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Abstrakt

Oblasti jako automatické otaceni stranek nebo automaticky hudebni doprovod jsou stu-
dovany jiz nékolik desetileti. Tato prace shrnuje soucasné metody pro pocitacové sledovani
not v redlném case. Zabyva se také hudebnimi priznaky jako jsou chroma t¥idy a syntetizo-
vané spektralni sablony. Déle popisuje klicové ¢asti systému jako kratkodobou Fourierovu
transformaci a Dynamické borceni ¢asu. V ramci projektu byl navrhnut a vyvinut vlastni
systém pro sledovani pozice hrace v notéch, ktery byl nasledné implementovéan jako mobilni
aplikace. Vysledny systém dokéaze sledovat i skladby s vyrazné odliSnym tempem, pauzami
béhem hry nebo drobnymi odchylkami od predepsanych not.

Abstract

Automatic page turning and automatic music accompaniment have been studied for several
decades. This work summarizes the state of art approaches to real-time score following. It
studies various audio features such as chroma classes and synthesized spectral templates.
It also describes short-time Fourier transform and online Dynamic time warping as key
components of the system. This project analyzes in detail developed solution for tracking
the player position in score, which was then implemented as mobile application. Final
system is able to follow pieces even with changing tempo, pauses during performance, and
minor deviations from the original score.

Klicova slova

sledovani not, automatické otaceni stran, zarovnani zvuku k notovému zapisu, zpracovani
zvuku, zpracovani hudby, hudebni priznaky, chroma tiidy, spektralni Sablony, Dynamické
borceni ¢asu, Fourierova transformace

Keywords

score following, automatic page turning, audio to score alignment, audio processing, mu-
sic processing, music features, chroma classes, spectral templates, Dynamic time warping,
Fourier transform

Citace
Vojtéch Smejkal: Smart Sheet Music Reader for Android, diplomova prace, Brno, FIT VUT
v Brn¢, 2014



Smart Sheet Music Reader for Android

Prohlaseni

Prohlasuji, Ze jsem tuto diplomovou praci vypracoval samostatné pod vedenim pana
Ing. Igora Sztkeho, Ph.D.

Vojtéch Smejkal
September 16, 2014

Podékovani

Dékuji vedoucimu prace panu Ing. Igoru Szokemu, Ph.D., za cenné rady v prubéhu feseni
projektu a také své rodiné za podporu a motivaci.

(© Vojtéch Smejkal, 2014.

Tato prdace vznikla jako skolni dilo na Vysokém uceni technickém v Brne, Fakulté in-
formacnich technologii. Prdce je chrdnéna autorskym zdkonem a jeji uZiti bez udélend
oprdvnéni autorem je nezdikonné, s viyjimkou zdkonem definovanych pripadi.



Contents

1 Introduction
1.1 Background . . . . . . ..
1.2 Use Cases . . v v v v v i e e e e e e e

2 Score Following

2.1 System Architecture . . . . . . . ... L
2.2 Current Approaches . . . . . . . . . . . . .. .. e
2.3 Short-Time Fourier Transform . . . ... ... ... ... .. ........
2.4 Dynamic Time Warping . . . . . . . . . . .. oo oo

3 Music Features

3.1 Note Pitches . . . . . . . . . . . . . e
3.2 Chroma and Octave . . . . . . . . . . . ittt e
3.3 Locally Normalized Chroma Omnsets . . . . . .. ... ... ... .......
3.4 Locally Normalized Semitone Onsets . . . . . .. ... .. ... .......
3.5 Synthesized Spectral Templates . . . . . . . . .. ... ... ... ...

4 Score Follower Implementation

4.1 Early prototypes . . . . . . e e e e e
4.2 Application Architecture . . . . . . . . ... e
4.3 AudioReader . . . . . . . . . . ...
4.4 Feature Vector . . . . . . . . . . e e e e
4.5 Feature Manager . . . . . . . . . . . e e
4.6 Matcher . . . . . . . e e e e
4.7 Tools and Technologies . . . . . . . . .. .. .. .
5 Mobile Application
5.1 Audio Processing . . . . . . . .. e
5.2 Music Notation Extraction . . . .. ... ... ... 0 o L.
5.3 Music Notation Rendering . . . . . . . .. .. ... . L.
5.4 User Interface . . . . . . . . . . e

6 Experiments

6.1 Dataset . . . . . . e e e e
6.2 Parameters Adjustment . . . . . .. ... L L Lo
6.3 Evaluation. . . . . . . . . . . .. e

7 Conclusion

NI

[N I e

15
15
15
17
18
18

21
21
23
25
26
29
30
33

35
35
36
37
39

41
41
42
44

46



Chapter 1

Introduction

The aim of this thesis is to describe a system and accompanying algorithms capable of
following the musician’s position in score in real-time. Resulting application for Android
operating system should be able to read sheet music from MIDI files, render it to the
display of smartphone, and listen to and react on incoming sound signal by scrolling the
score. For simplicity, focus will be primarily given to piano as the most widespread musical
instrument.

Score following task consists of two main challenges [1]:

e Interpretation problem: Audio stream coming from live performance has to be
correctly interpreted, in order to build a common representation of the score and
performance, which is used to create corresponding pairs later.

e Alignment problem: The matching has to be found in real time with adequate
flexibility and error tolerance.

Chapter 1 will further introduce history and background conditions which initiated
work on this topic. Also some typical use cases of this kind of application will be studied.
Chapter 2 describes in detail problem of score following, familiarizes readers with related
tasks, score following system architecture and typical algorithms. Chapter 3 focuses on
features extracted from audio as the most significant part which affects the total perfor-
mance. Each feature set is analyzed and compared to others in terms of its performance
and computational complexity. Chapter 4 reveals the implementation details and various
internal parameters settings. Chapter 5 discusses specifics of implemented mobile applica-
tion such as sheet music extraction and rendering. Chapter 6 finally reports on performed
experiments and obtained results.

1.1 Background

Score following isn’t any artificial task and same or similar problems have been studied for
several decades. For example, French institute for science about music and sound, IRCAM,
was founded in 1977 [14]. There are also various conferences and contests about music
information processing and retrieval held worldwide, like ISMIR (International Conference
on Music Information Retrieval) or SMC (Sound and Music Computing Conference).

The research on score following is motivated by the situation most of the professional
musicians have ever faced. While playing some piece of music which is longer, circa four
pages and more, it is not possible to unfold pages in one row, and thus it is necessary to



turn the pages manually. This usually brings unwanted pauses to performance and distracts
the player. Common solution is to have some other person nearby, which follows the track
along with the musician and turns the pages instead of him. However, this arrangement is
still far from optimal. Even though the page-turner is highly trained person, it can turn
the page too early or too late and player can get lost. Also it takes a significant period of
time to turn the page which introduce another cognitive load on the performer.

With rapid development in smartphone and tablet market, a new possibilities have
emerged and first applications for reading sheet music have started to appear. They are
able to open PDF document or set of images and allow the musician to browse it page by
page. While it’s more comfortable, it is still needed to swipe or touch the screen to turn
the pages of document.

As a result, a new hands-free page turners in form of pedal were produced, which allow
musicians to turn the pages on the screen using their feet. One example of these products
is popular AirTurn', which uses Bluetooth technology to communicate with iPads, Android
tablets and computers.

Increasing power of mobile architectures allows to build more complex application than
ever before. Now it’s possible to process live audio stream in real time, most often through
Fast Fourier Transform. This first led to simple applications like guitar tuners. But there
is no reason why it shouldn’t be possible to come up with sophisticated apps like automatic
score followers. Section 1.2 describes several cases where this tool could be useful.

'

record sound

'

process

'

scroll display

Figure 1.1: Intended arrangement of piano and mobile application (on the left) and score
follower inner loop (on the right).

Figure 1.1 on the left shows intended placement of mobile device above the piano key-
board. Device is put on the same stand as regular papery sheet music. While the musician
is playing, application is continuously recording the sound, processing it with score follow-
ing system, and updating scroll position in virtual score on the device display (right side
of the picture). Since this loop is executed several times per second, the score is smoothly
moving, and musician can keep up with it even on the small screen of smartphone.

"http://www.airturn. com/
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1.2 Use Cases

Software which can synchronize live piano playing with position in the music score would
bring many advantages to the field. For better illustration, there are several typical use
cases ranging from personal to professional use where people would benefit from the score-
following application:

1. Casual home players who play the instrument for fun in their free time. They has just
seen a YouTube video with song they like and want to play it by themselves. They
don’t want to print the pages or some may don’t even have a printer. So they take a
smartphone or tablet, run the app, and download the song. Then they put the device
on the piano music stand and play the song while reading the sheet of music from
the screen. Their playing tempo varies a lot during the play as they are learning new
piece and going through more difficult parts. When they make a mistake and repeat
the measure, app notices it and returns back to the correct position.

2. Professional pianists performing on the concerts. They utilize the full scale of dynam-
ics and tempo from ppp (very soft) to fff (very loud) with accelerations followed by
slowing down. They generally play by heart on concerts, but the app can be useful for
them during training, because as previously mentioned, they don’t need to turn pages
by hand. They can also record the whole performance and compare the recording to
the reference score for fine tuning.

3. People who come across the piano somewhere. They want to play it, but they neither
remember the music nor have any sheet music with them. So they run the app on
their smartphone, put it on the piano, pick their favorite song, and play it.

According to these use cases it is obvious that final application has to support a variety
of styles of playing the instrument. It should tolerate errors of beginner playing slow as
well as it needs to stay responsive in parts with high density of notes played in fast tempo
by professional. It means that the system should adapt to the given conditions.



Chapter 2

Score Following

The task of following a performance of musician by deciding about his position in music
score is called Score Following. In other definition by Cont [10] it is a real-time mapping
from Audio abstractions towards Music symbols and from performer live performance to the
score in question. Basically, given the score representation and live audio stream, system
returns the current time in the score.

The difficulties of effective score following are caused by several facts. The perfect music
performance where played pitches absolutely match the reference score rarely occurs. The
most situations contain random note additions, misses, and changes. Also high level of
polyphony (several notes played at once) makes the recognition of pitches harder. Last but
not least, fast tempo changes in some expressive pieces increase the problem complexity.

