
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Miloš Chaloupka

Querying RDF graphs stored in a
relational database using SPARQL and

R2RML

Department of Software Engineering

Supervisor of the master thesis: Mgr. Martin Nečaský, Ph.D.

Study programme: Informatics

Specialization: Software Systems

Prague 2014

I would like to thank everyone who helped me in any way when writing this
master thesis. In particular, I thank my supervisor Mgr. Nečaský Martin, Ph.D.
for the possibility of detailed consultation on the content of my work.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date

Název práce: Dotazování RDF dat uložených v relační databázi pomocí jazyků
SPARQL a R2RML

Autor: Miloš Chaloupka

Katedra: Katedra softwarového inženýrství

Vedoucí diplomové práce: Mgr. Martin Nečaský, Ph.D., Katedra softwarového
inženýrství

Abstrakt: RDF formát se stává populárním způsobem jak prezentovat data.
Zveřejněná data jsou pak snadno dostupná a i dotazovatelná, bez nějakých po-
drobných implementačních znalostí. Ale nejčastějším způsobem, jak jsou uložena
strukturovaná data, jsou v současné době relační databáze. Ty těží z dlouhé teo-
retické i praktické historie, nicméně nejsou uzpůsobeny k tomu, aby nějakým
snadným způsobem prezentovaly data. Je nezbytné propojit tyto dva světy,
pomocí určeného mapování zveřejnit data uložena v relační databázi v RDF
formátu. V předložené práci studujeme algebru dotazovacího jazyka SPARQL
a vytváříme algoritmus, pomocí kterého jsme schopni vytvořit virtuální SPAR-
QL endpoint nad relačnímy daty. Získané znalosti použijeme k implementaci
nástroje, který daný algoritmus používá, čímž ukážeme jeho použitelnost.

Klíčová slova: rdb2rdf, překlad sparql na sql, r2rml, sparql

Title: Querying RDF graphs stored in a relational database using SPARQL and
R2RML

Author: Miloš Chaloupka

Department: Department of Software Engineering

Supervisor: Mgr. Martin Nečaský, Ph.D., Department of Software Engineering

Abstract: The RDF framework is becoming a popular framework for presenting
data. It makes the data easily accessible and queryable. But the most common
way how to store structured data is to use a relational database systems. The
relational databases benefit from their long theoretical and practical history, how-
ever the relational database does not offer any convenient way how to publish the
data. It is essential to create a mapping between these two worlds, to publish the
data stored in a relational database in the RDF format. In the presented work we
study the SPARQL algebra and create a transformation algorithm that enable
us to create a virtual SPARQL endpoint over the relational data. We apply the
acquired knowledge in implementation of a tool which uses the algorithm to proof
the concept.

Keywords: rdb2rdf, sparql to sql translation, r2rml, sparql

Contents

Introduction 4

Motivation . 4

Contribution . 5

The document structure . 6

1 Technical background 7

1.1 Relational databases . 7

1.2 RDF . 10

1.3 R2RML . 12

2 Related work 17

2.1 Virtuoso Universal Server . 17

2.2 Morph . 18

2.3 TARQL . 18

2.4 D2RQ Platform . 19

2.5 dotNetRDF . 19

2.6 r2rml4net . 20

2.7 Payola . 20

3 SPARQL algebra 22

3.1 Query parts . 22

3.2 Allowed query parts operations 34

3.3 Query result modifications . 38

1

4 Transforming SPARQL query to SQL query 42

4.1 Transformation phases . 42

4.2 Value binders . 43

4.3 Adding the R2RML mapping information to the algebra 44

4.4 Creating the SQL query . 45

4.5 Transformation of the SQL result 57

5 Optimizing query 59

5.1 SPARQL algebra optimization . 59

5.2 SQL query optimization . 63

5.3 Other methods . 68

6 Evaluation 71

6.1 Correctness . 71

6.2 Performance . 78

6.3 Payola . 81

7 Implementation 85

7.1 Used technologies . 86

7.2 Project . 87

7.3 The storage library . 87

7.4 The website . 90

8 User guide 92

8.1 Installation . 92

8.2 Configuration . 93

8.3 Using the application . 93

2

9 Conclusion 95

9.1 Future work . 95

Bibliography 97

A CD Contents 99

B List of Figures 100

3

Introduction

The aim of this master thesis is to design and implement a SPARQL query

processor for RDF data stored in a relational database. The mapping between

the relational and RDF representation will be specified with R2RML language.

