
MASARYK UNIVERSITY
FACULTY OF INFORMATICS

⑥✇✁✂✄☎✆✝✞✟✡☛☞✌✍✏✑✒✓✔✕✖✗✘✙✚✤✥✦✧★✩✪✫✬✭✮✰✱✲✳✴✵✶✷✸✹✺❁②❆⑤
Annotation and validation of

ligand molecules

MASTER’S THESIS

Bc. Vladimír Horský

Brno, spring 2014

Declaration

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Bc. Vladimír Horský

Advisor: RNDr. Radka Svobodová Vařeková, Ph.D.

ii

Acknowledgement

I would like to thank my supervisor, Radka Svobodová Vařeková, for
her patience, support, advice and guidance. Then, I would like to ex-
press sincere gratitude to my parents for their unwavering support.
Finally, I would like to thank my dear friends for cheering me up and
for reminding me where the nearest open bar was.

iii

Abstract

Ligand molecules are a large group of molecules with diverse func-
tions in living organisms. Because of their importance, they are of-
ten in the spotlight of various research fields, for example (and not
limited to) cheminformatics or pharmacology. Ligands can be found
in chemical databases, where they are often incorrectly annotated
or stored in an invalid state. The objective of this thesis was to de-
sign and implement algorithm for validation and annotation of lig-
and molecules. Firstly, it was necessary to understand the chemical
background of ligand diversity and similarity. A suitable way of rep-
resenting ligand molecules in computer that will facilitate effective
discovery of similarity between pairs of ligands has been found (in
the form of the modified molecular graph) and implemented. Appli-
cation LiCMP (Ligand CoMParator) has been designed and imple-
mented as the result of this thesis. The program has then been used to
annotate 10 247 ligands extracted from the Protein Data Bank against
1 865 reference ligands downloaded from the LigandExpo. 47.74 %
of input ligands have an issue with their structure. LiCMP was then
successfully cross-validated with SwCMP using a set of 34 208 sac-
charides to be annotated and 924 saccharides from LigandExpo as
the reference set.

iv

Keywords

ligand, ligand motive, ligand molecule, Protein Data Bank, PDB, Lig-
andExpo, annotation, molecular graph, molecule comparison, iso-
morphism, parallelization, C++, Qt

v

Contents

1 Introduction . 1
2 Theory . 2

2.1 Chemical background 2
2.1.1 Ligand . 2
2.1.2 Bond properties 2
2.1.3 Chirality in chemistry 3

2.2 Mathematical background 5
2.2.1 Molecular graph 5
2.2.2 Graph isomorphism problem 7

2.3 Computer representation of molecule structure 8
2.3.1 1D structure . 8
2.3.2 2D structure . 9
2.3.3 3D structure . 10

3 Tools and methods . 12
3.1 Protein Data Bank . 12
3.2 PDB file format . 12
3.3 Ligand Expo . 13
3.4 Visual Molecular Dynamics 13
3.5 Programming language 14
3.6 Qt Software development kit 14
3.7 Software design patterns 15
3.8 SwCMP . 16

4 Implementation . 17
4.1 Representation of molecules 17
4.2 Overview of LiCMP . 18

4.2.1 Functionality . 18
4.2.2 Command line parameters 19
4.2.3 Program input specification 21
4.2.4 Program output specification 22

4.3 Data structures . 24
4.3.1 QList container 24
4.3.2 QMap and QMultiMap containers 25
4.3.3 QSet containers 25

4.4 Class diagram . 26
4.5 Significant classes . 26

vi

4.5.1 GraphAtom class 26
4.5.2 Molecule class and its children 28
4.5.3 Job class . 29
4.5.4 Comparator class 29
4.5.5 Path class . 30
4.5.6 Results class 30
4.5.7 Container classes 31
4.5.8 Singleton classes 31

4.6 Comparison algorithm 32
4.7 Parallelization of molecule comparison 38
4.8 Problematic input molecule processing 38
4.9 Molecule similarity metric 41

5 Results and discussion . 44
5.1 Ligand dataset . 44
5.2 Identification results . 45
5.3 Differing patterns . 45
5.4 Comparison with SwCMP 50

5.4.1 Sugar dataset . 50
5.4.2 Identification results and deviations 51

5.5 Limitations . 54
5.6 Summary . 57
5.7 Presentation and utilization of results 57
5.8 Future plans . 57

6 Conclusion . 59
7 Appendices . 61

7.1 Contents of attached CD 61
7.2 Ligands from Ligand Expo mentioned in this thesis . . 62

8 Literature . 64

vii

1 Introduction

Ligands are rather small molecules that bind to biomacromolecules
in vast array of living organisms and form complexes with them [1].
They perform many significant chemical functions such as activation
of biomolecules and transmitting signals between biochemical struc-
tures. Because of their functional variety, ligands are often studied
by pharmacology with the ambition of discovering new and better
drugs.

Cheminformatics is a new interdisciplinary science field that has
been established to discover and implement effective ways of pro-
cessing chemical data that are stored in today’s large
chemical databases [2]. It utilizes mathematics, informatics, and in-
formation technology approaches to work in silico with promising
molecules, usually drugs. Cheminformatics can, in certain areas, pro-
vide better results than experimental chemistry while potentially us-
ing less time and money.

Ligands stored in various databases have been often extracted
from their complexes with biomacromolecules using automated
methods, and therefore are predicted to either be incorrectly anno-
tated, or to have problems in their structure. The objective of this
thesis is to design and implement algorithm for validation and anno-
tation of ligand molecules. A challenge for design of such algorithm
is the potentially unlimited amount of distinct ligand molecules.

Firstly, it is fundamental to understand the chemical background
of ligand diversity and similarity. A suitable way of representing lig-
and molecules in computer that will facilitate effective discovery of
similarity between pairs of ligands has to be found, studied, and
implemented. Validation and annotation algorithm will then be de-
signed and implemented.

Realized algorithm will be used to validate and annotate a set
of ligand molecules that have been extracted from the Protein Data
Bank [3] as a part of the metalloprotein research project at the Na-
tional Centre for Biomolecular Research (NCBR) [4]. A set of ligands
with confident annotations that have been downloaded from the Lig-
andExpo [5] will be used as reference ligands in the validation and
annotation process.

1

2 Theory

2.1 Chemical background

2.1.1 Ligand

There exist two types of ligands. In coordination chemistry, ligands
are molecules (or functional groups) that binds to a central metal
atom [6]. In biochemistry, ligands are (usually small) molecules that
bind to a biomolecule to provide specific functionality
in organism [1]. Main focus of this thesis lies in ligands from the view
of biochemistry.

Target biomolecules for ligand binding are usually proteins and
DNA molecules. Roles of ligands include, and are not limited to, sub-
strates (molecules upon which chemical reactions, catalyzed by en-
zymes, are conducted), neurotransmitters (molecules that transmit
signals between neurons), activators (molecules that increase activity
of target enzymes) and inhibitors (molecules that decrease activity of
target enzymes) [1]. Therefore, due to their extensive functionality
options, ligands are often studied by pharmacological disciplines.

Despite being usually classified as small molecules, ligands can
range from single ion [7] to a protein [8]. Because of the way they
make their functionality happen, they are not in most cases bound
to the target receptor molecule via covalent bond(s). Instead, they re-
alize their bonding using intermolecular forces (e.g. van der Waals
forces and hydrogen bonds). They do, however, change their confor-
mation when such bonding occurs. This observation is important for
the design of algorithms that are to compare ligands in their default
conformation to ligands that have been extracted from some larger
structure in their bound conformation.

2.1.2 Bond properties

A chemical bond [6] is a force interaction that binds atoms together.
Bound atoms are in an energetically more favorable state then they
were in before establishment of the bond. Bonds can be divided into
two groups [6]. Intramolecular bonds (also known as strong chem-

2

2. THEORY

ical bonds) are bonds that hold atoms together in molecules. They
are based on the electrostatic attraction between nuclei of bound at-
oms and shared valence electrons from overlapping valence diam-
eters in the case of covalent bonds [9], or on electrostatic attraction
between two differently charged atoms in the case of ionic bond-
ing. Intermolecular bonds (also known as weak interactions) repulse
or attract whole molecules. They are weaker than forces of covalent
bonds. Subtypes of intermolecular bonds include dipole-dipole in-
teractions and Van der Waals forces.

The covalent radius is a measure of the size of an atom that par-
ticipates in a covalent bond with another atom. The sum of covalent
radii of two atoms in a bond should be equal to the length of the
bond. Reference valence diameters are measured mainly using X-ray
diffraction (or much less commonly using rotational spectroscopy
and neutron diffraction of crystals) and tabulated for multiple bond
orders of atoms from the periodic table.

Reference covalent radii have been tabelated and published [10],
while covalent radii for single bonds [11], double bonds [12] and
triple bonds [13] have been tabelated as well. It is important to note
however that above mentioned values are not universal, because co-
valent radius of an atom depends on the chemical specifics of envi-
ronment it exists in. Bonds between atoms of significantly dissimilar
electronegativity tend to be shorter than bonds between two atoms
of same element [6]. Rather than exact values, above mentioned tab-
ulated radii should therefore be taken as average or idealized values.

2.1.3 Chirality in chemistry

If an object is chiral (derived from the Greek χειρ - "hand"), it can-
not be superposed to its mirror image [14]. Enantiomorphs (or enan-
tiomers, as they are called in chemistry) is a term for a chiral object
and its mirror image that cannot be superposed to it. The concept of
chirality can be found in mathematics, physics and chemistry.

Most of chirality in chemistry revolves around stereogenic cen-
ters [15, 16] (also called stereocenters). Stereogenic center is an atom
with connected groups such that swapping relative positions in two
of them in space leads to creation of a stereoisomer [15]. The most
common stereogenic center is a carbon atom in tetrahedral configu-

3

2. THEORY

Figure 2.1: 6-deoxy-mannose-1’-phosphate, an example of a molecule with five chi-
ral carbon atoms (C1, C2, C3, C4 and C5). Source: LigandExpo.

ration with four different ligands attached to it [17]. Chiral molecule
can theoretically have 2n enantiomers1 (where n is the number of chi-
ral centers), even though not every enantiomer exists naturally due
to steric restrictions. A concrete example of a chiral molecule with
five chiral carbon centers is depicted in figure 2.1. All naturally occur-
ring amino acids, as well as saccharides, are chiral. Certain enzymes
distinguish between possible enantiomers of its ligands.

Aside from carbon atoms, that are very common, nitrogen, phos-
phorous and several kinds of metal atoms in tetrahedral conforma-
tion can be chiral by the same rules as those that apply to carbon
atoms.

To differentiate chiral molecules from achiral molecules, as well
as enantiomers from each other, three naming conventions have been
developed:

• R/S system [18] is the most common and most general nam-
ing convention of chiral molecules. It does not depend on any
reference molecule and has no connection to the other two

1. Le Bel-van’t Hoff rule (1874)

4

2. THEORY

presented naming conventions. In this convention, each stere-
ogenic center is given either R- or S- preposition. To assign
a R- of S- preposition to a stereogenic center, two steps have
to be taken. First, substituents that are bound to a stereogenic
center are each given a priority based on their atomic number
in accordance to the Cahn-Ingold-Prelog priority rules [19].
Then, it is necessary to view the center in a way that places
the lowest-priority substituent farthest away from the viewer.
If the priority of the remaining three substituents decreases in
counterclockwise direction, it is a S- center. Otherwise, it is a
R- center [18].

• (+)/(-) system [20] classifies enantiomers by the way they af-
fect polarized light. If an enantiomer rotates the plane of po-
larized light clockwise (when the light travels straight to the
viewer), it is a (+) enantiomer. Otherwise, it is a (-) enantiomer.

• D/L system [21] gives D- or L- prefixes to enantiomers based
on their configuration similarity to glyceraldehyde. In the case
of amino acids, configuration prefix can be obtained using the
"CORN" rule. First, it is necessary to view the chiral carbon
atom in a way that places the hydrogen atom farthest away
from the viewer. The, if the arrangement of groups COOH, R
and NH2 is clockwise, it is a D- enantiomer. Otherwise, it is a
L- enantiomer [22]. Nearly all naturally occurring amino acids
are L- enantiomers [23].

2.2 Mathematical background

2.2.1 Molecular graph

Molecular graph [2, 24, 25] is a formalized mathematical representa-
tion of a molecule. Rather that describing absolute spatial configura-
tion of molecule in space, it characterizes the topology of a molecule.

Molecular graph is an ordered quintuple G = (V,E, L, ϕ, β),
where V = {v1, v2, ..., vm} is a non-empty set of vertices,
E = {e1, e2, ..., en} is a multiset of edges, L = {l1, l2, ..., lo} is a multi-
set of loops, β is a finite set of atom symbols and ϕ is a map V → β.

