
Masaryk University

Faculty of Informatics

} w��������
��Æ������������ !"#$%&'()+,-./012345<yA|

OData server endpoint
for Infinispan

Diploma thesis

Tomáš Sýkora

Brno, 2014

Declaration

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Tomáš Sýkora

Advisor: Mgr. Marek Grác, Ph.D.

ii

Acknowledgement

I would like to thank Mgr. Marek Grác, Ph.D., for official thesis ad-
visory, precise answers for questions connected to official matter and
review of thesis’ text part; Ing. Martin Genčúr, for advice and lead-
ing from technical point of view, and for always being ready to help
me; JDG QE team for fantastic every-day working atmosphere in place
where I was able to get in touch with awesome technologies and for
their support, including discussions on lunch and in the kitchen.

Additionally, I would like to thank Vitalii for many interesting brain-
storming sessions and motivation; Michal for all answers around Infin-
ispan servers, performance aspects and automation; Anna for a dis-
cussion about Infinispan queries; and Radim for precise answers for
all of the tricky questions; Infinispan community developers, especially
Adrian Nistor for discussion around Infinispan queries and providing
very helpful insight, Sanne Grinovero for his advice and thorough in-
formation about performance aspects of Infinispan queries, and Manik
Surtani for this very interesting thesis topic.

Many thanks to my close friends Jiří Sviták and Lukáš Žilka for
suggestions and support; and to Zuzana Bzonková for help with English,
which is still a great challenge for me.

Finally, I would not finish this thesis without infinite patience of my
girlfriend Katka and endless support of my parents, thank you!

iii

Abstract

We developed Infinispan OData server for storing, indexing and query-
ing JSON documents maintained in Infinispan caches through Open
Data Protocol standards and query language. Odata4j framework was
improved for needs of Infinispan OData server. We provide performance
benchmarks of Hot Rod, Memcached, REST and OData Infinispan
servers in a clustered laboratory environment, with the use of PerfCake.

iv

Shrnutí

Infinispan OData server byl vyvinut za účelem efektivního vkládání,
indexace a dotazování nad JSON dokumenty uloženými v Infinispan
cachi. Zároveň je použit dotazovací jazyk a přístup definovaný Open
Data Protocol standardem. Byla provedena vylepšení v odata4j frame-
worku pro potřeby Infinispan OData serveru. Pro vzájemné výkonnos-
tní porovnání Hot Rod, Memcached, REST a OData Infinispan serverů
zapojených do klastru byl použit PerfCake a serverová laboratoř.

v

Keywords

Infinispan, OData, Open Data Protocol, NoSQL, odata4j, PerfCake,
OData Jersey, JSON, Document store, Key-value store, Querying, Per-
formance, Infinispan cakery

vi

Contents

1 Introduction . 1
2 NoSQL . 4

2.1 RDBMS . 4
2.2 NoSQL introduction . 4
2.3 Current trends . 6
2.4 Why NoSQL? . 8
2.5 NoSQL and RDBMS comparison 11
2.6 NoSQL stores classification 13

2.6.1 Key-value stores 13
2.6.2 Graph stores . 14
2.6.3 Column stores 14
2.6.4 Document stores 15

2.7 Choosing the right NoSQL solution 16
3 Infinispan . 18

3.1 Interacting with Infinispan 18
3.2 Clustering modes . 20
3.3 Client-server access . 20
3.4 Infinispan REST server module 24
3.5 Infinispan queries . 27

4 Open Data Protocol . 34
4.1 Why OData protocol? 39
4.2 OData query language 40
4.3 Actions, functions and service operations 41
4.4 OData and Infinispan motivation 41

5 Infinispan OData server design 43
5.1 Requirements . 43
5.2 Solution investigation . 45
5.3 EDM schema structure 48
5.4 Basic component communication logic 49

6 Implementation . 52
6.1 Source code and version control 52
6.2 Tools . 52
6.3 Building and running the server 53
6.4 Implementation highlights 53

6.4.1 (Infinispan) InMemoryProducer 53

vii

6.4.2 CachedValue, JsonValueWrapper and FieldBridge 54
6.4.3 MapQueryExpressionVisitor 56

6.5 Performance improvements in odata4j 58
6.6 Mapping of cache operations 59
6.7 Functional test suite . 61

7 Performance testing . 62
7.1 PerfCake tool . 62
7.2 Infinispan cakery . 62
7.3 Automation and testing environment 64

7.3.1 Libraries and versions 66
7.4 Performance testing plan 66

7.4.1 General testing plan division 67
7.4.2 Consistent benchmark settings 68
7.4.3 Smoke testing 69

7.5 Comparison of all four Infinispan servers 69
7.6 OData and REST server comparison 70
7.7 OData server: Key-value and query access comparison . . 74

8 Summary of results and discussion 77
9 Conclusion . 79
A Following of the OData standards 84
B Supported query options and operators 86
C Infinispan Hot Rod vs REST server 87
D Content of the attached zip file 88

viii

1 Introduction

Application and customer service providers face a continuously grow-
ing number of internet users. From architectural point of view, this fact
brings web applications, that tend to become successful, to new chal-
lenges and common relational databases no longer fit current business
needs of large companies. Solution architects, designers and develop-
ers are taking NoSQL1 solutions into account more frequently, as they
must react quickly to the growing market and their work is to satisfy
the customer needs.

The thesis introduces one of the NoSQL solutions – Infinispan,
which strives to become a standard solution for data caching. In or-
der to alleviate a load on database machines, a cache, that is placed
on the way between application and database layer, collects results of
frequent queries into a fast accessible memory.

The community of Infinispan users continue growing. This caching
solution, mainly focused on Java users, is used worldwide and in cru-
cial and business-critical projects. As it is described in the section dedi-
cated to Infinispan, this NoSQL store also supports REST 2 interface for
client-server communication. The main idea behind this is to provide
a uniform access for variety of clients independent of a programming
language in use. Infinispan is in its core a key-value store, which serves
as a very rapid database for storing objects specified by their unique
keys.

As it is demonstrated later, Infinispan can also act as a document
store when the specific configuration is enabled. Unfortunately, Infin-
ispan REST server does not support querying functionality, which is
essential for communication with embedded document store.

Together with the process of overall Infinispan spreading, there arose
some users in the community who start requesting JSON 3 document
store functionality and start asking for a possibility of querying over
JSON fields. JSON as a format of document store entities is not sup-
ported yet (see figure 1.1), and this is one of the Infinispan’s challenges
– to make it more portable and ergonomic. Users already using JSON

1. NoSQL: Not only Structured Query Language
2. REST: Representational State Transfer
3. JSON: JavaScript Object Notation

1

1. Introduction

are not willing to change their architecture, however, they are eager to
use a greater variety of features that Infinispan offers.

Figure 1.1: Infinispan REST server stores JSON documents simply as
key-value entries without understanding an internal structure of JSON
fields. Stored objects (values) are accessed purely via unique entry keys.

The thesis is aimed at providing access to an embedded Infinispan
caches via OData4 protocol. The leading idea and the main advantage
is that users will be able to communicate with Infinispan caches using
any client code which is able to follow OData standards and utilize
OData query language.

NoSQL, in general, lacks overall portability and consequently OData
was chosen as a protocol for supporting a standardized interface and
accessing the document store functionality. There is already a REST
server implemented in Infinispan, and OData server should add some-
thing on top of that module and provide state-of-the-art solution for
wider utilization of Infinispan’s document store capabilities, as well as
indexing and data replication.

As a response to above-mentioned requests, we decided to imple-
ment standalone Infinispan OData server (see figure 1.2) in order to
find out how community will react to this kind of solution, and gather
feedback as soon as possible.

4. OData: Open Data Protocol

2

1. Introduction

Figure 1.2: Infinispan OData server will be capable of understanding an
internal structure of stored JSON documents. This hybrid solution will
allow clients to query an Infinispan cache using a standardized OData
query language, or classic key-value approach.

The principal intention of this thesis is to design and implement
standalone Infinispan OData server. This client-server solution will
make Infinispan’s document store accessible, using standard HTTP5

protocol, and will also provide a good starting point for community
response in the matter of adapting to and implementing OData stan-
dards. Together with a description of a design and implementation, the
thesis is concentrated on performance aspects of this new standalone
server. Because of the fact that Infinispan is a data grid and caching
solution, performance measurement and result summary are provided
as well.

5. HTTP: Hypertext Transfer Protocol

3

2 NoSQL

This chapter summarizes fundamentals of two leading approaches for
storing data and provides a theoretical background together with com-
parison of both RDBMS and NoSQL systems. Sections in this chapter
are also dedicated to current business trends; to a question why and
when to choose NoSQL; and to a classification of NoSQL stores.

2.1 RDBMS

Before elaboration of NoSQL phenomena it is firstly important to intro-
duce Relational Database Management System (RDBMS) and provide
a source for a needed technical background.

RDBMS is based on relational algebra and data model where re-
lational calculus plays an essential role during the process of storing,
describing, maintaining, and operating with a data [1]. The data is
stored in rows and aggregated in constructs which are called tables,
where primary key acts as unique identifier for an included tuple. For
a data manipulation and querying functionality is usually used Struc-
tured Query Language (SQL).

It is recommended to get acquainted with important RDBMS-related
terms for complete understanding of following sections in this chapter.
Fundamentals of relational database management systems book [1] pro-
vides comprehensive overview and background for this purpose in chap-
ters: Overview of Database Management System, Entity-Relationship
Model, Relational Model and Structured Query Language.

2.2 NoSQL introduction

The primary purpose of this chapter is to provide introduction into the
world of state-of-the-art phenomenon called NoSQL which currently
makes the world go round.

NoSQL as ”Not Only SQL” can be understood as a set of tools used
for effective solving of data stores scaling and storing problems [2]. It
does not matter whether issues are solved by use of typical SQL ap-
proach or by implementing NoSQL key-value store. What always mat-
ters is the right application of a particular solution which can deal with

4

2. NoSQL

specific problem in an effective way. Therefore, the whole philosophy of
NoSQL is not about rejecting RDBMS systems, but rather about the
right choice for running successful business.

Additionally, it is crucial to articulate that pure NoSQL approach
is not an panacea for all kinds of problems and classic RDBMS solution
can better fit application and business needs.

In order not to be stuck with only one opinion, [3] defines NoSQL
exactly as: ”NoSQL is a set of concepts that allows the rapid and ef-
ficient processing of data sets with a focus on performance, reliability,
and agility.”

However, according to [4], NoSQL clearly covers only cases where
classic RDBMS principles are not followed.

There is also a very nice overview of how NoSQL should be under-
stood and how not. Trying to express these thoughts in different words
would definitely harm the perfect meaning of those few points stated
in [3]. For the purpose of this thesis and for the sake of brevity, char-
acteristics are enlisted without descriptions:

What is NoSQL?
”It’s more than rows in tables; It’s free of joins; It’s schema-free; It

works on many processors; It uses shared-nothing commodity comput-
ers; It supports linear scalability; It’s innovative.”

It’s also important to say what NoSQL is not.
”It’s not about SQL language; It’s not only open source; It’s not

only big data; It’s not about cloud computing; It’s not about a clever
use of RAM and SSD; It’s not an elite group of products.”

It is also important to mention what started the era of the NoSQL
phenomenon and look at wider chronological context. A book Profes-
sional NoSQL [4] contains a very good overview of use cases and his-
torical background behind NoSQL movement. It mentions that Google
started to fulfill and implement complex solution for their needs of pro-
cessing enormous amount of data using parallel processing with sup-
port of easily scalable architecture. It was needed for applications like
GMail, Google Finance, or Google Maps. Google also published parts of
its research in set of interesting papers and spread the word about the
whole concept, which was a driving engine of early forming open-source

5

2. NoSQL

community, and for instance developers of Lucene1 were inspired by
those papers. Later, Hadoop2 imitated Google’s distributed infrastruc-
ture, and this initiative started and developed solid ground for NoSQL
movement. After Google, Amazon came out with their own solution:
Amazon Dynamo3 was presented in 2007. These two significant projects
of leading companies literally catalyzed a number of new projects and
users adopting NoSQL solutions.

That was a very short introduction into the world of NoSQL with
plenty of new terms connected to it. The terms will be discussed pro-
gressively in subsections which provide a chapter dedicated to current
trends and elaboration on the question why not only relational solutions
are chosen among developers. After that, NoSQL stores are divided into
four main categories and each of them will be shortly described. Finally,
some hints how to choose the right NoSQL solution will be shown and
will help to decide what fits well for which kind of business and appli-
cation.

2.3 Current trends

Internet itself has changed significantly during the period of last twenty
years. According to Couchbase paper [5], web applications have been
changing rapidly as well, and the reason is that applications need
to deal effectively with three basic facts: When business and conse-
quently web applications encounter increasing number of users, they
still need to keep service response time in values of milliseconds. More
and more users means bigger and fast growing amount of data that can
be gathered for further processing and analyzing. Applications provid-
ing complex functionality for users can be improved by special mecha-
nisms, which usually depend on collection of both structured and semi-
structured data.

With respect to above-mentioned three points, current applications
need to be able to serve responses very quickly to satisfy the business
needs. Traditional RDBMS architecture can provide good solution in

1. Apache Lucene, search engine, Home page:
<http://lucene.apache.org/>
2. Home page: <http://hadoop.apache.org>
3. Home page: <http://aws.amazon.com/dynamodb/>

6

http://lucene.apache.org/
http://hadoop.apache.org
http://aws.amazon.com/dynamodb/

2. NoSQL

the case of single and well-tuned machine usage, however, this weak
point can easily turn into serious bottleneck during peak hours when
system is experiencing growth in users accessing services concurrently.

Three major phenomenons causing progressive move to NoSQL so-
lutions can be recognized: big users, big data and cloud computing.

• Big Users – With overall expansion of the internet and still
growing number of users capable to access the network even
from their mobile devices, web applications need to deal with
approximately three billion users on-line. Also, it is necessary to
consider special peak times, which last for a short or mid-term
amount of time. These peak times can be experienced typically
before Christmas or Valentine’s day.

RDBMS solution might not be prepared enough for dealing with
those visitor pikes and, additionally, this approach as it is ar-
chitecturally built is not prepared for scaling. Therefore, many
companies have started to examine and later implement NoSQL
stores to improve applications and to be able to react more flex-
ibly by using scalable (more in sections 2.4 and ??) database
technologies.

• Big Data – Continuously more and more data appears world-
wide because of growing number of on-line users, and this causes
the arising of a possibility for capturing and gathering more
interesting and business related data. Today’s ratio of struc-
tured data is only 20 % and NoSQL performs better than classic
RDBMS solutions when working with semi-structured data or
structure-less data [5].

Applications need to be adapted to this new kind of data so
that they can process it and effectively return requested results.
Blog posts, tweets, Facebook status updates or various log files
can be mentioned as proper examples of data without any solid
structure. Databases without easily changeable schema will en-
counter problems during the intention of storing data of vague
structure, and that is why flexible solutions are being chosen for
driving more responsive and consequently successful business.

7

2. NoSQL

• Cloud Computing – It was usual that business applications
were being run on a single PC and were interacting with in-
significant number of users. Two-tier architecture was chosen in
cases where applications needed to be prepared for concurrent
access of more users. This kind of solution is well known as a
client-server architecture.

