
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER SYSTEMS

PARALLELIZATION OF ULTRASOUND SIMULATIONS
USING 2D DECOMPOSITION

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. VOJTĚCH NIKL
AUTHOR

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER SYSTEMS

PARALELIZACE ULTRAZVUKOVÝCH SIMULACÍ
POMOCÍ 2D DEKOMPOZICE
PARALLELIZATION OF ULTRASOUND SIMULATIONS USING 2D DECOMPOSITION

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. VOJTĚCH NIKL
AUTHOR

VEDOUCÍ PRÁCE Ing. JIŘÍ JAROŠ, Ph.D.
SUPERVISOR

BRNO 2014

Abstrakt
Tato práce je součástí projektu k-Wave, což je simulační nástroj akustické tomografie
sloužící k simulaci a rekonstrukci akustických vlnových polí a jeho hlavním přínosem je
plánování ultrazvukových operací lidské tkáně, např. nádoru na mozku. Dopředné simu-
lace jsou založeny na řešení k-prostorové pseudospektrální časové domény.
Simulace jsou časově a výpočetně velice náročné, není výjimkou, že jedna simulace

trvá několik desítek hodin na moderním výpočetním clusteru se stovkami jader. Simulace
probíhají na 3D maticích, které reprezentují určité vlastnosti reálné tkáně, např. hustotu
absorbce nebo rychlost šíření zvuku. K výpočtu gradientu se používá Rychlá Fourierova
transformace (dále jen FFT), jejíž výpočet zabere zhruba 60% simulačního času. 3D FFT
byla do této doby počítána pomocí softwarové knihovny FFTW, která interně využívá 1D
dekompozici, tj. dekompozici podél jedné osy. Hlavní nevýhoda 1D dekompozice je rela-
tivně malý maximální počet výpočetních jader, přes které lze paralelizovat výpočet. Matice
mají velikost řádově 1024 × 2048 × 3072, tím pádem lze efektivně paralelizovat přes max-
imálně 1024 jader. Dnešní superpočítače umožnují využít až stovky tisíc jader a tomu
bychom se rádi přiblížili. Řešením je využití 2D dekompozice, která by teoretický max-
imální počet jader posunula až do řádu milionů. Její efektivní implementací se zabývá
právě tato práce.
2D dekompozice je obecně paralelizována pouze pomocí MPI procesů, např. v kni-

hovnách PFFT nebo P3DFFT, v této práci ale využíváme pokročilejší kombinace MPI
procesů a OpenMP vláken, kterou jsme nazvali hybridní 2D dekompozice (HybridFFT).
Má tři hlavní části: výpočet 1D FFTs, lokální transpozice dat a globální transpozice dat.
Pro výpočet sérií 1D FFT je využita knihovna FFTW.Lokální transpozice jsou implemen-
továny pomocí blokové transpozice 2D matice, která je vektorizována pomocí SSE/AVX
instrukcí. Jak 1D FFT, tak lokální lokální transpozice, jsou akcelerovány pomocí OpenMP
vláken. Globální transpozice je opět implementována prostřednictvím knihovny FFTW,
která při použití pokročilého plánování dokáže výrazně snížit dobu potřebnou pro její real-
izaci. Hlavním cílem této práce je tedy dosáhnout maximálního možného zrychlení a škálo-
vatelnosti oproti předchozímu řešení, zároveň ale i zachovat kompatibilitu a přenositelnost.
Hybridní transformace pracuje nejlépe, pokud na jednom socketu spustíme jeden MPI pro-
ces a v rámci tohoto socketu využijeme tolik vláken, kolik máme k dispozici jader. Díky
tomu nemusí jádra v rámci jednoho socketu komunikovat přes MPI zprávy, ale využívají
rychlejší sdílenou paměť, a zároveň je MPI komunikace efektivnější, protože máme pouze
jeden MPI proces na socket a tím pádem jsou MPI zprávy vetší a je jich méně, což vede
k menšímu zahlcení propojovací sítě a lepší efektivitě komunikace.
Řešení bylo testováno na superpočítačích Anselm (Ostrava), Zapat (Brno) a Supernova

(Wroclaw). Pro nižší počty jader, v řádu několika set, je výkon přibližně stejný nebo o pár
procent lepší, než původně použitá 1D dekompozice FFTW knihovny nebo knihony PFFT
a P3DFFT. Jeden z velmi dobrých výsledků je např. 5123 FFT na 512 jádrech, kde hybridní
dekompozice dosáhla času 31 ms, zatímco FFTW 39 ms a PFFT 44ms. Na stroji Anselm
jsme spustili výpočet až na 2048 jádrech a škálovatelnost byla stále lineární. Nejlepší nárust
výkonu oproti ostatním knihovnám by se měl projevit při počtu zhruba 8–16 tisíc jader pro
kostky velikosti 10243, protože v této konfiguraci bude mít jeden MPI proces na starosti
jednu desku matice a zároveň budou MPI zprávy dostatečně velké a v takovém počtu, že
by se měla projevit lepší efektivita komunikace oproti ostatním knihovnám. Bohužel zatím
nemáme přístup na superpočítač, který by měl k dispozici takovéto prostředky.
Testování korektnosti výpočtu bylo testováno pomocí porovnání výsledků s výsledky

v Matlabu a vypočtení maximální odchylky, která se v absolutních hodnotách pohybovala
okolo 10−5 a méně.

4

Abstract
This thesis is a part of the k-Wave project, which is a toolbox for the simulation and recon-
struction of acoustic wave felds and one of its main contributions is the planning of focused
ultrasound surgeries (HIFU). One simulation can take tens of hours and about 60% of the
simulation time is taken by the calculation of the 3D Fast Fourier transforms. Up until now
the 3D FFT has been calculated purely by the FFTW library and its 1D decomposition,
whose major limitation is the maximum number of employable cores. Therefore we intro-
duce a new approach, called the 2D hybrid decomposition of the 3D FFT (HybridFFT),
where we combine both MPI processes and OpenMP threads to reach as best performance
as possible.
On a low number of cores, on the order of a few hundreds, we are about as fast or slightly

faster than FFTW and pure MPI 2D decomposition libraries (PFFT and P3DFFT). One of
the best results was achieved on a 5123 FFT using 512 cores, where our hybrid version run
31ms, FFTW run 39ms and PFFT run 44ms. The most significant performance advantage
should be seen when employing around 8–16 thousand cores, however we haven’t had an
access to a machine with such resources. Almost a linear scalability has been proven for up
to 2048 employed cores.

Klíčová slova
k-Wave, FFT, Rychlá Fourierova transformace, transpozice, dekompozice, optimalizace,
cluster, superpočítač, MPI, OpenMPI, OpenMP, vlákna, FFTW, SSE, AVX

Keywords
k-Wave, FFT, fast Fourier transform, transposition, decomposition, optimization, cluster,
supercomputer, MPI, OpenMPI, OpenMP, threads, FFTW, SSE, AVX

Citace
Vojtěch Nikl: Parallelization of Ultrasound Simulations Using 2D Decomposition, diplo-
mová práce, Brno, FIT VUT v Brně, 2014

Parallelization of Ultrasound Simulations Using 2D
Decomposition

Declaration
I declare that this thesis has been written and developed independently under the supervi-
sion of dr. Jiří Jaroš. I have ensured that the work is original, and does not to the best of
my knowledge breach any law of copyright, and has not been taken from the work of others
save and to the extent that such work has been cited and acknowledged within the text of
my work.

. .
Vojtěch Nikl
June 4, 2014

Acknowledgment
I would like to express the deepest appreciation to my supervisor, dr. Jiří Jaroš, who has
the attitude and the substance of a genious: he continually and convincingly conveyed a
spirit of adventure in regard to research and scholarship, and an excitement in regard to
teaching. He introduced me to the world of high-performance computing in a way that
I will never forget. He has been available and ready to answer any of my questions and
to help me whenever I needed to. He has also been very patient, friendly, focused and
kind. It has always astonished me how much of his work and even free time is dedicated
to his students. Without his guidance and persistent help this thesis would not have been
possible.
I acknowledge and thank very much the IT4Innovations Centre of Excellence project

(CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the
national budget of the Czech Republic via the Research and Development for Innovations
Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the
project Large Research, Development and Innovations Infrastructures (LM2011033), for
providing the resources and the core hours of its Anselm cluster located in Ostrava, Czech
Republic.
I also acknowledge PRACE for awarding us access to resource Supernova based in

Poland at Wroclaw.
Access to computing and storage facilities owned by parties and projects contributing to

the National Grid Infrastructure MetaCentrum, provided under the programme
”
Projects of

Large Infrastructure for Research, Development, and Innovations“ (LM2010005), is greatly
appreciated.
Access to the CERIT-SC computing and storage facilities provided under the pro-

gramme Center CERIT Scientific Cloud, part of the Operational Program Research and
Development for Innovations, reg. no. CZ. 1.05/3.2.00/08.0144, is also greatly appreciated.
I dedicate this thesis to my parents and grandparents who have always been so close to

me and have supported me throughout my whole life. It is their unconditional love that

motivates me to set higher targets. I also dedicate this thesis to my only sibling Patrick
who has provided me with a strong love shield that always surrounds me and never lets any
sadness enter inside.

➞ Vojtěch Nikl, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 k-Wave toolbox 4

3 Fast Fourier Transform 7

3.1 Cooley-Tukey algorithm . 8
3.2 N-dimensional transform . 8
3.3 Real-to-Complex and Complex-to-Real transforms 8
3.4 Software libraries implementing FFT . 9

4 Message passing interface 15

4.1 MPI operations . 16

5 OpenMP 19

5.1 The fork-join model . 20
5.2 API components . 21

6 Cluster Computing Today 23

6.1 Portable Batch System . 24

7 Matrix Transposition 26

7.1 2D Matrix Transposition . 26
7.2 Distributed 3D Matrix Transposition . 27

8 Matrix Decompositions 29

9 Implementation 32

9.1 High-level Overview . 32
9.2 Series of 1D FFTs . 34
9.3 2D Matrix Transposition . 34
9.4 Distributed Matrix Transposition . 34

10 Experimental results 37

11 Conclusion 43

A Poster 48

1

Chapter 1

Introduction

According to the Czech Society of Oncology, more than 73,000 tumour diseases are newly
diagnosed in the Czech Republic every year and this number is continuing to grow. This
contributes to cancer being the cause of nearly 1 in 3 deaths every year. Unfortunately,
current cancer treatment procedures including external beam radiation therapy (EBRT),
chemotherapy and surgical interventions have severe limitations and side effects (radiation
and drug dosage limits, operability, repeatability, long-lasting consequences) that reduce
the chances of successful cure [21].
A very promising alternative to the standard treatment procedures is high intensity

focused ultrasound (HIFU), also known as focused ultrasound surgery [23]. The technique
works by sending a focused beam of ultrasound into the tissue, typically using a large
transducer. At the focus, the acoustic energy is sufficient to cause cell death in a localised
region while the surrounding tissue is left unharmed. One of the major challenges is the
computational scale. This arises because the treatment area is often very large, usually on
the order of 20 × 20 × 20 cm. This usually requires 109–1012 computational grid points,
making many simulations intractable. Therefore, new approaches are needed to allow ac-
curate large-scale ultrasound simulations using more economical computational resources.
One of very recent ones is the k-Wave project.
The k-Wave project-toolbox (see Chapter 2) is a toolbox for the simulation and recon-

struction of acoustic wave fields, whose simulations require large amounts of performance
and memory. Simulations run on 3D matrices of real or complex values, which represent
specific properties of a certain part of a real tissue. These properties are for example density
absorption or the speed of sound. The bigger the matrix is, the more detailed and accurate
the simulation results are, however the performance and memory demands rise rapidly. One
of the advantages of the k-Wave simulation lies in the fact that its computational grids are
homogeneous in terms of calculation. This means that equally big sections are calculated
equally long and therefore it is much easier to evenly distribute the work among compute
cores.
The core of the simulation algorithm is the fast Fourier transform (see Chapter 3).