5

2. THEORY

Vertices represent individual atoms, edges represent bonds between
atoms, loops represent valence electron pairs that are not shared with
any other atom (lone electron pairs) and β is a set that contains sym-
bols of elements which atoms are present in the graph. ϕ is a relation
that gives an element symbol to every atom in the graph. Bonds be-
tween atoms are represented as edges of the graph, i.e. by unordered
pairs of vertices (e.g. {v1, v2} represents a bond between atoms v1
and v2) in the multiset E. Lone electron pairs are also represented by
an unordered pair of vertices that the atom forms with oneself (e.g.
{v1, v1}). Bonds of higher order are represented by multiple copies
of a bond in E in a similar way as multiple lone electron pairs are
represented. An example of a molecule represented by a molecular
graph is depicted in figure 2.2.

(a) Structural formula.
Source: LigandExpo. (b) Molecular graph visualization.

G = (V,E, L, ϕ, β),
V = {v1, v2, v3, v4, v5},
E = {{v1, v3}, {v1, v2}, {v1, v2}, {v1, v4}, {v3, v5}},
L = {{v2, v2}, {v2, v2}, {v3, v3}, {v3, v3}},
β = {C,O,H},
ϕ(v1) = C,ϕ(v2) = ϕ(v3) = O,ϕ(v4) = ϕ(v5) = H

(c) Formal description of the molecular graph.

Figure 2.2: Two representations of formic acid molecule - via structural formula
and via molecular graph.

6

2. THEORY

Bonds of a graph can alternatively be represented by an incidence
matrix [25], which is a square shaped symmetric matrix with |V |
rows. At each position aij there is either the order of bond between
atoms vi and vj , or 0 of no such bond exists. At position ajj there is
the number of lone electron pairs present at atom vj . Since informa-
tion contained in multisets E and L can be fully inferred from the
incidence matrix, it is possible to define molecular graph as an or-
dered quadruple G = (V,A, ϕ, β), where where V = {v1, v2, ..., vm} is
a non-empty set of vertices, A is the incidence matrix defined earlier,
β is a finite set of atom symbols and ϕ is a map V → β.

2.2.2 Graph isomorphism problem

Graph isomorphism [26] is a graph theory term that deals with iden-
tity of two graphs, and is defined as follows: Two graphs G = (V,E)
and G′ = (V ′, E ′) are considered isomorphic if a bijection f : V −→
V ′ exists such that x, y ∈ E if and only if f(x), f(y) ∈ E ′ holds for
all x, y ∈ V , x 6= y. Such an f is called an isomorphism of graphs G

and G′ [26]. Trivially, finding an isomorphism of two graphs can be
viewed as finding a way of renaming vertices of the first graph so
that the result looks like the second graph. The isomorphism relation
is an equivalence relation, therefore it partitions the class of all pos-
sible graphs into equivalence classes [27]. Members of each class are
isomorphic to the rest of graphs of said class.

The graph isomorphism problem (i.e. determination whether two
finite graphs are in isomorphic relation with each other) is a difficult
problem. It is still uncertain if this problem can be solved in poly-
nomial time for every possible graph. Practical algorithms still ex-
hibit exponential time complexity on their worst case scenario input
graphs [28]. While certainly useful, determining only whether two
molecular graphs are isomorphic or not does not provide enough
granularity to be used as a molecule similarity decision approach.
Suppose there are two ligand molecules that only differ in the pres-
ence of a single oxygen atom that is missing in one of the mentioned
molecules because of its mistreatment by the automated extraction
method used to extract the ligand from some larger macromolecu-
lar structure. A graph isomerism problem solver would just return
"no" and completely miss the glaring similarity amongst said lig-

7

2. THEORY

ands. Therefore, it is necessary to operate with smaller units than
whole graphs.

A subgraph is defined as follows: Let G and G′ be graphs. We say
that G is a subgraph of G′ if V (G) ⊆ V (G′) and E(G) ⊆ E(G′) [26].
The subgraph isomorphism problem then aims to determine if G

contains a subgraph that is isomorphic to H when graphs G and H

are given. This problem is NP-complete (as has been proven [29])
and can be solved via the use of brute force depth-first tree-search
enumeration algorithm, even though there exist solutions that en-
able solving the subgraph isomorphism problem for certain specific
classes of graphs in polynomial time [30].

2.3 Computer representation of molecule structure

2.3.1 1D structure

One-dimensional structure [2] (1D structure) carries information
about element types of atoms that form a molecule. The chemical for-
mula is defined as a sequence of element symbols (Ai)xi

where Ai is
an element type and xi is number of atoms of element type Ai that are
present in the molecule. To give an example, formula C12H22O11 rep-
resents maltose molecule, which contains 12 carbon atoms, 22 hydro-
gen atoms and 11 oxygen atoms. Element symbols can occur multiple
times in the formula when it is required to show that the structure of
a molecule consists of several significant parts (e.g. the formula of
butyric acid C4H8O2 can be also written as CH3(CH2)2COOH to em-
phasize that it is a carboxylic acid) .

To load a molecule in 1D representation to a computer, it is suffi-
cient to input the count of each element. No other information is rep-
resented in such structure. Also, many different molecules have the
same chemical formula (e.g. C12H22O11 is the formula of maltose as
well as galactobiose). Therefore, 1D structure representation has lim-
ited usage besides some physical attribute computation (e.g. molec-
ular weight [31]) and statistical usage.

8

2. THEORY

OC[CH]1O[CH](O[CH]2[CH](O)[CH](O)[CH](O)O[CH]2CO)
[CH](O)[CH](O)[CH]1O

Figure 2.3: SMILES representation of 2D structure of maltose (single string).

2.3.2 2D structure

Two-dimensional structure [2] (2D structure) describes the topology
of a molecule, i.e. which atoms are connected to each other and what
is the order of each bond. Coordinates of atoms in space (and infor-
mation that can be inferred from them) are not present in this repre-
sentation. The most human-friendly representation of 2D structure is
via structure formula, i.e. an image with defined notation for element
symbols and bonds. In structure formula, atoms are represented by
their element symbols. Bonds are represented by a line between two
atoms (or more lines closely together in parallel if described bond
has higher order than one). An example of a structural formula is de-
picted in figure 4.1a. Such representation, albeit human-friendly, is
not suited for use in computations. Instead, two computer-friendly
representations of 2D structure are being commonly used.

Line notation [2] is a molecule specification that represents 2D
structure as an ASCII string. Several line notations have been devel-
oped and used over time, e.g. InChI2, WLN3, SMILES4, SMARTS5

and SLN6. Main advantages of this representation are its significant
storage efficiency and a degree of human readability. Algorithms to
convert 2D structure representation to a line notation representation
vary between line notation types. In the case of SMILES, five rules
and depth-first traversal (after breaking rings) through a molecule is
employed in the conversion process [32]. Reverse order of conver-
sion is possible as well, although converting line notation formula
to a 2D structure formula representation as well as to a 3D structure
representation can lead to ambiguous results [33]. To give an exam-
ple, SMILES representation of maltose is showed in figure 2.3.

2. International Chemical Identifier
3. Wiswesser Line Notation
4. Simplified Molecular Input Line Entry Specification
5. SMILES Arbitrary Target Specification
6. SYBYL Line Notation

9

2. THEORY

Molecular graph representation looks at molecules as
multigraphs - structures studied by graph theory discipline. Descrip-
tion of this representation method can be found in subsection 2.2.1.
Molecular graphs can be extended to contain more information
about bonds and atoms, such as charge or true 3D structure
of molecule in the form of Cartesian coordinates of atoms (see section
4.1). Molecular graphs can be physically represented in
computer memory in three different ways:

• atoms as objects and bonds as pointers between them

• indexed array of atoms and array of index pairs as bonds

• an incidence matrix along with an array of atoms

Each physical representation has its advantages and its disadvan-
tages, depending on the algorithms that will work with represented
molecules (e.g. efficient memory complexity requirement versus us-
ability for GPGPU7 computations requirement).

2.3.3 3D structure

Three-dimensional structure [2] (3D structure) describes the absolute
configuration of atoms in space using a set of coordinates. It con-
tains complete information about structure of a molecule. There are
three types of commonly used coordinates: Cartesian coordinates,
distance matrix and internal coordinates. Cartesian coordinate sys-
tem is a widely used coordinate system that defines position of each
point in space using three signed distances to three fixed perpendic-
ular lines.

Internal coordinates [34] (also known as Z-matrix) define 3D
structure of a molecule as a set of distances between atoms
(in Ångstroms8), angles of pairs of bonds (in degrees) and torsion an-
gles (in degrees, also known as dihedral angles, i.e. angles between
planes defined by three bonds). Internal coordinates are relative to
other, already defined atoms in the molecule. The first defined atom
has no coordinates. The second atom is defined only by its distance

7. General-purpose computing on graphics processing units
8. 1Å = 10−10m

10

2. THEORY

Figure 2.4: An example of a connection table in the form of a PDB file
FMT_ideal.pdb that contains the formic acid molecule. Source: LigandExpo.

to the first atom. The third atom is defined by its distance to either
the first or the second atom (to which it is connected) and by bond
angle between its bond and the other already existing bond. From the
fourth atom onwards, all four coordinates are used. Conversion from
internal coordinates to Cartesian coordinates is widely used (e.g. in
protein structure modeling), albeit computationally intensive [35].

Distance matrix [36] describes 3D structure of a molecule in a
coordinate-independent manner by a matrix of distances between
every atom pair. It is a square matrix with n rows where n is the num-
ber of atoms in the described molecule. Distance matrix 3D structure
description is used for NMR and X-ray data representation.

Connection table molecule representation method [2] is often
used in various file formats designed for 3D chemical structure stor-
age and exchange (e.g. the PDB file format, described in 3.2). It con-
sists of two lists: A list of atoms and list of bonds between atoms.
Each item of the list of atoms usually carries more information than
just 3D coordinates (e.g. charge, name and residue membership),
while each item of the list of bonds can also carry addition informa-
tion, such as order of described bond. An example of a connection
bond is enclosed in figure 2.4.

Since hydrogen atoms can usually be inferred from the rest of
provided information, some connection table representations omit
them entirely and are therefore called hydrogen-suppressed connec-
tion tables.

11

3 Tools and methods

3.1 Protein Data Bank

The Protein Data Bank [3] is a highly curated and annotated reposi-
tory of experimentally determined three-dimensional structural data
of mostly large biological macromolecules. PDB is maintained by
the Worldwide Protein Data Bank (wwPDB) organization. wwPDB
formalizes the repository and ensures its transparency to depositors
from any part of the world [37]. The repository itself is physically
managed by RCSB PDB1, that is one of the founding members of ww-
PDB. Other members of wwPDB include PDBe2, PDBj3 and BMRB4.

Data in the PDB are stored in PDB file format as well as in mm-
CIF5 file format. Each entry has its own unique PDB ID that consists
of four alphanumeric characters. As of 3rd May 2014, there are 99 775
structures present in the archive. New data are added to PDB each
Wednesday on a weekly basis.

PDB database can be viewed as a primary source of data. Many
derived databases use data from PDB and categorize them in dif-
ferent manner. An example of such derived database is the SCOP6

database that categorizes and sorts entries by type of their structure
and assumed evolutionary relations [38].

3.2 PDB file format

PDB file format defines structure of files present in the PDB reposi-
tory [39]. A PDB file holds information mainly about atoms that com-
prise a structure described by the PDB file, although it can contain
additional information about described structure, such as crystallog-
raphy data, citations, database references and various annotation of
described molecule.

1. Research Collaboratory for Structural Bioinformatics Protein Data Bank (USA)
2. Protein Data Bank in Europe
3. Protein Data Bank Japan
4. Biological Magnetic Resonance Data Bank
5. macromolecular Crystallographic Information File
6. Structural Classification of Proteins

12

3. TOOLS AND METHODS

PDB file is a pure text file with fixed column positions and record
sizes. Each line contains at most 80 characters due to legacy width
constraint of a terminal screen. Each line starts with up to six charac-
ter long record name (e.g. ATOM, HETATM, REMARK) that specifies type
of information present on such line and ends with line feed charac-
ter. Usable character set is restricted to non-control ASCII characters.
Furthermore, the use of punctuation characters is deprecated.

3.3 Ligand Expo

As mentioned earlier, the Protein Data Bank contains mostly infor-
mation about structures of proteins, nucleic acids and complex chem-
ical structures. References to ligands, found within such structures,
are stored in the Chemical Component Dictionary [40] that is main-
tained by the wwPDB and updated each week. Each ligand has its
own, up to three-character long, alphanumeric ID (also known as
residue code).

Ligand Expo [5] serves as a web interface to the Chemical Com-
ponent Dictionary. It allows user to search the Dictionary in several
ways, e.g. by ID, by chemical name or formula, by supplying a file in
one of supported file formats, or by sketching a ligand to search for.
Search results can be filtered, as well as refined - Ligand Expo can
either search for exact match, or apply relaxation to the query (e.g.
only match a subset of atoms from the query).

3.4 Visual Molecular Dynamics

Visual Molecular Dynamics [41] (VMD) is a software for complex
biological structure analysis. It is not limited to static analysis and
rendering, but can also visualize trajectories of molecular dynamics
computations and render a video of them. VMD is multi-platform,
supports plug-ins and is limited in import size only by the amount
of system memory.

