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Abstract

A graph G is equimatchable if any matching of G is a subset of a maximum-size

matching. From a general description of equimatchable graphs in terms of Gallai-

Edmonds decomposition [Lesk, Plummer, and Pulleyblank, "Equimatchable graphs",

Graphs Theory and Combinatorics, Academic press, London, (1984) 239-254.] it fol-

lows that any 2-connected equimatchable graph is either bipartite or factor-critical. In

both cases, the Gallai-Edmonds decomposition gives no additional information about

the structure of such graphs. It is well known that for any vertex v of a factor-critical

equimatchable graph G and a minimal matching Mv that isolates v the components

of the graph G \ (Mv ∪ {v}) are all either complete or regular complete bipartite.

We prove that for any 2-connected factor-critical equimatchable graph G, the graph

G \ (Mv ∪ {v}) has at most one component, and use this result to establish that the

maximum size of such graphs embeddable in the orientable surface of genus g is Θ(g),

improving on previous bound O(g3/2). In addition, we bound the maximum size of

k-degenerate 2-connected factor-critical graph. Moreover, for any non-negative inte-

gers g and k we provide a construction of arbitrarily large 2-connected equimatchable

bipartite graphs with orientable genus g and a genus embedding with face-width k.

The structure of factor-critical equimatchable graphs with a cut-vertex or a 2-cut was

determined in [J. Graph Theory, 10(4):439–448, 1986.]. We extend these results and

for all k ≥ 3 we describe the structure of factor-critical equimatchable graphs with a

k-vertex-cut. More precisely, for every k ≥ 3, we prove that if a k-connected equimatch-

able factor-critical graph G has at least 2k + 3 vertices and a k-cut S such that G − S

has two components with sizes at least 3, then G − S has exactly two components and

both are complete graphs. Consequently, if k ≥ 4 such graphs have independence num-

ber 2. Additionally, we provide also a characterisation of k-connected equimatchable

factor-critical graphs with a k-cut S such that G−S has a component with size at least

k and a component with size 1 or 2. Finally, we show that if every minimum cut S of

an equimatchable factor-critical graph separates a component with size at most two,

then the independence number can be arbitrarily high and the number of components

can be as high as |V (S)|.

KEYWORDS: graph, matching, equimatchable, factor-critical, isolating matching,

matching extendability, genus, embedding, representativity, sparse.
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Abstrakt

Graf G sa nazýva equimatchable, ak sa každé jeho párenie dá rozšíriť na najväčšie páre-

nie v G; teda každé párenie je podmnožinou nejakého najväčšieho párenia. Z charak-

terizácie equimatchable grafov pomocou Gallai-Edmonsovej dekompozície vypýva, že

dvojsúvislé equimatchable grafy sú buď bipartitné alebo faktorovo-kritické. V oboch

prípadoch Gallai-Edmondsová dekompozícia neposkytuje žiadne dodatočné informácie

o štruktúre týchto grafov. Je známe že pre ľubovoľný vrchol v faktorovo-kritického

equimatchable grafu G a každé minimálne izolujúce párenie Mv izolujúce vrchol v

sú všetky komponenty grafu G \ (Mv ∪ {v}) buď kompletné alebo regulárne kom-

pletné bipartitné. V našej práci dokazujeme, že pre ľubovoľný dvojsúvislý faktorovo-

kritický equimatchable graf G má graf G \ (Mv ∪ {v}) najviac jeden komponent.

Tento výsledok používame na určenie maximálneho počtu vrcholov takýchto grafov

vnoriteľných do plochy rodu g na Θ(
√

g), čím zlepšujeme doteraz známe ohraničenie

O(g3/2). Taktiež v práci ohraničujeme počet vrcholov k-degenerovaných dvojsúvislých

faktorovo-kritických grafov. Pre ľubovoľné nezáporné prirodzené čísla g a k konštruu-

jeme ľubovoľne veľké 2-súvislé bipartitné equimatchable grafy s orientovateľným rodom

g a reprezentativitou k.

Štruktúra faktorovo-kritických equimatchable grafov vzhľadom na artikuláciu alebo

dvojrez bola určená v článku [J. Graph Theory, 10(4):439–448, 1986.]. V tejto práci

rozširujeme výsledky tohto článku a popisujeme štruktúru faktorovo-kritických equimatch-

able grafov s k-rezom pre všetky k ≥ 3. Pre všetky k ≥ 3 dokazujeme, že ak k-súvislý

equimatchable graf má aspoň 2k + 3 vrcholov a k-rez S taký, že G − S má dva kompo-

nenty s veľkosťou aspoň 3, potom G−S má presne dva komponenty a oba sú kompletné

grafy. Následne ukazujeme, že ak k ≥ 4, potom takéto grafy majú číslo nezávislosti

2. Taktiež poskytujeme charakterizáciu k-súvislých faktorovo-kritických equimatch-

able grafov s takým k-rezom S, že G − S má jeden komponent s veľkosťou aspoň k

a druhý s veľkosťou 1 alebo 2. Nakoniec ukazujeme, že ak každý minimálný rez odd-

eľuje komponent s veľkosťou nanajvýš dva, potom graf môže obsahovať ľubovoľne veľkú

nezávislú množinu vrcholov a počet komponentov G−S môže dosiahnuť veľkosť |V (S)|.

KĽÚČOVÉ SLOVÁ: graf, párenie, equimatchable, faktorovo-kritický, izolujúce páre-

nie, rozšíriteľnosť párení, vnorenie grafu, rod plochy, reprezentativita.
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Introduction

In this thesis we investigate the structure of equimatchable graph. Equimatchable

graphs are exactly the graphs in which one can always find maximum matching in

linear time using greedy algorithm. Formally, a graph is called equimatchable if every

its matching is a subset of a maximum matching. Equimatchable graphs constitute

a classical topic of matching theory investigated for several decades since appearing

in [12], [20], and [24]. In particular, Grünbaum [12] asked for a characterisation

of all equimatchable graphs. The first step in this direction was a characterisation

of all randomly-matchable graphs – equimatchable graphs with a perfect matching.

Equimatchable graphs with a perfect matching were characterized by Sumner in [39]

and all such graphs are isomorphic to K2n or Kn,n. The fundamental work [19] provides

a structural characterisation of equimatchable graphs without a perfect matching us-

ing Gallai-Edmonds decomposition. A particular consequences of this description are

that there is a polynomial-time algorithm recognizing equimatchable graphs, and that

every 2-connected equimatchable graph is either bipartite, or factor-critical. Despite a

considerable effort was invested into the study of the relationship between equimatch-

ability and other graph properties, the structure of equimatchable graphs is still not

very well understood. A particular exception are equimatchable factor-critical graphs

with 1 or 2-cuts, which were characterized in [8], and planar and cubic equimatchable

graphs, which were characterized in [16].

In the paper [16] it is proved that if G is a 3-connected equimatchable planar graph,

v a vertex of G, and M a minimal matching isolating v, then G \ (V (M) ∪ {v}) is

randomly matchable and connected, where a matching M is isolating a vertex v if {v}
is a component of G \ V (M). Consequently authors showed that there are precisely

twenty-three 3-connected equimatchable planar graphs. Later, Kawarabayashi and

Plummer in paper [15] showed that for any fixed g, there are only finitely many 3-

connected equimatchable graphs G embeddable in the surface of genus g with the

property that either G is non-bipartite or the embedding has representativity at least

three. The proof is based on a result that the maximum size of such a graph is at most

c · g3/2, where c is a constant.

In Chapter 2 we improve the result of [15] and prove that if G is a 2-connected

equimatchable factor-critical planar graph, v a vertex of G, and M a minimal matching
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isolating v, then G \ (V (M) ∪ {v}) is randomly matchable and connected.

We use this result to show that if f(g) is function that gives the maximum number of

vertices of a 2-connected factor-critical equimatchable graph embeddable in the surface

of orientable genus g, then f(g) = Θ(
√

g). Moreover, we are able to show that every

graph class with bounded degeneracy contains only a finite number of 2-connected

factor-critical equimatchable graphs. We should note that classes with bounded ex-

pansion, excluded minor/topological minor, bounded degree, bounded tree-width, and

bounded genus have all bounded degeneracy.

We also provide a construction of arbitrarily large 2-connected equimatchable bipartite

graphs with genus g for any nonnegative integer g. We should note that every 2-

connected equimatchable graph that is not bipartite is factor-critical.

The aim of Chapter 3 is to describe the structure of equimatchable factor-critical

graphs with respect to their minimum cuts, thus extending the results of Favaron [8]

to graphs with higher connectivity. Our main results can be described as follows. Let

G be a k-connected equimatchable factor-critical graph with a k-cut S. If G − S has

a component with at least k vertices, then G − S has exactly two components which

are very close to complete or complete bipartite graphs. Furthermore, if G − S has at

least k + 3 vertices and two components with at least 3 vertices and k ≥ 4, then the

graph has independence number 2. This implies that for k ≥ 4 a k-connected graph

with odd number of vertices and a k-cut S such that G − S has two components with

sizes at least 3 is equimatchable and factor-critical if and only if it has independence

number 2.



1
Definitions and Preliminaries

This chapter is devoted to a presentation of the basic concepts used in this thesis. We

start with a summary of used graph-theoretic notation. In the second part of this chap-

ter we define matching, equimatchable graph, and related concepts, present Edmonds-

Gallai decomposition theorem and a characterization of equimatchable graphs based

on this decomposition. The rest of this chapter consists from a short foundation of

topology and topological graph theory.

1.1 Graphs

First we present some basic notation and definitions used throughout the text, for the

concepts not defined the reader is referred to [4].

A graph is a pair G = (V, E) of sets such such that E ⊆ [V ]2; thus the elements of E

are 2-elements subsets of V . The elements of V are the vertices (or node, or points)

of the graph G, the elements of E are its edges (or lines). The usual way to picture

graph is by drawing a dot for each vertex and joining two vertices by a line if the

corresponding two vertices form an edge. The vertex and edge set of a graph G are

also denoted by V (G) and E(G), respectively. Graphs in topological graph theory are

usually with loops and multiple edges. Since, in our thesis we work exclusively with

matchings, we could excludes loops and multiple edges in graphs (see Note 1.2 on page

5). For a graph G and its vertex v, the set difference G \ {v} is for brevity denoted

by G − v. Moreover, for set difference between sets A and B we use A \ B and A − B

3



1.1. GRAPHS 4

interchangeably.

The number of vertices of a graph G is its order, written as |G|. The number of edges

of graph G is denoted by ||G||. A graph or a component is even if it has even number

of vertices, otherwise it is odd. A vertex v is incident with an edge e if v ∈ e; then

e is an edge at v. The two vertices incident with an edge are its endvertices or ends.

An edge {x, y} is usually written as xy (or yx). Two vertices x, y are adjacent, or

neighbours, if xy is an edge of G. Two edges e 6= f are adjacent if they have a common

vertex as their end. If all vertices of graph are pair-wisely adjacent, then G is complete.

A complete graph on n vertices is Kn. The degree deg(v) of a vertex v is the number

of edges incident with vertex v. By our definition the degree of a vertex v is equal to

the number of neighbours of v. Set of neighbours of v is called neighbourhood (of v)

and is denoted by N(v). Let U be a set of vertices such that U ⊆ V . Then N(U)

denotes union of neighbourhoods of all vertices of U . If every vertex of the graph G

has the same degree k, then G is said to be k-regular. A set of vertices or edges is said

to be independent if no two of its elements are adjacent. The independence number of

a graph G is the size of a largest independent set of G.

A graph is said to be connected if for any vertices a, b of G there is a sequence

(v0, v1, . . . , vn) of vertices of graph such that a = v0, b = vn, and for each i the ver-

tices vi, vi+1 are adjacent. The maximal connected subgraphs of a graph G are called

(connected) components of G. A graph is k-edge-connected for k ≥ 2 if G is connected

and for any set S of k − 1 edges of G, the graph G \ S is connected. Similarly, G is

k-vertex-connected, or just k-connected, if it is connected and for every set S of k − 1

vertices of G, the graph G \ S is connected and it is not an isolated vertex. An edge

e is a bridge if G is connected but G \ e is not. Similarly, a vertex v is cut-vertex (or

articulation) of G if G is connected but G \ v is not.

Let G = (V, E) and G′ = (V ′, E ′) be two graphs. If V ′ ⊆ V and E ′ ⊆ E, then G′ is

said to be a subgraph of graph G. If G′ is a subgraph of a graph G such that V ′ = V

then G′ is spanning subgraph of G. Subgraph H = (V ′, E ′) of a graph G = (V, E) is

said to be induced by V ′ if for every edge e ∈ E holds: if both ends of e are in V ′, then

e ∈ E ′. We denote the subgraph of graph G induced by vertex set U as G[U ], or just

U , when it is clear that we mean a subgraph, not a vertex set. Unless evident from

the immediate context otherwise, subgraphs in this thesis are always considered to be

induced subgraphs.
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Let r ≥ 2 be an integer. A graph G = (V, E) is said to be r-partite if V admits a

partition into r classes such that every edge has its ends in different classes: vertices

in the same partition class must be independent. Instead of ’2-partite’ one usually

says bipartite. An r-partite graph in which every two vertices from different partition

classes are adjacent is called complete (multipartite). Complete r-partite graph with

partitions of sizes n1, . . . , nr is denoted by Kn1,...,nr
. Bipartite graphs are characterized

by the following well-known property:

Proposition 1.1.1. A graph is bipartite if and only if it contains no odd cycle.

1.2 Matchings

A set M of independent edges in a graph G = (V, E) is called a matching. Matching

M is a matching of U ⊆ V if every vertex of U is incident with an edge in M . The

vertices in U are then called matched or covered (by M). Vertices not incident with

an edge of M are unmatched or uncovered.

If A and B are subgraphs or sets of vertices of a graph G, then an edge, a set of edges,

or a matching are said to be between A and B if every such edge has one endpoint in

A and the other endpoint in B.

Note. In multigraphs, since a loop is considered to be adjacent to itself, they are

banned to be in any matching. Only one edge between vertices u, v of graph G can be

in matching. Therefore, for matchings it is important only if u and v are adjacent, and

not how many edges are between them. Let a graph G be formed from a multigraph H

by removing loops and replacing multi-edges by single edge. Then G has a matching

M if and only if there exists a matching M ′ of H such that edge xy ∈ M if and only

if there is edge between vertices x and y in M ′.

For a matching M , |M | denotes the number of edges of M . A matching M in a graph

G = (V, E) is said to be maximal if any set M ′ ⊆ E, with M ′ ⊃ M is not a matching

in G. A matching M in G is maximum if, among all matchings in G, it is one with

largest cardinality.

For a vertex v, a matching M is called a matching isolating v if {v} is a component

of G − V (M). A matching M isolating a vertex v is called minimal if no subset of M

isolates v.
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A k-regular spanning subgraph is called k-factor. Thus, a subgraph H ⊆ G is a 1-factor

of G if and only if E(H) is a matching of V (G). A non-empty graph G = (V, E) is said

to be factor-critical if G ha no 1-factor but for every vertex v ∈ V the graph G\{v} has

an 1-factor. A matching M that is an 1-factor is called perfect matching. If matching

M leaves uncovered just one vertex, then M is said to be near-perfect matching.

The following theorem shows a necessary condition for bipartite graphs to have match-

ing that saturates one partition.

Theorem 1.2.1 ([13]). Let G be bipartite graph with partitions A and B. Then G

contains a matching of A if and only if |N(S)| ≥ |S| for all S ⊆ A.

1.2.1 Equimatchable graphs

A graph in which every matching extends to (i.e., is a subset of) a perfect matching

is said to be randomly matchable. More generally, a graph in which every matching

extends to (i.e., is a subset of) a maximum matching is called equimatchable.

Randomly matchable graphs were already characterized by Sumner in [39].

Theorem 1.2.2 ([39]). A connected graph is randomly matchable if and only if G =

Kn,n or G = K2n.

Now we are ready to present Gallai-Edmonds (D, A, C) decomposition, which is very

useful in the study of matchings in graphs, in particular in the study of equimatchable

graphs.

For a graph G = (V, E) denote by D the set of all vertices of G which are not saturated

by at least one maximum matching of G. Let A be the neighbour set of D, i.e., the set

of vertices in V − D adjacent to at least one vertex in D. Finally C = (V − D) − A.

Then (D, A, C) is called Gallai-Edmonds decomposition of the graph G. Using Gallai-

Edmonds decomposition the following theorem describes the structure of all maximum

matchings in graph G. The theorem was proved independently by Gallai ([9], [10]) and

Edmonds ([6]).
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Theorem 1.2.3 (Gallai-Edmonds Structure Theorem [9, 10, 6]). Let G be a graph and

(D, A, C) its Gallai-Edmonds decomposition. Then all the following conditions hold:

(i) the components of the subgraph induced by D are factor-critical;

(ii) the subgraph induced by C has an 1-factor;

(iii) if M is a maximum matching of G, it contains a near-perfect matching of each

component of D, a 1-factor of each component of C, and matches all vertices of

A with vertices in distinct components of D;

(iv) the bipartite graph obtained from G by deleting the vertices of C and edges spanned

by A and by contracting each component of D to a single vertex has a matching

that saturates A.

(v) The size of any maximum matching is 1
2
(|V | − ω(D) + |A|), where ω(D) is the

number of componenents of G[D].

Using the previous theorem it is easy to prove the next lemma stated as Lemma 1 in

[19].

Lemma 1.2.4. Let G be a connected equimatchable graph with no perfect matching,

having Gallai-Edmonds decomposition (D, A, C). Then C = ∅ and A is an independent

set in G.

The following characterization of equimatchable graphs was proved in [19].