However, current trend seems to be different and three-tier sys-
tems, with support of NoSQL databases, started to be imple-
mented in situations where applications need to deal effectively
with really huge amount of users.

The main advantage is much easier scaling ability when running
the system in the cloud architecture. During the growth of con-
current users accessing service, new machines may be plugged
into the cloud system in order to provide better distribution of
a load among more machines.

2.4 Why NoSQL?

A migration from typical RDBMS systems to NoSQL systems is experi-
enced due to a couple of reasons. [5] mentions and elaborates on three of
them, which seem to be most important, and provides possible answers
to the question: Why are developers choosing NoSQL solutions?

• Because of more flexible data model – As was briefly in-
troduced in 2.3, relational databases use non-flexibly defined
schema, and this tends to be in contradiction with the require-
ment to react to and work with unstructured data.

Moreover, programmers use OOP4 techniques and they need to
put extra effort into the ”translation” of data from RDBMS sys-
tem into the objects which they are using directly in the code
logic. This mapping from tables, rows and columns into objects
is often demanding. Having a possibility to get the whole ob-
ject easily and directly from data store could alleviate necessary
effort and make code more robust and less bug prone.

4. Object Oriented Programming

8

2. NoSQL

Additionally, requested information is gathered through many
database tables using JOIN5 statements. This can be problem-
atic, in case of very big schema, for reading data and for writing
data into the store as well.

That is the place where NoSQL databases offer a different solu-
tion. For example, document-oriented NoSQL store (see 2.6.4) is
able to store whole JSON6 documents without the need of chang-
ing their structure. Later, it is possible to get these big objects
from database and use them directly in application logic.

Such a JSON document can aggregate data from multiple database
tables (see figure 2.1) and it is not needed to use expensive JOINs
anymore. Of course, this approach has its downside too – there
will probably exist data redundancy as a particular information
will be carried over a pile of documents.

Figure 2.1: Aggregated information in JSON document [5].

• Because of scalable solution possibilities – Two different
scaling approaches can be distinguished in dependence on the
way how compute power is added into the system: scale up and
scale out (see figure 2.2). During scaling-up process, compute
power of a single machine is increased; this solution which is
typically used for big database servers will sooner or later be-
come a bottleneck. Hence, scaling-out approach is trying to deal

5. SQL JOIN clause, <http://www.w3schools.com/sql/sql_join.asp>
6. JavaScript Object Notation, <http://www.json.org/>

9

http://www.w3schools.com/sql/sql_join.asp
http://www.json.org/

2. NoSQL

with this kind of problem by adding more mutually connected
machines into the system7.

NoSQL databases are designed and ready to serve as a large clus-
ter of machines, which is capable to evenly distribute the load
across the whole cluster and react dynamically to the increasing
load.

Figure 2.2: Vertical and horizontal scaling, schematic drawing.

When talking about clusters it is common to meet terms like
scalability, high availability and fault tolerance. Chapter one in
a book about Oracle Coherence [7] is dedicated to scalability
and high availability, and chapter three mentions and explains
fault tolerance.

• In order to gratify needs of users – Developers are also
choosing NoSQL solutions because users expect fast and respon-
sive web applications. This can be achieved more easily by using
flexible database model which is well designed for scaling.

Besides big data, flexible data model and performance, [2] mentions
some other reasons for taking NoSQL solutions into account during

7. Cloud system is a well-designed architecture for this type of scaling.

10

2. NoSQL

a decision phase of a project: continuous availability, data location in-
dependence, modern transaction capabilities and overall a better archi-
tecture.

Modern systems start adapting instruments capable of supporting
continuous availability, which means that no down time is expected and
the whole system will not go down even in the time of maintenance.

Data location independence starts to be important for global, world-
wide business. Customers around the whole world expects fast access
to the same pieces of data and this scenario is not easily reachable by
using RDBMS databases.

Implementation of NoSQL advantages will have positive impact
upon the overall architecture of applications and will prepare them
for the smooth process of a scaling, so they can support continuous, or
at least high availability and dynamic data distribution by using more
flexible schema, which fits better for various types of data and use cases.

2.5 NoSQL and RDBMS comparison

RDBMS approach is designed to save space, and in this case, the data
is maintained usually only in one row or column in a particular table.
However, as a counterpart, this brings problems when it comes to get-
ting the data from the database. It is often necessary to join pieces of
information coming from a bundle of tables to get the final result. These
operations may be very expensive and this issue arises also during the
process of writing data into several tables.

It was shown in the figure 2.1 that JSON document-oriented store is
able to solve this kind of problem while facing the other side – possible
data redundancy.

Figure 2.3 is worth thousand words and clearly depicts architectural
differences between NoSQL and RDBMS systems.

As it can be observed, NoSQL approach is dealing with complex
functions in the middle tier which alleviates complexity of database
tier. Without the need of providing this functionality, database tier can
be fully and directly focused on storing the data.

In traditional RDBMS systems, database tier which is loaded with
overweight functions can easily turn into a bottleneck and negatively
impact performance and scalability possibilities of this architecture.

11

2. NoSQL

Figure 2.3: Architectural differences of RDBMS and NoSQL systems [3].

Generally, NoSQL is about to keeping the building components
reusable and as simple as possible. From a developer’s point of view,
simpler components and application design lead directly to less source
code to write, better understanding of code, easier testing of a new ap-
plication and improved capability of portability to a new architecture.

Last point – application portability – is the place where RDBMS
systems wins. There is an intention in NoSQL projects to develop SQL-
like standards to make overall progress in the matter of portability.

RDBMS also fits better the system environment which is full of very
strict transactions and where ACID8 principle takes place. On the other
hand, when rigid ACID is not needed, it is possible to utilize NoSQL
mechanisms for handling data consistency (eventual consistency and
CAP theorem [3]).

See page 19 and 20 in [3] for comprehensive summary of pros and
cons of RDBMS and NoSQL solutions. Professional NoSQL book [4]
mentions other common problems and restrictions that RDBMS sys-
tems need to deal with and suggests NoSQL as an alternative solution.

RDBMS database schema presumes that working set of data is
structured without any big variability in uniformity, and therefore, any
change in the schema is associated with painful data migration.

Such a database is also full of indexes and references between tables
to make quick querying possible. Everything seems to be all right until
the time of denormalization process arrives, and during which RDBMS

8. ACID – Atomicity, Consistency, Isolation and Durability [1].

12

2. NoSQL

systems try to support better scaling and tend to look more ”NoSQL-
like“. NoSQL is more flexible, scalable and ready to deal with various
types of data. However, as a counterpart it loses transactional integrity
and possibility of flexible indexing in an effective querying mechanism.

2.6 NoSQL stores classification

Generally, NoSQL stores are divided into four main categories accord-
ing to their primary usage, approach to storing data entries, querying
possibilities and some other features [3; 4; 6]. Following list is not com-
plete, but should be sufficient for this introductory chapter: key-value
stores, graph stores, column stores and document stores.

2.6.1 Key-value stores

One of the best ways how to introduce the functionality of the key-
value NoSQL store is using an example of a typical lexical dictionary.
A particular word can be deemed as a key and its translation as a value.
Thus, every key has its mapped value and the keys are unique across
the whole data set.

These stores are commonly used as a HashMap collection with O

⎞

1

⎡

average asymptotic computational complexity for data access [4]. It
makes this architecture ideal for very fast data retrieval, regardless of
the amount of stored entries. Additionally, the type of stored values
does not have to be exactly specified. This fact together with overall
simplicity910 makes from the key-value stores very popular solution,
easy to set up and able to spare developers’ time.

Typical examples of the key-value stores: Redis11, EHCache12, In-
finispan13 Berkley DB14.

9. Key-value stores provide easy-to-use interface supporting put, get, remove and
update functionality which has a positive impact on application portability.
10. As a downside, key-value stores do not usually support querying over the values.
11. Home page: <http://redis.io/>
12. Home page: <http://ehcache.org/>
13. Home page: <http://infinispan.org/>
14. Product page:
<http://www.oracle.com/technetwork/products/berkeleydb/overview/

index.html/>

13

http://redis.io/
http://ehcache.org/
http://infinispan.org/
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html/
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html/

2. NoSQL

2.6.2 Graph stores

Graph databases may be successfully used when there is a need to store
not only data itself but also additional information about data linkage.
This kind of NoSQL stores works well when relationships between ob-
jects present in a graph structure should be analyzed. The graph stores
are typically utilized for fast search of connection patterns present in
the data gathered from social networks.

Whereas the key-value stores consist of only two fields (key and
value), graph stores are based on usage of three fields (see figure 2.4).
Nodes, relationships and properties create a graph with internal logical
structure which is ready for deep analysis and queries 15.

Each node in a graph structure is usually closely connected to a few
other nodes around which brings a disadvantage – graph stores do not
scale out well.

Figure 2.4: Schematic structure of data stored inside of the graph
databases. Properties can describe nodes and also their mutual rela-
tionships [3].

Classic instances of graph stores:
Neo4j16, FlockDB17, InfiniteGraph18.

2.6.3 Column stores

Column databases use column-oriented approach to storing data with-
out any mandatory or fixed structure, which allows that names of

15. The result of a simple graph store query can, for example, show nearest neigh-
bors of a particular node.
16. Home page: <http://neo4j.org/>
17. Home page: <https://github.com/twitter/flockdb/>
18. Home page: <http://www.objectivity.com/infinitegraph/>

14

http://neo4j.org/
https://github.com/twitter/flockdb/
http://www.objectivity.com/infinitegraph/

2. NoSQL

columns do not have to be predefined. Additionally, no column is stored
for null value, and thus it saves space. This is in contrast with classic
RDBMS systems that store data in rows.

Column databases can serve as a good tool for updating stored doc-
uments, because only really needed pieces of data are actually loaded
into the memory. It is possible to change value in the specific column
without a need of reading the whole row in which the column is stored.

The way how exactly data is stored in this type of NoSQL databases
is quite complex and well explained in [4], accompanied by many prac-
tical use cases.

Typical representatives of column stores:
HBase19, Cassandra20, Cloudata21.

2.6.4 Document stores

In this last type of NoSQL stores, keys are usually very small and used
only rarely. What really matters are values; better to say documents.
In the meaning of the NoSQL document store, a stored document is
a whole large object, usually in XML22 or JSON 23 format, which inter-
nally includes a list of key-value pairs. These fields are indexed during
the process of document storing and thus ready for later querying.

Documents with the same meaning are usually kept in one collection
despite the fact that this approach lacks logical cause, it is possible to
store documents with different structure and schema in one collection.

Document object can be quite huge and its structure complex, but
querying API 24 remains simple, easy-to-use and well-prepared for the
query filtering requested subset of documents. Key-value stores do not
usually provide this functionality, and values are accessed strictly by
using their unique keys. To obtain a value, it is needed to know the key.
Document stores solve this issue and are able to return a collection of
results based on the query over documents (values).

19. Home page: <http://hbase.apache.org/>
20. Home page: <http://cassandra.apache.org/>
21. Home page: <http://www.cloudata.org/>
22. Extensible Markup Language, <http://www.w3.org/XML/>
23. JavaScript Object Notation, <http://www.json.org/>
24. Application Programming Interface; providing querying functionality of a par-
ticular data store.

15

http://hbase.apache.org/
http://cassandra.apache.org/
http://www.cloudata.org/
http://www.w3.org/XML/
http://www.json.org/

2. NoSQL

Characteristic instances of document stores:
MongoDB25, CouchDB26, Terrastore27.

Hybrid implementations of NoSQL stores can also exist to deal with
special use cases and these are beyond the scope of the thesis. Com-
prehensive list of NoSQL databases can be found at <http://nosql-

database.org/>.

2.7 Choosing the right NoSQL solution

Both NoSQL and RDBMS databases have its pros and cons which need
to be carefully considered with respect to desired functionality and
system architecture. In cases when NoSQL is decided as the suitable
solution, there exists a huge amount of products on the market and it
is definitely not an easy task to choose the right one.

Figure 2.5: Summary table for NoSQL store types with short description
and typical usage for each type [3].

25. Home page: <http://www.mongodb.org/>
26. Home page: <http://couchdb.apache.org>
27. Home page: <https://code.google.com/p/terrastore/>

16

http://nosql-database.org/
http://nosql-database.org/
http://www.mongodb.org/
http://couchdb.apache.org
https://code.google.com/p/terrastore/

2. NoSQL

Table in figure 2.5 provides a brief summary of typical use cases
where NoSQL stores are used, divided according to above-mentioned
NoSQL stores classification.

It is out of scope of this thesis to provide comprehensive overview
of various NoSQL products and to compare them. However, chapter
fourteen in Professional NoSQL book [4] provides very helpful guidance
in a matter of choosing the right NoSQL solution.

The thesis is concentrated on a particular NoSQL key-value and
document store solution – Infinispan – which is introduced in next
chapter.

17

3 Infinispan

The exact quote from Infinispan project landing page1 offers a compact
specification of this NoSQL technology [9]:

”Infinispan is an extremely scalable, highly available key/value NoSQL
datastore and distributed data grid platform - 100% open source, and
written in Java. The purpose of Infinispan is to expose a data struc-
ture that is highly concurrent, designed ground-up to make the most
of modern multiprocessor/ multi-core architectures while at the same
time providing distributed cache capabilities. At its core Infinispan ex-
poses a Cache interface which extends java.util.Map. It is also option-
ally backed by a peer-to-peer network architecture to distribute state
efficiently around a data grid.“

Infinispan replicates and evenly distributes data entries between
nodes in a cluster as well as brings a possibility for configuration of
persistent stores, so the data is not hold only in the memory but also
persisted on a physical disk or in an underlying database. Moreover,
it come up with mechanisms for maintaining memory usage by using
eviction and expiration [8].

Infinispan, as a key-value store from basis, supports also functional-
ity for document store behavior. Capabilities of querying over values are
more elaborated in section 3.5. Its schema-less principle is very flexible
and old-stored document can be very easily replaced by a new version
of the same document or a completely different file. Therefore, with
arrival of a new document structure, there is no need for changing the
schema. This is one of the tremendous advantages of NoSQL stores.

Infinispan is able to serve as a cache or data grid platform. Besides
others, Infinispan is strongly connected to terms like scalability, high
availability and failure tolerance.

3.1 Interacting with Infinispan

InVM 2 running mode is the first possibility how users can interact
with Infinispan caches [10], where both Infinispan and an application

1. Home page: <http://infinispan.org/>
2. InVM – inside of Java Virtual Machine.

18

http://infinispan.org/

3. Infinispan

are running in the same virtual machine. This mode is also called as
embedded or library mode, because Infinispan libraries are directly em-
bedded and used in application as jar files3. It is possible to meet all
three terms in practice and they are used with the same meaning.

Figure 3.1: Schematic figure of Infinispan common usage and system
architecture [11].

The yellow oval in the figure 3.1 represents an application using
Infinispan in the library mode. Infinispan itself with its functions is
colored orange.

Transport layer (blue color) is elaborated in next section 3.2, before
short introduction of clustering modes.

3. Java ARchive file, for example: infinispan-core-6.0.0.Final.jar.

19

3. Infinispan

Yellow colored remote clients together with gray colored protocol
names (Memcached, Hot Rod, REST) represent the other possible com-
munication approach with Infinispan, and it is a client-server mode,
which is described thoroughly in section 3.3.

