let w ∈ T4 and assume that there exists a strongly connected incomplete sink

device B for w. Then SRCWSC
2,{w} is NP-complete.

Proof. We assume that w starts by a and write w = aαbβau for α, β ≥ 1 and u ∈ {a, b}⋆. Denote

B = (QB , {a, b} , δB). For a reduction from W-SAT, take an instance X,Φ with the notation

used before, assuming that each x ∈ X occurs in Φ. We construct a graph Gw,Φ =
(
Q,E

)

as follows. Let q1 ∈ QB have an undefined outgoing transition, and let B′ be an automaton

obtained from B by arbitrarily defining all the undefined transitions except for one transition

outgoing from q1. Let GB′ be the underlying graph of B′. By Theorem 4.16, SRCWZ
2,{w} is

NP-complete, so it admits a reduction from W-SAT. Let Gw,Φ = (Q,E) be the graph obtained

from such reduction, removing the loop on the sink state q′
0 ∈ Q. Let s1, . . . , s|Q|−1 be an

enumeration of all the states of Gw,Φ different from q′
0. Then we define Gw,Φ as shown in

Figure 4.12. We merge the state q′
0 ∈ Q with the state q0 ∈ QB , which is fixed by the definition

of a sink device.

79

q1

Gw,Φ

F2,1

F|Q|,βF|Q|,β−1F|Q|,1

F1,βF1,β−1F1,1

F2,βF2,β−1F2,0

F|Q|,0

F1,0

s2

q0

GB′

s1

s|Q|−1

Figure 4.12: The graph Gw,Φ

First, let there be a coloring δ of Gw,Φ such that
∣∣δ
(
Q,w

)∣∣ = 1. It follows easily that δ, restricted

to Q, encodes a coloring δ of Gw,Φ such that |δ(Q,w)| = 1. The choice of Gw,Φ guarantees that

there is a satisfying assignment ξ for Φ.

On the other hand, let ξ be a satisfying assignment of Φ. By the choice of Gw,Φ, there is a

coloring δ of Gw,Φ such that |δ(Q,w)| = 1. We use the following coloring of Gw,Φ: The edges

outgoing from s1, . . . , s|Q|−1 are colored according to δ. The edges within GB′ are colored

according to B′. The edge q1 −→ F1,0 is colored by b. All the other edges incoming to the

states F1,0, . . . ,F|Q|,0, together with the edges of the form Fi,β −→ q0, are colored by a, while

the remaining ones are colored by b.

For any w ∈ {a, b}⋆ we construct a strongly connected sink device D(w) = (Qw, {a, b} , δw).

However, for some words w ∈ T4 (e.g. for w = abab) the device D(w) is not incomplete and

thus is not suitable for the reduction above. Take any w ∈ {a, b}⋆ and let C
P
w,C

S
w,C

F
w be the

sets of all prefixes, suffixes and factors of w respectively, including the empty word ǫ. Let

Qw =
{

[u] | u ∈ C
F
w, v /∈ C

S
w for each nonempty prefix v of u

}
,

while the partial transition function δw consists of the following transitions:

1. [u]
x−→ [ux] whenever [u] , [ux] ∈ Qw,

2. [u]
x−→ [ǫ] whenever ux ∈ C

S
w,

3. [u]
x−→ [ǫ] whenever [ux] /∈ Qw, ux /∈ C

S
w, and vx ∈ C

P
w for a suffix v of u.

Lemma 4.22. For any w ∈ {a, b}⋆, D(w) is a strongly connected sink device.

Proof. First, we have to check that the definition of D(w) = (Qw, {a, b} , δw) yields a PFA, i.e.

that no state has two outgoing transitions having the same label. Choose any [u] ∈ Qw and

x ∈ {a, b}. It is enough to check that at most one of the three construction rules on Page 80

applies to [u] and x. Indeed, by the definition of Qw the claims [ux] ∈ Qw and ux ∈ C
S
w are

contradictory. With this remark, it is obvious that any two of the rules have contradictory

conditions.

Next, we show that D(w) is a sink device for w. We choose q0 = [ǫ] and verify the two defining

conditions of a sink device (see Definition 4.20):

1. Let � denote the partial order on C
S
w defined as v1 � v2 if v1 is a prefix of v2. We start by

verifying the claim for each �-minimal nonempty u ∈ C
S
w. Write u = u0x for x ∈ {a, b}

80

and observe that [u0] ∈ Qw. Thus [ǫ]
u0−→ [u0] and in the same time [u0]

x−→ ǫ due to the

second construction rule.

Next, consider any u ∈ C
S
w and proceed by induction on the length of u. If |u| = 0, the

claim is trivial. If |u| > 0, we consider two cases:

• If u is �-minimal, we are done.

• If u is not �-minimal, write u = u0u1 where u0 ∈ C
S
w satisfies u0 � u. Since both

u0 and u1 lie in C
S
w and are shorter than u, we have [ǫ]

u0−→ [ǫ] and [ǫ]
u1−→ [ǫ] by the

induction hypothesis.

2. For the case of s = [ǫ] it is enough to apply the first condition with u = w. So, choose any

s = [v0] ∈ Qw with v0 6= ǫ. Find the longest prefix v1 of w such that [v0v1] ∈ Qw. Observe

that [v0]
v1−→ [v0v1]. Since |v0| ≥ 1, we have v1 6= w, thus we can denote w = v1xv2 for

x ∈ {a, b}. There is a transition [v0v1]
x−→ [ǫ] since:

• If v0v1x ∈ C
S
w, then the second construction rule applies easily.

• Otherwise, the transition is defined by the third construction rule via u = v0v1 and

v = v1. Indeed, from the choice of v1 it follows that [v0v1x] /∈ Qw.

We conclude by observing that [ǫ]
v2−→ [ǫ] due to the first defining condition.

Finally, we have to check that D(w) is strongly connected. The first construction rule implies

easily that each state is reachable from [ǫ]. On the other hand, there is a path from any state

to [ǫ] due to the second defining condition of a sink state.

Lemma 4.23. Suppose that w ∈ {a, b}⋆ starts by x, where {x, y} = {a, b}. If there is u ∈ {a, b}⋆
satisfying all the following conditions, then D(w) is incomplete:

1. [u] ∈ Qw,

2. uy /∈ C
F
w,

3. for each nonempty suffix v of uy, v /∈ C
P
w.

Proof. We claim that there is no y-transition outgoing from the state [u] ∈ Qw. Indeed, none

of the three construction rules from Page 80 defines such transition:

1. The first rule does not apply since uy /∈ C
F
w and thus uy /∈ Qw.

2. The second rule does not apply since uy /∈ C
F
w and thus uy /∈ C

S
w.

3. The third rule is explicitly eliminated by the third condition above.

Theorem 4.24. If a word w ∈ T4 satisfies some of the following conditions, then SRCWSC
2,{w} is

NP-complete:

1. w is of the form w = xwx for w ∈ {a, b}⋆ , x ∈ {a, b},

2. w is of the form w = xwy for w ∈ {a, b}⋆ , x, y ∈ {a, b} , x 6= y,

and xkylx ∈ C
F
w, x

k+1 /∈ C
F
w, y

l+1 /∈ C
F
w for some k, l ≥ 1.

Proof. Due to Lemmas 4.21 and 4.22, it is enough to show that D(w) is incomplete. Let m ≥ 1

be the largest integer such that ym is a factor of w. It is straightforward to check that u = ym

(in the first case) or u = xkyl (in the second case) satisfies the three conditions from Lemma

4.23.

81

4.2.3 W-SAT Is NP-Complete

In this section we prove Lemma 4.15, which claims that the following problem is NP-complete:

W-SAT

Input: Finite set X of variables, finite set Φ ⊆ X4 of clauses.

Output: Is there an assignment ξ : X → {0,1} such that for each

clause (z1, z2, z3, z4) ∈ Φ it holds that:

(1) ξ(zi) = 1 for some i,

(2) ξ(zi) = 0 for some i ∈ {1, 2},
(3) ξ(zi) = 0 for some i ∈ {3, 4}?

According to Schaefer [84] we use the following formalism. Let S be a finite set of Boolean

functions (or equivalently Boolean relations), i.e. let

S = {R1, . . . , Rk}

where

Ri : {0,1}αi → {0,1}

for each i = 1, . . . , k. Note that αi is the arity of the function Ri. Having such S, we define the

following computational task:

SAT(S)

Input: Number n ∈ N of variables. Finite list of clauses, i.e. strings

of the form Ri(xj1
, . . . , xjα

) where i ∈ {1, . . . , k}, α = αi,

and j1, . . . , jα ∈ {1, . . . , n}.

Output: Is there an assignment of x1, . . . , xn such that all the clauses

are satisfied?

Note that the clauses cannot contain negated literals. If there is a need for expressing negation,

it requires an appropriate function Ri. For example 3-SAT is the same as SAT(S) where S

contains four ternary functions, each for a possible number of negations (from 0 to 3).

However, we will use a one-element set

S♦ = {R♦}

where

R♦(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ ¬x4) .

So the function R♦ gives 1 if and only if some input bit is 1 and there is some 0 in each half

of the input. Observe that SAT(S♦) is just an alternative formulation of W-SAT.

Definition 4.25. A function R : {0,1}α → {0,1} is

• weakly negative if it is equivalent to a Horn formula,

• weakly positive if it is equivalent to a dual-Horn formula (i.e. conjunction of disjunctions

having at most one negated literal),

• affine if it is equivalent to a system of linear equations over the two-element field,

• bijunctive if it is equivalent to a 2-CNF (at most two literals in each conjunct).