Theorem 1.2.5 ([19]). Let G be a connected equimatchable graph without a perfect

matching. Let (D, A, C) be its Gallai-Edmonds decomposition and suppose A 6= ∅. Let

Di denote any component of D with |Di| ≥ 3. Then all of the following conditions

hold:

(1) Component Di must be one of following types of graphs:

I. Di
∼= K2m+1 for some m ≥ 2 and every point of Di is joined to exactly one

common point a ∈ A.

II. Di contains a cut-vertex di of G (called hook of Di) which is the only vertex of Di

adjacent to a point of A. Let H1
i , . . . , Hr

i be the components of Di − di. Consider
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any one of these, say Hj
i . There are two possibilities: (a) Hj

i
∼= K2m for some

m ≥ 1 and at least two edges join di to Hj
i , or (b) Hj

i
∼= Km,m for some m ≥ 1

and if (U, W ) is the bipartition of Hj
i , at least one edge joins di to a vertex u of

U and at least one edge joins di to a vertex w of W .

III. At least two vertices of Di are adjacent to points of A and at least one vertex of

Di is adjacent to no point of A. In this case there is a vertex a ∈ A such that

a separates Di from rest of graph. Here we have four subcases. If Di contains

exactly two vertices y1 and y2 of attachment to a, then Di must be one of following

three types: (a) Di is K3; (b) (Di−y1−y2) is a complete bipartite graph Kr, r − 1

where r ≥ 2, and if (U, W ) is the bipartition of Di − y1 − y2 where |U | = r, then

y1 and y2 are both adjacent to all points of U and to each other; (c) (Di −y1 −y2)

is K2r−1, r ≥ 2, y1 and y2 are both adjacent to all vertices of Di − y1 − y2 and

y1 and y2 may or may not be adjacent to each other. The fourth subcase may be

stated as follow: (d) if Di has between 3 and |Di| − 1 points of attachment to a,

then Di is K2r−1 for some r ≥ 3.

(2) Suppose we delete all type II and type III components of D from G and contract

all type I components to single points. Then there is a matching of resulting (bipartite)

graph G′ which covers all vertices of A and G′ is equimatchable.

The next theorem, converse of Theorem 1.2.5 was proved in [19].

Theorem 1.2.6. Let G be connected graph without a perfect matching, which is not

factor-critical and which has Gallai-Edmonds decomposition (D, A, C). Suppose

(1) C = ∅; and

(2) A is independent set.; and

(3) All components of D are singletons or of types I, II, or III as described in Theo-

rem 1.2.5.; and

Let G1 be the bipartite graph obtained from G by shrinking (contracting) all compo-

nents of D to singletons and let G′
1 be the graph obtained from G1 by deleting all points

corresponding to type II and III components of D. Suppose:

(4) G′
1 is equimatchable graph and |A| ≤ 1

2
|V (G′

1)|.

Then G is equimatchable.
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Theorem 1.2.7. A connected bipartite graph G = (U, W ) with |U | ≤ |W |, is equimatch-

able if and only if, for all u ∈ U , there exists a non-empty X ∈ N(u) such that

|N(X)| ≤ |X|.

1.3 Surfaces and Embeddings

In this part we briefly introduce basic concepts of topological graph theory - topological

surfaces and embeddings of graphs in surfaces. Most of definitions and theorems in

this section is from [11] and from [40]. For a deeper account of topology, the reader is

referred to [1].

An embedding of a graph in a surface generalizes the concept of an embedding of a

graph in the plane. From a visual point of view, we can imagine embedding as a

drawing of the graph on a sphere, torus, double-torus or a similar surface.

Formally, any graph can be presented by a topological space in following sense. Each

vertex is represented by a distinct point and each edge by a distinct arc, homeomorphic

to a closed interval [0, 1]. Naturally, the boundary points of an arc represent the ends

of the corresponding edge. (Of course, interiors of arcs are mutually disjoint and do not

meet the points representing vertices.) Such a space is called topological representation

of the graph G.

Graphs G and H are said to be homeomorphic if they have respective subdivisions G′

and H ′ such that G′ and H ′ are isomorphic.

The central concern of topological graph theory is the placement of graphs on surfaces.

A topological space M is called n-manifold if M is Hausdorff(see [1]) and can be

covered by countably many open sets, each of which is homeomorphic either to the

n-dimensional open ball

{(x1, . . . , xn)|x2
1 + · · · + x2

n < 1}

or the n-dimensional half-ball

{(x1, . . . , xn)|x2
1 + · · · + x2

n < 1, xn ≥ 0}.

A manifold is closed if it is compact and its boundary is empty. By surface we usually
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mean closed, connected 2-manifold, such as the sphere, the torus, or the Klein bottle.

We define an embedding of a graph in a surface. Let G be a graph and S a surface. An

embedding is a continuous one-to-one function Π : G → S. Usually, we consider our

graphs to be subsets of the surface S, and the function Π : G → S is inclusion map.

The embedding is then denoted simply G → S.

Given an embedding G → S, the components of S − G are called regions. Regions are

also called faces of embedding. If each region is homeomorphic to an open disc, the

embedding is said to be 2-cell (or cellular) embedding. The closure in surface S of a

region in the 2-cell embedding G → S need not be homeomorphic to closed disc. If

there exists a boundary walk containing vertices x and y, then we say that vertices x

and y are on same face of embedding G → S.

Each face of an embedding G → S has two possible directions for its boundary walk. A

face is assigned an orientation by choosing one of these two directions. An orientation

of embedding G → S is an assignment of orientations to all faces so that adjacent

regions induce opposite direction on every common edge. If a graph G is 1-skeleton of

a triangulation of surface S, then orientation of embedding G → S is called orientation

of triangulation. A surface is orientable if for every graph G there exists an embedding

G → S with an orientation. If every embedding of a graph to a surface does not have

an orientation, then the surface is said to be non-orientable. In this work, we will deal

exclusively with orientable surfaces.

Given an orientable surface, we can add handle to it in such a way that the resulting

object is an orientable surface. For example, we can obtain the torus by adding a

handle to the sphere. In general, starting with the sphere S0 we can add g handles

to it. The resulting surface is called a sphere with g handles and it is denoted Sg .

The number g is then called the orientable genus of the surface. The following crucial

theorem asserts that these are essentially the only orientable surfaces.

Theorem 1.3.1. The surfaces Sg, g = 0, 1, 2, . . . are pairwise non-homeomorphic and

every closed orientable surface is homeomorphic to one of them.

The minimum g such that there exists embedding G → Sg is called genus of graph and

is denoted γ(G). The maximum such g that there exists cellular embedding G → Sg

is denoted γM(G).
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Theorem 1.3.2 ([5]). A connected graph G has a 2-cell embedding in Sg if and only

if γ(G) ≤ g ≤ γM(G).

In our thesis we will use the following theorem about genus of complete and complete

bipartite graphs frequently. The theorem can be found in chapter 6 of [40].

Theorem 1.3.3 ([32, 29, 30, 31]). The orientable and nonorientable genera of complete

and complete bipartite graphs are given by the following formulae:

γ(Kn) =

⌈

(n − 3)(n − 4)

12

⌉

, n ≥ 3;

γ̃(Kn) =

⌈

(n − 3)(n − 4)

6

⌉

, n ≥ 3 and n 6= 7, γ̃(K7) = 3;

γ(Km,n) =

⌈

(m − 2)(n − 2)

4

⌉

, m, n ≥ 2;

γ̃(Kn,m) =

⌈

(m − 2)(n − 2)

2

⌉

, m, n ≥ 2.

In addition, we mention the next theorems about the maximum genus of complete and

complete bipartite graphs.

Theorem 1.3.4 ([27]). Let G = Km,n. Then

γM(G) =

⌊

(m − 1)(n − 1)

2

⌋

.

Theorem 1.3.5 ([28]). Let G = Kn. Then

γM(G) =

⌊

(n − 1)(n − 2)

4

⌋

.

Let Π : G → S be an embedding. Denote number of vertices of G p, number of edges

q and number of faces in embedding Π as r. From this time forth in this section we

will be using former denotation for number of vertices, edges and faces in Π.

Let Π be an embedding of a connected graph into a closed, connected surface. The

Euler characteristic of Π is the value p − q + r, and it is denoted χ(Π). The following

famous formula shows that for every standard surface the value of Euler characteristic

is independent from the choice of graph and of a cellular embedding.
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Theorem 1.3.6 (The Euler-Pointcaré formula). Let G → S be a 2-cell embedding, for

any g = 0, 1, 2, . . . . Then χ(G → S) = 2 − 2g.

The Euler-Pointcaré formula is often used in conjunction with relationship between the

numbers of edges and faces to prove that certain graphs cannot be embedded into the

surface Sg.

We now present a well-known upper bound on the number of faces of an embedding of

a simple graph.

Theorem 1.3.7. Let G be a simple graph with q edges embedded with r faces. Then

2q ≥ 3r.

Proof. As G is simple, any face of the embedding has length at least 3. The result

follows from the fact that the union of face boundaries contains every edge precisely

twice.

Actually, if we have a graph with given girth then following theorem holds:

Theorem 1.3.8. Let G be connected graph that is not a tree and let Π : G → S be an

embedding. Then 2q ≥ girth(G) · r.

Face-width, sometimes called also representativity or planar-width, of an embedding Π

in a surface S is the minimum number of faces of Π whose union contains a noncon-

tractible cycle in the surface S. Several equivalent definitions and further details about

face-width can be found in [25].

1.3.1 Rotation systems

Define a 1-band to be a topological space b together with homeomorphism h : I×I → b,

where I denotes the unit interval [0, 1]. The arcs h(I × {j}) for j = 0, 1 are called ends

of band b and the arcs h({j} × I) for j = 0, 1 are called sides of band b. A 0-band

and a 2-band are simply homeomorphs of the unit disc. A band decomposition of the

surface S is collection B of 0-bands, 1-bands, 2-bands satisfying these conditions:

(1) Different bands intersect only along arcs in their boundaries.

(2) The union of all the bands is S
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(3) Each end of each 1-band is contained in a 0-band.

(4) Each side of each 1-band is contained in a 2-band.

(5) The 0-bands are pairwise disjoint and the 2-bands are pairwise disjoint.

Corresponding reduced band decomposition B omits the 2-bands. Note that, in embed-

ding G → S 0-bands represents vertices of G, 1-bands represents its edges and 2-bands

represents regions of embedding. To describe a embedding G → S or equivalently its

band decomposition are 2-bands not really needed to define, since the union of 1.bands

and 0-bands is surface with boundary, and since is essentially only one way how to fill

in the faces to complete to closed surface.

A band decomposition is called locally oriented if each 0-band is assigned an orienta-

tion. Then 1-band is called orientation-preserving if direction induced on its ends by

adjoining 0-bands are the same as those induced by one of two possible orientation of

1-band; otherwise 1-band is called orientation-reversing. An edge e in graph embed-

ding associated with locally oriented band decomposition is said to have (orientation)

type 0 if its corresponding 1-band is orientation-preserving and (orientation) type 1

otherwise.

To describe a graph embedding G → S or equivalently its band decomposition, we

need to specify only how the ends of 1-bands are attached to the 0-bands. We define

rotation at a vertex v of graph to be ordered list, unique up to cyclic permutation, of

the edges incident on that vertex. Let a rotation system on a graph be an assignment

of a rotation to each vertex and a designation of orientation type for each edge. Then

the preceding discussion can be summarized by following theorem.

Theorem 1.3.9. Every rotation system on a graph G defines (up to equivalence of

embeddings) a unique locally oriented graph embedding G → S. Conversely, every

locally oriented graph embedding G → S defines a rotation system for G.

From now on we will use the terms embedding and rotation system interchangeably.

Given a rotation system for a graph, one frequently needs to obtain a listing or enu-

meration of boundary walks of the reduced faces. We first introduce some helpful

terminology. If rotation at vertex v is . . . de . . . , then we say d is the edge before e at

v, that e is the edge after d at v, and that edge pair (d, e) is corner at v with second

edge e.
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To enumerate boundary walks of reduced faces we use following algorithm Face Tracing

Algorithm.

Face Tracing Algorithm

Assume that given graph G has not any vertex of degree two.

(1) Choose an initial vertex v0 of G and a first edge e1 incident on v0. Let v1 be the

other endpoint of e1.

(2) If the walk traced so far ends with edge ei at vertex vi then the next edge ei+1 in

the boundary walk is the edge after (resp., before) ei at vi if ei is type 0 (resp., type

1).

If the next two edges in the walk would not be e1 and e2 then

(3) Go to step (2).

Else

(4) The boundary walk is finished at edge en.

(5) If there is a corner at any vertex v that does not appear in any previously traced

faces, then choose as initial vertex v and as the first edge second edge of this corner at

v, and go to step (2)

(6) If there are not unused corners, then all faces have been traced.

Suppose graph G has some vertices with degree 2. Then we just find the graph H,

without valent 2 vertices, such that G is subdivision of H. Then we use face-tracing

algorithm on H and subdivide edges to correspond with graph G.



2
2-connected equimatchable graphs on

surfaces

In this chapter we investigate the structure of factor-critical equimatchable graphs

with respect to a minimal matching isolating a vertex. A matching M is isolating a

vertex v if {v} is a component of G \ V (Mv). We use structural results to bound the

maximum number of 2-connected equimatchable graphs embeddable into fixed surface

and 2-connected equimatchable graphs with bounded degeneracy.

The relationship between embeddings of graphs and matching extensions was exten-

sively studied, see for instance [3], [14], or [21]. The characterisation of equimatchable

graphs in [19] implies that any 2-connected equimatchable graph is either bipartite or

factor-critical. A bipartite graph cannot be factor-critical, since otherwise it would

have an odd number of vertices and removing a vertex from the smaller partite set

cannot yield a graph with a perfect matching. Therefore, these two classes are disjoint.

All 3-connected planar equimatchable graphs are characterised in [16] – there are 23

such graphs and none of them is bipartite. Let G be a 3-connected equimatchable

graph with an embedding Π in the surface of genus g. In [15] it is proved that if G is

either factor-critical, or bipartite and Π has face-width at least 3, then the number of

vertices of G is bounded from above by c · g3/2 for some constant c. The proof uses

the fact that there is no such bipartite graph at all and proceeds to restrict the size of

equimatchable factor-critical graphs embeddable in a fixed surface. First it is shown

that if a 3-connected graph has many vertices (a number linear in the genus of the

graph), then it has a vertex v isolated by a matching Mv of size at most 4. The proof

15
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is finished by showing that G \ (V (Mv) ∪ {v}) has at most
(

8
3

)

(4g + 3) components.

To bound the maximum size of equimatchable factor-critical graphs embeddable in a

fixed surface, we employ a slightly different strategy: while we allow larger isolating

matchings, we use a more precise description of G \ (V (Mv) ∪ {v}) given in our main

result, Theorem 2.1.3, which implies that it has at most one component. As a complete

or complete bipartite graph embeddable in the surface of genus g has at most O(
√

g)

vertices, it suffices to bound the size of isolating matchings. Note that any vertex of

degree d admits an isolating matching of size at most d. The last ingredient of our

proof is Lemma 2.2.7 showing that either the total number of vertices of the graph, or

the minimum degree, is sufficiently small.

Concerning the methods used in this chapter, while we repeatedly use the characteri-

sation of randomly matchable graphs from [39], the Gallai-Edmonds decomposition is

not used beyond the fact that every 2-connected equimatchable graph is either bipar-

tite or factor-critical. The constants in the orientable and the nonorientable case are

different, hence we state our results explicitly for both cases. However, most of the

proofs are virtually identical and in such cases, we omit the proof of the nonorientable

case.

The chapter is organized as follows. In Section 2.1 we present a proof of our main result

stating that the graph G\(V (Mv)∪{v}) is connected for any 2-connected factor-critical

equimatchable graph G and a minimal matching Mv isolating a vertex v. Section 2.2

is devoted to lower and upper bounds on the maximum size of an equimatchable graph

embeddable in a fixed surface.

Most of the material in this chapter is based on [7].

2.1 Isolating matchings 2-connected equimatchable graphs

This section is devoted to the proof of our main result stated as Theorem 2.1.3. We

start with two lemmas concerning isolating matchings.

Lemma 2.1.1. Let G be a factor-critical graph. For every vertex v of G there is a

matching Mv ⊆ E(G) isolating v such that |Mv| ≤ deg(v).

Proof. Since G is factor critical, the graph G′ = G − v has a perfect matching M ′.
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Clearly, every neighbour of v is incident with exactly one edge of the matching M ′.

Consider a set M ⊆ M ′ such that M contains precisely those edges from M ′ that

are incident with at least one neighbour of v. Then M is the desired matching Mv

containing at most deg(v) edges and isolating v.

Favaron [8, Theorem 1.1] proved that any connected factor-critical equimatchable graph

G with a cut-vertex contains precisely one cut-vertex v and every component of G − v

is either K2n or Kn,n. For equimatchable factor-critical graphs with a 2-cut {u, v}, it

is still possible to give a description of the structure of G′ = G \ {u, v}, albeit it is

more complicated: G′ has exactly two components and these components are almost

complete or complete bipartite, see [8, Theorem 2.2] for the precise statement and

details. Removing isolating matchings instead of vertex-cuts allows us to obtain a

similar description for graphs with arbitrary connectivity in the lemma below. The

underlying idea of its proof is well known, in particular, it was applied in [16] and [15]

to prove more specific variants of the result.

Lemma 2.1.2. Let G be a connected factor-critical equimatchable graph and M a

minimal matching isolating v. Then every component of G \ V (M) except {v} is

isomorphic with either K2n or Kn,n for some integer n.

Proof. Let G′ = G \ (V (M) ∪ {v}) and denote by M ′ any maximal matching of G′.

Clearly, M = M ′ ∪ Mv is a maximal matching of G. The graph G is factor-critical and

equimatchable, hence M leaves only the vertex v uncovered and M ′ must be a perfect

matching of G′. Since arbitrary maximal matching M ′ of G′ is a perfect matching of

G′, G′ is randomly matchable and by [39] all of its components are either complete

with even number of vertices or complete regular bipartite.