3.2 Clustering modes

Infinispan instances use JGroups, reliable multicast system [16], to en-
sure an inter-node communication. Infinispan nodes are able to detect
each other on the network and automatically create a cluster. JGroups
also takes care about entries replication.

Infinispan caches can be configured to run in four basic clustering
modes, which affects behavior of an entry distribution across nodes in
the cluster: distribution mode, replication mode, invalidation mode, and
local mode. See section 6. Clustering modes in Infinispan User Guide [12]
for more details.

3.3 Client-server access

The focus of this thesis is put on a client-server mode, where clients
are accessing the data in caches via special protocols, while Infinispan
itself runs inside of the server virtual machine and utilizes its JVM heap
size4 to store entries.

Three main Infinispan server modules are supported: Memcached,
Hot Rod and REST module. There is also an experimental Websocket
module5 implemented, but this solution is not widely used and for now
is beyond the scope of the thesis.

Memcached server module

This module is implementation of the popular Memcached pro-
tocol [13], enhanced by Infinispan functionality for entry repli-
cation. Figure 3.2 depicts a scenario of a crash and consequent

4. Java virtual machine heap size: <http://docs.oracle.com/cd/E15523_01/

web.1111/e13814/jvm_tuning.htm#i1141344>.
5. Infinispan Websocket server module documentation: <http://infinispan.

org/docs/6.0.x/user_guide/user_guide.html#_infinispan_websocket_

server>.

20

http://docs.oracle.com/cd/E15523_01/web.1111/e13814/jvm_tuning.htm#i1141344
http://docs.oracle.com/cd/E15523_01/web.1111/e13814/jvm_tuning.htm#i1141344
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_infinispan_websocket_server
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_infinispan_websocket_server
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_infinispan_websocket_server

3. Infinispan

addition (join) of a node into the cluster of Infinispan Mem-
cached servers. The data have survived on running nodes and
will be replicated back to the joined node. In case of original
Memcached servers, data would be lost. Note that clients need
to update the list of servers manually.

Figure 3.2: Node crash scenario in the Infinispan Memcached clus-
ter [14].

Infinispan Memcached server does not support smart routing.
It means that clients6 may place a request to a node which is
not an entry owner. In that case, data needs to be fetched over
the network from another node (the true owner), so that can
be returned back to the client (see figure 3.3). This operation
costs time and affects the overall performance of a protocol in
clustered environment.

How to use this module and other details is described in the
Infinispan documentation [12].

6. List of Memcached clients: <http://code.google.com/p/memcached/wiki/

Clients>.

21

http://code.google.com/p/memcached/wiki/Clients
http://code.google.com/p/memcached/wiki/Clients

3. Infinispan

Figure 3.3: Scenario of a ”not smart“ client get request [14].

Hot Rod server module

This server module implements Hot Rod7, Infinispan-specific bi-
nary protocol [12], which is usually used in applications where
speed really matters. Hot Rod clients are able to detect joined
nodes automatically into the cluster and update server list ac-
cordingly (see figure 3.4).

Figure 3.4: Node crash scenario in the Infinispan Hot Rod cluster [14].

7. Hot Rod protocol documentation: <http://infinispan.org/docs/6.0.x/

user_guide/user_guide.html#_hot_rod_protocol>.

22

http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_hot_rod_protocol
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_hot_rod_protocol

3. Infinispan

Infinispan Hot Rod protocol supports smart routing (see fig-
ure 3.5). The true entry owner is determined according to the
entry hash8, and clients exactly know which node to ask for the
data. This mechanism ensures that there are no unnecessary en-
tries fetched between nodes in the cluster over the network.

How to use this module and other details is described in the
documentation9.

Figure 3.5: Scenario of a ”smart“ client get request [14].

REST server module

The whole next section (3.4) dedicates special attention to the
Infinispan REST server, because this module is crucial for the
thesis’ goals.

At the end of this section, table 3.1 summarizes properties of three
aforementioned protocols.

8. HashCode() method of stored object is usually used to determine the location
of the entry in the cluster.
9. Infinispan Hot Rod server documentation: <http://infinispan.org/docs/

6.0.x/user_guide/user_guide.html#_using_hot_rod_server>.

23

http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_using_hot_rod_server
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_using_hot_rod_server

3. Infinispan

Protocol Type Client libraries Clustered Smart
Hot Rod Binary Java, Python, C++ Yes Yes

Memcached Text Plenty Yes No
REST Text Standard HTTP clients Yes No

Table 3.1: Summary of main protocols used for interaction with Infin-
ispan [14].

3.4 Infinispan REST server module

This JAX-RS10 implementation provides RESTful11 HTTP access to
Infinispan caches [12]. Infinispan REST server module is shipped as
a WAR12 file, which needs to be deployed to an application server. After
successful deployment, Infinispan caches are started and are readily
accessible for clients who would use a specific host and port (typically
localhost for local testing purposes and port 8080). It is also possible
to deploy more instances in order to create a cluster.

This module was implemented because of an overall idea to make
Infinispan more platform independent. The main advantage of the Infin-
ispan REST server is the support for diversity of common HTTP clients.
Any application using HTTP client can interact with this server, and
thus get direct access to Infinispan functionality.

Looking into the source code13, Infinispan REST server is very
lightweight. The whole core of this module is created basically by one
class written in Scala14. Developers decided for the Scala because of an
optimal performance impact and in order to try out new technology.

This straightforward approach has its downsides as well. REST
server module does not support smart routing and clients need to be

10. Java API for RESTful services: <https://jax-rs-spec.java.net/>.
11. RESTful services: <http://www.oracle.com/technetwork/articles/

javase/index-137171.html>.
12. Web application archive, <http://docs.oracle.com/cd/E19316-01/820-

3748/aduvz/index.html>.
13. Infinispan REST server, source code: <https://github.com/infinispan/

infinispan/blob/master/server/rest/src/main/scala/org/infinispan/

rest/Server.scala>.
14. Scala programming language: <http://www.scala-lang.org/>.

24

https://jax-rs-spec.java.net/
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://docs.oracle.com/cd/E19316-01/820-3748/aduvz/index.html
http://docs.oracle.com/cd/E19316-01/820-3748/aduvz/index.html
https://github.com/infinispan/infinispan/blob/master/server/rest/src/main/scala/org/infinispan/rest/Server.scala
https://github.com/infinispan/infinispan/blob/master/server/rest/src/main/scala/org/infinispan/rest/Server.scala
https://github.com/infinispan/infinispan/blob/master/server/rest/src/main/scala/org/infinispan/rest/Server.scala
http://www.scala-lang.org/

3. Infinispan

manually aware about any change in the cluster topology (leaving and
joining nodes) to know which node they should ask for entries.

The main intention was to provide easy-to-use and fast HTTP based
access to Infinispan caches. Because of that reason, REST server offers
just basic key-value store functionality and is not ready for working
with document store capabilities (see next section 3.5), which is the
main challenge of this thesis.

Configuration requisites and possibilities can be found in the docu-
mentation15. Some practical examples, for demonstration purposes, are
listed below:

Putting entry into the cache:

HTTP PUT method

http://localhost:8080/infinispan/rest/default/key1

infinispan/rest is a path of the service.

default is a cache name.

key1 is an unique key of a particular entry.

Entry value is set as a payload in the body of HTTP POST re-
quest. Also, content-type header have to be set properly, for
example ”application/json”.

Putting entry with usage of HTTP PUT method will cause update
of any data (value) under the same key. HTTP POST method en-
sures different behavior; in case of conflict (key already exists
in the cache) HTTP CONFLICT status is returned and entry will
remain untouched.

Special HTTP headers:

It is also possible to set up special HTTP headers for change in
the entry storage behavior. content-type header is mandatory,
others are optional:

15. Infinispan REST server configuration guide: (<http://infinispan.org/

docs/6.0.x/user_guide/user_guide.html#_configuration_6>.

25

http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_configuration_6
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_configuration_6

3. Infinispan

performAsync (true) sets asynchronous behavior; request re-
turns immediately and does not wait for data replication in the
cluster.

Following two headers are associated with the expiration16 In-
finispan functionality:

timeToLiveSeconds specifies maximal lifetime of entries. De-
fault value is -1, which means that entry never expires.

maxIdleTimeSeconds again, with default value -1, means that
entry never expires. If entry is not get or updated for specified
amount of time, it will be expired from the cached after that.

Getting entry from the cache:

HTTP GET method

http://localhost:8080/infinispan/rest/default/key1

Value for a particular key is returned in the body of HTTP GET

response.

HTTP HEAD method called on the same address returns no con-
tent and this can be used for checking header fields.

HTTP GET method

http://localhost:8080/infinispan/rest/default

Note that no key is specified for now. This request for the whole
default cache returns the list of all stored keys. Four possible
values for Accept header can be passed to set up a format of the
response: application/xml, application/json, text/html and
text/plain.

16. Infinispan expiration feature: <http://infinispan.org/docs/6.0.x/user_

guide/user_guide.html#_expiration>.

26

http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_expiration
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_expiration

3. Infinispan

Removing entries from the cache:

HTTP DELETE method

http://localhost:8080/infinispan/rest/default/key1

This HTTP request will remove entry from the cache; specified
by a key.

http://localhost:8080/infinispan/rest/default/

With specification of a cache (without the key), this request will
clear all entries from the default cache.

3.5 Infinispan queries

This chapter shortly introduces querying functionality, which makes
the Infinispan not only a key-value store, but also adds features of
a document store. Therefore, Infinispan can be classified as a hybrid
NoSQL store implementation.

In a typical, rigid key-value store, clients need to know the key
to obtain the specific value17. But what if someone needs to filter for
instance all users named John? Queries works well exactly for such a
use case and allow the clients to select and filter entries according to the
content, which is stored inside of their values. Key-value stores usually
response to get request by returning just one particular value. The
situation is different while using document stores. The result of a query
can be a set or collection of more values meeting query criteria.

Infinispan supports two approaches of accessing querying function-
ality: queries in library mode and remote queries over Hot Rod, both
based on Apache Lucene18 and Hibernate search19, using these technolo-
gies for indexing and consequent searching in cached documents [12].

Two possible uses (library and remote queries) of document store
functionality will be shortly introduced below:

17. Hash functions, hash wheels and distribution algorithms take care of it.
18. Apache Lucene home page: <http://lucene.apache.org/>.
19. Hibernate search home page: <http://hibernate.org/search/>.

27

http://lucene.apache.org/
http://hibernate.org/search/

3. Infinispan

Queries in the library mode

This functionality can be used only by Java client code and for
indexing pure Java objects (POJOs20). At the first place, it is needed
to prepare a class for indexing. See listing 3.1 for a simple example of
Book class [12].

Listing 3.1: Book class ready for indexed object
// Instances of class annotated by @Indexed will be indexed

@Indexed

public class Book {

// @Field annotation will pick the field for indexing

@Field String title;

@Field String description;

...

}

If Infinispan cache is configured with indexing enabled, instances
of class Book will be automatically indexed using specified fields dur-
ing the process of putting entries into the cache. Next listing (3.2) shows
the way how is possible to obtain query results [12].

Listing 3.2: Query call with results
// To obtain search manager from cache

SearchManager searchManager =

org.infinispan.query.Search.getSearchManager(cache);

// queryBuilder provides easy-to-use fluent API

QueryBuilder queryBuilder =

searchManager.buildQueryBuilderForClass(Book.class).get();

org.apache.lucene.search.Query luceneQuery =

queryBuilder.phrase()

.onField("description")

.andField("title")

.sentence("book about Infinispan")

.createQuery();

20. Plain Old Java Object

28

3. Infinispan

// The query API accepts any Lucene Query

// and results can be restricted to specific class

CacheQuery query = searchManager.getQuery(luceneQuery,

Book.class);

// To obtain results:

List objectList = query.list();

for (Object book : objectList) {

System.out.println(book);

}

Since version 6.0, Infinispan comes with new query DSL (Domain
Specific Language). Searching and indexing logic still remains coupled
with Apache Lucene and Hibernate search, but the new API for queries
is different and independent. Users do not need to construct low level
Apache Lucene queries any more (as was used in listing (3.2). Listing 3.3
demonstrates usage of new query DSL [12].

Listing 3.3: Usage of new query DSL
// Location of new API

import org.infinispan.query.dsl.*;

// Again, it is needed to obtain searchManager

SearchManager searchManager =

org.infinispan.query.Search.getSearchManager(cache);

// Use DSL query factory for the Query object construction

QueryFactory qf = searchManager.getQueryFactory();

// Search books with a title which contains the word

// "Infinispan"

org.infinispan.query.dsl.Query query = qf.from(Book.class)

.having("title").like("%Infinispan%")

.toBuilder().build();

// To obtain results:

List<Book> list = query.list();

29

3. Infinispan

This was just quick example. Infinispan query DSL offers much
more: filtering operators, filtering based on attributes of embedded en-
tities, boolean conditions, nested conditions, projections, sorting and
pagination. More information about aforementioned options and other
code samples can be found in the documentation21.

After short introduction into Infinispan’s querying feature available
in library mode, this section also acquaints readers with the other op-
tion: remote queries over the Hot Rod protocol.

Remote queries

Functionality of remote queries over the Hot Rod protocol is present
in the Infinispan since the project version 6.0.0.Beta1. Adrian Nistor
publicly announced this new feature and introduced details in his blog
post [15].

Queries in the library mode suffers from one disadvantage – non-
JVM clients are not able to use JAVA API of Apache Lucene. This
problem was solved by new DSL (Domain Specific Language). There
exist implementations of the Hot Rod client in some of the non-Java
languages22. and DSL is implementable as well. This approach opens
up the functionality of remote queries over the Hot Rod.

Other important fact is that structure of stored data need to be
known to both client and server, which need to understand common
encoding format. Google’s Protocol Buffers23 (Protobuf in short) has
been chosen as a common format for encoding entities.

For successful usage, it is required to define entity structure using
.proto file. See very short example [12] of such a descriptor file below:

21. Infinispan’s query DSL documentation: <http://infinispan.org/docs/6.0.

x/user_guide/user_guide.html#_infinispan_s_query_dsl>.
22. Hot Rod client implementations:
<https://github.com/infinispan/cpp-client>,
<https://github.com/infinispan/python-client>,
<https://github.com/infinispan/ruby-client>,
<https://github.com/infinispan/dotnet-client>.
23. Google’s Protocol Buffers: <http://code.google.com/p/protobuf/>.

30

http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_infinispan_s_query_dsl
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html#_infinispan_s_query_dsl
https://github.com/infinispan/cpp-client
https://github.com/infinispan/python-client
https://github.com/infinispan/ruby-client
https://github.com/infinispan/dotnet-client
http://code.google.com/p/protobuf/

3. Infinispan

package book_sample;

message Book {

required string title = 1;

required string description = 2;

}

Then, .proto file needs to be compiled into .protobin binary de-
scriptor24 and the output registered by ProtoStreamMarshaller in-
stance of RemoteCacheManager, as shown in listing 3.4.

ProtoStreamMarshaller uses help of ProtoStream25 library for en-
coding of entities. In order to provide better explanation of this quite
complex topic, there are used code snippets from [15], which are modi-
fied to resemble Book example from queries in the library mode section
above.

Listing 3.4: Necessary remote queries registrations
import

org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

...