VMD can also be used for visualization and analysis of general
molecules of varying sizes, as it supports import of molecule data
from PDB files. VMD supports several visualization styles, such as
(and not limited to) points and lines, bonds or space-filling models.

13

3. TOOLS AND METHODS

User can measure bond lengths as well as bond angles and torsion
angles. Graphical user interface (GUI) as well as command line inter-
face (CLI) are both available, while CLI supports scripting

VMD is available free of charge for non-commercial usage, but its
usage should be cited in papers whenever it has been used in prepa-
ration of such paper7. It can be downloaded, after registration, from
the website of the Theoretical and Computational Biophysics Group
at the Beckman Institute for Advanced Science and Technology of the
University of Illinois at Urbana-Champaign8.

3.5 Programming language

The implementation part of this thesis has been written in the C++
programming language in its most current standardized version,
C++119. It is an intermediate level compiled programming language
that is widely used for creation of application software of varying
sizes as well as highly optimized software (drivers, industrial pro-
grams) [42]. C++ is a multi-paradigm language as it contains func-
tional, object-oriented and generic programming capability, as well
as procedural programming capability inherited from its predeces-
sor, the C programming language [43].

While the standard library of C++ (STL) contains an array of use-
ful objects and algorithms, it lacks platform-specific
functionality [43]. Therefore, other libraries are often used to extend
the capabilities of C++ while maintaining its advantages.

3.6 Qt Software development kit

Qt Software development kit (Qt SDK) is a multi-platform applica-
tion development framework [44]. It is written in C++ programming
language and supports programming in C++ and QML languages.
Qt SDK extends functionality of the C++ programming language by
providing features such as thread management, network support,

7. http://www.ks.uiuc.edu/Research/vmd/current/LICENSE.html

8. http://www.ks.uiuc.edu/Development/Download/download.cgi?

PackageName=VMD

9. Standardized as ISO/IEC 14882:2011

14

http://www.ks.uiuc.edu/Research/vmd/current/LICENSE.html
http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD
http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD

3. TOOLS AND METHODS

additional containers or file handling application programming in-
terface (API). All of the added features are platform-independent.

Qt SDK also contains a multi-platform IDE, Qt Creator. Qt SDK
can be downloaded10 as a source code, or in compiled binary form
with support for GNU Compiler Collection (GCC) and Microsoft
Visual Studio compilers in various versions. It can be used under
GPLv311, LGPLv2.112 or commercial license.

3.7 Software design patterns

A software design pattern is a reusable generalized solution to a cer-
tain type of problems [45]. Rather than pieces of code that can be
pasted into existing software projects, they represent formalized de-
scription of best practices used for problem solving. Adherence to
such practices decreases the amount of design issues that take roots
early, but cause major problems later during the software develop-
ment cycle, when refactoring is costly and difficult. In LiCMP, vari-
ants of two creational patterns have been implemented: Singleton
and iterator.

Singleton pattern [45] is used when there should be only a single
instance of an object that has to be globally visible and accessible.
Its main advantage over the usage of global variables is less clutter-
ing of global name space, because not only there can always be just
a single instance of a singleton class, but several instances of global
classes can be refactored into much less singleton classes (preferably
only one). In C++, singleton classes can be trivially implemented by
declaring attributes and methods of a class as static. While easy to
implement, such solution lacks polymorphic flexibility regarding in-
heritance (static methods cannot be virtual in C++ since they are
not associated with a class instance and therefore lack type infor-
mation [43]) and provides no implicit protection against accidental
instantiation of two singleton class objects (that will, unintentionally,
share their static attribute values).

10. http://qt-project.org/downloads
11. GNU General Public License Version 3
12. GNU Lesser General Public License Version 2.1

15

http://qt-project.org/downloads

3. TOOLS AND METHODS

Iterator pattern [45] specifies design of object used to access el-
ements of other objects without exposing their inner structure. It
should enable various traversal logics without excessively enlarging
interface of accessed objects. Iterators should also allow more than
one reading traversals of the same container object at the same time.
Finally, containers themselves should be responsible for instantiating
their own iterators. In the C++ STL13, as well as in the Qt SDK14, iter-
ator patterns are implemented as template functions that have their
own specialization for each container type that can be iterated over.

3.8 SwCMP

SwCMP is an application designed for batch sugar molecule annota-
tion [46]. It compares input sugar molecules to reference molecules
(valid sugars obtained from a credible source such as Ligand Expo)
and decides of each input sugar on the basis of comparison results.
SwCMP has also implemented isomer groups finder function which
compares all input molecules with each other and classifies them into
isomer groups (groups of sugars that are identical from the view-
point of the program). Regarding limitations of SwCMP, it can only
annotate sugar molecules with pyranose heterocycles, and lacks chi-
rality comparison functionality and methods to deal with highly
problematic input molecules.

13. C++ STL iterator overview: http://www.cplusplus.com/reference/
iterator/

14. Qt SDK iterator overview: http://qt-project.org/doc/qt-5/

containers.html#stl-style-iterators

16

http://www.cplusplus.com/reference/iterator/
http://www.cplusplus.com/reference/iterator/
http://qt-project.org/doc/qt-5/containers.html#stl-style-iterators
http://qt-project.org/doc/qt-5/containers.html#stl-style-iterators

4 Implementation

4.1 Representation of molecules

The definition of molecular graph (defined in section 2.2.1) can be
modified to suit its required use case. For the purpose of chirality de-
termination, adding three-dimensional structure information about
the molecule in the form of three Cartesian coordinates for each atom
is necessary. In practice, atoms constitute molecules which, when
parsed from a source file, have either a name, or some kind of iden-
tification (e.g. PDB ID, residue code). Mapping such ID to each atom
of said molecule can be useful for sorting out parsed atoms in case
there was more than one molecule present in a source file.

Rather than represent bonds of higher bond orders with several
copies of those bonds in E, it is more practical to map its bond order
to each bond individually. Such mapping can be implemented into
algorithms more efficiently that the multiset E. Finally, since infor-
mation about lone electron pairs is of little usability for this use case
scenario, it is safe to omit the multiset L.

After taking proposed modifications into account, the modified
molecular graph is defined as an ordered octuple
G = (V,E, S, I, δ, ε, ζ, α) where V = {v1, v2, ..., vm} is a non-empty
set of vertices, E = {e1, e2, ..., en} is a set of edges, S is a finite set of
symbols of elements that are represented among atoms of this graph,
I is a finite set of molecule IDs that are represented among atoms in
this graph, δ : V → S is a relation that gives an element symbol to
every atom in this graph, ε : V → I is a relation that gives a relevant
molecule ID to every atom in this graph, ζ : V → R × R × R is a
relation that gives an ordered triple which represents three Cartesian
coordinates to every atom in this graph, and α : V × V → N is a rela-
tion that gives bond order to every bond in this graph. An example
of a molecule represented by a modified molecular graph is depicted
in figure 4.1.

A simpler version of the modified molecular graph has been used
in my bachelor’s thesis.

17

4. IMPLEMENTATION

(a) Structural formula.
Source: LigandExpo. (b) Modified molecular graph visualization.
G = (V,E, S, I, δ, ε, ζ, α),
V = {v1, v2, v3, v4, v5},
E = {{v1, v3}, {v1, v2}, {v1, v4}, {v3, v5}},
S = {C,O,H},
I = {FMT},
δ(v1) = C, δ(v2) = δ(v3) = O, δ(v4) = δ(v5) = H

ε(v1) = ε(v2) = ε(v3) = ε(v4) = ε(v5) = FMT

ζ(v1) = (−0.095,−0.45,−0.001), ζ(v2) = (−1.124, 0.213, 0),
ζ(v3) = (1.085, 0.218, 0), ζ(v4) = (−0.126,−1.5, 0.003),
ζ(v5) = (1.881,−0.331, 0),
α({v1, v2}) = 2, α({v1, v3}) = α({v1, v4}) = α({v3, v5}) = 1

(c) Formal description of the modified molecular graph. Source of data:
LigandExpo.

Figure 4.1: Modified molecular graph representation of formic acid molecule.

4.2 Overview of LiCMP

The implementation part of my master’s thesis have resulted in the
assembly of program LiCMP. Its name is an abbreviation of Ligand
CoMParator.

4.2.1 Functionality

LiCMP is an application designed for batch identification of ligands
(referred to as ligands to be identified) by comparing them to a set

18

4. IMPLEMENTATION

of reference ligands. It is a CLI1 program with support for multi-
threaded processing. Ligand(s) to be identified, as well as reference
ligands, are supplied to LiCMP in the form of PDB files. Input PDB
files are checked for accessibility and validity, i.e. whether they ad-
here to the standardized PDB file format and whether they do not
lack any vital information. Full check of the PDB format is not per-
formed though, because LiCMP only needs valid ATOM and HETATM

lines for its computations. If an input file fails any of those checks,
application terminates.

Molecular graphs are then constructed as the next step. Bond or-
ders determination and chirality atom recognition is performed as a
part of the molecular graph construction process. Extra effort is taken
while constructing possible molecular graphs for each ligand to be
identified since poor quality of such input ligands is assumed. After
constructing molecular graphs, each ligand to be identified is com-
pared to each reference ligand. Pairwise comparison jobs are dynam-
ically dispatched among available cores to split the work efficiently.

Comparison of two ligands is carried out on the level of their
molecular graphs. After a trivial check of feasibility, depth first com-
parison with backtracking that starts at chosen pairs of atoms is com-
puted. Best comparison result is stored and next pairwise compari-
son with another reference ligand is started.

After a ligand to be identified has been compared with all rele-
vant reference ligands, best result among results obtained so far is
chosen and written out into the logfile, that represents the main out-
put method of LiCMP, as the identification of said ligand to be identi-
fied. Several other highly similar comparison results are also written
out as other likely identification alternatives.

4.2.2 Command line parameters

Each batch run of LiCMP can be configured with the use of sev-
eral command line parameters. Parameters have to adhere to defined
order of occurence: licmp [options] [logfile] [source of

reference ligands] [source of ligands to be

identified].

1. command line interface

19

4. IMPLEMENTATION

Each batch run of LiCMP can be configured with the use of sev-
eral command line parameters:

• -i chem_sym defines a chemical symbol (or more than one,
separated by a space) of an element that will be ignored. At-
oms of ignored elements are not loaded from source PDB files.
When this parameter is not provided, hydrogen atoms are ig-
nored by default.

• -ex extension defines a filename extension that will be ex-
pected from all source files retrieved through the use of pa-
rameters -r, -di and their recursive variants. Regardless of pro-
vided extension, however, all source files are supposed to have
inner structure that adheres to the PDB file format.

• -scTout seconds defines maximum amount of time that sin-
gle comparison between a reference ligand and a variant of
compared ligand can take. After said amount of time passes,
comparison is forcibly canceled and a note about such event
is written to the logfile. Default value is 10 minutes.

• -idTout seconds defines maximum amount of time that the
identification process of a ligand can take. After said amount
of time passes, identification is forcibly canceled and a note
of unsuccessful identification of such ligand is written to the
logfile. Default value is 30 minutes.

• -thrd number defines number of computation threads that
will be spawned by LiCMP. Default value is the number of
logical cores present in user’s system.

• -s prohibits the program from writing out anything to the stan-
dard output and the standard error output, save for messages
about unrecoverable fatal errors that prohibit LiCMP from car-
rying out its tasks.

• -laf makes the program write all filenames of source files to
the logfile separately from identification results.

20

4. IMPLEMENTATION

• -roc number defines how many other identification possibili-
ties should be listed in the logfile for every ligand to be identi-
fied. Default number of listed additional identification possi-
bilities is 5.

• -l name provides a name of file that will be used by LiCMP
as the logfile. This parameter has no default value and is com-
pulsory, as the program does not have any other significant
output functionality.

• -r directory provides the program with a name of directory
from where source files of reference ligands will be taken.

• -rR directory has the same meaning as -r, but also makes the
program look recursively for source files in subfolders of the
specified folder.

• -ch name provides LiCMP with filename(s) of source files of
ligand(s) to be identified.

• -di directory provides the program with a name of directory
from where source files of ligands to be identified will be
taken.

• -diR directory has the same meaning as -di, but also makes
the program look recursively for source files in subfolders of
the specified folder.

Command line parameters that specify logfile file name, a source
of reference ligands and a source of ligands to be identified are com-
pulsory, the rest is optional. Each occurrence of parameters -ch, -di
and -diR spawns one separate ligand identification job. Minimum
number of supplied parameters is three (e.g. licmp -l

logfile.txt -r reference -di toBeIdentified).

4.2.3 Program input specification

LiCMP accepts PDB files as the input source of ligands to process.
An example of such file is shown in figure 4.2. If an input file con-
tains lines of other types than ATOM and HETATM, they are ignored.