In case of score following, we need to distinguish between two fundamental types:

e Online alignment: System doesn’t know the whole audio track in advance and
returns the actual position after every sound fragment. In general, it is less precise
and trickier than the latter type. This type is nowadays called Score following.

e Offline alignment: Is easier, because the system knows the whole audio track and
can see to the future. Algorithms designed for online alignment can be used for offline,
but usually not the other way around. For this type was established the name Audio
to score alignment.

Also depending on the input data, we can divide it into two groups:

e MIDI input: Many score following systems in the past worked with live MIDI data
coming from the digital instrument. While this approach is easier, it is not practical
and desirable in this project, since we are building app for smartphone without any
MIDI interface.

e Audio input: Using solely audio signal, the task becomes much more difficult, be-
cause of noise, out of tune instrument, and many other factors. On the other hand,
the final solution is more versatile and fits requirements of this mobile application.

2.1 System Architecture

Figure 2.1 depicts a structure of general score follower based on scheme published by
Orio [16]. There are two inputs: Sound, which stands for live piano audio stream, and
Score representation, which system has to follow.
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Figure 2.1: Structure of general score follower.

Score representation is most often MIDI file, but it can be also other formats like
MusicXML as it will be mentioned later. It encodes the pianist gestures, which can be
simple (single note or rest) or more complex (trill, glissando, ...). Therefore the choice of
its format is important for ergonomics and performance of the target system.

Incoming sound is processed by Feature extraction, where the sound signal is analyzed
using, for example, Pitch or Chroma detection. In each score following system the set of
features is used as descriptors of musician’s performance and usually has the biggest impact
on the precision of the system [16]. Various methods for feature extraction are described
in Chapter 3.

Obtained features are provided to Model, which using Matcher finds best matches with
the reference score. Model is usually implemented using Dynamic time warping, Hidden
Markov models or Neural networks [2]. Since it is generally difficult to extract from the
score precise features comparable to extracted audio features, the score is first synthesized
to audio and then it is possible to use the same feature extraction methods which have been
already developed for audio.

Given current tempo, previous position, and matchings, model returns the expected
Position in form of time in the reference score. The new position serves as action for
scrolling the display or turning the page.

Requirements

The running environment for this application are smartphones and tablets, first of all
Android operating system. In order to be able to make proper design decisions later, we
first need to set several criteria for score follower running under this specific environment.
Key features which optimal design should satisfy are:

e High performance: The system should achieve high recognition rate with minimal
delay between the actual and reference position in the score.

e Robustness: The algorithm must be durable to small perturbations in melody (when
performer ignores some musical ornament), tempo (when it suddenly changes) or
position (when some notes are repeated after mistake). It should also ignore various



background noises — like clapping, coughing and creaking — which are typical during
real performances.

e Responsiveness: It should react as fast as possible, because the music score position
on small device display has to be updated frequently.

e Lightweight: Smartphones have limited CPU performance and memory usage. Heavy
computations can drain the battery in a very short time. Also if application reaches
the memory limit, it is killed by operating system. Therefore the application has to
utilize available resources wisely.

2.2 Current Approaches

The first score following approaches utilized bottom-up dynamic programming techniques
for error-tolerant alignment. They just paired notes of score to notes of performance and
didn’t pay any attention to any rhythm. The algorithms at that time would limit the
calculations around a window in order to comply with real-time constraints [1].

Later, some enhancement were proposed like detecting and grouping incoming notes to
model complex events — chords, trills and similar music ornaments. More advanced strate-
gies were developed, which were able to handle ambiguous situations like when performer
suddenly stops.

All the approaches which have been taken till today can be divided into two groups:
the ones using some sort of on-line time warping, and the ones using stochastic models
like Neural networks, Hidden Markov models, Conditional random fields, etc. The both of
them are being actively used nowadays.

Among many people who are researching this field, there is a few of them which have
been active in the longer term. Namely, Andreas Arzt from Johannes Kepler University in
Linz and Arshia Cont from French institute IRCAM in Paris.

Short summary of the most successful, innovative, or interesting solutions will follow.

Chroma and Octave Representation

This methods is presented in paper called Score Following and Retrieval Based on Chroma
and Octave Representation by Chu and Li [9]. It is based on two feature vectors, chroma
and octave, which are more deeply described in section 3.2. The feature design is based on
human perception of musical pitch, which is like helix where vertical dimension represents
tone height and angular dimension represents chroma.

To extract features from MIDI file, the authors first divide the time scale into non-
overlapping 0.2-second score frames. In each score frame, they accumulate the energy
which belongs to the corresponding chroma bins. This process is illustrated in figure 2.2,
where the note lengths are separated to frames and mapped to the chroma bins.

MIDI notes are identified by their numbers. How to compute chroma and octave index
from MIDI number is described in formulas 2.1 and 2.2, where ny is MIDI note number.

¢ = (nx mod 12) 4+ 1 (2.1)

o=[ng / 12] +1 (2.2)



;

SIE T e

A b ty oty oty ot lg tr s

#A V4,10
A ~ 025~

#G V19 V29

1— o04s — — 0.4s —  Pls
2 G ==
E #F
27
QO F
E' V15 Uas 0.1
Jn fﬁl
#D V33
o] 025~
| —

Ll v v

==  =sssssw
t (sec)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 16

Figure 2.2: Calculating chroma energies from music score. [9]

Normalized value of the of the k-th chroma bin at the score frame f can be calculated
by dividing it by the sum of the vector (formula 2.3). The same normalization is done also
for octave vector in formula 2.4.

p; k
Pir= Sz o (2.3)
2.j=1P%;
- Pik
p?‘,k = ZS p (2'4)
j=1Pfj

Extracting audio features is similar and is described in detail in section 3.2 in chapter
about audio feature extraction. Authors also proposed pre-emphasis process for audio
chroma features, which closely approximates energy distribution to the MIDI features and
further improves performance of the score follower.

After both music signal and score are transformed into sequences of feature vector, we
can perceive the whole problem of aligning as a sequence matching task. The authors utilize
Dynamic Time Warping (DTW) algorithm (section 2.4). In order to find the alignment with
lowest cost between two feature sequences, we need to construct a cost matrix.

The authors are using Fuclidean norm as a distance measure. For chroma, the cost
matrix between audio feature vector ¢; and score vector p; is calculated as

12

My = d(&,p5) = | D (@, — p5,)? (2.5)
=1



Similarly, the octave cost matrix is calculated as

8

Mp; = d(@},p3) = || >_(@2, — %)’ (2.6)
=1

The the both matrices are then combined by weighted sum

MP; = weMf; + (1 — we) MY, (2.7)

where w, is the relative weight of chroma feature. Experiments show that the optimal value
of w, is around 0.7.

Accuracy of music-score matching was defined as number of points correctly aligned
on the DTW path divided by number of all points in the path. However, this evaluation
scheme tolerates slight skews which human can hardly perceive. For real piano recordings
the optimal settings of w. = 0.7 and pre-emphasis weight w. = 10 reached almost 95%
accuracy.

Adaptive Distance Normalization

This approach was being researched in paper called Adaptive Distance Normalization for
Real-time Music Tracking and was presented at EUSIPCO conference in 2012 by Arzt [6].
It utilizes both harmonic (general energy distribution) and onset emphasized (increases in
energy) features and proposes effective distance normalization strategy.

This audio tracking system is also based on on-line dynamic time warping. It takes two
sequences of feature vectors as input. One is known beforehand (score) and the other is
coming real-time during the performance. The DTW algorithm is in detail explained in
section 2.4, although several improvements to this basic technique were proposed.

The first is called backward-forward strategy. It repeatedly reconsiders past decisions
and uses revised hypotheses to improve the precision. As a results, this strategy increases
robustness against tempo changes and performance errors.

Algorithm 1 shows pseudo-code of the backward-forward method. By following the back-
ward path, the system gets a new point which should lie nearer to the optimal alignment
than the corresponding point of the forward path. It is because the backward computation
takes into account information from the future that is not available to the real-time for-
ward path [5]. Author’s implementation uses two different backtracking length: after each
4 short backtrackings with length b = 10, one of length b = 50 is performed.

The second improvement are tempo models, which hold the information about current
tempo, and stretch or compress corresponding score representation. In this way it reduces
differences in absolute tempo between original score and live performance.

Tempo computation is derived from DTW backward path. More precisely, the n = 20
most recent note onsets which lie at least one second in the past are selected, and local
tempo for each onset is calculated from slope of the path in a 3 seconds-long window
centered on the onset [3]. To emphasize more recent tempo development (which are more
up-to-date, but less precise) while not throwing out older tempo information, the resulting
tempo ¢ is computed using weighted average of previous tempos t; as

>oica(ti-)
>

9

t= (2.8)



Algorithm 1: The Backward-Forward Strategy

if frame is even then

let current_position = (i, );

follow backward path from current_position;
get backward_position;

follow forward path from backward position;
get forward_position;

if forward_position ends in rowl < j then
| calculation of new rows is stopped until the current row j is reached

end

else if forward_position ends in column k < i then
| new rows are calculated until the current column 7 is reached

end

else
| confirmation of the current position

end

end

Feeding the tempo information ¢ to the score follower is done by alternation step. If
t > 1, feature vector is removed from the score representation by replacing vectors ps + 1
and ps + 2 by their mean vector. If 0 < ¢ < 1, new feature is computed as mean of p; and
ps + 1 and inserted between them. To avoid that the system gets stuck, maximum of 3
alternation in a row may take place.

Obtaining score features, which are comparable to live audio stream features, from
individual notes in MIDI file is not an easy task. Rather than that, author suggests to
convert given score into a sound file using some software synthesizer — the system solves
audio-to-audio alignment. Both audio streams are then analyzed via short-time Fourier
transform (STFT) with hamming window of size 92 ms and a hop size of 23 ms.

The final stage before DTW alignment is extraction of chroma features (NC) described
in section 3.2 together with special onset features (LNSO), which are closely presented
in section 3.4. Total distance d;,; between two feature vectors is computed as a sum of
normalized and weighted LNSO and normalized NC:

1 = Y (2.9)
k=1

d(1,7) = Y |k —Jil (2.10)
k=1
d(I,J)
do(I,J) = ———1"2 2.11
(L) = w5 (2.11)
I
dunlD.0) = dy(1.0) 4§ T (212)
diot(1,J) = di®O(1,J) +dy (1, J) (2.13)

Evaluation of this approach was performed on two pieces by Chopin, several sonatas
by Mozart and on prelude by Rachmaninoff. The note is accepted as correctly aligned
if its computed time differs from actual onset time not more than 250 ms. Single fea-

10



ture NC reached in average 87% successful recognitions as well as single LNSO reached
93 %. However, their combination performance achieved almost 97 %. Author states that
with this result, the possibilities of signal processing are exhausted and further significant
improvements are only possible by introducing musical knowledge to the system [0].