ConfigurationBuilder clientBuilder =

new ConfigurationBuilder();

clientBuilder.addServer().host("127.0.0.1")

.port(11234)

.marshaller(new ProtoStreamMarshaller());

ProtoStreamMarshaller.getSerializationContext(

remoteCacheManager).registerProtofile(

"book-schema.protobin");

24. The process of creation .protobin binary descriptor: <https://developers.

google.com/protocol-buffers/docs/techniques?hl=ro#self-description>.
25. ProtoStream sub-project:
<https://github.com/infinispan/protostream>.

31

https://developers.google.com/protocol-buffers/docs/techniques?hl=ro#self-description
https://developers.google.com/protocol-buffers/docs/techniques?hl=ro#self-description
https://github.com/infinispan/protostream

3. Infinispan

As a last step, it is important to register marshaller26 for the Book

entity (see listing 3.5).

Listing 3.5: Entity marshaller registrations
ProtoStreamMarshaller.getSerializationContext(

remoteCacheManager).registerMarshaller(

Book.class, new BookMarshaller());

For illustration, UserMarshaller.java as an example of entity mar-
shaller class can be found in Infinispan’s Protostream sub-project27.

Finally, set up procedures are done and clients can start querying
the cache over the Hot Rod protocol in a similar way as shown in
listing 3.6.

Listing 3.6: Querying the remote cache
import org.infinispan.client.hotrod.Search;

import org.infinispan.query.dsl.QueryFactory;

import org.infinispan.query.dsl.Query;

...

remoteCache.put(1, new Book("Infinispan", "Great book"));

QueryFactory qf = Search.getQueryFactory(remoteCache);

Query query = qf.from(Book.class)

.having("title").eq("Infinispan")

.toBuilder().build();

List list = query.list();

assertEquals(1, list.size());

assertEquals("Infinispan", list.get(0).getTitle());

assertEquals("Great book", list.get(0).getDescription());

26. Marshalling:
<http://en.wikipedia.org/wiki/Marshalling_%28computer_science%29>.
27. UserMarshaller.java code example: <https://github.com/infinispan/

protostream/blob/1.0.0.Alpha6/sample-domain-implementation/src/

main/java/org/infinispan/protostream/sampledomain/marshallers/

UserMarshaller.java>.

32

http://en.wikipedia.org/wiki/Marshalling_%28computer_science%29
https://github.com/infinispan/protostream/blob/1.0.0.Alpha6/sample-domain-implementation/src/main/java/org/infinispan/protostream/sampledomain/ marshallers/UserMarshaller.java
https://github.com/infinispan/protostream/blob/1.0.0.Alpha6/sample-domain-implementation/src/main/java/org/infinispan/protostream/sampledomain/ marshallers/UserMarshaller.java
https://github.com/infinispan/protostream/blob/1.0.0.Alpha6/sample-domain-implementation/src/main/java/org/infinispan/protostream/sampledomain/ marshallers/UserMarshaller.java
https://github.com/infinispan/protostream/blob/1.0.0.Alpha6/sample-domain-implementation/src/main/java/org/infinispan/protostream/sampledomain/ marshallers/UserMarshaller.java

3. Infinispan

The whole process of Protobuf format adoption and necessary reg-
istrations is quite complex and users are forced to use Google’s Protocol
Buffers as an encoding format for their data in order to make remote
queries work properly. As very robust and compact, this approach still
does not allow users to directly use queries for documents in common
and popular JSON format.

The main challenge of this thesis is to develop alternative, stan-
dalone Infinispan server, which will allow clients to store JSON docu-
ments into Infinispan caches and process queries over these values and
instead of Hot Rod and DSL, using OData standards (for more infor-
mation about Open Data Protocol, see next chapter 4).

33

4 Open Data Protocol

This chapter provides fundamental knowledge about Open Data pro-
tocol (OData) and tries to answer the question why should be this
solution tied together with Infinispan.

OData frees stored information from current data silos and brings
the data for variety of possible consumers [17]. To achieve that, OData
utilize common web technologies: HTTP, REST, JSON and Atom Pub-
lishing Protocol1. Data can be used only when it is understood properly
by clients and OData prepares it for uniform access logic which uses
abstract data model (see figure 4.1).

OData is licensed under the Open Specification Promise2 which en-
sures that any clients can freely communicate with applications using
OData protocol.

Figure 4.1: Using OData, diverse types of data sources become available
to various clients, applications and devices [18].

1. AtomPub: <http://www.ietf.org/rfc/rfc4287.txt>.
2. Open Specification Promise:
<http://www.microsoft.com/openspecifications/en/us/programs/osp/

default.aspx>.

34

http://www.ietf.org/rfc/rfc4287.txt
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx

4. Open Data Protocol

Two basic communication sides are specific for the OData: producers
and consumers.

• OData producers are usually server-side services which provides
data for consummation by consumers.

• OData consumers are clients which are able to connect to the
OData service provided by producers and manipulate exposed
data.

Although OData home page provides access to thorough OData
protocol specification, this is not the best source of information for
someone who need to get acquainted with the OData very quickly.

White paper written by David Chappell [18] provides an excellent
overview and focuses on fundamental basics of the OData initiative.
The paper is full of descriptive images and examples, which help readers
to better understand more complex matter.

It is not easy to summarize stated information even more, however,
this chapter tries to provide a shortcut of the most important facts with
the help of David Chappell’s paper.

Figure 4.2 illustrates four major components that all put together
create OData environment architecture:

Figure 4.2: Four fundamental components of OData: data model, pro-
tocol, client libraries and service [18].

35

4. Open Data Protocol

OData data model

Entity Data Model (EDM) is an OData abstract data model for
describing logical structure independently of the way how data is stored
physically. EDM is able to describe entities together with their mutual
bidirectional associations (one-to-one or many-to-one) and it is up to
a service provider how the internal data is mapped to the EDM.

OData protocol

REST, HTTP, OData EDM and OData query language (which is
introduced later in section 4.2) are fundamental building blocks of the
OData protocol.

Consumers communicate with producers using standard HTTP and
follows REST conventions [18]: GET method for accessing the data,
PUT method for complete updating already existing entities, MERGE

method also for updating, but only for replacing selected properties,
POST method is used for a creation of a new entity, and finally, DELETE

method for an entity deletion.
When clients want to see or manipulate the data, they send an

HTTP request to a specific URI. Producers provide a metadata docu-
ment to let consumers learn about the service, its interface and EDM
schema. Metadata document is accessible from a service’s root URI
(see example below), where clients can find EDM schema of a particu-
lar OData service, described in conceptual schema definition language
(CSDL).

http://host:8887/ODataInfinispanEndpoint.svc/$metadata

EDM schema describes the data structure in an abstract way, but
does not specify how the data is transferred over the network. For
this reason, OData uses Atom or JSON format to serialize data into
a form understandable for consumers. For better imagination, figure 4.3
depicts how the process of a translation from relational model to Atom
works.

36

4. Open Data Protocol

Figure 4.3: Data from RDBMS system is mapped to abstract EDM
and then serialized into Atom (or JSON) which is understandable by
consumers [18].

David Chappell also provides simple practical example for better
understanding how the process of producer-consumer communication
can look like (see figure 4.4).

Figure 4.4: Example of OData service bound to underlying relational
database [18].

37

4. Open Data Protocol

OData service is bound to underlying relational database and ex-
poses stored data for wide consumer usage. As it was mentioned earlier,
consumers can ask for metadata document and in this case, they will
obtain schema similar to:

<service ...>

...

<collection href=
”
Customers“>

<atom:title>Customers</atom:title>

</collection>

<collection href=
”
Orders“>

<atom:title>Orders</atom:title>

</collection>

...

</service>

Or if consumers want to deal with a JSON format:

{
”
d“ : {

”
EntitySets“: [

”
Customers“,

”
Orders“]

} }

Since now, consumers know, that OData service exposes two entity
sets; Customers and Orders. It is possible to obtain the data from
a particular database row by issuing HTTP GET request, using specific
URI requesting retrieval of the order with ID 5630:

http://www.fabrikam.com/example/Orders(5630) returns:

{
”
d“ : {

”
results“: {

”
OrderID“: 5630,

”
Status“:

”
Placed“,

”
CustID“: 8499734 }

} }

38

4. Open Data Protocol

OData client libraries

There exist a pile of OData client libraries3 in an OData ecosys-
tem, and therefore, developers does not need to create client code
from scratch and they can choose from already prepared solutions for:
JavaScript, Java, .NET framework, Silverlight, PHP, Ruby, Android,
iOS, or Windows Phone 7.

OData service

Special tools and frameworks does not provide support only for
a client side, but most of them can be also used for a help with creation
of a server side producers’ code. Developers can utilize this features for
starting the service, for data serialization into Atom or JSON format,
and for parsing URIs containing advanced OData queries.

4.1 Why OData protocol?

This section discuss principal advantage which can OData bring into
applications’ architectural infrastructure.

In the matter of a client communication, databases and data silos
offers usually diverse API’s which need to be documented and devel-
opers sometimes have to put demanding care into adaptation of these
interfaces. OData focuses its effort on a creation of an uniform access
pattern for various sources of data, to unlock them and prepare for
broad consummation.

To solve this task, OData uses the HTTP RESTful standard, an
abstract OData Entity Data Model, and well known ATOM and JSON
formats as a format for data interchange between clients and servers
(see figure 4.5).

3. OData libraries: <http://msopentech.com/odataorg/libraries/>.

39

http://msopentech.com/odataorg/libraries/

4. Open Data Protocol

Figure 4.5: Illustration screenshot from OData introduction video [17].

4.2 OData query language

OData also implements advanced query language which allows clients
to filter and order results of their GET requests [18]. OData queries are
prefixed by ”$“ sign inside of a request URI. Possible (not a complete
list) system query options are:

$top=n: Returns the first n entities.
$skip=n: Skips the first n entities.
$format=n: Specifies data format for returning (JSON or Atom).
$filter=<expression>: Can be used for filtering entities which

match an expression. An expression consists of logical, arithmetic, or
grouping built-in filter operators4.

$orderby=<expression>: Orders results, in dependence on one or
more selected properties, in ascending or descending order.

$select=<expression>: Returns only a subset of entity properties.
$orderby, $filter and $select options depend on OData expres-

sions. An example of a $filter option usage may look like [17]:
http://services.odata.org/OData/OData.svc/Products?

$filter=Category eq ’shoes’ and Price lt 100.00 where eq op-
erator stands for equal and lt operator stands for less than.

4. OData expressions: <http://www.odata.org/documentation/odata-v3-

documentation/odata-core/#102311_Built-in_Filter_Operations>.

40

http://www.odata.org/documentation/odata-v3-documentation/odata-core/#102311_Built-in_Filter_Operations
http://www.odata.org/documentation/odata-v3-documentation/odata-core/#102311_Built-in_Filter_Operations

4. Open Data Protocol

4.3 Actions, functions and service operations

From the thesis’ point of view, this section introduces another impor-
tant OData extension: actions, functions and service operations.

According to OData V2 documentation [20]: ”OData services can
expose Service Operations, which are simple, service-specific functions
that accept input parameters and return entries or complex/primitive
values.”

According to OData V3 documentation, section dedicated to exten-
sions [21]: ”Actions and functions extend the set of operations that can
be performed on or with a service or resource.”

These three constructs could provide an ideal way of communication
with an underlying Infinispan cache and they are different one from each
other.

Actions are operations that can have side effects and they may be
bound to its first parameter. On the other hand, functions can be bound
to its first parameter as well, but, functions are not allowed to have
any side effects. Service operations are distinguishable from actions
and functions by obligation to specify also an HTTPMethod annotation
attribute on the corresponding data service FunctionImport element.
Service operations can have side effects and they does not need to be
bound to any parameter.

4.4 OData and Infinispan motivation

Generally, NoSQL solutions lack overall portability as they are different
one from each other and almost each database of this kind provide an
unique interface for accessing stored data.

Infinispan is not an exception and its library mode usage is mainly
focused on Java clients. However, Infinispan did a step further to solve
this problem by introducing its server modules. A few implementations
of an Infinispan Hot Rod client were developed to support a few dif-
ferent programming languages and there is also an Infinispan REST
server which provides an HTTP access to key-value store capabilities.
The problem is that users are not able to effectively use Infinispan for
operating with JSON documents.

41

4. Open Data Protocol

OData offers solution for this situation as it provides an abstract
EDM for describing data model, and therefore, with new endpoint, all
OData clients will be able to understand Infinispan OData service and
communicate with caches, store JSON documents into the caches and
manipulate the data using OData standard. This will make Infinispan
more open to the OData ecosystem and hopefully will expand number
of potential users. Any client will be able to interact with the Infinispan
in uniform way.

Additionally, OData advanced query language perfectly fits Infin-
ispan needs, because it can be translated into Apache Lucene query
and indexed JSON documents can be queried to obtain requested re-
sults from an underlying cache. It opens querying functionality over
the JSON values and makes from the Infinispan a hybrid NoSQL store
implementation mixing the best from key-value approach and strong
capabilities of document store for complex querying.

42

5 Infinispan OData server design

Infinispan OData server should work as a standalone server opening up
the document store functionality to the vast amount of possible con-
sumers (clients). JSON was decided to be used as an universal format
for data contained in documents which will be stored into Infinispan
caches.

JSON is lightweight, already widely used format and requested by
Infinispan users. Additionally, the processing of this format is faster
than the processing of XML (as shown in a comparison case study of
JSON and XML data interchange formats [22]).

This chapter introduces Infinispan OData server requirements, sur-
vey of possible solutions and projects around OData which fits Java
programming language, and depicts functionality of the whole archi-
tecture using suitable UML diagrams.

5.1 Requirements

This section provides a list of technical requirements for Infinispan
OData server together with use case UML diagram.

General requirements:
– standalone HTTP server
– can be started as a Java process with a possibility to specify Xmx

and Xms parameters for Java heap size
– serves as a communication gate for accessing embedded Infinispan

document store

Interface requirements:
– follows OData V3 standard
– supports basic querying over JSON documents and its fields
– retains key-value store access approach also for JSON documents1

– supports OData filters and advanced OData query language2

1. When entry is requested by its key, exactly one JSON document is returned.
2. Using this approach, a collection of JSON documents can be returned in de-
pendence on a filter query.

43

5. Infinispan OData server design

– supports CRUD operations: create, read, update and delete for
JSON documents

Infinispan related requirements:
– can be started with specified path to Infinispan configuration file
– is able to create a cluster and utilize Infinispan data-grid capabil-

ities (replication, distribution)

See figure 5.1 for UML use case diagram.

Figure 5.1: Use case UML diagram for Infinispan OData server.

44

5. Infinispan OData server design

5.2 Solution investigation

Before the process of designing, there were investigated possible frame-
works, tools, examples and projects which may help with an Infinispan
OData server implementation. The following list offers the results of
that survey:

odata4j toolkit

odata4j – An OData toolkit for Java is a framework that implements
the OData standards for both client-side (consumers) and server-side
(producers) [19], which is licensed under the Apache License 2.03. The
Infinispan project primarily use Java and odata4j framework will help
with adaptation to OData standards. For more information see the
project home page at <http://code.google.com/p/odata4j/>.

