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Abstract

Bidirectional Texture Functions (BTFs) provide a way of capturing and accurately repre-
senting visual appearance of complex real-world materials in the world of computer graphics.
Their main drawback is the amount of space required to store the material data, which can
reach up to several gigabytes for a single material sample. To reduce the size to a more
manageable level a compression technique needs to be applied to the BTF.

This thesis extends the Multi-Level Vector Quantization approach to BTF compression
introduced by Havran et al. in 2010. The main contribution of our work is a highly parallel,
highly modular, GPU-based implementation of both the compression and the decompression
algorithm. Using our implementation, we were able to decrease the average compression time
by the factor of 10 to less than 3 hours per material, increase the average decompression rate
to about 120 million individual BTF evaluations per second in worst-case conditions and
provide a much greater degree of flexibility to the compression algorithm. Our compression
pipeline is fully configurable, allows the use of custom decomposition schemes and is ready
for multi-spectral data processing. We demonstrate our results on a set of 14 different BTF
samples compressed using 4 different compression pipeline layouts.

Abstrakt

Obousmérné texturni funkce (Bidirectional Texture Functions, BTFs) reprezentuji zptsob
ziskdvani a presné reprezentace vzhledu komplexnich materialti vSedniho svéta ve svété podi-
tacové grafiky. Jejich hlavni nevyhodou je mnozstvi mista potfebného pro uloZeni dat, které
se pro jeden material muze vysplhat az na nékolik gigabytt. Aby mohla byt velikost BTF
dat redukovina na pouzitelnou tiroven, je nutné na né aplikovat urc¢itou kompresni metodu.

Tato diplomova prace rozsifuje metodu pro kompresi BTF dat zaloZzenou na vicetdroviiové
vektorové kvantizaci, pfedstavenou Havranem et al. v roce 2010. Hlavnim pfinosem nasf
prace je vysoce paralelni, vysoce moduldrni GPU implementace komprimaé¢n{ i dekompri-
macni ¢asti algoritmu. Pomoci nasi implementace jsme byli schopni snizit primérny cas
komprese cca.10x na méné nez 3 hodiny na material, zvysit primérnou rychlost dekompri-
mace na piiblizné 120 miliond individualnich vyhodnoceni BTF za vtefinu (p#i nejhorgich
podminkach) a poskytnout pro kompresni algoritmus mnohem vét$i miru flexibility. Nage
kompresni pipeline je plné konfigurovatelna, umoziuje pouziti uzivatelskych dekompozi¢nich
schémat a je pfipravena na zpracovani multispektrélnich dat. Vysledky demonstrujeme na
sadé 14 riznych BTF materialt zkomprimovanych pomoci 4 rtznych kompresnich schémat.
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Chapter 1

Introduction

The means of capturing and accurately representing realistic appearance of real-world ma-
terials are one of the key topics in the field of computer graphics. From simple shading and
texturing to complex physically-based equations, the goal is to trick the viewer into believ-
ing, that what he/she sees would behave the same way in the real world. This task, being
difficult by itself, can get even harder, when some external constraints, such as the amount
of available processing power or memory, need to be satisfied. Proper way of representing
the material appearance during rendering is therefore of key importance.

One of the more promising approaches to this problem is the use of Bidirectional Tex-
ture Functions (BTFs). Introduced by Dana et al. in [DvGNK99|, a BTF is capable of
capturing and representing complex material properties, such as self-shadowing, subsurface
scattering or anisotropy. As a result, even materials with complex microstructure, such as
fabrics, can be accurately rendered using BTFs as shown in Figure 1.1. Compared to a con-
ventional approaches such as using two-dimensional textures, using BTFs yields much more
realistically-looking results.

1.1 Motivation

The main drawback of BTFs is the amount of data required to store the material appearance.
In raw form, the size of a single material represented by a BTF typically ranges from ones to
tens of gigabytes of space [SSK03]. This would render the BTFs virtually useless for real-time
rendering, since the amount of memory available on a current generation consumer-grade
graphics card varies between 512 MB and 2048 MB [STEAM].

Several methods, as described for example in the survey performed by Filip and Haindl
in 2009 [FHO09|, were proposed to overcome this limitation by compressing the BTF data
into smaller size, preferably without sacrificing much of the visual quality of the material.
One of such methods, based on Multi-Level Vector Quantization was introduced by Havran
et al. [HFM10]. This method yields good compression ratios, while maintaining high visual
fidelity of the material and allows direct evaluation of reflectance, as well as importance sam-
pling, directly from within the compressed data. Its main drawback is the high compression
time, which, for a single material, can take up to tens of hours. This makes it difficult to
observe the outcomes of possible modifications and improvements of the algorithm.
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(a) 2D texturing.

(b) BTF.

Figure 1.1: Difference between basic 2D texturing and BTF of the Corduroy material. Notice
the lack of self-shadowing and overall flat look of the 2D texturing approach.
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If the processing time of the algorithm is reduced to a more manageable level, it would
simplify future research of the subject. This may provide clarifications as if some of the
decision choices made in [HFM10] for the original algorithm (such as the level on which
luminance gets separated) were correct and yield another possible improvements to the
algorithm. By reducing the processing time, the algorithm also gets more production-ready.
This may help to speed up the widespread use of BTFs to represent material appearance
in both offline and real-time applications, resulting in better-looking renderings for the end
users.

1.2 Subject of this Thesis

This thesis further investigates the Multi-Level Vector Quantization based approach to BTF
data compression originally proposed by Havran et al. [HFM10|. Means of parallelization
of the algorithm are explored and later evaluated by running the algorithm in a massively-
parallel GPGPU environment using the OpenCL heterogeneous computing framework. To
evaluate the performance of the parallel algorithm and to explore additional possible im-
provements to it, a highly modular, highly configurable implementation was created. This
implementation allows the user to modify many aspects of the compression algorithm at
run-time and, given its high modularity, simplifies further research on the topic.

1.3 Thesis Structure

In Chapter 2, the formal description of Bidirectional Texture Function (BTF) is provided,
including the reasons why problem-specific compression methods need to be applied and
what are the expected properties of such methods. In Chapter 3, the Multi-Level Vector
Quantization BTF compression algorithm is described in detail. The main drawbacks of the
current state of the algorithm, as well as proposed solutions to these problems are further
discussed in Chapter 4. In Chapter 5 an introduction to heterogeneous computing and the
OpenCL framework is provided. Details of the implementation itself are then described in
Chapter 6, followed by validation of the implementation correctness in Chapter 7. The results
obtained from processing 14 different BTF materials in 4 different compression pipeline
layouts are discussed in Chapter 8. Finally, our conclusions are summarized in Chapter 9,
including possibilities for future work on the topic.
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Chapter 2

Bidirectional Texture Function
Description

In this chapter, the basic concepts of Bidirectional Texture Function as a method of capturing
realistic real-world material appearance are described as well as the main advantages and
disadvantages of this method. The need for a problem-specific compression algorithm is
explained and an overview of existing approaches to BTF compression is provided.

2.1 Formal Definition

A monospectral BTF is a six-dimensional (6D) function, which returns the amount of light
reflected by an arbitrary point on the material surface (|x, y| dimension), when viewed from
an arbitrary direction (|0y, ¢y| dimension) and illuminated from an arbitrary direction (|07,
¢1| dimension) [DvGNK99|, as demonstrated in Figure 2.1. After extending the concept
with color channel information, a multispectral, seven-dimensional (7D) BTF is obtained.

To clarify the concept, BTF can also be thought of as an extension to basic planar
texturing, where the amount of light reflected by a single BTF texel depends not only on its
position, but also on the view and illumination direction for the given texel.

2.2 Advantages and Disadvantages

Compared to other methods, BTF is successful at capturing complex visual properties given
by the material microstructure, such as subsurface scattering, self-shadowing, self-occlusions
etc.. To capture a single BTF, thousands of photographs are taken of a real-world material
sample from different combinations of view and illumination directions. This results in much
more realistically looking material appearance in the final renderings, as demonstrated in
Figure 2.2.

The process of acquiring a BTF sample also indicates the main drawback of this method.
Thousands of images are acquired for a single material. Even when compressed by common
image compression techniques such as PNG or JPEG, the resulting data set can reach several
gigabytes in size. This would make the method hard to use in offline rendering and almost
impossible to use in real-time graphics.
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Figure 2.1: The coordinate system of a BTF

2.3 Compression Method Requirements

In order to overcome the limitations resulting from the BTF data size a problem-specific
compression algorithm needs to be designed. This algorithm should be able to drastically
reduce the BTF data size, while still maintaining their high visual quality. Another important
requirement is the ability to perform direct decompression of a specific piece of data, without
the need to decompress the whole BTF back to its original form (since then the algorithm
would only be useful for storage). The decompression speed should be reasonably high, to
allow the use of BTFs in both offline and real-time rendering. A direct support for importance
sampling would also make the algorithm more useful in predictive rendering systems. The
compression time should be kept as low as possible, ideally in a few hours range for a single
material.

2.4 Overview of Existing Compression Methods

A survey of some of the BTF compression techniques can be found in [MMS™05]. A more
recent comparison was presented by Filip and Haindl in [FH09]. According to [HFM10],
the compression methods available can be divided into three basic groups, depending on the
general approach used to process the BTF data.

The first group comprises of algorithms based on linear-basis decomposition. A matrix
based approach was presented by Koudelka et al. in [KMBKO3], followed by tensor based
approach by Vasilescu et al. in [VT04]. The main drawback of these methods is the need
to create linear combinations of a large number of components, which prevents them from
achieving sufficient decompression speeds [HFM10]. Vector quantization based approach to
BTF data was introduced in [MMKO03| and further studied in [KMO06]. In [LMO01] a method
based on capturing surface appearance using three-dimensional (3D) textons was presented
and further extended in [TZL102] and [LHZ*04]. More recently, a technique based on sparse
tensor decomposition and K-SVD algorithm was proposed in [RK09].
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Figure 2.2: Bunny model covered by Pulli BTF material and rendered using environment
map lighting setup

Algorithms in the second group are based on the principle of representing parts of the
BTF data using analytical reflectance models, such as the Lafortune reflectance lobes [LFTG97].
This approach first appeared in [DLHS01] and its fitness for BTF compression was further ex-
ploited in [MLHO02]. The use of multiple Lafortune lobes is suggested in [MMKO03|. In [FHO5|
polynomial extension to single lobe Lafortune model is proposed, combined with a clustering
algorithm to further increase the compression ratio. An approach based on Phong lighting
model fitting combined with a spatial-varying residual function was proposed in [MCC™T04].
Representing the BTF using a stack of semi-transparent layers was later studied in [MKO06].
More recently, Sparse Parametric Mixture Model [WDR11| was introduced, which decom-
poses the BTF data into a linear combination of multiple separate reflectance models.

Algorithms based on probabilistic BTF modeling form the final group. An example of
such approach based on Markov chains was presented in [HF07]. These methods show the
potential to provide very high compression ratios and can be used to synthesize BTFs of arbi-
trary resolution, but reach compromise results for highly non-Lambertian materials [HF07].

More recently a Multi-Level Vector Quantization (MLVQ) BTF compression method was
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introduced in [HFM10], treating slices of BTF data as conditional probability density func-
tions (PDFs). In its original version the algorithm already meets most of the requirements
specified in Section 2.3. One of the remaining problems of this algorithm is the compression
time, which ranges from 15 to 50 hours for a single material [HFM10].



Chapter 3

Multi-Level Vector Quantization
Algorithm

This work extends the multi-level vector quantization compression algorithm proposed by
Havran et al. in 2010 [HFEM10|. In this chapter the basic concepts of the algorithm are sum-
marized and a general outline of the compression and decompression algorithm is provided.

3.1 Algorithm Overview

The algorithm is based on the concept of finding similarities between the reflectance be-
haviour of individual texels of the BTF. If at least a partial similarity is found in the data,
vector quantization (VQ) algorithm is applied to represent the similarly appearing data by
only a single representative entry. This reduces the overall data size at the cost of reduced
visual quality resulting from the use of quantization. To achieve better compression ratios,
the reflectance behaviour is not evaluated only for the whole texel, but also for progressively
smaller portions of its data, resulting in a multi-level vector quantization model.

The compression algorithm begins by transforming the input BTF data of each BTF texel
to a custom, Onion-Slices parameterization. The parameterization allows treating the data
as multidimensional conditional probability density functions (PDFs). Vector quantization
is then applied to the PDFs in hierarchical way. If vector similar enough to the input PDF
is present in the already compressed data, it is used to represent the PDF, thus reducing the
space required if it was to be saved again.

If no such vector is found, the PDF gets decomposed by one of the input BTF dimensions
into a defined number of subregions, which are then again input to the vector quantization
algorithm. The decomposition can take place multiple times, performing the VQ on progres-
sively smaller blocks of data. This allows to represent at least parts of the input BTF texel
by already compressed data. Indices of entries representing the individual subregions get
stored together as a single row into a compressed data codebook. As a single subregion itself
can be represented by multiple smaller regions, the codebooks form a tree-like hierarchical
structure. The leaves of this structure are formed by codebooks holding raw representative
vectors of PDFs which do not get further decomposed.
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To further increase the chance of finding a similar vector in the compressed data, both
the input and the compared data are normalized to the same overall luminance level. The
difference in luminance level is stored in form of a multiplicative constant referred to as a
scaling coefficient. The coefficients are then stored along the indices into the codebooks. To
achieve better compression ratios luminance and chrominance information also start to be
treated separately after a given number of decompositions happen. This requires transform-
ing the data to a more perceptually correct color model, which allows proper luminance and
chrominance separation.

In the decompression part of the algorithm, the information stored within the compressed
data codebooks are used to reconstruct the BTF back to its original form by means of fast
chained indexing into the codebook hierarchy. Because the PDF decomposition is always
performed along one of the BTF dimensions, the input BTF coordinates can be used to
directly navigate through the codebook hierarchy. A single coordinate is used to find the
corresponding subregion index in a codebook row. As this index points to a row in another
codebook, the next input coordinate then determines the next row to access in a third
codebook etc. Upon reaching the terminal codebooks, raw representative values of the
BTF at the given coordinates are obtained. After applying the scaling coefficients and
transforming these values back to the original color space, the resulting reflectance of the
BTF is obtained.

Original BTF Samples Matelr:lzlifg:ciﬁc Databases Shared by all Materials
Scaled material = - S Luminance channel (L:Y/LogL)
index tables | £x(®B.Q ¢ )example 2D PDF
X G
P
y Sa——
=) AN
P
1)(1 , '
ié:A P6 nl‘t
7 p
» a-b color channels (a:Cr/U, b:Cb/V)
Index 2D Index a-b- Colors
T T

I

m)> i}
@ index of PDF / scale)
O index
m Luminance
m colors a,b

Figure 3.1: Multi-level vector quantization BTF compression algorithm scheme Image cour-
tesy of [HFM10]
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3.2 Omnion-Slices Parameterization

The key concept of levels in the MLVQ algorithm is the ability to recursively split a large
region of data into several smaller sub-regions and process those individually. To be able to
perform the split correctly and use the resulting data directly within the MLVQ algorithm, a
novel parameterization model was proposed in [HFM10|, referred to as the [«, 8] or Onion-
Slices parameterization.

Figure 3.2: Relation between standard spherical coordinates and the Onion-Slices parame-
terization used for illumination direction parameterization. Image courtesy of [HFM10]

The use of this parameterization allows treating individual slices of BTF data as con-
ditional probability density functions (PDFs). The relation between a standard spherical
coordinate system and the Onion-Slices parameterization is demonstrated in Figure 3.2.
The equations used to convert spherical coordinates into the Onion-Slices parameterization
are shown in Equation 3.1. The relation to the Cartesian coordinate system is demonstrated
using Equation 3.2. The Onion-Slices parameterization is only used to describe illumination
direction coordinates. View direction remains in standard spherical coordinates.