This task requires to decompose the matrix, because the simulation is run on a distributed
cluster where ˜2TB of working dataset is the standard size (see Chapter 8). Up until now
k-Wave has used the 1D decomposition (see Chapter 8), whose most significant limitation
is the maximum number of cores running in parallel. For a N × N × N matrix we can
employ only up to N cores, which is a major limitation in the case where the value of N is
in the thousands and today’s large supercomputers, such as german SuperMUC [9], allow
parallelizing over hundreds of thousands of cores. One simulation may take up to several

2

days, so the speedup potential definitelly needs to be explored. In k-Wave the domain sizes
of a matrix can be up to 3072 × 2048 × 1024, which means we can effectively parallelize
only over 1024 cores. Even a small simulation of size 512×512×512 takes about 2 hours to
calculate using 512 cores. If we could employ 8192 cores or more, we could run almost an
interactive simulation. Another reason, why we need to employ more cores is a decreasing
amount of RAM per core of newer clusters. Today’s clusters have ˜1–2GB of RAM per
core, which makes it more and more difficult to fit the whole simulation into RAM.
The solution to this problem is to decompose the matrix across two dimensions instead

of just one. This approach is expectedly called the 2D decomposition (see Chapter 8).
Its main advantage is that it can employ up to N × N cores simultaneously, so we could
theoretically reach the exascale scaling - the parallelization on the order of over a million
computing units. The CRESTA project [2] is currently working on delivering an exaflop
by the end of this decade. The down side is the need for two nonlocal memory operations
instead of one, requiring expensive interprocess communication.

3

Chapter 2

k-Wave toolbox

k-Wave [35, 34] is an open source acoustics toolbox for MATLAB and C++ developed by
Bradley Treeby and Ben Cox (University College London) and Jiří Jaroš (Brno University
of Technology). The software is designed for time domain acoustic and ultrasound simu-
lations in complex and tissue-realistic media. The simulation functions are based on the
k-space pseudospectral time domain solution [37] to coupled first-order acoustic equations
for homogeneous or heterogeneous media in one, two, and three dimensions. This method
is used for the reconstruction of the photoacoustic image, HIFU treatment planning etc.
Photoacoustic tomography (PAT) is a noninvasive biomedical imaging modality that

allows the in vivo visualization of embedded light absorbing structures [39]. The technique
works by externally illuminating a tissue sample with short pulses of visible or near-infrared
(NIR) laser light. The localized absorption of this light particularly by the hemoglobin chro-
mophores present in blood produces broadband ultrasonic waves via thermoelastic expan-
sion. By measuring the ultrasonic waves that propagate back to the tissue surface, images
of the initial photoacoustic pressure which is related to the absorbed optical energy distri-
bution can then be reconstructed. These images may be used to quantify tissue properties
[25, 15], or to identify pathological structures [29]. The technique has been demonstrated
via high-resolution in vivo imaging of vasculature in both small animals [40, 24] and hu-
mans [41]. Similar images may also be formed using microwave frequencies (an analogous
technique often called thermoacoustic tomography), where water is the primary absorber
[38].
For a representative simulation, around 60% of the total computation time is spent

performing the forward and inverse FFT [37]. FFT is used to calculate spatial gradients,
that implies that the wave field is periodic in Fourier pseudospectral and k -space numerical
models [36]. Depending on the complexity of the simulation, up to fourteen FFTs are
calculated for each time step. There are generally 20–50 thousands time steps in one
simulation [37].
But what is actually calculated by k-Wave from the mathematical point of view? When

an acoustic wave passes through a compressible medium, there are dynamic fluctuations in
the pressure, density, temperature, particle velocity, etc. These changes can be described
by a series of coupled first-order partial diferential equations based on the conservation of
mass, momentum, and energy within the medium. Often in acoustics, these equations are
combined together into a single

”
wave equation“ which is a second-order partial diferential

equation in a single acoustic variable (most often the acoustic pressure) [36].
In many situations in biomedical ultrasonics, the magnitude of the acoustic waves is high

enough that the wave propagation is no longer linear. In this case, additional nonlinear

4

terms also need to be included in the governing equations. k-Wave doesn’t model all the
possible nonlinear effects that might occur in a fluid; it is not a computational fluid dynamics
(CFD) solver. Instead, it currently includes two additional nonlinear terms that account for
cumulative nonlinear effects to second-order in the acoustic variables. This is an accurate
model for many situations in biomedical ultrasound [36]. The system of coupled first-order
equations solved by k-Wave becomes

∂u

∂t
= −

1

ρ0
∇p (2.1)

Momentum conservation (1 × FFT, 3 × iFFT)

∂ρ

∂t
= −(2ρ + ρ0)∇ · u (2.2)

Mass conservation (3 × FFT, 3 × iFFT)

p = c2
0(ρ +

B

2A

ρ2

ρ0
− Lρ) (2.3)

Pressure-density relation

Here u is the acoustic particle velocity, p is the acoustic pressure, ρ is the acoustic
density, ρ0 is ambient (or equilibrium) density, and c0 is the isentropic sound speed and
d is the acoustic particle displacement. These equations assume the background medium
is quiescent (meaning there is no net flow and the other ambient parameters don’t change
with time) and isotropic (meaning the material parameters do not depend on the direction
the wave is travelling) [36].
The operator used in k-Wave has two terms both dependent on a fractional Laplacian

and is given by

L = τ
∂

∂t
(−∇

2)
y

2
−1

+ η(−∇
2)

y+1

2
−1

. (2.4)

Absorption term (2 × FFT, 2 × iFFT)

An example of one HIFU treatment planning in kidney is shown in Figure 2.1. The
image represents the maximal acoustic pressure of the tissue in the domain and the red
parts are focal points.

5

Figure 2.1: HIFU treatment planning in kidney.

6

Chapter 3

Fast Fourier Transform

The fast Fourier transform (FFT) [14] is an effective algorithm to compute the discrete
Fourier transform (DFT) and its inverse. The Fourier analysis converts time (or space) to
frequency and vice versa. The FFT rapidly computes such transformations by factorizing
the DFT matrix into a product of sparse (mostly zero) factors. As a result, fast Fourier
transforms are widely used for many applications in engineering, science, and mathematics,
where it is used for digital signal processing, partial differential equations or algorithms for
fast multiplication of large integers. The basic ideas were popularized in 1965, but some
FFTs had been previously known as early as 1805. Fast Fourier transforms have been
described as

”
the most important numerical algorithm of our lifetime“.

The DFT is obtained by decomposing a sequence of values into components of different
frequencies, however computing it directly from the definition is often too slow to be prac-
tical, because the time complexity of computing a DFT of N values is O(N2). Therefore,
a FFT is often used to compute a DFT instead, because its time complexity is O(NlogN)
while giving the same result. The difference in speed can be very significant for data where
N is a big number on the order of thousands or more.
Consider a sequence of N complex numbers x0, . . . , xN−1. This sequence is transformed

into another sequence of N complex numbers X0, . . . , XN−1, according to the formula

Xk =

N−1∑

n=0

xne−
2πi
N

nk k = 0, . . . , N − 1. (3.1)

An inverse DFT is calculated according to a very similar formula where the only differ-
ence is the sign in the exponent and the normalizations factor.

xn =
1

N

N−1∑

k=0

Xke
2πi
N

nk n = 0, . . . , N − 1 (3.2)

The sequence Xk represents the amplitude and phase of each sinusoidal component of
the input signal xn. The DFT calculates the Xk sequence from the sequence xn, while the
inverse DFT calculates xn as a sum of the sinusoidal components having frequencies k/N
cycles per sample. In other words, Xk is a sequence of time coefficients and xn is a sequence
of frequency images Xk.

7

3.1 Cooley-Tukey algorithm

The Cooley-Tukey algorithm [14] is the most common FFT algorithm, especially its Radix-2
variant. It is named after J. W. Cooley and John Tukey. Radix-2 means that the number
of processed elements must be equal to a non-negative integer of the power of two. If not,
we can fill in zeros at the end of the sequence and discard these elements from the result.
The algorithm has two variants, decimation in time (DIT) and decimation in the frequency
domain (DIF).
DIT splits the DFT into two interleaved DFTs of sizeN/2 with each recursive step. That

means we firstly calculate the DFT of elements on the even indices x2m(x0, x2, . . . , xN−2)
and on the odd indices x2m+1(x1, x3, . . . , xN−1) and these subresults form together the final
result. Mathematically

Xk =
N/2−1∑
m=0

x2me−
2πi
N

(2m)k +
N/2−1∑
m=0

x2m+1e
−

2πi
N

(2m+1)k. (3.3)

We can recursively apply this splitting step on every new even and odd sequence which
results in the O(NlogN) time complexity.
Other algorithms that are used to calculate the FFT are, among others, Split Radix

FFT, Prime-factor FFT or Rader’s FFT [14]. All variants of FFT algorithms have one
common feature: the number of elements of the input can’t be just any number. Most
often, this must be the power of two or a multiple of two prime numbers.

3.2 N-dimensional transform

If we want to calculate the FFT of a N-dimensional matrix, one way, which we implement
in this project, is to do a series of 1D FFTs along each axis.

❼ Series of 1D FFTs along the first axis.

❼ Series of 1D FFTs along the second axis.