2.3 Short-Time Fourier Transform

Signal coming out of musical instrument is composed from isolated tones, whose amplitudes
were summed together. Each tone corresponds to one fundamental frequency, plus several
lower volume harmonic overtones at multiples of fundamental frequency.

These overtones determine the timbre (also know as tone color), which allows a human
to distinguish among different musical instruments, such as string instruments, wind instru-
ments, or voice. Musical instrument without any overtones is a plain sine-wave generator.

Since the tones are defined by their frequencies, we first need to map recorded time
data to the frequency domain. Most common method for this task is Discrete Fourier
transform (DFT) described by formula 2.14. It reveals all frequency components present
in the signal for further processing. The problem with this analysis is that it cannot
provide simultaneous time and frequency localization [8]. It was designed to work only
with stationary signal (the one which doesn’t change in time).

—j2mux

N-1
F(u):%Zf(x)eT,u:O,l,...,N—l (2.14)
=0

In order to convert 1-D time data to 2-D time-frequency domain, we need to use Short-
time Fourier transform (STFT) explained in formula 2.15 from Bebis [8], where ¢’ is time
parameter, u is frequency parameter, f(¢) is signal to be analyzed and W is windowing
function centered at ¢t = t'.

STFTH(#,u) = /t F(t) - W(t — 1)) - e—72mutgy (2.15)

The result of STFT is 2-D plane called spectrogram, where time scale is on the
horizontal axis, frequency is on the vertical axis, and values in bins are differentiated using
colors (usually heat map palette).

Window Shape

Using short-time sliding window we can obtain a different Fourier transform for each time
segment where the window is centered. However, as the rectangular window trims the
signal amplitude at different phases, it causes the spectral leakage in the frequency domain.
Therefore to avoid side lobes around dominant frequencies, it is required to use some more
sophisticated window function, typically Hamming or Hann window. In figure 2.3 are
shapes and corresponding equations of commonly used windows.

Window Size

When considering window size, there is a trade-off between time versus frequency preci-
sion. Narrow windows offer precise temporal localization and ensure that the portion of
the signal falling within the window is stationary. On the other hand, frequency resolution
is poor, because wide range of frequencies maps into one discrete spectral bin.

11
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Figure 2.3: Most commonly used window functions.

The resolution problem gets even worse when working with music. FFT spectrum is
linearly scaled, while human ear perceives sounds logarithmically. It can happen that several
low tones are mapped into the same frequency bin making them unable to distinguish.

e Narrow window — good time resolution, poor frequency resolution

e Wide window — good frequency resolution, poor time resolution

This fact can be explained by Heisenberg’s Uncertainty principle expressed by
formula 2.16. Time resolution At is the minimal distance between two spikes in time
separated from each other in the transform domain. Frequency resolution A f is the minimal
distance between two spectral components separated from each other in the transform
domain. Main consequence of this principle is that At and Af cannot be arbitrarily small
[].

At-Af> - (2.16)
T A4r

In specific analysis of piano music, we need to think about experienced players who
are able to play series of tones very fast. Hence, the upper limit of window length lies at
around 150 ms. At the same time, there’s not any big room for improvement - window
cannot be much shorter. With the same length, spectral resolution is around 7 Hz, and
two neighboring tones are already starting mapping to the same frequency bins just at
frequency around 110 Hz (A2 tone).

A common technique for increasing time resolution is window overlapping. If we set
the overlap rate to 50 %, we shift window only by half of its size after each DFT. Time
resolution gets higher by factor of two, while window length stays the same.

12



2.4 Dynamic Time Warping

Dynamic time warping (DTW) is an algorithm for aligning two time series, usually of various
lengths, as it is depicted in figure 2.4. It has been successfully used in areas like speech
recognition, gesture recognition, shape matching, and many others. The main advantage
of this technique is no need for training.

Data 1

Data 2

Figure 2.4: Alignment of two time-dependent series. [17]

In score following, DTW is used for matching music score to audio, and obtaining the
actual position in the score. The process consists of the following steps [2]:

1. Conversion of score and audio to common representation using feature extraction (see

Chapter 3).

2. Calculation of similarity between score and audio feature vectors using suitable dis-
tance function.

3. Computation of the optimal path with respect to the global distance (cost).

Offline DTW

Original offline DTW algorithm is well known for a long time. It is suitable for off-line
alignment, when the both time series are known in advance. The series are represented by
sequences of feature vectors U = uy,..., Uy, and V = vy, ..., vy,.

To find the most optimal alignment we need to compute the m x n matrix dy,y (4, j) of
local distances. This matrix contains Euclidean distance (or any other similarity measure)
for every pair of feature vectors (u;,v;).

DTW seeks minimum cost path W = W1, ..., W; such that W} is an ordered pair
(ik,Jx). Each element in this pair corresponds to positions in one of the time series. Global
alignment then can be perceived as series of these matches.

Path W is constrained by several criteria [2]:

e is bounded by the both sequences (cannot get out of the matrix).
e is monotonic — it can only increase or stay on the same level.
e is continuous — the alignment is defined in every time.

To compute alignment path W, the cost matrix D needs to be constructed, which
contains the sums of local minimum costs from beginning to the current position. It is
usually defined by recursive formula

wq - D(i,j — 1)
D(Z,j):d(l,j)—i-mll’l 'UJaD(Z—l,]) ) (217)
wy - D(i— 1) 1)
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where w, = 1 is a weight for going to the horizontal or vertical direction and wy, = 2 for
diagonal direction, D(i, j) is the cost of the minimum cost path from (1,1) to (7, 7). Initial
element D(1,1) is set to d(1,1). After the cost matrix is filled, the path W is extracted by
backtracking from D(m,n).

Online DTW

The previous technique is unfeasible in case of online score following, because one time
series is just partially known. Therefore, a few modifications were proposed by Dixon [11]
to adapt DTW for real-time tasks.

To run in real-time, only the constant part ¢ of the cost matrix is computed. At each
time t, we seek the best alignment ui,...,u; of partially unknown sequence U to some
initial subsequence of V. Algorithm starts at position (¢,j) = (1,1) and gradually expands
the cost matrix. First, the minimum path cost is found for the cells in the current row
and column. If it is found at the current position (¢, 7), both the next row and column are
calculated. If it occurs in row j, the next row is calculated. If it occurs in column ¢, the
next column is calculated.

Example of this expansion procedure is visible in figure 2.5. Exact definition including
pseudo-code can be found in original Dixon’s paper [11].

®
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Figure 2.5: Example of online DTW with search window ¢ = 4 shows the order of evalua-
tion. Numbers denote the computation order of individual rows/columns. Optimal path is
colored gray. [2]

Alternatives

Dynamic time warping and Hidden Markov models (HMM) are two most common ap-
proaches for score following. Each of them has its pros and cons.

HMM has proven to offer increased accuracy in performances with large amount of
wrong or missing notes. On the contrary, it requires a exhaustive pre-modeling of the score
and training of the system, which leads to higher complexity and time consumption.

DTW is simpler and more flexible, because it doesn’t need any training and discretiza-
tion of problem to the sequence of states. On the other hand, fine tuning of internal
parameters is needed for good performance.
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Chapter 3

Music Features

In ideal case, mapping of time data into frequency domain would be sufficient to reconstruct
back played notes. However, the situation is complicated by various phenomena like noise
in signal, harmonic overtones appearing together with the fundamental frequency, or full
spectrum distortions caused by note onsets.

To suppress these undesirable effects and better approximate the score representation,
several types of feature extraction methods have been developed, which will be described
in this chapter.

3.1 Note Pitches

Note pitches are very simple to extract, but provides comparable performance to chroma
representation, which is described further. It originates from MIDI note numbers, but in
this case it is limited only to notes on piano keyboard. For each note we compute the range
bounded by minimum and maximum frequency, and map all the FFT spectrum bins in this
range to corresponding pitch.

Main advantage of this approach is high information density and direct mapping of
sound to MIDI note numbers, which simplifies consequential matching stage. On the other
hand, there is a problem with spectral bins that are overlapping on lower pitches.

3.2 Chroma and Octave

This feature set was described in paper by Chu and Li [9], which is introduced in section 2.2.
It is based on mapping frequency ranges to musical tones.

Musical scale contains 12 semitones (C, C#, D, D#, ...) with increasing pitch. Set of
these 12 semitones forms an octave, each containing tones with twice as higher frequency
than the previous octave. Chroma class then contains all pitches with squares of frequency
of a fundamental pitch.

It can be demonstrated on the helix model, where as the pitch moving along the helix, it
passes through individual semitones. After the turn it reaches the initial position, just one
octave higher. Therefore, two different music notes can be grouped into the same chroma
class if their corresponding frequencies have some relationship (one is multiply of the other).

In figure 3.1 you can see three different music parts with the same sequence of chroma
vectors (chromagram). It means that some sequences of notes may have the same chroma
representation — the feature vector with 12 chroma values is ambiguous. Hence it can be
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Figure 3.1: Three music segments with the same chromagram. [9]

helpful to supply another 8-dimensional octave vector holding information about absolute
pitch.

To extract the features from audio, the data is first transformed into frequency domain
using FFT. Then this domain is divided into eight regions, each region contains twelve
chroma bins. The algorithm go through all the regions and accumulate energy to the
corresponding bins in chroma and octave feature vectors.