B = arcsin (sin ¢ - cos (0 — 0y))

cos ¢1> (3.1)

Q = arccos
cos 3

[,y, 2] = [cos @ - sin ¢,sin 6 - sin ¢, cos @] (3.2)
[z,y,z] = [sin B, sin « - cos B3, cos a - cos (] )

To convert input BTF data into the Onion-Slices parameterization, the raw data are first
rearranged in such way, that all values for a single planar material position |z, y| are grouped
together. A fixed discretization is then used for each of the four remaining dimensions (6y,
ov, «, B). Using radial basis function (RBF) interpolation algorithm, the input data for
each of the groups are resampled into the Onion-Slices parameterization, forming a texel of
BTF data.

A single BTF tezel holds all Onion-Slices parameterization resampled data elements
for the given [z, y| coordinate pair and can be further accessed using the [0y, ¢y, «, (]
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"E(a,B,8,¢ example)

Figure 3.3: Arrangement of data in a single BTF texel resampled to Onion-Slices parame-
terization. Image courtesy of [HFM10/

coordinates. The information are stored in a specific layout, shown in Figure 3.3. This
arrangement allows the compression algorithm to operate on progressively smaller blocks
of data, forming conditional probability density function (PDFs) for the individual levels
of data. The various sized PDFs are then used as input vectors to the multi-level vector
quantization scheme.

3.3 Vector Quantization

The vector quantization (VQ) compression method, is based on the idea of representing a
set of data vectors by only a smaller representative subset [GG91]|, referred to as codebook
in this work. This is demonstrated in Figure 3.4. If two blocks of data are similar to each
other, only one of them needs to be stored. For the remaining block, only a reference to the
similar one needs to be kept. The original data for the second block can then be discarded.
As a result, space is saved by not storing the similar enough data twice, but quality is also
reduced due to the fact, that the data do not need to be exactly the same. This is a general
concept of lossy-compression.

The multi-level vector quantization algorithm extends this concept by applying VQ to
progressively smaller subsets of the original data. Instead of directly storing the input data
to the codebook when a similar entry is not found, the input data can be split into several
smaller regions, to which vector quantization is applied again. The process can be repeated
multiple times. As a result, the representative values get only stored in the lowest-level
codebooks, while on higher levels the codebooks form a tree-like hierarchy, where parts of
entries in higher-level codebook point to entries in a lower-level one.

3.4 Similarity Metrics

The purpose of a similarity metric is to allow to compare two blocks of data and provide
a single number in a specific range, representing the visual similarity between the two data
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Figure 3.4: Example result of vector quantization algorithm. Multiple similar input vectors
are represented by only a single codebook entry, thus reducing the overall data size.

blocks. By specifying a threshold for the returned value, a decision can be made whether
the two blocks are similar enough to each other. This is crucial for the vector quantization
algorithm to perform a search for similar entries.

Due to the facts stated above, choosing an appropriate similarity metric is of critical
importance, because both the resulting compression ratio and quality depend on the choice.
Numerous similarity metrics for comparing image data exist, such as Mean Square Error
(MSE), Picture Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM) [WBSS04| or
Visual Information Fidelity (VIF) [SB06|, varying both in computational complexity and
the number of visual features taken into account when computing the similarity index.
In [HFM10] the Structural Similarity (SSIM) metric [WBSS04] is used (Equation 3.3).

(2papty + C1)(200y + Ca)
(p2 + p2 + C1) (02 + 02 + C2)

SSIM(zx,y) = (3.3)

3.5 Color Model Transformations

To achieve better compression ratios the luminance and chrominance data of the BTF texel
get compressed separately. As the input BTF data are usually stored in the RGB color
model, conversion to a more perceptually uniform color model, which allows easy separation
luminance and chrominance information, needs to be performed.

For low dynamic range (LDR) data, the YCbCr color model [ITU601]| is used. Equa-
tion 3.4 shows transformation from RGB to the YCbCr model.

v - 65.738 - R’+ 129.057 - G/+ 25.064 - B’
N 256 256 256
37.945 - R! 74.494 - G 112.439 - B’
Cp = 128— il il e P 3.4
B 256 956 256 (3-4)
112.439 - R’ 94.154 - G 18.285 - B’
= 12 e it o 7
Cr S+ 256 256 256

Reverse transformation from YCbCr back to the RGB color model is provided in Equa-
tion 3.5.
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208.082 - Y’ 408.583 - Cr
= _— —_— 222.921
i 256 + 256
208.082 - Y’ 100.291 - Cp 208.120 - C'r
"= _— —_— _— 135.576 3.5
¢ 256 256 256 * (35)
208.082 - Y’ 516.412 - Cp
B = _— —_— - 276.836
256 + 256

For high dynamic range (HDR) data, the LogLuv [Lar98| color model is used. To convert
input RGB data to the LogLuv color model, Equation 3.6 is first used to transform the values
into CIE XYZ [SG31] model.

X 0.497 0.339 0.164| | R
Y| =[0256 0.678 0.066| |G (3.6)
Z 0.023 0.113 0.864| |B

From CIE XYZ model the data can then be converted to LogLuv using Equation 3.7.

L. =256 (logy Y + 64) |

, 4z
v = -
—2z 4+ 12y + 3
9y
= 7 3.7
U T v 12y +3 (37)
where:

z=X/(X+Y +2)
y=Y/(X+Y + 2)

A reverse conversion from LogLuv to the CIE XYZ color model is provided in Equa-
tion 3.8.

Y = expy [(Le + 0.5) /256 — 64]

B o’
6w — 160 + 12
4’
- = 3.8
Y= 6w — 160 + 12 (3.8)
where;:

r=X/(X+Y +2)
y=Y/(X+Y +2)

The CIE XYZ data can then be transformed back to the RGB color model using Equa-
tion 3.6.
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R 2.600 —1.276 —0.414] [X
G| =[-1022 1978 0044 | |V (3.9)
B 0.061 —0.224 1.163 | |Z

3.6 Compression Algorithm

The outline of the compression algorithm is provided in Figure 3.1. The algorithm begins
by resampling the BTF into the Onion-Slices parameterization as described in Section 3.2.
After resampling the input data to the Onion-Slices parameterization, each dimension of
the data corresponds to a single level in the MLVQ algorithm. This can be demonstrated
in Figure 3.1. The original monospectral BTF has 6 dimensions - (z, y, 0y, ¢v, «, 5) thus
forming a 6D PDF. If the planar [z, y| coordinates are fixed, a 4D PDF consisting of data for
the remaining (0y, ¢y, «, §) dimensions is formed. By further specifying the view azimuthal
angle 6y, a 3D PDF is obtained. Similarly, 3D PDF is decomposed into 2D PDFs etc.

In order to represent the input set of vectors by only a smaller subset of representative
vectors, the codebooks need to be searched for entries similar to the input data. For this
reason, a similarity metric must be applied, as described in Section 3.4, which returns the level
of similarity between two sets of data. If an entry similar enough (depending on predefined
conditions) to the input data is found in an codebook, it is used to represent the given input
vector. If no such entry is found, a new entry needs to be added to the codebook.

The compression algorithm starts in the Pg codebook. For each texel of the input data
an entry in the Py codebook needs to be created. The 4D PDF representing the texel data
is first matched against the 4D level codebook P,. If a similar entry is found, its index is
returned and stored in the Ps codebook at a location given by the [z, y] coordinates of the
texel.

To achieve better compression ratios, the similar entry matching in most of the codebooks
is done up to scale, meaning the data can differ by a multiplicative constant. Normalization
is performed to bring the overall luminance levels of both the input and the compared vectors
to the same level. If the normalized data match, index of the corresponding codebook entry
is returned along with a scaling coefficient, the multiplicative constant used to normalize the
compared data. This means, that a single entry in the Ps codebook consists of an index into
the P4 codebook and a floating point scaling coefficient.

If no matching entry is found in the P; codebook, a new entry is created. In the MLVQ
algorithm, only lowest-level codebooks contain raw representative vectors of BTF data. On
higher levels, codebook entries are formed by indices pointing into lower level codebooks. As
a result, the individual codebooks form a tree-like hierarchy. An entry in the P; codebook
is created by splitting the original 4D PDF into a set of 3D PDF slices. Each 3D PDF is
specified by the planar position |z, y| and the view azimuthal angle ¢y. The 3D PDFs are
then matched against entries from the P3 codebook. An index/scale pair is returned from
this codebook for each of the 3D PDFs. The returned results are then stored into a row
in the P, codebook. The number of entries in the row corresponds to ng,,, the number of
steps in which the view azimuthal direction is parameterized. Workflow similar to the one
already described repeats itself on all levels during the compression. A search for similar
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entries is performed on the current level. If a matching entry is not found, the PDF is split
into smaller slices, which are then matched against a a lower-level codebook.

Upon reaching the M codebook, the BTF data are converted from the original RGB to
a more perceptually uniform color model, as described in Section 3.5. The M codebook is
needed since the luminance and chrominance channels start to be treated separately and
individual sets of codebooks are used to store luminance data (P, P;) and chrominance
data (I, I, C). The M codebook stores the information required to merge the separate
information back together. Due to the nature of the data, scaling coefficients do not bring a
significant advantage for chrominance data and are therefore no longer used in favour of the
reduced codebook sizes. Entries in the I and I; codebooks therefore consist only of indices,
not index/scaling coefficient pairs.

In the lowest-level codebooks P, and C, raw representative vectors of resampled BTF
data (1D PDFs) are stored as 1D arrays. Upon reaching P; and C' the MLVQ compression
is finished for a single BTF texel (4D PDF) and the next one can be processed. This is
repeated until all the texels of the material are processed. The contents of all the individual
codebooks then represents the compressed data of the material.

Before saving the compressed data to a file, their size is further improved by applying a
scalar quantization algorithm to floating point values [GG91| and by compacting index data
to a limited number of bits. The scalar quantization algorithm converts the floating point
values to a fixed precision and uses only a limited number of bits (8 bits for LDR, 16 bits
for HDR BTFs) to represent thee values. Index data in the codebooks are tightly packed
together using minimum number of bits required to cover the whole value range. For indices
stored in codebook P; pointing to codebook P;_1 of size S;—1 the number of bits is computed
as N = [logy(S;—i)]. After performing these optimizations, the resulting codebook data get
stored into a file and the compression algorithm is finished.

As shown in Figure 3.1, a tree-like hierarchy consisting of a set of 9 codebooks is used to
store a single BTF material. Multiple materials can also be compressed into the same set of
codebooks if the same discretization is used for all the materials. For each new material only
one additional 6D-level codebook is added. This further increases the compression ratio and
allows sets of materials to be packed tightly together.

3.7 Decompression Algorithm

The decompression algorithm is based on chained indexing within the compressed material
codebooks as shown in Figure 3.5. Because the Onion-Slices parameterization was used
when compressing the data, the input coordinates first need to be converted to this parame-
terization using Equation 3.1. Using the |z, y| coordinates a corresponding entry is found in
the top-level P codebook. This entry consists of a scaling coefficient and a pointer into the
4D-level codebook Py. In the Py codebook, the corresponding row is determined using the
pointer obtained from the FPs codebook. This row contains ng, scaling coefficient/pointer
pairs, targeting the 3D-level P3 codebook. Using the 6y input coordinate, the row is indexed
to obtain a single! scaling coefficient /pointer pair. The P3 codebook is accessed in a similar
way and ¢y coordinate is used to index the matching row.

! Although using just a single scaling coefficient-pointer pair would work, in the actual implementation,
two such pairs closest to the input coordinate are used and linear interpolation is performed between the
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Figure 3.5: The chained-indexing algorithm used during BTF decompression

Upon reaching the M codebook, the decompression algorithm continues in two separate
paths, because luminance and chrominance components of the BTF data are treated sepa-
rately from this level down (as described in Section 3.6). Two pointers are obtained from
the M codebook entry - one pointing into the P> codebook with luminance data, the other
one pointing to the Iy codebook with chrominance data.

The indexing repeats itself in the two separate paths until reaching the bottom-most
level codebooks P; and C. Here, the raw representative values of the BTF at the given
input coordinates are obtained. When returning back to the top, the scaling coefficients
are applied to the raw values by the means of simple multiplication. In the M codebook,
the separate luminance and chrominance are merged together and converted to the RGB
color space. The type of conversion depends on the dynamic range of the material (YCbCr
color model is used for LDR samples, LogLuv [Lar98] for HDR samples). Subsequent scaling
coefficients are then applied to the RGB data.

After returning to the top-level codebook Ps and applying the last scaling coefficient, the
resulting reflectance of the BTF at the given coordinates is obtained as a triplet of values in
the RGB color space.

obtained values to improve the resulting visual quality. A single pair is mentioned throughout the description
to improve readability.
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3.8 Advantages and Disadvantages

In its bagic form, the MLVQ compression algorithm already meets two of the key requirements
- it provides relatively high compression ratios, while maintaining high visual quality of the
compressed BTF materials. From the decompression point of view, the main benefit of the
algorithm is that the input coordinates are used to navigate within the compressed data
without the need of any kind of preprocessing. This allows to directly evaluate the BTF at
a specific set of coordinates without reconstructing any larger portion of data. This random
access to the compressed data is necessary for all rendering algorithms. Because multiple
BTF evaluations can be run in parallel, the decompression algorithm is well suited for GPU-
based implementations. The algorithm also has a direct support for importance sampling,
which makes it fit to use in predictive rendering applications.

The main downside of the compression algorithm is the time required to compress a
BTF sample. According to [HFM10], the compression can take up to 50 hours for a single
256256 sample (26.7 hours on average). As the resolution of the BTFs is expected to rise
in the future, this would be a serious issue for the algorithm.



Chapter 4

Improvements of the MLVQ)
Algorithm

The disadvantages of the current state of the multi-level vector quantization algorithm for
BTF data compression are summarized in Section 3.8. In this chapter, we describe the
improvements of the original algorithm done in our implementation.

4.1 Parallelization

The compression workflow of the MLVQ algoritm is generally sequential, because the results
from previous iteration (data stored within codebooks) are used as input to the next iteration
(the search for already existing similar entries). This chain of operations cannot be broken
without affecting the quality of the compression. It is however possible to parallelize smaller
parts of the compression algorithm on several levels.

First, the search for similar entries within the individual codebooks can be efficiently
done in parallel. Because typically there is more than one block of input data and more than
one block of data to compare with, a single thread can be used to perform comparison of
each of the combinations. The results of the comparisons do not depend on each other and
can therefore be launched in parallel as an NxN workgroup.

During the compression, the input block of Onion-Slices parameterization BTF data gets
split into progressively smaller sub-blocks. Most of the time, these sub-blocks can be also
processed in parallel. This means that the search for matching entries as well as for example
transformations into different color space can happen in parallel on all the sub-blocks. The
problem arises when no matching entry is found for more than one of the sub-blocks and a
new entry needs to be created in a codebook. If processed sequentially, one of the sub-block
might form a codebook entry, to which the other block is matched. This problem can be
resolved by processing the remaining sub-blocks sequentially to allow one block in the same
batch to match another.

Transformations between different color spaces for a single block can also be done in
parallel. For each of the elements of data to be converted a separate thread can be launched
to perform the conversion.

19
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Reconstruction of a single codebook entry back to its original representation (to a block
of data in Onion-Slices parameterization) can be done in parallel. Similar workflow can be
used to reconstruct a batch of entries, also in parallel.

Additionally, the transformation of raw input data into the Onion-Slices parameterization
can be done in parallel, as later described in Section 6.3.5.7.

4.2 GPU-based Implementation

In this section we discuss some issues if GPU-based algorithms. The main limitation of a
GPU is the amount of memory space available on the target hardware. Because this space
is still quite limited (ones of gigabytes even on today’s upper-class hardware), while the raw
BTF data size is quite large (several gigabytes for a single material), a hybrid CPU-GPU
based approach is proposed. The CPU part of the application is responsible for preparing
batches of input data to be processed and feeds them to the GPU. The compression itself
then runs within the GPU environment and all the required data are stored in the GPU
memory, including the currently processed batch of input data, the compressed codebooks
and various cache data. As the support for dynamic parallelism is still limited, the CPU is
used to control the workflow of the compression. After the main compression algorithm is
finished for the whole material, the resulting codebooks are downloaded from the GPU and
stored to a file.