Note that since G is factor-critical, there always exists a matching isolating any fixed

vertex v of G.

We say that a subgraph H1 (such as a vertex, edge, or component) of a graph G is

linked with other subgraph H2 of same graph G if there are vertices k1 of H1 and k2 of

H2 such that k1k2 ∈ E(G). We are now ready to prove our main result, which sharpens

Lemma 2.1.2 by showing that G′ has only one component and generalizes [16, Lemma

1.6], which proves that G′ has only one component if G is 3-connected and planar.
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Theorem 2.1.3. Let G be a 2-connected, factor-critical equimatchable graph. Let v

be a vertex of G and Mv a minimal matching isolating v. Then G \ (V (Mv) ∪ {v}) is

isomorphic with K2n or Kn,n for some nonnegative integer n.

Proof. We prove the theorem by a series of claims. Let G′ = G \ (V (Mv) ∪ {v}).

Claim 1. If xy is an arbitrary edge of matching Mv, then x and y cannot be linked to

different components of G′.

Proof of Claim 1. We prove the claim by contradiction. Let C and D be different

components of G′ and suppose that x is adjacent to a vertex x′ of C and y is adjacent

to a vertex y′ of D. Let M be defined by M = (Mv \ {xy})∪{xx′, yy′}. It is easy to see

that M is a matching of G. Furthermore, C − x′ and D − y′ are components of G \ M .

From Lemma 2.1.2 follows that C and D have even number of vertices and hence both

C − x′ and D − y′ have odd number of vertices. It follows that any maximal matching

M ′ such that M ⊆ M ′ leaves uncovered at least one vertex of both C − x′ and D − y′.

This is a contradiction with the fact that G is equimatchable and factor-critical.

Claim 2. Let C be a component of G′ and xy an edge of matching Mv such that x is

linked to some vertex x′ from C. Then y is linked either to v or to some vertex y′ of

C such that y′ 6= x′.

Proof of Claim 2. Suppose that y is linked neither with C nor with v. Let M be

defined by M = (Mv \ {xy}) ∪ {xx′}. It is easy to see that M is a matching of G.

As all neighbours of v are covered by M , any maximal matching M ′ of G such that

M ⊆ M ′ leaves v uncovered. Since x is linked with C, by Claim 1 y cannot be linked

to any other component of G′. According to our assumption, y is not linked with v or

C. Therefore, M ′ leaves uncovered both v and y. This is a contradiction with the fact

that G is equimatchable and factor-critical, which completes the proof of the claim.

Claim 3. For any edge e of Mv linked with a component C of G′, there are two

independent edges joining the endvertices of e with v and C, respectively.

Proof of Claim 3. Let e = xy and suppose that x is linked with a vertex x′ of C. By

Claim 2, y is linked either with v or with some vertex y′ of C. If y is linked with v,

then xx′ and yv are the two desired edges and we are done. If y is not linked with v,

then by the minimality of Mv v is linked with x. In this case xv and yy′ are the desired

edges, which completes the proof.
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Claim 4. Let C be an arbitrary component of G′ and xy an edge of Mv linked with

C. If G′ has at least two components, then there are two independent edges joining x

and y with C.

Proof of Claim 4. Without loss of generality assume that x is adjacent to a vertex x′

of C and suppose to the contrary that y is not adjacent to a vertex of C different from

x′. Let D be a component of G′ different from C. Since G is 2-connected, D is linked

with at least two vertices of G \ V (D). Furthermore, the fact that v is not linked with

D implies that these two vertices must be vertices of Mv. Because x is linked with

C, from Claim 1 we get that y cannot be linked with D and thus at least one of the

vertices of Mv linked with D is different from both x and y. Let x1y1 be an edge of Mv

linked with D such that x1y1 6= xy. According to Claim 3 we can assume that x1 is

adjacent to a vertex x′
1 from D and y1 is adjacent to v. It is clear that the set M defined

by M = (Mv \ {xy, x1y1}) ∪ {xx′, x1x
′
1, y1v} is a matching of G. Claim 1 implies that

y is not linked with any component of G′ different from C and in particular, it is not

linked with D. According to our assumption, y is not adjacent to any vertex of C − x′.

It follows that any maximal matching M ′ such that M ⊆ M ′ leaves uncovered y and

one vertex of both C and D. This contradicts equimatchability and factor-criticality

of G and completes the proof of the claim.

Claim 5. Let e and f be two edges of Mv linked with two different components of G′.

Then e and f are not linked.

Proof of Claim 5. Let e = x1y1 and f = x2y2. Assume that e is linked with a component

C of G′ and f is linked with a component D of G′. Claim 4 implies that both x1 and

y1 are linked with C and both x2 and y2 are linked with D. Suppose to the contrary

that that e and f are linked; we can assume that they are linked by edge x1x2. Let y′
1

be a vertex of C adjacent to y1 and y′
2 a vertex of D adjacent to y2. Clearly, the set

M defined by M = (Mv \ {x1y1, x2y2}) ∪ {x1x2, y1y
′
1, y2y

′
2} is a matching of G and any

maximal matching M ′ such that M ⊆ M ′ leaves unmatched v and at least one vertex

of both C and D, again contradicting the equimatchability and factor-criticality of G.

Claim 6. Let e, f1, and f2 be edges of Mv and C and D two different components of

G′ such that C is linked with f1 and D is linked with f2. If e is not linked with C,

then it is not linked with f1.

Proof of Claim 6. Let e = uw, f1 = x1y1, and f2 = x2y2, and for the contrary suppose

that e is linked with f1. Since e and f1 are linked, by Claim 5 e is not linked to any
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component of G′ different from C. Moreover, by our assumption e is not linked with

C. By Claim 4 there are two independent edges joining f1 and C and two independent

edges joining f2 and D. Therefore, we can assume that u is linked with x1. As Mv

is minimal, f2 is linked with v; let x2 be adjacent to v. Let y′
1 be a vertex of C

adjacent to y1 and y′
2 a vertex of D adjacent to y2. It is clear that the set M defined by

M = (Mv \ {e, f1, f2}) ∪ {ux1, y1y
′
1, vx2, y2y

′
2} is a matching of G. Since e is not linked

with any component of G′, any maximal matching M ′ of G such that M ⊆ M ′ leaves

unmatched the vertex w and one vertex of both C and D, which contradicts the fact

that G is equimatchable and factor-critical.

Claim 7. If G′ has at least two components, then v is a cutvertex.

Proof of Claim 7. Our aim is to show that in G − v there is no path between arbitrary

two components of G′. We proceed by contradiction: suppose there is such a path

and among all such paths, choose a path that minimizes the number k of edges of Mv

incident with it. Denote one of the paths with k minimal by P and by C and D the

components of G′ joined by P . From the fact that C and D are components of G′

follows that they cannot be linked directly, and consequently k > 0. Let e and f be

the first, respectively the last, edge of Mv incident with P . As no other component of

G′ is linked with either C or D, we get that e is linked with C and f is linked with D.

From Claim 4 follows that both endvertices of e are linked with C and then Claim 1

implies that e is not linked with D. Therefore, e and f are distinct and k > 1. Notice

that k = 2 is equivalent with e and f being linked, which is not possible due to Claim

5. Suppose that k ≥ 3. By the minimality of k, there is an edge a of Mv such that a

is linked with e, but not with C. However, this contradicts Claim 6 and hence k ≥ 3

is not possible. We conclude that any path between C and D contains v. Since G is

connected, there is at least one such path. Consequently, v is a cutvertex of G, which

completes the proof of the claim.

From the fact that G is 2-connected and from Claim 7 it follows that G′ has only one

component. Lemma 2.1.2 implies that this component is either K2n or Kn,n, which

completes the proof.

The characterisation of equimatchable factor-critical graphs with a cut-vertex in [8]

implies that in such graphs G \ V (Mv) can have arbitrarily-many components and

therefore, Theorem 2.1.3 cannot be extended to graph that are not 2-connected.
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Now, we are able to show that every graph class with bounded degeneracy contains

only a finite number of 2-connected factor-critical equimatchable graphs. A graph G

is said to be k-degenerate if every subgraph of G has a vertex of degree at most k. The

degeneracy of graph is the smallest number k such that graph is k-degenerate and in a

sense it measure a sparsity of the graph. If a graph G is k-degenerate then G contains

at most k · |V (G)| edges.

Theorem 2.1.4. Let G be a 2-connected factor-critical equimatchable graph with de-

generacy at most k. Then |V (G)| ≤ 4k + 1.

Proof. Since G has degeneracy at most k, then by definition G has a vertex v with

degree at most k. Let Mv be a minimal matching that isolates v. By Lemma 2.1.1 Mv

covers at most 2k vertices. Let G′ = G \ (V (Mv) ∪ {v}). By Theorem 2.1.3 G′ has at

most one component, this component is randomly matchable. Since G′ is a subgraph

of the graph with a degeneracy at most k, it has a vertex with degree at most k. This

together with the fact that G′ is a complete or a regular complete bipartite graph imply

that G′ has at most 2k vertices. The proof is now complete.

A graph H is called a topological minor of a graph G if a subdivision of H is isomorphic

to a subgraph of G.

Corollary 2.1.5. Let H be a non-empty set of graphs and C a family of graphs with

H as a set of forbidden topological minors. Then there are only a finite number of

2-connected factor-critical equimatchable graph in C.

Proof. Mader [23] shows that for given t ∈ N, there exists a constant ct depending only

on t such that every graph G on n vertices with at least ctn edges contains a subdivision

of the complete graph Kt. Let H be an arbitrary graph from H. Clearly, K|V (H)|

contains H as a minor. Since, every subgraph K of a graph G from C does not have a H

as a minor, it has at most c|V (H)||V (K)| edges and hence a vertex with degree 2c|V (H)|.

Therefore, every graph in C is 2c|V (H)|-degenerate and by Theorem 2.1.4 there are

only finitely many 2-connected factor-critical equimatchable graphs with degeneracy

bounded by a constant. This completes the proof.

A graph H is called a minor of a graph G if a graph isomorphic to H can be obtained

from G by deleting edges, vertices, and contracting edges. It is easy to see that if G
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contains H as a topological, it contains H as a minor. Therefore, we get the following

corollary.

Corollary 2.1.6. Let H be a non-empty set of graphs and C a family of graphs with

H as a set of forbidden minors. Then there are only a finite number of 2-connected

factor-critical equimatchable graph in C.

By Kuratowski’s theorem, planarity can be expressed by forbidding the minors K5 and

K3,3. Later, Robertson and Seymour [33] showed that for every surface S there exists

a finite set of graphs H1, . . . , Hn such that a graph is embeddable in S if and only if it

contains none of H1, . . . , Hn as a minor. As a consequence of this and Corollary 2.1.6,

we get the result of [15] for 2-connected factor-critical equimatchable graphs.

Corollary 2.1.7. Let S be a surface of fixed genus. Then there are only finitely many

2-connected factor-critical equimatchable graph embeddable in S.

2.2 Size of 2-connected equimatchable graphs on sur-

faces

The aim of this section is to obtain good lower and upper bounds on the maximum

size of equimatchable factor-critical graphs embeddable in the surface of arbitrary

fixed genus using Theorem 2.1.3. We start by showing that there are arbitrarily large

equimatchable factor-critical graphs with a cutvertex and any given genus.

Proposition 2.2.1. For any nonnegative integers g, h, and k there exist connected

factor-critical equimatchable graphs G and G̃ with at least k vertices such that G has

orientable genus g and G̃ has nonorientable genus h.

Proof. Let n be an integer such that K2n+1 has orientable genus g and v an arbitrary

vertex of K2n+1. Take k copies of the triangle K3 and designate one vertex in each

copy. It is easy to verify that the graph obtained by vertex amalgamation of K2n+1 at v

and k triangles at the designated vertices is a connected factor-critical equimatchable

graph with genus g and at least k vertices. The proof of the nonorientable case is

analogous.
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It is easy to see and well-known that any complete bipartite graph Km,n is equimatch-

able.

Proposition 2.2.2. For any integers m and n such that m ≥ n the complete bipartite

graph Km,n is equimachable and its maximum matching has size n. �

The next three results yield a construction of large 2-connected equimatchable factor-

critical graphs embeddable in any fixed surface.

Lemma 2.2.3. Let u and v be adjacent vertices of Kn,n and x and y different vertices

from the larger partite set of Km+1,m for some m and n. Then the graph G defined by

G = Kn,n ∪ Km+1,m ∪ {ux, vy} is factor-critical and equimatchable.

Proof. Denote by H1 the copy of Kn,n and by H2 the copy of Km+1,m in G, thus

G = H1 ∪ H2 ∪ {ux, vy}. First, we show that G is factor-critical, that is, the graph

G − w has a perfect matching for any vertex w of G. Denote by A and B the larger,

respectively the smaller partite set of H2. We distinguish three cases.

Case 1: w is a vertex of H1. We can assume that w is in same partite set as v. Clearly,

there is a perfect matching M1 of H1 \ {u, w} and a perfect matching M2 of H2 − x.

It follows that matching M defined by M = M1 ∪ M2 ∪ {ux} is a perfect matching of

G − w.

Case 2: w is a vertex of A. Take any perfect matching M1 of H1 and any perfect

matching M2 of H2 −w. The matching M defined by M = M1 ∪M2 is clearly a perfect

matching of G − w.

Case 3: w is a vertex of B. Take any perfect matching M1 of H1 \ {u, v} and any

perfect matching M2 of H2 \ {w, x, y}. It is easy to see that the matching M defined

by M = M1 ∪ M2 ∪ {ux, vy} is a perfect matching of G − w.

Now we show that G is equimatchable by proving that any matching M of G is a

subset of a maximum matching. As G is factor-critical, any maximum matching of the

graph G leaves precisely one vertex uncovered. We distinguish three cases according

to which of the edges ux and vy lie in M .

Case 1: neither ux nor vy is an edge of M . Clearly, M is a disjoint union of matchings

M1 of H1 and M2 of H2. Since both H1 and H2 are equimatchable by Proposition 2.2.2,

the matchings M1 and M2 can be extended to maximum matchings M ′
1 of H1 and M ′

2
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of H2, respectively. Clearly, the matching M ′
1 covers all vertices of H1 and M ′

2 covers

all but one vertices of H2. Therefore, the matching M ′ defined by M ′ = M ′
1 ∪ M ′

2 is a

maximum matching of G.

Case 2: either ux or vy is an edge of M , but not both. We can assume that ux is an

edge of M and vy is not an edge of M . Let H ′
1 = H1 − u and H ′

2 = H2 − x. Observe

that H ′
1 is isomorphic with Kn,n−1 and H ′

2 is isomorphic with Km,m. Consequently, by

Proposition 2.2.2 H ′
1 is equimatchable and any its maximum matching misses exactly

one vertex and H ′
2 is equimatchable and has a perfect matching. The matching M

is a disjoint union of matching M1 of H ′
1, matching M2 of H ′

2, and the edge ux. By

equimatchability of H ′
1 and H ′

2 the matching M1 extends to a matching M ′
1 of H ′

1

missing exactly one vertex and M2 extends to a perfect matching of H ′
2. The matching

M ′ defined by M ′ = M ′
1 ∪ M ′

2 ∪ {ux} is the desired matching of G missing exactly one

vertex.

Case 3: both ux and vy are edges of M . Let H ′
1 = H1 \ {u, v} and H ′

2 = H2 \ {x, y}.

Observe that H ′
1 is isomorphic with Kn−1,n−1 and H ′

2 is isomorphic with Km−1,m and

thus, by Proposition 2.2.2, both are equimatchable, H ′
1 admitting a perfect matching

and H ′
2 a matching missing exactly one vertex. Clearly, M is a disjoint union of

matchings M1 of H ′
1, M2 of H ′

2, and edges ux and vy. Again, M1 extends to a perfect

matching M ′
1 of H ′

1 and M2 extends to a matching M ′
2 of H ′

2 missing exactly one vertex.

Therefore, the matching M ′ defined by M ′ = M ′
1 ∪ M ′

2 ∪ {ux, vy} is a matching of G

missing exactly one vertex.

Although we need the following lemma only for Kn,n and Km+1,m, we state it in a

general form since the proof is identical.

Lemma 2.2.4. Let a, b, c, d be positive integers such that c > d. Let u and v be two

adjacent vertices of Ka,b. Then there are two distinct vertices x and y from the larger

partite set of Kc,d such that the graph G defined by G = Ka,b ∪ Kc,d ∪ {ux, vy} has the

genus equal to γ(Ka,b)+γ(Kc,d). Similarly, there are two distinct vertices x̃ and ỹ from

the larger partite set of Kc,d such that the graph G defined by G̃ = Ka,b ∪Kc,d ∪{ux̃, vỹ}
has the genus equal to γ̃(Ka,b) + γ̃(Kc,d).

Proof. We start by constructing the desired graph G and its embedding of genus

γ(Ka,b) + γ(Kc,d). Denote by H1 a copy of Ka,b and by H2 a copy of Kc,d. Let Πi

be a minimum-genus embedding of Hi for i ∈ {1, 2}. Since the vertices u and v are
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adjacent, there is a face F1 of Π1 such that both u and v lie on the boundary of F1.

Because H2 is bipartite, any face of Π2 has length at least four and thus contains at

least two vertices from the larger partite set of H2. Let x and y be arbitrary two

vertices of the larger partite set of H2 that lie together on the boundary of a face F2 of

Π2 and let G = H1 ∪ H2 ∪ {ux, vy}. Adding one end of the edge ux into the interior of

F1 and the other end of ux into the interior of F2 merges these faces into one face F ,

producing an embedding Π of connected graph H1 ∪ H2 ∪ {ux} in the surface of genus

γ(H1) + γ(H2). Consequently, both v and y lie on the boundary of F and the edge vy

can be added into Π without raising the genus, yielding the desired embedding of G in

the surface of genus γ(H1) + γ(H2). Since H1 and H2 are disjoint subgraphs of G, we

get that γ(G) ≥ γ(H1) + γ(H2), which completes the proof of the orientable case. The

proof of the nonorientable case is completely analogous.