❼ . . .

❼ Series of 1D FFTs along the n-th axis.

3.3 Real-to-Complex and Complex-to-Real transforms

Since all the acoustic quantities in k-Wave are in the real domain, the spectrum is sym-
metrical. This saves nearly 50% of memory requested by FFT and also reduces the size of
dependent matrices in the frequency domain.
Real-to-Complex (R2C) FFT takes a 3D matrix of real values (single precision floats in

the case of k-Wave) as an input and produces a 3D matrix of complex values. Therefore
the FFTs of the series along the first axis have to calculate Real-to-Complex transforms
and FFTs along other axis calculate Complex-to-Complex transforms.

❼ Series of 1D R2C FFTs along the first axis.

❼ Series of 1D C2C FFTs along the second axis.

❼ . . .

8

❼ Series of 1D C2C FFTs along the n-th axis.

Very similar case is the backward Complex-to-Real inverse FFT, where the last 1D FFT
along the n-th axis is Complex-to-Real and all other 1D FFTs are Complex-to-Complex.

❼ Series of 1D C2C iFFTs along the first axis.

❼ Series of 1D C2C iFFTs along the second axis.

❼ . . .

❼ Series of 1D C2R iFFTs along the n-th axis.

3.4 Software libraries implementing FFT

The FFTW software library

One of the implementations of the FFT, used in k-Wave, is the FFTW software library [17].
FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one
or more dimensions, of arbitrary input size, and of both real and complex data. Benchmarks
[18], performed on on a variety of platforms, show that FFTW’s performance is typically
superior to that of other publicly available FFT software, and is even competitive with
vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW’s performance is
portable: the same program will perform well on most architectures without modification.
FFT performance comparison on a 3.0 GHz Intel Core Duo, Intel compiler and 64-bit mode
is shown in Figure 3.1 and 3.2.

Figure 3.1: FFT benchmark (powers of two) [18].

9

Figure 3.2: FFT benchmark (non-powers of two) [18].

FFTW supports the so called plan and execute approach. It means prior to the calcula-
tion the most effective algorithm and its parameters for a given architecture are selected to
achieve as best performance as possible. This is especially useful in the case where a large
number of FFTs needs to be calculated as the overhead of planning prior to the calculation
is well worth it. There are four main planner flags and one wisdom flag:

FFTW ESTIMATE specifies that, instead of actual measurements of different algo-
rithms, a simple heuristic is used to pick a (probably sub-optimal)
plan quickly. With this flag, the input/output arrays are not over-
written during planning.

FFTW MEASURE tells FFTW to find an optimized plan by actually computing sev-
eral FFTs and measuring their execution time. Depending on the
machine, this can take some time (often a few seconds). It is the
default planning option.

FFTW PATIENT is like FFTW MEASURE, but considers a wider range of algorithms
and often produces a

”
more optimal“ plan (especially for large

transforms), but at the expense of several times longer planning
time (especially for large transforms).

FFTW EXHAUSTIVE is like FFTW PATIENT, but considers an even wider range of algo-
rithms, including many that we think are unlikely to be fast, to
produce the most optimal plan but with a substantially increased
planning time.

10

FFTW WISDOM ONLY is a special planning mode in which the plan is only created if
wisdom is available for the given problem, and otherwise a NULL
plan is returned. This can be combined with other flags, e.g.
’FFTW WISDOM ONLY | FFTW PATIENT’ creates a plan only if
wisdom is available that was created in FFTW PATIENT or
FFTW EXHAUSTIVE mode. The FFTW WISDOM ONLY flag is in-
tended for users who need to detect whether wisdom is available;
for example, if wisdom is not available one may wish to allocate
new arrays for planning so that user data is not overwritten.

FFTW also supports SIMD instructions. SIMD, which stands for
”
Single Instruction

Multiple Data“, is a set of special operations supported by some processors to perform a
single operation on several numbers (usually 2 or 4) simultaneously. SIMD floating-point
instructions are available on several popular CPUs: SSE/SSE2/AVX on recent x86/x86-64
processors, AltiVec (single precision) on some PowerPCs (Apple G4 and higher), NEON on
some ARM models, and MIPS Paired Single (currently only in FFTW 3.2.x). FFTW can
be compiled to support the SIMD instructions on any of these systems.
SSE [20] (Streaming SIMD Extensions) is an SIMD (Single Instruction Multiple Data)

instruction set extension to the x86 architecture, designed by Intel and introduced in 1999.
SIMD instructions can greatly increase performance when exactly the same operation is to
be performed on multiple data objects. Typical applications are digital signal processing
and graphics processing. SSE was subsequently expanded by Intel to SSE2, SSE3, SSSE3,
and SSE4. Today’s (May 2014) latest version is SSE4.2.
SSE originally added eight new 128-bit registers known as XMM0 through XMM7. In

this project we work with single precision floating point numbers, so one register can hold
up to 4 real values or 2 complex values.
Next type of popular SIMD extensions isAVX [20] (Advanced Vector Extensions). AVX

are extensions to the x86 instruction set architecture for microprocessors from Intel and
AMD proposed by Intel in March 2008. AVX provides new features, new instructions and
a new coding scheme. AVX2 expands most integer commands to 256 bits and introduces
FMA (Fused multiply-add). AVX-512 expands AVX to 512-bit support utilizing a new
EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel with the
Knights Landing processor scheduled to ship in 2015. AVX uses the same registers as SSE,
but their width is inscreased from 128 bits to 256 bits and they are renamed from XMM to
YMM.
A program linking to an FFTW library compiled with SIMD support can obtain a

nonnegligible speedup for most complex and r2c/c2r transforms. In order to obtain this
speedup, however, the arrays of complex (or real) data passed to FFTW must be specially
aligned inmemory (16-byte aligned for SSE, 32-byte for AVX-256), and often this alignment
is more stringent than that provided by the usual malloc allocation routines.
In order to guarantee proper alignment for SIMD, its recommended to allocate the space

for data with fftw malloc and de-allocating it with fftw free. Using memalign or
its equivalent directly is also possible.
FFTW allows users to use its transpose routines separatedly. That is very useful for

this project since we can use its MPI transpose routine to do a global transposition for
us. These routines also support the planner flags. Advanced planning using more time
consuming flags can save a lot of time due to the ability to merge groups of MPI message
together and send one group as one bigger message. Another very important feature is the

11

ability to work with transposed outputs and inputs. Generally when calculating a FFT on a
distributed cluster, the output data have to be in the same shape as the input data and vice
versa, meaning that two global transpositions are necessary. FFTW allows us to work with
transposed input/output data, meaning only one global transposition is necessary, which
can save up to 50% of the time in some cases. These flags are FFTW MPI TRANSPOSED OUT

and FFTW MPI TRANSPOSED IN.
FFTW can calculate all transforms in-place or out-of-place.
FFTW’s 1D decomposition (see Chapter 8) has unfortunatelly become a limiting factor,

as we discuss later, and the 2D decomposition seems to be the best solution.

Libraries using 2D decomposition

To my best knowledge there are presently three non platform specific parallel FFT libraries
using 2D decomposition. These are PFFT by Michael Pippig [31], FFTE by Daisuke
Takahashi [33] and P3DFFT by Dmitry Pekurovsky [30]. All support transforms in single
and double precision and are all pure MPI libraries.
PFFT’s all performance-relevant building blocks are implemented with the help of the

FFTW software library. In fact, it can be understood as an extension of FFTW to mul-
tidimensional process grids. The API (Application User Interface) is also very similar to
the one of FFTW, so transition from one to the other is very simple. Similarly to FFTW,
PFFT is able to compute FFTs of complex data, real data, and even- or odd-symmetric real
data, in both single and double precision. All the transforms can be performed completely
in place. PFFT uses a virtual n-dimensional mesh of P0 × P1 × Pn−1 MPI processes for a
(n + 1)-dimensional FFT.
P3DFFT is currently built on top of Message Passing Interface (MPI) and focuses

only on 1D, 2D and 3D FFT using 1D or 2D processor grids. It is written in Fortran,
but both Fortran a C interfaces are supported. It supports both in-place and out-of-place
transforms in single and double precision, similarly to FFTW and PFFT. It does not support
Complex-to-Complex transforms, only Real-to-Complex or Complex-to-Real. The global
transposition is done via MPI Alltoall or MPI Alltoallv.
FFTE does not support in-place transforms, therefore we will omit it.
FFTW, PFFT and P3DFFT were tested and compared [31] on BlueGene/P [3], Blue-

Gene/Q [4] and JuRoPa [5] machines.

BlueGene/P in
Research Center
Jülich (JuGene)

One node of a BlueGene/P consists of 4 IBM PowerPC 450 cores
that run at 850 MHz. These 4 cores share 2 GB of main memory.
Therefore, we have 0.5 GB RAM per core whenever all the cores
per node are used. The nodes are connected by a three-dimensional
torus network with 425 MB/s bandwidth per link. In total JuGene
consists of 73728 nodes, i.e., 294912 cores.

BlueGene/Q in
Research Center
Jülich (JuQueen)

One node of a BlueGene/Q consists of 16 IBM PowerPC A2 cores
that run at 1.6 GHz. These 16 cores share 16 GB SDRAM-DDR3.
Therefore, we have 1 GB RAM per core whenever all the cores per
node are used. The nodes are connected by a five-dimensional torus
network. In total JuQueen consists of 24576 nodes, i.e., 393216
cores.

Jülich Research on
Petaflop Architectures
(JuRoPA)

One node of Juropa consists of 2 Intel Xeon X5570 (Nehalem-EP)
quad-core processors that run at 2.93 GHz. These 8 cores share 24

12

GB DDR3 main memory. Therefore, we have 3 GB RAM per core
whenever all the cores per node are used. The nodes are connected
by an Infiniband QDR with nonblocking fat tree topology. In total
JuRoPA consists of 2208 nodes, i.e., 17664 cores.

The authors tested complex-to-complex out-of-place FFTs of size 5123 and 10243. Since
P3DFFT supports only real to complex FFTs, they applied P3DFFT to the real and imag-
inary parts of the complex input matrix to get times comparable to those of the complex-
to-complex FFTs of the PFFT package. The test runs consisted of 10 alternate calculations
of forward and backward FFTs. Some of the most interresting results are shown in figures
below.

Figure 3.3: Wall clock time (left) and speedup (right) for FFT of size 10243 up to 262144
cores on BlueGene/P [31].

Three most important points based on these results in regards to k-Wave are:

❼ It is not the performance per core that matters the most, but rather the fast in-
terconnecting network. Figure 3.5 shows that even with relatively slow CPUs, the
communication time still dominates when calculating big FFTs.