82

Theorem 4.26 (Schaefer Dichotomy Theorem). Let S be of the above form. If S satisfies one

of the conditions below, then SAT(S) is polynomial-time decidable. Otherwise, SAT(S) is

NP-complete.

1. Each non-constant Ri has Ri(1, . . . ,1) = 1.

2. Each non-constant Ri has Ri(0, . . . ,0) = 1.

3. Each function Ri is weakly negative.

4. Each function Ri is weakly positive.

5. Each function Ri is affine.

6. Each function Ri is bijunctive.

Definition 4.27. Let R(x) = 1 for x ∈ {0,1}α. Then C ⊆ {1, . . . , n} is a change set for R, x if

R(x⊕ eC) = 1, where (eC)i = 1 exactly for i ∈ C.

Theorem 4.28 ([84]). A function R : {0,1}α → {0,1} is

• Affine if and only if for each x, y, z ∈ {0,1}α it holds that

if R(x) = 1, R(y) = 1, and R(z) = 1, then R(x⊕ y ⊕ z) = 1.

• Bijunctive if and only if for any x with R(x) = 1 and any change sets C1, C2 for R, x it

holds that also C1 ∩ C2 is a change set for R, x.

Corollary 4.29. SAT(S♦) is NP-complete.

Proof. We just need to show that no of the conditions from Schaefer Dichotomy Theorem

(Theorem 4.26) hold for S♦. Indeed:

1. The function R♦ is non-constant and we have R♦(1, . . . ,1) = 0.

2. The function R♦ is non-constant and we have R♦(0, . . . ,0) = 0.

3. Any Horn formula is either satisfied by 0, . . . ,0 or contains a one-element clause xj . The

first case does not hold for R♦ and the second case implies that xj = 1 in any assignment

satisfying R♦, which does not hold for any xj .

4. Any dual-Horn formula is either satisfied by 1, . . . ,1 or contains an one-element clause

¬xj . The first case does not hold for R♦ and the second case implies that xj = 0 in any

assignment satisfying R♦, which does not hold for any xj .

5. It is enough to apply Theorem 4.28 to the following assignments:

x = (1,0,0,0) ,

y = (0,1,0,0) ,

z = (0,0,0,1) ,

x⊕ y ⊕ z = (1,1,0,1) .

6. It is enough to apply Theorem 4.28 to x = (1,0,0,0), C1 = {1, 2}, and C2 = {1, 3} since

x⊕ eC1
= (0,1,0,0) ,

x⊕ eC2
= (0,0,1,0) ,

x⊕ eC1∩C2 = (0,0,0,0) .

83

Chapter 5

Jumping Finite Automata and

Contextual Deleting

This chapter presents results about languages accepted by jumping finite automata and clearing

restarting automata. Section 5.1 gives basic definitions and relates the two key models, which

have been introduced recently, with notions considered in more classical literature.

In Section 5.2 we complete the initial study of jumping finite automata, which was started in a

former article of Meduna and Zemek [64, 65]. The open questions about basic closure properties

are solved. Besides of that, we correct erroneous results presented in [64, 65]. Finally, we point

out important relations between jumping finite automata and other models studied in the

literature. An article presenting these results was submitted to a journal.

In Section 5.3, we construct a clearing restarting automaton with two-letter contexts that

accepts a language over a two-letter alphabet lying outside the class CFL, thus closing the

study raised by Černo and Mráz, 2010 [25].

5.1 Models and their Relations

More specifically, our results and remarks deal with the following models:

1. Jumping finite automata, described recently by Meduna [64, 65]. They are equivalent to

graph-controlled insertion systems with empty contexts.

2. Clearing restarting automata, which is a subclass of Context rewriting systems, both

introduced in [25]. They are closely related to semicontextual grammars, as studied e.g.

in [55, 75].

3. Insertion systems, as a special type of insertion-deletion systems, both introduced in [76]

and widely studied in the last years. We also consider graph-controlled insertion systems,

as described in [2, 98]. Insertion systems (possibly graph controlled) are equivalent to

semicontextual grammars without appearance checking (possibly with regular control)

introduced in [55, 75].

5.1.1 Preliminary Definitions

In this chapter we heavily use the natural notion of sequential insertion, as it was described

e.g. in [44] and [47]:

Definition 5.1. Let K,L ⊆ Σ⋆ be languages. The insertion of K to L is

L← K = {u1vu2 | u1u2 ∈ L, v ∈ K} .

84

More generally, for each k ≥ 1 we denote

L←k K =
(
L←k−1 K

)
← K,

L←⋆ K =
⋃

i≥0

L←i K,

where L ←0 K stands for L. In expressions with ← and ←⋆, a singleton set {w} may be

replaced by w. A chain L1 ← L2 ← · · · ← Ld of insertions is evaluated from the left, e.g.

L1 ← L2 ← L3 means (L1 ← L2) ← L3. According to [32], L ⊆ Σ⋆ is a unitary language if

L = w ←⋆ K for w ∈ Σ⋆ and finite K ⊆ Σ.

Definition 5.2. For languages K,L ⊆ Σ⋆, a word w ∈ Σ⋆ belongs to shuffle(K,L) if and only if

there are words u1, u2, . . . , uk, v1, v2, . . . , vk ∈ Σ⋆ such that u1u2 . . . uk ∈ K, v1v2 . . . vk ∈ L, and

w = u1v1u2v2 . . . ukvk. Furthermore, we denote LR =
{
wR | w ∈ L

}
, where wR is the reversal

of w.

Definition 5.3. For w ∈ Σ⋆ and k, l ∈ {1, . . . , |w|}, the term w[k] denotes the k-th letter of w

and the term w[k..l] denotes w[k]w[k + 1] . . . w[l]. We write w[..k] and w[k..] instead of w[1..k]

and w[k.. |w|].

5.1.2 Insertion-Deletion Systems

An insertion-deletion system, as introduced in [76], is described by a tuple I = (Γ,Σ, A, I,D)

specifying a finite alphabet Γ, a set Σ ⊆ Γ of terminals, a finite set A ⊆ Γ⋆ of axioms, and

finite sets I,D of insertion rules and deletion rules from Γ⋆×Γ⋆×Γ⋆. We write u1u2 ⇒ u1vu2

if (uL, v, uR) ∈ I, where uL is a suffix of u1 and uR is a prefix of u2. Similarly, u1vu2 ⇒ u1u2

if (uL, v, uR) ∈ D, where uL is a suffix of u1 and uR is a prefix of u2. The system accepts the

language

L = {w ∈ Σ⋆ | u⇒⋆ w, u ∈ A} ,

where ⇒⋆ is the reflexive-transitive closure of ⇒. If D = ∅, the system is an insertion system.

In insertion systems we can assume that Γ = Σ. For each m,m′, n ≥ 0, an insertion system

has size (n,m,m′) if each insertion rule (uL, v, uR) ∈ I satisfies |uL| ≤ m, |uR| ≤ m′. The class

insm,m
′

n contains languages accepted by insertion systems of the corresponding size. If some of

n,m,m′ is replaced by ∗, the parameter is not bounded. For example, ins0,0
∗ contains exactly

finite unions of unitary languages (one unitary language for each axiom).

In [2] and [98], the authors introduce graph-controlled insertion systems. Informally, such

system may be defined by an insertion system S = (Γ,Σ, A, I,D), a set Q of components, a set

R of rules from Q × I × Q, an initial component q0 ∈ Q and a final component qf ∈ Q. We

write (s, u1u2) ⇛ (r, u1vu2) if (uL, v, uR) ∈ I, where uL is a suffix of u1 and uR is a prefix of

u2, and (s, v, r) ∈ R. The system accepts the language

L = {w ∈ Σ⋆ | (q0, u) ⇛⋆ (qf , w) , u ∈ A} ,

where ⇛⋆ is the reflexive-transitive closure of the relation ⇛ over Q × Σ⋆. According to [2],

the term LStPk

(
insm,m

′

n

)
denotes the class of languages accepted by graph-controlled insertion

systems with at most k components where the properties of each insertion rule are bounded by

n,m,m′ as above.

Insertion-deletion systems have been widely studied since the beginning of 21th century, see

e.g. references of [2] and [98].

85

5.1.3 Jumping Finite Automata

In 2012, Meduna and Zemek [64] introduced general jumping finite automata as a model of

discontinuous information processing. A general jumping finite automaton (GJFA) is described

by a finite set Q of states, a finite alphabet Σ, a finite set R of rules from Q × Σ⋆ × Q, an

initial state q0 ∈ Q, and a set F ⊆ Q of final states. In a step of computation, the automaton

switches from a state r to a state s using a rule (r, v, s) ∈ R, and deletes a factor equal to v

from any part of the input word. The choices of the rule used and of the factor deleted are

made nondeterministically. A word is accepted if there is a computation resulting in the empty

word.

There is an infinite hierarchy of GJFA according to the maximum length of factor deleted in

a single step - a GJFA is of degree n if |v| ≤ n for each (r, v, s) ∈ R. A GJFA of degree 1 is

called a jumping finite automaton (JFA). Bold symbols JFA and GJFA denote the classes of

languages accepted by these types of automata.

As described above, a GJFA is a quintuple M = (Q,Σ, R, q0, F). The following formal descrip-

tion of computation performed by a GJFA was introduced in [64].