In [HFM10] the algorithm was proposed as sequential and was implemented to run on a
single core CPU. Using the optimizations described in Section 4.1 it can greatly benefit from
execution in the massively-parallel environment of a GPU. As a result, the time required to
compress a single material is greatly reduced.

4.3 Radial Basis Function Interpolation

To transform the input BTF data into the required Onion-Slices parameterization, a resam-
pling scheme based on Radial Basis Function (RBF) interpolation [CBC'01] is proposed.

The input BTF data are multidimensional and, as a result of measuring only a discrete
number of view and illumination direction combinations, the data are scattered. For resam-
pling into the Onion-Slices parameterization, values at coordinates different from those for
which the BTF was measured need to be obtained. RBFs provide a way of interpolating such
multidimensional scattered data. The value of a single RBF depends only on the distance
of point x from the origin or some other center point x;. An example of Gaussian RBF is
given by following equation:

6(r) = e—En) (4.1)

where r = [|x — x;]|.

The approximation function is then represented by a weighted sum of RBFs computed
using the input data sample points as the RBF center points, as demonstrated in Equa-
tion 4.2,
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N
y(x) = Z’wmﬁ(HX—XiH) (4.2)

where w; is the weight by which the given input sample contributes to to the resulting value.
The weights can be estimated by the linear least squares method.

The Onion-Slices parameterization resampling algorithm is briefly described in Section
4.1. of [HFM10], where values are first interpolated for all illumination directions and a
fixed viewing direction and only then for all viewing directions. Our approach is slightly
different. For each of the required Omnion-Slices parameterization coordinates, k-nearest
neighbors are found within the input data. These k points are then used as center points in
the RBF interpolation. Using the required Onion-Slices parameterization coordinates as a
query point, the interpolated values are returned by the RBF. The whole algorithm can be
executed in parallel on a GPU.

4.4 High Modularity

In our implementation, the compression algorithm is divided into three basic steps. Each of
these steps is represented by a separate application, as later described in Section 6.1. The
first step is to read the raw input BTF data in various formats and convert them into a
single, strict defined format, from which the data can be easily resampled into the required
Onion-Slices parameterization during the second step. After the data get resampled, they are
input to the third and final step, which performs the MLVQ compression. The compression
is handled by a highly modular and configurable processing pipeline running on a GPU.

4.4.1 Customizable Compression Pipeline

The compression pipeline represents the set of operations applied to the input BTF data
during the compression. It consists of two basic elements - nodes and compare units. A node
represents an operation with the input data, while compare units are used to apply similarity
metrics between two data blocks. The whole pipeline is completely user configurable at run
time. This means, that the user can select which types of nodes and compare units to use and
how to connect them together. Each node and compare unit also has its own configurable
parameters, some of which are consistent during the whole compression process, while some
can be configured on a per-stage (Section 4.5.1) basis. The whole compression pipeline
build-up is done in run time and different pipeline setups can therefore be achieved only by
modifying the corresponding configuration files.

4.4.2 Pipeline Nodes

A node in the compression pipeline basically represents an operation performed on the input
data block. The operation done is based on the type of the node. The purpose of some node
type can be for example to find a similar enough entry in its codebook and if none is found,
add the input data block as a new entry. The complete list of implemented node types is
later provided in Section 6.3.5.
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Pipeline nodes can be either terminal or non-terminal and must be interconnected to
form a tree-like structure. Terminal nodes can only exist as leaves of the processing tree and
can have no additional child nodes. Non-terminal nodes are on the other hand required to
have one or more (depending on the node type) child nodes.

Each node operates on a fixed region of input data, which is provided to the node by its
ancestor. The size of the region usually depends on the depth of the node in the processing
tree. If the node uses a compare unit, it provides the compare unit with the requested data
region. A single compare unit must be assigned to each node requiring it, but not all nodes
need a compare unit to work. The assignment is done within the pipeline configuration.

4.4.3 Pipeline Node Categories

The types of nodes present in the pipeline can be divided into three basic categories: basic
nodes, nodes with codebook and nodes with attached compare unit.

Basic Nodes
Basic nodes are used mainly to perform transformations of the input data or to control
the data flow during the compression. Nodes in this category do not have their own
codebook and therefore do not store any persistent data. A node of the basic node
type can for example converts the input data between different color spaces.

Nodes with Codebook
Nodes with codebook contain one or more codebooks - memory regions in which they
store some kind of persistent data. These data are typically sets of information received
from their children for non-terminal nodes or vectors of representative BTF values for
terminal nodes. The node writes the data to the codebook during the compression and
reads from the codebook during the reconstruction. When the compression is finished,
the content of all the codebooks represents the resulting compressed material data set.

Nodes with Attached Compare Unit
Nodes with attached compare unit extend nodes with codebook by specifying a compare
unit, which can be used to perform comparison between an input data block and a block
of data reconstructed from a codebook entry. This allows the node to first perform a
search for a similar enough entry within its codebook and add new entries only when
a similar enough entry does not exist.

4.4.4 Compare Units

The purpose of a compare unit is to compute a similarity index (described in Section 3.4)
between the input data and the data reconstructed from one or more existing codebook
entries. The compare units are implemented as separate entities which are common to the
whole compression pipeline. This allows the user to configure which compare units should be
assigned to individual nodes of the pipeline. From a developer’s point of view, new similarity
metrics can be implemented into new compare units without the need to modify the rest of
the compression components.
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4.4.5 Modifiers

In the original algorithm, individual codebooks consist of one of the three possible types of
entries - indices only, indices & scaling coefficients pairs or raw representative vectors of the
BTF. Also the type of entries used by each of the codebooks is static. In our implementation,
the type of data stored in a codebook is generic and depends on the type of the child nodes
connected to a node. This means, that if a child node uses scaling coefficients, the parent
node will store them into its codebook along with the indices of the entries. If no scaling
coeflicients are provided, only the index data will be stored.

Additionally, properties other than the scaling coefficients can be returned from a node.
If for example rotational symmetries in the input data are exploited, the number of rotation
steps would be returned from the node along with the indices. The term modifiers is used
to refer to the additional data returned by the node. According to this concept, a scaling
modifier would be applied to the nodes representing the Py, P3, M and P; codebooks in
Figure 3.1.! The amount of modifiers applied to a single node is not limited and combinations
of different modifiers can therefore be used together.

4.5 Dynamic Configurability

Most aspects of the compression algorithm are user configurable at run time to allow the
user to quickly modify the settings without the need to modify the application source code.

4.5.1 Compression Stages

To provide a more fine-grained control over the compression workflow and achieve better
compression ratios, the compression algorithm can be executed in an arbitrary number of
stages. For each stage, the configuration of individual nodes, compare units, BTF texel
processing order and other properties can be specified. These can include for example the
required similarity thresholds for individual nodes or the number of texels to compress during
the stage. At the beginning of each stage, these properties are set and remain valid until
the beginning of the next stage. The order in which the stages are executed is given by the
order, in which they are specified within the configuration file.

4.5.2 Compression Pipeline Configurability

Configuration of a single node is divided in two parts. In the first part, global properties
of the node are specified. These include the type of the node, its name, identifier (used
to connect the nodes to form the processing tree), identifier of the compare unit to use (if
required) and a list of target nodes (if any). Some node types might also require additional
configuration parameters. The second part of node configuration is done on a per-stage
basis. This might include required similarity thresholds for codebook-based nodes, cache
configurations and other properties.

! The figure might look slightly confusing in this context, because the index/scaling coefficient pairs are
shown for different codebooks than mentioned. This is in fact correct, because the result of a modifier is
always saved in the parent node’s codebook. If scaling modifier is applied to the Ps codebook, the resulting
scaling coefficients will be stored in the Ps codebook.



24 CHAPTER 4. IMPROVEMENTS OF THE MLVQ ALGORITHM

4.6 Multispectral Data Processing

Processing of an arbitrary number of color channels is supported in the whole compression
framework. This allows unified processing of both the regular RGB color model data and
multispectral BTF data. Additional information such as transparency or self emissivity can
also be stored as separate channels, which allows extending the data compressed beyond the
scope of BTFs. As the meaning of the data is generally not known to the pipeline nodes, it
is the responsibility of the user configuring the pipeline to understand the meaning of the
individual channels and set up the pipeline accordingly. All types of nodes in the pipeline can
operate on an arbitrary number of channels, although some operations with the data expect
a fixed number of channels to be present. For example the YCbCr color model conversion
(Section 3.5) requires three color channels as input. The node performing the conversion
however supports an arbitrary number of input channels, since different types of conversion
may require different number of channels. The number of color channels output from a node
can also be different than the number of input channels.

4.7 Omission of Chrominance Lookup Codebook

In the original algorithm a separate codebook is used to store chrominance value pairs (C' in
Figure 3.1). In our implementation, we decided to remove the separate C' codebook and store
the chrominance information directly in the Is codebook. As one less quantization step is
performed, the compression speed should be increased, as well as the resulting visual quality.
The compression ratio should be the same or better, because by not performing the quan-
tization at the C' level, the chance of finding matching entries is increased on higher levels.
During decompression, 16 to 64 cases (based on the interpolation method used) of indirect
memory addressing would be eliminated by reading the chrominance values directly from the
Iy codebook, which should result in increased decompression speed. With minor changes,
the compression pipeline can however be modified to include the separate C' codebook.
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Heterogeneous Computing and
OpenCL

The basic concepts of heterogeneous computing and GPGPU programming are summarized in
this chapter, followed by the description of the OpenCL heterogeneous computing framework.

5.1 Heterogeneous Computing

The term heterogeneous computing refers to the process of using more than one type of
computer system architecture to perform a required task [GHK"13|. The reason for using
more than one architectures is to take advantages of the capabilities each of the different types
offers. A CPU is for example well suited for general purpose tasks, involving program control,
complex branching and operating system communication. A GPU is on the other hand well
suited for performing a lot of parallel mathematical computations. Using heterogeneous
computing, advantages of both the architectures can be combined together. To control
the program flow a CPU can be used, while performance-demanding computations can be
offloaded to the GPU.

In our work, heterogeneous computing is used to speed up both the compression and
the decompression. The basic control flow and input/output handling is done on the CPU
side. The CPU side is also used to schedule work for the GPU, but the compression and
decompression itself is performed almost entirely on the GPU. All immediate data are stored
within the GPU memory and only the final results get downloaded back to the system
memory.

5.2 GPGPU

GPGPU or General-Purpose Computing on Graphics Processing Units is the process of using
a GPU, originally intended for performing computer graphics computations, to perform
general computation tasks. These can include complex calculations for example in the fields
of biology, molecular dynamics or signal processing. Due to their massively-parallel nature
GPUs can solve specific problems much faster than general CPUs.
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GPUs are well suited for problems representable by the means of stream processing (SP).
In the SP paradigm, a series of operations represented by a kernel function is applied to a set
of input data, a stream. A resulting set of output data is generated, possibly also a stream
later input to another kernel function. The units executing the kernel are usually independent
and the means of communication and synchronization between individual execution units are
limited. As a result, the kernel execution can be efficiently pipelined and run on multiple
compute units in parallel to achieve high performance.

5.3 OpenCL

The Open Computing Language (OpenCL) is a programming framework providing abstrac-
tion of heterogeneous system architectures in form of a well defined standard [GHK'13].
The standard is maintained by The Khronos Group consortium, which also maintains the
OpenGL standard. Code written in the OpenCL programming language (with a C-like syn-
tax) can be compiled to run without change on various device types, including multicore
CPUs, GPUs or field-programmable gate arrays (FPGAs). OpenCL natively supports both
task- and data-level parallelism and is well suited for use in massively parallel environments.
The standard is open, free to use, cross-platform and is adopted into drivers provided by
many major computer hardware vendors such as AMD, Intel, NVIDIA or Apple.

5.3.1 Platform Model

OpenCL abstracts the different architectures and devices in heterogeneous computing using
a platform-based model. This model is composed of the following components:

Platform
A platform represents a group of devices among which resources can be shared.

Device
A compute device is a collection of compute units and usually represents the target
hardware performing the computations. Each device has its own capabilities, such as
supported floating point precisions, memory size, limitations on work-group size or the
amount of compute units available.

Context
According to the official OpenCL 1.1 specification [OPENCL], a contezt is defined as:
"The environment within which the kernels execute and the domain in which synchro-
nization and memory management is defined. The contezt includes a set of dewices,
the memory accessible to those devices, the corresponding memory properties and one
or more command-queues used to schedule execution of a kernel(s) or operations on
memory objects."

5.3.2 Execution Model

The OpenCL execution model provides ways of exploiting both task- and data-level paral-
lelism. The key components in this model are:
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Kernel
The kernel function represents a set of operations which should be applied to the data
during a single invocation by a work-item. Instruction-level parallelism can be utilized
within the kernel code.

Work-item
A work-item represents a single invocation of a kernel by the device. It can be thought
of as a single thread executing the function. Data-level parallelism can be exploited
by running multiple work-items in parallel. Each work-item has two unique identifiers
- one within the work-group (local ID) and one within the whole task (global ID).

Work-group
Multiple work-items executed on a single compute unit form a work-group. Local
memory is shared between all work-items in a work-group.

Compute Unit
A compute unit is a set of processing elements (virtual scalar processors) on which
work-groups get executed. Multiple compute units can be present in a single dewvice,
each having its own pool of local memory.

Command Queue
Command queue maintains the order of commands to be executed on a specific device.
By default, the commands are executed in the same order in they were queued, but
out-of-order execution is also possible with explicit synchronization.

5.3.3 Memory Model

The OpenCL memory model is composed of mutliple types of memory, as shown in Figure 5.1.
Each of the memory types provides a different level of compromise between the amount of
space available and the overall access performance. The following types are available:

Global Memory
Global memory is shared across the whole context. It is usually the largest in size, but
compared to other memory types offers the slowest access speed.

Constant Memory
Constant memory is a specialized region of global memory, which remains unchanged
during the execution of a kernel. The amount of available constant memory is usually
more limited, but being read-only, the device executing the kernel can use a more
efficient caching scheme and therefore increase the access speed to this memory region.

Local Memory
Local memory is shared only by work-items within the same work-group. Being closer
to the actual compute units, the amount of space offered in this type of memory is
usually quite limited, but the access performance is greatly improved.

Private Memory
Private memory is unique for each of the work-items. It is usually represented by
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registers located directly within the processing elements. For this reason, the private
memory provides the best access performance, but its available size is usually very
limited.

———

OpenCL Device

Global/Constant Memory

Figure 5.1: The OpenCL memory model



Chapter 6

Implementation

In this chapter, we discuss details the of our implementation of the improved MLVQ-based
compression algorithm.

6.1 System Architecture

In order to offer high modularity our implementation is divided into several separate com-
ponents as shown in Figure 6.1. The compression and decompression parts of the algorithm
are treated separately and implemented by individual sets of components.

6.1.1 Common Functions Library

Some functionality, such as command line arguments parsing, OpenCL context management
or configuration files handling is common for different components of the framework. For
this reason a separate library of common functions exists which the individual components
can use. Additional features covered by the library include error handling, message logging,
coordinate space conversions or file system access.

6.1.2 Compression-Related Components

The compression algorithm is split into three main phases, represented by three separate
applications as shown in Figure 6.1. The first application, Preprocessor, is used to transform
the raw input data from different formats into a single common format, which is then used
as input to the next phase. The second application, Resampler, reads the preprocessed
input data and resamples them into the Onion-Slices parameterization. In the third and
last phase, the resampled data are read by the Compressor application, which performs the
MLVQ compression and saves the resulting compressed BTF to a file.

The reason for this workflow is to separate individual parts of the compression algorithm
on high level and allow for reusing of data. For example the Preprocessor component is
usually only used once to transform the raw input data into the required format. Once the
data are preprocessed, the raw input data can safely be deleted, since no other component
uses them during compression. Similarly, when the preprocessed data are resampled into
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Figure 6.1: Software architecture of our implementation

the Onion-Slices parameterization, they can be reused by the Compressor component many
times with different settings, without the need to resample them again.