21

4. IMPLEMENTATION

HETATM 3986 C2 BGC A 551 32.131 32.328 40.183 1.00 35.02 C

HETATM 3987 C3 BGC A 551 31.669 31.742 38.863 1.00 38.06 C

HETATM 3988 C4 BGC A 551 32.708 32.144 37.786 1.00 34.53 C

HETATM 3989 C5 BGC A 551 34.127 31.654 38.186 1.00 31.53 C

HETATM 3990 C6 BGC A 551 35.341 31.747 37.253 1.00 27.42 C

HETATM 3991 C1 BGC A 551 33.581 31.957 40.484 1.00 37.10 C

HETATM 3992 O1 BGC A 551 33.955 32.619 41.651 1.00 45.39 O

HETATM 3993 O2 BGC A 551 31.329 31.812 41.198 1.00 32.05 O

HETATM 3994 O3 BGC A 551 30.351 32.162 38.526 1.00 37.26 O

HETATM 3995 O4 BGC A 551 32.278 31.480 36.619 1.00 36.75 O

HETATM 3996 O5 BGC A 551 34.456 32.322 39.403 1.00 37.45 O

HETATM 3997 O6 BGC A 551 35.815 33.065 37.023 1.00 23.98 O

Figure 4.2: Example of an input PDB file that contains molecule β-d-glucose

CONNECT lines are also ignored, because there is no guarantee for re-
liable connection data to be present in source files of ligands to be
identified. All input PDB files are checked for validity against the
PDB file format standard [39].

Ligands to be identified can have PDB ID of their parent structure
associated with them. LiCMP parses this ID from their source file
name if it contains the ID between two underscores (ex. file
M_1b1y_3996.pdb contains ligand that has been extracted from par-
ent structure with PDB ID 1B1Y).

4.2.4 Program output specification

Results of ligand identification process are written to the logfile. For
every input ligand to be identified, an identification record is writ-
ten to the logfile. Each record contains main identification result (aka
comparison result with highest score that has been achieved) and
several other identification possibilities (five in default, their count is
changeable by user). An example of a record can be found in figure
4.3. First line of a result holds summary of encountered differences
between ligand to be identified and reference ligand that it had been
identified with. The rest of lines contain description of encountered
differences.

On the summary line, there is this information (from left to right):

• filename of the ligand to be identified

22

4. IMPLEMENTATION

Figure 4.3: An example of a identification result record

• PDB ID of parent structure of the ligand to be identified

• three-character alphanumeric ID of the reference ligand

• three-character alphanumeric ID of the ligand to be identified

• similarity percentage of both ligands

• number of atoms that are present in the ligand to be identified
but are missing from the reference ligand

• number of atoms that are present in the reference ligand but
are missing from the ligand to be compared

• number of atoms that could not have been connected to any
variant of the ligand to be identified

• number of bonds that exist in the reference ligand but are
missing from the ligand to be compared

• number of bonds that exist in the ligand to be identified but
are missing from the reference ligand

• number of bonds in the ligand to be identified that differ in
their order from paired chiral atoms in reference ligand

23

4. IMPLEMENTATION

• number of chiral atoms in the ligand to be identified that differ
in their chiral configuration from paired chiral atoms in the
reference ligand

4.3 Data structures

In this section, the most important data structures used in LiCMP
are discussed together with their benefits, drawbacks and reasoning
for their utilization. The STL of C++ as well as Qt SDK have sev-
eral container types each. Functionality of many of them overlaps,
but computational complexity of operations differs among container
types. Choosing the right container for a usage scenario by analyz-
ing computation complexity of its most used operations can reduce
overall computation complexity of whole algorithms.

4.3.1 QList container

The most commonly used container type in LiCMP is QList2 from
the Qt SDK. It is an amalgamation of vector and linked list con-
tainer types. Internally, QList is represented by an array of pointers
to objects that have been allocated on the heap. Because of such in-
ner representation, direct access to an element by its index is done
in O(1) [47] time. The inner pointer array is allocated during con-
tainer construction as an adjacent portion of memory with a little
extra space at the beginning and at the end of the array. Therefore,
adding and deleting items from the beginning and the end of the
container is done in amortized O(1) [47] time as well.

Complexity of inserting a new element in the middle is at worst
on par with inserting to an array type container filled with void
pointer objects. Because of this disadvantage, no inserting in the mid-
dle of a QList container is ever performed in LiCMP.

2. QList documentation: http://qt-project.org/doc/qt-5/QList.html

24

http://qt-project.org/doc/qt-5/QList.html

4. IMPLEMENTATION

4.3.2 QMap and QMultiMap containers

QMap3 is an associative container that stores information in pairs
of a key and a value. Since the main focus of this container is fast re-
trieval of values using their associated keys, inner structure of QMap
is based on a red-black tree data structure. Furthermore, items in
QMap container appear as sorted in ascending order by their keys
when being iterated through. Each key in QMap has to be unique
(unlike in QMultimap4, where multiple pairs of keys and values with
the same key are allowed). Asymptotic complexity of insertion and
lookup of elements is O(log n) [47] where n stands for number ele-
ment pairs that are already present in the container.

In LiCMP, QMap and QMultiMap fill two main roles:

• storage containers for atoms that have been parsed from
source files (in this scenario, key is element symbol of paired
atom, which facilitates retrieval of atoms of required elements)

• auxiliary containers that serve as search structures as well as
automatically sorted structures - they pair pointers to objects
existing elsewhere (as values) with keys by which the con-
tainer should be sorted by and with which it will be queried

4.3.3 QSet containers

Cetrain algoritms require retrieval of a subset of given multiset in
its mathematical meaning - all elements in retrieved set have to be
unique. Set containers (set from STL and QSet5 from Qt SDK) are
suitable for this use case because only one occurrence of each mem-
ber inside them is allowed, no matter how many times is the same
value inserted into the container. Main difference between both set
containers is that STL set is always sorted in ascending order, while
QSet is kept unsorted.

QSet is internally represented by hash table. Asymptotic com-
plexity of insertion and lookup of elements is O(n) where n stands
for the number of elements that are already present in the container.

3. QMap documentation: http://qt-project.org/doc/qt-5/QMap.html
4. QMultiMap documentation: http://qt-project.org/doc/qt-5/QMultiMap.html
5. QSet documentation: http://qt-project.org/doc/qt-5/QSet.html

25

http://qt-project.org/doc/qt-5/QMap.html
http://qt-project.org/doc/qt-5/QMultiMap.html
http://qt-project.org/doc/qt-5/QSet.html

4. IMPLEMENTATION

QSet, as well as QList, allocates more memory for its hash table than
needed as the time of last allocation (or reallocation) to decrease the
number of necessary reallocations when the container grows.

4.4 Class diagram

Brief class diagram of classes and their relationships is depicted in
figure 4.4. Full class diagram can be found on the attached CD.
LiCMP consists of 21 classes. In total, there are 113 attributes (106
private and 7 protected) and 236 methods (43 private, 2 protected
and 191 public).

4.5 Significant classes

4.5.1 GraphAtom class

Class GraphAtom is a direct implementation of the modified molec-
ular graph that has been designed in section 4.1. It is responsible
for the core functionality of LiCMP: Building molecular graphs and
exploring possible matchings between common subgraphs of two
molecular graphs. It represents single atom that has already been
placed into a molecular graph. Therefore, it contains all chemical in-
formation about such atom (parsed from source PDB file and rep-
resented via Atom container class instance), as well as pointers to
adjacent connected atoms in the graph. Since the above mentioned
core functionality has been implemented using recursive algorithms,
each GraphAtom class instance has to also hold its state relative and
relevant to the current algorithm that iterates over the graph.

Method placeConnectedAtom is an implementation of the first
key recursive algorithm that is called during the life of a GraphAtom
class instance. It checks if an atom, represented by an Atom class in-
stance and supplied as a parameter, can be connected to this existing
GraphAtom. If yes, it is transformed into a newly dynamically al-
located GraphAtom class instance (if it has not been transformed al-
ready) and a new Bond class object is created after deciding the order
of the new bond in method determineBondGrade by comparing
its length to a list of predefined lengths of bonds between atoms of

26

4. IMPLEMENTATION

Figure 4.4: Brief class diagram of program LiCMP

supported elements (currently supported elements are carbon, nitro-
gen and oxygen). The bond order itself is represented by custom enu-

27

4. IMPLEMENTATION

merative type BondGradeType. Method placeConnectedAtom is
then called on all connected atoms that have not worked with the
new placement candidate yet.

4.5.2 Molecule class and its children

Each molecule, that has been loaded from a source PDB file, is rep-
resented in LiCMP by a class from the Molecule class family. Aside
from their common predecessor, class Molecule, there are three dis-
tinct classes that represent three kinds of molecules that play a role
during the process of ligand identification: Reference ligand
molecule, molecule of ligand to be identified and fragment molecule
of ligand to be identified.

The common predecessor, class Molecule, holds attributes and
methods that are common for all of its children. Such attributes in-
clude list of atoms that belong to this molecule (along with support
containers that facilitate operations with the atom list) and pointer to
a GraphAtom class instance that is a part of molecular graph of this
molecule. Method loadPdbData (used in child classes
ReferenceMolecule and ComparedMolecule) takes a reference
to an input stream, connected to a source PDB file, and extracts all in-
formation about atoms of the input molecule which it then stores in
appropriate container attributes. Method buildMolGraph (used in
ReferenceMolecule and CompFragment classes) iteratively
builds molecular graph from the list of atoms of this molecule, one at
a time. Code of molecular graph building algorithm is split between
this method and recursive method placeConnectedAtom of class
GraphAtom.

Reference ligands are represented in LiCMP by class
ReferenceMolecule. Construction of molecular graphs for refer-
ence ligands is much easier than construction of molecular graphs
for ligands to be identified, because reference ligands are expected to
be downloaded from a credible source (like LigandExpo) and there-
fore to be valid. On the contrary, input ligands to be identified (rep-
resented in LiCMP by class ComparedMolecule) can be defective
in several major ways, one of them being a situation where two (or
more) ligands overlap and occupy the same space. When ligands
overlap, LiCMP tries to separate overlapping molecules via method

28

4. IMPLEMENTATION

findFragments of the ComparedMolecule class and creates new
CompFragment class for each harvested ligand (more detailed in-
formation about treatment of input ligands to be identified can be
found in section 4.8). Each extracted ligand is then guaranteed to
have similar level of validity as a reference ligand, and therefore can
have its molecular graph constructed using default implementation
of method buildMolGraph.

4.5.3 Job class

In LiCMP, a job is a list of ligands to be identified that have been sup-
plied by user, along with a reference to a list of reference ligands that
will be used to identify supplied ligands. Class Job manages pro-
cessing of a single job from loading ligands to be compared, through
delegation pairwise comparisons to worker threads, to evaluating
identification results and writing them to the logfile. After receiv-
ing list of ligands to be identified through the constructor, method
loadComparedDatabase is called to load them from their source
PDB files and create ComparedMolecule class instances for them.

To start the pairwise comparison process, worker threads and
associated Comparator class instances have to be allocated by the
processJob method. To communicate with Comparator class in-
stances, class Job uses the Qt signal/slot system [44]. Every time a
pairwise comparison of two molecules is finished, Comparator in-
stance emits signal pushCompResult that is caught by slot
receiveResult in Job class instance. This slot method records
comparison results and stores them for identification results analysis,
and either dispatches new comparison, or waits until all threads have
completed their assigned comparisons. Then, it writes suitable iden-
tification results to the logfile and calls slot method
startNextComparison to start the identification process of next
ligand to be identified.

4.5.4 Comparator class

The ligand identification process in LiCMP is threaded, i.e. multiple
pairwise comparisons between ReferenceMolecule and
CompFramgent class instances are carried out on worker threads at

29

4. IMPLEMENTATION

any given time. Pairwise comparisons are conducted by class
Comparator. It contains necessary class instances to perform the
comparison (local instance of class CompFragment and a pointer to
an instance of ReferenceMolecule class owned by class Joblist
- only one instance of each reference ligand exists in LiCMP at a
time), that have been loaded to the Comparator class instance by call-
ing methods receiveCompMol and receiveRefMol. Slot method
compare launches the comparison itself after receiving signal
kickoffComparison from a Job class instance with supplied ID
that either matches ID of this Comparator class instance, or is rele-
vant to all Comparator class instances if the supplied ID is -1.

4.5.5 Path class

Class Path is the implementation of container class that contains the
pairing itself as well as attributes relevant to the pairing that is being
currently constructed, but after it is completed, they are no longer
relevant. A completed pairing is either a pairing that cannot be ex-
panded anymore, or a pairing that has been superseded by succes-
sors when a branchpoint is solved. Attributes relevant to the pairing,
that is being currently constructed, include list of startpoints and list
of branchpoints. Both new terms (startpoint and branchpoint) are ex-
plained in section 4.6. Each pairing is uniquely identified by the path
code - a string of characters. Length of the path code is equal to the
number branchpoints minus one that have been solved before this
Path class construction. Methods of class Path are, with the excep-
tion of method createChild that creates a child instance of this
Path class instance, various getter and setter method.