Let Ey ) be the energy of the k-th frequency bin at frame f, and Ey, be the energy of
the r-th region in frame f. Then average energy of the region is calculated as AvgEy, =
E¢,/12. Finally, we compute the emphasized energy of the frequency bin £ as

- E for £ > AvgFE
Ef,k — %6 X f7k7 or fJf:eST — Ug far (3.1)
ks otherwise
where w, > 1 is emphasis weight, and S, is a set of all frequency bins in the region r.
After pre-emphasis, we can compute the chromagram for each pitch family h and octave
vector for each octave g as

Efp = D Epx (3.2)
keSh

Efg = > Epn (3:3)
k€S,

where S, is a set of frequency bins of the chroma family , and S, is set of frequency
bins which belongs to octave g. Finally, in order to get normalized chroma vector q% and
octave vector q% at music frame f, we calculate each its k-th bin:

i ES,
Qfr = S L = (3.4)
Jj=1"fJ
Eo
~ fik
q‘]’c,k = = (3.5)
2=1 E%;

16



3.3 Locally Normalized Chroma Onsets

These features were introduced by Ewert [12] for off-line audio synchronization and were
also used later by Arzt [6] for on-line score following. They are motivated by the observation
that for musical instruments such as the piano, playing a note is manifested by rapid energy
increase.

The audio signal is transformed by FFT to frequency domain and decomposed into 88
subbands, which correspond to the notes A0 to C8. Only increases in energy are stored in
each bin relative to the previous frame (plot (c) in figure 3.2).
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Figure 3.2: (a) Original music score. (b) Normalized chroma representation. (c¢)—(g)
Gradual transformation to LNCO features. [12]

Features belonging to the same chroma class are added up to improve robustness of
onset features. Before it, the logarithm of each pitch value is computed which simulates the
logarithmic sensation of sound intensity. We will call the resulting features as CO (chroma
onset) features — figure 3.2 d.

To make these features invariant to variations in dynamic, we employ normalization
strategy which adapts to a local maximum intensity. First, we compute norm of each CO
vector, which lies in window of suitable length ranging from current position to the left.
Then we select for each position maximum norm in the window (red curve in figure 3.2 e,
and divide the sequence of CO features in the window by this norm (figure 3.2 f). The
resulting features are called LNCO (locally adaptive normalized chroma onset) features.

Authors state that this approach, when they first compute onset for all the pitches and
merge them to chroma classes later, is more successful than opposite strategy of first getting
chroma features and then computing their onsets. The reason for that is, when we merge
one sharp onset with another more blurry onset, the valuable sharp one may get blurry as
well.
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Onset features express attack phase of played note. Authors also try to model decay
phase by copying onsets multiplied by decreasing weight in sequence n times (they chose
n = 10 and weights 1,/0.9,1/0.8, ..., \/(ﬁ) They refer to this representation as DLNCO
(decaying LNCO) features.

3.4 Locally Normalized Semitone Onsets

These features were presented in paper by Ewert [12]. Later, they were used in score
following system by Arzt [6] described in section 2.2. They are officially called LNSO
(locally adaptive normalized semitone onset) features.

Procedure of obtaining these features is very similar to the previous Locally Normal-
ized Chroma Onset feature extraction (section 3.3). The only difference is that instead of
merging pitch onsets to chroma classes (figure 3.2 c,d), we leave them as they are and we
work all the time with the whole set of 88 pitches.

Arzt in his research paper [0] states, that these LNSO features reach better performance
in on-line score following than LNCO features.

3.5 Synthesized Spectral Templates

Spectral model is a prominent tool for estimating the similarity between score and audio.
Several systems have used it as a generic templates for modeling the expected tonal content
according to the score. To improve the alignment quality, it is needed to incorporate
instrument-specific properties. A novel proposal was given in paper by Korzeniowski [13],
which will be introduced in this section.

The expected tonal content is shaped here as a magnitude spectrum produced by short-
time Fourier transform (STFT) on audio stream. Using frame window of length N, the
resulting feature vector has N,,/2 bins.

There are two levels of spectral templates: note templates, which are simple spectral
images of individual notes, and score templates, which include all sounding notes at a
specific score position. Process of generating note templates and their composition into
score templates will be now explained.

Note Templates

Note spectral templates are basic building blocks in most state-of-art score followers [13].
They can be either generated using Gaussian mixture models (GMM) or synthesized from
audio samples of specific musical instrument.

The GMMs use Gaussians to model fundamental frequency plus several harmonics of
a tone. They work well and are able to generalize on one instrument specifics to some
degree. However, instrument adjusted synthesized templates are assumed to improve the
alignment even more. Especially, if they would have been adapted on the fly using latent
harmonic allocation, which is still impossible because of high computation cost. Figure 3.3
shows the harmonic structure of GMM and synthesized templates for two different notes. In
the upcoming text, only synthesized templates will be studied since they proved to perform
better.

To extract template for each note, a software synthesizer is utilized to generate sound
from MIDI file. These sounds are analyzed using STFT and resulting spectrum is averaged
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Figure 3.3: Differences between GMM generated and piano synthesized spectral templates
for a single note. [13]

over duration of each note. Resulting vector has the form:

&= (21, +,2N,), (3.6)

where z; is mean of the i-th frequency bin in the magnitude spectrum.

Score Templates

Sound synthesizers are using ADSR envelope (see Figure 3.4) to model volume of generated
tones. Different instruments are characterized by different ADSR envelopes. This sequence
of four phases includes:

1. Attack: Time between the note is activated and when it reaches the initial maximal
volume.

2. Decay: How fast the volume decreases until it gets to the tone sustain volume.
3. Sustain: Time during the musician holds the tone and volume is at constant level.

4. Release: How fast the volume falls down to zero after musician stopped playing the
note.

Amax ““““““ NG F T h

Asus""" TR TRTTETRLTRT R e CRRRRERES

attack decay sustain release

)

Figure 3.4: Generic ADSR envelope typical for instruments with percussive onsets. [13]
Since we are focusing on piano, we try to simulate envelope, which the most resembles

piano sound. The attack phase will be ignored, because it is usually very short. The rest
is simulated by two combined weighting function as

1/1(9571)79) :Tﬂds(xﬂfﬂ) '%(377”79) (37)
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where x is score position in beats, v is tempo in beats per second, and ¢ is note. The decay
and sustain phase are defined by v4s; and release by v,.. Both depend on the time of note
start and note end, and presently played score position. Therefore, we define time between
note start and score position Ay and note end and score position A, as

r— S
Ag(z,v,9) = — (3.8)
X — eg

Ag =
Ae(l‘ﬂ}ag) = Ae:

(3.9)

v

where s, is note start position, and e, is note end position in beats. Then, decay-sustain
weight and release weight are defined as

0 if Ay <0

Yas(z,0,9) = { max(AA, ) else (3.10)
1 if A <0

¥r(z,v,9) { max(l — 3-A.,0) else (3.11)

where A = 0.1 is decay parameter, n = 0.1 is sustain weight, and 8 = 20 is the release
rate. Figure 3.5 shows the plots of both weighting functions. The decay-sustain weight
145 models the exponential loss of energy after initial note attack together with volume
preservation when the note is on. The release weight 1), expresses sudden cutoff when the
note is released. Combination of these two function quite accurately approximates ADSR

envelope.
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Figure 3.5: Left: Decay-sustain function 4. Right: Release function . [13]

Finally, to compute spectral template ® for all the combined notes at specific score
position x with tempo v, we add up all individual note templates with weighted sum as

O(w,v) = zé,@gez(;@”(x»”’g) - 6(9) (3.12)

Z(x,v) = > d(z,0,9) (3.13)

geG

where G is set of all possible notes and ¢(g) is unweighted spectral template for individual
note g.

As stated before, this approach works best for instruments with percussive onsets like
piano. For other instruments, especially the ones which allow the musician to continuously
control the volume, it is difficult to define specific envelope.
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Chapter 4

Score Follower Implementation

Before creating the real Android application as is written in thesis specification, it is worth-
while to create a simple demo app to verify the system functionality like feature extraction
and score following algorithm. Otherwise it would be tough to debug these key components
on mobile device. This section explains internal parts of the solution and problem decom-
position into program blocks. In the end it mentions tools and libraries, which were used
during development.

4.1 Early prototypes

The first prototypes were written in C++ and are based on implementation of Score follower
using chroma and octave representation by Simon Zaaijer'. Even though I rewrote many
of its core parts, it serves well as score following framework and provides important insight
into the issue. I have created several versions, each using different feature set, which will
be now described.

Original demo used microphone to record live music. This wasn’t much handy for testing
purposes, so I modified it to read the music data directly from WAV files instead. After
the application loaded the WAV data, it starts to play it. At the same time, for each time
frame it takes the corresponding part of audio buffer and executes FFT on data scaled by
Hann window. The resulting spectrum magnitude is sent to feature extraction method.

This early implementation used very simple DTW algorithm. In order to perform real-
time dynamic time warping, it employed only the latest audio vector available instead of
the whole matrix. Because of this simplification, the performance was fluctuating under
different audio tempos and the overall system was sensitive to internal parameters. Assum-
ing that DTW cost matrix has columns as score position and rows as audio position, these
parameters are:

e Advance enforcement is used to prevent DTW from getting stuck in one place.
This parameter decreases cost of the column next to the current position in the DTW
cost matrix, and therefore supports the position to move forward.

e Seek width specifies the range of a parabolic proximity enforcement (next variable).

e Proximity enforcement is a variable that controls how aggressively should system
stay close to the current position. It decreases the value of columns nearby in the
cost matrix, and prevents the position from jumping arbitrarily all over the score.

http://www.liacs.nl/"szaaijer/api/
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¢ Repeats states how many times is one step of DTW repeated after feature extraction.
It helps the system to follow the faster passages easily, because it allows to go over
several columns in the same row of DTW cost matrix.

As you can see in figure 4.1, the Advance enforcement is the most problematic param-
eter, because it needs to be customized for each audio tempo. Left part plots the mean
alignment error for different advance enforcement values when using Chroma and Octave as
features (Approach 1), right part uses Note Pitches as features (Approach 2). The optimal
value of the parameter for reference tempo is around 0.05.
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Figure 4.1: Precision of the alignment depending on Advance enforcement.

Approach 1: Chroma and Octave

This version is based on 12 music chroma and 8 octave features, as described in original
paper by Chu and Li [9] and in section 3.2. First, the MIDI file is loaded and parsed,
and chroma and octave vectors are directly extracted to discretized time frames. If a note
is contained in bin just partially, only the proportional value is added to the current bin.
Each note is also multiplied by its MIDI velocity to better mimic the audio features, which
are later gradually extracted from WAV file.

Before each DTW alignment, the chroma and octave features are separately normalized
using Euclidean norm. Then the squared Euclidean distance is computed between actual
audio feature vector and each of the MIDI vectors. After the DTW execution, the position
in score is returned.