6.1.3 Decompression Library

The decompression algorithm was implemented as a separate library named Evaluator. The
library can be easily incorporated into custom applications to provide them the functionality
needed to use the compressed BTF data. The library handles all the necessary operations,
from reading the compressed material file to performing the BTF evaluation at specific
input coordinates and returning the resulting reflectance. The decompression algorithm is
implemented in OpenCL and allows fast parallel execution either on a multi-core CPU system
or on a GPU.

6.1.4 Preview Generation Tools

To demonstrate the use of the decompression library, an interactive preview generation
application was built using the library. The application is similar to the one presented
in [Egel3|. The BTF evaluation is incorporated into standard OpenGL rendering workflow
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and allows the user to navigate through a scene containing a BTF-mapped object in real-
time.

Additionally a non-interactive preview generation tool was implemented. Compared to
the interactive application, this tool can use multiple different BTF coordinate sources (pre-
defined patterns, data read from files, OpenGL rasterization, ...) and evaluate them using
multiple different techniques, including BTF evaluations from intermediate data representa-
tions (for example tempBTF or onionBTF files, Section 6.1.6). This allows the results from
the intermediate steps to be visually inspected and compared to both the original and the
compressed data.

6.1.5 Configuration Files

A major part of the application is user configurable, including the definition of the processing
pipeline itself. The configuration for each subsystem is stored in one or more XML files,
which is processed at run-time. Individual configuration files are allowed to include other
files. This allows the user to split all the settings into several smaller files, some of which
can be reused later on without the need to modify them. Several predefined markers can
also be used within configuration files, for example the current working directory or values of
command line arguments passed to the application. This allows for the same configuration
file to be used during batch processing of several BTFs without the need to edit the file for
each material individually. To query the configuration files from within the application, the
XPath query language is used.

6.1.6 Custom File Formats

Custom file formats were created to store results from each of the basic processing steps.
The file formats are binary and were designed for efficient exchange of data between the
individual applications performing the processing steps as shown in Figure 6.2. Summary of
the formats used is provided in Table 6.1.

StateBTF

Raw BTF TempBTF OnionBTF CodeBTF

_1\.‘
N

Figure 6.2: File formats used to pass data between individual components of the compression
framework
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Format Generated by Content

tempBTF Preprocessor Raw input data arranged in |z, y| major layout
onionBTF Resampler BTF data in Onion-Slices parameterization
codeBTF Compressor Compressed and possibly optimized BTF data
stateBTF Compressor Snapshot of the compression pipeline state

Table 6.1: Custom file formats used during the compression

6.2 Input Preprocessing

Processing of the raw input data is a two step task. In the first step, the data are converted
from different input formats into the strictly defined tempBTF format. From there, the
resampling into the Onion-Slices parameterization is performed. The data are then ready
to be compressed using the MLVQ algorithm.

6.2.1 Raw Input Preparation

Preparation of the raw input data is handled by the Preprocessor component. This compo-
nent transforms the raw input data in various formats into a single common format, referred
to as tempBTF, which is then used as the input to the Onion-Slices parameterization re-
sampling algorithm. The raw input data can be stored in different layouts, data formats and
precisions. Preprocessor is used to isolate the next compression stages from these variations
by processing the raw data into a single strictly defined format.

For example the data from UBO2003 [SSK03] and UTIA [HFV12| data sets are in the
raw form stored as 6561 individual images in either JPEG or PNG format, as demonstrated
in Figure 6.3. Each image contains values for a single combination of 0y, oév, 05, o1,
for all BTF texels (|0v, ¢v, 01, ¢r]-major layout). For resampling into the Onion-Slices
parameterization, values of all combinations of 6y, ¢y, 01, ¢r, are required for a single BTF
tezel ([x, y|-major layout). If kept in their raw form, all images in the dataset would need to
be decoded and accessed only to resample a single texel, which would make the resampling
algorithm inefficient.

Preprocessor reads the raw input data from all the individual image files, transforms
them into the required [z, y|]-major layout and stores the result as a tempBTF file, which
can then be efficiently used by the resampling algorithm.

The Preprocessor system consists of the following three components:

RawBTFReader
Reads the raw input data in various formats. A reference implementation is provided
which reads the raw datasets in the UB0O2003-like [SSKO03| format.

Reshaper
Changes the layout of the input data into the required [z, y|-major parameterization.

TempBTF Writer
Writes the resulting data to disk in tempBTF format.
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Figure 6.3: Example of 3 of the total 6561 input images (BTF measurements) captured for
the Pulli BTF material. Images courtesy of [SSK03]

6.2.2 Onion-Slices Parameterization Resampling

The Resampler component handles the resampling of the preprocessed BTF data into the
Onion-Slices parameterization, which is required by the MLVQ compression algorithm. The
basic workflow of the Resampler operation starts by reading a batch of raw BTF texel data
from the input tempBTF files. This batch of data is then processed texel-by-texel and
resampled into the new parameterization using one of the interpolators provided. Finally,
after all texels of the material get processed, the resulting resampled data set is stored to
disk as a set of files in the onionBTF format.

The number of coordinates (ng,,, 74, , na, ng) used to discretize the BTF in the Onion-
Slices parameterization is user configurable. Based on the configuration, a set of coordinates
is generated for each possible combination. These coordinates are then used as query points
for the interpolator. Using the input data as reference, the interpolator then approximates
the BTF value at the requested coordinates. An example of the interpolated data for five of
the BTF texels is provided in Figure 6.4.

The Resampler allows different interpolation methods to be used depending on config-
uration. Each of these methods is implemented as a separate class following a predefined
interface. Three different methods were implemented — a simple nearest-neighbor search and
two Radial Basis Function interpolators, one CPU and one GPU-based.

The RBF interpolator uses Gaussian Radial Basis Function interpolation [CBCT01] to
better approximate the value at the query point. RBF interpolation is computationally
expensive and its complexity depends on the number of reference points used. To reduce
this computation time, a small number (i.e. 8) of data samples nearest to the query point is
first found using a k-Nearest-Neighbor search algorithm. Only these data samples are then
used as input to the RBF interpolator to evaluate the query. To solve the final RBF matrix,
Cholesky decomposition is used. After solving the matrix, the RBF is evaluated and the
interpolated value for the given query coordinates is obtained.

Because many query points can be evaluated in parallel, the algorithm is well suited for
GPU use. The OpenCL implementation follows the same basic steps as the CPU imple-
mentation. The k-Nearest-Neighbor search is first performed on the CPU, because the total
number of reference points is relatively low (6561 points for UBO2003 [SSKO03| data set).
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Figure 6.4: Example of five texels of the Corduroy BTF resampled into the Onion-Slices
parameterization.

The search is also only performed once for the whole dataset, because the reference and
query point coordinates remain the same for the whole dataset. Having the set of k nearest
neighbors for each of the query points, each query can then be processed by a single thread.
The thread first prepares the RBF matrix, solves it and then uses the result to obtain the
final set of values for the given query point.

The Resampler system consists of these basic components:

TempBTFReader
Reads the input data in tempBTF format.

Interpolator
Performs the resampling of the input data into the Onion-Slices parameterization.

OnionBTFWriter
Writes the resulting data to disk in onionBTF format.

6.3 Compression Process

The MLVQ compression is performed by the Compressor application. This application is
responsible for assembling the dynamic compression pipeline based on its configuration and
feeding the input BTF data into this pipeline. As a result, the compressed BTF data are
stored within the codebooks of individual pipeline nodes, from which they can be read and
saved to disk as the resulting compressed material dataset.

6.3.1 Pipeline Node Communication

To pass data between individual nodes and compare units in the pipeline an approach based
on a request-response model is used. A single request is represented by a task. Each task
contains only a single value, which is the index of the first element the given node should
operate on. Combined with the data region specified for each node, the node is provided
complete information on which part of the input data to operate.
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A token represents the data returned in response to a single task. It consists of a set of
values the node will later need in order to reconstruct the data processed while executing
the corresponding task. This set of values typically consists of a row index in the node’s
codebook and values required by the node’s modifiers (for example the scaling coefficient).

This task-token model provides a unified interface to communicate between individual
parts of the pipeline. This allows for the pipeline to be completely user configurable. A
parent node sees the tokens of its child node only as data chunks with given size. The
meaning of the data is not known to the node and in fact is not required to be known. The
sole purpose of the node is to provide the data back to its child during the reconstruction
phase. This allows for the use of modifiers, since only the size of the token is relevant to the
parent node, not the internal structure of the token.

The workflow of task-token communication is illustrated in Figure 6.5. The node always
receives a set of tasks as its input and is obligated to generate a matching set of tokens as
the output. The actions taken to produce the tokens depend on the type of the node. Nodes
with attached compare units can pass the set of tasks to the compare units and try to find
matching entries within the codebooks. If a matching entry is found, its index is returned
as part of the token for the given task. If no matching entry is found for the given task, the
node can take other actions to produce the token, for example by creating a new set of tasks
for its child node and later storing the returned tokens as a new codebook entry. For a single
task, a node can generate several sub-tasks, processed by children of the node. It is then
the responsibility of the parent node to process the tokens generated from the sub-tasks and
return a single token as a response to the original input task.

6.3.2 Memory Layout

The memory layout of the Compressor application is demonstrated in Figure 6.6. The
memory regions can be divided into three basic categories. The first category contains blocks
of memory common for the whole compressor application. These regions are accessible by
any component during the compression. The window area is used to store the input BTF
data for the currently processed BTF texel and its neighborhood. The reconstruct memory
region is used to store blocks of BTF data reconstructed from individual codebook entries
during the search for similar entries. A compare unit compares blocks of data in the window
region with blocks of data in the reconstruct region. A compare unit can also use additional
blocks of memory to store its own data. These form the second category and are described
in detail in Section 6.3.2.2. Finally, each of the nodes present in the compression pipeline
has its own set memory regions, which form the third and final category and are discussed
in Section 6.3.2.1.

6.3.2.1 Pipeline Node Memory Regions

The memory layout of a single pipeline node is shown in Figure 6.7. Each node present in
the pipeline has at least three own memory regions — one to store the incoming tasks for the
node, one to store the resulting tokens, and one to store the number of tasks (tasks count).
The node also gets connected to similar memory regions in other nodes to perform the tasks-
tokens based communication as described in Section 6.3.1. Each node is provided access to
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(a) Compression

(b) Reconstruction

Figure 6.5: Principles of task-token communication during compression and during recon-
struction phase.
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Figure 6.6: General memory layout of the Compressor application

the common window and reconstruct memory regions. Codebook-based nodes also contain
a separate memory region for the codebook itself. If caching (Section 6.3.6) is enabled,
additional memory regions get created for the node. The amount of memory allocated is
not limited by the framework, so additional regions may be created if required by the given
node type.

6.3.2.2 Compare Unit Memory Regions

Memory regions used by a single compare unit are demonstrated in Figure 6.8. The tasks
and tasks count regions are used by pipeline nodes to communicate with the compare unit.
Additionally, the information about the the data region for which the comparison should be
performed must be provided to the compare unit in the data region memory.

After performing the comparison, the resulting similarity for each of the tasks gets stored
in the results memory region. As comparison with multiple reconstructed entries can be
performed in parallel for a single task, indices of the best matching entries are stored in the
best rows memory. This means that for a single task an index of the best matching entry
gets stored in the best rows memory and the similarity between the input data and this entry
gets stored in the results memory region.

The compare unit implementation is allowed to use additional memory regions if required.
For the SSIM-based compare unit implementation custom memory was used for example to
store the precomputed means and variances of values within the SSIM window.

Additional memory may also be used for compare units operating with modifiers. For
example for the scaling modifier, the average luminance of the the input BTF data blocks can
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Figure 6.7: Memory regions used by a single pipeline node. The typical flow of data between
the node and the memory region is indicated by an arrow.

be precomputed and stored in a custom memory region to avoid unnecessary recomputation
of these values during comparison with each of the reconstructed codebook entries.

6.3.3 Compression Algorithm Workflow

The general outline of the MLVQ-based BTF compression algorithm was provided in Sec-
tion 3.6. In this Section we describe how this algorithm was implemented in our application.

6.3.3.1 Pipeline Assembly

The compression algorithm begins by reading the configuration files. Using this configura-
tion, the reader for the input Onion-Slices resampled data in onionBTF files is created and
basic properties of the material, such as the discretization used, is read. In the next phase,
basic initialization of the OpenCL platform is performed, followed by the initialization of the
compression pipeline. The pipeline configuration is first read from the configuration files.
The configuration includes the nodes which will form the pipeline, their types, basic prop-
erties and interconnections with other nodes, as well as the compare units available for the
nodes to use. Based on the configuration, the nodes and compare units get created. Finally,
the parent-child relationships between nodes get resolved.

In the next phase, the nodes performing split operations are informed about the input
dimensions, in which they should perform the split. Knowing this information, the input
regions for each node can be resolved. Beginning at the root node, the input region for the
node covers the whole block of input data (the whole BTF texel). In this block, data for all
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Figure 6.8: Memory regions used by a single compare unit. The typical flow of data between
the compare unit and the memory region is indicated by an arrow.

four dimensions (0y, ¢y, «, ) of a single BTF texel are present. Each node performing a
split operation removes one dimension from the region. This means that all nodes following
the first split node will operate on three-dimensional (¢y, «, ) regions. After the second
split, the input region is further reduced to only two dimensions («, 3) and so on. The order
of dimensions in which the region gets split is fixed as (v, ¢v, a, ), to be consistent with
the pipeline used by [HFM10]. The consequences of using different split order are currently
unknown and may be an interesting topic for future work.

The pipeline initialization continues by assigning compare units to all nodes requesting
them. A single compare unit may be used by multiple nodes. As the final phase, OpenCL
memory regions and execution kernels are created for each node. The number of memory
regions and kernels depends on the type of the node. After compiling the kernels and
assigning the memory regions to them, the initialization of the pipeline is complete.

6.3.3.2 Stages Processing

After initializing the pipeline, compression stages options get read from the configuration
and the first stage is set as active. Based on the properties, indices of the BTF texels to be
processed during the stage are first generated and stored into the processing queue. After
that, the MLVQ compression algorithm itself begins.

First a batch of BTF texel indices ([x, y| coordinates| is extracted from the processing
queue. The size of the batch is user configurable and depends primarily on the resources
available on the system performing the compression (mainly the available memory size). For
the whole batch the input Onion-Slices resampled data are read. This includes the data for
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the BTF texels themselves and as well as the data of the surrounding BTF texels forming
the input windows.

The BTF texels in the batch then get processed one by one. First, the input window is
assembled for each BTF texel and uploaded to the corresponding window memory region.
The compression pipeline is then executed. After compressing the texel, input window for
the next one in the batch gets assembled and the pipeline gets executed for the texel. These
steps are repeated until all texels in the batch get compressed. After that, texel indices for
the next batch are extracted from the processing queue and the next batch gets processed
in the same way.

After all BTF texels are processed for the given stage, the next one begins. Configuration
for the stage is first applied to all components. Then the processing queue gets filled with the
coordinates of the BTF texels for the stage. The texels are then again processed in batches,
until the whole queue gets processed. After all stages get processed, the main compression
algorithm is finished and data for all' texels should be present within the codebooks of the
pipeline nodes.

6.3.3.3 Similar Entry Search

The ability for a node to search and return similar entries is the key concept of the vector
quantization algorithm. The search for a matching entry in the codebook can be terminated
by two different methods, configurable by the user. In the first method, the first similar-
enough (based on the configured threshold) entry encountered is returned. This allows the
search to be terminated as soon as the entry is found, but does not guarantee, that the entry
returned is the best matching from the codebook. The second method will always look for
the entry best matching the input data. While this method should provide better visual
quality of the result, it is also more computationally demanding, since all the entries in the
codebook must always be reconstructed and compared. Because both methods have their
pros and cons in different stages of the compression algorithm, the preferred method can be
selected for each node on a per-stage basis.