OData Jersey server

Besides other features, odata4j framework also provides package
org.odata4j.jersey.producer.server where is located a helpful class
ODataJerseyServer.java. This class provides access to the OData
server which is an implementation of Jersey JAX-RS4 and Sun’s HTTP
server. OData Jersey server will be used as a server-side container for
encapsulation of the embedded Infinispan cache manager5, which will
live inside the server and will utilize its Java virtual machine heap space.

InMemoryProducer class

In one of the odata4j examples, InMemoryProducerExample class in-
stantiates InMemoryProducer for demonstration purposes where Java
entities can be registered inside of an OData producer. This particu-
lar implementation of the ODataProducer interface provides an ideal
baseline and template for the InfinispanProducer (more in subsec-

3. Apache License 2.0: <http://www.apache.org/licenses/LICENSE-2.0>.
4. Jersey: <https://jersey.java.net/>.
5. Cache manager is the Infinispan-specific entity which acts as a container for
more Infinispan caches.

45

http://code.google.com/p/odata4j/
http://www.apache.org/licenses/LICENSE-2.0
https://jersey.java.net/

5. Infinispan OData server design

tion 6.4.1) which will be another implementation of the ODataProducer

interface.
An EDM schema will be significantly different, but specific blocks of

a code can be reused and instead of various POJOs, Infinispan caches
will be registered as entity sets6. InfinispanProducer producer will
be similar to an application using embedded Infinispan libraries where
caches live inside of a server’s Java virtual machine process.

After all necessary operations, a producer class is usually registered
as a static instance to the OData Jersey server via
DefaultODataProducerProvider.

OData actions, functions and service operations

A question how to expose supported cache operations for data ma-
nipulation emerged. Methods defined in ODataProducer interface deter-
mine specific return types, such as EntityResponse, EntitiesResponse

or void return type in some cases. It would be better to have more space
for Infinispan-specific needs which can appear now or later and usage of
those methods is quite restrictive. On the other hand, callFunction()

interface method return type is a BaseResponse, which seems to be
a perfect interface to extend and implement for dealing with an alter-
native payload.

OData functions and actions mechanism is ideal for a mimicking
of an Infinispan org.infinispan.commons.api.BasicCache API and
possibly more extensions in the future.

Additionally, service operations may have a parameter defined and
also work with $filter and other system query options. It will be
possible to decide whether clients want to use key-value approach (key

parameter definition) or document store capabilities ($filter option
definition).

This alternative was investigated after some problems with the first
server prototype which had significantly long response time and return
type of a classic producer methods did not fit our needs for carrying
over a payload for clients. Subsection 6.5 dedicates more attention to
performance impact of this approach.

6. Entity Data Model (EDM) entity set.

46

5. Infinispan OData server design

Unfortunately, functions and actions are not supported in the latest
released version (0.7) of the odata4j framework, which is still quite
young. There exists an issue requesting that feature: <http://code.

google.com/p/odata4j/issues/detail?id=224 – Implement OData
actions and functions. A big ”thank you“ belongs to Samuel Vetsch who
implemented this feature under 0.8.0-SNAPSHOT version – a code is
located at: <https://bitbucket.org/svetsch/odata4j-actions>.
It will be forked and modified for needs of the Infinispan.

FieldBridge from Hibernate search

As required, Infinispan OData server will support filtering of stored
JSON documents, but Infinispan does not provide any mechanism for
handling queries over JSON format. An annotation Indexed used for
a POJO class, as was discussed in section 3.5, does not fit this use
case because JSON documents can not be easily translated into the
general POJO classes during an application’s run-time. Users would
like to store various types, or instances of various classes described by
JSON schema. However, these classes are not known before.

This task can be resolved by using a FieldBridge mechanism from
Hibernate search7 which acts as a bridge between a Java property and
a Lucene Document8 [23].

Needed Java properties can be obtained using Jackson9 libraries
that are able to extract these properties from JSON string and prepare
them for an addition into the Lucene Document. With the FieldBridge,
it is possible to decide which fields and properties will be added.

Infinispan itself will take care about indices in dependence on an
indexing configuration.

The question, how to index fields from JSON documents, is more
elaborated in chapter Implementation, subsection 6.4.2, together with
code listings for a better demonstration of an implemented solution.

7. Hibernate search: <http://hibernate.org/search/>.
8. Lucene Document class: <http://lucene.apache.org/core/2_9_4/api/

all/org/apache/lucene/document/Document.html>.
9. Jackson, JSON processor: <http://jackson.codehaus.org/>.

47

http://code.google.com/p/odata4j/issues/detail?id=224
http://code.google.com/p/odata4j/issues/detail?id=224
https://bitbucket.org/svetsch/odata4j-actions
http://hibernate.org/search/
http://lucene.apache.org/core/2_9_4/api/all/org/apache/lucene/document/Document.html
http://lucene.apache.org/core/2_9_4/api/all/org/apache/lucene/document/Document.html
http://jackson.codehaus.org/

5. Infinispan OData server design

Clustering issues

An embedded Infinispan cache manager instance will be run inside
of a server and Infinispan-specific clustering mechanism should work
without any problems, as it uses JGroups protocol for inter-node com-
munication. Infinispan will take care about data distribution out-of-
the-box.

5.3 EDM schema structure

Infinispan communication interface needs to be mapped to an interface
of provided OData service, which brings a question how to apply an
OData EDM schema structure here. EDM schema will expose a mini-
mal subset of information needed by consumers to understand server’s
supported services.

OData Infinispan server will provide an access to a hybrid key-
value and document store without any rigidly defined schema, where
documents can be different one from each other. Therefore, there is no
room for any closed EDM schema in the design. The schema will be as
simple as possible to preserve overall simplicity of the key-value store
approach together with an addition of querying possibility over JSON
values.

Another idea how to deal with this problem was also considered; to
change the EDM schema during the process of storing entries and try to
generate new adjusted $metadata document in dependence on stored
JSON objects. However, this solution would be resource exhausting,
and thus, not suitable.

Because the fact that structure of JSON documents is not known
before, there will be no description for Properties in EDM schema.
This step will ensure, that consumers can freely store any JSON docu-
ment object in any cache.

The most important elements are EntitySet and FunctionImport.
One EntitySet for each Infinispan cache, with the same name and
FunctionImport for every CRUD10 operation and other possibly ex-
posed operations.

10. CRUD: create, read, update, and delete.

48

5. Infinispan OData server design

A running Infinispan instance can be considered as a database.
Then, an EntityContainer element represents DefaultCacheManager,
EntitySet represents an element for mapping a started Infinispan cache,
and stored JSON document is represented as an Entity.

Generally, the structure of storing the data is a matter of a database
design. An Infinispan cache can be treated as a particular table and
then, when it is needed to store different objects (for instance Persons
and Cars), one named cache will be used only for storing Person JSON
documents and the other one only for Car JSON documents.

This approach will automatically help to distinguish between dif-
ferent types of objects. Both Persons and Cars can have identical at-
tribute, for instance age, and if cars and persons are mixed together
in one cache, a query ”return all where age > 20“ would return both
Cars and Persons. However, if those objects are stored separately in
different caches, client will firstly choose what cache to query, secondly,
will build a query, and lastly, will obtain only the results of a specified
type.

5.4 Basic component communication logic

After possible solution investigation is easier to imagine architecture of
essential components and how they are connected together. Figure 5.2
depicts communication of basic components during put operation and
figure 5.3 during get operation.

49

5
.

In
f
in

is
p
a

n
O

D
a
t
a

s
e
r
v

e
r

d
e
s
ig

n

Figure 5.2: Communication of basic components during put operation.

50

5
.

In
f
in

is
p
a

n
O

D
a
t
a

s
e
r
v

e
r

d
e
s
ig

n

Figure 5.3: Communication of basic components during get operation.

51

6 Implementation

The thesis turns around three projects: Infinispan OData server, In-
finispan cakery and odata4j-actions. Chapter Implementation describes
the most important development aspects of the Infinispan OData server
project and modifications in odata4j libraries. The Infinispan cakery
project is more elaborated in next chapter (7.2) because it is bound up
with a performance matter.

6.1 Source code and version control

The following list provides references to the crucial project code loca-
tions and repositories.

Infinispan OData server (Git):

<https://github.com/tsykora/infinispan-odata-server/>

Infinispan cakery project (Git):

<https://github.com/tsykora/infinispan-cakery/>

Modified odata4j, version 0.8.0-SNAPSHOT (Mercurial):

<https://bitbucket.org/sykynx/odata4j-actions/>

6.2 Tools

It is hard to imagine the process of writing a code without an integrated
development environment. IntelliJ IDEA serves perfectly for that pur-
pose and also provides very useful embedded debugger, which is fre-
quently used for faster identification of bugs. Another big advantage is
that a plugin for JProfiler1 can be installed into the IDEA, and thus,
it is possible to run a server instance during development, try out nec-
essary performance scenario, monitor methods and memory usage, and
identify performance bottlenecks soon.

1. JProfiler: <http://www.ej-technologies.com/company/profile.html>.

52

https://github.com/tsykora/infinispan-odata-server/
https://github.com/tsykora/infinispan-cakery/
https://bitbucket.org/sykynx/odata4j-actions/
http://www.ej-technologies.com/company/profile.html

6. Implementation

Projects Infinispan OData server and Infinispan cakery are devel-
oped using JBossAS community code style. For the process of building
and dependency management is used Apache Maven [24].

6.3 Building and running the server

README.md file located in the parent Infinispan OData server project
directory provides easy-to-follow guide how to compile and start the
server together with information about all necessary dependencies.

The second part of the README.md file contains a number of usage
examples which demonstrates how to communicate with a server using
curl2 tool.

6.4 Implementation highlights

It is not an intention of Implementation highlights section to provide
thorough description of implemented classes. The principal purpose is
to rather introduce a model of the most important building blocks and
present overall architecture, so further implementation details can be
found easily in a source code itself.

6.4.1 (Infinispan) InMemoryProducer

A class InfinispanProducer can be considered as a heart of the whole
Infinispan OData server. This class implements ODataProducer in-
terface and all important code logic is done here. As mentioned ear-
lier (5.2), this lightweight producer is registered via
DefaultODataProducerProvider as a static instance to the OData
Jersey server3.

InfinispanProducer is based on in-memory producer example from
odata4j, exactly InMemoryProducer class written mainly by John Spur-
lock, Tony Rozga and others. During the process of development it was
decided that provided entity data model support is too heavy and com-
plex for Infinispan OData server needs, and thus, significant part of

2. curl tool: <http://curl.haxx.se/>.
3. Jersey server of version 1.8 is used in modified odata4j 0.8.0-SNAPSHOT.

53

http://curl.haxx.se/

6. Implementation

a code is not used. However, basic constructs for registering entity sets
are reused for mapping of Infinispan caches.

Hosting Infinispan’s default cache manager

During a construction of an InfinispanProducer instance is started
embedded Infinispan DefaultCacheManager with a specific XML Infin-
ispan configuration file. A path where that configuration file is located
can be passed during a server start-up process.

DefaultCacheManager also starts all specified underlying Infinispan
caches to be ready for an interaction.

EDM and Infinispan caches

Started Infinispan caches are registered as entity sets during a cre-
ation of new EDM schema. Then, metadata document can be accessed
by clients to see list of configured caches.

Service operations – function imports

Together with an information about entity sets, a service metadata

document also exposes a set of service operations that are used for inter-
acting with the service. Reasons for this solution are already explained
in design chapter (5.2).

More specifically, OData FunctionImport elements define open op-
erations which can be used by OData consumers. These imports are
specified during the process of generating of a new EDM schema (method
generateEdm(...) and consequently addFunctions(...) method).

Every Infinispan cache (an EntitySet in EDM schema) has assigned
four service operations: put, get, replace, and remove in order to support
desired CRUD cache interface.

6.4.2 CachedValue, JsonValueWrapper and FieldBridge

JSON data coming from clients are not decomposed during the process
of storing into an Infinispan cache. However, there is a necessity for
some mechanism which allows to query those JSON documents accord-
ing to their fields.

54

6. Implementation

Infinispan AdvancedCache provides support for putting any ob-
ject as a key, and the same applies for a value. Instances of a class
CachedValue are stored as the values and keys are simply Strings,
similar to Infinispan REST server module.

CachedValue object encapsulates a JsonValueWrapper object that
wraps JSON string coming from a client side. This whole JSON doc-
ument is stored into an Infinispan cache (into a document store) and
indexed during the process of storing. Of course, Infinispan cache has
to be properly configured with <indexing enabled=

”
true“ ...>.

An usage of @FieldBridge annotation in CachedValue class is de-
picted in listing 6.1. Hibernate search determines what class to use for
extended indexing according to annotation:
@FieldBridge(impl = JsonValueWrapperFieldBridge.class).

Listing 6.1: CachedValue class encapsulating JsonValueWrapper
@Indexed

public class CachedValue implements Serializable {

@Field(analyze = Analyze.YES, store = Store.NO, norms =

Norms.NO, termVector = TermVector.NO)

@FieldBridge(impl = JsonValueWrapperFieldBridge.class)

JsonValueWrapper json;

public CachedValue(String json) {

this.json = new JsonValueWrapper(json);

} ...

}

JsonValueWrapperFieldBridge performs demanding work of pars-
ing stored JSON document (”field by field“ using Jackson libraries)
and adding fields together with their values into Lucene Document (see
listing 6.2). Infinispan configuration for indexing determines the place
where Lucene Document is physically stored.

Above-mentioned logic is connected directly to the process of storing
the JSON documents into the Infinispan caches. If server is started with
an Infinispan configuration specifying disabled indexing, @FieldBridge

and the whole process of indexing is ignored.

55

6. Implementation

Listing 6.2: Main part of a JsonValueWrapperFieldBridge
@Override

public void set(String name, Object value, Document document,

LuceneOptions luceneOptions) {

...

// ObjectMapper -- org.codehause.jackon.map package

ObjectMapper mapper = new ObjectMapper();

Map<String, Object> entryAsMap =

(Map<String, Object>) mapper.readValue(json, Object.class);

for (String field : entryAsMap.keySet()) {

// extracted field from JSON document is added into

Lucene Document

luceneOptions.addFieldToDocument(field,

entryAsMap.get(field).toString(), document);

} ...

}

6.4.3 MapQueryExpressionVisitor

OData defines its own advanced query language which needs to be
translated into an Apache Lucene query in order to be used by Infinis-
pan’s SearchManager for querying indexed objects in the caches. This
task is solved by MapQueryExpressionVisitor class that uses Visitor
design pattern [25] and implements ExpressionVisitor interface from
odata4j framework.

OData queries from requested URI are parsed and processed by
odata4j framework into a CommonExpression implementations. Then,
InfinispanProducer will obtain these instances as QueryInfo.filter

objects during an OData function (service operation) call (see list-
ing 6.3).

In InfinispanProducer, QueryInfo.filter object is passed to
MapQueryExpressionVisitor’s visit method and the class parses pro-
vided OData query and creates Lucene query accordingly.

56

6. Implementation

Listing 6.3: Processed QueryInfo object passed to the MapQueryEx-
pressionVisitor instance

@Override

public BaseResponse callFunction(ODataContext context,

EdmFunctionImport function, Map<String,

OFunctionParameter> params, QueryInfo queryInfo) {

...

mapQueryExpressionVisitor.visit(queryInfo.filter);

...