Definition 5.4. Any string from the language Σ⋆QΣ⋆ is called a configuration of M . For r, s ∈ Q
and u1, u2, u

′
1, u

′
2, v ⊆ Σ⋆, we write

u1rvu2 yM u′
1su

′
2

if u1u2 = u′
1u

′
2 and (r, v, s) ∈ R. By y⋆

M we denote the reflexive-transitive closure of the binary

relation yM over configurations. Finally,

L(M) = {uv | u, v ∈ Σ⋆, f ∈ F, uq0v y⋆
M f}

is the language accepted by M . If M is fixed, we write just y and y⋆.

The placement of the state symbol s in a configuration u1su2 marks the position of an imaginary

tape head. Note that this information is redundant - the head is allowed to move anywhere in

each step.

Next, we give two simple lemmas that imply the membership in GJFA for each language that

can be described using finite languages and insertions.

Lemma 5.5. Each finite language L ⊆ Σ⋆ lies in GJFA.

Proof. The language L is accepted by the two-state GJFA M with

M = {{q0, q1} ,Σ, R, q0, {q1}} ,
R = {(q0, w, q1) | w ∈ S} ,

which accepts if and only if it can delete the whole input in a single step.

Lemma 5.6. Let L,K ⊆ Σ⋆ lie in GJFA. Then L← K and L←⋆ K lie in GJFA.

Proof. Let ML = (QL,Σ, RL, q0,L, FL) and MK = (QK ,Σ, RK , q0,K , FK) be GJFA recognizing

K and L respectively, assuming QL ∩QK = ∅. To obtain M with L(M) = L← K, we put

M = (Q,Σ, R, q0,K , FL) ,

Q = QL ∪QK ,
R = RL ∪RK ∪ {(f, ǫ, q0,L) | f ∈ FK} .

86

To obtain M ′ with L(M ′) = L←⋆ K, we put

M ′ = (Q,Σ, R′, q0,K , FL) ,

R′ = R ∪ {(f, ǫ, q0,K) | f ∈ FK} .

Let us give a few examples of GJFA languages that are used later in this paper and follow easily

from the above lemmas. Note that a GJFA over an alphabet Σ can be seen as operating over

any alphabet Σ′ ⊇ Σ. The symbol ǫ stands for the empty word.

Example 5.7. The following languages lie in GJFA:

1. The trivial language Σ⋆ = ǫ←⋆ Σ over an arbitrary Σ.

2. The language Σ⋆uΣ⋆ = Σ⋆ ← u for u ∈ Σ⋆ over an arbitrary Σ.

3. The Dyck language D over Σ = {a, a}. We have D = ǫ←⋆ aa.

4. Any semi-Dyck language Dk over Σ = {a1, . . . , ak, a1, . . . , ak}. We have Dk ←⋆

{a1a1, . . . , akak}.

5. Any unitary language.

However, there are GJFA languages that cannot be obtained from finite languages by applying

Lemma 5.6, such as the following classical language that is not context-free and lies even in

JFA. By |w|x we denote the number of occurrences of a letter x ∈ Σ in a word w ∈ Σ⋆.

Example 5.8. The JFA M with

M = ({q0, q1, q2} ,Σ, R, q0, {q0}) ,
R = {(q0, a, q1) , (q1, b, q2) , (q2, c, q0)}

accepts the language L = {w ∈ Σ⋆| |w|a = |w|b = |w|c} over Σ = {a, b, c}⋆.

We have shown that the class GJFA is not a subclass of context-free languages, but it was

pointed out in [64] that each GJFA language is context-sensitive. The class GJFA does not

stick to classical measures of expressive power - in the next section we give examples of regular

languages that do not lie in GJFA. As for JFA languages, in [65] the authors show that a

language lies in JFA if and only if it is equal to the permutation closure of a regular language.

Next, we fix additional notation that turns out to be very useful in our proofs. The notions

of paths and labels naturally correspond to graphical representations of GJFA, where vertices

stand for states and labeled directed edges stand for rules.

Definition 5.9. A path from s0 ∈ Q to sd ∈ Q in a GJFA M = (Q,Σ, R, q0, F) is a sequence

(s0, v1, s1) , (s1, v2, s2) , . . . , (sd−1, vd, sd)

of rules from R. The path is accepting if s0 = q0 and sd ∈ F . The labeling of the path is the

sequence v1, v2, . . . , vd of words from Σ⋆. The total label of the path is the word v1v2 . . . vd ∈ Σ⋆.

An empty path from any state to itself has total label ǫ.

Lemma 5.10. Let M = (Q,Σ, R, q0, F) be a GJFA and w ∈ Σ⋆. Then w ∈ L(M) if and only if

w ∈ ǫ← vd ← vd−1 ← · · · ← v2 ← v1,

where v1, v2, . . . , vd is a labeling of an accepting path in M .

87

The above lemma suggests a generative approach to GJFA - the computation of a GJFA may be

equivalently described in terms of inserting factors instead of deleting them. A word is accepted

by a GJFA if and only if it can be composed by inserting factors to the empty word according

to labels of a reversed accepting path.

Let us point out that the class GJFA can be put into the frameworks of graph-controlled

insertion-deletion systems. The following theorem is actually an easy observation.

Theorem 5.11. It holds that GJFA = LStP∗
(
ins0,0

∗
)
.

Indeed, with the generative approach to GJFA in mind, a GJFA may be transformed to a

graph-controlled insertion system with the same structure, using only the axiom ǫ and insertion

rules with empty contexts. For the backward inclusion we just encode the axioms to rules

specifying that the computation ends by deleting an axiom.

Finally, an interesting result follows from the fact that each unitary language lies in GJFA.

According to the main result of the Haussler’s article [44],∪ there is an alphabet Σ such that

for given finite sets S, T ⊆ Σ⋆ it is undecidable whether the intersection of ǫ←⋆ S and ǫ←⋆ T

contains a non-empty string. It is trivial to construct a GJFA accepting (ǫ←⋆ S) \ {ǫ}, so we

obtain the following theorem.

Theorem 5.12. Given GJFA M1,M2, it is undecidable whether L(M1) ∩ L(M2) = ∅.

5.1.4 Clearing Restarting Automata

In [25], Černo and Mráz introduced the following models of linguistical analysis of natural

language sentences.

Definition 5.13. For k ≥ 0, a k-context rewriting system is a tuple R = (Σ,Γ, I), where Σ is an

input alphabet, Γ ⊇ Σ is a working alphabet not containing the special symbols ¢ and $, called

sentinels, and I is a finite set of instructions of the form

(uL, v → t, uR) ,

where uL is a left context, x ∈ Γk ∪ ¢Γk−1, y is a right context, y ∈ Γk ∪ Γk−1$, and v → t is

a rule, z, t ∈ Γ⋆. A word w = u1vu2 can be rewritten into u1tu2 (denoted asu1vu2 →R u1tu2)

if and only if there exists an instruction (uL, v → t, uR) ∈ I such that uL is a suffix of ¢u1 and

uR is a prefix of u2$. The symbol →⋆
R denotes the reflexive-transitive closure of →R.

Definition 5.14. For k ≥ 0, a k-clearing restarting automaton (k -cl-RA) is a system M = (Σ, I),

where (Σ,Σ, I) is a k-context rewriting system such that for each i = (uL, v → t, uR) ∈ I it holds

that v ∈ Σ+ and t = ǫ. Since t is always the empty word, we use the notation i = (uL, v, uR).

A k -cl-RA M accepts the language

L(M) = {w ∈ Σ⋆ | w ⊢⋆M ǫ} ,

where ⊢M denotes the rewriting relation →
M

of M = (Σ,Σ, I). The term L(k -cl-RA) denotes

the class of languages accepted by k -cl-RA.

Like in jumping finite automata, one may consider the generative approach to languages ac-

cepted by clearing restarting automata. In this case, the generative approach is formalized by

writing w2 ⊣ w1 instead of w1 ⊢ w2.

The notions of k -cl-RA and insertion systems of size (∗, k, k) are very similar since the gener-

ative approach makes it possible to consider insertions instead of deletions in a k -cl-RA. The

differences between the models are:

1. Insertion systems use finite sets of atoms, while k -cl-RA use only ǫ as an atom.

88

2. k -cl-RA use the markers ¢ and $ in contexts.

The first point does not make a real difference:

Theorem 5.15. It holds that INSk,k∗ ⊆ k -cl-RA.

Proof. Let I = (Σ,Σ, A, I, ∅) be an insertion system. The language of I is accepted by the

k -cl-RA R = (Σ, I ∪ IA), where IA = {(¢, v, $) | v ∈ A}.

The following observation says that the second point may be overcame by explicit endmarking:

Theorem 5.16. If L ∈ k -cl-RA, then ¢L$ ∈ INSk,k∗ .

Proof. Let R = (Σ, I) be a k -cl-RA. The language of R is accepted by the insertion system

I = (Σ,Σ, {ǫ} , I, ∅).

5.2 Closure Properties of the Class GJFA

The present section contains the following contributions:

1. We correct erroneous claims from [64] and [65] about closure properties of the class GJFA

- if fact it is not closed under homomorphism nor under inverse homomorphism.

2. We answer the open questions about closure properties of GJFA formulated in the two

publications. Specifically, we disprove the closure under shuffle, Kleene star and Kleene

plus, and prove the closure under reversal.