Approach 2: Note Pitches

This version is variation of the previous one and results from features described in sec-
tion 3.1. Instead of using two feature vectors, there is only one with 88 absolute note
pitches resembling piano keyboard.

Note pitches features are more computationally expensive, because before each DTW
we need to compute distances between two vectors with 88 elements instead of 20 as in
previous method. It also requires much more memory to store these vectors.

Approach 3: Chroma and Semitone Onsets

Adaptive locally-normalized semitone onsets together with chroma were proposed in paper
by Arzt [6] and are described in section 3.4. For maximum similarity between reference
and audio features, the MIDI file is first synthesized to audio and then the same feature
extraction method is used for both audio and score.
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Although this approach had looked promising, it didn’t bring any interesting results.
Recognition performance was slightly better or almost the same as in previous prototypes.
It could be because of some bug in code, but I am inclined to believe that it was due to
the simplicity of the matching algorithm. Moreover, this method requires MIDI to audio
synthesizer, which adds another layer of complexity.

4.2 Application Architecture

The final solution was completely rewritten from the group up. Especially the online
Dynamic time warping algorithm needed radical change since it significantly influences the
matching behavior. I also decided to switch from C++ to Python as a target language. It
allows fast prototyping without need to compile source code, it contains useful libraries
such as math library NumPy with FFT, and it also makes possible to directly visualize
data using interactive plotting library Matplotlib.

FFT Audio Reader MIDI Parser
Feature Manager Score Follower — User Interface !
Feature Vector Matcher

Figure 4.2: Architecture overview of final score follower

Architecture schema with modules and their dependencies is shown in figure 4.2. The
main difference between this and previous approaches is that Matcher is now individual
unit, which contains sophisticated DTW algorithm and communicates with Score Follower.
Application also no longer displays sheet music nor Audio Reader plays music in real time.
Instead, it process the audio file as fast as possible and plots the DTW alignment path
together with cumulative alignment error. It serves much better for developing purposes
than previous interface.

Below follows an overview of all modules used in the demo application. Less important
units are shortly described while key components will be studied in detail in following
separate sections. Some modules such as Locator or Decision Maker are mentioned even
though they haven’t been deployed with application yet. These parts are not critical for
functionality and they are supposed to be plugged-in in the future.

e Score Follower — This is the control part of application, which drives data flows
among all the subcomponents. First, it receives a two file URIs: MIDI file location
and corresponding WAV file location. Then it provides the MIDI file to MIDI Parser
and audio file to Audio Reader. MIDI file is parsed, list of notes is returned back, and
through Feature Manager is converted to a list of Feature Vectors. Finally, it starts
reading audio frames one by one from Audio Reader and converting them to Feature
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Vectors. Each vector is passed to Matcher, which computes the current position
in music score. After that, Score Follower notifies User Interface about the new
position.

Audio Reader — It reads the audio files and is further described in section 4.3.

Feature Vector — It stores features needed to find matching between MIDI and
audio. Detailed description follows in section 4.4.

Feature Manager — It cares primarily about audio and MIDI features extraction
and is further described in section 4.5.

Matcher — It executes the matching algorithm and is discussed in section 4.6.

MIDI Parser — As the name implies, it processes the MIDI files and return all the
occurring notes. MIDI is binary format, which consists of usually several tracks. Each
track contains messages which inform about events that happened in the lifetime of
the particular track. It can be volume adjustment, tempo adjustment, pedal press or
release (see MIDI specification [7]). We are interested in events NOTE_ON and NOTE_OFF,
which delimit the duration of one or group of notes. Each note is then stored to a list
as structure of: note number (pitch), start time and end time in seconds, and velocity
(note volume).

FFT — Fast Fourier transform is used just before feature extraction. This demo
application utilizes discrete Fourier Transform for real input from library NumPy.
Resulting spectrum is complex, hence it is needed to take magnitude of each com-
plex sample to transform it to real numbers. Android application uses its own DFT
algorithm, which is described in detail in section 5.1.

User Interface — Ul is more domain of mobile application. Only graphical element
of the demo app is a plot of alignment path displaying error between score follower
alignment and ideal alignment. However, there is another interactive plot in Matcher
module, where by turning on the debug flag, it is possible to see current position and
backward path in the DTW cost matrix.
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Figure 4.3: Architecture with multiple Matcher instances inspired by Arzt [4].
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Below are mentioned yet two another modules, which hasn’t been used in final ap-
plication even if they were implemented, because they didn’t bring satisfactory results.
However, this couple isn’t critical part of the system and can be temporarily left out. They
will require more fine tuning to be deployed into the system in future.

e Locator — This module estimates the rough position in score. It cooperates with
Decision Maker and gives it a clue where the player location currently is. It performs
the standard DTW algorithm in time window centered around the actual position.
Each time when the position is changed, window has to be recomputed. Since it
would be expensive to do this on original feature set, Locator first downsample the
features by the factor of six. It means that it averages six consecutive feature vectors
into one. In this way it go approximately through two iteration per second.

e Decision Maker — Its task is to manage a set of Matcher instances (four in original
paper), which tracks the score from different positions. At any time only one instance
is marked as trusted and represents the system’s current belief about the score posi-
tion. Decision Maker can reassign inactive instances to a new position close to the
Locator estimation. This usually happens when cumulative alignment cost is higher
than some threshold. These two modules were inspired by score follower architecture
presented in paper by Arzt [1]. A possible arrangement of these components in the
system is depicted in figure 4.3.

4.3 Audio Reader

Audio Reader is component which opens WAV files, decodes the PCM audio data, splits
them into chunks and continuously streams it to the Score Follower. In case of Android
application, this module is replaced by Audio Recorder, which handles the audio data from
device microphone. More information about audio processing on mobile app can be found
in section 5.1.

Audio Reader works with a window sliding over the audio buffer. Window has constant
length specified by window size parameter and starts at the beginning of the buffer. Audio
Reader copies data from audio buffer to the window and returns it to the output. After
the window is processed by some other module, it shifts the window to the right by some
fixed offset and repeats the procedure. How far is shifted depends on window overlap
parameter - if the window overlap is 25 %, window is shifted by 75 % of its size. That is
often used to improve temporal resolution of STFT.

Important parameter which affects the overall follower recognition and computational
performance is sampling rate. It is the number of discretized audio samples per second.
It must be at least twice as high than the maximum expected music frequency. Common
sampling frequency for CD music is 44 100 Hz. It was designed to cover the human hearing
range from 20 Hz to 20 kHz. However, it is unnecessarily high for purposes of score following.
Piano with 88 keys produces frequencies ranging from 27.5 Hz (A0) to 4186 Hz (C8).
Hence given Shannon theorem, the lowest sampling rate which is both at least double of
the highest frequency and is supported by hardware of mobile devices is 11025 Hz. All the
audio parameters values are listed in table 4.1.
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Parameter Value

Audio encoding PCM 16b

Audio channels 1
Sampling rate 11025 Hz
Window size 1024 samples
Window overlap 50 %

Table 4.1: Audio Reader parameters

4.4 Feature Vector

Feature vector serves as storage for extracted audio features. It also contains related meth-
ods such as normalization and vector distance calculation. It is one of the crucial aspects
that contribute to the total score follower performance.

Structure

After many experiments with different types of audio features it turned out that plain
chroma classes work the best. Twelve elements long chroma vector has a good ability to
generalize and outperforms even the individual music pitches. Moreover, since the chroma
vector is quite short (about seven times shorter than the pitches vector), it is also much
faster to compute distance between two vectors of this type. And the distance function is
heavily used during the matching process.

Chroma vector is a good foundation for feature vector. But itself it only represents
distribution of harmonics in every music frame. Equally important is also note onset,
which expresses a time when the note is activated. When the player pushes the piano key,
energy of the particular chroma class immediately rises. While the note is still pressed,
this energy is continually decreasing until the key is released. Given these information,
the note onset is possible to compute as half-wave rectified first-order difference. The
precise procedure is commented in section 4.5 and is inspired by similar approach for local
normalization described in section 3.3. The overall composition of features is depicted in
figure 4.4.

C|C#| D |D#|E| F|[F#|G|GH|A|A#|B|O

chroma classes onset

Figure 4.4: Internal structure of the feature vector.
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Distance function

To evaluate similarity between audio-extracted and midi-extracted feature vectors, it is
necessary to introduce a distance function. It takes two feature vectors and returns a scalar
value which indicates how much these two vectors differ from each other. Similar vectors
will produce a value close to the zero while completely different vectors should produce a
high value.

Even though it is possible to compute distance of the whole feature vector at once, it
is desirable to do it for each vector segment separately - here namely chroma classes and
onset. Then the function can return a weighted sum of all the individual components. This
allows us precise fine-tuning in the end by changing the appropriate weights.

I have implemented three different distance metrics: L; (or Manhattan), Ls (or Eu-
clidean) , and normalized L;. Best results for chroma vector were achieved by normalized
L; distance, which slightly surpassed Lo distance. Since this function is frequently used, we
can reduce execution time of normalized L, distance by precomputing vector norms used
in denominator.

n
1P — 4l
di(p,q) = ) _Ipi — qil a(p,q) = 2imlPi — ail
; Ipllr + llally
L, distance L, distance Normalized L; distance

Onset distance is computed as absolute value of difference of two onset scalars. The
total distance returned by distance function is calculated as

d=w. d.+ w,-d, (4.1)

where d. is chroma distance, d, is onset distance, and w. and w, are chroma and onset
weights. These weights were experimentally set to w. = 3 and w, = 2.

Normalization

Proper normalization is critical for any task success. In this case it reduces differences
between various volume levels. If some note is played once quietly and hen loudly, the
distance between relevant feature vectors will be without normalization very high despite
the same frequency distribution. It is because chroma vector is accumulated in the latter
case from a signal with higher energy and thus total values are higher than in the former
case.

What truly holds information are not values but the distribution of chroma classes. In
order to emphasize this distribution and minimize energy bias, every value in the chroma
vector is divided by vector norm. Resulting normalized vectors are thereafter comparable
among each other. Omnset values are normalized separately as was mentioned before in
section about feature vector structure.