It is worth noting, that even when an entry best matching the input data is found within
the codebook, it is not guaranteed, that the entry is similar-enough based on the configured
threshold.

When a similar-enough entry is found by either of the aforementioned methods, a token
identifying the entry is returned and the size of the codebook remains unchanged. If a
matching entry is not found, a new one is created in the codebook. The entry is then
filled by the corresponding data, either a set of tokens for non-terminal nodes or a vector of
representative values for terminal nodes.

The node can also be configured to lock the codebook on a per-stage basis. When a
codebook is locked, no new entries can be added into it and only those already present in
the codebook can be used. This means, that the best matching entry is returned even if
it is not similar-enough based on the current similarity threshold. Because the size of a
locked codebook remains constant, this allows the user to limit the resulting data size of the

1 It is possible to configure the stages in such way, that not all texels of the BTF get processed. This is
useful mainly for debugging purposes. For example only a small number of texels can be compressed in very
short time to verify correct configuration of the processing pipeline.
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compressed material. An opposite approach, where the node does never search for similar
entries and always creates new entries in its codebook, can also be used, although it is mainly
beneficial for debugging purposes.

6.3.3.4 Codebook Entry Reconstruction

In order to compare a block of input data with an entry already stored in a codebook,
the entry needs to be reconstructed back to its original form (to a block of data in the
Onion-Slices parameterization). The data reconstruction algorithm can be initiated from
two different sources — either by the node itself during the search for a similar entry within
its codebook or using a set of tasks provided by a parent node. Regardless of the source, the
reconstruction algorithm follows roughly the same steps.

The index of the entry to be reconstructed is either provided to the node in form of a
token by the parent node or, when the node itself is initializing the reconstruction, generated
by the node. The workflow is then similar as during decompression, described in Section 3.7.
The key difference is that input coordinates do not get used as indices into the codebook
entries. Instead, the decompression is performed for all pieces of data in the entry. This
means, that if the entry for example consists of ng, tokens, then ng, reconstruction tasks
are created for the child node.

The process recursively repeats until reaching terminal nodes. Here, the raw represen-
tative values are copied to their appropriate locations in the reconstruct memory region.
Returning back to the node requesting the reconstruction, the data can be further trans-
formed for example by the means scaling coefficients or color space transformations. After
returning to the source node, reconstructed BTF data will be present in the reconstruct
memory region starting from the location given by the original task.

6.3.3.5 Workflow of a Single Node

The workflow of a non-terminal node usually consists of four main steps: Compression
forward, Compression return, Reconstruction forward and Reconstruction return.

Compression Forward Step

During the Compression forward step, the node receives tasks to process some input
data blocks. The node does the processing and, as a result, some tasks for its child
nodes might be generated. For example the Transform node type converts the data
into different color space and orders its child node to continue the compression on these
newly processed data. The Compression forward step ends by the node ordering its
child node to further process the data (the Compression forward step gets started for
the child node).

Compression Return Step
The Compression return step takes place when the child node is done processing the
data and returns the control back to the calling node. The tokens resulting from the
child node operation are now stored in the tokens memory region of the child. The
purpose of this step is to allow the active node to process the results generated by
its child node. For example, if the active node is of type FindOrSplit, it will use the



42 CHAPTER 6. IMPLEMENTATION

Compression return step to store the tokens generated by the child node to its own
codebook.

Reconstruction Forward Step
The Reconstruction forward step is similar to the Compression forward step, but is
used during data reconstruction. The input to this step is a task to reconstruct a
block of data. The node reacts to this task by sending reconstruction requests to its
children. For example the FindOrSplit node uses the input request (consisting of a
task and token) to look up the corresponding entry in its codebook and based on the
entry produces several reconstruction tasks for its child node.

Reconstruction Return Step

The Reconstruction return step roughly corresponds to the Compression return step. It
takes place when the child node has processed all the reconstruction tasks and returns
control to the calling node. The calling node can use this step to further process the
input data before returning control to its ascendant. For example the Transform node
uses this step to convert the data being reconstructed back to their original color space.
Also the results of modifiers (for example scaling coefficient) usually get applied during
this step.

6.3.3.6 Compressed Data Output

Before saving the resulting compressed data to a file on a disk, several additional opti-
mizations can be performed, as described in Section 6.3.7. When saving the results, first
the parameterization of the Onion-Slices parameterization used gets stored, followed by the
pipeline configuration. This includes the types of nodes, their properties and interconnec-
tions. All these information are later used to rebuild the pipeline during the decompression
phase. Finally, the (possibly optimized) content of individual nodes’ codebooks gets stored.
As aresult, a single stand-alone file is generated, which can be used by the Evaluator without
any additional information. After writing the file, the whole compression is finished.

6.3.4 Main Compressor Components

The Compressor system is composed of several components, each with its specific purpose.
Overview of the individual components is provided in this Section.

6.3.4.1 OnionBTF Reader

The OnionBTFReader component is used to read the input data in Onion-Slices parame-
terization from onionBTF files. It is mainly used by the Window Manager component to
prepare the data to be compressed into the input window memory region.

6.3.4.2 Window Manager

The Window Manager component’s main responsibility is to prepare the input BTF data
for a BTF texel and upload them to the corresponding OpenCL memory region, from which
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they can be used by the rest of the pipeline. As the similarity metric may operate not only
on the currently processed texel, but also on its surrounding, the Window Manager creates
a window consisting of data for the whole surrounding. The size of the window is user
configurable. For our final measurements, we used window size of 11x11 BTF texels.

For the similarity measure to operate correctly, the importance of individual BTF texels
within the window is weighted using a Gaussian kernel. The currently processed texel,
situated in the centre of the window, is considered the most significant, while the texels
towards the edge of the window are considered progressively less significant.

6.3.4.3 Cell Manager

The Cell Manager component is used to track states of individual BTF texels during com-
pression. Tracking the state ensures that in the end, all texel are processed, but none of
them gets processed twice. Each texel can at a given time be in one of the following states:

Available
The texel needs to be compressed, but has not yet been scheduled for processing.

Reserved
The texel needs to be compressed and is scheduled for processing in the current pro-
cessing stage.

Processed
The texel has been successfully processed and is available within the compressed data.

After starting a new compression from scratch, all BTF texels are considered to be in
the awvailable state. During the beginning of each compression stage, a batch of texels in
the available state is reserved to be processed during the stage and their state is changed to
reserved. After the texel gets successfully compressed, its state is changed to processed.

6.3.4.4 Cell Queue

The Cell Queue component is used to maintain the order, in which individual BTF texels will
be compressed. At the beginning of each stage, a given number of available texels is selected
from the Cell Manager. These texels are then processed one-by-one until the whole stage
is finished. The number of texels processed and their order is configurable per-stage. The
processing order can be either sequential (row-by-row), completely random, or quasi-random
(using Halton sequence [Hal64]).

6.3.4.5 Compare Units

Each compare unit in implemented as a separate class with a defined interface. Similar
to pipeline nodes, multiple types of compare units can be present in a single pipeline. A
SSIM-based compare unit is provided in our code as a reference.

A compare unit allows parallel execution, which means that N blocks of original data
can be compared with N blocks of reconstructed data in a single run. As in the rest of the
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pipeline task-based communication is used to pass data to and from a compare unit. For
each block of input data, the compare unit outputs the index of the best matching block of
reconstructed data and the resulting similarity index for the given combination. Modifiers
described in Section 4.4.5 can also be applied to compare units to directly produce additional
data such as scaling coefficients.

To optimize the process, early termination of the comparison task can be performed. If at
some point during comparison of an entry it is clear, that the resulting similarity index would
be worse, than the already found best similarity index with a different entry, processing of
the rest of the current entry is skipped. This also means that the better the currently-found
best-matching entry is, the quicker the rest of the entries will be processed.

6.3.4.6 Pipeline Nodes

Each node type is represented by a separate class following a defined interface in the code.
The classes also share a common ancestor based on the node type category. The factory pro-
gramming pattern is used in the implementation to generate individual instances of pipeline
nodes at run time. Overview of the implemented node types is provided in Section 6.3.5.

6.3.4.7 Pipeline

The Pipeline subcomponent is responsible for assembling and managing the compression
pipeline. The Pipeline creates all nodes and compare units based on the configuration and
maintains information about their properties and interconnections during the compression.
It also keeps track of the discretization used for the material.

6.3.5 Pipeline Node Types

In this section, the overview of pipeline node types created for our implementation is pro-
vided.

6.3.5.1 FindOrPass Node Type

15194831 FindOrPass 15194831

A

The FindOrPass node type belongs to the nodes with a compare unit category. Nodes of
this type first try to find an entry within their codebook similar enough to the input data.
If such an entry is found, its index is returned in the resulting token. If a similar-enough
entry is not found, the whole input data block is passed to a child node. This node type
is non-terminal. A single entry in a codebook of a node with this type consists of a single
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token returned by its child node. FindOrPass nodes are mainly used to perform a search
for similar entries in one color space, before transforming the input data to a different color
space and processing them further by another node.

6.3.5.2 FindOrSave Node Type

]
15194831 FindOrSave <>
E

The FindOrSave node type belongs to the nodes with a compare unit category. Similarly
to the FindOrPass type, nodes of this type also try to first find a matching entry within their
codebook. The main difference being that FindOrSave nodes are terminal. This means, that
if a similar enough entry is not found, the block of input data on which the node operates
gets stored as a new entry in the node’s codebook. FindOrSave nodes are therefore used to
store the representative vectors of BTF data.

6.3.5.3 FindOrSplit Node Type

15194831 FindOrSplit 2831

{

The FindOrSplit node type is very similar to the FindOrPass node type. The main
difference between these two types is the action taken when a similar enough entry is not
found within the node’s codebook. While a FindOrPass node passes the whole block of input
data to its child, the FindOrSplit node splits this data block into several smaller regions. A
separate task is then generated to process each of these sub-regions by the node’s child. After
the child node is done processing the tasks, a token is returned for each of the sub-regions.
All these tokens then get stored as a single entry in the FindOrSplit node’s codebook.

Splitting the input region into several smaller sub-regions is the key part to the concept
of levels in the MLVQ algorithm. Each FindOrSplit node creates a new level, in which the
input data for the whole BTF texel get split into progressively smaller sub-regions. The
number and size of the sub-regions is assigned to the node according to the number of steps
used in the material discretization. As described in Section 6.3.3.1, the order in which the
dimensions get assigned is fixed as (v, ¢y, a, ). This means, that the first FindOrSplit
node encountered during the compression will split the input data for the whole texel into ng,,
sub-regions, effectively reducing the dimensionality of the data by one. If such a sub-region
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gets processed by another FindOrSplit node, it will be further split into ng,, sub-sub-regions
and so on.

6.3.5.4 Lookup Node Type

Lookup 5A491D6F48A|

{
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The Lookup node type belongs to the nodes with codebook category. The purpose of this
node is to reduce complexity of tokens obtained from its child node. Each token the node
receives from its child node gets stored into the codebook. The resulting codebook entry is
then identified by only its index, which gets returned as token to the parent of the Lookup
node. This node type is transparent during the compression, meaning that it simply passes
the input tasks to its child node and operates only with the resulting tokens.

The Lookup type of nodes has little use in a production compression pipeline configura-
tions, because its codebook only occupies space in the compressed data, without providing
any additional functionality. Attaching a node of this type to a pipeline can however provide
useful debugging information. During development, it also served as a starting point for
other node types.

6.3.5.5 Matertals Node Type

Materials 15194831

v
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The Materials node type is a specialized version of the Lookup node type. The Materials
node is responsible for storing information about the BTF material being compressed. Each
material stored within the node is identified by its index and has a name, width, height (in
texels) and an offset to the beginning of the material data within the node’s codebook.

At the beginning of the compression phase, the pipeline manager informs the Materials
node about the dimensions of the material being compressed. The node allocates space
within its codebook, into which a single token will be stored for each of the BTF texels. The
coordinates of the texel are provided to the Materials node by the pipeline manager. After
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the compression of the given texel is finished, the resulting token gets stored onto the given
location in the Materials node’s codebook.

A single node of this type is automatically added as a root node of the compression
pipeline and cannot be used in any other part of the pipeline.

6.3.5.6 SplitChannels Node Type

SplitChannels
5]

The SplitChannels node type belongs to the basic nodes category. Nodes of this type
can be used to separate processing of individual color channels of the input data block. The
number of outputs and their layout is user configurable for each SplitChannels node. For
each of these outputs, the number of channels sent to the output and a corresponding target
node must be specified. The number of channels output can be greater than one, which
allows using different processing paths for different parts of the data block. For example
the luminance component (one channel) may be separated from the chrominance component
(two channels) and processed using a separate path in the compression pipeline.

During pipeline initialization phase, the SplitChannels node informs its children about
the color channels on which they should operate. When processing a compression task,
the node first forwards the task to all its child nodes. After all the child nodes are done
processing their corresponding tasks, the SplitChannels node concatenates all the tokens
received from the children into a single group token, which then gets returned to the parent
node as a response to the compression task. During reconstruction, the workflow is reversed
- the SplitChannels node receives a single group token, divides it into individual sub-tokens,
assigns the sub-tokens to the children nodes and then instructs them to process these sub-
tokens.

6.3.5.7 Transform Node Type

Transform ———>»

The Transform node type belongs to the basic nodes category. The purpose of the Trans-
form node type is to perform transformations of the processed data between different color
models. During compression a forward transformation is performed. This transformation is
applied to all BTF texels of the input window, but only in the regions the node operates on.
During reconstruction a backward transformation is performed on the reconstructed data to
convert them back to the original color model.
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The type of forward and backward transformations performed is user configurable. This
allows the user to define different transformation functions for example when performing com-
pression of a HDR material. The Transform node type currently supports transformations
in and out of YCbCr color model [ITU601]| (used for LDR materials) and LogLuv [Lar9§|
color model (used for HDR materials) as described in Section 3.5.

The transformation is parallelized by executing a single thread to perform the required
set of actions for a single value index (all values with the same coordinates in the input
window or a single value with the given coordinates in the reconstruction memory).

6.3.6 Caching Mechanisms

In order to find a codebook entry best matching the input data, all entries within the
codebook need to be reconstructed and compared to the input data. This gets repeated
for every single BTF texel being compressed. Because the codebook entries are immutable
and the same blocks of data get reconstructed for them regardless of the input texel being
processed, several optimizations can be performed.

6.3.6.1 Comparison Order Cache

This optimization is based on the early termination optimization of compare units described
in Section 6.3.4.5. The sooner a highly matching entry is found during the comparison
process, the faster the rest of the entries get processed. The purpose of this cache is to
maintain the order in which individual entries of a codebook should be processed for the
early termination optimization to get used the most. The cache is based on the least-
recently used paradigm, meaning that the best matching entries from the last step will be
compared first. If no match is found, best entries from the step preceding the last step will
be compared and so on.

6.3.6.2 Reconstructed Data Cache

This optimization is based on the fact, that the data reconstructed from an entry are always
the same, regardless of the number of times they get reconstructed. Without this cache,
the reconstruction algorithm involves requesting the data from a child node, which might
recursively request data from its child node and so on. Transform-type nodes can also be
encountered on the reconstruction path, always converting the same data from one color
model to another. To eliminate this unnecessary overhead, the reconstructed data for each
codebook entry can be cached. To perform a comparison, the cached data can then be used
directly.

Since of the amount of space the cache can occupy for a single node might be high, this
cache can be selectively enabled on a per-node, per-stage basis, depending on the amount of
memory available on the target platform.

6.3.7 Compressed Data Postprocessing

After finishing the main MLVQ compression, each codebook-based node in the pipeline
already has its codebook filled with all the required data. These data are present in their
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raw form, being stored in a format, in which they can be easily used by the Compressor.
Because the data will no longer be used by the Compressor, several optimizations can be
used to further reduce the size of the data, before using them in the decompression.