GJFA JFA

Endmarking − −
Concatenation − −
Shuffle − ♦ +

Union + +

Complement − +

Intersection − +

Int. with regular languages − −
Kleene star − ♦ −
Kleene plus − ♦ −
Reversal + ♦ +

Substitution − −
Regular substitution − −
Finite substitution − � −
Homomorphism − � −
ǫ-free homomorphism − � −
Inverse homomorphism − � +

5.2.1 A Necessary Condition for Membership in GJFA

In order to formulate our main tools for disproving membership in GJFA, the following technical

notions remain to be defined.

Definition 5.17. A language K ⊆ Σ⋆ is a composition if it can be written as

K = ǫ← vd ← vd−1 ← · · · ← v2 ← v1,

89

where v1, . . . , vd ∈ Σ⋆ and d ≥ 0. A composition is of degree n if |vi| ≤ n for each i ∈ {1, . . . , d}.
For each n ≥ 0, let UCn denote the class of languages L that can be written as

L =
⋃

K∈C
K,

where C is any (possibly infinite) set of compositions of degree n. We also denote UC =⋃
n≥0 UCn.

Actually, the class UCn for n ≥ 1 consists of the languages accepted by infinite-state machines

that work like GJFA of weight n. The corresponding languages may not be recursive. However,

we use the membership in UC only as a technical necessary condition for membership in GJFA.

Lemma 5.18. GJFA ⊆ UC.

Proof. Let M = (Q,Σ, R, q0, F) be a GJFA. Let P be the set of all accepting paths in M .

According to Lemma 5.10, we have

L(M) =
⋃

p∈P
(ǫ← vp,d ← vp,d−1 ← · · · ← vp,2 ← vp,1) ,

where vp,1, . . . , vp,d is the labeling of p.

The following lemma deals with the language L = {ab}⋆, which serves as a canonical non-GJFA

language in the proofs of our main results.

Lemma 5.19. The language L = {ab}⋆ does not lie in GJFA.

Proof. Suppose for a contradiction that L ∈ UCn with n ≥ 0. Fix w = (ab)
n+1

. According to

the definition of UCn, w lies in a composition K ⊆ L of the form

K = K ′ ← v

of degree n, denoting the last inserted word by v instead of v1.Thus, w = u1vu2 for u1u2 ∈ K ′.

As |v| ≤ n, at least one of the following assumptions is fulfilled:

1. Assume that |u1| ≥ 2 and write u1 = abu1. If v starts by a, we have avbu1 ∈ K. If v

starts by b, we have abvu1 ∈ K.

2. Assume that |u2| ≥ 2 and write u2 = u2ab. If v starts by a, we have u2avb ∈ K. If v

starts by b, we have u2abv ∈ K.

In each case, K contains a word having some of the factors aa and bb. Thus K * L, which is a

contradiction.

5.2.2 The Main Results

The table below lists various unary and binary operators on languages. The symbols +,−
tell that a class is closed or is not closed under an operator, respectively. A similar table

was presented in [64, 65], containing several questionmarks. In this section we complete and

correct these results. The symbol ♦ marks answers to open questions and the symbol � marks

corrections.

Before proving the new results, let us deal with the closure under intersection. The following

theorem is stated also in [64, 65], but we find the presented proof insufficient.

Theorem 5.20. GJFA is not closed under intersection.

90

Proof. Let Σ = {a, a} and L = L(M) for

M = ({q, r} ,Σ, R, q, {r}) ,
R = {(q, aa, q) , (q, aa, r)} ,

as depicted in Figure 5.1. For each d ≥ 1 there is exactly one accepting path of length d in M .

According to Lemma 5.10, we have

L =
⋃

d≥1

Kd,

where K1 = ǫ← aa and Ki+1 = Ki ← aa for i ≥ 1. We show that

D ∩ L = {aa}⋆ , (5.1)

where D ∈ GJFA is the Dyck language from Example 5.7, and {aa}⋆ does not lie in GJFA

due to Lemma 5.19. The backward inclusion is easy. As for the forward one, it is enough to

verify that D ∩Kd ⊆ {aa}⋆ for each d ≥ 1. The case d = 1 is trivial since K1 = {aa}. In order

to continue inductively, fix d ≥ 2. For any w ∈ D ∩Kd, we have w = u1aau2 for u1u2 ∈ Kd−1.

From D = ǫ←⋆ aa it follows that u1 ∈ DaD, u2 ∈ DaD, and thus, u1u2 ∈ D. By the induction

assumption, u1u2 ∈ {aa}⋆. Hence w ∈ {aa}⋆ (aa) {aa}⋆ or w ∈ {aa}⋆ a (aa) a {aa}⋆. The first

case implies w /∈ D, which is a contradiction, and the second case implies w ∈ {aa}⋆.

The next theorem shows that some of the announced results actually follow very easily from

Lemma 5.19, which claims that {ab}⋆ /∈ GJFA. Theorems 5.22 and 5.23 provide special

counter-examples for the closure under inverse homomorphism and shuffle.

Theorem 5.21. GJFA is not closed under:

1. Kleene star,

2. Kleene plus,

3. ǫ-free homomorphism,

4. homomorphism,

5. finite substitution.

Proof. We have {ab} ∈ GJFA and {ab}⋆ /∈ GJFA due to Lemma 5.19. As GJFA is closed

under union, {ab}+
/∈ GJFA as well. As for ǫ-free homomorphism, consider ϕ : {a}⋆ → {a, b}⋆

with ϕ(a) = ab. We have L = {a}⋆ ∈ GJFA and ϕ(L) = {ab}⋆ /∈ GJFA. Trivially, ϕ is also a

general homomorphism and a finite substitution.

q r
a1a1

a1a1

Figure 5.1: The GJFA M with D ∩ L(M) = {aa}⋆

q r
a1a1

a1a1, a2a2

Figure 5.2: The GJFA M with L(M) = D2a1D2a1D2

91

Theorem 5.22. GJFA is not closed under inverse homomorphism.

Proof. Let Σ = {a1, a1, a2, a2} and

M = ({q, r} ,Σ, R, q, {r}) ,
R = {(q, a1a1, q) , (q, a2a2, q) , (q, a1a1r)} ,

see Figure 5.2. Let L = L(M). Observe that L = D2a1D2a1D2, where D2 is the semi-Dyck

language with two types of brackets: a1, a1 and a2, a2. According to Example 5.7, D2 ∈ GJFA.

Let ϕ : {a, b}⋆ → Σ⋆ be defined as

ϕ(a) = a1a2,

ϕ(b) = a2a1.

We claim that ϕ−1(L) = {ab}⋆, which means

L ∩ rng(ϕ) = {a1a2a2a1}⋆ .

The backward inclusion is easy - we have {a1a2a2a1}⋆ ⊆ a1D2a1. As for the forward inclusion,

take any w ∈ L ∩ rng(ϕ) and fix v = x1 . . . xm such that ϕ(v) = w and x1, . . . , xm ∈ {a, b}. As

w ∈ rng(ϕ), w starts by a1 or a2 and ends by a1 or a2. Thus w ∈ a1D2a1, x1 = a, xm = b, and

w = a1a2ϕ(x2) . . . ϕ(xn−1) a2a1,

where

a2ϕ(x2) . . . ϕ(xn−1) a2 ∈ D2.

None of the factors a2a1 and a1a2 can occur in D2. It follows that x2 = b and we continue by

induction: for each i = 2, . . . ,m− 2 it holds that

xi = a ⇔ xi+1 = b,

which implies v ∈ {ab}⋆ and w ∈ {a1a2a2a1}⋆.

Theorem 5.23. GJFA is not closed under shuffle.

Proof. Again, we fix Σ = {a1, a1, a2, a2} and consider the semi-Dyck language L = D2 ∈ GJFA

over Σ. We claim that shuffle(D2, D2) /∈ GJFA. According to Lemma 5.18 we assume for a

contradiction that shuffle(D2, D2) ∈ UCn for n ≥ 1. Denote w = an1a
n
2a

n
1a

n
2 . The word w lies

in a composition K of degree n having the form K = K ′ ← v, so w = u1vu2 for u1u2 ∈ Σ⋆.

Clearly, there is x ∈ {a1, a2} such that at least one of the following assumptions is fulfilled:

1. Assume that v contains x. As |v| ≤ n, it cannot contain x. The word u1u2v lies in K but

it contains an occurrence of x with no occurrence of x on the right, so it does not lie in

shuffle(D2, D2).

2. Assume that v contains x. As |v| ≤ n, it cannot contain x. The word vu1u2 lies in K

but it contains an occurrence of x with no occurrence x on the left, so it does not lie in

shuffle(D2, D2).

Theorem 5.24. GJFA is closed under reversal.

92

Proof. Let M = (Q,Σ, R, q0, F) be a GJFA. We claim that the automaton

MR =
(
Q,Σ, RR, q0, F

)
,

RR =
{(
q, vR, r

)
| (q, v, r) ∈ R

}

accepts L(M)
R

. Due to symmetry, it is enough to prove L(M)
R ⊆ L

(
MR

)
. According to

Lemma 5.10, we just observe that

(ǫ← vd ← vd−1 ← · · · ← v2 ← v1)
R ⊆ ǫ← vR

d ← vR
d−1 ← · · · ← vR

2 ← vR
1

⊆ L
(
MR

)

for each accepting path in M with labeling v1, . . . , vd.

5.3 Clearing Restarting Automata with Small Contexts

Though the basic model of clearing restarting automata is not able to describe all context-

free languages nor to handle basic language operations (e.g. concatenation and union) [25], it

has been deeply studied in order to design suitable generalizations. The study considered also

restrictions of the maximum context length in rewriting rules:

Theorem 5.25 ([25]).