Therefore, it is necessary to analyze the SPARQL query, its structure and prepare

an algorithm that will be able to translate the query to the SQL form and then

transform the results back to the form as it is expected in the SPARQL query.

Motivation

The RDF framework is becoming a popular framework for presenting data as it

is a part of the W3C standard - Linked Data1. It makes data easily accessible

and queryable without the need to publish information about the data storage,

etc. Users are able (using SPARQL queries) to get all information without any

further knowledge of a particular implementation. It is only needed to document

the used predicates (especially the ones that are specific for the domain) and to

describe how to connect to the SPARQL endpoint.

On the other hand, the most common way how to store structured data is to

use a relational database systems. The relational databases benefit from their long

theoretical and practical history. They usually offer a set of data management

services (crash recovery, scalability etc.) and also an optimized relational query

processor. So for most structured data there is no intention to store them in some

other way than in relational databases. Although there is growing the usage of

the non-relational databases they are used mostly for specific cases instead of

storing the whole dataset.

However, the relational database does not offer any convenient way how to

publish the data. We can open our SQL server (with limited privileges); we can

create web services that will work as a gate for the queries. In every case the

user needs to know exactly how the data are stored (separation between tables,

meanings of the tables and their columns). Also in many cases the user needs to

know the exact version of the SQL engine (because they are quite different).

1Described at http://www.w3.org/standards/semanticweb/data (visited July, 2014)

4

http://www.w3.org/standards/semanticweb/data

So we have a data storage and a way how to present the data publicly. The

data representation in the relational database and the RDF differs and also the

query languages are different so we need somehow close the gap between these

two technologies. First task to do is to define how the relational data will be

presented, that means the resources and the relationships between them. For

that, there are two possible approaches (and both of them are published as a W3C

Recommendation). The direct mapping which is a simple transformation of the

relational database to the RDF (so it creates the RDF resources according to

the table names, their columns and others information like keys, foreign keys,

etc.). The other approach is more complex than the direct mapping. It is using

a mapping definition (typically in the form of a file) that is manually created and

that defines the exact way how to map the relational data into the RDF form.

We can finish now; we have described how the relational data should be pub-

lished, and there are several tools that allow us to dump the relational database

into the RDF form. Moreover, then we can use existing tools to create SPARQL

endpoint over an RDF dataset. However, that is not efficient, it will be needed

to create a large dump on every change and load it into memory.

However, it is not needed to have all the data dumped from the relational

database. We can create a virtual SPARQL endpoint that can be queried without

actually storing any RDF data. It only holds the information how to represent the

relational data and every SPARQL query converts into an SQL query, executes

it against the database and the result is transformed back to the form that is

expected from the SPARQL query. Thanks for that we can use the efficient SQL

engine to query (although in some cases, it is nearly impossible to create an

efficient query) and there is no need to run any workflow when the data changes.

Contribution

To summarize, our main contributions are:

• We analyze the SPARQL algebra and R2RML mapping options

• Using this algebra we propose an algorithm for transformations between

SPARQL query and the SQL query

• We propose the possible optimizations

5

• We build a tool that can be used as a virtual SPARQL endpoint over the

relational data

The document structure

The first chapter briefly introduces the key technologies that are used, there is

described the difference between the data representation in relational databases

and RDF datasets.

In the second chapter there are named some of the works that are somehow

related, especially the works that solve some similar task.

The formal definition of the SPARQL algebra can be found in the third chap-

ter. The allowed operations in SPARQL algebra are also described here.

The fourth chapter introduces the transformation algorithm. There is de-

scribed the exact way how to transform the SPARQL query to the SQL query

and how to handle the result from the relational database engine.