Because the node storing the data usually does not know the meaning of the data stored
within its codebook (only that they consist of tokens provided by its child node), the post-
processing works by providing the stored data back to the child node. The structure of the
data is known to the child node, which can therefore effectively perform the postprocessing.
When finished, the child node returns the optimized data set back to its parent. During
decompression, this workflow is reversed - the parent node provides the optimized data set
to the child node, which transforms it back to the format the parent node can work with.

6.3.7.1 Floating-Point Values Quantization

All floating point values (raw values in terminal nodes, scaling coefficients etc.) used during
compression are represented using the IEEE-754 [IEEE754| 32-bit floating point format.
Because only a limited range of values is used (typically in the 0.0 - 1.0 range), these values
can be optimized by quantization into a smaller width, fixed precision data type.

For each set of input values, the minimum and maximum value is found. The interval
between the minimum and maximum is scalar quantized into 2% discrete values for k bits
of storage. The number of bits depends on the precision of the data type in which the
quantized values will be stored. For LDR materials 8 bits are used, resulting in 256 possible
values. For HDR materials 8 bits are used for all values except for the terminal node in the
luminance processing branch of the pipeline, where 16 bits are used to better cope with the
high dynamic range. Each of the input values is then discretized, reducing the original 32-bit
width of the value to 8/16-bit width.

6.3.7.2 Minimum Required Bits Encoding

Integer data are represented by a 32-bit data type during the compression phase. Because
the data produced during compression have limited range (for example codebook indices
range from 0 to the number of entries), using always 32 bits to store them is not necessary,
since all the values in a single set will start with the same number of 0s. Removing these
insignificant bits from all values in the set and remembering the number of significant bits,
the resulting values can be stored using only this limited number of significant bits.

To perform the optimization, the minimum value of the set is first found and then sub-
tracted from all the values in the set. This reduces the number of significant bits for sets
whose values range does not start at 0. The number of bits required to store all the values
is then calculated from the maximal value of the set as N = [logy(S;—;)]. Using bit-level
manipulations, all the values in the set are then reduced to this number of bits and stored
in a single continuous bit stream.

6.3.7.3 Huffman Coding

By studying the data present in the compressed codebooks, we observed, that some entries
get used more often than other. To exploit this feature, an optimization based on Huffman
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coding [Huf52| was introduced. Given a set of integral values, Huffman coding assigns each
value in the set a code word based on the frequency the values occurs in the set. By assigning
shorter code words to more frequently used values, Huffman coding presents a way to further
compress non-uniformly distributed data.

The Huffman coding optimization was implemented as an alternative to the minimum
bits coding optimization. Because Huffman coding requires storing not only the encoded
values, but also the codebook by which the values can be decoded, the resulting size of the
optimized data depends on the distribution of the values in the input set. This optimization
is therefore only used if the resulting size of the optimized data is smaller, than by using the
minimum bits encoding.

6.3.8 Modifiers

Previously described in Section 4.4.5 modifiers can be used to further enhance capabilities of
pipeline nodes and compare units. Because a very tight coupling usually exists between the
modifier and the subsystem using it, we were not able to find a reasonable way of isolating
the modifiers functionality into a separate set of components.

The coupling can be demonstrated on the example of the scaling modifier. The com-
pare unit used during the search for similar entries needs to know, that it should perform
the search up to scale. This is impossible to do without incorporating the use of scaling
coefficients directly into the comparison function. Components using modifiers are therefore
implemented as separate node/compare unit types. If for example the scaling modifier is
used for the SSIM compare unit, a SSIMScaling type needs to be used.

Individual components using modifiers are required to follow the interface of the modifier.
This means, that the SSIMScaling compare unit can be attached to all nodes which use the
scaling modifier. If a different similarity metric is implemented into a compare unit with
support of the scaling modifier, all of the existing pipeline nodes supporting this modifier
should be able to attach to it without modifications.

In our implementation, we experimented with the following modifier types:

Scaling
This modifier allows the search for similar entries up to scale. Both the input and the
reconstructed data are normalized to the same average luminance level. The difference
between these levels gets stored in the form of a multiplicative constant, a scaling
coefficient.

Rotating
The goal of this modifier was to exploit rotational symmetries in the compressed data.
During comparison, the reconstructed were progressively rotated along one of the input
dimensions. The number of steps required for the data to match best was then stored
as a rotation index. Due to time constraints, we were unfortunately unable to fully
evaluate the potential of this modifier.

Mirroring
The goal of this modifier was to exploit mirror symmetries in the compressed data. In-
stead of directly comparing the input and reconstructed data, mirrored variants were
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also compared and the results stored in form of a mirroring indez. Due to time con-
straints, we were unfortunately unable to fully evaluate the potential of this modifier.

6.3.9 Additional Features

Besides the basic compression-related functionality, the Compressor system provides some
additional features to ease the process of BTF compression.

6.3.9.1 Suspend / Resume Support

The current state of the whole compression pipeline gets regularly saved to a uniquely named
stateBTF file. From this file, the compression can be resumed to its previous state later on.
While this feature does not affect the compression itself, it provides a failsafe mechanism in
the event of a power outage, system reboot or other unexpected situation.

6.3.9.2 Comparison Images Saving

For each BTF texel processed, a set of images showing the texel data before and after
compression, as well as the absolute difference between these data sets can be optionally
generated. An example of such images is shown in Figure 6.9. This feature allows the user
to quickly verify, that the new settings used for the compression did not produce flawed
results.

(a) Original (b) Difference (c) Compressed

Figure 6.9: Original and compressed BTF data for a single texel and their absolute difference
(multiplied 8x for better visibility).
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6.4 Decompression Algorithm

The decompression algorithm is implemented in form of a separate library named Evaluator,
which can be easily integrated into custom solutions. Because of the dynamic nature of the
compression pipeline, the implementation of the decompression algorithm needs to support
this as well. As a solution to this problem, a dynamic code generation approach was selected.

The dynamic code generation approach has several benefits. The first being, that on
the topmost level, only a single function handling the whole BTF decompression process
exists. When provided with the requested BTF coordinates, a single call to this function
returns the corresponding BTF reflectance at the given coordinates. This allows for easy
integration into a custom solution. The approach also has very small overhead, because no
intermediate values need to be stored and accessed in the global memory. By using different
code templates, it should be also possible to generate the decompression code in language
other than OpenCL, for example GLSL.

6.4.1 Decompression Algorithm Workflow

All the information needed to perform the decompression, including the BTF material dis-
cretization, the processing pipeline layout and the compressed data codebooks, are stored
within the code BTF file. Based on the configuration stored within the file, nodes of various
types are first assembled to form a pipeline with the same layout, as the pipeline used during
compression. This means, that the same types of nodes are used and connected together in
the same way, as during the compression. All additional variables, such as the configuration
of outputs for SplitChannels type nodes, are also read from the code BTF file.

6.4.1.1 Dynamic Code Generation

After assembling the pipeline, the dynamic code generation phase begins. During this phase,
each of the nodes used within the pipelines provides three types of OpenCL code fragments.
The first fragment type is declarations, in which the node declares structures it uses. These
include primarily token and codebook entry definitions. The second type of code fragments,
globals, is used to describe memory regions the node uses to store its data. Globals typically
contain a memory region in which the node’s codebook is stored.

The third and final type of code fragments are functions. A single function, referred to
as the evaluation function, with a name starting with the prefix Evaluate , must be present
for each node. This function gets called by the parent node during the evaluation and is
responsible for performing the main action of the node. For example for the Transform
node, the evaluation function first calls the evaluation function of its child, then performs
the required transformation of the data and returns the transformed values back to the
calling node. Apart from the main evaluation function, any number of additional support
functions can be defined within the functions fragment.

After obtaining all the code fragments from the individual nodes, a master code tem-
plate is used by the code generator to place these fragments in their final locations. In the
master template, first the declarations fragments are inserted, followed by globals and finally
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functions. The master template also provides some own code fragments, such as the input
coordinate structure declaration or the evaluation entry point function Evaluate BTF.

The template also contains two variants of an OpenCL kernel used to launch the decom-
pression algorithm. The only difference between these two variants is that the first one uses
OpenCL buffer objects to store its input and output data, while the other one uses OpenCL
textures. The buffer-based kernel allows for easier integration with CPU-based applications.
The texture-based kernel is more suited for GPU-based application, because it allows for
easier use of OpenCL resource sharing (for example with OpenGL). Additional arguments of
these kernels are dynamically generated by the code generator, based on the global variables
required by the individual nodes.

6.4.1.2 Codebook Unpacking

If postprocessing described in Section 6.3.7 was applied to codebooks data prior saving them
to the code BTF file, a reverse set of actions, referred to as codebook unpacking, needs to
take place in order for the nodes to use the data. Although in future this can be executed
on-the-fly directly during evaluation, in the current implementation, the codebook unpacking
is performed before the codebook data are uploaded to their corresponding memory regions.

This is basically a reverse variant of the postprocessing used during compression. A
packed codebook is first passed to the child node to revert the postprocesing done. This
means, that minimal bits or Huffman coded values get restored back to their 32-bit variants
and floating point values get restored back to the 32-bit IEEE 754 [IEEE754| format. The
child node then returns the codebook back to the parent, which can later use it during the
evaluation phase, because the data present within the codebook are now in the same format
as the node originally stored them.

6.4.1.3 Pipeline Node Workflow

The main action the node performs during the evaluation process is represented by the
Evaluate_ (NodelD) function (where NodelD is replaced by the identifier of the node). As
an input to this function, the node receives its codebooks, the input coordinates for which
the evaluation is performed, a token from the node’s parent and a reference to the resulting
element, into which the output should be saved. The set of actions performed then depends
on the type of the node.

Nodes from the nodes with codebook category typically use the token received to find a
corresponding entry within their codebook. Using this entry and one of the input coordinates,
a token for the child node is found. The main evaluation function of the child node is
then called, using the token as one of its arguments. After the child node has finished the
evaluation, the resulting data are returned to the active node using the reference to the
resulting element. The current node is then free to further process the data, for example
apply a scaling coefficient, and then return the result back to its parent using the same
reference to the resulting element.
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6.4.2 Input Coordinates Usage

Depending on the node type and the position of the node in the compression pipeline, one
or more of the input BTF coordinates might be used to index the data stored within the
node’s codebook entry. The input dimensions the node should operate on are determined
during the pipeline initialization process. The order in which the individual dimensions are
used is fixed as |z, y, Oy, ¢v, «, 8] and is the same as during compression.

The [z, y| coordinates are always used by the root Materials node. In the current
implementation, only the FindOrSplit and FindOrSave nodes use input coordinates to index
their data. This means, that the first FindOrSplit node encountered during the evaluation
will use the 0y coordinate to index the data of an entry from its codebook in order to find
a single token for its child node. The next FindOrSplit node will use the ¢y coordinate and
so on. Being terminal, the FindOrSave node will always use the 5 coordinate to find the
representative value in its codebook entry.

6.4.3 Interpolation

The number of images using which a BTF was acquired is finite, so BTF is a discrete
function. To obtain values of BTF at coordinates not directly stored within the input data,
an interpolation needs to be performed.

The interpolation scheme used is based on linear interpolation in each of the six input
dimensions. When indexing a codebook entry, two tokens closest to the required input
coordinate are evaluated. The results obtained are then linearly interpolated together based
on the distance from the actual coordinate. This is recursively repeated for each dimension.
As a result, 2 = 64 raw values are required to correctly reconstruct data for a single BTF
query. For the z and y coordinates, the interpolation can be omitted, decreasing the number
of raw values to 2% = 16, but reducing the overall visual quality. The visual difference is
similar to using nearest neighbor filtering instead of linear filtering for standard texturing,
as shown in Figure 6.10.

6.5 Preview Generation Tools

To provide visual preview of data produced during various stages of the compression pro-
cess, two utilities were created, each suited for a slightly different purpose. The first is an
interactive previewer allowing real-time visualization of scenes containing objects mapped
with BTF materials. The second is an offline image generation tool which provides a greater
degree of configuration flexibility at the cost of reduced interactivity.

6.5.1 Interactive Previewer Tool

To verify the results of the evaluation algorithm and demonstrate its performance, an
OpenGL-based application utilizing the Fwvaluator component was created. This applica-
tion, referred to as Interactive previewer, allows interactive rendering of a scene containing
an object covered with a BTF material and illuminated by a single directional light source.
Properties of both the camera and the light source can be modified in realtime.
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(a) 6D (b) 4D

Figure 6.10: Detail of the Impallo BTF showing the visual difference of performing interpo-
lation in 6D or 4D space

The basic concept of the application is similar to the one described in [Egel3| and is
demonstrated in Figure 6.11. The OpenGL part of the application is responsible for raster-
ization of the scene into the required BTF coordinates using GLSL shaders. This raster is
then used as an input to the OpenCL-based BTF decompressor provided by the Fuvaluator
subsystem. After performing the evaluation, a texture representing the resulting image is
returned back to OpenGL, from which it is then displayed on screen by mapping it on a
full-screen quadrilateral.

The application also allows to render a scene using environment map lighting. For this
technique a predefined number of virtual light sources is created from the map using a Halton
sequence [Hal64]. The contributions of each of the lights to the final scene is then evaluated
sequentially and the results are summed together to form the final image.

6.5.2 Offline Image Generation Tool

A command line application, named simply Previewer, was created, which allows the gen-
eration of various preview and debugging images from multiple different sources and using
different techniques. Compared to the Interactive previewer, this application operates using
a predefined set of rules specified in a configuration file and is non-interactive, but provides
a greater degree of configuration flexibility.

Internally, the two basic types of entities are used — rasterizers and samplers. A rasterizer
is responsible for preparing a two-dimensional raster of BTF coordinates. The raster then
gets processed by a sampler, which transforms each element of the raster into a resulting
color. The colors then get saved as an image of the same dimensions. By using different com-
binations of rasterizers and samplers, images resulting from various steps of the compression
can be obtained and visually compared.



56 CHAPTER 6. IMPLEMENTATION

OpenGL CL-GL shared

Rasterization
GLSL

Compressed
BTF

Cisplay

Figure 6.11: Data flow in the Interactive previewer application

The BTF coordinate raster generated using the current camera and light properties can
be also saved to disk and later used by the non-interactive preview generation tool. This

allows the user to interactively set properties of the scene, but render it using different
methods later on.

6.5.2.1 Rasterizer Types

A rasterizer generates a two-dimensional raster of BTF coordinates. The dimensions of the
raster and the method used to generate the coordinates, depend on the type of rasterizer
used. Multiple rasters of the same size can also be generated, which, after processing, get

stored as separate subimages in the resulting image. The following rasterizer types were
implemented:

File
This type of rasterizer reads the whole raster from a file and just passes it to a sampler
for processing.

OpenGL
This rasterizer uses an OpenGL application with custom GLSL shaders to rasterize
a scene and provide the BTF coordinates for each pixel of the resulting image. The
application allows some degree of interactivity, such as free camera movement. To the
user, the scene is rendered using simple Phong shading. After the application gets

closed, the scene gets rendered using the custom shaders and the result is used as the
output of the rasterizer.
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Pattern
The pattern-based rasterizer can generate BTF coordinate rasters using a predefined
set of rules. These rules may be configured for example to recreate the same parame-
terization, as used in the original input data, or to render a single texel of BTF data.

6.5.2.2 Sampler Types

A sampler is used to transform rasterized elements of input data into colored pixels in the
resulting image. The following sampler types were implemented:

Debug
The debug sampler is used to directly visualize the input coordinates. An input co-
ordinate can be mapped to a specified color channel and optionally normalized to fit
the color range of the image. Additionally, transformations of the coordinates between
different coordinate systems are provided to aid understanding of the visualized data.
This sampler is mainly used to detect anomalies in the input data and help debugging
new rasterizer types.

TempBTF
This sampler type uses BTF data in tempBTF format to evaluate the raster. Since
tempBTF data get created during the preprocessing stage of the compression, a sampler
of this type can be used to verify correct parsing of the original input data.