I have tested two vector norms: L; (Manhattan) and Lo (Euclidean). For the final
application was picked Ly norm, which performed better. Respective equations are written
below.
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Quantization

Although chroma energy distribution after normalization is quite stable under various vol-
ume levels, there is still a room for improvement. For example, the chroma vector is little
sensitive to different variations in the music articulation. To address this problem we further
introduce quantization function @ : (0,1) — {0,1,2,3,4} defined by equation

ifx < 0.05

ifr<0.1

ifz <0.2 (4.2)
ifr<04

else

Qz) =

_w N = O

Normalized chroma vector is quantized by applying @ to each of its component. This
means that if there is a dominant chroma component with relative energy greater than
or equal to 40 %, it gets assigned the value 4. Components with values under 0.05 are
suppressed. Thresholds are chosen in the logarithmic fashion which mimics the natural
characteristics of sound. This quantization process was adopted from work by Muller [15].

Except better matching performance, quantization also speeds up computation, because
it transforms floating point numbers to integers, which are on typical CPUs faster to operate
with. Furthermore, it also reduces memory space required to store feature vectors, since
quantized values can be converted from 32-bit float type to 8-bit byte type.

Noise detection

Audio frames are recorded at constant rate and continuously coming into the score follower.
These frames can be divided into two groups: music frames and noise frames. Noise frames
mostly occur during silent periods when there is no music playing. Microphone has not
enough input data to mask the background noise, and thus records useless values. Another
much less frequent source of noise are various random sounds like clapping, cracking, or
coughing. The task is to filter out these unwanted effects. For this reason every feature
vector instance contains method that tells whether the vector comes from the music frame
or noise frame.

First attempt I made was energy-based detector. It is a simple detector which
adds up all the components of unnormalized chroma vector (which is the same as sum of
magnitude of FFT spectrum bands) and takes a logarithm of the sum. Then it compares
this value to threshold 7" and decides if the value is greater than 7' (music) or not (noise).

More sophisticated approach was achieved later by harmonics-based detector. It
targets drawbacks of previous detector, which was volume-dependent and hence it doesn’t
have to behave correctly under different devices. Moreover, it also ignore various loud noises
like clapping, which would have been falsely classified by the previous one. This detector
examines the distribution of chroma components. It is typical for music frames that this
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distribution is usually not uniform and one or more chroma classes are dominant. To find
out how uniform the vector is, we take standard deviation of normalized chroma vector
and compare it to threshold 7. Then if the value is greater than T, it is the music frame,
otherwise it is a noise.

4.5 Feature Manager

Feature Manager takes care of two types of transformation:
1. Extraction of feature vectors from incoming audio frames (audio features)
2. Conversion of MIDI file into the list of feature vectors (MIDI features)

Each of these tasks follows its own procedure which will be further in details explained.
The main aim is to minimize differences between corresponding audio and MIDI features,
which allows to achieve a better matching.

Audio features

Audio feature vector is generated for each audio frame coming from the Audio Reader.
Frame is first multiplied by Hanning window and then passed to Fourier transform. Out-
put complex spectrum is transformed to real values by taking magnitude of each complex
sample.

First we initialize the pitch vector to very small numbers. This guarantees correct
normalization even if the input is zero. Then we go through the all piano pitches and for
each one add up the corresponding spectral bands. If the band is covered just partially,
we take the respective part of it. To increase robustness each pitch ranges from lower
frequency located exactly halfway between previous and current pitch to upper frequency
located exactly halfway between current and next pitch. Python implementation of pitches
extraction is described in algorithm 4.1.

To get chroma components, we add up all the pitches which belong to the same chroma
class as it is explained in section 3.2. Resulting vector is normalized and quantized.

Onset is calculated on normalized chroma vector just before quantization. We first
subtract component-wise previous chroma from the current chroma and add up all the
positive differences. From this energy difference we subtract the same first-order energy
difference calculated in the previous frame. Resulting second-order difference is final onset,
which is yet normalized by maximum onset in a time window. Length of the time window
can be set from one to a few seconds.

def get_pitches(self, bands):
pitches = [le—16] * (MIDI_HIGH + 1)

# Go through all piano pitches

for p in range(MIDI_LOW, MIDI_HIGH + 1):
flow = 2 *x ((p — 0.5 — 69) / 12) % 440 *x WINSIZE / SAMPLERATE
fhigh = 2 *x ((p + 0.5 — 69) / 12) * 440 * WINSIZE / SAMPLERATE
iflow = int(flow)
ifhigh = int(fhigh)
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# Pitch lies within one band
if iflow == ifhigh:
pitches[p] += bands[iflow] *x (fhigh — flow)
# Pitch spans over several bands
else:
pitches[p] += bands[iflow] *x (1.0 — (flow — iflow))
pitches[p] += bands[ifhigh] * (fhigh — ifhigh)
for f in range(iflow + 1, ifhigh):
pitches[p] += bands[f]

return pitches

Algorithm 4.1: Extraction of pitches from FFT bands in Python

MIDI features

MIDI features are extracted all at once from the list of notes parsed from a MIDI file. Before
extraction, index of notes is built for higher efficiency and easier manipulation. First we
split the score timeline to the time frames similar to ones produced by Audio Reader. Then
we map each note to its corresponding time frames and store in each frame a pointer to the
note. Now it is possible to directly access all the notes occurring at the specific time.

After the index was established, algorithm walks through all the time frames and for each
one composes chroma vector using synthesized spectral templates (section 3.5). Chroma
vector is normalized and onset is obtained the same way as in case of audio features.

Although the original paper proposes extracting full spectral templates (including all
FFT bands), I discovered that storing only extracted chroma classes gives almost equal
results while the note reconstruction is much faster. Templates are generated using software
synthesizer on prepared MIDI file with all the piano pitches arranged one after another.
The resulting WAV file is converted the same way as audio features to the chroma vectors.
All the vectors belonging to the one note are summed, normalized and stored into a binary
file.

The main advantage of this technique is no need to manually synthesize each score we
want to follow. Templates can be used generally for arbitrary music compositions. Further-
more, the templates file in binary form takes just a few kilobytes, and so the application
can even contain templates for several music instruments.

Comparison of audio features and score features extracted from the same piece are
displayed in figure 4.5.

4.6 Matcher

Matcher is the main component responsible for aligning audio data to their score represen-
tation. It receives fresh audio frames from Audio Reader and continually updates current
position in the score. Using improved online dynamic time warping algorithm (described
further) it can process arbitrary long musical performance with linear time complexity.
This section also discusses several approaches that has been taken to make the alignment
path smooth and robust to perturbations. Despite the fact that the internal parts of this
module have been rapidly evolving over the whole development time, the current solution is
quite mature and stable. However, there is still enough room for additional enhancements.
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Figure 4.5: First five bars of Rondo Alla Turca with extracted audio and score chroma
vectors, audio onsets (red curve) and score onsets (green curve).

Windowed Time Warping

The well-known Dynamic time warping works great for aligning two time series which are
known beforehand and which are not excessively long. But when it comes to online audio-
to-score alignment like in this case, when we know the score series beforehand but not the
audio, we need to use different algorithm. The online DTW proposed in section 2.4 was
implemented and tested. While it has worked quite good for some recordings, it gets easily
lost in others or in the recordings played at faster or slower tempo.

To bring a more robust solution, I took ideas from the both offline and online DTWs
and created concept which I called Windowed time warping. It uses only forward-path
estimation similar to Dixon’s online DTW, but computes the full cost matrix for a local
area. Cost matrix window has fixed size and it shifts after alignment path reached its
borders. The whole procedure consists of these steps:

1. Allocate cost matrix window M of size WIDTH.

2. Set audio index ¢, score index j and score offset f to zero.
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3. Wait for incoming audio frame.
4. Compute accumulated distance for each cell in column 7 of matrix M.

5. Increase i and calculate appropriate j using tempo estimation (described in the next
section).

6. If the ¢ or j reaches window size, move the window along the path by HOP, update i,
j and f and recompute the overlapping columns.

7. Go to step 3 until score finishes.

Good trade-off between precision and performance was found with window size WIDTH
set to 100. In the worst case it takes 10000 feature vector distance computations to fill
the window or 2000 computations for one second of audio. When the window is shifted,
it moves along the alignment path just by its proportional part HOP. This is to suppress
inaccurate values occurring with the first few frames and also to utilize already known audio
data. The HOP variable has been experimentally set to 70 %.
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Figure 4.6: Examined segments in the global cost matrix using Windowed time warping.

Visual demonstration of how this method works is depicted in figure 4.6. Colorful
overlapping squares are local cost matrices, in which blue color stands for lower cost while
green to red colors represent higher alignment cost. Global alignment path is drawn by the
red curve.
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Tempo Estimation

In original offline DTW algorithm the alignment path is reconstructed by tracing neigh-
boring cells with minimum cost backwards from end to start. Since this procedure cannot
be used in online DTW, we need to obtain the path in different way. Suitable approxima-
tion can by computed by estimation of current tempo, which is the same as path slope in
the cost matrix. As soon as the actual tempo and starting point are known, it is easy to
reconstruct the alignment path.

For each incoming audio frame a new column in cost matrix window is computed. Then
a cell with minimum value in this column is found. Vertical position of this cell divided by
its horizontal position represents the current most probable path slope. In order to get the
current tempo, which should be a robust variable, we take a weighted average of m slopes
in a row (specifically m = 25). Slopes are weighted by horizontal position of appropriate
column in the cost matrix window as explained by example 4.2. It is because the higher
position involves information from more audio frames and thus it is more reliable.

Column 1 2 3 4 5

Slope 1.66 | 1.33 | 1.25 | 1.18 | 1.16

1><1.66+2><1.33+...+5><1.16 — 1 24

Tempo I+2+..+5

Table 4.2: Example of tempo computation using weighted average of slopes.

Path Stabilization

Besides tempo estimation, another mechanism to increase robustness and smoothness is
path stabilization. It isn’t integral component and can be omitted, but when employed it
improves total precision of Matcher. It works as follows: take n consecutive tempos and
compute standard deviation, if the deviation is smaller than threshold ¢, mark the path as
stable. In my implementation n = 50 and t; = 0.015.

As soon as the path gets stable, computation of a new slope changes. It doesn’t look
anymore for minimum value in all the cells of a new column in DTW cost matrix, but just
in close neighborhood r around current position (r = 5). In this way a new slope value
can’t vary a lot from the previous one and therefore the total alignment path is smoother,
especially with slow tempo.