Theorem 2.2.5. For any nonnegative integers g and h there exist 2-connected factor-

critical equimatchable graphs G and G̃ such that G has orientable genus g and at least

4⌊√
2g⌋ + 5 vertices and G̃ has nonorientable genus h and at least 4⌊

√
h⌋ + 5 vertices.

Proof. Let n and m be maximum integers such that Kn,n is embeddable in the ori-

entable surface of genus ⌊g/2⌋ and Km+1,m is embeddable in the orientable surface of

genus ⌈g/2⌉. Let u and v be two adjacent vertices of Kn,n. By Lemma 2.2.4 there are

two vertices x and y of Km+1,m such that the graph G defined by G = Kn,n ∪Km+1,m ∪
{ux, vy} is 2-connected with orientable genus γ(Kn,n)+γ(Km+1,m) = ⌊g/2⌋+⌈g/2⌉ = g.

By Lemma 2.2.3, the graph G is equimatchable and factor-critical.

To complete the proof it suffices to bound the number of vertices of G from below by

calculating the value of n and m. First suppose that g is even. It is not difficult to verify

that n = ⌊√
2g⌋ + 2 and that m = ⌊(3 +

√
8g + 1)/2⌋. Since ⌊2α⌋ ≥ 2⌊α⌋ ≥ ⌊2α⌋ − 1

holds for any positive real number α, we get that Km+1,m has 2m+1 ≥ 3+⌊√
8g + 1⌋ ≥

3 + 2⌊√
2g⌋ vertices. Consequently, G has at least 4⌊√

2g⌋ + 7 vertices. If g is odd,

then n = ⌊√
2g − 2⌋+2 and m = ⌊(3+

√
8g + 9)/2⌋. Since ⌊√

2g − 2⌋ ≥ ⌊√
2g⌋−1 for

any positive integer g, Kn,n has 2(2 + ⌊√
2g − 2⌋) ≥ 2 + 2⌊√

2g⌋ vertices. Similarly as

in the case of even g we get that Km+1,m has at least 3 + 2⌊√
2g⌋ vertices. Therefore,

G has at least 4⌊√
2g⌋ + 5 vertices, which completes the proof of the orientable case.

The nonorientable case is analogous.
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The following four lemmas enable us to obtain upper bounds on the size of 2-connected

equimatchable factor-critical graphs embeddable in a fixed surface.

Lemma 2.2.6. If G is a randomly matchable graph embeddable in the orientable surface

of genus g (nonorientable genus h), then |V (G)| ≤ 4 + 4
√

g, respectively |V (G)| ≤
4 + 2

√
2h.

Proof. If G is a complete graph embeddable in the orientable surface of genus g, then

|V (G)| ≤ (7 +
√

1 + 48g)/2 by Theorem 1.3.3. If G is a complete regular bipartite

embeddable in the orientable surface of genus g, then |V (G)| ≤ 4 + 4
√

g by Theorem

1.3.3. The inequality (7 +
√

1 + 48g)/2 ≤ 4 + 4
√

g, which holds for any g ≥ 0, implies

the result in the orientable case. The proof of the nonorientable case is analogous.

Lemma 2.2.7. If G has a cellular embedding in a surface S and more than

6χ(S)

5 − d

vertices for some d ≥ 6, then δ(G) ≤ d.

Proof. We prove the lemma by contradiction. Suppose that δ(G) ≥ d + 1 and consider

an embedding of G in the surface S. Denote by p, q, and r the number of vertices and

edges of G and the number of faces of the embedding, respectively. As δ(G) ≥ d + 1

we have 2q ≥ (d + 1)p. Since G is a simple graph, 2q ≥ 3r holds by Theorem 1.3.7.

Substituting the expressions for p and r from the last two inequalities into Euler-

Poincaré formula yields

χ(S) = p − q + r ≤ 2q

d + 1
− q +

2q

3
=

q(5 − d)

3(d + 1)
.

Using d ≥ 6 and 2q ≥ (d + 1)p we have

q(5 − d)

3(d + 1)
≤ p(d + 1)

2
· 5 − d

3(d + 1)

and therefore

χ(S) ≤ p(5 − d)

6
,

which contradicts the assumption of the lemma.
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Lemma 2.2.8. Let G be a 2-connected, factor-critical equimatchable graph embeddable

in the surface with orientable genus g, respectively nonorientable genus h. If G has

a vertex of degree at most d, then |V (G)| ≤ 5 + 2d + 4
√

g, respectively |V (G)| ≤
5 + 2d + 2

√
2h.

Proof. Let v be a vertex of G with degree d in G and Mv a minimal matching that

isolates v. By Lemma 2.1.1 Mv covers at most 2d vertices. Let G′ = G \ (V (Mv) ∪
{v}). By Theorem 2.1.3 G′ has at most one component, this component is randomly

matchable, and Lemma 2.2.6 yields that |V (G′)| ≤ 4 + 4
√

g, respectively |V (G′)| ≤
4 + 2

√
2h. Hence G is a union of vertex v, matching Mv, and G′, and in the orientable

case we have

|V (G)| = |{v}|+|V (Mv)|+|V (G′)| ≤ 1+2d+|V (G′)| ≤ 1+2d+4+4
√

g ≤ 5+2d+4
√

g.

In the nonorientable case |V (G)| ≤ 1 + 2d + |V (G′)| ≤ 5 + 2d + 2
√

2h, which completes

the proof.

Lemma 2.2.9. For any d ≥ 6 such that

6 (2 − 2g)

5 − d
≤ 5 + 2d + 4

√
g, respectively

6 (2 − h)

5 − d0

≤ 5 + 2d0 + 2
√

2h,

the maximum size of a 2-connected factor-critical equimatchable graph embeddable in

the surface with orientable genus G (nonorientable genus h) is at most 5 + 2d + 4
√

g,

respectively 5 + 2d + 2
√

2h vertices.

Proof. We prove the lemma by contradiction. Let d be an integer such that d ≥ 6 and

let G be a 2-connected factor-critical equimatchable graph embeddable in the orientable

surface of genus g with |V (G)| > 5 + 2d + 4
√

g. By our assumption

|V (G)| >
6(2 − 2g)

5 − d

and thus by Lemma 2.2.7 G has a vertex with degree d′ such that d′ ≤ d. Consequently,

by Lemma 2.2.8 G has at most 5 + 2d′ + 4
√

g ≤ 5 + 2d + 4
√

g vertices, which is a

contradiction. The nonorientable case is analogous.
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Theorem 2.2.10. Let m(g), respectively m̃(h), denote the maximum number of ver-

tices of a 2-connected factor-critical equimatchable graph embeddable in the orientable

surface of genus g, respectively nonorientable surface of genus h. Then the following

inequalities hold.

i) If g ≤ 2 and h ≤ 2, then

4
√

2g + 1 ≤ m(g) ≤ 4
√

g + 17 and 4
√

h + 1 ≤ m̃(h) ≤ 2
√

2h + 17.

ii) If g ≥ 3 and h ≥ 3, then

4
√

2g + 1 ≤ m(g) ≤ cg
√

g + 5 and 4
√

h + 1 ≤ m̃(h) ≤ c̃h

√
h + 5,

where cg ≤ 12 and c̃h ≤ 10 are positive real constants such that the sequences (cg)∞
g=3

and (c̃h)∞
h=3 are decreasing, limg→∞ cg = 2

√
7+2 < 7.3, and limh→∞ c̃h =

√
2

(√
7 + 1

)

<

5.2.

Proof. The lower bounds follow from Theorem 2.2.5 and the inequality ⌊α⌋ > α − 1

which holds for any real number α. To prove the upper bounds, we distinguish two

cases.

i) From Lemma 2.2.7 follows that if G has more than 12 (g − 1) vertices, then it has a

vertex of degree at most 6, and hence by Lemma 2.2.8 at most 17 + 4
√

g vertices. The

proof is concluded by observing that 17 + 4
√

g > 12 (g − 1) holds for any g ≤ 2. The

nonorientable case is analogous.

ii) We start by determining the smallest d such that d ≥ 6 and

6 (2 − 2g)

5 − d
≤ 5 + 2d + 4

√
g

✞

✝

☎

✆2.1

for a fixed integer g ≥ 3. Solving (2.1) for d we get that

dg =
5 − 4

√
g +

√

112g + 120
√

g + 129

4

is minimal such d and it is easy to verify that for g ≥ 3 is indeed dg ≥ 6. Therefore,
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by Lemma 2.2.9 m(g) ≤ 5 + 2dg + 4
√

g. Clearly, for the sequence (cg)∞
g=3 defined by

cg =
5 + 4

√
g +

√

112g + 120
√

g + 129

2
√

g

m(g) ≤ cg
√

g + 5 for every g ≥ 3. It can be verified by standard methods that the

sequence is decreasing and has the claimed limit, which completes the proof of the

orientable case. The nonorientable case is analogous.

In the investigation of 3-connected equimatchable graphs embeddable in a fixed sur-

face Kawarabayashi and Plummer [15] proved that there is no such bipartite graph

embeddable with face-width at least 3 at all. It is easy to see that there are arbitrarily

large planar bipartite 2-connected equimatchable graphs.

Proposition 2.2.11. For any positive integer k there is a planar 2-connected bipartite

equimatchable graph with at least k vertices.

Proof. Clearly, for any integer k ≥ 2 the complete bipartite graph Kk,2 has the desired

properties.

The following theorem shows that there are infinitely-many 2-connected bipartite equimatch-

able graphs with any given genus and face-width.

Theorem 2.2.12. For any positive integers n, g, and k there exists a 2-connected

bipartite equimatchable graph G with at least n vertices, orientable genus g, and an

embedding in Sg with face-width k. Similarly, for any positive integers n, h, and k

there exists a 2-connected bipartite equimatchable graph G̃ with at least n vertices,

nonorientable genus h, and an embedding in Nh with face-width k.

Proof. We prove only the orientable case, since the nonorientable case is analogous.

Take a 2-connected graph G′ with at least n vertices, genus g, and with a genus embed-

ding Π′ with face-width k, for example any sufficiently large 2-connected triangulation

with a given genus and face-width; it is well known that such triangulations exist. We

construct the desired graph G starting from G′ by replacing every edge e of G′ by l par-

allel edges e1, . . . , el for some fixed l ≥ 2 and subdividing every edge ei by a new vertex

yei
. Denote by B the set of all vertices yei

of G, that is, B = {yei
; e ∈ E(G′), 1 ≤ i ≤ l}.

Let A = V (G) \ B.
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Clearly, G is bipartite and the vertices of A form the smaller partite set of G. By

[19, Theorem 3] a connected bipartite graph is equimatchable if and only if for any

vertex u from the smaller partite set there exists a non-empty X ⊆ N(u) such that

|N(X)| ≤ |X|. We prove that G is equimatchable by exhibiting such set Xv for

every vertex v from A. If a vertex v is in G′ incident with an edge e = uv, then let

Xv = {ye1
, . . . yel

}. In G we have Xv ⊆ N(v) and N(Xv) = {u, v}, with possibly u = v

if uv is a loop. Since l ≥ 2, we have |N(Xv)| ≤ |Xv|. Therefore, for every vertex v

from A there exists a non-empty set Xv such that Xv ⊆ N(v) and |N(Xv)| ≤ |Xv|, and

hence by [19] H is equimatchable. It is easy to see that multiplying and subdividing

edges does not change the genus of the graph, and thus γ(G) = γ(H). To construct

the desired genus embedding Π of G with face-width k, start with Π′. For any edge

e = uv of G′, choose the preferred direction of e. If the preferred direction of e is from

u to v, then in the rotation at u replace the occurrence of e by e1 . . . ek and replace the

occurrence of e−1 in the rotation at v by ek . . . e1. Finally, subdivide every edge ei by

the new vertex yei
. Clearly, the subdivided edges e1, . . . , ek bound l − 1 faces of length

4. Moreover, the occurrence of e = uv in its face boundary is replaced by a sequence

of two edges (uye1
)(ye1

v) and the occurrence of e−1 in its faces boundary is replaced

by (vyek
)(yek

u). It is not difficult to see that union of any m faces of Π is union of

at most m faces of Π′ and hence the face-width of Π is at least k. Since in Π′ there

is a noncontractible curve of minimum length that intersects only vertices of G′ (see

[34]), there is a homotopically equivalent noncontractible curve whose intersection with

G consists from precisely k vertices of G. Thus face-width of Π is at most k, which

completes the proof.

Theorem 2.2.12 and the results of [15] suggest the following open problem.

Problem. Are there infinitely-many 3-connected bipartite equimatchable graphs em-

beddable in a given surface with face-width at most 2?



3
Minimum cuts in equimatchable

factor-critical graphs

The aim of this chapter is to describe the structure of equimatchable factor-critical

graphs with respect to their minimum cuts, thus extending the results of Favaron [8]

to graphs with higher connectivity.

Our main results can be described as follows. Let G be a k-connected equimatchable

factor-critical graph with a k-cut S. If |V (G)| ≥ 2k + 3 or if G − S has a component

with at least k vertices, then G − S has exactly two components which are close to

complete or complete bipartite graphs. Moreover, if both components of G − S have

at least 3 vertices, then both are complete and, if additionally k ≥ 4, then G has

independence number 2. This implies that for k ≥ 4 a k-connected graph with odd

number of vertices and a k-cut S such that G − S has two components with size at

least 3 is equimatchable and factor-critical if and only if it has independence number

2.

Concerning the methods used in this chapter, we repeatedly use Theorem 2.1.3.

The chapter is organized as follows. Section 3.1 is devoted to the structure of equimatch-

able factor-critical graphs with respect to their minimum vertex cuts. In Section 3.2

we use structural results from Section 3.1 to show that an odd k-connected graph with

k ≥ 4, at least 2k + 3 vertices, and a k-cut which separates at least two components

with at least 3 is equimatchable factor-critical if and only if it has independence number

2.

31
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3.1 Vertex cuts in equimatchable factor-critical graphs

The aim of this section is to describe the structure of equimatchable factor-critical

graphs with respect to their minimum vertex cuts. Favaron [8] provided a complete

characterisation of equimatchable factor-critical with connectivity 1 and 2 with respect

to their minimum vertex cuts. While the 1-connected case is somewhat exceptional, our

results for connectivity k ≥ 3 are in nature very similar to Theorem 3.1.2. In particular,

the difficulties with describing the whole larger component in the case when the smaller

component is a singleton carries completely to large connectivity, as can be seen from

Theorem 3.1.5.

Theorem 3.1.1 (Favaron [8]). A graph G with vertex-connectivity 1 is equimatchable

and factor-critical if and only if all of the following conditions hold:

(1) G has exactly one cut-vertex d;

(2) every connected component Ci of G − d is isomorphic to K2ri
or to Kri,ri

for some

integer ri.

(3) d is adjacent to at least two adjacent vertices of each Ci.

Theorem 3.1.2 (Favaron [8]). Let G be a 2-connected equimatchable factor-critical

graph with at least 4 vertices and a two cut S = {s1, s2}. Then G \ S has precisely

two components, one of them even and the other odd. Let A and B denote the even,

respectively the odd component of G \ S, let a1, a2 ∈ A be two distinct vertices adjacent

to s1 and s2, respectively, and, if |B| > 1, let b1, b2 ∈ B be two distinct vertices adjacent

to s1 and s2 respectively. Then G has the following structure:

(1) B is one of the four graphs K2p+1, K2p+1 \ {b1b2}, Kp,p+1, Kp,p+1 ∪ {b1b2} for

some nonegative integer p. In the two last cases all neighbours of S in B belong to the

(p + 1)-stable set of Kp,p+1.

(2) A \ {a1, a2}) is either K2q−2 or Kq−1,q−1 for some nonnegative integer q and, if

|B| > 1, then A is either K2q, or Kq,q.

We are able to extend these results to arbitrary fixed vertex connectivity k by showing

that if the graph has at least 2k + 3 vertices, then there are exactly two components

and both are almost complete or complete bipartite. We start with a lemma which

allows us to efficiently apply Theorem 2.1.3 to bound the number of components.

Lemma 3.1.3. Let G be a factor-critical equimatchable graph, M a matching of G,
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and H an odd component of G \ V (M). Then G \ (H ∪ V (M)) is isomorphic with K2n

or Kn,n for some n.

Proof. Since G is equimatchable, the matching M can be extended to a maximum

matching M ′ of G. The fact that G is factor-critical implies that M ′ leaves uncovered

exactly one vertex v of G. Clearly, M ′ cannot cover all vertices of H and hence v lies

in H. The matching M ′ covers all neighbours of v and thus it is an isolating matching

of v. Consider any minimal matching Mv such that Mv ⊆ M ′ and Mv isolates v. Let

G′ denote the graph G \ (V (Mv) ∪ {v}). By Theorem 2.1.3 the graph G′ is K2n or Kn,n

for some n. It is not difficult to see that Mv can contain only edges of M and edges of

H, and thus V (H) ∪ V (Mv) ⊆ V (H) ∪ M ′. It follows that the graph G \ (H ∪ V (M))

can be obtained from G′ by removing the vertices covered by M \ Mv. It is easy to

see that removing two vertices joined by an edge from K2n or Kn,n leads to K2n−2,

respectively to Kn−1,n−1. We conclude that G \ (H ∪ V (M)) is isomorphic with K2m

or Km,m for some m, as claimed.

The next lemma guarantees the existence of a large number of independent edges

between a component and any subset of the cut.

Lemma 3.1.4. Let G be a graph with vertex connectivity k and with a k-vertex-cut S.