}

Listing 6.4 provides a closer look to the process of mapping common
OData query to Lucene query, which will be later used to query Infinis-
pan cache. AndExpression usually has two sides; the left side and the
right side. Each of them is formed by next Expression and visit()

method is recursively called to process the sub-expression to gradually
build Apache Lucene query.

Listing 6.4: Translation of OData ”AND“ expression to Apache Lucene
query

@Override

public void visit(AndExpression expr) {

BooleanQuery booleanQuery = new BooleanQuery();

visit(expr.getLHS()); // left side, for instance "eq" query

booleanQuery.add(this.tmpQuery, BooleanClause.Occur.MUST);

visit(expr.getRHS()); // right side

booleanQuery.add(this.tmpQuery, BooleanClause.Occur.MUST);

// tmpQuery is returned for Infinispan SearchManager to

query the cache for the results

this.tmpQuery = booleanQuery;

}

57

6. Implementation

Full list of supported system query options and filter operators is
provided in appendix B.

6.5 Performance improvements in odata4j

During the process of development, a performance of Infinispan OData
server is monitored by JProfiler tool with support of Infinispan cakery4.

The first server prototype revealed that response time reaches a value
of 40 milliseconds with using a common Apache HTTP client to send
and get requests (see listing 6.5). Infinispan as a caching solution can
not afford such a long response time and a workaround for this problem
had to be found.

Listing 6.5: Common handling of a GET request with HttpClient
HttpClient httpClient = new DefaultHttpClient();

String get = serviceUri + "" + cacheName + "_get?$filter=" +

query;

HttpGet httpGet = new HttpGet(get);

httpGet.setHeader("Accept", "application/json;

charset=UTF-8");

HttpResponse httpGetResponse = httpClient.execute(httpGet);

EntityUtils.consume(httpGetResponse.getEntity());

Method EntityUtils.consume() (org.apache.http.util pack-
age) consumes obtained HTTP response and closes a content stream.
All underlying system resources associated with the stream are released.
The problem is that this operation takes more than 40 milliseconds us-
ing prepared odata4j specific SimpleResponse (or any other).

FunctionResource class (org.odata4j.producer.resources) pro-
cesses responses from producer’s callFunction() method. Usually, for
instance in case of SimpleResponse, this class takes care also about
serialization of the payload into standardized JSON response. The pro-
cess of standardization is driven by OData format writers where was
found a bottleneck.

4. Infinispan cakery is a tool developed, in scope of this thesis, for benchmarking
of all Infinispan servers; and is introduced in section 7.2.

58

6. Implementation

Firstly, the process of parsing a producer’s response and following
serialization took time and secondly, most importantly, these writers
do not call flush() method, which causes problems. Infinispan-specific
modifications in odata4j framework (version 0.8.0-SNAPSHOT) solves
this problem.

It was needed to develop a new implementation of BaseResponse

interface, InfinispanResponse in this case, to make the whole process
more flexible and to allow to pass a payload from InfinipanProducer

directly to the FunctionResource handling class. Since the whole JSON
objects are stored inside of underlying Infinispan caches, there is no
need for additional serialization of response there and the whole object
can be returned as a response.

Then, it is possible to explicitly set up a StreamingOutput, write
a JSON payload into it, flush it and close it, as nothing else is ex-
pected to be sent, and this response is immediately returned to the
client. Apache HTTP client is able to consume this kind of response in
2-3 milliseconds in average; in dependence on a server load and test-
ing environment. Listing 6.6 depicts the main part of an implemented
workaround.

6.6 Mapping of cache operations

This section provides information about communication with under-
lying Infinispan key-value and document store from common OData
consumer’s point of view. Table 6.1 summarizes how CRUD operations
of an Infinispan cache are mapped to the exposed OData service oper-
ations.

Infinispan cache
operation

OData service
operation appendix

HTTP
method

put _put POST
get _get GET
replace _replace PUT
remove _remove DELETE

Table 6.1: Mapping of an Infinispan cache CRUD API to the OData
service operations with specified HTTP methods.

59

6. Implementation

Listing 6.6: Flushed and closed StreamingOutput on the server side
// response coming from InfinispanProducer

final InfinispanResponse ir = (InfinispanResponse) response;

StreamingOutput stream = new StreamingOutput() {

@Override

public void write(OutputStream os) throws IOException,

WebApplicationException {

Writer writer = new BufferedWriter(new

OutputStreamWriter(os));

// JSON document obtained from a cache

writer.write(ir.getValue());

writer.flush();

writer.close();

}

};

return Response.ok(stream, "application/json;charset=UTF-8")

.status(ir.getStatus()).build();

Unfortunately, it is not possible to define two service operations
with the same name and different only in assigned HTTP method.
That is the main reason for using appendices for every service operation
(FunctionImport).

For instance, service operations for default cache are called:
default_put, default_get, default_remove, and default_replace.

It is also important to mention here, that a stored JSON document
can be accessed by two approaches: key-value store approach (using
service operations with a parameter key) or document store approach
(using service operations with $filter specified).

The process of accessing an underlying Infinispan cache for the data
is driven by internal logic of InfinispanProducer class according to
input parameters for get requests.

Practical usage examples can be found in README.md file located in
the main Infinispan OData serve project directory.

60

6. Implementation

6.7 Functional test suite

JUnit5 functional test suite is also a part of the Infinispan OData server
project. Apart from tests for basic endpoint functionality (CRUD op-
erations), tests are also ensuring that OData standards are followed.

Especially that: HTTP response codes are properly returned to-
gether with properly set HTTP headers where needed; OData queries
are properly mapped to Apache Lucene queries and the server is re-
turning the right results according to system query options and vari-
ous operators; an underlying Infinispan is working and communicating
properly; etc.

The test suite is located in proj_home/src/test/java project folder.
Functionality of the Infinispan OData server is tested via Apache

HTTP client. Generally, these tests are from client point of view and
ensures that clients can obtain requested JSON documents according
to their queries and that OData service interface is working properly.

5. JUnit: <http://junit.org/>.

61

http://junit.org/

7 Performance testing

Performance testing chapter firstly introduces tools, which are used
during the process of benchmarking, secondly, shortly describes au-
tomation and testing environment, then, elaborates performance test-
ing plan and lastly, provides review of measured performance statistics
across different testing scenarios.

7.1 PerfCake tool

PerfCake is a lightweight testing framework developed by Pavel Macík
and Martin Večeřa from Red Hat’s JBoss Middleware division [26]. This
tool has been chosen as a framework for benchmarking of Infinispan
servers because of a number of reasons.

PerfCake is very easy-to-use and can be integrated into a project
simply via maven dependency management. Then, it is possible to cre-
ate Java application which acts as a load generator and can be build
and run by Maven. This fact has positive impact on testing automation
where scripts takes care about the process of building and running load
generating application.

The run of PerfCake is driven by a scenario XML file where are
defined generators, senders, reporters and other configuration ele-
ments. A full list of elements is described in project documentation [26].

Already prepared senders1 can be used for testing. In cases where
provided senders are not suitable, it is possible to create own sender;
using Java programming language. Additionally, PerfCake fits thesis’
needs as it is licensed under Apache License 2.0. Finally, a possibility
of close contact with developers is also an advantage.

7.2 Infinispan cakery

Infinispan cakery is a project for stress testing and benchmarking In-
finispan servers, run by Maven and using the latest released PerfCake
libraries (version 1.0). Additionally, after small modifications, it can

1. PerfCake sender is an element which is responsible for sending messages to the
tested application.

62

7. Performance testing

be simply used for measuring a performance of Infinispan embedded
code scenarios as well (not exclusively server modules). Source code is
publicly available at GitHub2 and can be reused and modified for any
further performance testing of the Infinispan.

This project was found in order to be frequently used together with
JProfiler during the time of Infinispan OData server development in
order to reveal performance bottlenecks and to verify effectiveness of
implemented optimizations. And most importantly, Infinispan cakery
was used for final benchmarking and stress testing of Infinispan servers,
as well as new Infinispan OData server.

PerfCake default (HTTP) Senders are suitable only for REST and
OData server module but for the complete process of benchmarking it
is necessary to use Infinispan-specific Hot Rod and Memcached client3

as well.
Therefore, Infinispan cakery extends PerfCake senders by a new

set of senders for Hot Rod, Memcached, REST and OData server to
obtain better control over the code and test logic (generation of JSON
documents, reporting of Infinispan-specific problems). These senders
extend AbstractSender class and a block of code which is desired to
be measured needs to be located inside doSend() method.

Then, a particular sender is specified in scenario XML file using:
<sender class=”IspnCakeryHotRodSender”> together with other nec-
essary elements: generator and reporters.

A list of reporters used by Infinispan cakery can be found bellow:

• WarmUpReporter – is used for warming a tested system up, sta-
bilization of the process of garbage collection and filtering out
initial non-stable metrics statistics.

• ResponseTimeReporter – measures and reports average response
time value during the whole run4.

2. Infinispan cakery: <https://github.com/tsykora/infinispan-cakery>.
3. Memcached client: <https://github.com/infinispan/infinispan/blob/

master/server/integration/testsuite/src/test/java/org/infinispan/

server/test/client/memcached/MemcachedClient.java>.
4. Hint: If it is desired to see a response time of every single response, this config-
uration can be used: <period type=”iteration” value=”1”/>.

63

https://github.com/tsykora/infinispan-cakery
https://github.com/infinispan/infinispan/blob/master/server/integration/testsuite/src/test/java/org/infinispan/server/test/client/memcached/MemcachedClient.java
https://github.com/infinispan/infinispan/blob/master/server/integration/testsuite/src/test/java/org/infinispan/server/test/client/memcached/MemcachedClient.java
https://github.com/infinispan/infinispan/blob/master/server/integration/testsuite/src/test/java/org/infinispan/server/test/client/memcached/MemcachedClient.java

7. Performance testing

• WindowResponseTimeReporter – functionality of this reporter is
the same as functionality of common ResponseTimeReporter,
but average response time is measured only for specified number
(a sliding window) of latest responses5.

• AverageThroughputReporter – measures and reports average
number of operations per second that tested system is able to
handle. Average value is calculated from the whole run results.

• MemoryUsageReporter – PerfCake also provides an agent for
monitoring memory usage, which can be run on target system
in order to gather memory usage statistics.

All reporters are set up to report metrics using a console and also
store them into a .csv file; with a period of one second.

For instance, usual ResponseTimeReporter configuration inside of
a scenario XML file:

<reporter class=
”
ResponseTimeReporter“>

<destination class=
”
ConsoleDestination“>

<period type=
”
time“ value=

”
1000“/>

</destination>

<destination class=
”
CSVDestination“>

<period type=
”
time“ value=

”
1000“/>

<property name=
”
path“ value=

”
response-time.csv“/>

</destination>

</reporter>

How to run Infinispan cakery and other technical details are de-
scribed in README.md file located in the main project folder.

7.3 Automation and testing environment

Automated continuous integration (CI) Jenkins6 system is used for
making testing easier and repeatable. Jenkins jobs are set up by us-

5. Infinispan cakery uses 500 as a value of measured window by WindowRespon-
seTimeReporter.
6. Jenkins: <http://jenkins-ci.org/>.

64

http://jenkins-ci.org/

7. Performance testing

ing automated scripts with the possibility of gathering and archiving
measured performance results.

There is also configured a killer job which cleans machines in case
of any failure in CI. It looks for identifiers of processes started by per-
formance benchmarking job and kills those processes, so machines are
clean and ready for other tests in laboratory.

Tests are run in a JBoss Data Grid Quality Engineering team per-
formance laboratory, where is located 8 machines – 4 machines are used
for load generation with running an Infinispan cakery instance and 4
machines for a creation of an Infinispan 4-node cluster.

A schema of the process of load generation is depicted in figure 7.1.
Instance of running Infinispan cakery acts as a load generator, uti-
lizes performance of a machine and loads one of four servers connected
into Infinispan 4-node cluster. Performance tests against Infinispan Hot
Rod, Memcached and REST servers are run under the same scenario.

Figure 7.1: Utilization of 8 machines in Red Hat’s JDG QE performance
laboratory: Running Infinispan cakery instance acts as a load genera-
tor. The same schema is used for Infinispan Hot Rod, Memcached and
REST server.

Standalone stations are used instead of any virtual instances, be-
cause data-grid is usually run this way in production environment.
Eight machines in total, each standalone machine with this hardware
and software configuration:

65

7. Performance testing

OS name: linux, version: 2.6.32-431.1.2.el6.x86_64

OS arch: amd64, family: unix

Java: OpenJDK 1.7.0.45.x86_64

CPU: 8 cores, 2000.335 MHz, AMD Opteron 6128

CPU L2 cache size: 512 KB

RAM: 64 GB

Network: 1000 Mbps full duplex

7.3.1 Libraries and versions

Table 7.1 provides a list of components which are connected to following
performance testing results.

Tool / Library Version
Infinispan OData server 1.0-SNAPSHOT
Infinispan cakery 1.0-SNAPSHOT
Infinispan core 6.0.0.Final
Infinispan query 6.0.0.Final
Infinispan Hot Rod client 6.0.0.Final
Infinispan servers 6.0.0.Final
Apache HTTP client 4.3.1
PerfCake 1.0
odata4j 0.8.0-SNAPSHOT

Table 7.1: Versions of components connected to performance testing of
Infinispan servers.

7.4 Performance testing plan

This section firstly provides information about a testing plan that is
used for performance benchmarking of Infinispan server modules and
Infinispan OData server. Secondly, results of all four servers basic com-
parison are presented, and then, followed by results of advanced com-

66

7. Performance testing

parison of Infinispan REST and Infinispan OData servers. Lastly, two
different approaches for accessing stored JSON documents in Infinis-
pan OData server are compared (key-value and query approach) from
performance point of view.

7.4.1 General testing plan division

It is important to choose an approach where are not compared apples
and oranges, and therefore, the process of performance testing is divided
into three main categories:

• Key-value access: all servers, basic – This scenario compares
all four Infinispan servers to find out differences between three
various client approaches. These access approaches are distinct
one from each other. Clients communicate with Infinispan Hot
Rod server using a Hot Rod client; with Infinispan Memcached
server using a Memcached client; and for a communication with
both Infinispan REST and OData server is used common Apache
HTTP client. Scenario mainly aims at speed of serves.

• Key-value access: OData vs REST server, advanced – In-
finispan cakery uses Infinispan Hot Rod and Memcached client
for communication with these two respective server modules,
however, for REST and OData, it uses common HTTP client.
Therefore, this scenario applies only to benchmarking REST
server against its true competitor – OData server. Infinispan
REST server is implemented like one lightweight class written
in Scala language. The principal intention of this scenario is to
find out how both REST and OData server will perform during
increasing load.

• OData server: key-value access vs OData query access –
Infinispan OData server provides two approaches for accessing
stored JSON documents: a key-value approach and OData query
language approach. This scenario aims at revealing performance
differences between direct key-value access and more complex
OData query access.

67

7. Performance testing

7.4.2 Consistent benchmark settings

Consistent settings which are the same for all runs and scenarios and
also for all server modules are listed below. All Infinispan servers are
started with these settings during performance testing:

• JVM heap size – Servers are started with Xms=4096m and
Xmx=4096m options. Options are intentionally set to the same val-
ues as that is recommended by JBoss Data Grid QE team (JDG
QE) for smooth running of an Infinispan cluster. These settings
help to avoid problems in cases when actual size of a heap needs
to be re-set during heavy load. It is also recommended by JDG
QE that size of stored entries should not exceed 50 % of specified
heap size.