❼ Figures 3.4 and 3.3 show that FFTW, PFFT and P3DFFT perform very similarly,
but 2D decomposition further increases the scalability.

❼ The scalability is not very good when a massive number of CPUs is used as shown
in Figure 3.3. Therefore it is more important to have a fast network, then having a
big number of CPUs and the least important aspect is having very powerful CPUs.
The idea of using low-power processors to compute FFTs efficiently has become very
interresting and we will discuss that later in this thesis.

13

Figure 3.4: Wall clock time (left) and speedup (right) for FFT of size 2563 up to 2048 cores
on JuRoPA [31].

Figure 3.5: Wall clock time for FFT of constant local array size 2563 per core up to P =
32768 cores on BlueGene/Q (left) and up to P = 2048 cores on JuRoPA (right). The figure
includes the whole runtime of one forward and one backward FFT (PFFT) and the time
spent for communication (Comm) and computation (Comp). The numbers next to data
points indicate the the total FFT size [31].

14

Chapter 4

Message passing interface

Message Passing Interface (MPI) is a standardized and portable message-passing system
designed tu run on a wide variety of parallel computers. The standard defines the syntax
and semantics of library routines useful to a wide range of users writing portable message-
passing programs in Fortran or the C/C++ programming language. There are several well-
tested and efficient implementations of MPI, including some that are free or in the public
domain. These fostered the development of a parallel software industry, and encouraged the
development of portable and scalable large-scale parallel applications. In k-Wave, we use the
Open MPI implementation, which was introduced in 2004 [19] and its full documentation
is available here [28].
MPI is also a language-independent communications protocol used to program parallel

computers with both point-to-point and collective communication are supported. MPI’s
goals are high performance, scalability, and portability. MPI remains the dominant model
used in HPC (high-performance computing) today.
Although MPI belongs to the layers 5 and higher of the OSI Reference Model, imple-

mentations may cover most layers, with sockets and Transmission Control Protocol (TCP)
used in the transport layer. It has also support for RMDA, OFED (Infiniband) and many
other protocols reducing the latency of message dispatch.
MPI is built on the concept of distributed memory environment. Each process has its

own local memory, which only it can access directly. Sharing data between processes is
available only via messages. Main advantages of this approach are no need to synchronize
the processes (with some exceptions, which we will discuss later in this chapter) and the
programmer’s full control of the processes’ data access. The disadvantages are the com-
munication overhead due to the need of communication over the network to share data,
duplications of data on multiple processes in the case they all require these data for their
calculation and also a much more complicated development of MPI applications.
MPI is often compared with Parallel Virtual Machine (PVM), which is a popular dis-

tributed environment and message passing system developed in 1989. Originally, only
pure MPI was supported on distributed systems. Threaded shared memory programming
models (such as Pthreads and OpenMP) and message passing programming (MPI/PVM)
can be considered as complementary programming approaches. Today’s supercomputers
are designed to have

”
fat“ nodes, which means many cores on a single node. Therefore

communication-heavy MPI applications loose a lot of time by sending and receiving MPI
messages among cores on a single node, where they could share data much faster via shared
memory instead. This is called the hybrid approach - the efficient combination of threads
and MPI processes to reach higher performance. This is also the case of this project, as we

15

combine both MPI and OpenMP together.

4.1 MPI operations

The basic work unit in MPI is the process. To achieve maximum performance, one process
is assigned to exactly one core of a processor, if possible. The placement is carried out by
an agent who runs the MPI program and is usually called mpirun or mpiexec. Processes
communicate via messages, their sending and receiving is defined by the programmer via
MPI routines.
MPI routines can be divided into four basic groups, Environment Management, Group

and Communicator Management, point-to-point and Collective. More details can be found
in the Open MPI manual [28]. Here we only show a basic overview of the MPI standard.

Environment Management Routines

This group of routines is used for interrogating and setting the MPI execution environment,
and covers many purposes, such as initializing and terminating the MPI environment, query-
ing a rank’s identity, querying the MPI library’s version, etc. Most of the commonly used
routines are MPI Init a MPI Finalize, which have to be called by every process in every
MPI application.

Group and Communicator Management Routines

The second group of MPI operations works with groups a communicators. A group is an
ordered set of processes. Each process in a group is associated with a unique integer rank.
Rank values start at zero and go to N − 1, where N is the number of processes in the
group. In MPI, a group is represented within system memory as an object. It is accessible
to the programmer only by a

”
handle“. A group is always associated with a communicator

object.
A communicator encompasses a group of processes that may communicate with each

other. All MPI messages must specify a communicator. In the simplest sense, the communi-
cator is an extra

”
tag“ that must be included with MPI calls. Like groups, communicators

are represented within system memory as objects and are accessible to the programmer
only by

”
handles“. For example, the handle for the communicator that comprises all tasks

is MPI COMM WORLD.
From the programmer’s perspective, a group and a communicator are the same. The

group routines are primarily used to specify which processes should be used to construct a
communicator.
A communicator allows the programmer to organize processes, based upon function,

into groups. It also enables the Collective Communications operations across a subset of
related tasks, provides basis for implementing user defined virtual topologies and provides
for safe communications. One process can be a member of multiple communicators at the
same time.
The most common routines includes MPI Comm size, which returns the total number

of MPI processes in the specified communicator, MPI Comm rank to find out the rank of
the calling process and MPI Comm split to create new communicators.

16

Point-to-Point Communications

MPI point-to-point routines typically involve message passing between two, and only two,
different MPI tasks. One task is performing a send operation and the other task is per-
forming a matching receive operation. MPI guarantees that

❼ messages will not overtake each other,

❼ if a sender sends two messages (Message 1 and Message 2) in succession to the same
destination, and both match the same receive, the receive operation will receive Mes-
sage 1 before Message 2 and

❼ if a receiver posts two receives (Receive 1 and Receive 2), in succession, and both are
looking for the same message, Receive 1 will receive the message before Receive 2.

Most of the MPI point-to-point routines can be used in either blocking or non-blocking
mode with the following properties.

❼ A blocking send routine will only
”
return“ after it is safe to modify the application

buffer (the send data) for reuse. Safe means that modifications will not affect the
data intended for the receive process. Safe does not imply that the data was actually
received - it may very well be sitting in a system buffer.

❼ A blocking send can be synchronous which means there is handshaking occurring with
the receive task to confirm a safe send.

❼ A blocking send can be asynchronous if a system buffer is used to hold the data for
eventual delivery to the receive.

❼ A blocking receive only
”
returns“ after the data has arrived and is ready for use by

the program.

❼ Non-blocking send and receive routines returns almost immediately. They do not
wait for any communication events to complete, such as message copying from user
memory to system buffer space or the actual arrival of message.

❼ Non-blocking operations simply
”
request“ the MPI library to perform the operation

when it is able. The user can not predict when that will happen.

❼ It is unsafe to modify the application buffer (the variable space) until we know for
a fact the requested non-blocking operation was actually performed by the library.
There are

”
wait“ routines used to do this.

❼ Non-blocking communications are primarily used to overlap computation with com-
munication and exploit possible performance gains.

The mose commmonly used point-to-point operations are MPI Send, MPI Isend, MPI Recv

and MPI Irecv, where the I prefix indicates a non-blocking operation.

17

Collective Communication Routines

Collective communication routines are the last group of MPI operations. One routine is
performed between all processes in the communicator. If one or more processes do not
cooperate, it may result in undefined program behavior. Cooperation of all processes must
be ensured by the programmer.
There are three basic groups of routines, Synchronization, Data movement and Collec-

tive computation.
A synchronization routine establishes a synchronization point where the incoming pro-

cesses are blocked until all processes have reached this point. They are then free to proceed.
The only MPI synchronization operation is MPI Barrier. This operation can for example
be used to test core dumps or it can ensure the writing sequence of processes into the file.
The most used data movement routines are MPI Bcast, MPI Scatter and MPI Gather.

But for this project the most important routine is MPI Alltoall. Its principle is shown
in Figure 4.1.

Figure 4.1: Demostration of the MPI Alltoall routine.

This routine does a total exchange of data between all processes in the communicator and
is very extensively used in the parallel matrix decomposition and its global transposition
(see Chapter 8). Very similarly works MPI Alltoallv routine, but it allows each process
to send data of different sizes.
In collective computation routines, one member of the group collects data from the

other members and performs an operation (min, max, add, multiply, etc.) on these data.
As an example we can mention MPI Reduce or MPI Allreduce.

18

Chapter 5

OpenMP

OpenMP (Open Multi-Processing) [10] is an Application Program Interface (API), jointly
defined by a group of major computer hardware and software vendors. OpenMP provides
a portable, scalable model for developers of shared memory parallel applications. It may
be used to explicitly direct multi-threaded, shared memory parallelism. The API supports
C/C++ and Fortran on a wide variety of architectures and operating systems. In this work
we will cover only some of the major features of OpenMP which we use in this project.
OpenMP is designed for multi-processor/core, shared memory machines. The underly-

ing architecture can be shared memory UMA or NUMA, as shown in Figure 5.1.

Figure 5.1: NUMA and UMA architectures [10].

UMA (Uniform memory access) [22] is a shared memory architecture used in parallel
computers. All the processors in the UMA model share the physical memory uniformly. In
a UMA architecture, access time to a memory location is independent of which processor
makes the request or which memory chip contains the transferred data. Uniform memory
access computer architectures are often contrasted with NUMA architectures. In the UMA
architecture, each processor may use a private cache. Peripherals are also shared in some
fashion. The UMA model is suitable for general purpose and time sharing applications by
multiple users. It can be used to speed up the execution of a single large program in time
critical applications.
NUMA (Non-uniform memory access) [27] is a computer memory design used in multi-

processing, where the memory access time depends on the memory location relative to the

19

processor. Under NUMA, a processor can access its own local memory faster than non-local
memory (memory local to another processor or memory shared between processors). The
benefits of NUMA are limited to particular workloads, notably on servers where the data
are often associated strongly with certain tasks or users.
Limiting the number of memory accesses provided the key to extracting high perfor-

mance from a modern computer. For commodity processors, this meant installing an ever-
increasing amount of high-speed cache memory and using increasingly sophisticated algo-
rithms to avoid cache misses. But the dramatic increase in size of the operating systems
and of the applications run on them has generally overwhelmed these cache-processing
improvements. Multi-processor systems without NUMA make the problem considerably
worse. Now a system can starve several processors at the same time, notably because only
one processor can access the computer’s memory at a time [13].
NUMA attempts to address this problem by providing separate memory for each pro-

cessor, avoiding the performance hit when several processors attempt to address the same
memory. For problems involving spread data (common for servers and similar applications),
NUMA can improve the performance over a single shared memory by a factor of roughly
the number of processors (or separate memory banks) [26].
Basics of OpenMP thread based parallelism are:

❼ OpenMP programs accomplish parallelism exclusively through the use of threads.