Let H be a component of G \ S. Then for arbitrary set of vertices X ⊆ S the graph G

contains at least min(|H|, |X|) independent edges between H and X.

Proof. We prove the lemma by contradiction. Let l be the maximum number of inde-

pendent edges in G between H and X and suppose that l < min(|H|, |X|). Since any

set of independent edges between H and X is a matching between vertices of H and

X, any maximum matching between H and X has size l. By König’s theorem [17] the

maximum size of a matching between H and X equals the minimum cardinality of a

vertex cover of all edges between H and X. Hence there is a vertex set Y ⊆ (H ∪ X)

such that |Y | = l and Y cover all edges between H and X. Since |Y | < |H|, the set

H \Y contains at least one vertex and (S \X)∪Y is a vertex cut of G. Using |Y | < |X|
we get that the size of (S \ X) ∪ Y satisfies (|S| − |X|) + |Y | = k − |X| + |Y | < k,

which contradicts the fact that G is k-connected.

In the case when the smaller component of G − S has precisely one vertex we are

now ready to prove that the larger component, except the vertices matched with the
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cut, is complete or complete bipartite. However, as stated earlier, a description of the

structure of the graph induced on V (M) and of the edges between V (M) and C seems

to be quite difficult and is left as an open problem.

Theorem 3.1.5. Let G be a k-connected equimatchable factor-critical graph with a k-

cut S. Assume that G\S has a component C with at least k vertices and G\(S∪C) has

a component consisting from a single vertex. Then G − S has exactly two components

and there is a matching M between S and C covering all vertices of S. Furthermore,

C − V (M) is isomorphic with K2n or Kn,n for some integer n.

Proof. The existence of a matching M between S and C covering all vertices of S is

a consequence of Lemma 3.1.4. Let v be the vertex of a single-vertex component of

G − S. Lemma 3.1.4 implies that v is adjacent to every vertex of S and thus M is

a minimal isolating matching of v. By Theorem 2.1.3 the graph G \ (V (M) ∪ {v}) is

connected and isomorphic with K2n or Kn,n for some integer n, which completes the

proof.

The next lemma guarantees that if the graph has at least 2k+3 vertices, then removing

any minimum cut yields precisely two components.

Lemma 3.1.6. Let k ≥ 3 and G be a k-connected factor-critical equimatchable graph

with at least 2k + 3 vertices. Then G − S has precisely two components.

Proof. We prove the lemma by contradiction and suppose that H1, . . . , Hl are compo-

nents of G\S for some l ≥ 3. Let M be a matching between S and H1∪H2 which leaves

uncovered odd number of vertices of both H1 and H2 and covers as many vertices of S

as possible. Observe that such a matching always exists since k ≥ 3 and, by Lemma

3.1.4, every vertex of S is adjacent to every component of G − S. First we prove that

if M leaves uncovered at least 2 vertices of S, then it leaves uncovered precisely one

vertex in both H1 and H2. Indeed, suppose for the contrary that M leaves uncovered

at least two vertices s1 and s2 of S and more than one vertex in, say, H1. Denote by

M1 the edges of M incident with H1. Let X = {s1, s2} ∪ (S ∩ V (M1)). Since M leaves

uncovered at least 3 vertices of H1, applying Lemma 3.1.4 to H1 and X yields that

there is a matching M ′ between H1 and X.

It can be easily seen that M ′′ = M ′ ∪ (M \ M1) is a matching between S and H1 ∪ H2

which leaves uncovered odd number of vertices in both H1 and H2, and that M ′′ is
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larger than M , which contradicts the maximality of M .

We proceed to extend M to a matching N covering all vertices of S and leaving

uncovered odd number of vertices in both H1 and H2. If M covers all vertices of

S, then let N = M . If M leaves uncovered precisely one vertex s of S, then let

N = M∪{e}, where e is any edge joining s with H3, note that such an edge always exists

by Lemma 3.1.4. Finally, if M leaves uncovered at least 2 vertices of S, then it leaves

uncovered exactly one vertex in both H1 and H2 as shown above, and |V (G)| ≥ 2k + 3

implies that H3 ∪ · · · ∪ Hl contains more vertices than S − V (M). Therefore, by

Lemma 3.1.4 there is a matching N ′ between S − V (M) and H3 ∪ · · · ∪ Hl covering all

vertices of S − V (M). Now N = M ∪ N ′ is the desired matching covering all vertices

of S and leaving uncovered odd number of vertices in both H1 and H2.

To complete the proof we show that N cannot be extended to a maximum matching

of G, contradicting the fact that G is equimatchable. Indeed, N leaves uncovered odd

number of vertices of both H1 and H2 and separates H1 and H2 from the rest of the

graph and thus any maximal matching N ′′ ⊇ N leaves uncovered at least one vertex of

both H1 and H2. Since G is equimatchable and factor-critical, any maximum matching

of G leaves uncovered precisely one vertex of G and hence N ′′ cannot be a maximum

matching. The proof is now complete.

To deal with the cases when the smaller component of G − S has at least two vertices

we will need the following lemma.

Lemma 3.1.7. Let G be a k-connected equimatchable factor-critical graph with a k-cut

S. Assume that G\S has a component C with at least k vertices and G\ (S ∪C) has a

component with exactly two vertices. Then G−S has exactly two components and there

is a matching M between S and C covering all vertices of S. Furthermore, for every

vertex x ∈ C ∩ V (M), the subgraph of G induced by C − V (M) ∪ {x} is isomorphic

with K2n or Kn,n for some integer n.

Proof. The existence of a matching M between S and C covering all vertices of S is a

consequence of Lemma 3.1.4. Let D be a component of G \ (C ∪ S) with exactly two

vertices. Let s be the vertex of S matched with x. Lemma 3.1.4 implies that there is a

vertex of D, say d, adjacent to s. Let d′ be the vertex of D different from d. Consider

the set M ′ = M \ {sx} ∪ {ds}; clearly {d′} is an odd component of G \ V (M ′). Thus
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by Lemma 3.1.3 the graph G \ ({d′} ∪ V (M ′)) = C − V (M) ∪ {x} is isomorphic with

K2n or Kn,n for some integer n, which completes the proof.

The following theorem provides a complete characterisation of k-connected equimatch-

able factor-critical graphs with a k-cut S such that G − S contains a component with

at least k vertices and a component with precisely 2 vertices.

Theorem 3.1.8. Let G be a k-connected equimatchable factor-critical graph with a

k-cut S. Assume that G \ S has a component C with at least k vertices and G \ (S ∪ C)

has a component with exactly two vertices. Then G − S has exactly two component.

Furthermore, if S contains an edge, then C is a complete graph. If S does not contain

an edge, then then there is a nonegative integer m and sets {x1, . . . , xm} of vertices

of C and {y1, . . . , ym} of vertices of S such that xiyi is not an edge of G for every

i ∈ {1, . . . , k} and C ∪ S ∪ {x1y1, . . . , xkyk} is isomorphic with Kn,n+1 for some n.

Proof. Let S = {s1, . . . , sk} and let D = {d1, d2} be a component of G \ (C ∪ S) with

exactly two vertices. Note that D is the only component of G\(C ∪S) by Lemma 3.1.6.

By Lemma 3.1.4 there is a matching M between S and C which covers all vertices of

S. For every i ∈ {1, . . . , k} we denote by ci the vertex of C joined to si by M and

let X = {c1, . . . , ck} and C ′ = C \ X. By Lemma 3.1.4 for every i ∈ {1, . . . , k} there

is j such that j ∈ {1, 2} and si is adjacent to dj. Clearly, the set Mi defined by

Mi = (M \ {sici}) ∪ {sidj} is a matching isolating d3−j. Therefore, by Theorem 2.1.3

the graph G \ (V (Mi) ∪ {d3−l}) = C ′ ∪ {ci} is isomorphic with K2n or Kn,n for some

n. In particular, the graph G \ S has exactly two components.

Claim. If there is edge in X, then there is edge in S.

Proof of Claim. Let the edge in X be c1c2. Let M ′ be arbitrary matching of C ′ ∪ {c3}.

Matching M ′′ = (M \ {s1c1, s2c2, s3c3}) ∪ M ′ ∪ {d1d2, c1c2} leaves vertices s1, s2, and

s3 unmatched. Hence there is edge in {s1, s2, s3} and the claim follows.

The rest of the proof is split into two cases; the above Claim implies that these cases

cover all possibilities.

Case a) There is an edge in S.

Claim 1. If rs is an edge in S and u and v are the two vertices of C matched by M

with r and s, respectively, then {u, v, w} is a triangle for any vertex w in X.
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Proof of Claim 1. Choose arbitrary vertex w from X and let s be the vertex of S joined

to w by M . By Lemma 3.1.4 there is an edge between s and a vertex of D, say d.

Let M ′ = (M \ {ru, sv, tw}) ∪ {rs, td} and denote the only vertex of D − {d} by d′.

Clearly, M ′ is a matching of G which isolates d′. For any x ∈ {u, v, w} there is a perfect

matching Mx of C ′ ∪ {x} by Theorem 3.1.8. For any x ∈ {u, v, w}, the set Mx ∪ M ′

is a matching of G which leaves uncovered only the vertices {d′, u, v, w} − {x}. Since

S is a cut separating D and C, there is no edge between d′ and {u, v, w}. Therefore,

the fact that G is equimatchable and factor-critical implies that the two vertices in

{u, v, w} − {x} are joined by an edge, which completes the proof of the claim.

Claim 2. The subgraph of G induced by X is a complete graph.

Proof of Claim 2. If k = 3, then the claim follows directly from Claim 1. Therefore,

assume that k ≥ 4 and that the edge in S is rs. Our aim is to show that there is an

edge between two arbitrary vertices x and y of X. Let x and y be two vertices of X

and denote by cr and cs the two vertices of X joined by M to r and s, respectively. If

x or y belongs to {cr, cs}, then x and y are joined by an edge by Claim 1. Hence we

can assume that {x, y} ∩ {cr, cs} = ∅. Claim 1 applied to {cr, cs, x} shows that crx is

an edge of G. By Theorem 3.1.8 the graph C ′ ∪ {y} is isomorphic with K2n or Kn,n

for some n. Let M ′ be a perfect matching of C ′ ∪ {y} and let sx and sy be the vertices

of S joined by M to x and y, respectively. Denote the vertices of D by d1 and d2 and

consider the set M ′′ = (M \ {rcr, xsx, ysy}) ∪ M ′ ∪ {xcr, d1d2}. It is not difficult to

see that M ′′ is a matching which leaves uncovered exactly the vertices r, sx, and sy.

Hence {r, sx, sy} contains an edge e and the result follows by using Claim 1 on e with

{cr, x, y} in the role of {u, v, w}.

Claim 3. The subgraph of G induced by C ′ is a complete graph.

Proof of Claim 3. Assume that the edge in S is rs. By Theorem 3.1.8 the graph

C ′ is isomorphic with either Kn or Kn,n+1 for som integer n. Let cr and cs be the

vertices of C joined by M to r and s, respectively, and let x be an arbitrary vertex

of X \ {cr, cs}. By Claim 1 applied to rs the subgraph of G induced by {x, cr, cs} is

a triangle. Let sx be the vertex of S joined to x by M . By Lemma 3.1.4 there is a

vertex of D, say d, adjacent to sx. Let d′ be the vertex of D different from d. Consider

the set M ′ = M \ {rcr, scs, xsx} ∪ {rs, dsx}; clearly M ′ is a matching isolating d′. By

Theorem 2.1.3 the graph G \ (V (M) ∪ {d′}) = C ′ ∪ {x, cr, cs} is either K2n or Kn,n.
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Since C ′ ∪ {x, cr, cs} contains {x, cr, cs} which induce a triangle, it is isomorphic with

a complete graph and hence C ′ is a complete graph, as claimed.

Claim 4. The subgraph of G induced by C is a complete graph.

Proof of Claim 4. By Claim 2 the set X induces a complete graph and by Claim 3

the set C ′ induces a complete graph. Lemma 3.1.7 implies that if C ′ is complete, then

every vertex of X is adjacent to every vertex of C ′ and hence C is a complete graph.

The preceding claim completes the case when there is an edge in S and the first part

of the proof.

Case b) Both X and S are independent sets.

Claim 1. The subgraph of G induced by C ′ is isomorphic with Kn,n+1 for some n ≥ 0.

Proof of Claim 1. If C ′ contains only one vertex, then the claim holds. Since the number

of vertices of C ′ is odd, we can assume that |V (C ′)| ≥ 3. For every i ∈ {1, . . . , k}
Lemma 3.1.7 implies that C ′ ∪ {ci} is isomorphic with K2m or Km,m for some m. If

C ′∪{xi} is Km,m for some i ∈ {1, . . . , k}, then C ′ is clearly Km−1,m and the claim holds.

We proceed by contradiction to show that C ′ ∪{c1} cannot be an even complete graph.

Suppose that C ′∪{c1} is an even complete graph, and let M ′ be its perfect matching and

xy an edge of M ′. Clearly, the set (M \{s1c1, s2c2, s3c3})∪(M ′ \{xy})∪{c2x, c3y, d1d2}
is a matching which covers all vertices of G except s1, s2, and s3. The facts that S is an

independent set and that G is equimatchable and factor-critical yields a contradiction,

which completes the proof of the claim.

Denote by U the smaller and by W the larger partite set of C ′.

Claim 2. There is no edge between X and U .

Proof of Claim 2. We proceed by contradiction. Suppose that u is a vertex of U

adjacent to a vertex x in X. Let s be the vertex of S joined to x by M and let d

be a vertex of D joined to s; such a vertex d exists by Lemma 3.1.4. Clearly, the set

M ′ = (M \ {sx}) ∪ {ds, xu} is a matching of G. It is not difficult to see that any

maximal matching containing M ′ leaves unmatched at least two vertices of W , which

contradicts the fact that G is equimatchable and factor-critical.

Claim 3. There is no edge between S and W .
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Proof of Claim 3. For a contradiction suppose that there is a vertex w of W incident

with si for some i ∈ {1, . . . , k}. Let s be a vertex of S incident with a vertex d of D and

different from si; such a vertex s exists by Lemma 3.1.4. Let N = (M \ {sixi, sjxj}) ∪
{sic, sjd}. Clearly, N is a matching of G. It is not difficult to see that any maximal

matching of G containing N leaves at least two vertices of U ∪ {xi, xj} unmatched,

which contradicts the fact that G is factor-critical and equimatchable.

Claim 4. Every vertex of X is adjacent with every vertex of W .

Proof of Claim 4. Let x be a vertex of X and w a vertex of W . By Claim 1 the graph

C ′ is Kn,n+1 and by its choice w lies in the larger partite set of C ′ It follows that there

is a perfect matching M ′ of C ′ − {w}. Let s be the vertex of S matched with x by

M . By Lemma 3.1.4 there is an edge e between s and D. Let d be the vertex of D

not covered by e. Let M ′′ = (M − {xs}) ∪ M ′ ∪ {e}. Clearly, M ′′ is a matching which

covers all vertices of G except d, x and w. Since x and w lie in C and C and D are

different components of G − S, the vertex d is adjacent with neither x, nor w. Using

the fact that G is factor-critical and equimatchable we get that x and w are adjacent,

which completes the proof.

Claim 5. Any vertex s of S is incident with either all, or all but one vertices of X ∪U .

Proof of Claim 5. Suppose for the contrary that there is a vertex s of S and two vertices

x and y from X ∪ U such that s is incident neither with x, nor with y. Let v be the

vertex of X matched with s by M . Let z1 and z2 be two different edges of X − {x}.

(Note that we do not require {z1, z2} ∩ {x, y} = ∅.) Denote by t1 and t2 the two

vertices of S adjacent to z1 and z2, respectively. Let M ′ be a set of two independent

edges between D and {t1, t2}; such two edges exist by Lemma 3.1.4. By Claim 1 the

graph C ′ is isomorphic with Kn,n+1 and by Claim 4 every vertex of X is adjacent with

every vertex of W . It follows that C ′ ∪ {v, z1, z2} has a matching M ′′ which covers all

vertices except x and y. Consider the set M ′′′ = (M \ {sv, z1t1, z2t2}) ∪ M ′ ∪ M ′′. It

is not difficult to see that M ′′′ is a matching which covers all vertices of G except x, y

and s. Observe that there is no edge between x and y. Indeed, if one of x, y belong

to X and the other to U , then they are not adjacent by Claim 2. If both x and y are

from X, then they are not adjacent by the assumption of Case b). Finally, if both

x and y are from U , then they are not adjacent by the definition of U . Since by our

assumption s is adjacent with neither x, nor y, we get a contradiction with the fact

that G is factor-critical and equimatchable.
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Claim 6. Any vertex x of X is incident with either all, or all but one vertices of S.

Proof of Claim 6. Suppose for the contrary that there is a vertex x of X and two

vertices t1 and t2 of S such that x is incident with neither t1 nor t2. Let s be the vertex

of S matched with x by M and let y1 and y2 be the two vertices matched by M with

t1, respectively t2. By Claim 5 the vertex s is adjacent with either y1, or y2; without

loss of generality we can assume that s is incident with y1. By Claim 1 the graph C ′

is isomorphic with Kn,n+1 and by Claim 4 the vertex y2 is incident with every vertex

form the larger partite set of C ′. Therefore, there exists a perfect matching M ′′ of

C ′ ∪ {y2}. Let M ′′ = (M \ {sx, t1y1, t2y2}) ∪ M ′ ∪ {e, sy1}, where e is the edge in D. It

is not difficult to see that M ′′ is a matching which covers all vertices of G except x, t1,

and t2. By the assumption of Case b) the vertices t1 and t2 are not adjacent and by

our assumption x is incident with neither t1, nor t2, which contradicts the fact that G

is factor-critical and equimatchable.