• Infinispan related settings – A cluster is created by four
servers where Infinispan caches are run in distribution mode
with numOwners=2 settings, which causes that each stored en-
try is replicated to one other Infinispan node. TCP is used as
a transport protocol as it fits better small clusters (under 100
nodes in size) running in distribution mode (see section 1.4.2
in [12]). Property -Djava.net.preferIPv4Stack=true is set up
together with -Djgroups.tcp.addres=$inet_addr for smooth
node discovery.

• LargePages – For better performance of high throughput and
memory-intensive applications is recommended to enable Java
support for large memory pages [27]. This is achieved by enabling
JVM option: –XX:+UseLargePages.

• No delay between requests – PerfCake load threads send re-
quests at maximum speed. Red Hat’s JBoss Division QE teams
are usually using 100 milliseconds delay between requests to vir-
tually simulate real load of application usage. This value has
been chosen as a trade-off between real request delay and num-
ber of real clients communicating with an application. In the
benchmarking of Infinispan server modules, such a setting has
no real effect, because the intention is not try to simulate real
load, but compare server modules with each other under heavy
load.

68

7. Performance testing

• Filling of caches, entry size – At the beginning of every run,
30000 entries is stored into the cache. Infinispan cakery generates
entries approximately of 20,3 kB in value size. Then, server is
loaded with huge number of get requests.

Special scenarios with put-get ratio (1:1, and 1:9 for heavy-read
systems) were also considered but these are out of the thesis’
scope, because the intention, again, is not try to simulate real
system load but rather benchmark server modules.

However, when this kind of testing will be requested in the fu-
ture, it will not be a problem to mimic special put-get ratios by
extending Infinispan cakery senders and scenarios.

7.4.3 Smoke testing

A quick smoke test is run first to see whether testing environment is
set up properly, all logs and metrics are flawlessly gathered, memory
usage is monitored, and Infinispan cluster is successfully formed.

Benchmark automation in Jenkins tremendously helps with running
performance tests with different settings for each run. That is enough
to change a few test properties (duration of a run, number of load
threads, target Infinispan server, etc.) in a configuration of Jenkins job
and simply rerun the test. To make two changes in a configuration is
a faster approach than running a full long test which could fail later.

7.5 Comparison of all four Infinispan servers

OData server is started with settings where indexing is disabled in order
to have the same setup as other three Infinispan server modules. Key-
value access approach and consistent settings described in testing plan
are used for all servers.

Performance test parameters:

number of load threads: 5 (5 per node, 20 per cluster)

number of entries: 30000

warm-up period: 60 seconds

main load period: 10 minutes

request delay: 0 milliseconds (full load)

69

7. Performance testing

Table 7.2 depicts performance statistics of all four Infinispan servers
reached during a run with above-mentioned scenario parameters. Values
apply for the whole Infinispan 4-node cluster.

Server
type

Average
response
time

Average
throughput

Max
memory
usage

Hot Rod 0.07 ms 285714 ops/s 1.984 GB
Memcached 1.70 ms 11765 ops/s 2.338 GB
REST 3.42 ms 5848 ops/s 2.057 GB
OData 2.59 ms 7722 ops/s 2.817 GB

Table 7.2: Performance results of all four Infinispan servers.

Infinispan Hot Rod server which uses Infinispan-specific Hot Rod bi-
nary protocol clearly provides the best performance capabilities. Mem-
cached, OData a REST protocol response times are higher; all three
belong into a category of text protocols. Chapter 8 provides more room
for a discussion of results.

The main purpose of this basic scenario is to present the fact that
performance of HTTP-based access differs from Hot Rod and Mem-
cached. The next scenario is aimed at a comparison of two true com-
petitors – REST and OData.

As will be elaborated in next section, Infinispan REST server ex-
ceeds average server response time threshold (100 ms) under the load
of 400 load threads. For illustration, table C.1 and chart in figure C.1
shows statistics of Infinispan Hot Rod and REST servers exposed to
the same load. Fine-tuned Java binary Hot Rod client provides not
only much better operational throughput but also memory utilization.

7.6 OData and REST server comparison

In this scenario, OData server is also started with disabled indexing as
it does not make sense to compare different Infinispan cache settings
because Infinispan REST server does not support Infinispan queries.
Therefore, data are accessed using key-value approach in both cases.

70

7. Performance testing

Infinispan cakery uses Apache HTTP client version 4.3.1 for con-
necting to Infinispan REST and OData server.

The testing strategy is as follows – settings for number of entries and
test duration remains the same, but number of load threads, loading
the whole cluster, is increasing. Thus, servers are put under more and
more load in every successive run. The threshold for average response
time is set to 100 milliseconds.

Performance test parameters:

number of load threads: varies (20, 40, 60,...per cluster)

number of entries: 30000

warm-up period: 60 seconds

main load period: 5 minutes

request delay: 0 milliseconds (full load)

Infinispan OData server performance results are depicted in ta-
ble 7.3. Every table row represents a particular run of Jenkins perfor-
mance testing job with specified number of loading threads and other
parameters. Gathered metrics: average server response time, average
throughput, and maximal used memory during a test run.

Load
threads

Average
response
time

Average
throughput

Max
memory
usage

20 2.59 ms 7722 ops/s 2.817 GB
40 36.64 ms 1091 ops/s 2.857 GB
60 63.47 ms 945 ops/s 2.958 GB
80 141.87 ms 564 ops/s 3.020 GB

Table 7.3: Infinispan OData server performance statistics.

Performance results of Infinispan REST server are summarized in
table 7.4.

71

7. Performance testing

Load
threads

Average
response
time

Average
throughput

Max
memory
usage

20 3.42 ms 5848 ops/s 2.057 GB
40 3.47 ms 11527 ops/s 2.052 GB
60 3.69 ms 16260 ops/s 2.071 GB
80 4.14 ms 19324 ops/s 2.088 GB
120 6.32 ms 18987 ops/s 2.507 GB
200 25.60 ms 7813 ops/s 3.770 GB
400 101.90 ms 3925 ops/s 3.770 GB

Table 7.4: Infinispan REST server performance statistics.

Infinispan REST server clearly outperforms Infinispan OData server
during exposition to growing number of load threads increasing in every
consecutive run. During the run with 80 load threads, a cluster of four
Infinispan OData servers exceeded set threshold of 100 milliseconds for
average server response time.

Infinispan REST server is implemented as one Scala class and fine-
tuned for key-value access. This approach takes advantage over OData
Jersey server (version 1.8) used in Infinispan OData server’s core. OData
standardization takes its price because there is used a pile of classes for
checking and parsing OData queries possibly coming within client re-
quests.

However, Infinispan OData server provides slightly better response
time in case of smaller load (20 load threads for the cluster), and addi-
tionally, is ready to understand internal structure of JSON documents
and supports OData query language.

Charts for average server response time and average server through-
put are depicted in figure 7.2 and figure 7.3.

72

7. Performance testing

Figure 7.2: Infinispan OData and REST server average response time
chart.

Figure 7.3: Infinispan OData and REST server average operational
throughput chart.

73

7. Performance testing

7.7 OData server: Key-value and query access
comparison

Finally, this section provides basic performance comparison of two pos-
sible access approaches implemented in the Infinispan OData server; to
find out difference between raw key-value access to the data and access
using OData query language.

Example of key-value access7:
host:8887/OIE.svc/odataCache_get?key=’person1’

– selects one cache entry in dependence on a key.

OData query access:
host:8887/OIE.svc/odataCache_get?$filter=id eq ’person1’

– selects one Person document according to internal JSON field id.

Before the test run, Infinispan set up for queries needs to be tuned
up to be able to provide even better performance and be compara-
ble with simple key-value access approach. Infinispan configuration file
indexing-perf.xml is used because default settings are not optimal.
This is a configuration suggested and used by Sanne Grinovero and
Adrian Nistor for performance testing of embedded queries [28]. Slightly
modified indexing-perf.xml file is included in Infinispan OData server.

Infinispan OData server is started for both scenarios (key-value and
OData query access approach) with indexing-perf.xml configuration
and following JVM options and system properties mentioned among
performance test parameters:

number of load threads: 20 (per cluster)

number of entries: 2000

warm-up period: 60 seconds

main load period: 5 minutes

request delay: 0 milliseconds (full load)

7. OIE: ODataInfinispanEndpoint

74

7. Performance testing

entry size small JSON, 5 indexed fields

Infinispan configuration file: indexing-perf.xml

Additional options

(recommended for better indexing performance):

-XX:+UseParallelGC -XX:MaxPermSize=128m

-Dorg.jboss.resolver.warning=true

-Dsun.rmi.dgc.client.gcInterval=3600000

-Dsun.rmi.dgc.server.gcInterval=3600000

-Dcom.arjuna.ats.arjuna.coordinator

.CoordinatorEnvironmentBean.asyncPrepare=true

-Djava.awt.headless=true

-Dinfinispan.unsafe.allow_jdk8_chm=true

Logging disabled, jmx-statistics disabled

Access type Average
response
time

Average
throughput

Max
memory
usage

Key-value 3.14 ms 5675 ops/s 1.410 GB
OData query 24.89 ms 815 ops/s 1.749 GB

Table 7.5: Performance of key-value access approach and OData query
access approach used in Infinispan OData server.

Gathered statistics are summarized in table 7.5 which depicts that
basic key-value approach outperforms access for data using OData
query language.

Internal logic of InfinispanProducer class chooses access approach
in dependence on incoming parameters from OData service function
call.

In the case of key-value approach, Infinispan cache is accessed di-
rectly according to key parameter. More precisely, AdvancedCache in-

75

7. Performance testing

stance is asked to return a value according to the key, and thus, In-
finispan SearchManager is not consulted for query results.

There is a number of factors which can potentially have impact on
performance in case of OData query access8: complex OData $filter

query needs to be parsed from URI; queryInfo.filer instance is
created and passed to InfinispanProducer; translation from OData
query language to Apache Lucene query takes place; SearchManager

is consulted for obtaining results from a cache in dependence on built
Apache Lucene query.

Further investigation of above-mentioned factors is out of scope of
this thesis and we suggest to provide thorough analysis as a future
work.

8. In this scenario: using get operation and service filter option to filter exactly
one value.

76

8 Summary of results and discussion

This chapter provides summary of measured performance results during
the Infinispan servers benchmarking process. Three scenarios were used
for various suitable types of servers comparison.

The first scenario focused on basic differences in speed of all four In-
finispan servers – Hot Rod, Memcached, REST and OData server. The
principal purpose of the second scenario was to compare REST and
a new OData server under stress conditions where a number of load
threads is increased during every consecutive test run. The third sce-
nario compared two possible access approaches which Infinispan OData
server provides as a hybrid NoSQL store – key-value and OData query
based approach.

To start results summary, Memcached Infinispan server is discussed
as the first. The main reasons for a usage of Memcached protocol in
Infinispan were the fact that Memcached protocol is commonly used
and it also provides decent speed capabilities. Infinispan supports text
version of Memcached protocol. However, Memcached clients are not
aware about cluster topology and their server list needs to be updated
when a new node is joined1 to the cluster.

Infinispan Hot Rod server was implemented in order to surpass
above-mentioned constraints. Additionally, what is important from per-
formance point of view, Infinispan Hot Rod clients are aware about clus-
ter topology and Infinispan-specific binary Hot Rod protocol supports
smart routing. Therefore, clients exactly know which node to ask for
a data and that results into less unnecessary inter-node communication
with direct positive impact on a performance.

As was shown in the first testing scenario, Hot Rod and Memcached
servers are not true competitors for HTTP based OData and REST text
protocols; Infinispan-specific binary Hot Rod client and simple socket-
based Memcached client perform better as data is carried over the net-
work more effectively. Therefore, second scenario was dedicated mainly
for comparison of Infinispan REST and OData server performance.

REST server, implemented as a simple and lightweight Scala class,
outperformed OData server in key-value scenario with respect to num-
ber of maximal load threads. However, Infinispan OData server, based

1. Or when one of nodes crashed.

77

8. Summary of results and discussion

on OData Jersey server, needs to follow OData standards in order to
provide functionality for querying over JSON documents. Infinispan
OData server was able to provide faster response time than Infinispan
REST server under low load conditions.

Finally, the third testing scenario revealed performance differences
between key-value and OData query based access approach to Infin-
ispan OData server. Simple key-value approach performs better and
we suggest further performance analysis of this scenario as a possible
future work.

At the end of this section is provided short summary of all four
Infinispan servers.

Hot Rod: very fast Infinispan-specific binary protocol, topology aware,
smart routing, possibility of both key-value and document store. Re-
mote querying functionality using DSL and Google’s ProtocolBuffers
for entity encoding.

Memcached: fast and commonly used protocol, text version only is
used in Infinispan, accessible through simple sockets, plenty of clients,
only key-value access.

REST: HTTP based access, only key-value access approach, its imple-
mentation is very lightweight.

OData: HTTP based access, follows OData standards, possibility of
remote queries over JSON documents, both key-value and query based
access.

78

9 Conclusion

In the context of this thesis has been developed a new standalone In-
finispan server which is able to understand internal field structure of
JSON documents and provides possibility of querying over these stored
values. This was achieved by using FieldBridge construct from Hiber-
nate search project.

Additionally, this server provides Open Data Protocol communica-
tion interface and exposes service operations to various clients (con-
sumers). A new Infinispan OData server opens functionality of under-
lying Infinispan caches to wider audience as its core is based on odata4j
framework.

Another thesis’ goal was to benchmark this new server against al-
ready existing Infinispan Hot Rod, Memcached and REST servers. In
order to fulfill this requirement, the PerfCake testing framework is used
in a new project – Infinispan cakery which acts as a load generator and
benchmarking tool for Infinispan servers.

Performance laboratory of JBoss Data Grid quality engineering
team was used for the purpose of server benchmarking. Performance
was measured using 8 server machines – 4 load generators and 4 con-
nected in 4-node Infinispan cluster. The whole process of performance
testing was automatized in Red Hat’s Jenkins system.

All servers were compared using basic scenario; where Hot Rod
protocol outperforms the others. OData and REST servers, as a true
competitors, were compared using advanced stress test scenario; where
OData server responds faster under small load and REST server under
heavy load.

Performance of Infinispan OData server was monitored during de-
velopment by Infinispan cakery and JProfiler tools. The first server
prototype helped to reveal a bottleneck in odata4j framework, and
consequently, these libraries were modified for speed-related needs of
Infinispan OData server. Performance improvements in odata4j frame-
work tremendously helped to speed up the server which is currently
able to compete with Infinispan REST server under respective load.

79

Bibliography

[1] SUMATHI, S a S ESAKKIRAJAN. Fundamentals of relational
database management systems. London: Springer, 2007, xxv, 776
p. ISBN 35-404-8397-7.

[2] DATASTAX CORPORATION. Why NoSQL?. In: DataS-
tax [online]. 2013 [cit. 2014-01-04]. Available from:
http://www.datastax.com/wp-content/uploads/2012/10/WP-

DataStax-WhyNoSQL.pdf

[3] MCCREARY, Dan a Ann KELLY. Making sense of nosql: a guide
for managers and the rest of us. S.l.: O’Reilly Media, 2013, 286 p.
ISBN 978-161-7291-074.