OnionBTF
This sampler type uses BTF data in onionBTF format to evaluate the raster. OnionBTF
data get created by the Resampler component and by using this sampler type can be
visualized to verify correct resampling of the input data to Onion-Slices parameteriza-
tion. The generated image can also serve as a reference for the before-after comparison
of the compressed madterial.

CodeBTF
This sampler type uses the compressed BTF data in codeBTF format to perform the
evaluation. An image created using this sampler represents the visual quality of the
material after performing the compression. The same Fvaluator component is used as
in the Interactive previewer application.

Dump
This sampler type does not generate any image data, but stores the input raster into
a file, which can be later read by the file-based rasterizer type.
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Chapter 7

Verification and Validation

The steps taken in order to verify correctness of the results produced by our improved
implementation of the MLV(Q-based algorithm are described in this chapter.

7.1 Validation Description

In order to verify correctness of the proposed algorithm and its implementation, we compared
the results produced by our implementation of the algorithm with the results presented by
Havran et al. in the original paper [HFM10|. To perform the comparison, 6 LDR materials
from the UBO2003 [SSK03| data set and 4 HDR materials from the ATRIUM [ATRIUM]
data set were compressed and then compared in the terms of resulting data size and visual
quality.

For the comparison to be fair, the properties of the compression pipeline were set to match
those used in [HFM10] as closely as possible. These settings include mainly the layout of
the pipeline, similarity thresholds for individual pipeline nodes and number of BTF texels to
process in a single stage and their order. The same discretization was used for all dimension
as in the paper [HFM10]| when resampling into the Onion-Slices parameterization: n, = 256,
ny = 256, ng, = 16, ng, =7, no = 11, ng = 11.

Three compression stages were used. In the first stage, 1.25% of all BTF texels were com-
pressed using strict settings for the required similarity thresholds. A Halton sequence [Hal64|
generator was used to determine which texels should be processed. This stage was used to fill
the codebooks with most of the representative entries. In the second stage, another 4% of all
texels were compressed using relaxed strictness for the similarity thresholds. The sequence
of texels was also created using a Halton sequence generator. The purpose of this stage
was to add another set of the more important representative entries, which might have been
missed during the first stage. In the third and final stage, the codebooks were locked and
the remaining texels were compressed sequentially. In this stage, only the entries already
present in the codebooks were used to match the input and no new entries were added. This
configuration corresponds to the one used in [HFM10] to allow a meaningful comparison.

To assess the visual quality of the result, MSSIM index [WBSS04] was computed between
images rendered using the original and the compressed data.
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To inspect the behavior of the compressed materials in dynamic conditions, our Interac-
tive previewer application (Section 6.5.1) was used. In the previewer application, illumination
and camera properties were modified in real-time and the reactions of the materials were
observed. The goal of this was to find error related to the use of input coordinates and
transformations between different coordinate systems, which may not show in static images.
To get a reference behavior, the materials were also observed using the BTFBASEShader
V1.0 |BTFBASE]| application, created by the authors of [HFM10] for the original algorithm
implementation.

3D PDF 2D PDF 1D PDF

Scaled material m‘
index tables Py
- Ps
x
Ps 4D PDF Index ™ —> P,
T B m=
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[
Yy 1
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Figure 7.1: The compression pipeline used to validate the results of our implementation.

7.2 Validation Results

The results of the validation process are summarized in Table 7.1. Using the same compres-
sion pipeline and settings, the results produced by our implementation are very close to those
described in [HFM10|. On average, the difference in the resulting compression ratio is about
10%. The visual quality was improved slightly, by an average factor of 7%. We believe the
main reason for this is the omission of the separate C' codebook (described in Section 4.7),
which was expected to improve the visual quality slightly with a small compression ratio
penalty. Different interpolation algorithm was also used for Omnion-Slices parameterization
resampling (Section 4.3), which might as well affect the results slightly. We also studied the
number of entries present in the individual codebooks after finishing the compression. An
example for the Corduroy material is provided in Table 7.2.

Under dynamic conditions, the behavior of materials matched those observed in the
original BTFBASEShader V1.0 [BTFBASE]| application. We noticed the BTFBASEShader
V1.0 application not to correctly attenuate the illumination intensity with increasing angle of



7.2. VALIDATION RESULTS 61

BTF sample Compression ratio MSSIM
HFM10T HFMI10*  our | qpie | HFMI0O  owr | geitse

corduroy 1:128 1:124 1:142 | +15% | 0.748 0.731 -2%
impalla 1:162 1:178 1:177 -1% | 0.730 0.854 +17%
proposte 1:236 1:248 1:306 +23% | 0.710 0.786 +11%
pulli 1:87 1:96 1:58 -40% | 0.699 0.770 +10%
wallpaper 1:222 1:238 1:195 -18% | 0.776 0.770 -1%
wool 1:77 1:71 1:87 +23% | 0.684 0.763 +12%
ceilingHDR 1:235 1:244 1:291 | +19% | 0.711 0.839 +18%
floortileHDR | 1:136 1:141 1:198 | +40% | 0.772 0.893 +16%
pinktileHDR, | 1:711 1:768 1:389 -49% | 0.961 0.932 -3%
walkwayHDR, | 1:102 1:102 1:138 | +35% | 0.884 0.891 +1%
Average 1:210 1:221 1:198 -10% | 0.768 0.823 +7%

T Results as described in [HFM10], C.R. column.
* Results from [HFM10], C.R.} column, recomputed for the absence of the separate
C' codebook.

Table 7.1: Compression ratios and visual quality of results produced by our pipeline com-
pared to results described in [HFM10].

incidence. This is handled correctly by our implementation. An example comparison between
the images generated by our implementation and the BTFBASEShader V1.0 application is
shown in Figure 7.2. As conclusion, we believe our implementation to produce correct results.
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Entries count |- Basic size |B

Codebook | mryrigr our HHF%W HFM10* our B LT

Py 65536 65536 +0% 524 288 524 288 0%

Py 838 880 +5% 107 264 112 640 +5%

Ps 13231 13511 +2% 740 936 756 616 +2%

M 49790 60720 | +22% 398 320 485 760 +22%

P 43876 43514 -1% | 3 861 088 3 829 232 -1%

Iy 36913 26617 -28% | 1624 172 1171 148 -28%

P 11647 6151 -A7T% 512 468 270 644 -47%

I 30025 21681 -28% | 2642200 1907 928 -28%

Average 10 410 736 9 058 256 -13%
Codebook OFtimized size |B| _ Huffman coding size El]ﬁman
HFMI0 our HEM10* our optimized

Py 147 456 147 456 +0% 121 639 -18%

Py 36 872 38 720 +5% 27 126 -30%

Py 277 851 283 731 +2% 227 985 -20%

M 199 160 235 290 +18% 235 318 0%

) 1327 249 1 256 467 -5% 1 039 647 -17%

I 761 331 548 976 -28% 487 677 -11%

P, 128 117 67 661 -47% 65 660 -3%

I 660 550 476 982 -28% 416 136 -13%

Average | 3 538 586 3 055 283 -14% 2 621 188 -14%

* Results from [HFM10], C.R.! column, recomputed for the absence of the separate

C codebook.

Table 7.2: Number of entries in individual codebooks and their resulting sizes for the Cor-

duroy material compared to [HFM10].
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(a) Reference (b) Our

Figure 7.2: Comparison of the images produced by our implementation and the reference
BTFBASEShader V1.0 application [BTFBASE]| for the Wallpaper BTF. Notice the lack of
proper attenuation on the reference image.
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Chapter 8

Results

In this chapter, we discuss the results obtained by using the implemented BTF compression
framework to perform compression of several different BTF materials using four different
compression pipeline layouts.

8.1 Hardware Setup

All the results presented were measured using the following hardware setup:

e Intel Core i5 3570K 3.40GHz quad-core processor
e 16 GB of 1333 MHz DDR3 system memory

e NVidia GeForce GTX 780 Ti (GK110) graphics card
3GB GDDRS5 384-bit @ 7000 MHz
Core @ 1084 MHz

e Samsung 840 Pro 256GB SSD
The following software environment was used to compile and execute the framework:

e Microsoft Window 7 Professional x64 operating system

e MinGW64 compiler suite + TDM-GCC x64 4.7.1 compiler

8.2 Tests Description

For our experiments a total of 14 different BTF materials were used, four of which were HDR
as shown in Figure 8.1. Six of the LDR materials, namely Corduroy, Impalla, Proposte, Pulli,
Wallpaper and Wool are part of the UB0O2003 data set [SSK03]. The remaining four LDR
materials, namely Corduroy01, Fabric02, Fabric03 and Wood01 were obtained from the
UTTA BTF database [HFV12]. The four HDR materials, namely Ceiling, Floortile, Pinktile
and Walkway, are part of the ATRIUM data set [ATRIUM] from BTF Database Bonn.
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a) Corduroy (b) Impalla

c) Proposte ) Pulli e) Wallpaper ) Wool

g) CeilingHDR ) FloortileHDR ) PinktileHDR (j) WalkwayHDR,

k) Corduroy01 (1) Fabric02 ) Fabric03 (n) Wood01

Figure 8.1: Overview of the BTF materials for which results are presented

For each material, four different processing pipelines were used, as shown in Figure 8.2.
The difference between these pipelines was the level, from which luminance and chrominance
components get treated separately. The remaining conditions such as the discretization used
and the three compression stages remained the same as during the algorithm validation
described in Section 7.1.

For each material and pipeline combination, the following properties were observed:
e The total compression time.

e The number of entries in individual nodes’ codebooks and the total size of these code-
books.

e The resulting data size without optimizations.
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Figure 8.2: Compression pipelines with different levels of luminance-chrominance separation
used during tests.
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Figure 8.2: Compression pipelines with different levels of luminance-chrominance separation

used during tests (cont.).
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e The resulting data size using optimizations described in Section 6.3.7, except for Huff-
man coding.

e The resulting data size using optimizations described in Section 6.3.7, including Huff-
man coding.

e Visual quality difference using MSSIM index [WBSS04| when rendering a test scene
using the original and compressed data.

For reference we also show the results presented in two of the papers most relevant to
our work [HFM10, WDR11].

8.3 Compressed Data Size

The resulting compression ratios for all materials and compression pipeline layouts tested are
summarized in Table 8.1. As previously shown in Table 7.1, when using conditions similar
to those described in [HFM10], we were able to achieve similar compression ratios, while
maintaining roughly the same visual quality.

When comparing the results for pipelines with different points of luminance-chrominance
separation, we observe that there is not a single variant, which would work the best for all
materials. Most of the times either the 4D or 1D split variants produce the best results, but
there is no visible correlation between the compressed material properties and the answer to
which variant should be used. The average compression ratio benefit of using a specific split
point was 13%.

The use Huffman coding to further optimize the compressed material codebooks proved
to be beneficial and resulted in average compression ratio improvement of 17%, as shown in
Table 8.2. The basic Huffman coding used is not well suited for the evaluation process in
rendering algorithms, because it does not allow random access directly into the optimized
data. Better compression ratios resulting from the use of Huffman coding however show that
the use of some more advanced entropy-based compression scheme might be beneficial.

8.4 Visual Quality of Compressed Data

The visual quality of the results was determined by computing the MSSIM [WBSS04] index
of a scene rendered using the original and the compressed data. An example of such images
can be seen in Figure 8.3.

According to the results shown in Table 8.3, our implementation was able to achieve
slightly better visual quality than [HFM10|. It should be noted, that because the exact
conditions used to compute the similarity in [HFM10] are not known, slightly different scene
might have been used and a direct comparison of the results would be unfair. When compared
to the results presented in [WDRI11]|, the visual quality of materials compressed using our
implementation is overall worse.

Although multiple different compression pipelines were used, the resulting visual quality
remains almost identical, regardless of the level on which luminance and chrominance chan-
nels get separated. For this reason only a single similarity index is included for each material
in Table 8.3.
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(a) Original. (b) Compressed.

Figure 8.3: Comparison of visual quality for the Wallpaper material.

8.5 Compression Speed

The compression speed of our implementation for each of the materials can be seen in
Table 8.4. On average, the compression times resulting from using our implementation were
roughly 13.3x faster than those presented in [HFM10] and 8x faster than [WDR11|. The
compression speed depends on the material being compressed, but varies only slightly with
the pipeline being used. We believe, that for a single, optimized variant of the algorithm a
sub-one hour average run time would be possible by sacrificing the modularity and flexibility
of the current implementation.

8.6 Decompression Speed

The decompression speed of our implementation was measured using the Interactive pre-
viewer tool described in Section 6.5.1. The previewer was configured such that each pixel
rendered on the screen results in a BTF evaluation with different input coordinates. This
approach was used to minimize the amount of hidden caching within the GPU and provide
results for a worst-case scenario.

The decompression rates for different materials and pipeline layouts are summarized in
Table 8.5. By directly measuring the run time of an evaluation kernel we show that our im-
plementation reaches average decompression rate of 127 million individual BTF evaluations
per second in a worst-case scenario'. In [HFM10] an evaluation rate of 0.31 to 1.36 million
BTF evaluations per second is given for a CPU implementation and a frame rate of 170

! The time required to read the input coordinates from the global memory and to store the results back is
included in the evaluation time due to the testing method used. In production use, the evaluation function
can be called directly, with the input coordinates procedurally generated and the results directly used. This
eliminates the global memory access overhead and should result in even greater evaluation rates.
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frames per second for rendering an 800x600 resolution scene is provided. Because the exact
properties of the testing scene and measurement conditions (such as the amount of pixels for
which the BTF evaluation is really performed) are not known, it is impossible to estimate
the actual decompression rate and provide a fair comparison.