4.5.6 Results class

Each pairwise comparison of two ligand molecules in LiCMP pro-
duces single Results class instance that contains all information that
suffice for it to be able to assembly a string containing identification
results that can then be written out directly to the logfile. The con-
structor of this class requires not only pointer to the pair of compared
ligands, but also pointer to a Path class instance. That is because
class Results contains functionality for detecting missing bonds, ex-

30

4. IMPLEMENTATION

cessive bonds (method crawlCheckMissingBonds) and paired at-
oms with dissimilar chirality (method crawlCheckChirality).
Detection of aforementioned problems is best done after a pairing
is composed, and after it is completed, similarity percentage of com-
pared ligands is computed using metric described in section 4.9.

4.5.7 Container classes

Class Atom represents single atom that has been extracted from a
parsed source PDB file. It effectively contains information of a whole
line of the PDB file, sorted into appropriate attributes.

Classes ProblemBond, DissimilarBondGrade and
ChiraProblem each represent a problem that has been discovered
while searching through computed pairing for dissimilarities. Such
problems are finally stored in a Result class instance, counted and
(if the result is good enough) written out. Class ProblemBond rep-
resents a single bond and is defined by names and elements of two
atoms that it connects. In LiCMP, it is used to specify a missing or
an excessive bond. Class DissimilarBondGrade serve as a con-
tainer for a single occasion when two paired bonds differ in their
bond orders. It is defined by two bonds (via ProblemBond class in-
stances) and their bond orders. Class ChiraProblem is constructed
when there is a need to describe dissimilar spatial configuration of
two paired chiral atoms and their paired ligands. It is defined by the
two pairs of bound atoms in each molecule (again via ProblemBond
class instance) and their chirality.

4.5.8 Singleton classes

Class ProgramSettings is a singleton class (for information about
the singleton software design pattern, see section 3.7), implemented
as a static class, that holds useful information which greatly influence
behavior of LiCMP. Some information is loaded into its instance at
the beginning of LiCMP execution (information such as table of de-
fault element valence diameters, table of valence diameters of possi-
ble bond orders of supported elements, or table of scores for selected
most common elements that are a part of metric described in section
4.9), while the rest is comprised of settings supplied to the program

31

4. IMPLEMENTATION

by the user via command line parameters along with default values
of such settings, so that the program behaves in a consistent manner
when the user uses only a minimum set of command line parame-
ters.

Class Logger is a wrapper class for the output stream that is con-
nected to a logfile. While not implemented as a singleton class in the
strictest meaning of the term, only one instance of class Logger is
needed and used throughout the program, since LiCMP uses only
one logfile to output identification result. From extensibility view-
point, functionality of class Logger can be enriched (e.g. sorting
identification results into different output logfiles) when the demand
arises.

4.6 Comparison algorithm

The comparison algorithm of LiCMP is based on finding the best iso-
morphism between largest possible subgraphs of molecular graphs
of compared molecules by extending already existing isomorphism
with suitable atom pairs found during synchronized depth-first
search (DFS) traversals of both graphs.

First step in finding isomorphism between two graphs is to deter-
mine starting pairs of atoms from where the isomorphism will grow.
Without any prior knowledge about which atom from the reference
ligand should be surely paired with one concrete atom from the lig-
and to be identified, blind testing of all atom pairs, made of atoms
of same element type, is required. Such algorithm is, however, com-
putationally unfeasible, since the number of possible pairings to ex-
plore would rise in quadratical proportion to the number of atoms in
both graphs. To reduce the graveness of above mentioned limitation,
only atoms of the least represented element type among both graphs
are taken into consideration as starting pairs for new isomorphisms
(algorithm 1). If two (or more) element types are represented in the
graph by the lowest number of atoms, one element type is chosen
randomly, as no specific element-based distinction is required. This
solution is feasible, since larger ligands tend to have less common el-
ements in their graphs in very low numbers, while pairing for small
ligands is computed in very short time.

32

4. IMPLEMENTATION

Algorithm 1: determineStartingElement

Data: Pointers to reference ligand and identified ligand
Result: Element which atoms will serve as first pairings’ members

1 refElems←− Distinct element symbols of atoms of reference ligand ;
2 compElems←− Distinct element symbols of atoms of identified ligand ;
3 chosenElem ;
4 chosenElemCount←−∞ ;
5 foreach elem←− compElems do

6 if refElems ∈ elem then

7 refElemCount←− number of atoms of element elem in reference
ligand ;

8 compElemCount←− number of atoms of element elem in
identified ligand ;

9 if chosenElemCount < (refElemCount+ compElemCount) then

10 chosenElemCount←− (refElemCount+ compElemCount) ;
11 chosenElems←− elem ;
12 end

13 end

14 end

33

4. IMPLEMENTATION

Algorithm 1 also plays key role in deciding whether the isomor-
phism discovery process will be carried out, since if there are no at-
oms of the same element type in both graphs, no chemically mean-
ingful isomorphism can be created. Aside from that, there are no
other preprocessing rules in the comparison algorithm.

Each proposed isomorphism is then extended using new pairings
made of usable atoms from each graph that are connected to atoms
of an already established pairing (algorithm 2). During each exten-
sion step, feasible atoms are grouped by their element types to be
processed together since atoms of dissimilar element type can not
be paired together. Then, possible new pairings are assessed. Usable
atoms are atoms that are not yet a part of a pairing of the currently
extended isomorphism. Based on the count of usable atoms, there
are three possible situations that can appear while choosing next pair
of atoms to extend the currently constructed isomorphism, as illus-
trated in figure 4.5.

When there are no available atoms connected to either atom of
established pairing, no new pairings are created (situation 0). When
there is exactly one atom connected to each atom of established pair-
ing (situation 1), new pairing is constructed, using those two men-
tioned atoms, and is then immediately explored for next new pair-
ing possibilities before creating all possible new pairings connected
to the established pairing (DFS principle). When there is more than
one usable atom connected to one of the atoms in the established
pairing while there is at least one usable atom connected to the other
atom of the established pairing, no new pairing is established, since
it is impossible to decide the optimal pairing amongst those usable
atoms. The established pairing is marked to be solved later.

34

4. IMPLEMENTATION

(a) Situation 0. (b) Situation 1.

(c) Situation N.

Figure 4.5: Three possible situations that can appear while choosing next pair of
atoms to extend the currently constructed isomorphism Blue atoms are atoms of
already established pairing, while red and green atoms are candidate atoms for
new pairing formation. Atoms of the same color are of the same element type.

35

4. IMPLEMENTATION

Algorithm 2: extendIsomorphismDFS

Data: Pointers to atoms of established pairing - atom from reference
molecule (RA), atom from identified ligand (IA), pointer to the
currently extended isomorphism ISO

1 elemToProc ;
2 foreach elem←− element symbols of usable atoms connected to RA do

3 if IA has at least one usable atom of element elem connected then

4 elemToProc←− elem ;
5 end

6 end

7 foreach elem←− elemToProc do

8 if RA or IA has more than one usable atom of element elem then

9 mark the pairing of RA and IA for solveBranching algorithm
usage ;

10 continue;
11 end

12 newRefAtom←− pointer to the only usable atom of element elem
connected to RA ;

13 newCompAtom←− pointer to the only usable atom of element elem
connected to IA ;

14 newPair ←− (newRefAtom, newCompAtom) ;
15 add newPair to ISO ;
16 extendIsomorphismDFS(newRefAtom, newCompAtom, ISO) ;
17 end

36

4. IMPLEMENTATION

After growing current isomorphism as much as possible by solv-
ing situations 0 and 1, it is necessary to solve situations 2 to fur-
ther enlarge the isomorphism. First, an established pairing with the
smallest number of connected atoms to pair (or to reject and leave
unpaired - this happens when one atom of processed pairing has
more usable atoms of an element than the other) is selected. Then,
Cartesian product of usable atoms connected to both atoms in the
established pairing is computed. The product is defined as follows:
Suppose there exist sets of usable atoms A and B from which atoms
that will constitute new pairings will be chosen. The result of this
Cartesian product is a set χ that is defined as

χ = {X1...n|p = min(|A|, |B|), q = max(|A|, |B|), n =

i<p∏

i=0

(q− i)} (4.1)

where X are sets defined as

X = {(ax, by)|0 ≤ x ≤ |A|, 0 ≤ y ≤ |B|} (4.2a)

|X| = min(|A|, |B|) (4.2b)

X ∈ (ax, by), X 6∈ (ax, bm),m 6= y (4.2c)

X ∈ (ax, by), X 6∈ (an, by), n 6= x (4.2d)

New isomorphisms are then created from the currently processed
one. They have parent-child relationship. Each child differs from its
parent at the time of its creation only by the inclusion of new pairings
from a set X . For each set X a child isomorphism is created. LiCMP
then takes steps to enlarge each child isomorphism in the same way
as described above, while discontinuing the parent isomorphism.

After all established isomorphisms have been extended as much
as possible, they are analyzed for deficiencies. Both compared molec-
ular graphs are traversed and unpaired atoms are discovered and
noted. Each isomorphism is then traversed, pairing by pairing, and
bond discrepancies (missing bonds in each graph as well as dissim-
ilar bond orders of paired bonds) as well as chirality problems are

37

4. IMPLEMENTATION

discovered and recorded. Similarity percentages are computed for
each isomorphism using metric described in section 4.9 and the best
one is preserved and returned.

4.7 Parallelization of molecule comparison

To identify a ligand, LiCMP has to compare it to each relevant mem-
ber of some reference ligands set that can span hundreds of mole-
cules, which means hundreds of pairwise comparisons just to iden-
tify a single ligand. In practice, thousands of ligands have to be iden-
tified and validated as a part of a single batch task. The total number
of comparisons can therefore be in millions, thus making the batch
identification process a very lengthy and impractical for real world
usage.

A significant increase in performance of batch ligand identifi-
cation can be achieved by parallelization of pairwise comparisons.
Each pairwise comparison is independent of another one, as long as
no ligand is compared with more that one other ligand at the same
time. This requirement can be fulfilled very easily. In LiCMP, the cur-
rently compared molecule is copied for each thread (represented by a
Comparator class instance) to have its own copy. Then, unique ref-
erence ligands are assigned to each thread and the comparison pro-
cess is started. When a thread completes its task, it sends the com-
parison result to the coordinator object (Job class instance) and in
exchange receives another reference ligand which it then starts com-
paring with its designated copy of ligand to be identified. After all
required molecule comparisons are carried out, copies of next lig-
and to be identified are distributed amongst threads and the process
starts anew.

4.8 Problematic input molecule processing

Certain percentage of ligands to be identified are stored in their
source files in an invalid, chemically nonsensical, state. Such issue
stems from the usage of automatic methods that extract standalone
ligands from large complexes where they are in bound state with
a biomacromolecule. Most common problems of said ligands is the

38

4. IMPLEMENTATION

presence of excessive unrelated atoms (that belonged to either differ-
ent ligand, or to the biomacromolecule itself) in their files, loss of re-
quired atoms, and the presence of two (or more) ligands that overlap
the same space (that represent several versions of the same ligand,
but the automatic method deemed them to be standalone molecules).
Two examples of such malformed ligands are pictured in figure 4.6. If
the naive molecular graph construction algorithm was applied to lig-
and that suffers from one of the above mentioned problems (the third
in particular), constructed graph would be of unsatisfactory quality.
Therefore, it is necessary to treat input ligands to be identified differ-
ently.

First, the advanced molecular graph construction algorithm di-
vides atoms from input PDB file by the residue name (represented
by the residue code) that they belong to (not by residue number -
the assumption, that there should be only one residue per one in-
put PDB file, stands). Then, the graph growth process starts from the
first atom of each discovered residue, one at a time (not in parallel).
Newly created graph grows by one atom from currently processed
residue. To determine whether an atom is in bonding distance of an-
other atom, covalent radii (see section 2.1.2 for associated theory) of
both atoms are summed and a tolerance length of 0.4 Å is added to
the sum. If the sum is lesser then the distance between said two at-
oms, their potential bond is taken into consideration.

If there are no more suitable atoms, the algorithm tries to grow the
graph using atoms from other residues. After connecting one such
atom to the graph, it checks whether there are any other atoms from
the same residue that can be connected to the graph via the newly
connected foreign atom. Each candidate for addition to the graph is
checked whether it is not too close (i.e. closer than the 0.7 Å thresh-
old) to any atom that comprise the currently constructed graph. If it
fails this test, it will never be connected to the current graph.

When no more atoms can be connected to the newly created
molecular graph, it is established as a standalone compared molecule
fragment that will later be pairwise compared to each reference lig-
and. Input ligand type of fragment (represented via its residue code)
is determined by majority rule: The type is established as a type of
ligand which most atoms of this new fragment belong to.

39

4. IMPLEMENTATION

Figure 4.6: Two examples of malformed ligands: A ligand with unrelated atoms
(left) and two ligands that overlap each other (right).