Claim 7. Any vertex u of U is incident with either all, or all but one vertices of S.

Proof of Claim 7. Suppose for the contrary that there is a vertex u of U and two

vertices t1 and t2 of S such that u is incident with neither t1 nor t2. Let y1 and y2 be

the two vertices of X matched by M with t1, respectively t2. By Claim 1 the graph

C ′ is isomorphic with Kn,n+1 and by Claim 4 both vertices y1 and y2 are incident with

every vertex form the larger partite set of C ′. Therefore, there exists a matching M ′

of C ′ ∪ {y1, y2} covering all vertices except u. Let M ′′ = (M \ {t1y1, t2y2}) ∪ M ′ ∪ {e},

where e is the edge in D. It is not difficult to see that M ′′ is a matching which covers

all vertices of G except u, t1, and t2. By the assumption of Case 2. the vertices t1 and

t2 are not adjacent and by our assumption u is incident with neither t1, nor t2, which

contradicts the fact that G is factor-critical and equimatchable.

Denote the subgraph of G induced by C ∪ S by H. Claim 2 and 3 imply that U ∪ W ∪
X ∪ S = H is a bipartite graph with partite sets X ∪ U and S ∪ W . Claim 1 and the

definition of U and W yields that every vertex of U is adjacent to every vertex of W .

By Claim 4 every vertex of X is incident with every vertex of W . From Claim 5, 6, and

7 we get that there is a nonnegative integer m and vertices t1, . . . , tm and y1, . . . , ym

such that tiyi /∈ E(H) for all i ∈ {1, . . . , m} and that H∪{t1y1, . . . , tmym} is a complete

bipartite graph. The proof is now complete.
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Theorem 3.1.9. Let G be a k-connected equimatchable factor-critical graph with at

least 2k + 3 vertices and a k-vertex-cut S, where k ≥ 3. If G − S has two components

with at least 3 vertices, then G − S has exactly two components and both are complete

graphs.

Proof. By lemma 3.1.6 the graph G − S has precisely two components, denote these

components by C and D, respectively. Furthermore, denote the vertices of S by

s1, . . . , sk. First we deal with the case when both C and D are strictly smaller than

k; this case is much simpler. Take any two vertices x and y of a component of G − S,

say of C. Let l = |V (C)|. Since |V (C)| < k, there are l independent edges between

S and C by Lemma 3.1.4. Therefore, we can choose a set M1 of l − 2 independent

edges between S and C − {x, y}. Since |V (G)| ≥ 2k + 3, there is a set M2 of k − l + 2

independent edges between D and S − V (M1). Let M = M1 ∪ M2; observe that M is a

matching of G. It is not difficult to see that the vertex x can be in G − V (M) adjacent

only to y, and similarly y can be adjacent only to x. Since G is equimatchable and

factor-critical, the matching M can be extended to a maximum matching of G, which

necessarily leaves unmatched precisely one vertex of G. Clearly, this is possible only if

x and y are adjacent. Since the choice of x and y was arbitrary, it follows that both

components of G − S are complete, as claimed.

From now on we assume that at least one component of G − S, say C, has at least

k vertices. By Lemma 3.1.4 there is a set M of k independent edges between C and

S covering all vertices of S. Clearly, M is a matching of G. Denote the edges of M

by {e1, . . . , ek}, where ei = siui and ui ∈ C for all i ∈ {1, . . . , k}. We distinguish two

cases.

Case a) |C| − k is odd. Let X be an odd component of C \ {u1, . . . , uk}. Clearly, G,

M , and X satisfy the assumptions of Lemma 3.1.3 which implies that G \ (X ∪ M) is

isomorphic with K2n or Kn,n for some n. It follows that X is the only component of

C \ {u1, . . . , uk} and X ∪ M = S ∪ C. Consequently, D = G \ (X ∪ M) and hence D

is isomorphic with K2n or Kn,n for some n. To prove that D is isomorphic with Kn we

proceed by contradiction. Suppose that D is not a complete graph and thus |D| ≥ 4.

Since k ≥ 3, by Lemma 3.1.4 there are at least three independent edges between D

and S and at least two of these edges, say f1 and f2, have their endvertices in the same

partite set of D. Without loss of generality assume that f1 = s1w1 and f2 = s2w2, where

w1 and w2 are vertices of D. Let M ′ = (M \ {e1, e2}) ∪ {f1, f2} and let X ′ be an odd
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component of C \ {u3, . . . , uk}. By Lemma 3.1.3 the graph G \ (X ′ ∪ M ′) is isomorphic

with K2n or Kn,n for some n. On the other hand, G \ (X ′ ∪ M ′) = D \ {w1, w2}, which

contradicts the fact that D is a complete bipartite graph with w1 and w2 lying in the

same partite set. Therefore, we conclude that D is isomorphic with K2n.

Let y1, y2, and y3 be arbitrary three vertices from {u1, . . . , uk} and let xi be the vertex

joined with yi by M for all i ∈ {1, 2, 3}. By Lemma 3.1.4 there are three pairwise

independent edges f1, f2, and f3 between D and {x1, x2, x3}; without loss of generality

we can assume that fi = xizi for every i ∈ {1, 2, 3}, where z1, z2, and z3 are vertices of

D. Denote the set C \{u1, . . . , uk} by C ′. For every i ∈ {1, 2, 3} let Di = D\{zi}, Si =

S\{xi}, C ′
i = C ′∪{yi}, and Mi = (M \{xiyi})∪{fi}. Similarly, let D4 = D\{z1, z2, z3},

S4 = S \ {x1, x2, x3}, C ′
4 = C ′ ∪ {y1, y2, y3}, and M4 = (M \ {x1y1, x2y2, x3y3}) ∪

{f1, f2, f3}. It is easy to see that the graph D4 is an odd component of G \ V (M) and

hence C ′
4 is isomorphic with Km,m or K2m for some integer m by Lemma 3.1.3.

We proceed by contradiction to show that C ′
4 is isomorphic with a complete graph. To

prove this, suppose that C ′
4 is isomorphic with Km,m for some integer m ≥ 2. For every

i ∈ {1, 2, 3} the graph Di is an odd component of G\V (M) and hence C ′
i is isomorphic

with a complete or complete bipartite graph by Lemma 3.1.3. Since C ′
4 is Km,m, the

graph Di is isomorphic with Km−1,m−1 for every i ∈ {1, 2, 3}. Comparing C ′
4 and C ′

1

yields that y2 and y3 lie in different partite sets of C ′
4. Similarly, comparing C ′

4 and C ′
2

yields that y1 and y3 lie in the different partite sets of C ′
4. Finally, comparing C ′

4 and C ′
3

yields that y1 and y2 lies in different partite sets of C ′
4. Since C ′

4 is a complete bipartite

graph, such a distribution of y1, y2 and y3 is not possible, which is a contradiction.

Consequently, C ′
4 is isomorphic with a complete graph. Since the choice of y1, y2 and

y3 was arbitrary, it follows that C is isomorphic with a complete graph, as claimed.

Case b) |C|−k is even. First observe that in this case D has odd number of vertices.

Since C and D are the only components of G−S and G has at least 2k +3 vertices, we

get that D has at least 3 vertices. Let l = min{|D|, k}, where l ≥ 3. By Lemma 3.1.4

there is a set of l independent edges fi, i ∈ {i, . . . , l}, between D and S. Without

loss of generality we can assume that fi = siwi for i ∈ {1, . . . , l}, where {w1, . . . , wl}
are distinct vertices of D. For every i ∈ {1, . . . , l} let Xi be an odd component of

(C \ {c1, . . . , ck}) ∪ {ci}, let Mi = (M \ {ei}) ∪ {fi}, and let Di = D − {wi}. For every

i ∈ {1, . . . , l} Lemma 3.1.3 applied to G, Mi, and Xi yields that G \ (Xi ∪ V (Mi))

is isomorphic with K2n or Kn,n for some n and thus Xi is the only component of
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(C\{c1, . . . , ck})∪{ci}. Consequently, D\wi = G\(Xi∪V (Mi)) for every i ∈ {1, . . . , l}
and hence there is a single positive integer n such that all graphs Di are isomorphic

with K2n or Kn,n. It is not difficult to see that the last observation implies that the

whole D is isomorphic with K2n+1 or Kn,n+1, respectively.

Our next aim is to show that D = Kn,n+1 is not possible, to this end we proceed

by contradiction. Suppose that D is isomorphic with Kn,n+1. It is not difficult to

see that since Di is isomorphic with Kn,n for every i ∈ {1, . . . , l}, all vertices wi,

i ∈ {1, . . . , l}, belong to the larger partite set of D. Recall that l ≥ 3, let M ′ =

(M \ {e1, e2, e3}) ∪ {f1, f2, f3}, and let X ′ be an odd component of (C \ {u1, . . . , uk}) ∪
{u1, u2, u3}. Clearly, G, M ′, and X ′ satisfy assumptions of Lemma 3.1.3 which in turn

implies that G \ (X ′ ∪ V (M ′)) is isomorphic with K2m or Km,m for some m. On the

other hand, G\(X ′ ∪V (M ′)) = D−{w1, w2, w3}, and, since w1, w2, and w3 all lie in the

larger partite set of D, we have D − {w1, w2, w3} = Kn,n−2, which is a contradiction.

Therefore, we conclude that D is isomorphic with a complete graph.

Our final goal is to show that C is complete. Denote by C ′ the subgraph of G induced

by the set of vertices C \ {u1, . . . , uk}. Since D is an odd component of G \ V (M),

the subgraph of G induced by C ′ is by Lemma 3.1.3 isomorphic with Kp,p or K2p

for some integer p. Let y1 and y2 be arbitrary two vertices from {u1, . . . , uk} and x1

and x2 the two vertices of S joined by M to y1, respectively to y2. By Lemma 3.1.4

there are two independent edges, say x1z1 and x2z2, between {x1, x2} and D. Let

M ′ = {(M \ {x1y1, x2y2}) ∪ {x1z1, x2z2}. By Lemma 3.1.3 the graph G \ (V (M ′) ∪ D)

is isomorphic with K2p+2 or Kp+1,p+1 for some integer p. Note that G \ (V (M ′) ∪ D) =

C ′ ∪ {y1, y2}.

First we consider the case when C ′ contains a triangle, or, equivalently, C ′ is isomorphic

with K2p for some integer p > 1. Since C ′ contains a triangle and C ′ ∪ {y1, y2} is

isomorphic with K2n or Kn,n, we get that C ′ ∪ {y1, y2} is a complete graph irrespective

of the choice of y1 and y2. It follows that C itself is a complete graph, in which case

the proof is complete.

In the rest of the proof we show that the case that C ′ is isomorphic with a complete

bipartite graph is not possible. We proceed by contradiction and suppose that that C ′

is isomorphic with Kp,p for some integer p. Recall that C ′∪{y1, y2} is either a complete,

or a complete bipartite graph for any y1 and y2. First assume that C ′ ∪ {y1, y2} is a



3.1. VERTEX CUTS IN EQUIMATCHABLE FACTOR-CRITICAL GRAPHS 44

complete graph for some y1 and y2. Choosing y2 = x for all x in C \ (C ′ ∪ {y1}) shows

that C ′ ∪ {y′
1, y′

2} is a complete graph for all pairs of y′
1 and y′

2 and hence C itself is

a complete graph. In the rest of the proof we assume that C ′ ∪ {y1, y2} is isomorphic

with Kp+1,p+1 for all pairs of y1 and y2. Comparing C ′ and C ′ ∪ {y1, y2} we observe

that y1 and y2 lie in different partite sets of Kp+1,p+1. Since k ≥ 3, there are at least

three vertices in C \ C ′, say v1, v2, and v3. Using all the pairs from {v1, v2, v3} in turn

in the roles of y1 and y2 we get that each two of {v1, v2, v3} lie in different partite sets

of Kp+1,p+1, which is clearly not possible. This completes the proof.

We conclude this section by showing that the requirement |V (G)| ≥ 2k+3 in Lemma 3.1.6

cannot be relaxed. More precisely, for every k ≥ 3 we construct a k-connected

equimatchable factor-critical graphs with 2k + 1 vertices and a k-cut S such that

G − S has k components.

Proposition 3.1.10. Let G be a k-connected equimatchable factor-critical graph with

a k-cut S for some k ≥ 3. Then G − S has at most k components and this bound is

tight for every k ≥ 3.

Proof. If |V (G)| ≥ 2k + 3, then G − S has exactly 2 ≤ k components by Lemma 3.1.6.

Therefore, we can assume that |V (G) ≤ 2k + 1. Clearly, the number of components

of G − S is at most |V (G − S)| ≤ k + 1, with equality if and only if G − S consists

from k + 1 singletons. However, it is easy to see that if G − S consists from k + 1

singletons, then for arbitrary vertex s of S the graph G − s cannot have a perfect

matching, contradicting the factor-criticality of G.

To show that the bound is tight, for all k ≥ 3 we construct a k-connected equimatchable

factor-critical graph Gk with 2k + 1 vertices and a k-cut S such that G − S has exactly

k components. For arbitrary k ≥ 3, consider a graph Gk with an independent set S

of size k such that Gk − S consists from k − 1 singletons and one copy K2, which we

denote by C. Finally, assume that every vertex of S is adjacent with every vertex of

Gk − S and that Gk − S does not contain any edges except the edge in C. Clearly, the

graph Gk is k-connected for every k ≥ 3. To show that G′
k = Gk \ {v} has a perfect

matching for every vertex v, we distinguish whether v belongs to S, C, or is a singleton

in Gk − S. If v is a vertex of S, then a perfect matching of G′
k can be constructed

by taking the edge c1c2 from C and joining every vertex of S \ {v} with a vertex in
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G′
k \ {c1, c2}. If v is a vertex of C or a singleton of Gk − S, then it is clearly possible to

joint every vertex in S with a vertex in G′
k − S to obtain the desired perfect matching.

To show that any matching M of Gk can be extended to a maximum matching, we

distinguish two cases according to whether M contains the edge of C or not. If M

contains the edge c1c2 of C, then Gk −{c1, c2} is isomorphic with Kk,k−1 and hence any

matching containing c1c2 can be extended to an almost-perfect matching of Gk. If M

does not contain any edge from C, then M contains only edges from Gk −E(C), which

is isomorphic to Kk,k+1 and again M can be extended to an almost-perfect matching

of Gk, which completes the proof.

3.2 Graphs with independence number 2

In this section we investigate the relationship between equimatchability and indepen-

dence number. We focus on odd k-connected graphs with k ≥ 4, at least 2k+3 vertices,

and a k-cut which separates at least two components with at least 3 vertices and, per-

haps surprisingly, show that such graphs are equimatchable factor-critical if and only

if their independence number equals 2. In one direction, we show that if a graph with

independence number 2 is odd, then it is equimatchable, and if it is even, then it is

very close to being equimatchable. In the reverse direction, we use the characterisation

of k-connected equimatchable factor-critical graphs with at least 2k + 3 vertices and

a k-cut separating at least two components with at least three vertices from Theorem

3.1.9 to show that if k ≥ 4, then all such graphs have independence number 2. Finally,

we provide examples showing that it is not possible to extend these results to graphs in

which every minimal cut separates a component with at most 2 vertices – even if such

graphs are equimatchable factor-critical, they can have arbitrarily large independence

number. Note that Proposition 3.1.10 from the previous section shows that these result

can neither be extended to graphs with at most 2k + 1 vertices, since in such graphs

G − S can have k components and hence also independence number at least k.
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Lemma 3.2.1. Let G be a k-connected factor-critical equimatchable graph with a k-

vertex cut S such that G − S has precisely two components C and D, both of them

complete. Furthermore, let {c, d, s} be vertices of G such that c ∈ C, d ∈ D, and

s ∈ S. If there is a matching M such that M covers all vertices of S − s, both

C − V (M) and D − V (M) are odd, and V (M) ∩ {c, d, s} = ∅, then the subgraph of G

induced by {c, d, s} contains at least one edge.

Proof. Since both C and D are complete and both C − V (M) and D − V (M) are

odd, the subgraphs of G induced by C − V (M) and D − V (M) are odd complete

graphs. Therefore, there are matchings MC and MD of C − V (M) and D − V (M)

covering all vertices of C − (V (M) ∪ {c}), respectively D − (V (M) ∪ {d}). It follows

that M ′ = M ∪ MC ∪ MD is a matching of G covering all vertices of G except c, d, and

s. Since G is factor-critical and equimatchable, M ′ can be extended to a maximum

matching of G, that is, a matching covering all but one vertices of G. Consequently,

the subgraph of G induced by {c, d, s} contains at least one edge, as claimed.

Lemma 3.2.2. Let G be a k-connected factor-critical equimatchable graph with a k-cut

S for some k ≥ 3. Assume that G − S has precisely two components C and D, both of

them complete. Let s be a vertex of S. Then there exists a matching M such that M

contains only edges of the subgraph of G induced by S − s and |S − V (M)| = 3 if k is

odd and |S − V (M)| = 2 if k is even.

Proof. Assume that k is even. One of the components of G − S, say C, is odd and the

other is even. Let e = sc be an edge between C and s, MD a perfect matching of D,

and MC a perfect matching of C − c. Consider the set N = MD ∪ MC ∪ {e}. Since

N is a matching and G is equimatchable and factor-critical, N can be extended to a

matching N ′ such that N ′ leaves only one vertex of S uncovered. Clearly, M = N ′ −N

is a matching that satisfy the assumption of the lemma.

Now assume that k is odd. It is easy to see that both C and D have the same parity.

If both are even and MC and MD are perfect matchings of C and D, respectively, then

the matching N = MC ∪ MD can be extended to a matching N ′ such that N ′ leaves

only one vertex s′ ∈ S uncovered. Denote N ′ − N by M . If s = s′, then let e be an

arbitrary edge of M . Otherwise, let e be a edge in M incident with s. Then M − e is

the desired matching.
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Finally, assume that both components of G−S are odd. Let s′ ∈ S be a vertex different

from s and let e = sc and f = s′d be arbitrary edges such that c ∈ C and d ∈ D.