[4] TIWARI, Shashank C. Professional NoSQL. 1st ed. Indianapolis,
IN: Wiley Publishing, Inc., 2011, p. cm. ISBN 04-709-4224-X.

[5] COUCHBASE. Why NoSQL?: Three trends disrupting the
database status quo. In: Couchbase | Document-Oriented NoSQL
Database [online]. 2013 [cit. 2014-01-04]. Available from: http:

//info.couchbase.com/WhyNoSQLWhitepaper.html.

[6] VAISH, Gaurav. Getting started with NoSQL. S.l.: Packt Publish-
ing Limited, 2013. ISBN 978-184-9694-988.

[7] SEOVIĆ, Aleksandar, Mark FALCO, Patrick PERALTA,
Cameron PURDY a Tangosol FOUNDER. Oracle Coherence 3.5:
create internet-scale applications using Oracle’s high-performance
data grid. Birmingham, U.K.: Packt Pub., 2010. From technologies
to solutions. ISBN 978-1-847196-12-5.

[8] MARCHIONI, Francesco a Manik SURTANI. Infinispan data grid
platform. Birmingham: Packt Publishing, 2012, iv, 132 p. ISBN
9781849518222.

[9] Infinispan Homepage · Infinispan [online]. 2009-2013 [cit. 2014-01-
01]. Available from: http://infinispan.org/

80

http://www.datastax.com/wp-content/uploads/2012/10/WP-DataStax-WhyNoSQL.pdf
http://www.datastax.com/wp-content/uploads/2012/10/WP-DataStax-WhyNoSQL.pdf
http://info.couchbase.com/WhyNoSQLWhitepaper.html
http://info.couchbase.com/WhyNoSQLWhitepaper.html
http://infinispan.org/

9. Conclusion

[10] Getting Started with Infinispan. Infinispan Homepage · In-
finispan [online]. 2009-2013 [cit. 2014-01-01]. Available from:
http://infinispan.org/docs/6.0.x/getting_started/

getting_started.html

[11] MARKUS, Mircea. What’s new in Infinispan 6.0. In: Upload &
Share PowerPoint presentations, documents, infographics [online].
2013 [cit. 2014-01-01]. Available from: http://www.slideshare.

net/JBUG_London/whats-new-in-infinispan-60/

[12] Infinispan User Guide. Infinispan Homepage · Infinispan [online].
2009-2013 [cit. 2014-01-01]. Available from: http://infinispan.

org/docs/6.0.x/user_guide/user_guide.html

[13] Memcached/doc/protocol.txt at master · memcached/mem-
cached. GitHub [online]. 2014 [cit. 2014-01-01]. Available from:
https://github.com/memcached/memcached/blob/master/

doc/protocol.txt

[14] ZAMARREŇO, Galder. Infinispan’s Hot Rod Protocol. In: Up-
load & Share PowerPoint presentations, documents, infograph-
ics [online]. 2013 [cit. 2014-01-01]. Available from: http://www.

slideshare.net/galderz/hot-rodjud-con2010/

[15] NISTOR, Adrian. Infinispan: Embedded and remote queries
in Infinispan 6.0.0.Beta1. Infinispan [online]. 2013 [cit. 2014-
01-01]. Available from: http://blog.infinispan.org/2013/09/

embedded-and-remote-queries-in.html

[16] BAN, Bela a Vladimir BLAGOJEVIC. Reliable group communi-
cation with JGroups 3.x. JGroups - The JGroups Project [online].
2002-2013 [cit. 2014-01-01]. Available from: http://www.jgroups.

org/manual-3.x/html/index.html

[17] Home - Open Data Protocol | OData [online]. 2013 [cit. 2014-01-
04]. Available from: http://www.odata.org/

[18] CHAPPELL, David. Introducing OData: Data Access for the
Web, the Cloud, Mobile Devices, and More. In: David Chap-
pell :: White Papers [online]. 2011 [cit. 2014-01-04]. Avail-

81

http://infinispan.org/docs/6.0.x/getting_started/getting_started.html
http://infinispan.org/docs/6.0.x/getting_started/getting_started.html
http://www.slideshare.net/JBUG_London/whats-new-in-infinispan-60/
http://www.slideshare.net/JBUG_London/whats-new-in-infinispan-60/
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html
http://infinispan.org/docs/6.0.x/user_guide/user_guide.html
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://www.slideshare.net/galderz/hot-rodjud-con2010/
http://www.slideshare.net/galderz/hot-rodjud-con2010/
http://blog.infinispan.org/2013/09/embedded-and-remote-queries-in.html
http://blog.infinispan.org/2013/09/embedded-and-remote-queries-in.html
http://www.jgroups.org/manual-3.x/html/index.html
http://www.jgroups.org/manual-3.x/html/index.html
http://www.odata.org/

9. Conclusion

able from: http://www.davidchappell.com/writing/white_

papers/Introducing_OData_v1.0--Chappell.pdf

[19] Odata4j - An OData framework for Java [online]. 2013 [cit. 2014-
01-04]. Available from: http://www.odata4j.org/

[20] Overview | Open Data Protocol | ODataOpen Data Protocol |
OData. Home | Open Data Protocol | ODataOpen Data Protocol
| OData [online]. 2013 [cit. 2014-01-04]. Available from: http://

www.odata.org/documentation/overview/

[21] OData Core | Open Data Protocol | ODataOpen Data Pro-
tocol | OData. Home | Open Data Protocol | ODataOpen
Data Protocol | OData [online]. 2013 [cit. 2014-01-04]. Avail-
able from: http://www.odata.org/documentation/odata-v3-

documentation/odata-core/

[22] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, Clemente
Izurieta Comparison of JSON and XML Data Interchange For-
mats: A Case Study [online]. 2009 [cit. 2013-12-27]. Available on-
line: http://www.cs.montana.edu/izurieta/pubs/caine2009.

pdf

[23] FieldBridge (Hibernate Search 4.4.0.Final). Community Projects
- JBoss Community [online]. 2006-2013 [cit. 2014-01-03]. Available
from: http://docs.jboss.org/hibernate/stable/search/

api/org/hibernate/search/bridge/FieldBridge.html

[24] THE APACHE SOFTWARE FOUNDATION. Maven - Welcome
to Apache Maven [online]. 2002-2014 [cit. 2014-01-04]. Available
from: http://maven.apache.org/

[25] Visitor Pattern | Object Oriented Design. Design Patterns | Object
Oriented Design [online]. 2005 [cit. 2014-01-01]. Available from:
http://www.oodesign.com/visitor-pattern.html

[26] PerfCake – A Lightweight Performance Testing Framework [on-
line]. 2011-2013 [cit. 2014-01-01]. Available from: https://www.

perfcake.org/

82

http://www.davidchappell.com/writing/white_papers/Introducing_OData_v1.0--Chappell.pdf
http://www.davidchappell.com/writing/white_papers/Introducing_OData_v1.0--Chappell.pdf
http://www.odata4j.org/
http://www.odata.org/documentation/overview/
http://www.odata.org/documentation/overview/
http://www.odata.org/documentation/odata-v3-documentation/odata-core/
http://www.odata.org/documentation/odata-v3-documentation/odata-core/
http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf
http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf
http://docs.jboss.org/hibernate/stable/search/api/org/hibernate/search/bridge/FieldBridge.html
http://docs.jboss.org/hibernate/stable/search/api/org/hibernate/search/bridge/FieldBridge.html
http://maven.apache.org/
http://www.oodesign.com/visitor-pattern.html
https://www.perfcake.org/
https://www.perfcake.org/

9. Conclusion

[27] Java Support for Large Memory Pages. Oracle | Hardware and
Software, Engineered to Work Together [online]. 2014 [cit. 2014-
01-03]. Available from: http://www.oracle.com/technetwork/

java/javase/tech/largememory-jsp-137182.html

[28] GRINOVERO, Sanne a Adrian NISTOR.
Infinispan/query/src/test/resources/indexing-perf.xml at master
· infinispan/infinispan. GitHub [online]. 2013 [cit. 2014-01-05].
Available from: https://github.com/infinispan/infinispan/

blob/master/query/src/test/resources/indexing-perf.xml

83

http://www.oracle.com/technetwork/java/javase/tech/largememory-jsp-137182.html
http://www.oracle.com/technetwork/java/javase/tech/largememory-jsp-137182.html
https://github.com/infinispan/infinispan/blob/master/query/src/test/resources/indexing-perf.xml
https://github.com/infinispan/infinispan/blob/master/query/src/test/resources/indexing-perf.xml

A Following of the OData standards

This section provides quick summary of the most important OData
conventions which are followed by Infinispan OData server implemen-
tation.

HTTP methods

POST – For a creation of a new JSON document.
GET – For accessing stored JSON documents.
PUT – For replacing JSON document in the store.
DELETE – For removing JSON document from the store.

HTTP response codes

Successful response for POST request: HTTP status code 201.
Successful response for GET request: HTTP status code 200.
Successful response for PUT request: HTTP status code 200.
Successful response for DELETE request: HTTP status code 204.
A response when entry was not found: HTTP status code 404.

HTTP headers

Successful entry creation (HTTP POST request) returns also HTTP
location header with an address at which the created document can
be accessed.

Every response sets up HTTP DataServiceVersion header with
the current supported version of OData service.

Standardized JSON response

Returned data from Infinispan OData service is serialized according
to OData JSON standards. There can be distinguished two possible
responses here: one particular JSON document, or a collection of more
JSON documents can be returned.

One result is serialized this way (”d“ stands for a ”data“):

84

A. Following of the OData standards

{
”
d“ :

{
”
id“:

”
person1“,

”
firstname“:

”
Neo“,

”
lastname“:

”
Matrix“,

”
gender“:

”
MALE“,

”
age“:26}

}

When a filter query returns more results, they are serialized as an
array of document results:

General form: {
”
d“ : [{ ... }, { ... }, { ... }]}

{
”
d“ :

[{
”
id“:

”
person1“,

”
firstname“:

”
Neo“,

”
lastname“:

”
Matrix“,

”
gender“:

”
MALE“,

”
age“:26},

{
”
id“:

”
person2“,

”
firstname“:

”
Trinity“,

”
lastname“:

”
Matrix“,

”
gender“:

”
FEMALE“,

”
age“:28}]

}

The fact that service provides access to $metadata document, which
describes exposed data entity sets and operations using EDM, is also
a part of the OData standards.

Support for system query options and operators belongs to OData
standard as well and that is elaborated in appendix (B).

85

B Supported query options and operators

OData queries can be used for filtering a collection of entities in a result
set. A $filter option can be appended to a function import and used
for instance as

http://ODataService.svc/service-op-name?$filter=<expression>

where <expression> consists of operators and options. A list of
supported filter queries operators can be found in table B.1. Note: op-
erators has to be used lowercase.

OP Description $filter=
eq equal name eq ’John’
and logical and name eq ’John’ and surename eq ’Smith’
or logical or name eq ’John’ or name eq ’Jack’

Table B.1: Supported query operators (filter expressions).

A $filter is not only one option and can be extended by other
supported system options. Infinispan OData service also supports: top

and skip options (see table B.2).

OP Description $filter=<expression>&
$filter=<exp> filters results $filter=name eq ’John’
$top=n selects top n entries $top=5
$skip=n skips n entries $skip=5

Table B.2: Supported system query options.

From implementation point of view, $filter query is taken as the
first, and results are filtered. Then, if specified, other system query
options are applied and collection of results is returned; some results
may be skipped, or only a few top results is returned. $top and $skip

query options have to be used after $filter option. Other options will
be implemented according to community requirements.

86

C Infinispan Hot Rod vs REST server

Server type Load threads Average re-

sponse time

Average throughput Max memory

usage

Hot Rod 20 0.07 ms 237860 ops/s 1.891 GB
Hot Rod 40 0.35 ms 114285 ops/s 1.975 GB
Hot Rod 60 0.85 ms 70588 ops/s 1.982 GB
Hot Rod 80 1.26 ms 63492 ops/s 1.985 GB
Hot Rod 120 2.11 ms 56872 ops/s 1.987 GB
Hot Rod 200 3.83 ms 52219 ops/s 1.988 GB
Hot Rod 400 8.22 ms 48662 ops/s 1.991 GB
REST 20 3.42 ms 5848 ops/s 2.057 GB
REST 40 3.47 ms 11527 ops/s 2.052 GB
REST 60 3.69 ms 16260 ops/s 2.071 GB
REST 80 4.14 ms 19324 ops/s 2.088 GB
REST 120 6.32 ms 18987 ops/s 2.507 GB
REST 200 25.60 ms 7813 ops/s 3.770 GB
REST 400 101.90 ms 3925 ops/s 3.770 GB

Table C.1: Infinispan Hot Rod and REST server performance statistics.

Figure C.1: Infinispan Hot Rod and REST server average operational
throughput chart.

87

D Content of the attached zip file

• Infinispan OData server source code

– located in folder infinispan-odata-server.

Project README.md file contains information about the process
of building, running the server and practical usage examples
is located in main project directory. Infinispan OData server
depends on odata4j libraries of version 0.8.0-SNAPSHOT (see
attachment below).

• Built distribution of Infinispan OData server

– infinispan-odata-server-1.0-SNAPSHOT.jar

file as 1.0-SNAPSHOT distribution of OData Infinispan server;
ready to be started and used.

• Source code of modified odata4j framework for needs of
Infinispan OData server

– located in folder odata4j-actions; version 0.8.0-SNAPSHOT.

• Built odata4j framework libraries

– located in folder odata4j-0.8.0-SNAPSHOT-libraries;

• Infinispan cakery source code

– located in folder infinispan-cakery together with README.md

file describing the process of running this tool.

• Thesis LATEX source code

– located in folder thesis

88

	Introduction
	NoSQL
	 RDBMS
	 NoSQL introduction
	 Current trends
	 Why NoSQL?
	 NoSQL and RDBMS comparison
	 NoSQL stores classification
	 Key-value stores
	 Graph stores
	 Column stores
	 Document stores

	 Choosing the right NoSQL solution

	Infinispan
	 Interacting with Infinispan
	 Clustering modes
	 Client-server access
	 Infinispan REST server module
	 Infinispan queries

	Open Data Protocol
	 Why OData protocol?
	 OData query language
	 Actions, functions and service operations
	 OData and Infinispan motivation

	Infinispan OData server design
	 Requirements
	 Solution investigation
	 EDM schema structure
	 Basic component communication logic

	Implementation
	 Source code and version control
	 Tools
	 Building and running the server
	 Implementation highlights
	 (Infinispan) InMemoryProducer
	 CachedValue, JsonValueWrapper and FieldBridge
	 MapQueryExpressionVisitor

	 Performance improvements in odata4j
	 Mapping of cache operations
	 Functional test suite

	Performance testing
	 PerfCake tool
	 Infinispan cakery
	 Automation and testing environment
	 Libraries and versions

	 Performance testing plan
	 General testing plan division
	 Consistent benchmark settings
	 Smoke testing

	 Comparison of all four Infinispan servers
	 OData and REST server comparison
	 OData server: Key-value and query access comparison

	Summary of results and discussion
	Conclusion
	Following of the OData standards
	Supported query options and operators
	Infinispan Hot Rod vs REST server
	Content of the attached zip file