❼ A thread of execution is the smallest unit of processing that can be scheduled by an
operating system. The idea of a subroutine that can be scheduled to run autonomously
might help explain what a thread is.

❼ Threads exist within the resources of a single process. Without the process, they
cease to exist.

❼ Typically, the number of threads match the number of machine processors/cores.
However, the actual use of threads is up to the application.

❼ OpenMP is an explicit (not automatic) programming model, offering the programmer
full control over parallelization.

❼ Parallelization can be as simple as taking a serial program and inserting compiler
directives.

5.1 The fork-join model

OpenMP uses the fork-join model of parallel execution shown in Figure 5.2. All OpenMP
programs begin as a single process - the master thread. The master thread executes se-
quentially until the first parallel region construct is encountered. The master thread then
creates a team of parallel threads. The statements in the program that are enclosed by
the parallel region construct are then executed in parallel among the various team threads.
When the threads complete the statements in the parallel region construct, they synchro-
nize and terminate, leaving only the master thread. The number of parallel regions and the
threads that comprise them are arbitrary.

20

Figure 5.2: Fork-join model of OpenMP [10].

5.2 API components

OpenMP has three primary API components:

❼ Compiler Directives

❼ Runtime Library Routines

❼ Environment Variables

Compiler directives appear as comments in the source code and are ignored by compilers
unless we tell them otherwise - usually by specifying the appropriate compiler flag. The
common format is

#pragma omp directive-name [clause, ...] newline.

An important note is that each directive applies to at most one succeeding statement, which
must be a structured block. These directives are used for spawning a parallel region, usually
a loop, where the work is divided among threads, synchronization among threads etc.
A very important directive is the parallel directive. When a thread reaches a parallel

directive, it creates a team of threads and becomes the master of the team. The master
is a member of that team and has thread number 0 within that team. Starting from the
beginning of this parallel region, the code is duplicated and all threads will execute that
code. There is an implied barrier at the end of a parallel section. Only the master thread
continues execution past this point.
One of the clauses used for an effective parallelizing of nested loops is the collapse clause.

It specifies how many loops in a nested loop should be collapsed into one large iteration
space, allowing for deeper parallelism and a more efficient use of threads in the case where
the number of iterations of one loop is smaller than the actual number of spawned threads.
Another important clause is the schedule. It describes how iterations of the loop are

divided among the threads in the team. The default schedule is implementation dependent.
In this project we tested all schedule variants and the results show that the performance
benefit can vary very significantly on different machines, even by tens of percent. This

21

will have to be further tested in near future and possibly tuned for each specific machine.
Currently the STATIC variant is used, as it gives the most stable results because of the
data locality of NUMA. The main types are:

STATIC Loop iterations are divided into pieces of size chunk and then statically
assigned to threads. If chunk is not specified, the iterations are evenly (if
possible) divided contiguously among the threads.

DYNAMIC Loop iterations are divided into pieces of size chunk and then dynamically
scheduled among the threads. When a thread finishes one chunk, it is
dynamically assigned another. The default chunk size is 1.

GUIDED Iterations are dynamically assigned to threads in blocks as threads request
them until no blocks remain to be assigned. Similar to DYNAMIC except
that the block size decreases each time a parcel of work is given to a
thread. The size of the initial block is proportional to

number of iterations / number of threads.

Subsequent blocks are proportional to

number of iterations remaining / number of threads.

The chunk parameter defines the minimum block size. The default chunk
size is 1.

RUNTIME The scheduling decision is deferred until runtime by the environment
variable OMP SCHEDULE. It is illegal to specify a chunk size for this clause.

AUTO The scheduling decision is delegated to the compiler and/or runtime sys-
tem.

The opposite to the parallel is the single directive, which specifies that
the enclosed code is to be executed by only one thread of the thread team.
It is mainly usefull in the case of a code inside a parallel region that is
not thread safe, such as I/O. Threads in the team that do not execute
the single directive, wait at the end of the enclosed code block, unless a
nowait clause is specified. The global MPI transposition is enclosed in a
single region and therefore is done only by the master thread, otherwise
a serious perfomance degradation occures.

Runtime library routines are used for setting and querying the number of threads,
their unique identifiers, the thread team size, nested parallelism, setting, initializing and
terminating locks etc. For C/C++, all of these routines are actual subroutines. As an
example, void omp set num threads(int) or int omp get num threads(void).
Environment variables can be used to control the number of threads, specifying how

loop interactions are divided, binding threads to processors and their cores, setting the
maximum level of nested parallelism etc. Setting these variables is done the same way any
other environment variables are set, and depends upon which shell is used. In this project,
the only variable we set is export OMP NUM THREADS=8.

22

Chapter 6

Cluster Computing Today

The possibility for parallel execution of computations strongly depends on the architecture
of the execution platform. Today’s clusters are built on the NUMA approach, as described
earlier, and have usually two sockets per one node, but each node has only one network
card attached to one of the two sockets. Therefore if we want to run one MPI process per
node, it is more efficient to run it on the socket

”
closer“ to the network card.

A physical connection between the different components of a parallel system is provided
by an interconnection network and it can also be used for a classification of parallel systems.
Internally, the network consists of links and switches which are arranged and connected
in some regular way. In multicomputer systems, the interconnection network is used to
connect the processors or nodes with each other. Interactions between the processors for
coordination, synchronization, or exchange of data are obtained by communication through
message-passing over the links of the interconnection network.
The bandwidth of local RAMs is around 50GB/s in the case of Anselm cluster [1]

(but communication over NUMA is only 10GB/s). For 64 nodes, each consisting of 16
cores, the total bandwidth is 3,2TB/s. However the network cards’ bandwidth is only
64× 3.5 = 220GB/s. This means that the global communication is atleast 14× slower than
the local communication, if we neglect the latency! It implies that we would much prefer
communicating locally than communicating globally.
Networks can be divided into two main cathegories [16], direct (static, distributed

switches) and indirect (dynamic, centralized switches). Direct networks consist of a number
of point-to-point links. Every node is both a terminal and a switch. Indirect networks con-
sist of switching elements that the various processors attach to. A node is either a terminal
or a switch.
Examples of direct networks are shown in Figure 6.1 (red circles are switches, green

squares are nodes). Full connection has a direct link between every pair of nodes. Torus
(k-ary n-cube) consists of N = kn nodes arranged in a n-dimensinal cube with k nodes
along each dimension. Meshes do not have wrap-around links. Ring topology is a 1D
torus. Hypercubes are binary cubes and meshes at the same time, hierarchically recursive
(n-cube contains cubes of dimensions less than n as its subgraphs). Fat hypercubes are
more economical in terms of a switch count at a cost of lower performance.
Examples od indirect networks are shown in Figure 6.2. Clos network is a 3-stage

network, each stage consists of a number of small crossbars (a switch connecting multiple
inputs to multiple outputs in a matrix manner). Clos network is symetric when (m, n, r)
= (3, 3, 4). From each input there are m paths to each output. Clos network in strongly
non-blocking if m >= 2n − 1 and rearrangeably nonblocking if m >= n. A bidirectional

23

Figure 6.1: Examples of direct networks [16].

butterfly network is known as a fat tree. Distances between node pairs are non-uniform!

6.1 Portable Batch System

One cluster usually has to handle requests from many of its users. To divide the cluster
resources fairly and evenly among all users, there needs to be a scheduler that performs job
scheduling. One of the most used today is PBS.
PBS (Portable Batch System) [7] is the name of computer software that performs job

scheduling. Its primary task is to allocate computational tasks, i.e., batch jobs, among the
available computing resources. It is often used in conjunction with UNIX cluster environ-
ments.
Requests for allocating resources are done via bash PBS scripts. Each script has to

specify needed resources, such as walltime, number of nodes etc. and has to be put into the
queue by qsub command. PBS then puts the request into the waiting queue and when the
resources are free and the requirements are met, PBS runs the script on the target machine.
A simple example of such script is shown in Figure 6.3. We request the short queue,

walltime is set to 2h (if the program does not end before the 2h mark, PBS will kill it), we
also request 16 nodes, 16 processes per node, 16GB of memory per node, on ZAPAT cluster.
The job is named runtime-test. ’cd $PBS O WORKDIR’ ensures that the target cluster
starts the program from the right directory. We load the openmpi module by the module
load command and finally we run the hybrid-test application using 32 MPI processes, 1
MPI process per socket (each node has 2 sockets) and 8 OpenMP threads per socket.

24

Figure 6.2: Examples of indirect networks [16].

#!/bin/bash

#PBS -q short

#PBS -l walltime=02:00:00

#PBS -l nodes=16:ppn=16:zapat,mem=16gb

#PBS -N runtime-test

cd $PBS_O_WORKDIR

module load openmpi-1.6.5-gcc

OMP_NUM_THREADS=8 mpirun -np 32 -bysocket hybrid-test

Figure 6.3: Example of a PBS script.

25

Chapter 7

Matrix Transposition

As we said earlier in Chapter 3, we need to calculate a series of 1D FFTs along each axis
of the matrix to compute the whole N-dimensional FFT. But how do we index these 1D
arrays? Since the 3D matrix is stored in the row-major order, only elements along the
first axis are stored contiguously. If we wanted to access elements along any other axis, we
would have to do big jumps in memory to access following elements. Unfortunately that
goes completely against the principle of data locality on today’s architectures and it would
cause an inacceptable number of cache misses and therefore ruin the overall performance.
It becomes even more of a problem in a distributed memory environment, where parts of
the matrix are stored on different machines. In order to preserve the data locality, we have
to transpose the matrix so the elements along the current axis are stored in contiguously.
The matrix transpose is a simple swap of two coordinates of all its elements. Nothing

changes by transposing a 1D matrix, because its elements have only one coordinate. By
transposing a 2D matrix, we swap the x and y coordinates of each element of the matrix,
so it turns the matrix over its main diagonal. For n-dimensional matrices where n > 2, we
must specify which two coordinates we want to swap. For example there are 3 options to
transpose a 3D matrix, x ↔ y, x ↔ z and y ↔ z.
At first, we will discuss the 2D matrix transposition, because it transposes x ↔ y

dimensions locally, and then we move to the global MPI transposition, which is used to
transpose x ↔ z among MPI processes.

7.1 2D Matrix Transposition

There are many ways how to transpose a 2-dimensional matrix. The most obvious one is
to swap pairs of inverse elements over the diagonale one by one. The pseudocode of this
naive algorithm is shown in Figure 7.1.