In the fifth chapter, there are described optimization options. The optimiza-

tion that can be done in the SPARQL algebra, in the SQL query, but also other

ways to optimize the process.

The sixth chapter contains the evaluation results of the proposed algorithm.

The correctness and also the performance of selected queries.

The seventh chapter describes the implementation of the algorithm in the

proposed tool.

In the eighth chapter, there is a user guide that will help the user to install,

configure and use the implemented tool.

6

1. Technical background

In this chapter we will describe the key technologies for this work. Moreover, we

will mention several terms specific for the technologies that are later used in the

work.

1.1 Relational databases

The relational database (see [10]) model is based on the branches of mathematics

called the set theory and the predicate logic. An essential element of a relational

database is a table (alias relation). The table has its name and a set of columns

(that consists from a name and datatype). The data are stored as a row in such

table.

The relational model also reflects the dependencies of the columns. We say

that the set of columns is a superkey if it is true that for every row in the table

there is a unique set of values in the superkey columns. So if we know the values

of the superkey we can identify the row that corresponds to it. If there is no

subset of the superkey, which is also a superkey, then it is the key of the table.

The modern database systems (RDBMS) also enable us to create constraints

on values. These constraints are checked when there is any change of data, and

they are used to ensure the data consistency. One of the possible constraints is

so called foreign key. It marks a column as a reference to another tables key.

So it makes checking whether the referenced value really exists (and also do not

allow to delete a row that is referenced from somewhere). It is also representing

the information that the two tables have some relationship, that there is some

dependency between the tables.

The sample database schema in the figure 1.1 represents a storage for NUTS

and LAU regions. Regions of both types are identified by their code, and there

are also references between them. The LAU regions with level two have defined

their parent region which has level one. The LAU regions with level 1 do not

have a parent region from LAU, but they do have a reference to a parent NUTS

region. The NUTS regions do have a reference to its parent NUTS region which

has a lower level, only the NUTS regions with level 0 do not have any parent. The

same data can also be stored in other ways. They can be separated into multiple

7

Lau

CodePK

Name

Level

ParentRegionFK

ParentNutsFK

Nuts

CodePK

Name

Level

ParentRegionFK

0..1

0..1

0..1

Figure 1.1: Database schema sample

tables (4 tables for NUTS regions with levels 0-3 and 2 tables for LAU regions

with levels 1 and 2). Alternatively, the other way they can be merged into one

table (with an indicator whether it is a NUTS or an LAU region). Sample data

that can be stored in a database with a schema from the figure 1.1 are shown in

the figure 1.2.

Lau

Code Name Level ParentRegion ParentNuts

CZ0201 Benešov 1 NULL CZ020
CZ0202 Beroun 1 NULL CZ020
CZ0203 Kladno 1 NULL CZ020
529303 Benešov 2 CZ0201 NULL

529516 Čerčany 2 CZ0201 NULL
529451 Bystřice 2 CZ0201 NULL
531791 Svatá 2 CZ0202 NULL

Nuts

Code Name Level ParentRegion

CZ ČESKÁ REPUBLIKA 0 NULL

CZ0 ČESKÁ REPUBLIKA 1 CZ
CZ01 Praha 2 CZ0
CZ02 Střední Čechy 2 CZ0
CZ010 Hlavní město Praha 3 CZ01
CZ020 Středočeský kraj 3 CZ02

Figure 1.2: Sample relational data

During the years, it has become an industry standard, and it is nowadays

the most common way how to store the structured data. Although there are

appearing lots of new technologies that handle the data storage (non-relational

databases) and although the big companies (like Google, Facebook, Twitter, etc.)

are starting to use them (but never completely replace the RDBMS), most of the

8

companies store the data using the RDBMS.

1.1.1 SQL

When we have a relational database, we need a language to work with it. It is

called the structured query language (SQL). It offers the ability to get or update

data in the database, but when we want to make a query, we need to know

the exact database structure. So when we have to query the same data in two

different systems we will make most likely two different queries.