If there are any atoms of the currently processed residue that have
not been placed in a graph yet, construction of new fragment begins
again. If there are no usable atoms of current residue, LiCMP starts
processing atoms of another residue as long as there exist atoms that
have not yet been placed into any graph of a fragment.

Bond order determination is a straightforward task. When a con-
nection is being established between two atoms of supported ele-
ment types6, their distance is computed and compared to a set of
reference fonds with predefined bond lengths. Bond order of a ref-
erence bond which length is the closest to the length of the newly
created bond is taken as the determined bond order.

To decrease the amount of false bond order dissimilarities, the
concept of fuzzy bonds is proposed. Along expected bond orders
(single, double, triple), additional artificial bond orders have been
placed in the reference fist of bond orders between the already exist-
ing ones (fuzzy single bond order between single and double bond
orders, and fuzzy triple bond order between double and triple bond
orders). When a bond of fuzzy order has its order compared to an-
other bond, it acts as a bond of both orders that its fuzzy order has
been designed to bridge. To give an example, a double bond is com-
pared with fuzzy single bond. These two bonds are deemed similar,

6. carbon, nitrogen and oxygen

40

4. IMPLEMENTATION

because for the purposes of this comparison, the fuzzy single bond
acts like a bond of double bond order.

4.9 Molecule similarity metric

To assess the similarity of two ligands, a similarity metric is required.
Such metric should take into consideration sizes of compared mole-
cules (expressed in counts of their elements) as well as element types
of elements that compose each molecule. Each type of problem (e.g.
missing atom, excessive bond), discovered during the pairwise com-
parison process, should carry different weight in the enumeration of
graveness of comparison problems.

With accord to specifications listed above, a new molecule metric
for the LiCMP program has been developed. It is a metric that sums
all problems discovered during the comparison process, computes
their integer representation and converts it to a similarity percentage
with respect to sizes of reference ligand and ligand to be identified.
The similarity percentage of two ligands is computed using formula
4.3.

S = 100−
Sres

Sref + Sin

∗ 100% (4.3)

where:

• S stands for the similarity percentage

• Sres stands for the enumerated problem score

• Sref stands for the score of the reference ligand

• Sin stands for the score of the ligand to be identified

After the construction of molecular graph is completed, newly
created ligand is assigned its score that will be used in formula 4.3
as Sref or Sid. Score for each ligand is computed as sum of scoring
values of all individual atoms that are part of the newly assembled
molecular graph. Values for atoms depend on their element types,
and are as follows:

41

4. IMPLEMENTATION

• 1 for hydrogen atoms

• 2 for oxygen atoms

• 3 for nitrogen atoms

• 4 for carbon atoms

• 6 for every atom of element not mentioned above atoms

After the completion of evaluation of a pairwise comparison, sets
of problems are returned as comparison results. Returned sets need
to have their contents enumerated, so that formula 4.3 can be applied
and similarity percentage of two ligand can be returned to the user.
During the enumeration process, each discovered problem is given
a value. All values of all problems are then summed. Problem types
and their values are:

• 1 for single discovered spatial configuration discrepancy of
paired chiral atoms

• 1 for each couple of paired bonds that have dissimilar orders

• 1 for every bond that is either missing from the ligand to be
identified, or is excessive there, with regards to the reference
ligand

• 1 for every hydrogen atom that is either missing from the lig-
and to be identified, or is excessive there, with regards to the
reference ligand

• 2 for every oxygen atom that is either missing from the lig-
and to be identified, or is excessive there, with regards to the
reference ligand

• 3 for every nitrogen atom that is either missing from the lig-
and to be identified, or is excessive there, with regards to the
reference ligand

• 4 for every carbon atom that is either missing from the ligand
to be identified, or is excessive there, with regards to the refer-
ence ligand

42

4. IMPLEMENTATION

• 6 for every atom of element not mentioned above that is either
missing from the ligand to be identified, or is excessive there,
with regards to the reference ligand

Unconnected atoms are not summed into the problem score, be-
cause if they are relevant, they are already represented in either miss-
ing, or excessive atoms set.

43

5 Results and discussion

5.1 Ligand dataset

The input set of ligands to be validated and annotated consists of
10 247 molecules. These ligands have been extracted from various
proteins from PDB as recurring motives as a part of the metallo-
protein research project at the National Centre for Biomolecular Re-
search [4]. All input PDB files were deemed valid by
LiCMP and a valid ligand to be identified has been extracted from
each of them using algorithm in section 4.8. A short table of the most
common ligands along with their count present in this input set as
well as in the result set is in figure 5.1.

ligand code count

FMN 916
ATP 690
ANP 426
HOH 402
ADP 393
BOG 287
GTP 255
ASP 221
MG 193
DMU 178

ligand code count

FMN 919
ATP 694
O 443
ANP 425
ADP 391
HOH 383
BOG 284
GTP 259
TPP 202
DMU 177

Figure 5.1: Ten most numerous ligand types present in the input set of ligands to
be identified (left) and ten most numerous ligand types present among computed
annotations of said ligands.

Input ligands have been compared to reference set that consisted
of 1 865 ligands. Said reference ligands have been extracted from Lig-
andExpo on the 9th May 2014 in their ideal forms. As expected, all
reference ligands have been deemed valid by LiCMP.

44

5. RESULTS AND DISCUSSION

5.2 Identification results

Out of the input set of ligands to be identified, 29 ligands timed out
completely and LiCMP was not able to annotate them (more infor-
mation about limitations of LiCMP is in section 5.5). 10 218 ligands
remained, and out of this set, 5 346 ligands have been annotated with
total confidence (i.e. have achieved 100 % as their similarity percent-
age with at least one molecule from the reference set). 2 153 ligands
have been annotated with greater similarity percentage than 94 %.
Therefore, 2 719 ligands have been annotated with lower final simi-
larity percentage than 94 %. 19 ligands have lower similarity percent-
age than 94 % because their comparison with some of the reference
ligands have timed out (more information about local time outs is in
section 5.5).

After removing all timed out entries from the set of annotation
results, 10 153 annotations of ligand molecules have remained in the
result set. Out of this group, 4 847 ligands (47.74 %) have been anno-
tated with less that 100 % similarity percentage (as seen in figure 5.2),
while 2 701 input ligands to be identified have been annotated with
lower that 94 % similarity score. Figure 5.3 shows the distribution of
similarity scores of annotation results. Such result indicates that the
input ligand set is of relatively low quality with input ligands that
suffer from various problems. 8 684 ligands have had their annota-
tions confirmed. This statistic shows that input ligands are correctly
annotated in most cases, however many of them are not stored in
their source files in valid states.

5.3 Differing patterns

Out of the resulting set of 10 218 identified ligands, 3 547 specimens
have in issue in the number of atoms that are present in their source
files. The most common problem was the presence of an excessive
magnesium atom. An example of this issue, that arose because of
wrong association of the magnesium atom to the ligand by the auto-
matic ligand extraction application, is depicted in figure 5.4.

Other atom-related issues of minor occurrence counts include ex-
cessive α-C carbon presence (figure 5.5), other excessive metal at-

45

5. RESULTS AND DISCUSSION

Figure 5.2: Pie chart of ligand annotation results.

Figure 5.3: Distribution of similarity scores of ligand annotation results.

46

5. RESULTS AND DISCUSSION

Figure 5.4: Example of a ligand that has an excessive magnesium atom (in ma-
genta), as well an unconnected oxygen atom (in dark violet), in its source file.

oms presence, the inclusion of fragments of ligands and amino acids
adjacent in the source biomacromolecule and single missing oxygen
atom; and the lack of various atom groups ranging from a single oxy-
gen to an entire cyclohexane ring (figure 5.6) to more than half of the
original ligand (figure 5.7).

Regarding chirality issues of input ligands to be identified, they
can be divided into two groups. First group contains ligands that
have wrong chirality configuration on at least one carbon stereogenic
center. An example of such such ligand is depicted in figure 5.8). Lig-
ands to be identified from the second group have some connected
atoms at some of their stereogenic centers on the level of the chiral
carbon and its immediate surrounding and the chirality comparison
algorithm therefore cannot discern if such atom is above or below
the plane of the center and its surroundings. An example of this oc-
currence is depicted in figure 5.9).

47

5. RESULTS AND DISCUSSION

Figure 5.5: Example of a ligand that has an excessive α-C carbon atom (in blue).

Figure 5.6: Example of a ligand that lacks an entire cyclohexane ring (left) and its
counterpart from the reference set (right, source: LigandExpo).

48

5. RESULTS AND DISCUSSION

Figure 5.7: Example of a ligand that lacks more than half of atoms that it is expected
to have (left) and its counterpart from the reference set (right, source: LigandExpo).

Figure 5.8: Example of a ligand that has wrong chiral configuration on a carbon
stereogenic center (left, problematic center and its connected atom in the wrong
position are in blue) and its counterpart from the reference set (right, paired stere-
ogenic center and its connected atom are in blue).

49

5. RESULTS AND DISCUSSION

Figure 5.9: Example of a ligand that has three chiral stereogenic center with three
connected atoms (in blue) that are considered to be on the level of the chiral carbon
and its immediate surrounding.

5.4 Comparison with SwCMP

To assess implementation differences of LiCMP from the implemen-
tation of SwCMP, both tools have been tested on the same set of sac-
charide molecules.

5.4.1 Sugar dataset

The input set of saccharide molecules has been first introduced in
my bachelor’s thesis [46]. It is a set of 34 208 molecules that have
been extracted as frequently occurring motives from the PDB by soft-
ware tools developed by Matúš Uhliar (mainly by program Sugar6
analyzer) in his master’s thesis [4]. A short table of the most com-
mon saccharides, along with their count, present in this input set is
in figure 5.10, while a tabular comparison of the most common sac-
charides in results set of SwCMP and LiCMP is in figure 5.11.

Input saccharides have been compared to the reference set that
contained 924 saccharides in the case of LiCMP and 777 saccharides
in the case of SwCMP. The reason for this discrepancy lies in the
greater implemented functionality of LiCMP: While SwCMP in its
version v0.5 was not able to distinguish 147 reference saccharides
from some of the rest of 777 reference saccharides that have been
used as its reference molecule set, LiCMP is fully capable of dis-
tinguishing all 924 saccharides that have been used as its reference
molecule set.

50

5. RESULTS AND DISCUSSION

ligand code count

NAG 13 353
MAN 3 350
GLC 1 666
BMA 1 498
BGC 1 015
NDG 966
GAL 964
FUC 818
BOG 581
XYP 402

Figure 5.10: Ten most numerous saccharide types present in the set of input sac-
charides.

5.4.2 Identification results and deviations

Out of the input saccharide set, only one specimen timed out com-
pletely and LiCMP was not able to annotate it (more information
about limitations of LiCMP is in section 5.5). Out of the remaining
34 207 molecules, 9 336 saccharides have not been annotated with ab-
solute confidence (i.e. have not achieved 100 % as their similarity per-
centage with any molecules from the reference set). However, 9 074
saccharides have achieved similarity percentage between 95 and 99
%. Therefore, only 262 input saccharide molecules have been anno-
tated with lower similarity percentage than 95 %. Substantial part of
this deviating set are 76 saccharides that suffered from local compar-
ison timeout (explained in section 5.5).

After cleaning the annotation result of entries that have had their
quality compromised because of timeouts, 34 056 molecules have re-
mained in the resulting successfully annotated set. Out of this group,
9 233 saccharides have been annotated with smaller similarity per-
centage than 100 %, while 24 824 saccharides have had their annota-
tion validated with absolute confidence (i.e. have achieved 100 % as
their similarity percentage with at least one molecule from the ref-
erence set). For comparison, only 1 135 saccharides have been anno-
tated with smaller similarity percentage than 100 %. This discrep-

51

5. RESULTS AND DISCUSSION

ligand code count

5AX 13 646
ASO 6 838
ALL 1 809
FU4 1 002
A2G 910
ARA 624
BOG 536
B2G 516
LMT 446
SUC 262

ligand code count

5AX 13 660
ASO 6 827
FU4 922
BGC 692
BOG 518
NAG 486
XYP 426
GLC 422
MAL 298
NDG 273

Figure 5.11: Ten most numerous saccharide types present among computed anno-
tations of said saccharides by SwCMP (left) and LiCMP (right).

ancy is related with higher sensitivity of LiCMP and its slightly dif-
ferent molecule similarity metric that differs from the original metric
in SwCMP. Summary of the annotation process results from LiCMP
in comparison with results from SwCMP is depicted in figure 5.12).
As expected, only 185 saccharides achieved lower similarity percent-
age than 95 %. Figure 5.13 shows the distribution of similarity scores
of annotation results by LiCMP in comparison with annotation re-
sults by SwCMP.

Figure 5.12: Pie charts of saccharide annotation results by SwCMP (left) and LiCMP
(right)

52

5. RESULTS AND DISCUSSION

Figure 5.13: Distribution of similarity scores of saccharide annotation results by
SwCMP (left) and LiCMP (right).