4.7 'Tools and Technologies

Without various third-party tools it wouldn’t we possible to develop the demo and mobile
applications in dedicated time. Here follows a short summary of all important tools and
libraries which were used:

e Python scripting language allowed rapid prototyping of demo application without

need to compile any source code. It performed reasonably fast thanks to native
integrated libraries.
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e NumPy is extension library for Python, which includes optimized scientific and
mathematical modules for Fast Fourier transform, matrix creation and manipulation,
or statistical functions.

e Matplotlib is a plotting library used for data and error visualizations. It proved to
be very helpful, since a lot of time of this thesis was spent by measuring, analyzing,
and evaluating the data.

o TiMidity++ was used for MIDI to audio synthesis. This flexible command-line tool
was useful to obtain a WAV file which exactly matches given MIDI file.

e SoX (Sound eXchange) is another command-line application. It was used for conver-
sion among different audio formats and for change of sample rate and audio channels.

e Audacity is audio editor which was used for precise audio analysis, normalization,
and trimming off silent parts at the beginning or at the end of audio recordings.

e MIDIUtil is Python library which offers simple MIDI files generation. It was useful
during spectral templates extraction to create MIDI file with all individual piano
pitches.

e Midi Sheet Music is Android application for displaying and playing MIDI files. It
provided algorithm for converting MIDI to notation described in section 5.2.

e Android SDK together with Android Studio was used to develop and debug mobile
application in Java programing language. More about this in chapter 5.

e Texture Atlas Generator’ is command line tool that generated texture atlas with
all the music symbols used in application. Texture atlas is then used for effective
drawing of music notation using OpenGL.

Zhttps://github.com/pjohalloran/texture-atlas-generator
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Chapter 5

Mobile Application

After the demo prototype had been done, it was time to develop mobile application for
Android, which is the main aim of this project. All the Python classes were rewritten to
Java language and missing modules were programmed from scratch. Main effort was put
to performance optimizations and low memory footprint, since mobile devices have limited
resources as CPU, memory, and battery capacity.

5.1 Audio Processing

Audio Reader from the demo application was replaced by Audio Recorder module, because
mobile app uses microphone instead of reading data from WAV files. Standard sampling
rate for sound is 44 100 Hz. According to official Android documentation®, every Android
device should support this frequency. However, this value is unnecessarily high for needs of
our music follower. For performance reasons it is good to examine other available values.
Each mobile device supports besides 44 100 Hz a different set of sampling rates, but most
of them is able to record sound also at 22 050 Hz and 11025 Hz. The last mentioned value
11025 Hz was chosen as default sampling rate for this application, because it is the closest
frequency higher than double of the highest piano pitch C8 (4186 Hz). It could happen
that this default sampling rate is not available on a device. In that case application falls
back to 44 100 Hz and dynamically downsamples each audio chunk by factor of four. This
task is very fast and doesn’t influence much total performance.

When the audio chunk is prepared, it is passed to Fast Fourier transform for frequency
analysis. In original Python implementation, there was FFT module included in the NumPy
library. Android platform doesn’t have such a standard library and developers are forced
to code their own or used external library. I used implementation of Decimation-in-
time Radix-2 FFT by Douglas L. Jones” written in Java. It is highly optimized in-place
algorithm for complex input. Real audio data are put to real array and imaginary array is
set to zero. After computation, complex results are in these two arrays. Finally, magnitude
of each complex number is taken to get FFT bands.

Even though the FFT is written in Java, it performs surprisingly fast. On smartphone
Samsung 19000 Galaxy S from 2010 with 1 GHz single-core ARM Cortex A8 the running
application takes just around 40-50 % of CPU resources. While performance is not a
problem, energy consumption could be. Considering the user running application for several

http://developer.android.com/reference/android/media/AudioRecord.html
2http://cnx.org/content/m12016/latest/
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hours, battery level can drop rapidly. To target this issue I plan in future versions to employ
some native FFT library such as FFTS?, which can utilize ARM NEON instructions.

5.2 Music Notation Extraction

The current source of music data for this application are MIDI files. MIDI is a very simple
format based on messages signalizing which event happened at what time. Messages are
organized into tracks, where usually one audio source corresponds to one MIDI track. We
are interested only in messages NOTE ON and NOTE OFF, which define lifetime of one specific
note.

First step of MIDI parsing is to convert MIDI file to a list of notes. Each record in the
list contains information about note start time, duration, velocity and MIDI note number.
Duration can be calculated as difference between NOTE OFF and NOTE ON time. Velocity
expresses how fast the piano key was pressed and corresponds to the note volume.

After these informations were gathered, the second step is to generate music notation.
Each duration is quantized to the closest note length with respect to the MIDI time signa-
ture: whole note, half note, quarter note, eight note, etc. Notes are thens split up to the
bars (music segments of the same length). It is also needed to assign accidentals (sharps,
flats, naturals) according to given MIDI key signature.

MIDI file Music notation
=
NOTE_ON D4, t=0.0 - Z T
NOTE_ON G2, t=0.0 Right hand '\3 J d—j—d—J;J—O—

NOTE_OFF D4, t=0.5
NOTE_OFF G2, t=0.5
]

| |

|

) | i

NOTE_ON G4, t=0.5 Left hand /’ 'JI g ] O
L N ] ‘

°
B =

Figure 5.1: Generation of music notation from MIDI format.

The final third step consists of splitting one series of notes to two staffs for left and
right hand as it is illustrated in figure 5.1. There are many algorithm trying to solve this
problem of splitting, but non of them works perfectly, since there is not enough information
for an ideal split. I used algorithm from the original Midi Sheet Music* notation module,
which works as follows:

e If the note is more than octave from the highest or lowest note that starts exactly at
this start time, choose the closest note.

e If this note is more than octave from the highest or lowest note in this note’s time
duration, choose the closest note.

e If the highest and lowest notes that start exactly at this start time are more than
octave apart, choose the closest note.

3http://anthonix.com/ffts/
*http://midisheetmusic.sourceforge.net/
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e If the highest and lowest notes that overlap this start time are more than octave
apart, choose the closest note.

e Otherwise, look at the previous highest and lowest notes that were more than octave
apart, and choose the closest note.

MIDI is established and ubiquitous music format. Its advantage is simplicity and easy
manipulation. On the other hand, it is not well suited for sheet music rendering, because it
doesn’t specify how the notation should exactly look. Much better option that was designed
from the beginning for music notation interchange is MusicXML. Is is XML-based file
format, so it is easily readable by both computer and human. It splits by design note
pitches into measures and staffs, provides information about music ornaments, beaming,
and even stem directions. A lot of current music software supports it and also the number
of sheet music in this format is increasing. For these reasons I plan to replace MIDI format
by MusicXML in some future release.

5.3 Music Notation Rendering

When we have the logical representation of music representation ready, the next phase is
to draw it to the display. First, all the measures are calculated such as note sizes, margins
and stem directions. Then the music is split into as many staffs as needed to fit it to the
size of screen with specified zoom level. Depending on the type of visual representation, it
can be one long staff or several vertically aligned staffs. In the end every staff is justified
to fill all the available space. This physical representation is stored in a hierarchical data
structure, which offers easy access for renderer.
For the sheet music rendering I decided to use OpenGL for several reasons:

e It shifts the load from CPU to GPU, while CPU can handle more important compu-
tations like Fourier transform and score follower.

e Android 2D rendering pipeline supports hardware acceleration as from Android 3.0,
but I wanted to support even older devices, which still had around 20 % of market
share at the time of beginning of this thesis (autumn 2013).

e Application should allow fast scrolling and zooming, which requires high-performance
renderer.

I use OpenGL ES 2.0, which is available on majority of Android devices. It is set to
orthographic projection with depth test disabled. It requires to write vertex and fragment
shaders, which are in this case simple and doesn’t perform any transformations. Information
about objects in scene is stored in vertex, drawlist and texture-coordinate buffers, which are
used to bridge the gap between OpenGL native system library and Java virtual machine.
Sheet music objects are during rendering accumulated in these preallocated buffers. After
that, application calls the function glDrawElements, which draws everything on the screen.

I tried to utilize all the possibilities that OpenGL offers. Staff lines as well as note stems
are represented as GL_LINES. All the other music symbols are stored in one big texture. This
texture atlas is then loaded into graphics memory during initialization. To draw some music
symbol it is just needed to map a particular area from the texture to a quad mesh. This
technique is displayed in figure 5.2.

37



SoNs
N

N

(0.79, 0.52)

Figure 5.2: Use of texture atlas for music symbols rendering.

Another important issue to solve is style of presenting a sheet music on the display.
Nowadays there are many different Android devices with various screen sizes ranging from
small smartphones, through phablets and 7” tablets, to full-size 10” tablets. Users usually
expect that application adapts to their hardware. Android SDK provides a sophisticated
method for accessing resources such as images, strings and variables transparently according
to the screen size or density. Customized resources are put to a folders with given name and
system automatically uses on each device the proper one. In this way application stores,
for instance, page margin and zoom level different for tablets and for smartphones.

The last thing to discuss is the type of scrolling, which has a high impact on user
experience. As musician plays the instrument, position in the sheet music moves forward.
The key responsibility of application is to show current position and upcoming measures
inside the display viewport in a predictable manner. It is unacceptable to suddenly scroll
display for no reason, because a musician could get lost.

There are basically two ways how to follow the current position in music:

e Page turning is a method which needs sheet music to be divided into pages and is
suitable for larger screen in tablets. It is the most natural way of displaying music,
because it mimics the sheet of paper. Since there is no scrolling, it is pleasant to eyes.
On the other hand there is a risky transition between changing one page to another,
which can distract the musician.

e Gradual scrolling is the other way, which requires one long canvas and works well
also for devices with small screen. It displays just a fraction of the whole sheet music
around the actual position. As the musician plays, it continually scrolls the canvas
by small pieces. The scrolling must be slow and smooth, because otherwise the music
would have been blurred and the user could have got the motion sickness.

I decided to use gradual scrolling, because it’s easier to implement and can be used
universally across screen sizes. I have tried several layouts with different scrolling directions,
which are shown in figure 5.3:

1. First example illustrates horizontal layout with one long music staff. Sheet music is
scrolled in such a way that actual position is always in center of the screen. This type
is suitable mainly for small screens. Little disadvantage of this solution is fast motion
of the canvas under high tempo.
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2. Second example shows vertical layout on landscape-oriented device with music split
into staffs long as screen width. As musician progresses through each staff from left to
right, the viewport is slightly scrolling vertically from top to bottom until the current
staff is at upper edge of the screen. This method is very unobtrusive and is used as
default in the application.