Moreover, let MC and MD be any perfect matchings of C − c and D − d, respectively.

Then the matching N = MC ∪ MD ∪ {e, f} can be extended to a matching N ′ such

that N ′ leaves only one vertex of S uncovered. It is easy to verify that N ′ − N is the

desired matching, which completes the proof.

Lemma 3.2.3. Let G be a k-connected factor-critical equimatchable graph with a k-cut

S for some k ≥ 4. Assume that G \ S has two components C and D with at least 3

vertices. Then for any vertices s ∈ S, c ∈ C, and d ∈ D there is a matching of G

covering all vertices of G \ {c, d, s}.

Proof. Theorem 3.1.9 implies that both C and D are complete and that G − S does

not have any other components.

We will need the following observation:

Claim. If s′ is adjacent to only one vertex of some component of G − S, then s′ is

adjacent to all vertices of the other component of G − S.

Proof of Claim. For a contradiction suppose that d is the only vertex of D adjacent

to s′. Let R = (S ∪ {d}) − {s′} and note that R is a k-cut of G such that G − R

has two components, namely C ∪ {s′} and D − {d}. If |D| = 3 by our assumptions

the components of G − R have sizes 2 and at least k + 1. By Theorem 3.1.8 either

R ∪ C ∪ {s′} is a complete bipartite graph minus a matching or C ∪ {s′} is a complete

graph. Since C is a complete graph, R ∪ C ∪ {s′} cannot be bipartite and the claim

follows. For the rest of the proof assume that |D| ≥ 4. Since by our assumptions G

has at least 2k + 3 vertices and the components of G − R have both at least 3 vertices,

by Theorem 3.1.9 both these components are complete. In particular, s′ is adjacent to

all vertices of C. The proof of the claim is now complete.

By Lemma 3.2.2 there is a matching M covering vertices of S−s such that |S−V (M)| ≤
3. Let C ′ = C − {c}, D′ = D − {d}, and S ′ = S − V (M) − {s}. We distinguish three

cases depending on parity of C and D.

First, let k be odd and both components of G−S even. Since k is odd, by Lemma 3.2.2

has S ′, denote them by s1 and s2 If both s1 and s2 have a neighbour in D′, then by

Lemma 3.1.4 there are two independent edges between S ′ and C. Let e be an edge
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between S ′ and C which does not contain vertex c. Without a loss of generality we

can assume that the vertex of S ′ covered by e is s1. Let f be an edge between s2 and

D′. If there exists an edge f between s2 and D′, then the matching M ∪ {e, f} satisfy

the assumption of Lemma 3.2.1 and we are done. Therefore, we can assume that s2

does not have a neighbour in D′. Then by Lemma 3.1.4 there is an edge g between s1

and D′ and by Claim there is and edge h between s2 and C ′. The proof of this case is

completed by applying Lemma 3.2.1 to the matching M ∪ {g, h}.

If both components of G − S are odd, then our aim is to to match both vertices of

S ′ with the same component. If we can do it, then we are done by Lemma 3.2.1. If

it is not possible, then either one vertex of S ′, say s1, is not adjacent to any vertex

of C ′, or both vertices, or both vertices of S ′ have two neighbours in C. In the first

case s1 is adjacent to every vertex of D and hence s2 have to be adjacent only with

d and therefore s2 is adjacent to every vertex of C. In the second case is easy to see

that both s1 and s2 must have same two neighbours in C and also in D. In both cases,

we can always choose matchings NC and ND between S ′ and C and between S ′ and

D, respectively, in such way that s1 is matched with c by NC and s2 is matched with

d by ND, or we can switch the labels for vertices s1 and s2. Since k ≥ 4, S contains

an edge s3s4 in M . By Lemma 3.1.4 there is a matching MC between {s1, s2, s3} and

C and a matching MD between {s1, s2, s4} and D. It is easy to verify that MC and

MD can be chosen in such way that MC matches s1 with c and MD matches s2 with d.

The matching (M − {s3s4}) ∪ (MC − {s1c}) ∪ (MD − {s2d}) satisfy the assumptions of

Lemma 3.2.1, whose application completes the proof of this case.

Finally, let k be even. By Lemma 3.2.2 S ′ has only one vertex, denote it by s1. Since

k is odd, one of the components of G − S has to be even and the other odd. We can

assume that C is even. If s1 is adjacent to some vertex in C ′, then we are done by

Lemma 3.2.1. Otherwise, c is the only neighbour of s in C and by Claim the vertex s1

is adjacent to all vertices of D. Since k ≥ 4, there is an edge s2s3 in M . Vertices s2, s3

are both from S. By Lemma 3.1.4 there are two independent edges between {s2, s3}
and D. At least one of the edges, say the one incident with s2, does not have d as

an endvertex. Denote this edge by e. By the same lemma there are two independent

edges between {s1, s3} and C. Clearly, one of these edges is s1c. Hence, there is an

edge f between s3 and C ′. Since |D| ≥ 3 and s1 is adjacent to all vertices of D, there

is an edge g between D′ and s1 which is not adjacent to e. Applying Lemma 3.2.1 to

the matching (M − {s2s3}) ∪ {e, f, g} finishes the proof.
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Lemma 3.2.4. Let G be a k-connected factor-critical equimatchable graph for some

k ≥ 4. Assume that G has at least 2k + 3 vertices and a k-cut such that G \ S has two

components C and D with at least 3 vertices. Then every vertex s ∈ S is adjacent to

either every vertex of C or every vertex in D.

Proof. We prove the lemma by contradiction. Suppose that there is a vertex s ∈ S that

is adjacent neither to all vertices of C, nor to all vertices of D. It follows that there are

two vertices c ∈ C and d ∈ D such that s is adjacent neither to c nor to d. By Lemma

3.2.3 there is a matching M of G covering all vertices of G − {c, d, s}. Since S is a cut,

c and d are not adjacent. Hence M is a maximal matching of G leaving unmatched 3

vertices, contradicting the fact that G is factor-critical and equimatchable.

Lemma 3.2.5. Let G be a k-connected factor-critical equimatchable graph with a k-cut

S for some k ≥ 4 such that G − S has two components with at least 3 vertices. Then

the independence number of G is 2.

Proof. By Theorem 3.1.9 both C and D are complete and G − S does not have any

other components. Since both C and D are complete, no independent set of G can

contain more than one vertex from each of them. We distinguish three cases according

to the type of a possible independent set I of size 3 in G.

Case a) I = {c, d, s}, where c ∈ C, d ∈ D, and s ∈ S. This is not possible by

Lemma 3.2.3.

Case b) I = {s1, s2, s3}, where all vertices of I belong to S. If C is odd, let e be

an edge joining a vertex s ∈ S − I to C, such an edge exists by Lemma 3.1.4. If D is

odd, let f be an edge joining s′ ∈ S − (I ∪ V (e)) to D. If D is odd, the edge f always

exists since then also S is odd, there is a vertex s′ in S − (I ∪ V (e)), and s′ is joined

by an edge to D by Lemma 3.1.4. Clearly, there is a perfect matching MC of C − V (e)

and a perfect matching MD of D − V (f). It follows that M = MC ∪ MD ∪ {e, f} is a

matching of G covering all vertices except s1, s2 and s3. Since G is factor-critical and

equimatchable, M can be extended to a matching of G leaving uncovered exactly one

vertex, which implies that there is an edge in I and thus I cannot be an independent

set.

Case c) I = {s1, s2, x}, where {s1, s2} ⊆ S and x is a vertex of either C or D.

This case is very similar to Case b) and thus ommited.
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It follows that I cannot be of any of the three possible types, implying that the max-

imum size of an independent set of G is at most 2. Clearly, G cannot be a complete

graph and hence it has an independent set with size precisely two, which completes

the proof.

The following two propositions show a close relationship between equimatchable and

almost-equimatchable graphs, and graphs with independence number 2.

Proposition 3.2.6. Let G be a graph with independence number 2. If G is odd, then

G is equimatchable. If G is even, then G is either K2n or Kn,n for some nonnegative

integer n, or is not equimatchable, has a perfect matching, and every matching of G

misses at most 2 vertices.

Proof. For any maximal matching M , the set of vertices not covered by M induces an

independent set. Hence any maximal matching of a graph with independence number

2 leaves uncovered at most 2 vertices. Since the parity of the number of vertices not

covered by a matching is the same as the parity of the number of vertices of the graph,

if G is odd, then any maximal matching of G leaves uncovered exactly one vertex.

Consequently, all maximal matchings of G have the same size and G is equimatchable.

If G is even, then every maximal matching of G leaves uncovered 0 or 2 vertices. We

distinguish two cases: either G is equimatchable, or not. If G is equimatchable with a

perfect matching, then it is isomorphic with K2n or Kn,n for some nonnegative integer

n by [39]. Suppose that G is equimatchable and every maximal matching of G leaves

uncovered exactly 2 vertices, our aim is to show that there are no such graphs. Since G

is odd, it cannot be factor-critical. Furthermore, G does not have a perfect matching

and thus it has a nontrivial Gallai-Edmonds decomposition. It is well known that

the number of vertices uncovered by any maximum matching equals the difference of

the number of components in C and the number of vertices in A, see for example

[22]. It follows that there are at least components in C, which contradicts the fact

that the independence number of G is 2. The only remaining possibility is that G is

not equimatchable, in which case G has a perfect matching and a maximal matching

leaving uncovered precisely, and every maximal matching of G leaves uncovered at

most 2 vertices.
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Odd graphs with independence number 2 are described in the following proposition.

Proposition 3.2.7. Let G be an odd graph with independence number 2. Then G is

either factor-critical, or an union of two complete graphs, one even and one odd, joined

by a set of pairwise incident edges.

Proof. If G is 2-connected, then by Gallai-Edmonds decomposition G is either bipartite,

or factor-critical. If G is factor-critical, then there is nothing to prove. Therefore,

we can assume that G is bipartite. Since each partite set of a bipartite graph is

independent, both partite sets of G have size at most 2. From the fact that G is odd

follows that G = P3, and hence G is an union of K1 and K2 joined by an edge, as

claimed.

If G has a cutvertex v, then G − v has exactly two components, otherwise the inde-

pendence number of G would be at least 3. Moreover, both components of G − v are

complete, since otherwise there would be an independence set with size 3 consisting

from two nonadjacent vertices of one component and any vertex of the second compo-

nent. If there are two vertices u and w from different components of G − v such that v

is not adjacent with neither of them, then again {u, v, w} is an independent set of size

3. Hence v is adjacent with every vertex of at least one component of G − v and G

is an union of two complete graphs, one even and one odd, joined by a set of pairwise

incident edges.

Theorem 3.2.8. Let G be a k-connected graph for some k ≥ 4 with an odd number

of vertices and a k-cut S such that G − S has two components with at least 3 vertices.

Then G is factor-critical and equimatchable if and only if its independence number is

2.

Proof. If G is equimatchable and factor-critical, then its independence number is 2 by

Lemma 3.2.5.

In the reverse direction, assume that G has independence number 2. Then G is

equimatchable by Proposition 3.2.6. The characterisation of equimatchable graphs

[19] asserts that any 2-connected equimatchable graph is either factor-critical, or bi-

partite. If G is factor-critical, then we are done. If G is bipartite, than each partite

set forms an independent set and hence the size of each partite set is at most 2. Since

G is odd, it follows that G has at most 3 vertices and hence it cannot be k-connected

for any k ≥ 4.
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Our final result shows that Lemma 3.2.5 cannot be extended to equimatchable graphs

without two components with at least 3 vertices.

Theorem 3.2.9. For every triple of integers n, k, and m such that k ≥ 3 and m ∈
{1, 2} there is a k-connected equimatchable factor-critical graph G with a k-cut S such

that G − S has a component of size m and G has an independent set of size at least n.

Proof. First assume that m = 1. Let l = max{n, k} and denote by H a copy of Kl,l.

Choose a set S of k vertices of H in such a way that S contains at least one vertex

from both partite sets of H. The desired graph G is constructed by taking a new

vertex v and joining it with every vertex in S. and by H2 a copy of K2. Clearly, G

is k-connected and S is a k-cut of G. Since v is a component of G − S and m = 1,

the graph G − S has a component with m vertices. Furthermore, it is easy to directly

verify that G is factor-critical and equimatchable. The proof of this case is concluded

by observing that each partite set of H forms an indepentendent set of G with size

l ≥ n.

Now we assume that m = 2. Let l = max{n, k} and denote by H1 a copy of Kl,l+1

and by H2 a copy of K2. Denote by X a set of k vertices from the larger partite set of

H1. The desired graph G is constructed by joining both vertices of H2 with all vertices

of X. It can be easily verified that the resulting graph is k-connected, equimatchable,

and factor-critical. Clearly X is a k-cut of G such that G − X has a component with

m vertices. Finally, G contains an independent set with l + 1 ≥ n vertices, which

completes the proof.



4
Stable, critical, and extremal equimatchable

graphs.

This chapter is devoted to extremal properties of graphs related to equimatchability.

First we characterize all minimum and maximum graphs with respect to edge removal,

respectively addition. Second we investigate critical equimatchable graphs, that is,

graphs which are equimatchable, but removing any vertex yields a graph which is not

equimatchable. Finally, we investigate graphs G such that G − v is equimatchable for

every vertex v of G. These graphs fall naturally into one of two disjoint classes – stable

equimatchable graphs and vertex-minimal non-equimatchable graphs.

A graph G is edge-minimal non-equimatchable if G is not equimatchable and G − e is

equimatchable for every edge e of G. Similarly, G is edge-maximal non-equimatchable

if G is not equimatchable and G ∪ e is equimatchable for every edge e of G. We start

by determining all edge-minimal and edge-maximal non-equimatchable graphs.

Theorem 4.0.1. The only edge-minimal non-equimatchable graph is P4.

Proof. Our proof starts with the observation that if for every edge e ∈ E(G) the graph

G − {e} is equimatchable and G has a vertex v of degree at least three, then G is

equimatchable. To prove this, consider a matching M of G. Clearly, at least two edges

incident with v are not in M . Moreover, there is a maximum matching N of G that does

not contain at least one of these two edges, denote it by f . Clearly, N is a matching of

G − {f} and it is easy to see that N has to be maximum matching of G − {f}. Hence,

the maximum size matchings of G and G − {f} have the same size. Since G − {f} is
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equimatchable, the matching M can be extended to a maximum matching of G − {f},

which is also a maximum matching of G. Therefore, every vertex of G has degree at

most two and G is a cycle or a path. Hence, if e is an edge of G, then G − {e} is a

path or two disjoint paths. It is easy to see that a path is equimatchable if and only

if it has at most three vertices. It follows that, first, G is not a path with at most 3

vertices, and second, that removing any edge from G yields one or two paths with at

most 3 vertices. Since C3 is also equimatchable, the only suitable graph is P4.

The join of two disjoint graphs G and H is the union G∪H together with all the edges

that connect V (G) and V (H).

Theorem 4.0.2. If G is an edge-maximal non-equimatchable graph, then G is iso-

morphic with K2n minus an edge or K2n+1 minus a triangle, where n is some positive

integer.

Proof. Let N be a maximal matching of G which is not maximum. Since G is not

equimatchable, such a matching exists. Let u and v be two vertices of N which are

not adjacent. Clearly, N is maximal matching of G ∪ {uv} which is not maximum.

Since by the assumption of the theorem G ∪ e is equimatchable for every e /∈ E(G),

it follows that such a pair of nonadjacent vertices u, v cannot exist. Therefore, the

vertices of N form a copy of K2n for some integer n ≥ 1. Since N is maximal, the

graph G − V (N) does not contain an edge and because N is not maximum matching,

the graph G − V (N) contains at least two vertices. Denote |G − V (N)| by k. Let n be

a vertex of V (N) and x a vertex of G − V (N).

Our next aim is to show that for arbitrary choice of vertices n and x the graph G

contains the edge nx. For contradiction suppose that nx is not an edge of G. Clearly,

N is a maximal matching of G ∪ {nx}, that is not maximum. Consequently, if f is not

an edge of G, then f has both endvertices in G − V (N). The graph Gf = G ∪ {f}
consists of a copy of K2n+2 and a set of k − 2 independent vertices. It is easy to

verify that if k − 2 ≤ 1, then Gf is equimatchable. We finish the proof by showing

that if k − 2 ≥ 2 and G is a join of K2n with k isolated vertices, then Gf is not

equimatchable. Since every of k − 2 independent vertices is adjacent to every vertex

of N , then there exist a matching M between at least two of independent vertices and

vertices of N . Clearly, the matching M can be extended to a matching with at least
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n + 2 edges. However, N ∪ {f} is a maximal matching with n + 1 edges and Gf is not

equimatchable. The proof is now complete.

An equimatchable graph is called critical if G−v is not equimatchable for every vertex

v of G. The following theorem provides a necessary condition for an equimatchable

graph to be critical.

Theorem 4.0.3. If G is a critical equimatchable graph, then G is factor-critical and

does not contain a vertex v such that G − v is isomorphic with K2n or Kn,n.

Proof. In the proof we distinguish three cases according to type of Gallai-Edmonds

decomposition of G. Recall that Gallain-Edmonds decomposition of a graph G is

trivial, that is, all vertices of G belong to a single set of the decomposition, if and only

if either G has a perfect matching, or G is factor-critical. First assume that G has a

perfect matching. By Theorem 1.2.2 G is complete or complete regular bipartite graph.

It is easy to verify that after for arbitrary vertex v of G is the graph G − v complete

or complete bipartite and hence equimatchable graph. Therefore, any equimatchable

graph with a perfect matching cannot be critical equimatchable.