The SQL language is standardized however different RDBMSs have various

syntax for several most advanced queries (like recursive queries), and some queries

are specific only for selected RDBMS implementation. So for many queries we

need also to know which type and version of RDBMS is used. In this work, we

use the T-SQL syntax (see [9]) that works with the MS SQL.

1 SELECT L2.Name AS Lau2, N3.Name AS Nuts3

2 FROM Lau AS L2

3 INNER JOIN Lau AS L1 ON L2.ParentRegion = L1.Code

4 INNER JOIN Nuts AS N3 ON L1.ParentNuts = N3.Code

Figure 1.3: Sample SQL query

Lau2 Nuts3

1 Benešov Středočeský kraj
2 Čerčany Středočeský kraj
3 Bystřice Středočeský kraj
4 Svatá Středočeský kraj

Figure 1.4: Sample SQL query result

The sample SQL query from the figure 1.3 for the database with schema from

the figure 1.1 selects the LAU2 regions names also including the names of their

corresponding NUTS3 region names. When creating the query we need to know

how are the data exactly stored. The way how the data are stored also can

contain additional information. For example in the sample query, we do not ask

for the level of Lau region, because we know, that the Lau regions which do have

a parent Lau region must have their level set to 2.

When we execute the SQL query from the figure 1.3 against the relational

database from the figure 1.2, we will get the result shown in the figure 1.4.

9

1.2 RDF

The resource description framework (RDF, see [1]) is a framework for representing

data. The data are understood as directed graphs where values are stored in nodes

with named oriented edges between them. In other words, the graph is a set of

subject-predicate-object triples that represent the fact that the node subject is

connected to the node object using the edge named predicate.

The values in RDF (so-called RDF terms) have three different types: IRIs

(Internationalized resource identifier), literals and blank nodes. The literals and

IRIs denote resources (entities). The resource denoted by an IRI is called its

referent, and the IRIs have global scope, so the same IRI always denotes the same

resource. We can understand it as an identifier, and it does not matter whether

we find the IRI in subject or object, it always represents the same resource. The

blank nodes also represent a resource, but not a particular resource. It only

creates the statement that there is something with the given relationships, but it

does not have any particular identifier.

Therefore, the subject can be only an IRI or a blank node, but the object can

be an IRI, a blank node and also a literal. The relationships between nodes are

always specific so the predicate can be only an IRI.

The sample data from the figure 1.5 contain information about several NUTS

region. They contain the same information as the table Nuts from the figure 1.2.

About every NUTS region the data state its name, code, references to its parent

and sub-regions and the region is identified by a unique IRI (containing the region

code). There are several ways how to write the RDF data, in the sample there is

used the Turtle language (see [4]).

10

1 @prefix ec: <http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#> .
2

3 <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ010> a ec:NUTSRegion;
4 ec:level 3;
5 ec:name "Hlavní město Praha";
6 ec:regionCode "CZ010";
7 ec:hasParentRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ01>.
8

9 <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ020> a ec:NUTSRegion;
10 ec:level 3;
11 ec:name "Středočeský kraj";
12 ec:regionCode "CZ020";
13 ec:hasParentRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ02>.
14

15 <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ01> a ec:NUTSRegion;
16 ec:level 2;
17 ec:name "Praha";
18 ec:regionCode "CZ01";
19 ec:hasParentRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ0>;
20 ec:hasSubRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ010 >.
21

22 <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ02> a ec:NUTSRegion;
23 ec:level 2;
24 ec:name "Střední Čechy";
25 ec:regionCode "CZ02";
26 ec:hasParentRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ0>;
27 ec:hasSubRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ020 >.
28

29 <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ0> a ec:NUTSRegion;
30 ec:level 1;
31 ec:name "ČESKÁ REPUBLIKA";
32 ec:regionCode "CZ0";
33 ec:hasParentRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ>;
34 ec:hasSubRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ01>;
35 ec:hasSubRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ02>.
36

37 <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ> a ec:NUTSRegion;
38 ec:level 0;
39 ec:name "ČESKÁ REPUBLIKA";
40 ec:regionCode "CZ";
41 ec:hasSubRegion <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ0>.