PROCEDURE naive_transpose(matrix, matrix_size) BEGIN

FOR i=0 TO matrix_size STEP 1

FOR j=0 TO i-1 STEP 1

swap(matrix[i,j], matrix[j,i])

END

Figure 7.1: Pseudocode of the naive 2D square matrix transposition

This approach can be improved by dividing the matrix into separate square blocks. The

26

main advantage is that we don’t move across the whole matrix, but only within each block
of the matrix, improving the data locality. The size of a block is usually between 8× 8 and
64 × 64, depending on the architecture and its cache sizes. After transposing two inverse
blocks over the diagonale, these blocks are then swapped. The pseudocode is shown in
Figure 7.2. Note that the blocks on the main diagonale are not treated. We will focus on
that later in this chapter.

PROCEDURE block_transpose(matrix, matrix_size, block_size) BEGIN

FOR i=0 TO matrix_size STEP block_size

FOR j=0 TO i STEP block_size

FOR k=i TO block_size STEP 1

FOR l=j TO block_size STEP 1

swap(matrix[k,l], matrix[l,k])

END

Figure 7.2: Pseudocode of the block 2D square matrix transposition

In this project, run times with different block sizes were measured, and it turned out
that the best size in terms of performance is 8 × 8 in the scalar pair swapping within each
block, 16 × 16 when using the SSE extension and 32 × 32 when using the AVX extension.
The transposition within each block using SSE is very similar to previously shown

common block transposition algorithm, but instead of just swaping two elements, we swap
2 blocks of 4 (16) elements at the same time using 4 (8) SSE registers, depending of the
float precision. The pseudocode is shown in Figure 7.3 (consider that one element is a 64-bit
real number or a 2 × 32-bit complex number).

PROCEDURE SSE_block_transpose(matrix, matrix_size, block_size) BEGIN

FOR i=0 TO matrix_size STEP block_size

FOR j=0 TO i STEP block_size

FOR k=i TO block_size STEP 4

FOR l=j TO block_size STEP 4

swap(matrix[k..k+3,l], matrix[l,k..k+3])

END

Figure 7.3: Pseudocode of the SSE block 2D square matrix transposition

We can also use AVX registers to do the transposition. The only difference is the lenght
of the registers (AVX has 256-bit registers). We will focus more on the AVX version in
Chapter 9.

7.2 Distributed 3D Matrix Transposition

The parallel global transposition among all MPI processes is done by the FFTW software
library. Its planning routines try and measure multiple algorithms and choose to best one
for the current architecture it runs on. The authors say that the chosen algorithm is never
slower than the MPI Alltoall routine (see Chapter 4), which is also considered as one of
the options by the planner.

27

To calculate the FFT of a 3D matrix, we need to do one global transposition to swap
the x and z coordinates of each element of the matrix in case of the 1D decomposition (see
Chapter 8).

28

Chapter 8

Matrix Decompositions

In order to compute the FFT (see Chapter 3) of a N-dimensional matrix, we need to
decompose it along one or more axis [32]. In our project it is basically a question of how to
distribute the matrix among all compute units, which in our case are MPI processes and
OpenMP threads.
k-Wave has up until now used the 1D decomposition of FFTW and the pure MPI

approach. Its principle is shown in Figure 8.1. This decomposition uses only MPI pro-
cesses as compute units. Each process has generally one or more slabs in its local memory
(specifically two in Figure 8.1) at the beginning and perfoms these 6 steps:

❼ Series of 1D FFTs along the x axis.

❼ Local transposition of slabs on each process.

❼ Series of 1D FFTs along the y axis.

❼ Global transposition over all processes.

❼ Series of 1D FFTs along the z axis.

❼ Backward transpositions to get the data into the original shape (can be omitted under
some circumstances).

The FFTW and its 1D decomposition is very flexible and simple to use and is perfectly
usable in case we do not need to parallelize over a high number of cores and the amount of
memory per core is sufficient for our needs. Unfortunatelly this is not the case of k-Wave
anymore. This decomposition is optimal on limited number of processors because it only
needs one global transposition. The disadvantage is that the maximum parallelization is
limited to the length of the largest axis of the 3D data. The maximum number of CPUs
scales as O(N1/3) and the work scales as O(NlogN) thus resulting in poor weak scaling.
This scaling limitation can be overcome by using a 2D decomposition [32] as shown in

Figure 8.2. The computation is done in these six steps similar to the 1D decomposition,
but the local transposition is replaced by the second global transposition, which transposes
withing subgroups of processes.

❼ Series of 1D FFTs along the x axis.

❼ Global transposition within subgroups of processes.

29

Figure 8.1: 1D decomposition of the 3D FFT [32].

❼ Series of 1D FFTs along the y axis.

❼ Global transposition among subgroups of processes.

❼ Series of 1D FFTs along the z axis.

❼ Backward transpositions.

The 2D decomposition has still an inherent scaling limitation because the maximum
number of CPUs only scales as O(N2/3) but this limitation is of no practical relevance
because for any practical size the network communication time limits the number of nodes
more significantly. This is also related to the disadvantage of the 2D decomposition. As it
requires two global transpositions instead of one it might be slower than the 1D decompo-
sition with the same number of processes. However our tests showed that the difference is
negligible (see Chapter 10).
Even though we overcame the limitation of maximum processes, scaling itself becomes

worse and worse with the increasing number of processes due to the bandwidth and latency
of the network. Therefore we came with the idea to use threads instead of processes to
parallelize work along the second axis. The principle is very similar to the 1D decomposition
shown in Figure 8.1, but 1D FFTs and local transpositions are accelerated by OpenMP
threads.
This so called hybrid approach has multiple advantages over the pure MPI approach of

the 2D decomposition shown above.

❼ Only one global transposition is needed, the second transposition is done by threads
in shared memory.

30

Figure 8.2: 2D decomposition of the 3D FFT using only MPI processes [32].

❼ Lower number of MPI processes, therefore bigger MPI messages and less flooded
network.

❼ Flexible ratio of processes and threads.

❼ Utilizing the shared memory, therefore each core has more work oportunities without
the need to communicate with other cores on the same socket.

31

Chapter 9

Implementation

This project is implemented in C/C++. The external software libraries used are FFTW
v. 3.3.4 [17] and Open MPI v. 1.6.5 [28]. As for compilers we tested both GCC v. 4.8.1
[12] and Intel C++ Compiler v. 13.5 [11], though we noticed no difference in performance
between these two.

9.1 High-level Overview

Firstly, the input 3D matrix is distributed among all MPI processes by the parallel HDF5
software library [6]. Each process has one or more slabs stored locally in its memory. On
each of these slabs, OpenMP threads perform series of 1D FFTs and the local AVX block
transposition in parallel. The global MPI transposition is done only by processes, without
the presence of threads. A complete diagram of this process is shown in Figure 9.1 and
details are explained in the following sections.
Running one MPI process per one socket proved to be most efficient since today’s

clusters use non-uniform memory access. The first touch strategy (each core accesses its
part of the allocated array right after the allocation, for example by writing zeros) was also
applied so that each core has its part of the matrix in its own local memory.
As we can see in Figure 9.1, two global transpositions are necessary to do a FFT and

return data into the right shape. Some applications, including k-Wave, can work with
transposed data. What it means is that we can omit the second global transposition. Since
global transpositions consume the most time, this optimization can save up to 50% of the
time.
It is necessary for our HybridFFT to work with the exact same inputs and and return

the same outputs as FFTW due to preserving the compatibility (otherwise we would have to
do major changes in the k-Wave core). Therefore Complex-to-Complex, Real-to-Complex
and Complex-to-Real transforms were implemented. The correctness of our FFT was tested
via several utilities. We implemented a random 3D matrix generator, which created a 3D
matrix with random values and stored it into an HDF5 file. A FFT of this random matrix
was then calculated by our HybridFFT, FFTW and Matlab and the results were stored
again into separate HDF5 files. As the last step, we implemented a comparing utility that
compared these results and printed the maximum and the average deviation. The absolute
value of the maximum deviation was usually around 10−4 and less for random input values
ranging from 0.0 to 1000.0 which is a sufficient value for our needs.
A simple example explains how we use OpenMP to parallelize a series of 1D FFTs, the

32

Figure 9.1: One forward FFT of the HybridFFT

33

AVX block transposition and using the master clause (because the MPI buffers are located
on the master thread) to run the global MPI transposition by only the master thread, is
shown in Figure 9.2.
The number of blocks along one axis can be smaller than the number of spawned threads.

This is very often the case of our block transposition, therefore we parallelize blocks along
both axis at the same time using a collapse(2) clause.

9.2 Series of 1D FFTs

1D FFTs are calculated by the FFTW and its fftwf plan dft 1d, fftwf plan r2c 1d

and fftwf plan c2r 1d planning routines and fftwf execute dft, fftwf execute r2c

and fftwf execute c2r executing routines. The adressing of the 1D arrays is done by
a movable pointer. Transforms are done in parallel by OpenMP threads (1 transform = 1
thread).

9.3 2D Matrix Transposition

As we described in Chapter 7, we use the block transposition with the help of SSE or AVX,
if supported on a target machine. The local slab is divided into blocks, typically of the
size of 32× 32 in the case of AVX, and each of these blocks is internally divided into 4× 4
miniblocks, which equals the size of four AVX registers. These four registers transpose their
values and then two transposed miniblocks inverse over the diagonale are swapped.
Since transposing a matrix using AVX is faster than both SSE and scalar, we will focus

more closely on the AVX version (scalar and SSE are done very similarly). In Figure 9.3,
the principle is shown more closely. As we previously said, the matrix is divided into
blocks. To keep things as simple as possible, the size of each block is equal to four 256-bit
AVX registers, which is 4 × 4 in terms of 64-bit double precision (optimal size is 32 × 32).
The transposition of this single 4× 4 block is done via Intel Intrinsics [20] functions. These
functions are directly mapped to their SIMD instructions, but the compiler can still optimize
some properties such as register allocation or the instruction order.
Each block is transposed using 8 AVX instructions (not including the load and store

instructions). After transposing two inverse blocks over the diagonale, we swap these blocks
simply by storing the register values into the correct memory addresses.
To further increase the performance, we use the OpenMP threading capabilities to

transpose blocks in parallel on multiple cores of a single socket.

9.4 Distributed Matrix Transposition

The global MPI transposition is done by FFTW and its fftwf mpi plan many transpose

planning routine and fftwf execute executing routine. Its functionality is equal to the
MPI Alltoall routine, but it supports multiple algorithm and it chooses the best one for
the current architecture. Ilustration of this process is shown in Figure 9.4 on a 3 × 3 × 3
matrix using 3 MPI processes, each starting with one slab in the z axis.