Second assume that G is factor-critical. Then G−v has a perfect matching, for arbitrary

vertex v ∈ V (G). If it is not critical equimatchable, then there exists a vertex v ∈ V (G)

such that G − v is a randomly matchable graph, hence by Theorem 1.2.2 isomorphic

with K2n or Kn,n. Therefore, every equimatchable factor-critical graph G, which does

not contain a vertex v such that G − v is isomorphic with K2n or Kn,n, is a critical

equimatchable graph.

Finally assume that G has non-trivial Gallai-Edmonds decomposition. To finish the

proof we show that every such G has a vertex v such that G − v is equimatchable.

Let (D, A, C) be the Gallai-Edmonds decomposition of G. We show that for arbitrary

vertex a ∈ A is the graph G − a equimatchable. It is easy to see that Gallai-Edmonds

decomposition of G − a is (D, A − a, C). It is sufficient to verify the assumptions of

Theorem 1.2.6. Since G is equimatchable, then C is empty, A − a is an independent

set, all components of D are of correct type and there are more singletons and type I

components in D that vertices in A − a. It remains to proof that the bipartite graph

obtained from G − a by contracting all components of D to singletons and deleting all

points corresponding to type II and III components of D is equimatchable. This is
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equivalent to show that if we remove a vertex from smaller parite set of equimatchable

bipartite graph, then we get equimatchable graph.

Let G′ = (U, W ) be a connected bipartite equimatchable graph with |U | ≤ |W | and x

a vertex of U . Due to Theorem 1.2.7, for every vertex in u ∈ U , there exists a non-

empty X ∈ N(u) such that |N(X)| ≤ |X| and hence |N(X) − x| ≤ |X|. Therefore,

by Theorem 1.2.7 the graph G′ − x is equimatchable. Hence, every graph G with non-

trivial Gallai-Edmonds decomposition is not critical equimatchable, which completes

the proof.

The rest of the chapter is devoted to graphs in which removing arbitrary vertex yields an

equimatchable graph. Our results allow us to completely determine stable equimatch-

able graphs – graphs which are equimatchable and removing arbitrary vertex yields an

equimatchable graph. On the other hand, if such a graph is not equimatchable, that

is, it is vertex-minimal non-equimatchable, then it necessarily has a perfect matching.

However, characterisation of such graphs with a perfect matching seems to be out of

reach of the existing methods.

Theorem 4.0.4. Let G be a connected factor-critical graph. The graph G − v is

equimatchable for every vertex v ∈ V (G) if and only if G is isomorphic with K2n+1 for

some n.

Proof. Clearly, after removing of an arbitrary vertex of K2n+1 we get a complete graph

and complete graphs are equimatchable.

Conversely, assume that the graph G − v is equimatchable for every vertex v ∈ V (G).

We show that arbitrary two vertices x, y of G are adjacent. First note that if we

remove a vertex x from a factor-critical graph we get a graph with an perfect matching.

Therefore, removing arbitrary vertex from G yields an equimatchable graph with a

perfect matching.

If we remove a vertex x from factor-critical graph G we get a graph with an perfect

matching. Let M be a perfect matching of G − {x} and z the vertex paired with y in

M . Clearly, M ′ = M − {yz} is a matching of G − {z}. Hence M ′ can be completed to

a perfect matching and xy are adjacent. This completes the proof.
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Theorem 4.0.5. Let G be a connected graph and (D, A, C) be its Gallai-Edmonds

decomposition and suppose A 6= ∅. If for every vertex v ∈ V (G) the graph G − v is

equimatchable, then G is bipartite graph.

Proof. We begin by proving that every component of D is a singleton. For contradiction

suppose that there is a component Di of the subgraph of G induced by D such that

Di has at least three vertices. If we fix a particular component Di of D, with |Di| ≥ 3.

Let d ∈ Di be a vertex adjacent to some vertex a ∈ A, then there exists a maximum

matching M of G not covering the vertex d. By Theorem 1.2.3 if M is a maximum

matching of G, then it contains a near-perfect matching of each component of D, a

1-factor of each component of C, and matches all vertices of A with vertices in distinct

components of D.

Let v be a vertex of Di different from d, Mv a perfect matching of Di − v, s the vertex

of Di matched with d by Mv, and t the vertex matched with a by M . Let M ′ be a

matching obtained from M by replacing the near-perfect matching of Di by Mv. The

matching M ′ is a maximum matching of G and hence a maximum matching of G − v.

Consider the set M ′′ = (M ′ − {at, ds}) ∪ {ad}. It is easy to verify that matching M ′′

is a maximal matching of G − v, but it is not maximum. Therefore, the graph G − v

is not equimatchable.

Our next goal is to show that if every component of D is a singleton, then G is bipartite.

Let {d} be a component of D. We distinguish two cases according to whether G − d

has a perfect matching, or not.

First assume that G − d does not have a perfect matching. It is easy to verify that

the Gallai-Edmonds decomposition of the graph G − d is (D − d, A, C). Since G − d

is equimatchable, C is empty and A is independent set. Therefore, G is bipartite with

parite sets A and D.

Second assume that G − d has a perfect matching. Since G − d is equimatchable, every

its component is even complete or regular complete bipartite graph. Now we show

that G − d cannot have a complete component. Suppose for the contrary that X is

a component of G − d that is complete and x ∈ X a vertex adjacent to d. Since K2

is also a regular complete bipartite graph, we can assume that |X| ≥ 3. We show

that every vertex of X − x is not covered by some maximum matching of G and hence

X − x is a component of D and thus a singleton, which contradicts the fact that
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|X| ≥ 3. Let y ∈ X be a vertex different from x and My be a perfect matching of all

components of G−d such that x is matched with y. It is easy to see that the matching

(My − {xy}) ∪ {xd} is a maximum matching of G that leaves y uncovered.

It remains to prove that d is adjacent to only one partition of every component of

G − d. On the contrary, suppose that d is adjacent to edge xy of G − d and let M be a

perfect matching of G−d that contains edge xy. Since G−d is an equimatchable graph

with a perfect matching, such matching M always exists. Clearly, M is a maximum

matching of G. Moreover, (M − {xy}) ∪ {xd} and (M − {xy}) ∪ {yd} are maximum

matchings of G that leave uncovered y and x, respectively. Hence, vertices x, y, and d

are in the same component of D, which contradicts the fact that every component of

D is singleton. This finishes the proof.

Theorem 4.0.6. Let G = (U, W ) be a connected bipartite graph with |U | < |W |. The

graph G − v is equimatchable for every v ∈ V (G) if and only if, for all u ∈ U , there

exists a non-empty X ⊆ N(u) such that |N(X)| < |X|.

Proof. First assume that for all u ∈ U , there exists a non-empty X ⊆ N(u) such that

|N(X)| < |X|. Let x and y be an arbitrary vertices of U and W , respectively. For

every vertex u of U , there exists a non-empty XsubseteqN(u) such that |N(X)| < |X|
and hence |N(X) − x| < |X|. Furthermore, |N(X − y)| ≤ X − y regardless of whether

y ∈ X or not. Therefore, by Theorem 1.2.7 both G − x and G − y are equimatchable,

which completes the proof of one implication.

In the reverse direction, assume that G−v is equimatchable for every vertex v ∈ V (G).

If u is a vertex of U adjacent with all vertices of W , then let X = W . Clearly,

X ⊆ N(w) and N(X) = U , hence |N(X)| < |X| and we are done.

Assume that u is a vertex of U which is not adjacent to all vertices of W . Let w

be a vertex of W not adjacent to u. Then G − w is a bipartite equimatchable graph

and by Theorem 1.2.7 there exists a non-empty X ∈ N(u) such that |N(X)| ≤ |X|.
We proceed by contradiction. Suppose that there does not exists a non-empty set

X ∈ N(u) such that |N(X)| < |X|. Consider the set S = {X|X ∈ N(u) and |N(X)| =

|X|}.

Our next aim is to show that there is a vertex x from N(u) contained in all sets of S.

Let A, B be two distinct sets of S. Since u is an element of N(X) for every X ∈ S,

it is easy to verify that if A and B are disjoint, then A ∪ B is a set of neighbours of u
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satisfying |N(A ∪ B)| < |A ∪ B|. Therefore, the intersection of any two sets in S is not

empty. Since A∪B is set of neighbours of u, we can assume that |N(A∪B)| ≥ |A∪B|.
Then we have

|N(A ∪ B)| = |N(A)| + |N(B)| − |N(A) ∩ N(B)| =

|A| + |B| − |N(A) ∩ N(B)| ≥ |A ∪ B| = |A| + |B| − |A ∩ B|.

Hence, |A∩B| ≥ |N(A)∩N(B)| and it is easy to verify that N(A)∩N(B) ⊇ N(A∩B).

Therefore, if it holds that |N(A ∪ B)| ≥ |A ∪ B|, then A ∩ B is a set of neighbours of u

such that |N(A∩B)| ≤ |A∩B|. Since there does not exists a non-empty set X ∈ N(u)

such that |N(X)| < |X|, the set A∩B belongs to S. It is easy to show by an induction

that ∩X∈SX is a non-empty set from S and thus there exists a vertex x ∈ N(u) such

that for every X ∈ S is x ∈ X. Since for every non-empty set X ∈ N(u) holds

|N(X)| ≥ |X| and every set in S contains x, in the graph G − x there does not exists a

non-empty set X ∈ N(u) such that |N(X)| ≤ |X|. Therefore, by Theorem 1.2.7 G − x

is not equimatchable, which completes the proof.

Recall that an equimatchable graph G is stable if G − v is equimatchable for every

vertex v ∈ G. Using Theorem 4.0.4, 4.0.5, and 4.0.6 we are now able to characterise

all stable equimatchable graphs.

Theorem 4.0.7. Let G be a connected stable equimatchable graph. Then G is either

Kn or Kn,n for some positive integer n, or G is a bipartite graph (U, W ) with |U | < |W |
such that for all u ∈ U , there exists a non-empty X ⊆ N(u) such that |N(X)| < |X|.

Proof. In the proof we distinguish three cases according to type of Gallai-Edmonds

decomposition of G.

First assume that G is a stable factor-critical graph. Then by Theorem 4.0.4 G is

isomorphic with K2m+1 for some positive integer m.

Second, let G be a stable graph with a perfect matching. Since G is equimatchable,

by Theorem 1.2.2 G is isomorphic with K2n or Kn,n for some positive integer n. It is

easy to verify that in both cases the graph G is stable.

Finally, if G has non-trivial Gallai-Edmonds decomposition, then by Theorem 4.0.5
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G is bipartite. Assume that G = (U, W ). Recall that if G is equimatchable and

|U | = |W |, then G has a perfect matching. For the rest of the proof assume that

|U | < |W |. By Theorem 4.0.6 for all u ∈ U , there exists a non-empty X ⊆ N(u) such

that |N(X)| < |X|. By Theorem 1.2.7 such bipartite graph is equimatchable, which

finishes the proof.

Regarding vertex-minimal non-equimatchable graphs, that is, graphs which are not

equimatchable, but removing an arbitrary vertex yields an equimatchable graphs, The-

orem 4.0.4, 4.0.5, and 4.0.6 allow us to prove that any such graph necessarily has a

perfect matching.

Theorem 4.0.8. If G is connected vertex-minimal non-equimatchable graph, then G

has a perfect matching.

Proof. By Theorem 4.0.4 if G is factor-critical vertex-minimal non-equimatchable graph,

then G is equimatchable. Theorem 4.0.5 and Theorem 4.0.6 show that every vertex-

minimal non-equimatchable graph without a perfect matching has to be bipartite with

partite sets of the same size. It remains to show that all such graphs have a perfect

matching.

Assume that G = (U, W ) is a bipartite vertex-minimal non-equimatchable graph with

|U | = |W |. Let u be an arbitrary vertex of U . Since G − u is equimatchable there is a

matching of size |U | − 1 covering whole U − u and the Gallai-Edmonds decomposition

of G − u is (W, U − u, ∅). Therefore, for an arbitrary neighbour w of u there exists

a maximum matching M of G − u that leaves w uncovered. It is easy to see that

M ∪ {uw} is a perfect matching of G, which completes the proof.

As mentioned earlier, the following problem remains open.

Problem. Characterize vertex-minimal non-equimatchable graphs with a perfect match-

ing.

Regarding the relationship of the preceding open problem with other results, let ∆1

be the class of graphs which are not equimatchable and in which every matching can

be extended to a matching with size at most one less than the size of a maximum

matching. Note that with this notation, all even graphs with independence number

2 which are not isomorphic with K2n or Kn, n belong to ∆1, see Proposition 3.2.6.
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It is easy to see that every vertex-minimal non-equimatchable graph with a perfect

matching belongs to ∆1. On the other hand, not every graph with a perfect matching

from ∆1 is vertex-minimal non-equimatchable since C6 is in ∆1 and path on 5 vertices

is not equimatchable.

The class ∆1 was introduced and investigated in [18]. While [18] gives a character-

isation of ∆1 graphs without a perfect matching in terms of their Gallai-Edmonds

decomposition, characterising ∆1 graphs with a perfect matching seems to be a much

more difficult problem, even for graphs with independence number 2. Therefore, deter-

mining vertex-minimal non-equimatchable graphs with a perfect matching may provide

the first step towards understanding of the ∆1 graphs with a perfect matching.



Conclusion

This thesis deals with extendability of matchings in graphs. Among the most promi-

nent concepts of extendability is equimatchability - a graph is equimatchable if every

its matching can be extended to a maximum matching. Equimatchable graphs fall nat-

urally into two disjoint classes – factor-critical or bipartite and this thesis investigate

mostly equimatchable factor-critical graphs.

Our main results are the following theorem and its three applications described below.

While it is not difficult to prove that for any matching M isolating a vertex v of G all

components of G − (V (M) ∪ v) are K2n or Kn,n the following theorem shows that the

rest of the graph is connected.

Theorem. Let G be a 2-connected, factor-critical equimatchable graph. Let v ∈ V (G)

be a vertex of G and Mv minimal matching that isolates v. Let G′ = G\(V (Mv)∪{v}).

Then G′ is isomorphic with K2n or a Kn,n for some nonnegative integer n.

The first application of the above theorem is determination of the maximum size of a

2-connected equimatchable factor-critical graph embeddable in the surface with genus

g. We prove that for sufficiently large g the size is between 4
√

2g and 8
√

g for orientable

surfaces and similar bounds are obtained also for nonorientable surfaces. These results

improve the previously best result O(g3/2) for 3-connected graphs. Note that the

situation with 2-connected bipartite equimatchable graphs is different – while it was

known that there are no 3-connected bipartite equimatchable graphs embeddable with

face-width at least 3, we show that for every surface there are infinitely many 2-

connected bipartite equimatchable graphs embeddable in the surface with arbitrarily

large face-width.

The second application of the main theorem is showing that for every k there are only

finitely many k-degenerate 2-connected equimatchable factor-critical graphs. Graphs

with bounded degeneracy form a prominent class of somwhere-dense graphs, gener-

alizing many important nowhere-dense graph classes, including graphs of bounded

treewidth, graphs of bounded genus, graphs with a given set of forbidden minors or

topological minors, and graphs with bounded expansion. In particular, our result gen-

eralizes the previous result that there are only finitely many 3-connected equimatchable

factor-critical graphs with a given genus to a much larger class. For an extensive dis-
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cussion of nowhere-dense and somewhere-dense graph classes see [26].

The third application of the main theorem is the description of the structure of k-

connected factor-critical equimatchable graphs with respect to a minimum cut. Let

k ≥ 3 be a fixed integer and let G be a k-connected equimatchable factor-critical graph.

We prove that if G has at least 2k+3 vertices and a k-cut S such that such that G−S has

two components with sizes at least 3, then G−S has exactly two components and both

are complete graphs. Additionally, we prove that if k ≥ 4, then all such graphs have

independence number 2. Moreover, we provide also a characterisation of k-connected

equimatchable factor-critical graphs with a k-cut S such that G − S has a component

with size at least k and a component with size 1 or 2. These results extend the

previous result, which describes the structure of equimatchable factor-critical graphs

with a cut-vertex or a 2-cut.

There are several lines of research which can be seen as a continuation of our work and

in the following paragraphs we outline a few of them.

The characterisation of all planar 3-connected equimatchable graphs in [16] uses a

special case of our main theorem. With our general version which does not require

planarity, it may be possible to characterise for instance all toroidal 2-connected

equimatchable factor-critical graphs. In particular, it can be readily observed that

any such graph has at most 21 vertices. One may then proceed for example by consid-

ering cases according to the connectivity of the graph and using our characterisation

of equimatchable factor-critical graphs with respect to minimum cuts. Another option

would be to use our main theorem directly with the fact that any toroidal graph has a

vertex of degree at most 6.

As can be seen from the results of Chapter 3, graphs with independence number 2 and

equimatchable graphs are closely related. A particular open problem about graphs

with independence number 2 is the following conjecture:

Conjecture 1 ([2, 38]). Every graph G with independence number 2 has a K⌈|V (G)|/2⌉

as a minor.

While Conjecture 1 would be implied by Hadwiger conjecture, so far it was confirmed

only for graphs with connectivity at most ⌈|V (G)/2|⌉. Note that the difficult cases in

Conjecture 1 are difficult also in the characterisation of equimatchable factor-critical

graphs. It remains to be seen whether extendability properties of graphs with inde-
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pendence number 2 can be useful either in investigation of the remaining open cases of

Conjecture 1, or in providing a simpler proof of at least some of the known cases.

Regarding specific open problems, we propose the following three.

1) Are there only finitely many 3-connected bipartite equimatchable graphs embeddable

in the surface of genus g with face-with at most 3?

2) Characterize all graphs with a perfect matching such that every matching of a graph

misses at most 2 vertices.

3) If C is a nowhere-dense graph class, are there only finitely many 2-connected factor-

critical equimatchable graphs in C?
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