1. For each k ≥ 3, the class L(k -cl-RA) contains a binary language, which is not context-free.

2. The class L(2 -cl-RA) contains a language L ⊆ Σ⋆ with |Σ| = 6, which is not context-free.

3. The class L(1 -cl-RA) contains only context-free languages.

The present section is devoted to proving the following theorem, which completes the results

listed above.

Theorem 5.26. The class L(2 -cl-RA) contains a binary language, which is not context-free.

In order to prove Theorem 5.26, we define two particular rewriting systems:

1. A 1-context rewriting system RuV = ({u,V} , {u,V} , IuV). The set IuV is listed in Table

5.1.

2. A 2-clearing restarting automaton R01 = ({0, 1} , I01). The set IuV is listed in Table 5.2.

We write →uV for the rewriting relation of RuV and ⊣01 for the production relation of R01.

0) (¢, ǫ→ uu, $)

1) (¢,u→ uuV, ǫ)

2) (ǫ,Vu→ uuuV, ǫ)

3) (ǫ,Vu→ uuuu, $)

Table 5.1: The rules IuV

(a) (b) c) d)

0) (¢, 00, $) - - -

1) (¢, 10, 00) (¢, 00, 10) - -

2) (01, 10, 00) (00, 11, 01) (11, 00, 10) (10, 01, 11)

3) (01, 10, 0$) (00, 11, 0$) - -

Table 5.2: The rules I01 sorted by types 0 to 3

The key feature of the system RuV is:

Lemma 5.27. Let w ∈ L(RuV) ∩ {u}⋆. Then |w| = 2 · 3n for some n ≥ 0.

93

The proof is postponed to Section 5.3.1. We also define:

1. A length-preserving mapping ϕ : {0, 1}⋆ → {u,V}⋆ as ϕ(x1 . . . xn) = x1 . . . xn, where

xk =

{
V if 1 < k < n and xk−1 = xk+1

u otherwise

for each k ∈ {1, . . . , n}.

2. A regular language K ⊆ {0, 1}⋆:

K =
{
w ∈ {0, 1}⋆ | w has none of the factors 000, 010, 101, 111

}
.

The following is a trivial property of ϕ and K:

Lemma 5.28. Let u ∈ {0, 1}⋆. Then u ∈ K if and only if ϕ(u) ∈ {u}⋆.

The next lemma expresses how the systems R01 and RuV are related:

Lemma 5.29. Let u, v ∈ {0, 1}⋆. If u ⊣01 v, then ϕ(u)→uV ϕ(v).

Proof. For u = v the claim is trivial, so we suppose u 6= v. Denote m = |u|. As u can be

rewrote to v using a single rule of R01, we can distinguish which of the four kinds of rules (the

rows 0 to 3 of Table 5.2) is used:

0) If the rule 0 is used, we have u = ǫ and v = 00. Thus ϕ(u) = ǫ and ϕ(v) = uu.

1) If a rule (¢, z1z2, y1y2) of the kind 1 is used, we see that v has some of the prefixes

1000, 0010 and so ϕ(v) starts with uuV. Trivially, ϕ(u) starts with u. Because u[1..] =

v[3..], we have ϕ(u)[2..] = ϕ(v)[4..] and we conclude that applying the rule (¢,u→ uuV, ǫ)

rewrites ϕ(u) to ϕ(v).

2) If a rule (x1x2, z1z2, y1y2) of the kind 2 is used, we have

u[k..k + 3] = x1x2y1y2,

v[k..k + 5] = x1x2z1z2y1y2.

for some k ∈ {1, . . . ,m− 3}. As x1x2y1y2 equals some of the factors

0100, 0001, 1110, 1011, we have

ϕ(u)[k + 1..k + 2] = Vu.

As x1x2z1z2y1y2 equals some of the factors 011000, 001101, 110010, 100111, we have

ϕ(v)[k + 1..k + 4] = uuuV.

Because u[..k + 1] = v[..k + 1] and u[k + 2..] = v[k + 4..], we have

ϕ(u)[..k] = ϕ(v)[..k] ,

ϕ(u)[k + 3..] = ϕ(v)[k + 5..] .

Now it is clear that the rule (ǫ,Vu→ uuuV, ǫ) rewrites ϕ(u) to ϕ(v).

3) If a rule (x1x2, z1z2, y$) of the kind 3 is used, we have

u[m− 2..m] = x1x2y,

v[m− 2..m+ 2] = x1x2z1z2y.

94

As x1x2y equals some of the factors 010, 000, we have

ϕ(u)[m− 1..m] = Vu.

As x1x2z1z2y equals some of the factors 01100, 00110, we have

ϕ(v)[m− 1..m+ 2] = uuuV.

Because u[..m− 1] = v[..m− 1], we have

ϕ(u)[..m− 2] = ϕ(v)[..m− 2] ,

Now it is clear that the rule (ǫ,Vu→ uuuu, $) rewrites ϕ(u) to ϕ(v).

Corollary 5.30. If u ∈ L(R01), then ϕ(u) ∈ L(RuV).

Proof. Follows from the fact that ϕ(ǫ) = ǫ and a trivial inductive use of Lemma 5.29.

The last part of the proof of Theorem relies of the following lemma, whose proof is postponed

to Section 5.3.1:

Lemma 5.31. For each α, β > 0 it holds that

00 (1100)
α

1000 (1100)
β ⊣⋆01 00 (1100)

α+9
1000 (1100)

β−1
.

Corollary 5.32. For each β > 0 it holds that

001000 (1100)
β ⊣⋆01 00 (1100)

9β
1000.

Proof. As the left-hand side is equal to 00 (1100)
0

1000 (1100)
β

and the right-hand side is equal

to 00 (1100)
9β

1000 (1100)
0
, the claim follows from an easy inductive use of Lemma 5.31.

Corollary 5.33. The language L(R01) ∩K is infinite.

Proof. We show that for each k ≥ 0,

00 (1100)
2·9k−2

4 ∈ L(R01) .

In the case k = 0 we just check that 00 ∈ L(R01). Next we suppose that the claim holds for a

fixed k ≥ 0 and show that

00 (1100)
2·9k−2

4 ⊣⋆01 00 (1100)
2·9k+1−2

4 .

Using the rules 1a and 1b we get

00 (1100)
2·9k−2

4 ⊣⋆01 1000 (1100)
2·9k−2

4 ⊣⋆01 001000 (1100)
2·9k−2

4 ,

while Corollary 5.32 continues with

001000 (1100)
2·9k−2

4 ⊣⋆01 00 (1100)
2·9k+1−18

4 1000.

Finally, denoting p = 00 (1100)
2·9k+1−18

4 , using rules 2b, 2a, 2b, 2d, 2c, and 2a respectively we

get

p1000 ⊣01 p100110 ⊣01 p11000110 ⊣01 p1100110110 ⊣01 p110011001110 ⊣01

⊣01 p11001100110010 ⊣01 p1100110011001100 = 00 (1100)
2·9k+1−2

4 .

95

We conclude the proof of Theorem 2.8 by pointing out that Lemmas 5.28, 5.29, and 5.27 say

that for each w ∈ {0, 1}⋆ we have

w ∈ L(R01) ∩K ⇒ ϕ(w) ∈ L(RuV) ∩ {u}⋆

⇒ (∃n ≥ 0) |w| = 2 · 3n

This, together with the pumping lemma for context-free languages and the infiniteness of

L(R01)∩K, implies that L(R01)∩K is not a context-free language. As the class of context-free

languages is closed under intersections with regular languages, nor L(R01) is context-free.

5.3.1 Proofs of Lemmas 5.27 and 5.31

Proof of Lemma 5.27. We should prove that w ∈ L(RuV) ∩ {u}⋆ implies |w| = 2 · 3n for some

n ≥ 0. Let Φ : {u,V}⋆ → N be defined inductively as follows:

Φ(ǫ) = 0,

Φ
(
ukw

)
= k + Φ(w) ,

Φ(Vw) = 1 + 3 · Φ(w)

for each k ≥ 1 and w ∈ {u,V}⋆. Observe that we have assigned a unique value of Φ to each

word from {u,V}⋆. Next, we describe effects of the rules of RuV to the value of Φ.

0) The rule 0 can only rewrite w1 = ǫ to w2 = uu. We have Φ(w1) = 0 and Φ(w2) = 2.

1) The rule 1 rewrites w1 = uw to w2 = uuVw for some w ∈ {u,V}⋆. We have Φ(w1) =

1 + Φ(w) and Φ(w2) = 3 + 3 · Φ(w). Thus, Φ(w2) = 3 · Φ(w1).

2) The rule 2 rewrites w1 = wVuw to w2 = wuuuVw for some w,w ∈ {u,V}⋆. We have

Φ(Vuw) = Φ(uuuVw) = 4 + 3 · Φ(w) .

It follows that Φ(w1) = Φ(w2).

3) The rule 3 rewrites w1 = wVu to w2 = wuuuu for some w ∈ {u,V}⋆. We have Φ(Vu) =

Φ(uuuu) = 4 and thus Φ(w1) = Φ(w2).

Together, each w ∈ L(RuV) has Φ(w) = 2 ·3n for some n ≥ 0. As Φ(w) = |w| for each w ∈ {u}⋆,
the proof is complete.