Distribution of input and output saccharide code count varies sig-
nificantly at the first glance, there is, however, a simple reason for
this difference. Output saccharides that are present in the results of
LiCMP and are lacking from the results of SwCMP (e.g. BGC, NAG,
XYP) are molecules that have been sorted into an isomer group by
SwCMP, i.e. a group which atoms are completely identical from the
viewpoint of the program. The main reason for SwCMP to use iso-
mer groups was its lack of chirality related functionality (most sac-
charides differ from the rest of their group only by the configura-
tion of atoms bound to their chiral centers). Since LiCMP supports
chirality recognition and comparison, no isomer groups are needed
and output ligand names truly belong to the reference molecules that
participated in the computation of the highest similarity percentage
result.

An important similarity between annotation validation results of
SwCMP and LiCMP exists in the number of similarly annotated sac-
charides (i.e. saccharides that have had their annotation validated
and confirmed). SwCMP claims that only 11 363 saccharides already
have the right annotation, and LiCMP reports that only 10 844 mole-
cules are correctly annotated (as shown for both programs in figure
5.14).

6 657 molecules have an error in their chirality. Vast majority of
them (6 252) have only one chiral center with malformed spatial con-
figuration of its bound atoms. In figure 5.15, an example of input sac-

53

5. RESULTS AND DISCUSSION

Figure 5.14: Pie charts of the number of saccharides that have had their annotations
confirmed by SwCMP (left) and LiCMP (right).

charide that had 100 % similarity percentage computed by SwCMP
and 99 % similarity percentage as computed by LiCMP.

5.5 Limitations

Due to the nature of the algorithm that has been implemented and
used for isomorphism discovery, there exist certain limitations of
what ligands can LiCMP process in its current version v0.7.1. The
algorithm used is a brute-force algorithm that tries to enumerate and
assess every possible isomorphism (but chemically plausible isomor-
phism, i.e. without pairing of atoms of different element type) of sub-
graphs of two molecular graphs. Every plausible isomorphism is dis-
covered via synchronized DFS traversal of both molecular graphs.
This step is not problematic in terms of computational complexity
when the vast majority of atoms in both graphs is connected to at
most two other atoms of different element type (total number of con-
nections is not important here bercause of semantics restrictions).
When the majority of atoms are connected to three (or more) other
atoms of the same element type, total number of isomorphisms that
need to be checked rises significantly, since each additional pairing
of atom (that has for example four usable atoms and is paired to an
atom from the second graph that has for example three usable at-
oms) creates another 24 possible pairings (enumerated by the equa-
tion 4.1). Ten pairs of atoms can, under ideal circumstances, increase
the number of possible pairings 2410 = 6.34 · 1013 times. In this way,

54

5. RESULTS AND DISCUSSION

Figure 5.15: An example of a saccharide molecule (left) that has been annotated as
ASO saccharide type (right, source: LigandExpo) with 100 % similarity by SwCMP
and with 99 % similarity by LiCMP.

assessment of all plausible isomorphisms can cease to be computa-
tionally feasible. An example of aforesaid problematic molecule is a
member of the heme ligand family (figure 5.16).

To prevent stalling the annotation process of LiCMP when such
problematic molecule is encountered, two timeout mechanisms have
been implemented. Local timeout is relevant for each pairwise com-
parison of a reference ligand and a ligand to be identified and lim-
its its length to a set amount of time (10 minutes by default, can be
modified via the -scTout command line parameter - for details about
command line parameters, see section 4.2.2). When the given time
runs out, ongoing comparison is stopped and the best discovered
isomorphism so far is returned as a result of the aborted pairwise
comparison. A note to the logfile is made as well.

Another timeout mechanism that has been implemented into
LiCMP is the global timeout. The length of time that the identifi-
cation process of each ligand to be identified is taking is measured
as well, and if it exceeds set amount of time (30 minutes by default,
can be modified via the -idTout command line parameter - for details
about command line parameters, see section 4.2.2), the identification
is immediately canceled. No identification from this canceled process
is written to the logfile since there is no guarantee that the ligand to

55

5. RESULTS AND DISCUSSION

Figure 5.16: Protoporphyrin IX. Source: LigandExpo.

56

5. RESULTS AND DISCUSSION

be identified has been pairwise compared to every reference ligand
at least for a short time. Instead, only a short error message with the
filename of the ligand to be identified is written to the output logfile.

5.6 Summary

Out of the input set of ligands to be identified, only 52.26 % of lig-
ands have been annotated with absolute confidence and 26.6 % of
ligands have been annotated with smaller similarity percentage than
95 %. This result shows that ligands, extracted from their source bio-
macromolecules, are of somewhat low quality and definitely need
to have their annotation validated. Common problems include miss-
ing atoms (or atom groups), presence of atoms (or atom groups) that
do not belong to the ligand, and wrong bound atom configuration
around carbon stereogenic centers.

Even though LiCMP is more sensitive to a wider variety of errors
and can, unfortunately, sometimes provide a false negative result, it
does not negatively affect the ligand validation results in comparison
to SwCMP, as was shown in section 5.4.2. Only 0.8 % of saccharide
molecules have been annotated with smaller similarity percentage
than 95 % by LiCMP as opposed to 0.62 % by SwCMP.

5.7 Presentation and utilization of results

LiCMP has been used for deep black-box analysis of results of Mo-
tiveValidator [48]. It is an interactive web-based validation tool that
checks whether a ligand atom has correct annotation by comparing
it to a model ligand of said annotation. If not, it outputs discovered
differences.

5.8 Future plans

Functionality-wise, LiCMP is well equipped to discern ligands from
one another with regards to their topology as well as their chiral-
ity configuration of all of their carbon stereogenic centers. The main
current drawback of LiCMP is its low efficiency that stems from the

57

5. RESULTS AND DISCUSSION

use of a brute-force algorithm. Extensive study of the state of the
art graph algorithms that work with isomorphism discovery (both
graph isomorphism and subgraph isomorphism) is required to de-
sign a more efficient algorithm. Another plausible way might be to
represent each ligand not as a connected molecular graph of atoms,
but as a connected graph of components. A component, in this mean-
ing, can be an atom group, a ring, or any small motive that reoccurs
in many ligands. Comparisons would be carried out on the level of
components first, and then on the level of pairwise comparisons of
components that have been matched together to catch smaller prob-
lems in 3D structure of a ligand to be identified.

Another way to improve identification performance would be to
better split pairwise comparisons among available logical cores in
a system. Concretely, the performance would improve if the pro-
gram would not wait for two lengthy pairwise comparisons to finish
and would start dispatching pairwise comparisons of another lig-
and to be identified to idling threads. This enhancement would not
solve problems of the brute force approach, but it would increase the
throughput of the annotation process, at least a little.

To increase the confidence of bond order detection and chirality
comparison, it would help to revise their associated algorithms. Cur-
rent solution works for the vast majority of ligands. When validating
a ligand, however, there are many special cases that the programmer
of validation and annotation software has to keep in mind and plan
for in his algorithm design and implementation.

One of the main sources of functionality ideas are the users of
(formerly) SwCMP and LiCMP. Without its users, a piece of software
is only a little more than a completed exercise of the programmer’s
brain. LiCMP can easily be equipped with a GUI should the need
arise since it has been developed with the aid of Qt SDK.

58

6 Conclusion

The goal of this thesis was to design and implement algorithms for
automatic batch analysis, annotation, and validation of ligand mol-
ecules by comparing them to a set of reference ligands. Fulfillment
of said goal required applying knowledge about variety of ligands
and their structure to the process of finding suitable computer repre-
sentation for ligand molecules. Such representation has been found
in the form of the molecular graph that has been modified for the
purpose of containing 3D structure information.

Application LiCMP has been designed and implemented as the
result. It receives ligands to be identified from supplied PDB files,
constructs their topology (represented by the modified molecular
graph) and compares each of them with reference ligands obtained
from a trusted source of quality data. The comparison of ligands
is carried out in terms of construction of the best isomorphism of
biggest possible subgraphs of two graphs. Quality of each discov-
ered isomorphism is assessed using a custom metric that emphasizes
atom presence deficiencies.

Implemented annotation algorithm in LiCMP has then been used
to annotate a set of 10 247 selected ligands, extracted from metallo-
proteins, against a set of 1 865 reference ligands. Results indicate that
input ligands to be identified definitely need to have their structure
tended. Validity of results, returned by LiCMP, have then been cross-
checked on an input set of 34 208 saccharide molecules with results
from SwCMP v0.5 and it has been shown that LiCMP is more sen-
sitive to subtle structure issues with the implementation of spatial
configuration recognition of carbon stereogenic centers.

LiCMP in version v0.7.1 is a stable tool for batch annotation of
ligands with nearly complete functionality set for this task. As such,
it has been used to validate results of MotiveValidator [48], a web-
based ligand validation tool which results have been published in
the Nucleic Acids Research journal [48]. There are still reserves to be
tackled in terms of annotation process performance in both isomor-
phism finding algorithm and function that splits pairwise compari-
son to worker threads. With said improvements and after more thor-
ough verification of results that the program returns, it will be ready

59

6. CONCLUSION

to become useful tool for various projects that are being researched
at National Centre for Biomolecular Research (NCBR).

60

7 Appendices

7.1 Contents of attached CD

• this thesis in PDF format

• LATEXsource code of this thesis

• graphical figures used in this thesis

• source code of LiCMP v0.7.1

• documentation of LiCMP v0.7.1 in PDF and HTML format

• full class diagram of LiCMP v0.7.1

• compiled binary of LiCMP v0.7.1 for the Windows x86 plat-
form

• source files of ligands that comprise the set of ligands to be
annotated

• source files of reference ligands for the set of ligands to be
compared against

• annotation and validation result for the set of ligands to be
annotated

• source files of saccharides that comprise the cross-validation
set

• source files of reference saccharides for the cross-validation set
of saccharides to be compared against

• annotation and validation result for the cross-validation set of
saccharides

61

7. APPENDICES

7.2 Ligands from Ligand Expo mentioned in this

thesis

ligand
code name chemical formula

3GR glyceraldehyde C3H6O3
5AX 2-(acetylamino)-1,5-anhydro-

-2-deoxy-D-glucitol C8H15NO5
A2G N-acetyl-2-deoxy-2-amino-galactose C8H15NO6
ADP adenosine-5’-diphosphate C10H15N5O10P2
ALL D-allopyranose C6H12O6
ANP phosphoaminophosphonic-acid-

-adenylate ester C10H17N6O12P3
ARA α-L-arabinose C5H10O5
ASO 1,5-anhydrosorbitol C6H12O5
ASP aspartic acid C4H7NO4
ATP adenosine-5’-triphosphate C10H16N5O13P3
B2G galactobiose C12H22O11
B7G heptyl-β-D-glucopyranoside C13H26O6
BGC β-D-glucose C6H12O6
BMA β-D-mannose C6H12O6
BOG β-octylglucoside C14H28O6
BUA butyric acid C4H8O2
DMU decyl-β-D-maltopyranoside C22H42O11
END 1,6:5,9:8,12:11,16-tetraanhydro-

2,3,4,10,13,14-hexadeoxy-D-glycero-
-D-allo-D-gulo-heptadeca-2,13-
-dientiol C17H24O7

FU4 2,6-anhydro-1-deoxy-D-galactitol C6H12O4
FUC α-L-fucose C6H12O5
FMN flavin mononucleotide C17H21N4O9P
FMT formic acid CH2O2
GAL β-D-galactose C6H12O6
GLC α-D-glucose C6H12O6
GTP guanosine-5’-triphosphate C10H16N5O14P3
HEM protoporphyrin IX C34H32FeN4O4
HOH water H2O

62

7. APPENDICES

ligand
code name chemical formula

LMT dodecyl-β-D-maltoside C24H46O11
MAL maltose C12H22O11
MAN α-D-mannose C6H12O6
MG magnesium ion Mg
MUG 4-methylumbelliferyl-α-D-glucose C16H18O8
NAG N-acetyl-D-glucosamine C8H15NO6
NDG 1-(acetylamino)-2-deoxy-α-

-D-glucopyranopse C8H15NO6
O oxygen atom O
SUC sucrose C12H22O11
XYP β-D-xylopyranose C5H10O5

63

8 Literature

[1] GARRETT, R. and C. GRISHAM. Biochemistry. Belmont, CA:
Brooks/Cole, Cengage Learning, 2013. ISBN 11-331-0629-3.

[2] LEACH, A. and V. GILLET. An introduction to chemoinformatics.
Dordrecht: Springer, 2007. ISBN 978-140-2062-902.

[3] RCSB PDB. WWPDB. RCSB PDB [online]. 2014-04-30 [cit.
2014-05-03]. Available at: http://www.rcsb.org/pdb/home/
home.do

[4] UHLIAR, Matúš. Vyhl’adávanie a predikcia biochemicky významných
motívov v molekulách poteínov. Brno, 2010. Available from: https:
//is.muni.cz/th/139735/fi_m/thesis.pdf. Master the-
sis. Masaryk University, Faculty of Informatics. Thesis advisor
RNDr. Radka Svobodová Vařeková, Ph.D.