34

#pragma omp parallel

{

...

#pragma omp for schedule(static)

for (int i = 0; i < slabSize; i+=dimensionSize)

fftwf_execute_dft(transformPlan1D, &data[i], &data[i]);

...

#pragma omp for schedule(static) collapse(2)

for(int i=0; i<dimSizeX; i+=blockSize)

{ // over blocks along the first axis

for(int j=i; j<dimSizeY; j+=blockSize)

{ // over blocks along the second axis

for(int i2=i; i2<max_i2; i2+=blockStep) {

int j2;

if (i==j) //treat blocks on the diagonale

j2=i2;

else

j2=j;

for(; j2<max_j2; j2+=blockStep) {

// transpose and swap two inverse blocks over

// the diagonale

(*transposeBlock)(&matrix[i2*dimSize+j2],

&matrix[j2*dimSize+i2]);

}

}

}

}

...

#pragma omp master

{

// execute the MPI global transposition

fftwf_execute(globalTransposePlan);

}

...

}

Figure 9.2: OpenMP compiler directives example

35

Figure 9.3: 2D matrix transposition using AVX

Figure 9.4: Global MPI transposition example.

36

Chapter 10

Experimental results

We tested on Zapat cluster [8] located in Jihlava, Czech Republic and Anselm cluster [1]
located in Ostrava, Czech Republic. The hardware configurations are:

ZAPAT 112 nodes (1792 CPUs), one node has 2× 8-core Intel E5-2670 2.6GHz,
128GB RAM (14.336TB total), 2 × 600 GB 15k hard drives, Infiniband
40 Gbit/s.

ANSELM 209 nodes (3344 CPUs), one node has 2× 8-core Intel E5-2665 2.4GHz,
64–512GB RAM (15.136TB total), Infiniband 40 Gbit/s QDR, fully non-
blocking fat-tree.

To test our HybridFFT against PFFT and P3DFFT, small sample programs were im-
plemented. We tested forward complex-to-complex single precision FFTs of the size ranging
from 1283 to 20483. Since P3DFFT does not support complex-to-complex transforms, we
simulated it by doing real-to-complex transforms of both real and imaginary parts of the
input. Execution times were measured by the MPI Wtime routine. Each forward FFT was
run 100× in a loop to make sure everything settles down properly (jump predictors etc.). We
tested using the FFTW PATIENT planner flag. FFTW EXHAUSTIVE had sometimes worse
runtimes than the other flags for some strange reason, so we used FFTW PATIENT instead.
Firstly we tested FFTs of the size of 1283–10243 using 128–512 cores on Zapat. Our

HybridFFT run one MPI process per socket, eight OpenMP threads per socket (one per
core), so we had 8× lesser MPI processes than in the case of FFTW, PFFT and P3DFFT,
which run one MPI process per core.
The scaling behaviour shown in Figures 10.1, 10.2, 10.3 and 10.4 indicates that these four

libraries perform very similarly on a relatively low number of cores, but we can still notice
some specific behaviour of our HybridFFT. HybridFFT shows superiority over PFFT and
P3DFFT in the case of a 2563 matrix. This is most likely due to the size of MPI messages
sent during the global transposition, where HybridFFT’s messages have 2MB (which is
most likely the

”
the sweet spot“ of ZAPAT) and the other libraries send 256KB messages,

in the case of employing 512 cores. In other tests all libraries perform very similarly. It
would be very interresting to run these tests on a higher number of cores, around 8–32
thousand cores, because the MPI messages of HybridFFT would still be 8× bigger than in
the case of the other libraries, but the number of messages sent over the network would
definitelly reach the latency threshold of the network, therefore our HybridFFT is expected
to show superior results over the others.

37

The strong scaling shown in Figure 10.5 presents a below linear scaling of smaller ma-
trices, again due to a high number of relatively small MPI messages send over the network.
But super-linear scaling can be seen in the case of the 10243 FFT. This is again due to the
properties of the network, where

”
adjusting“ the size of MPI messages towards

”
the sweet

spot“ of the network is very beneficial. Big messages are limited by the bandwidth and
small message are limited by the latency, therefore it is most beneficial to be as close as
possible to having messages of an optimal size and having

”
not too many“ of them.

As we noticed earlier, the global transposition takes the most time to compute of all
the steps needed to calculate the whole FFT. In Figure 10.6, we can see that in the case of
relatively big matrices, 5123 and more, the global transposition takes up to 90–95% of the
total time. Again we must stress that it is not the performance per core that helps the most
with reaching better performance, but rather the fast interconnecting network. Therefore
the best theoretical system for computing a distributed FFT would be the combination
of relatively slow, but very simple and low-power CPUs and a fast network with a high
bandwidth and low latencies.
The next thing we tested is the scalability of our HybridFFT on a higher number of

cores, up to 2048, this time on Anselm. In the case of smaller matrices, 1283 and 2563,
the scalability is not linear, but that was expected since a high number of very small MPI
messages sent over the network is limited by the network latency. But in the case of 5123,
10243 and especially 20483, the scalability is linear. It would be very interresting to test
with a higher number of cores to further see the progress of the scalability.
As the last test, run on ZAPAT, the performance of our block transposition was mea-

sured (Figure 10.8). We tested the scalar, SSE and AVX version on 1–16 OpenMP threads
and a rather big 163842 complex single precision matrix. The size was chosen so there are
enough blocks in both axis so the SIMD extensions do not get an advantage due to the bet-
ter data locality. Nevertheless the results of using smaller matrices were almost identical.
Also we wanted the total time to be around 0,1–1s to avoid any minor inaccuracies during
the time measurement. Expectedly the AVX version performs better than the SSE, which
performs better than the scalar. We can see that the SSE and AVX versions perform very
similarly when a higher number of threads is used, this is due to reaching the maximum
memory bandwidth of the system.

38

0,0001

0,001

0,01

128 256 512

T
im

e
 [

s]

Cores

1283 cube

FFTW PFFT

P3DFFT HYBRIDFFT

Figure 10.1: Runtime comparison of libraries - 1283 Complex-to-Complex FFT.

0,001

0,01

0,1

128 256 512

T
im

e
 [

s]

Cores

2563 cube

FFTW PFFT

P3DFFT HYBRIDFFT

Figure 10.2: Runtime comparison of libraries - 2563 Complex-to-Complex FFT.

39

0,01

0,1

1

128 256 512

T
im

e
 [

s]

Cores

5123 cube

FFTW PFFT

P3DFFT HYBRIDFFT

Figure 10.3: Runtime comparison of libraries - 5123 Complex-to-Complex FFT.

0,1

1

10

128 256 512

T
im

e
 [

s]

Cores

10243 cube

FFTW PFFT

P3DFFT HYBRIDFFT

Figure 10.4: Runtime comparison of libraries - 10243 Complex-to-Complex FFT.

40

1

2

3

4

5

128 256 384 512

S
p

e
e

d
u

p

Cores

Strong scaling

1024³

Perfect

512³

256³

128³

Figure 10.5: Strong scaling of the HybridFFT.

0

0,5

1

1,5

128 256 512

T
im

e
 [

s]

Cores

Time distribution 10243

Global transposition

Local transposition

1D FFTs

Figure 10.6: Time distribution of HybridFFT.

41

0,001

0,01

0,1

1

10

100

512 1024 2048

T
im

e
 [

s]

Cores

Hybrid FFT Scaling

128³ 256³ 512³
1024³ 2048³

Figure 10.7: Scaling of HybridFFT.

0,1

1

10

1 4 8 16

T
im

e
 [

s]

Threads

16384² transposition

Scalar SSE AVX

Figure 10.8: Comparison of scalar vs. SSE vs. AVX transposition on a 163842 matrix

42

Chapter 11

Conclusion

k-Wave has up until now used FFTW and its 1D decomposition to compute FFTs. Un-
fortunatelly 1D decomposition has become a limiting factor, mainly due to the maximum
number of employable cores. Therefore we introduced a new approach, called HybridFFT,
built mainly on FFTW, MPI, OpenMP and the 2D decomposition principle. HybridFFT
combines advantages of both distributed and shared memory. Unlike other 2D decomposi-
tion libraries, such as PFFT or P3DFFT, it needs only one global MPI transposition and
1D FFTs and local transpositions are done in shared memory. Cores on one socket commu-
nicate via shared memory (not via unefficient MPI messages) and due to the lower number
of MPI processes, MPI messages are bigger, there are fewer of them sent and therefore the
network does not get so flooded as with the pure MPI approaches.
HybridFFT has three main parts: series of 1D FFTs, local transpositions and global

transpositions. 1D FFTs are calculated by FFTW and accelerated by OpenMP threads.
For local transpositions, we implemented a block matrix transposition algorithm, vectorized
by the SSE and AVX instruction extensions via Intel Intrinsic functions and accelerated
by OpenMP threads. The global transposition is done by FFTW, which can shorten the
execution time by planning the transposition beforehand, where it tries to merge smaller
MPI messages to one bigger message and optimize the overall communication.
We measured the execution times on two clusters, Zapat and Anselm, both built on

the modern Sandy Bridge architecture with 16 cores per node and 40 Gbit/s Infinibands.
The results showed that HybridFFT performs very similarly or slightly faster than the
other libraries. The linear scalability was proved for up to 2048 cores in the case of bigger
matrices. The time distribution test showed that most of the total execution (about 90–
95% in the case of big matrices) time needed to compute a FFT is taken by the global MPI
transposition. Therefore we made the conclusion that it is not the performance per core
that matters the most, but rather the fast interconnecting network.
It would be very interresting to use low power processors, such as ARM or Intel Atom,

instead of the modern powerfull CPUs. Because the heat production is much lower with
these processors, we could put more of them into one case and have around 1024 cores in
one rack. Because of the global communication taking so much time, the computation could
easily overlap with the communication and the performance/power consumption ratio could
improve drastically. This is hopefully going to be the main subject of my Ph.D. studies.
For future improvements, we could use non-blocking MPI communications and overlap

the communication steps with the computation steps. Since the global transposition is so
time consuming, we could also further optimize the algorithms used by FFTW or develop
new ones.

43

I attended PRACE Spring school 2014 held in Hagenberg, Austria, and actively pre-
sented a poster with the results of my work. The poster is attached at the end of this thesis,
Appendix A.

44

Bibliography

[1] Anselm cluster, Ostrava, Czech Republic. Available at
https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview.

[2] Cresta, the exascale project. Available at http://cresta-project.eu/.