Proof of Lemma 5.31. We should show that

00 (1100)
α

1000 (1100)
β ⊣⋆01 00 (1100)

α+9
1000 (1100)

β−1

96

holds for each α, β > 0. Indeed, it is enough to apply the following rules:

00 (1100)
α

1000 (1100)
β ⊣01 00 (1100)

α
100110 (1100)

β ⊣01

00 (1100)
α

11000110 (1100)
β ⊣01 00 (1100)

α+1
110110 (1100)

β ⊣01

00 (1100)
α+1

11001110 (1100)
β ⊣01 00 (1100)

α+2
111001 (1100)

β ⊣01

00 (1100)
α+2

11001001 (1100)
β ⊣01 00 (1100)

α+3
110001 (1100)

β ⊣01

00 (1100)
α+4

1101 (1100)
β ⊣01 00 (1100)

α+4
1101100100 (1100)

β−1 ⊣01

00 (1100)
α+4

110011100100 (1100)
β−1 ⊣01 00 (1100)

α+5
1100100100 (1100)

β−1 ⊣01

00 (1100)
α+6

11000100 (1100)
β−1 ⊣01 00 (1100)

α+7
011000 (1100)

β−1 ⊣01

00 (1100)
α+7

11011000 (1100)
β−1 ⊣01 00 (1100)

α+7
1100111000 (1100)

β−1 ⊣01

00 (1100)
α+8

11001000 (1100)
β−1

.

97

Chapter 6

Conclusions and Future Work

Synchronization Thresholds

In Chapter 2 we have proved that the subset synchronization threshold of DFA and the careful

synchronization threshold of PFA are both strongly exponential even under two heavy restric-

tions: binary alphabets and strong connectivity. The multiplicative constants in the exponents

do not seem to be the largest possible, so it may deserve a more precise study to determine

the threshold functions. There is also no method for giving upper bounds concerning various

alphabet sizes. If the Černý conjecture holds, binary cases are the hardest possible for the

classical synchronization of DFA, but this still may not hold in the generalized settings.

From a more general viewpoint, our results give a partial answer to the informal question:

Which features of DFA are needed for obtaining strongly exponential thresholds of subset syn-

chronization? However, for many interesting restrictions we do not even know whether the cor-

responding thresholds are superpolynomial. Namely, such restricted classes include monotonic

and aperiodic automata, cyclic and one-cluster automata, Eulerian automata, commutative

automata and others. For each of these classes it is also an open question whether Subset

synchronizability (or Careful synchronizability) is solvable in polynomial time with

the corresponding restriction. Moreover, for the careful synchronization threshold car(n) the

gap between the lower bound O
(
n2 · 4 n

3

)
and the upper bound Ω

(
3

n
3

)
is open, though it is

subject to an active research.

There are several current research directions related to the classical synchronization of DFA.

One of them, concerning binary automata with sink states, was discussed in Section 2.2. Our

new series does not seem to present the worst possible cases, but it still may be useful in further

research. Other such directions include the study of Eulerian automata: a current common work

of the author and Marek Szyku la should present certain series of Eulerian DFA (see Figure 6.1),

where each n-state automaton with odd n has reset threshold equal to n2−2
3 , which is the value

that is conjectured to be the worst possible according to computational search.

As for general upper bounds, the new method used recently by Trahtman (see Section 1.3.2) still

ω1 ω2

ω2, β

ω1, β

αβ

α

β

α

α

αβ

αβ

β

β

α

β

α
β

αβ

α

α

α

α

β

β

α

β

α

β

Figure 6.1: A series of n-state Eulerian automata, which is conjectured to have synchronization

threshold equal to n2−2
3

98

seems to provide a possible way for lowering the bound, though the Trahtman’s particular proof

was wrong. Namely, from the correct claims in [93] it follows that if the following conjecture

holds true, then Cn ≤ 7
48n

3 +O
(
n2
)

for each n ≥ 1.

Conjecture 6.1. There exists K ≥ 1 such that for each n-state synchronizing DFA A = (Q,Σ, δ)

and each s ∈ Q there is a word w ∈ Σ⋆ with |w| ≤ Kn and s /∈ δ(Q,w).

However, correctness of this simply-looking conjecture is still unknown.

Clever methods were developed for efficient enumeration of non-isomorphic DFA in order to

produce useful experimental data regarding Černý conjecture. So far, the conjecture was verified

for all binary automata with at most 11 states [52]. Besides of that, the experimental results

show certain interesting trends in numerical distributions of possible synchronization thresholds.

Computational Complexity

In Chapter 3 we have closed a former research of restrictions and parameterized complexity of

SYN. Chapter 4 considered restrictions and parameterized complexity of SRCP and restrictions

of SRCW. In the last case we have completely characterized binary words w that make the

problem SRCW NP-complete if restricted to |Σ| = 2,W = {w}, and proved that if we require

strong connectivity, the case with w = abb becomes solvable in polynomial time, though in the

basic form it is NP-complete. For any w such that the first letter equals to the last one and both

a, b occur in w, we have proved that the NP-completeness holds even under the requirement

of strong connectivity. However, current joint work with Adam Roman should provide a full

classification of binary words even in the strongly connected case (i.e. fill the first column of

Table 4.3). A proof of the following claim is currently being inspected:

Conjecture 6.2. Let w be a word from {a, b}⋆ distinct from abb and baa. If SRCW2,{w} is

NP-complete, then SRCWSC
2,{w} is also NP-complete.

Other immediate goals of future research are to give classifications of words over non-binary

alphabets and to study SRCW restricted to non-singleton sets of words. As for other compu-

tational problems related to road coloring, there is e.g. an interest in graphs that result in a

synchronizing automaton after any valid coloring of edges. The complexity of recognizing such

graphs is unknown.

Important computational tasks also include recognizing automata with various order-preserving

properties that guarantee low synchronization thresholds. While it is known that recognizing

monotonic automata is NP-complete [90], for many related classes there is no such result.

Jumps and Contextual Deleting

It is a task for future research to provide really alternative descriptions of the class GJFA. There

also remain open questions about decidability, specifically regarding equivalence, universality,

inclusion, and regularity of GJFA, see [65]. It also seems that general jumping finite automata

are not an ideal formal model of systems with discontinuous information processing, so it may

deserve a suitable modification or generalization.

As for clearing restarting automata, key open questions deal with λ-confluence [67]. Informally,

a clearing restarting automaton is λ-confluent if w ⊢⋆ v together with w ⊢⋆ ǫ imply v ⊢⋆ ǫ. For

systems with this property, language membership can be tested in linear time. In general, λ-

confluence of a given clearing restarting automaton is undecidable, but it is not known whether

it becomes decidable for 1-clearing restarting automata [67].

Two main generalizations of clearing restarting automata were introduced [25, 97] in order

to enlarge the descriptional power, following trends that occur in related models and keeping

certain simplicity:

99

1. So-called ∆-clearing restarting automata are able not only to delete factors but also to

replace them with a special nonterminal symbol ∆, which can be then used in contexts.

Surprisingly, it turns out that ∆-clearing restarting automata accept all context-free lan-

guages [97].

2. In a ∆⋆-clearing restarting automaton, a factor may be also replaced with a word of the

form ∆j for j ≥ 0.

There are multiple open questions regarding the classes of languages accepted by these two

types of automata [97]. In practical use in linguistics, grammatical inference (i.e. learning) of

such automata from positive and negative examples comes into play. Results and challenges

about grammatical inference of the above models were presented in [24]. There exists software

due to Černo, which is suitable for basic experimental work with the generalized variants of

clearing restarting automata and also implements sophisticated learning algorithms.

100

Bibliography

[1] R. Adler, L. Goodwyn, and B. Weiss. Equivalence of topological Markov shifts. Israel

Journal of Mathematics, 27(1):49–63, 1977.

[2] A. Alhazov, A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Small size insertion and deletion

systems. In C. Martin-Vide, editor, Scientific Applications of Language Methods, pages

459–524. Imperial College Press, 2010.

[3] J. Almeida, S. Margolis, and B. Steinberg. Representation theory of finite semigroups,

semigroup radicals and formal language theory. Trans. Amer. Math. Soc., 361:1429 –

1461, 2009.

[4] J. Almeida and B. Steinberg. Matrix mortality and the Černý-Pin conjecture. In V. Diek-

ert and D. Nowotka, editors, Developments in Language Theory, volume 5583 of Lecture

Notes in Computer Science, pages 67–80. Springer Berlin Heidelberg, 2009.

[5] D. Ananichev. The annulation threshold for partially monotonic automata. Russian

Mathematics, 54(1):1–9, 2010.

[6] D. Ananichev and M. Volkov. Synchronizing monotonic automata. In Developments in

Language Theory, volume 2710 of Lecture Notes in Computer Science, pages 162–162.

Springer Berlin Heidelberg, 2003.

[7] D. Ananichev and M. Volkov. Synchronizing generalized monotonic automata. Theoret.

Comput. Sci., 330(1):3 – 13, 2005.

[8] D. Ananichev, M. Volkov, and Y. Zaks. Synchronizing automata with a letter of deficiency

2. In O. Ibarra and Z. Dang, editors, Developments in Language Theory, volume 4036 of

Lecture Notes in Computer Science, pages 433–442. Springer Berlin Heidelberg, 2006.

[9] D. S. Ananichev, M. V. Volkov, and V. V. Gusev. Primitive digraphs with large exponents

and slowly synchronizing automata. In Combinatorics and graph theory, Part IV, volume

402 of Zap. Nauchn. Sem. POMI, pages 9–39. POMI, 2012.

[10] M.-P. Béal. A note on Černý’s conjecture and rational series. 2003.

[11] M.-P. Béal, E. Czeizler, J. Kari, and D. Perrin. Unambiguous automata. Mathematics in

Computer Science, 1(4):625–638, 2008.