[5] WORLDWIDE PROTEIN DATA BANK. Ligand Expo [on-
line]. 2014-04-30 [cit. 2014-05-03]. Available from: http://

ligand-expo.rcsb.org/index.html

[6] COX, T. Inorganic chemistry. London: Taylor, 2003. ISBN 02-034-
8827-X.

[7] TEIF, V. Ligand-Induced DNA Condensation: Choosing the
Model. Biophysical Journal. 2005, vol. 89, issue 4, p. 2574-2587.

[8] TEIF, V. and K. RIPPE. Statistical–mechanical lattice models for
protein–DNA binding in chromatin. Journal of Physics: Condensed
Matter. 2010, vol. 22, issue 41, p. 414105.

[9] CAMPBELL, N., B. WILLIAMSON and R. HEYDEN. Biology: Ex-
ploring life. Boston, Mass: Pearson/Prentice Hall, 2006. ISBN 978-
013-2508-827.

[10] CORDERO, B., V. GÓMEZ, A. PLATERO-PRATS, M. REVÉS,
J. ECHEVERRÍA, E. CREMADES, F. BARRAGÁN and S. AL-
VAREZ. Covalent radii revisited. Dalton Transactions. 2008, issue
21, p. 2832-.

64

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
https://is.muni.cz/th/139735/fi_m/thesis.pdf
https://is.muni.cz/th/139735/fi_m/thesis.pdf
http://ligand-expo.rcsb.org/index.html
http://ligand-expo.rcsb.org/index.html

8. LITERATURE

[11] PYYKKÖ, P. and M. ATSUMI. Molecular Single-Bond Covalent
Radii for Elements 1-118. Chemistry - A European Journal. 2009,
vol. 15, issue 1, p. 186-197.

[12] PYYKKÖ, P. and M. ATSUMI. Molecular Double-Bond Covalent
Radii for Elements Li-E112. Chemistry - A European Journal. 2009-
11-23, vol. 15, issue 46, p. 12770-12779.

[13] PYYKKÖ, P., S. RIEDEL and M. PATZSCHKE. Triple-Bond Co-
valent Radii. Chemistry - A European Journal. 2005-06-06, vol. 11,
issue 12, p. 3511-3520.

[14] WAGNIERE, G. On Chirality and the Universal Asymmetry: Re-
flections on Image and Mirror Image. Zurich: VHCA [with] Wiley-
VCH, 2007. ISBN 39-063-9038-1.

[15] SOLOMONS, G. and C. FRYHLE. Organic chemistry. 10th ed.
Hoboken, NJ: Wiley, 2011. ISBN 04-704-0141-9.

[16] FOX, M. a J. WHITESELL. Organic chemistry. 3rd ed. Sudbury,
Mass: Jones and Bartlett, 2004. ISBN 978-076-3721-978.

[17] ELIEL, E., S. WILEN and L. MANDER. Stereochemistry of organic
compounds. New York: Wiley, 1994. ISBN 04-710-1670-5.

[18] STREITWIESER, A., C. HEATHCOCK and E. KOSOWER. Intro-
duction to organic chemistry. 4th ed. New York: Maxwell Macmil-
lan International, 1992. ISBN 00-241-8170-6.

[19] MARCH, J. Advanced organic chemistry: Reactions, Mechanisms,
and Structure. 4th ed. New York: John Wiley and Sons, 1992. ISBN
978-8126510467.

[20] MOSS, G. Basic terminology of stereochemistry (IUPAC Recom-
mendations 1996). Pure and Applied Chemistry. 1996, vol. 68, issue
12.

[21] COOK, D. Illustrated Dictionary of Chemistry. New Delhi: Lotus
Press, 2004. ISBN 978-818-9093-211.

[22] Nomenclature and symbolism for amino acids and peptides.
Pure and Applied Chemistry. 1984, vol. 56, issue 5, p. 595-624.

65

8. LITERATURE

[23] KHOURY, G., R. BALIBAN and C. FLOUDAS. Proteome-wide
post-translational modification statistics: frequency analysis and
curation of the swiss-prot database. Scientific Reports. 2011-9-13,
vol. 1, article nr. 90.

[24] GASTEIGER, J. Handbook of chemoinformatics: from data to knowl-
edge. Weinheim: Wiley-VCH, 2003. ISBN 35-273-0680-3.

[25] KVASNIČKA, V., M. KRATOCHVÍL, and J. KOČA. Matematická
chemie a počítačové řešení syntéz. 1. edition. Praha: Academia, 1987,
p. 12-13. Pokroky chemie, 16.

[26] MATOUŠEK, J. and J. NEŠETŘIL. Invitation to discrete mathemat-
ics. 2nd ed. New York: Oxford University Press, 2009. ISBN 01-
985-7042-2.

[27] DEVLIN, K. Sets, functions, and logic: an Introduction to Abstract
Mathematics. 3rd ed. Boca Raton, Fla.: Chapman, 2004. ISBN 15-
848-8449-5.

[28] FOGGIA, P., C. SANSONE and M. VENTO. A Performance
Comparison of Five Algorithms for Graph Isomorphism. In:
Proc. 3rd IAPR-TC15 Workshop: Graph-Based Representations
in Pattern Recognition [online]. 2001 [cit. 2014-05-19]. Avail-
able from: http://www.engr.uconn.edu/~vkk06001/

GraphIsomorphism/Papers/VF_SD_NAUTY_Ullman_

Experiments.pdf

[29] COOK, S. The Complexity of Theorem-Proving Procedures. In:
STOC ’71 Proceedings of the third annual ACM symposium on Theory
of computing. New York: Association for Computing Machinery,
1971, p. 151-158.

[30] ULLMANN, J. An Algorithm for Subgraph Isomorphism. Jour-
nal of the ACM. 1976, vol. 23, issue 1, p. 31-42.

[31] BUNIN, B., J. BAJORATH, B. SIESEL and G. MORALES.
Chemoinformatics: Theory, Practice and Products. Dordrecht:
Springer, 2007. ISBN 14-020-5001-1.

66

http://www.engr.uconn.edu/~vkk06001/GraphIsomorphism/Papers/VF_SD_NAUTY_Ullman_Experiments.pdf
http://www.engr.uconn.edu/~vkk06001/GraphIsomorphism/Papers/VF_SD_NAUTY_Ullman_Experiments.pdf
http://www.engr.uconn.edu/~vkk06001/GraphIsomorphism/Papers/VF_SD_NAUTY_Ullman_Experiments.pdf

8. LITERATURE

[32] WEININGER, D. SMILES, a Chemical Language and Infor-
mation System: 1. Introduction to Methodology and Encoding
Rules. Journal of Chemical Information and Modeling. 1988-02-01,
vol. 28, issue 1, p. 31-36.

[33] HELSON, H. Structure Diagram Generation. Reviews in Compu-
tational Chemistry. 2007, Volume 13.

[34] GORDON, M. and J. POPLE. Approximate Self-Consistent
Molecular-Orbital Theory. VI. INDO Calculated Equilibrium Ge-
ometries. The Journal of Chemical Physics. 1968, vol. 49, issue 10, p.
4643-.

[35] PARSONS, J., B. HOLMES, M. ROJAS, J. TSAI and C. STRAUSS.
Practical Conversion from Torsion Space to Cartesian Space for In
Silico Protein Synthesis. Journal of Computational Chemistry. 2005-
07-30, vol. 26, issue 10, p. 1063-1068.

[36] GENTLE, J. Matrix algebra: Theory, Computations, and Applications
in Statistics. London: Springer, 2007, p. 299. ISBN 0387708723.

[37] WwPDB Frequently Asked Questions. WORLDWIDE PRO-
TEIN DATA BANK. Welcome to the Worldwide Protein Data Bank
[online]. 2014-04-29 [cit. 2014-05-03]. Available from: http://
www.wwpdb.org/faq.html

[38] HUBBARD, T., A. MURZIN, S. BRENNER and C. CLOTHIA.
SCOP: a Structural Classification of Proteins database. Nucleic
Acids Research. 1997, vol. 25, No. 1, p. 236-239.

[39] Protein Data Bank Contents Guide: Atomic Coordinate Entry
Format Description. In: Worldwide Protein Data Bank [online]. Ver-
sion 3.30. Worldwide Protein Data Bank, 2012-11-21 [cit. 2014-
05-03]. Available at: ftp://ftp.wwpdb.org/pub/pdb/doc/
format_descriptions/Format_v33_A4.pdf

[40] Chemical Component Dictionary. WORLDWIDE PROTEIN
DATA BANK. Welcome to the Worldwide Protein Data Bank [on-
line]. 2014-04-29 [cit. 2014-05-03]. Available from: http://www.
wwpdb.org/ccd.htmll

67

http://www.wwpdb.org/faq.html
http://www.wwpdb.org/faq.html
ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_A4.pdf
ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_A4.pdf
http://www.wwpdb.org/ccd.htmll
http://www.wwpdb.org/ccd.htmll

8. LITERATURE

[41] HUMPHREY, W., A. DALKE and K. SCHULTEN. VMD: Visual
molecular dynamics. J. Molec. Graphics. 1996, vol. 14, No. 1, p. 33-
38.

[42] STROUSTROUP, B. C++ Applications. STROUSTROUP, B.
Bjarne Stroustroup’s Homepage [online]. 2014-02-17 [cit. 2014-
05-04]. Available from: http://www.stroustrup.com/

applications.html

[43] STROUSTRUP, B. C++ programming language Third. ed. Mas-
sachusetts: Addison-Wesley, 1997, 910 p. ISBN 02-018-8954-4.

[44] Qt 5 | Documentation | Qt Project. Digia Plc. Qt Project
[online]. 2014-02-05 [cit. 2014-05-03]. Available at: http://

qt-project.org/doc/qt-5/index.html

[45] GAMMA, E., R. HELM, R. JOHNSON and J. VISSIDES. De-
sign patterns: Elements of Reusable Object-Oriented Software. Boston:
Addison-Wesley, 1995. ISBN 02-016-3361-2.

[46] HORSKÝ, V. Annotation of saccharide molecules. Brno, 2012. Avail-
able from: https://is.muni.cz/auth/th/358970/fi_b/
Thesis.pdf. Bachelor thesis. Faculty of Informatics, Masaryk
University. Advisor RNDr. Radka Svobodová Vařeková, Ph.D.

[47] Container Classes | QtCore 5.2 | Documentation | Qt Project:
Algorithmic Complexity. DIGIA PLC. Qt Project [online]. 2013
[cit. 2014-05-07]. Available from: http://qt-project.org/
doc/qt-5/containers.html#algorithmic-complexity

[48] SVOBODOVÁ VAŘEKOVÁ, R., D. JAISWAL, D. SEHNAL, C.-
M. IONESCU, S. GEIDL, L. PRAVDA, V. HORSKY, M. WIM-
MEROVA and J. KOČA. MotiveValidator: interactive web-based
validation of ligand and residue structure in biomolecular com-
plexes. Nucleic Acids Research. 2014.

68

http://www.stroustrup.com/applications.html
http://www.stroustrup.com/applications.html
http://qt-project.org/doc/qt-5/index.html
http://qt-project.org/doc/qt-5/index.html
https://is.muni.cz/auth/th/358970/fi_b/Thesis.pdf
https://is.muni.cz/auth/th/358970/fi_b/Thesis.pdf
http://qt-project.org/doc/qt-5/containers.html#algorithmic-complexity
http://qt-project.org/doc/qt-5/containers.html#algorithmic-complexity

	Introduction
	Theory
	 Chemical background
	 Ligand
	 Bond properties
	 Chirality in chemistry

	 Mathematical background
	 Molecular graph
	 Graph isomorphism problem

	 Computer representation of molecule structure
	 1D structure
	 2D structure
	 3D structure

	Tools and methods
	 Protein Data Bank
	 PDB file format
	 Ligand Expo
	 Visual Molecular Dynamics
	 Programming language
	 Qt Software development kit
	 Software design patterns
	 SwCMP

	Implementation
	 Representation of molecules
	 Overview of LiCMP
	 Functionality
	 Command line parameters
	 Program input specification
	 Program output specification

	 Data structures
	 QList container
	 QMap and QMultiMap containers
	 QSet containers

	 Class diagram
	 Significant classes
	 GraphAtom class
	 Molecule class and its children
	 Job class
	 Comparator class
	 Path class
	 Results class
	 Container classes
	 Singleton classes

	 Comparison algorithm
	 Parallelization of molecule comparison
	 Problematic input molecule processing
	 Molecule similarity metric

	Results and discussion
	 Ligand dataset
	 Identification results
	 Differing patterns
	 Comparison with SwCMP
	 Sugar dataset
	 Identification results and deviations

	 Limitations
	 Summary
	 Presentation and utilization of results
	 Future plans

	Conclusion
	Appendices
	 Contents of attached CD
	 Ligands from Ligand Expo mentioned in this thesis

	Literature