3. Third example is portrait-oriented variation of the second one. It doesn’t make much
sense on smartphones, but when used on devices with large screen such as tablets, it
feels like natural sheet music page. Moreover, the shorter lines are also easier to read.

Figure 5.3: Different types of sheet music layout with respective scrolling directions.

5.4 User Interface

Graphical user interface of the application is very simple. It consists of two Android activ-
ities (views):

e SongChooserActivity is displayed on application startup and its task is to render
a list of available music scores (figure 5.4). Each item displays title of the score and
artist, and contains URI of the corresponding MIDI file. The list is so far loaded
from static JSON file with some preselected classical and popular songs, but in future
versions I plan to offer possibility to search and download new songs from online music
library. When user taps a list item, activity gets the MIDI file path and pass it as a
parameter to the other activity.

e SheetMusicActivity receives the path, parses the MIDI file and renders a sheet
music on the screen (figure 5.5). At the same time it runs the score follower, which
starts listening to incoming sound. It also keeps the screen on in order to prevent
it from automatic dimming. User can scroll the canvas by scrolling gesture. For
performance reasons, renderer draws only notation lying inside virtual buffer, which
is circa 2 times bigger than the screen. This buffer is redrawn only when the current
viewport reaches its borders. Otherwise it is just moved by translation. User can
also change the position of cursor. When user taps some specific place in the sheet
music, system finds out position in score corresponding to the tapped position, cursor
is moved to the that place and score follower is restarted.
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Figure 5.4: Mobile application — list of available music scores.
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Figure 5.5: Mobile application — sheet music canvas with cursor at actual position.
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Chapter 6

Experiments

Experiments and measurements are important part of software testing. Using them, one
can decide if a newly introduced feature improves or degrades the system performance. In
this project, the testing scripts were continually evolving during the development.

All the test scripts operate on demo application and are written in Python. They work
as follows: for every tested parameter, script runs demo application on each file of dataset
and averages total alignment error. Besides standard test on alignment error, test cases
examine also the system behavior on modified internal parameters (windows size, overlap)
or on modified input audio files (tempo, noise, delay).

The main tested criterion is mean error — average time deviation from reference position.
This error is calculated by application as mean of piecewise difference between position
computed by Matcher and corresponding estimated position on tempo curve. A typical
threshold for considering the alignment to be successful is 250 ms. It is the maximum time
in which the player usually doesn’t distinguish if the position is correct or slightly out.

6.1 Dataset

As a dataset, 21 musical pieces were selected. It contains hand-picked MIDI files of classical
compositions by Beethoven, Chopin, or Mozart, as well as traditional songs and piano
arrangements of music from movies. Total length of this dataset is 32 minutes.

To generate audio from MIDI files, these steps were taken:

1. MIDI files were software synthesized using TiMidity++ to corresponding WAV files.
2. Audio was resampled to 11025 Hz and converted to mono.

3. Audio samples were normalized by maximum amplitude.

4. Silent part in the end of some audio files was trimmed out.

There were some problems with software synthesizer TiMidity++, which produced strange
crackling noises at the beginning of files. Solution was to run it with parameters -A120
and --output-24bit, which force the synthesizer to produce 24-bit samples and turns on
amplification. Audio samples are then converted back to 16-bit width to be readable for
application.

The main disadvantage of this dataset is a lack of labeling — the reference score position is
estimated from the current audio position. It assumes that tempo of recording is constant
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over time. Fortunately, it turned out that most recordings have tempo curve very close
to the straight line. Therefore this criterion is sufficient for the needs of this project.
Poor performing system usually have alignment error in seconds while estimated position
distortion is in milliseconds.

6.2 Parameters Adjustment

This section demonstrates the effect of parameters on system behavior. Proper choice of
parameter values is crucial for good performance. In each figure, the plot expresses mean
alignment error with respect to the examined variable. Some figures contains also the
second plot, which shows the error on noised audio. Amount of added white noise is 10 %
of the maximum amplitude.

Matcher window size

Size of the WIT'W (Windowed time warping) window used in Matcher module influences
the robustness of the system. The bigger window, the better stability, since Matcher can
process longer chunks of audio. On the other hand, total processing time increases by
square of the window size, so there is a trade-off. From plots in figure 6.1 is evident that
the optimal window size is around 100x100.
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Figure 6.1: Performance of the system depending on Matcher window size.

Matcher window overlap

WTW window overlap helps to stabilize matching process in a way that it bypasses inac-
curate slope estimation at the start of each iteration, where there is not enough previous
data in cost matrix. On the other hand, it slightly increases computation time at the end
of each iteration, where overlapped part needs to be recomputed. Figure 6.2 shows that
reasonable overlap percentage starts around 30 %.

Slopes history size

Matcher stores history of previously computed slopes to estimate current tempo. Short
history causes low fault-tolerance, while long history needs longer series of slopes to change
estimated tempo. According to plots in figure 6.3, the good trade-off value is between 30
and 40. The mobile application has this parameter set to 25, because it needs to react
faster on rapid tempo changes.
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Figure 6.2: Performance of the system depending on Matcher window overlap.
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Figure 6.3: Performance of the system depending on slopes history size.

Audio speed

To inspect the system behavior in real conditions, valuable measure is how the system reacts
to different speeds (tempos) of music. It mimics the situation when musician is practicing
a new piece, which he usually plays a little slower. Experienced pianists in contrast might
play even faster than 100 %. Plot in figure 6.4 illustrates that application can handle the
both cases. Higher error rates under lower tempos might be caused by sound distortions
(blurred onsets) and by the fact that error is influenced by tempo scale.
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Figure 6.4: Performance of the system depending on relative audio speed.

Audio delay

Last tested measure is audio delay, which gives how shifted in time is audio to score. It
indicates how fast and if at all the system is able to recover. It also corresponds to real
situation, when user start playing on slightly different position than where cursor currently
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is. Figure 6.5 shows that system handles well starts ahead the current score position, but
has problems to recover with starts more than one second in the past.
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Figure 6.5: Performance of the system depending on audio delay.

6.3 Evaluation

This section will summarize performance of the score following system. After all the internal
parameters were properly set to optimal values, each file from the dataset was tested as is
without any modifications of audio speed and without added noise. Results are displayed
in bar chart of figure 6.6. Individual bars are labeled by the name of composer or by the
name of movie where the music comes from. You can see that with default tempo almost
all the audio files were aligned with mean error less than 300 ms. Average alignment error
for the whole dataset is marked with red dashed line. Its value is 155 ms, which is error
almost indistinguishable by human player.
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Figure 6.6: Alignment error for all individual files in dataset. Total average error is marked
by red dashed line.

More detailed piecewise precision is described by table 6.1. Hit rate in each line repre-
sents a percentage of audio frames that were aligned with error less than time given by the
first column. Second column in the table contains error measured on original synthesized
audio, third column was measured on audio with 5% of white noise added, and fourth
column on files slowed down to 50 %.
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Indistinguishable delay lower than 250 ms was achieved during 85.5 % of time on orig-
inal dataset. Altered noised files were so successful in 81.5% of cases, respectively 62.5 %
on slowed down files. Using twice as long metrics, which is still acceptable for this task
of score following, the system correctly aligned 93.3 % samples on original dataset, 88.2 %
and 73.4 % on altered ones.

Error Hit Hit (5% noise) | Hit (50% speed)
< 0.05s 20.1% 21.0% 71%
< 0.10s 48.6 % 49.0 % 21.2%
< 0.15s 68.7% 66.1 % 38.3%
< 0.20s 79.6 % 75.9% 53.4%
< 0.25s 85.5% 81.5% 62.5%
< 0.30s 88.5% 84.5% 67.6 %
< 0.35s 90.4 % 86.3 % 70.2 %
< 0.40s 91.6 % 87.4% 71.6 %
< 0.45s 92.6 % 87.9% 72.7%
< 0.50s 93.3% 88.2% 73.4 %
< 0.60s 94.3 % 88.7% 74.2%
< 0.70s 95.1% 89.1% 74.7%
< 0.80s 95.7% 89.3% 75.1%
< 0.90s 96.5 % 89.4% 75.3%
< 1.00s 97.5% 89.6 % 75.5 %

Table 6.1: Piecewise alignment error on original audio, audio with 5% of white noise, and
audio slowed down to half tempo.
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Chapter 7

Conclusion

This project implements a score following system that is able to track arbitrary music piece
given a reference MIDI file and corresponding audio recording or real time audio stream.
The other state of the art score following system were studied and described as well as
innovative audio features extraction methods.

To align audio to music score, an online variant of Dynamic Time Warping (DTW)
called Windowed Time Warping was developed. This algorithm estimates path in DTW
cost matrix using only forward pass without need to perform additional computationally
expensive backward path. Audio features are obtained by mapping FFT spectral bands to
music chroma classes. Score features are extracted directly from MIDI file using sophisti-
cated techniques called Synthesized Spectral Templates and Locally Normalized Chroma
Onsets. Increased robustness and smoothness were achieved by using stability mode and
DTW path slope history to compute current tempo.

The final system was rewritten for Android platform and integrated into mobile applica-
tion. It contains preselected music compositions and hardware-accelerated music rendering
engine. It can adapt to various screen sizes, densities and display orientations of present
smartphones and tablets. Focus was also given to gradual display scrolling, which doesn’t
distract the musician. Application was released on Google Play Store'.

Performed experiments showed that the system aligns 85.5 % of time with error less
than 250 ms, or 93.3 % of time with error less than 500 ms. Even though the experiments
with noised and slowed down audio produced lower hit rates, the mobile application per-
forms in real conditions quite well and is able to follow pieces even with changing tempo,
pauses during performance, and minor deviations from the original score.

In further development I would like to make the score follower even more robust. It
should be able to better match events in the past and to recover when it gets stuck. I also
plan to add possibility to search and download new compositions from an online archive.
Long term goal is to switch from MIDI to MusicXML format, which contains much more
musical information and is suitable for music rendering.

https://play.google.com/store/apps/details?id=cz.vsmejkal.sheem
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