[12] M.-P. Béal and D. Perrin. A quadratic algorithm for road coloring. Discrete Applied

Mathematics, 169(0):15 – 29, 2014.

[13] M.-P. Béal, M. V. Berlinkov, and D. Perrin. A quadratic upper bound on the size of a

synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci., 22(2):277–288,

2011.

101

[14] M.-P. Béal and D. Perrin. Symbolic dynamics and finite automata. In G. Rozenberg and

A. Salomaa, editors, Handbook of Formal Languages, volume 2, pages 463–506. Springer

Berlin Heidelberg, 1997.

[15] M. Berlinkov. On two algorithmic problems about synchronizing automata. In A. Shur

and M. Volkov, editors, Developments in Language Theory, volume 8633 of Lecture Notes

in Computer Science, pages 61–67. Springer International Publishing, 2014.

[16] M. V. Berlinkov. On a conjecture by Carpi and d’Alessandro. Int. J. Found. Comput.

Sci., 22(7):1565–1576, 2011.

[17] M. V. Berlinkov. Synchronizing automata on quasi-eulerian digraph. In Proceedings

of the 17th international conference on Implementation and Application of Automata,

CIAA’12, pages 90–100, Berlin, Heidelberg, 2012. Springer-Verlag.

[18] M. V. Berlinkov. Synchronizing quasi-eulerian and quasi-one-cluster automata. Interna-

tional Journal of Foundations of Computer Science, 24(06):729–745, 2013.

[19] M. V. Berlinkov. Approximating the minimum length of synchronizing words is hard.

Theory of Computing Systems, 54(2):211–223, 2014.

[20] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without

polynomial kernels. Journal of Computer and System Sciences, 75(8):423 – 434, 2009.

[21] P. Bonizzoni and N. Jonoska. Regular splicing languages must have a constant. In

G. Mauri and A. Leporati, editors, Developments in Language Theory, volume 6795 of

Lecture Notes in Computer Science, pages 82–92. Springer Berlin Heidelberg, 2011.

[22] G. Budzban. Semigroups and the generalized road coloring problem. Semigroup Forum,

69(2):201–208, 2004.

[23] H. Burkhard. Zum Längenproblem homogener Experimente an determinierten und nicht-

deterministischen Automaten. Elektronische Informationsverarbeitung und Kybernetik,

12(6):301–306, 1976.

[24] P. Černo. Clearing restarting automata and grammatical inference. In T. O. Jeffrey Heinz,

Colin de la Higuera, editor, Proceedings of the Eleventh International Conference on

Grammatical Inference, volume 21 of JMLR Workshop and Conference Proceedings, pages

54–68, 2012.

[25] P. Černo and F. Mráz. Clearing restarting automata. Fundamenta Informaticae,

104(1):17–54, 2010.

[26] J. Černý. Poznámka k homogénnym experimentom s konečnými automatmi.

Matematicko-fyzikálny časopis, 14(3):208–216, 1964.

[27] J. Černý, A. Pirická, and B. Rosenauerová. On directable automata. Kybernetica, 7:289–

298, 1971.

[28] H. Cho, S.-W. Jeong, F. Somenzi, and C. Pixley. Synchronizing sequences and symbolic

traversal techniques in test generation. J. Electronic Testing, 4(1):19–31, 1993.

[29] B. Delyon and O. Maler. On the effects of noise and speed on computations. Theoretical

Computer Science, 129(2):279 – 291, 1994.

[30] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer-

Verlag, 2013. 763 pp.

102

[31] L. Dubuc. Les automates circulaires biaisés vérifient la conjecture de Černý. RAIRO

- Theoretical Informatics and Applications - Informatique Theorique et Applications,

30(6):495–505, 1996.

[32] A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-free languages.

Theoretical Computer Science, 27(3):311 – 332, 1983.

[33] D. Eppstein. Reset sequences for monotonic automata. SIAM J. Comput., 19(3):500–510,

1990.

[34] H. Fernau, P. Heggernes, and Y. Villanger. A multivariate analysis of some DFA problems.

In A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe, editors, Language and Automata Theory

and Applications, volume 7810 of Lecture Notes in Computer Science, pages 275–286.

Springer Berlin Heidelberg, 2013.

[35] H. Fernau, P. Heggernes, and Y. Villanger. A multi-parameter analysis of hard problems

on deterministic finite automata. Journal of Computer and System Sciences, 81(4):747 –

765, 2015.

[36] C. Flye Sainte-Marie. Solution to question nr. 48. L’intermédiaire des Mathématicians,

1:107–110, 1894.

[37] P. Frankl. An extremal problem fro two families of sets. Eur. J. Comb., 3:125–127, 1982.

[38] Z. Gazdag, S. Iván, and J. Nagy-György. Improved upper bounds on synchronizing

nondeterministic automata. Inf. Process. Lett., 109(17):986–990, Aug. 2009.

[39] S. Ginsburg. On the length of the smallest uniform experiment which distinguishes the

terminal states of a machine. J. ACM, 5(3):266–280, July 1958.

[40] F. Gonze, R. M. Jungers, and A. N. Trahtman. A note on a recent attempt to improve

the pin-frankl bound. CoRR, abs/1412.0975, 2014.

[41] P. Goralč́ık, Z. Hedrĺın, V. Koubek, and J. Ryšlinková. A game of composing binary

relations. RAIRO - Theoretical Informatics and Applications - Informatique Theorique

et Applications, 16(4):365–369, 1982.

[42] V. Gusev. Lower bounds for the length of reset words in eulerian automata. In G. Delzanno

and I. Potapov, editors, Reachability Problems, volume 6945 of Lecture Notes in Com-

puter Science, pages 180–190. Springer Berlin Heidelberg, 2011.

[43] V. Gusev. Synchronizing automata of bounded rank. In N. Moreira and R. Reis, editors,

Implementation and Application of Automata, volume 7381 of Lecture Notes in Computer

Science, pages 171–179. Springer Berlin Heidelberg, 2012.

[44] D. Haussler. Insertion languages. Information Sciences, 31(1):77 – 89, 1983.

[45] H. A. Helfgott and Á. Seress. On the diameter of permutation groups. Annals of Mathe-

matics, 179:611–658, 2014.

[46] B. Imreh and M. Steinby. Directable nondeterministic automata. Acta Cybern.,

14(1):105–115, Feb. 1999.

[47] M. Ito, L. Kari, and G. Thierrin. Insertion and deletion closure of languages. Theoretical

Computer Science, 183(1):3 – 19, 1997.

[48] M. Ito and K. Shikishima-Tsuji. Some results on directable automata. In J. Karhumäki,

H. Maurer, G. Pãun, and G. Rozenberg, editors, Theory Is Forever, volume 3113 of

Lecture Notes in Computer Science, pages 125–133. Springer Berlin Heidelberg, 2004.

103

[49] M. Ito and K. Shikishima-Tsuji. Some results on directable automata. In J. Karhumäki

et al., editors, Theory Is Forever, volume 3113 of Lecture Notes in Computer Science,

pages 125–133. Springer Berlin Heidelberg, 2004.

[50] J. Kari. A counter example to a conjecture concerning synchronizing words in finite

automata. EATCS Bulletin, 73:146, 2001.

[51] J. Kari. Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci., 295(1-

3):223–232, Feb. 2003.

[52] J. Kowalski and M. Szykula. The Černý conjecture for small automata: experimental

report. CoRR, abs/1301.2092, 2013.

[53] D. Kozen. Lower bounds for natural proof systems. In Foundations of Computer Science,

1977., 18th Annual Symposium on, pages 254–266, 1977.

[54] D. Lee and M. Yannakakis. Testing finite-state machines: state identification and verifi-

cation. Computers, IEEE Transactions on, 43(3):306–320, 1994.

[55] M. Marcus and G. Păun. Regulated Galiukschov semicontextual grammars. Kybernetika,

26(4):316–326, 1990.

[56] S. W. Margolis, J.-E. Pin, and M. V. Volkov. Words guaranteeing minimum image. Int.

J. Found. Comput. Sci., 15(2):259–276, 2004.

[57] P. V. Martugin. A series of slowly synchronizing automata with a zero state over a small

alphabet. Inf. Comput., 206(9-10):1197–1203, Sept. 2008.

[58] P. Martyugin. Complexity of problems concerning reset words for some partial cases of

automata. Acta Cybern., 19(2):517–536, 2009.

[59] P. Martyugin. A lower bound for the length of the shortest carefully synchronizing words.

Russian Mathematics, 54(1):46–54, 2010.

[60] P. Martyugin. Complexity of problems concerning reset words for cyclic and eulerian

automata. In B. Bouchou-Markhoff, P. Caron, J.-M. Champarnaud, and D. Maurel,

editors, Implementation and Application of Automata, volume 6807 of Lecture Notes in

Computer Science, pages 238–249. Springer Berlin Heidelberg, 2011.

[61] P. Martyugin. Computational complexity of certain problems related to carefully syn-

chronizing words for partial automata and directing words for nondeterministic automata.

Theory of Computing Systems, 54(2):293–304, 2014.

[62] P. V. Martyugin. Careful synchronization of partial automata with restricted alphabets.

In A. A. Bulatov and A. M. Shur, editors, Computer Science - Theory and Applica-

tions, volume 7913 of Lecture Notes in Computer Science, pages 76–87. Springer Berlin

Heidelberg, 2013.