Unexpected results were obtained by observing the decompression rates with relation to
the point of luminance-chrominance separation. According to our results, the sooner the
luminance and chrominance components get separated, the faster is the decompression pro-
cess. This is unexpected, because more codebooks get used when separating the components
earlier, resulting in increased number of global memory fetches. We believe the increase in
evaluation rate to be caused either by somehow improved caching in the GPU, or by the
OpenCL compiler performing some kind of optimization dependent on the pipeline layout.
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Ref. compression

Our compression

Our compression

BTF sample ratio ratio - basic ratio - optimized

HFM10' HFM10* WDRI1 |[1D 2D 3D 4D bet 1D 2D 3D 4D best
corduroy 1:128 1:418 1:71 1:170  1:142 1:142 1:141 | +20% | 1:485  1:422 1:420 1:417 | +15%
impalla 1:162 1:522 1:105 1:184 1:177 1:169 1:172 | +4% | 1:536  1:512 1:491 1:501 | +5%
proposte 1:236 1:806 1:144 1:284 1:306 1:305 1:309 | +1% | 1:838  1:931 1:939 1:954 | +2%
pulli 1:87 1:264 1:138 1:55  1:58 161  1:62 +7% | 1:143  1:157 1:166 1:170 | +8%
wallpaper 1:728 1:222 1:133 1:170  1:195 1:227 1:245 | +26% | 1:481  1:593 1:707 1:767 | +29%
wool 177 1:233 1:98 1:83 1.87 1:86 1:85 0% | 1:220  1:239 1:233 1:232 0%
ceilingHDR 1:235 1:780 1:303 1:318 1:291 1:227 1:203 | +9% | 1:855  1:733 1:611 1:532 | +17%
floortileHDR | 1:136 1:360 1:248 1:216 1:198 1:186 1:195 | +9% | 1:567  1:533 1:506 1:529 | +6%
pinktileHDR | 1:711 1:2267 1:198 1:483 1:389 1:278 1:220 | +24% | 1:1286 1:968 1:691 1:551 | +33%
walkwayHDR | 1:102 1:257 1:194 1:123  1:138 1:158 1:162 | +17% | 1:305  1:370 1:435 1:446 | +21%
corduroy01 n/a n/a n/a 1:270  1:310 1:302 1:316 | +2% | 1:891  1:959 1:940 1:985 | +3%
fabric02 n/a n/a n/a 1:142  1:129 1:125 1:127 | +10% | 1:391  1:368 1:360 1:367 | +6%
fabric03 n/a n/a n/a 1:82  1:82 1:85 188 +7% | 1:222 1:229  1:244 1:252 | +10%
wood01 n/a n/a n/a 1:174 1:205 1:230 1:224 | +12% | 1:492  1:603 1:692 1:738 | +22%
Average 1:210 1:640 1:163 1:197 1:193 1:184 1:182 | +11% | 1:551  1:544 1:531 1:532 | +13%

Table 8.1: Resulting compression ratios for different materials and pipeline layouts compared to [HFM10] and [WDR11]
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Ref. Huffman optimized Improvement over

BTF sample C.R. compression ratio basic optimizations
HFM10? 1D 2D 3D 4D 1D 2D 3D 4D
corduroy 1:418 | 1:561  1:492  1:488  1:482 | +16% +17% +16% +16%
impalla 1:522 | 1:615 1:614 1:596  1:607 | +15% +20% +21% +21%
proposte 1:806 | 1:951 1:1063 1:1093 1:1107 | +13% +14% +16% +16%
pulli 1:264 | 1:163  1:191  1:204  1:208 | +14% +22% +23% +22%
wallpaper 1:728 | 1:545 1:681  1:810 1:875 | +13% +15% +15% +14%
wool 1:233 | 1:248  1:278  1:267  1:266 | +13% +16% +15% +15%
ceilingHDR 1:780 | 1:984  1:874  1:697  1:626 | +15% +19% +14% +18%
floortileHDR. 1:360 | 1:663  1:649  1:625  1:652 | +17% +22% +24% +23%
pinktileHDR 1:2267 | 1:1455 1:1073  1:769  1:625 | +13% +11% +11% +13%
walkwayHDR 1:257 | 1:352  1:465  1:549  1:563 | +15% +26% +26% +26%
corduroy01 n/a | 1:919 1:1096 1:1066 1:1115 | +3% +14% +13% +13%
fabric02 n/a | 1:434  1:427 1419 1427 | +11% +16% +16% +16%
fabric03 n/a | 1:252  1:273  1:292  1:303 | +14% +19% +20% +20%
wood01 n/a | 1:563 1:732  1:834  1:890 | +14% +21% +21% +21%
Average 1:640 | 1:622 1:636  1:622 1:625 | +13% +17% +17% +18%

Table 8.2: Compression ratio improvements resulting from the use of Huffman coding com-
pared to [HFM10]

MSSIM

BIF sample | ypviio WDRIL  our

corduroy 0.748 0.920 0.731
impalla 0.730 0.934 0.8%4
proposte 0.710 0.936  0.786
pulli 0.699 0.883  0.770
wallpaper 0.776 0.941 0.770
wool 0.684 0.904  0.763
ceilingHDR 0.711 0.971 0.839
floortileHDR 0.772 0.921  0.893
pinktileHDR 0.961 0.999 0.932
walkwayHDR | 0.884 0.980 0.891
corduroy01 n/a n/a 0.796
fabric02 n/a n/a 0.777
fabric03 n/a n/a 0.803
wood01 n/a n/a 0.850
Average 0.768 0.939  0.818

Table 8.3: Visual quality of materials compressed using our implementation compared
to [HFM10] and [WDRI11] by the means of MSSIM [WBSS04] index.
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Ref. compression Our compression Speedup
BTF sample time |[h] time |[h] factor

HFM10 WDRI11 [ 1D 2D 3D 4D | wfi5  worm
corduroy 19.2 147111 11 1.3 1.1 | 175x  13.4x
impalla 21.8 11.7 {20 2.0 25 20| 109x 5.9%
proposte 18.0 86 | 1.0 1.1 1.1 1.2 | 164x 7.8%
pulli 27.1 106 | 7.3 6.8 7.3 58| 4.0x 1.6x
wallpaper 28.8 124 111 11 1.1 12| 262x  11.3x
wool 50.2 105 |74 73 102 76| 6.9x 1.4x
ceilingHDR 20.1 129 | 1.7 1.6 1.6 1.5 | 12.4x 8.0x
floortileHDR 28.7 15528 32 35 27| 90x 4.9x
pinktileHDR 15.6 147107 07 0.7 0.7] 229x  21.6x
walkwayHDR 374 213 |42 55 53 45| 6.8x 3.9%
corduroy(1 n/a n/a|{11 12 13 1.1 n/a n/a
fabric02 n/a n/a |13 1.7 1.7 15 n/a n/a
fabric03 n/a n/a |48 44 43 35 n/a n/a
wood01 n/a n/a {12 13 13 1.1 n/a n/a
Average 26.7 133 27 28 31 25 13.3 8.0

Table 8.4: Compression times for different materials and pipeline layouts compared to
[HFM10| and [WDR11]

Decompression rate

BTF sample |million BTF evaluations/s|
1D 2D 3D 4D
corduroy 120.41 118.86 116.03 116.74
impalla 109.43 102.45 125.11 146.65
proposte 110.88 114.44 115.38 114.97
pulli 78.01 84.72 89.54  88.29
wallpaper 112.29 120.81 123.89 144.91
wool 90.19 91.68 90.25  89.67

ceilingHDR 102.14 114.12 142.00 182.78
floortileHDR 78.97  87.31 108.63 139.55
pinktilelIDR | 195.33 204.02 262.86 315.57
walkwayHDR | 81.80  99.85 125.51 160.19
corduroy01 137.57 142.02 171.15 21141

fabric02 109.09 110.27 106.51 108.75
fabric03 88.15 97.24 10270 103.02
wood01 136.41 142.06 136.32 176.96
Average 110.76 116.42 129.71 149.96

Table 8.5: Decompression rates for different materials and pipeline layouts.
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Conclusions

In this chapter, we summarize the main contributions of our work and propose possible
future work on the subject.

9.1 Summary

After studying the original MLVQ-based algorithm for BTF data compression, we proposed
several ways to improve the algorithm in terms of both the compression quality and the
compression speed. We described how parts of the algorithm can be efficiently parallelized
and modified to run on a GPU or a multi-core CPU using the OpenCL heterogeneous com-
puting framework. Using our implementation, we achieved an average compression time of
2.8 hours per material, which is roughly 9.5 times faster than the original single-core CPU
implementation, while retaining the same visual quality.

We incorporated the improved algorithm into a highly modular and configurable com-
pression pipeline. The pipeline allows different materials to be compressed using different
compression schemes to achieve better compression ratios. We showed, that a single com-
pression scheme is not optimal for all materials and the difference in compression ratios
between the original and a modified scheme can be as high as 33% (13% on average). We
also demonstrated that the compression ratio can be further increased by the use of entropy-
based approaches, such as Huffman coding, which resulted in an average improvement of 17%
over the previously used optimizations. The compression pipeline also has direct support for
multispectral BTF data, although we did not evaluate this possibility.

We implemented the decompression algorithm as a separate library, which can be easily
incorporated into a third-party application. The decompression process is fully parallel and
can be efficiently run on a GPU or a multi-core CPU using the OpenCL framework. We
incorporated the decompression library into a custom OpenGL-based previewer application,
which allows real-time interactive rendering of a BTF-mapped scene. Using this application,
we were able to achieve an average evaluation rate of 127 million individual BTF evalua-
tions per second in a worst-case scenario. We also implemented a non-interactive preview
generation tool, which allows data visualization from various stages of the compression.
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9.2 Future Work

As our compression pipeline is highly modular and flexible, we believe these features can
be further exploited. Omne of the possibilities is to study more pipeline layouts. These
may include reducing the pipeline depth or treating all available color channels separately.
Another possible field of study is the types of nodes available within the pipeline. These may
include completely new node types or variations of the existing node type. For example the
lowest-level nodes may be modified to not store the representative vectors directly, but use
a curve-fitting algorithm to represent the vectors with less information to be stored. New
types of modifiers may also be studied, which exploit for example axis or rotation symmetries
of the data. Although incorporated into the pipeline, processing of multispectral BTF data
was not evaluated and should also be an interesting topic to explore. As the role of a
similarity metric used is crucial during the compression, the effects of using different metrics
should be studied. Finally, the methods of optimizing the compressed material codebooks
can be explored. These may include pruning of the least used entries from the codebooks,
or exploiting similarities between the data of the entries stored in the codebook.
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Appendix A

List of Abbreviations

BRDF
BTF
CPU
GLSL
GPGPU
GPU
HDR
LDR
MLVQ
MSE
MSSIM
PDF
PSNR
RBF
RGB
SP
SSIM
SVD
UBO
UTIA
vQ
XML

Bidirectional Reflectance Distribution Function
Bidirectional Texture Function

Central Processing Unit

OpenGL Shading Language

General Purpose computing on Graphics Processing Unit
Graphics Processing Unit

High Dynamic Range

Low Dynamic Range

Multi-Level Vector Quantization

Mean Squared Error

Mean Structural Similarity Index Metric
Probability Density Function

Picture Signal-to-Noise Ratio

Radial Basis Function

Red-Green-Blue

Stream Processing

Structural Similarity Index Metric

Singular Value Decomposition

University of Bonn

Institute of Information Theory and Automation
Vector Quantization

eXtensible Markup Language
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Image Gallery
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(a) Original

(c) Difference (x4) (d) Environment map lighting

Figure B.1: Example renderings of the Corduroy BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.2: Example renderings of the Impalla BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.3: Example renderings of the Proposte BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.4: Example renderings of the Pulli BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.5: Example renderings of the Wallpaper BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.6: Example renderings of the Wool BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.7: Example renderings of the CeilingHDR BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.8: Example renderings of the Floortile HDR BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.9: Example renderings of the Pinktile HDR BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.10: Example renderings of the WalkwayHDR BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.11: Example renderings of the Corduroy01 BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.12: Example renderings of the Fabric02 BTF
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(a) Original (b) Compressed

(c) Difference (x4) (d) Environment map lighting

Figure B.13: Example renderings of the Fabric03 BTF
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(a) Original

(c) Difference (x4) (d) Environment map lighting

Figure B.14: Example renderings of the Wood01 BTF
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Appendix C

Installation and User Manual

C.1 Build Instructions

The framework is written in ANSI C++ and should compile flawlessly using different compil-
ers on different platforms. The target platform is required to be 64-bit because large amount
of memory can be used by the framework. We successfully compiled the framework using
Microsoft Visual Studio 2008 and MinGW64 TDM-GCC x64 4.7.1 compilers on Microsoft
Windows platform and using native GCC 4.7.1 on the Ubuntu Linux platform.

Dependency Version Homepage

AntTweakBar 1.16 <http://anttweakbar.sourceforge.net/>

Assimp 3.0 <http://assimp.sourceforge.net/>

FLANN 1.6.11  <http://www.cs.ubc.ca/research/flann/>

FreeGLUT 2.8.1 <http://freeglut.sourceforge.net/>

GLM 0946  <http://glm.g-truc.net/>

libjpeg-turbo 1.3.0 <http://libjpeg-turbo.virtualgl.org/>

libpng 1.6.6 <http://www.libpng.org/>

OpenCL 1.1 <https://software.intel.com/en-us/vcsource/tools/opencl-sdk>
pugixinl 1.2 <http://pugixml.org/>

zlib 1.2.8 <http://www.zlib.net/>

Table C.1: Required external dependencies

We use the CMake build system [CMAKE] to manage the build process. To successfully
compile the framework, external dependencies summarized in Table C.1 first need to bhe
obtained. The easiest way to build the project is then to use the cmake-gui application
shipped with CMake. This can be done using the following set of commands:

cd /path/to/project/root
cd build
cmake-gui ..

After executing the last command, the CMake GUI window should open and prompt for
the compiler suite to use. When done selecting the preferred compiler, click the Configure
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button to start the build configuration. If some of the required dependencies are not found,
an error will be generated. The paths can then be specified manually within the CMake GUI
window. When the configuration stage is passed without errors, press the Generate button
to create the project files for the selected compiler. After running the compiler, project
executables should be generated in the bin subdirectory of the project.

C.2 Usage

The compression algorithm implementation has three parts represented by three separate
applications. Configuration templates are provided in the data subdirectory of the project
for all components of the framework. Using these templates, specific material configuration
must first be created for each of the components. The documentation of the configurable
variables is provided directly within the templates.

To preprocess the raw input BTF data into a common format, use the Preprocessor tool
by executing the following command from the project root directory:

bin\preprocessor.exe path\to\preprocessor_config.xml

When done, preprocessed data in tempBTF format should be created in the specified
output directory (temp subdirectory by default). The next step is to convert the data to the
Onion-Slices parameterization using the Resampler tool. This can be done by executing

bin\resampler.exe path\to\resampler_config.xml

from the project root directory.
Finally, the Compressor tool can be launched to perform the MLVQ compression. The
compression can be started using the following command:

bin\compressor.exe path\to\compressor_config.xml

After finishing, the compressed material file should be generated in the configured output
directory. All of the tools log their progress both to the system console and to a log file.

All other tools in the system are launched the same way, by providing the path to
the configuration file as their first argument. The interactive previewer application can for
example be launched using the following command:

bin\utils\previewer_int.exe path\to\previewer_int_config.xml

Similarly the offline preview image generation tool can be launched using the following
command:

bin\utils\previewer.exe path\to\previewer_config.xml

Values of command line arguments can also be used in the configuration files. This allows
for batch processing of multiple tasks without the need to modify the configuration files each
time. An example of this feature is provided in the data\configs\previewer_int_cli.xml
configuration file, which can be used to launch the interactive previewer application with the
path to the material file passed using the command line, as shown on the following example:

bin\utils\previewer_int.exe data\configs\previewer_int_cli.xml data\btf\wool



Appendix D

Contents of Attached CD

BTFcut/
|--bin/
| \--utils/
| --build/
| --components/
| |--Evaluator/
| \--RasterizerOpenGL/
| --core/
| |--Compressor/
| |--Preprocessor/
| \--Resampler/
| --data/
| |--btf/
| |--configs/
| |--OpenCL/
| |--scene/
| \--shaders/
| --depend/
| --doc/
| |--doxygen/
| \--thesis/
|--1ib/
|--library/
| --temp/
\--utils
| --Previewer/

project root directory
- precompiled Windows x64 binaries
- binaries for non-compression related tools
- project build tree root directory
- source code of project libraries
- the decompression library
- OpenGL-based scene to BTF coordinates rasterizer
- source code of compression-related applications
- the MLVQ compressor
- raw input data preprocessor
- Onion-Slices parameterization resampler
- application data
- compressed BTF materials
- configuration files and templates
- source code of OpenCL kernels
- testing scenes
- GLSL shaders used by OpenGL rasterizer
- third-party libraries should be placed here
- project documentation
- doxygen generated source code documentation
- source data for this thesis
- precompiled binaries of the component libraries
- source code for the common utility library
- reserved for temporary data produced by the application
- source code of non-compression related tools
- the non-interactive previewer applciation

\--PreviewerInteractive/ - the interactive previewer applciation

A separate readme.txt file is provided in each of the subdirectories.
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Appendix E

Configuration File Example

An example of configuration file content for the Compressor component is provided below:

<?xml version="1.0" encoding="UTF-8" 7>
<BTFcut ="1.0">
<Compressor>
<0nionBTF>
<Source>
BTFCUT_TEMP_DIR/Corduroy_onionBTF/Corduroy.onionBTF
</Source>
</0OnionBTF>
<0penCL
=HOH
=H0l|
="BTFCUT_DATA DIR/OpenCL/Compressor"
/>
<Pipeline pipelines/pipeline _full.xml" />
<Stages ="compressor _stages test.xml" />
<WindowManager>
<Window ="11" />
</WindowManager>
<CodeBTF>
<Target>BTFCUT_TEMP_DIR/Corduroy.codeBTF</Target>
<Options ="false" />
</CodeBTF>
<Debug ="true" />
<StateBTF>
<Target>BTFCUT_TEMP_DIR/Corduroy_stateBTF</Target>
</StateBTF>
</Compressor>
</BTFcut>

_n
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