[3] JuGene: Julich BlueGene/P. Available at
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/

JUGENE/JUGENE node.html.

[4] JuQueen: Julich BlueGene/Q. Available at
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/

JUQUEEN/JUQUEEN node.html.

[5] JuRoPa: Julich Research on Petaflop Architectures. Available at
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/

JUROPA/JUROPA node.html.

[6] Parallel hdf5 software library. Available at http://www.hdfgroup.org/HDF5/.

[7] PBS home page, accessed 24 march 2014. Available at
http://pbs.mrj.com/main.html.

[8] Zapat cluster, Jihlava, Czech Republic. Available at
http://www.cerit-sc.cz/cs/Hardware/#clust4.

[9] SuperMUC Petascale System, Leibniz Supercomputing Center, Germany, accessed 23
May 2014; last updated 22 May 2014. Homepage available at
http://www.lrz.de/services/compute/supermuc/.

[10] OpenMP Application Program Interface, Version 4.0, accessed 4 May 2014; last
updated July 2013. Available at
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[11] Intel Compilers, accesses 2 May 2014. Available at
https://software.intel.com/en-us/intel-compilers.

[12] GCC, the GNU Compiler Collection, accesses 2 May 2014; last modified 22 March
2014. Available at https://gcc.gnu.org/.

[13] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorov.
A Case for NUMA-aware Contention Management on Multicore Systems. Simon
Fraser University. Retrieved 2014-01-27. Available at
https://www.usenix.org/legacy/event/atc11/tech/final files/

45

Blagodurov.pdf.

[14] Jan Cernocky. Study materials for Signals and Systems course. Brno University of
Technology, Faculty of Information Technology, Czech Republic, updated May 2014.

[15] B. T. Cox, S. R. Arridge, and P. C. Beard. Estimating chromophore distributions
from multiwavelength photoacoustic images. J. Opt. Soc. Am. A 26(2), pages
443–455, 2009.

[16] Vaclav Dvorak. Study materials for Parallel System Architecture and Programming.
Brno University of Technology, Faculty of Information Technology, Czech Republic,
updated May 2014.

[17] Matteo Frigo and Steven G. Johnson. The FFTW documentation v.3.3.4., accessed 4
May 2014; last updated April 2014. Available at
http://www.fftw.org/fftw3 doc/.

[18] Matteo Frigo and Steven G. Johnson. The benchfft benchmark, accessed 6 May 2014;
last updated April 2014. Available at http://www.fftw.org/benchfft/.

[19] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
pages 97–104, Budapest, Hungary, September 2004. Available at
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/

euro-pvmmpi-2004-overview.pdf.

[20] Milind Girkar. Intel Instruction Set Architecture Extensions. Intel Developer Zone.
Available at
https://software.intel.com/en-us/intel-isa-extensions.

[21] W.F. Hartsell, C.B. Scott, D.W. Bruner, et al. Randomized trial of short-versus
long-course radiotherapy. JNCI:Natl. Cancer Inst., 2005;97(11):798–804.

[22] Kai Hwang. Advanced Computer Architecture. ISBN 0-07-113342-9.

[23] J.E. Kennedy, G.R. ter Haar, and D. Cranston. High intensity focused ultrasound:
surgery of the future? Brit J. Radiol., 2003;76(909):590–599.

[24] J. Laufer, E. Zhang, G. Raivich, and P. Beard. Three-dimensional noninvasive
imaging of the vasculature in the mouse brain using a high-resolution photoacoustic
scanner,. Appl. Opt. 48(10), pages D299–D306, 2009.

[25] J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard. Quantitative spatially resolved
measurement of tissue chromophore concentrations using photoacoustic spectroscopy:
application to the measurement of blood oxygenation and haemoglobin
concentration. Phys. Med. Biol. 52(1), pages 141–168, 2007.

[26] Zoltan Majo and Thomas R. Gross. Memory System Performance in a NUMA
Multicore Multiprocessor. ACM. Retrieved 2014-01-27. Available at
http://people.inf.ethz.ch/zmajo/publications/11-systor.pdf.

46

[27] Manchanda N. and Anand K. Non-Uniform Memory Access (NUMA). New York
University. Retrieved 2014-01-27. Available at
http://cs.nyu.edu/l̃erner/spring10/projects/NUMA.pdf.

[28] The Open MPI Development Team. Open MPI documentation, accessed 1 May 2014;
last updated 23 April 2014. Available at
http://www.open-mpi.org/doc/current/.

[29] A. A. Oraevsky, L. V. Wang, and Ed. Optoacoustic tomography of the breast in
Photoacoustic Imaging and Spectroscopy. CRC Press, London, pages 411–429, 2009.

[30] Dmitry Pekurovsky. P3DFFT: a framework for parallel computations of Fourier
transforms in three dimensions. SIAM Journal on Scientific Computing,
34(4):C192–C209, 2012. Available at
http://www.sdsc.edu/us/resources/p3dfft.php.

[31] Michael Pippig. PFFT: An extension of FFTW to Massively Parallel Architectures.
SIAM J. SCI. COMPUT., 35(3):C213–C236, 2013.

[32] Roland Schulz. 3D FFT with 2D decomposition. Technical report, 27 April 2008.

[33] Daisuke Takahashi. FFTE software library. Available at http://www.ffte.jp/.

[34] B. E. Treeby and B. T. Cox. k-Wave: Matlab toolbox for the simulation and
reconstruction of photoacoustic wave-fields. J. Biomed. Opt., 15(2):021314, 2010.

[35] B. E. Treeby and B. T. Cox. Homepage of the k-Wave project, accessed 18 May
2014; last updated 13 November 2012. Available at http://www.k-wave.org/.

[36] B. E. Treeby, B. T. Cox, and J. Jaros. k-Wave User Manual version 1.0.1 (november
15, 2012). Available at
http://www.k-wave.org/manual/k-wave user manual 1.0.1.pdf.

[37] B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox. Modeling nonlinear ultrasound
propagation in heterogeneous media with power law absorption using a k-space
pseudospectral method. J. Acoust. Soc. Am., 131(6):4324–4336, 2012.

[38] L. V. Wang. Microwave-induced acoustic (thermoacoustic) tomography in
Photoacoustic Imaging and Spectroscopy. CRC Press, London, pages 339–347, 2009.

[39] L. V. Wang and Ed. Photoacoustic Imaging and Spectroscopy. CRC London, 2009.

[40] X. Wang, Y. Pang, G. Ku, X. Xie, G. Stocia, and L. V. Wang. Noninvasive
laser-induced photoacoustic tomography for structural and functional in vivo imaging
of the brain,. Nat. Biotechnol. 21(7), pages 803–806, 2003.

[41] E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard. In vivo high-resolution 3d
photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54(4), pages
1035–1046, 2009.

47

Appendix A

Poster

2D Hybrid Decomposition of the 3D Fast
Fourier Transform

Vojtech Nikl and Jiri Jaros

1 Overview

The Fast Fourier Transform (FFT) is widely used in many
applications including engineering, science and mathematics.
However computing the FFT on large input data can become
a significant problem when being done in distributed environment.
Today‘s supercomputers can massively parallelize tasks over
thousands of CPUs. But employing these resources efficiently is a
challenge. An interesting way can be the combination of
processes and threads, also called as the hybrid approach.

2 k-Wave Simulation

k-Wave is an open source acoustics toolbox designed for time
domain acoustic and ultrasound simulations in complex and
tissue-realistic media. The simulation functions are based on the
k-space pseudospectral method where the most time consuming
part is the 3D FFTs . A typical simulation may involve domain
sizes on the order of 2048x1536x1536 and employ up to 1536
compute cores.

4 2D Decomposition of the 3D FFT

6 Experimental Results

Faculty of Information Technologies, Brno University of Technology, Czech Republic

This work was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European

Regional Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations

Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large Research, Development and

Innovations Infrastructures (LM2011033).

We acknowledge PRACE for awarding us access to resource Supernova based in Poland at Wroclaw.

Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum

and Cerit, provided under the programme "Projects of Large Infrastructure for Research, Development, and Innovations" (LM2010005),

is greatly appreciated.

Series of 1D
FFTs along
the 1st axis

Series of local
transpositions

of slabs

Series of 1D
FFTs along
the 2nd axis

Global MPI
transposition

Series of 1D
FFTs along
the 3rd axis

0,0001

0,001

0,01

128 256 512

T
im

e
 [

s
]

Cores

1283 cube

FFTW PFFT
P3DFFT HYBRIDFFT

0,01

0,1

1

128 256 512

T
im

e
 [

s
]

Cores

5123 cube

FFTW PFFT
P3DFFT HYBRIDFFT

0,001

0,01

0,1

128 256 512

T
im

e
 [

s
]

Cores

2563 cube

FFTW PFFT
P3DFFT HYBRIDFFT

0,1

1

10

128 256 512

T
im

e
 [

s
]

Cores

10243 cube

FFTW PFFT

P3DFFT HYBRIDFFT

+ portable
+ fast
+ adaptable
+ scalable
+ easy to use

- 1D decomposition
- low core count
- no shared memory
- RAM usage per core

FFTW

+ built on the FFTW
+ 2D decomposition
+ high core count

- 2 MPI transpositions
- no shared memory
- small MPI messages

PFFT

+ build on the FFTW
+ 2D decomposition
+ high core count
+ 1 MPI transposition
+ shared memory
+ larger messages

HYBRID

3 3 Ways of Calculating the 3D FFT

3 1D Decomposition of the 3D FFT

5 The Hybrid Version

• Built on the FFTW, MPI and OpenMP software libraries

• Combines advantages of both distributed and shared memory

• 1D FFTs and local transpositions accelerated by threads

• Global transposition done by processes

• One process per socket, one thread per core

0

0,5

1

1,5

128 256 512

T
im

e
 [

s
]

Cores

Time distribution 10243

Global transposition

Local transposition

1D FFTs

1

2

3

4

5

128 256 384 512

S
p

e
e

d
u

p

Cores

Strong scaling

1024³

Perfect

512³

256³

128³

48

	Introduction
	k-Wave toolbox
	Fast Fourier Transform
	Cooley-Tukey algorithm
	N-dimensional transform
	Real-to-Complex and Complex-to-Real transforms
	Software libraries implementing FFT

	Message passing interface
	MPI operations

	OpenMP
	The fork-join model
	API components

	Cluster Computing Today
	Portable Batch System

	Matrix Transposition
	2D Matrix Transposition
	Distributed 3D Matrix Transposition

	Matrix Decompositions
	Implementation
	High-level Overview
	Series of 1D FFTs
	2D Matrix Transposition
	Distributed Matrix Transposition

	Experimental results
	Conclusion
	Poster