[63] R. McNaughton and S. A. Papert. Counter-Free Automata (M.I.T. Research Monograph

No. 65). The MIT Press, 1971.

[64] A. Meduna and P. Zemek. Jumping finite automata. International Journal of Foundations

of Computer Science, 23(7):1555–1578, 2012.

[65] A. Meduna and P. Zemek. Regulated Grammars and Automata. Springer US, 2014.

Chapter 17: Jumping Finite Automata.

104

[66] E. F. Moore. Gedanken-experiments on sequential machines. In C. Shannon and J. Mc-

Carthy, editors, Automata Studies, pages 129–153. Princeton University Press, Princeton,

NJ, 1956.

[67] F. Mráz and F. Otto. Lambda-confluence is undecidable for clearing restarting automata.

In S. Konstantinidis, editor, Implementation and Application of Automata, volume 7982

of Lecture Notes in Computer Science, pages 256–267. Springer Berlin Heidelberg, 2013.

[68] B. K. Natarajan. An algorithmic approach to the automated design of parts orienters. In

Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pages

132–142, Washington, 1986. IEEE Computer Society.

[69] J. Olschewski and M. Ummels. The complexity of finding reset words in finite automata.

In Proceedings of the 35th international conference on Mathematical foundations of com-

puter science, MFCS’10, pages 568–579, Berlin, Heidelberg, 2010. Springer-Verlag.

[70] P. Panteleev. Preset distinguishing sequences and diameter of transformation semigroups.

In A.-H. Dediu, E. Formenti, C. Mart́ın-Vide, and B. Truthe, editors, Language and

Automata Theory and Applications, volume 8977 of Lecture Notes in Computer Science,

pages 353–364. Springer International Publishing, 2015.

[71] J.-E. Pin. Sur les mots synchronisants dans un automate fini. Elektron. Informationsver-

arb. Kybernet., 14:293–303, 1978.

[72] J.-E. Pin. Sur un cas particulier de la conjecture de Cerny. In Proceedings of the Fifth

Colloquium on Automata, Languages and Programming, pages 345–352, London, UK,

UK, 1978. Springer-Verlag.

[73] J.-E. Pin. On two combinatorial problems arising from automata theory. Annals of

Discrete Mathematics, 17:535–548, 1983.

[74] C. Pixley. Introduction to a computational theory and implementation of sequential

hardware equivalence. In E. Clarke and R. Kurshan, editors, Computer-Aided Verifica-

tion, volume 531 of Lecture Notes in Computer Science, pages 54–64. Springer Berlin

Heidelberg, 1991.

[75] G. Păun. Two theorems about galiukschov semicontextual languages. Kybernetika,

21(5):360–365, 1985.

[76] G. Păun, G. Rozenberg, and A. Salomaa. Insertion-deletion systems. In DNA Computing:

New Computing Paradigms, pages 187–215. Springer Berlin Heidelberg, 1998.

[77] A. Roman. Experiments on synchronizing automata. Schedae Informaticae, 19:35–51,

2010.

[78] A. Roman. P-NP threshold for synchronizing road coloring. In A.-H. Dediu and C. Mart́ın-

Vide, editors, Language and Automata Theory and Applications, volume 7183 of Lecture

Notes in Computer Science, pages 480–489. Springer Berlin Heidelberg, 2012.

[79] A. Roman and M. Drewienkowski. A complete solution to the complexity of synchronizing

road coloring for non-binary alphabets. Information and Computation, in print, 2015.

[80] I. K. Rystsov. Reset words for commutative and solvable automata. Theoret. Comput.

Sci., 172:273–279, 1997.

[81] A. Salomaa. Compositions over a finite domain: From completeness to synchronizable

automata. In A Half-century of Automata Theory, pages 131–143. World Scientific Pub-

lishing Co., Inc., River Edge, NJ, USA, 2001.

105

[82] S. Sandberg. Homing and synchronizing sequences. In M. Broy, B. Jonsson, J.-P. Katoen,

M. Leucker, and A. Pretschner, editors, Model-Based Testing of Reactive Systems, volume

3472 of Lecture Notes in Computer Science, pages 5–33. Springer Berlin Heidelberg, 2005.

[83] P. Savický and S.Vaněček. Hledáńı synchronizačńıch slov konečných automat̊u pomoćı

lineárńı algebry. 1983.

[84] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth

Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York,

NY, USA, 1978. ACM.

[85] M. Schützenberger. On finite monoids having only trivial subgroups. Information and

Control, 8(2):190 – 194, 1965.

[86] P. H. Starke. Eine Bemerkung über homogene Experimente. Elektr. Informationverar-

beitung und Kyb., 2:257–259, 1966.

[87] P. H. Starke. Abstrakte Automaten. V.E.B. Deutscher Verlag der Wissenschaften, Berlin,

1969.

[88] B. Steinberg. The averaging trick and the Černý conjecture. In Proceedings of the 14th

international conference on Developments in language theory, DLT’10, pages 423–431,

Berlin, Heidelberg, 2010. Springer-Verlag.

[89] B. Steinberg. The Černý conjecture for one-cluster automata with prime length cycle.

Theoret. Comput. Sci., 412(39):5487 – 5491, 2011.

[90] M. Szykula. Checking if an automaton is monotonic is np-complete. CoRR,

abs/1407.5068, 2014.

[91] A. Trahtman. The road coloring problem. Israel Journal of Mathematics, 172(1):51–60,

2009.

[92] A. Trahtman. An algorithm for road coloring. In C. Iliopoulos and W. Smyth, editors,

Combinatorial Algorithms, volume 7056 of Lecture Notes in Computer Science, pages

349–360. Springer Berlin Heidelberg, 2011.

[93] A. Trahtman. Modifying the upper bound on the length of minimal synchronizing word. In

O. Owe, M. Steffen, and J. Telle, editors, Fundamentals of Computation Theory, volume

6914 of Lecture Notes in Computer Science, pages 173–180. Springer Berlin Heidelberg,

2011.

[94] A. N. Trahtman. The Cerný conjecture for aperiodic automata. Discrete Mathematics &

Theoretical Computer Science, 9(2):3–10, 2007.

[95] A. N. Trahtman. The road coloring and Černy conjecture. In J. Holub and J. Žd’árek, edi-

tors, Proceedings of the Prague Stringology Conference 2008, pages 1–12, Czech Technical

University in Prague, Czech Republic, 2008.

[96] N. Travers and J. Crutchfield. Exact synchronization for finite-state sources. Journal of

Statistical Physics, 145(5):1181–1201, 2011.

[97] P. Černo and F. Mráz. δ-clearing restarting automata and cfl. In G. Mauri and A. Lepo-

rati, editors, Developments in Language Theory, volume 6795 of Lecture Notes in Com-

puter Science, pages 153–164. Springer Berlin Heidelberg, 2011.

[98] S. Verlan. Recent developments on insertion-deletion systems. Computer Science Journal

of Moldova, 18(2):210–245, 2010.

106

[99] M. Volkov. Synchronizing automata and the Černý conjecture. In C. Mart́ın-Vide,

F. Otto, and H. Fernau, editors, Language and Automata Theory and Applications, vol-

ume 5196 of Lecture Notes in Computer Science, pages 11–27. Springer Berlin Heidelberg,

2008.

[100] M. V. Volkov. Synchronizing automata preserving a chain of partial orders. In Proceedings

of the 12th international conference on Implementation and application of automata,

CIAA’07, pages 27–37, Berlin, Heidelberg, 2007. Springer-Verlag.

[101] M. V. Volkov and D. S. Ananichev. Some results on Černý type problems for transforma-

tion semigroups. In Semigroups And Languages, chapter 2, pages 23–42. World Scientific,

2004.

[102] V. Vorel. Complexity of a problem concerning reset words for eulerian binary automata. In

A.-H. Dediu, C. Mart́ın-Vide, J.-L. Sierra-Rodŕıguez, and B. Truthe, editors, Language

and Automata Theory and Applications, volume 8370 of Lecture Notes in Computer

Science, pages 576–587. Springer International Publishing, 2014.

[103] V. Vorel. Subset synchronization of transitive automata. In Proceedings 14th Interna-

tional Conference on Automata and Formal Languages, AFL 2014, Szeged, Hungary, May

27-29, 2014., pages 370–381, 2014.

[104] V. Vorel and A. Roman. Complexity of road coloring with prescribed reset words. In A.-

H. Dediu, E. Formenti, C. Mart́ın-Vide, and B. Truthe, editors, Language and Automata

Theory and Applications, Lecture Notes in Computer Science, pages 161–172. Springer

International Publishing, 2015.

[105] V. Vorel and A. Roman. Parameterized complexity of synchronization and road coloring.

Discrete Mathematics & Theoretical Computer Science, 17(1):307–330, 2015.

107

	Preface
	A Survey of Synchronization and Road Coloring
	Motivation and History
	Key Definitions
	Former Results
	Modifications of the Concepts
	Computational Problems

	Lower Bounds of Synchronization Thresholds
	Careful Synchronization and Subset Synchronization
	Synchronization Thresholds of Automata with Sink States

	Computing Synchronization Thresholds in DFA
	Parameterized Complexity of SYN
	Complexity of SYN Restricted to Eulerian Binary Automata

	Computing Road Colorings
	Parameterized Complexity of SRCP
	Fixed Parameter Complexity of SRCW

	Jumping Finite Automata and Contextual Deleting
	Models and their Relations
	Closure Properties of the Class GJFA
	Clearing Restarting Automata with Small Contexts

	Conclusions and Future Work
	Bibliography