Figure 1.5: Sample RDF data

1.2.1 SPARQL

The SPARQL (SPARQL Protocol and RDF Query Language, see [2]) language

is created to query the RDF sources. A significant advantage of this language

is that we do not need to know the way, how the data are stored in the queried

source. We only need to know what kind of entities are present in the source and

what properties we can find on them. However, that can be also retrieved by

a query so in fact we are able to query the source with no more knowledge than

how to connect to the endpoint.

Although the SPARQL language also offers the possibility to update data

(in the version 1.1), we will discuss only the data retrieval. However, also for

11

that it provides us several options how to query, and it can differ in the result

type - it can be a SPARQL result set (from a SELECT statement), graph (from

a CONSTRUCT or a DESCRIBE statement) or a boolean value (from ASK

statement). Also many endpoints allow us to select the datatype of the result

(whether it should be an XML, CSV and so on).

The SPARQL language is specially designed for the RDF data sources, so

it is (as expected) build from triple patterns (selecting triples from the dataset

and the terms from it) and several other language constructs (that are somehow

similar to the SQL language).

1 PREFIX ec: <http://ec.europa.eu/eurostat/ramon/ontologies/

→֒ geographic.rdf#>

2

3 SELECT ?name1 ?name3

4 WHERE

5 {

6 ?nuts1 ec:level 1 ;

7 ec:hasSubRegion/ec:hasSubRegion ?nuts3 ;

8 ec:name ?name1 .

9 ?nuts3 ec:name ?name3 .

10 }

Figure 1.6: Sample SPARQL Query

name1 name3

1 ČESKÁ REPUBLIKA Hlavní město Praha
2 ČESKÁ REPUBLIKA Středočeský kraj

Figure 1.7: Sample SPARQL query result

The sample SPARQL query from the figure 1.6 gets the names of the NUTS

1 regions and the names of the subregions of their subregions (that means NUTS

3 names that are descendant from the NUTS 1 region). The query result (when

the query is executed against the dataset from figure 1.5) get the result shown in

the figure 1.7.

1.3 R2RML

As we mentioned the relational databases are suited to store the structured da-

ta but the RDF framework is better to publish the data. However, the data

12

representation is different, so we need somehow close the gap between these two

approaches. The R2RML language (see [3]) is a language to express the mapping

from a relational database to an RDF dataset. It allows us to present the data

stored in a relational database as an RDF dataset. There are more languages

and methods for this kind of mapping, but the R2RML language is a standard

proposed by the World Wide Web Consortium (W3C).

The R2RML offers the option to define completely customized view over the

relational data. In the mapping definition, we list triples definition that contains

information how to query the relational database and how to generate the RDF

triples from the returned rows. The generation of the RDF triple can be straight-

forward (from a column value or a constant), or the triple can be generated using

a template (possibly combining several column values).

The R2RML mapping can be used by some tool for example to dump the

data or as this work proposes, to offer a virtual SPARQL endpoint.

The sample mapping shown in the figure 1.8 maps the table Nuts from the

database schema from the figure 1.1. As it can be seen the R2RML mapping

definition is an RDF file. So it is possible to parse and process the mapping using

the standard RDF tools. This example is written using the Turtle language.

To create the RDF data using the mapping from the figure 1.8, we proceed

as follows for every triples map (in the sample there is only a single triples map

<Nuts>). The first step is to retrieve the data from the database. The query

is defined in the rr:logicalTable node, in this sample there is written a table

that contains the data but it is possible to write any custom SQL query.

The next step is to convert the returned result into the RDF triples. The

same algorithm is repeated for every row. We show the process on the first row

from the table Nuts in the figure 1.1 namely the row with the following values:

Code = CZ, Name = ČESKÁ REPUBLIKA, Level = 0 and ParentRegion =

NULL.

The subject of all triples generated from the selected row is the same, and

it is defined in the rr:subjectMap node. In this sample, it is defined using

a template where the column references will be replaced by the proper values.

The application of the pattern on the selected row creates the subject http:

//ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ.

13

1 @prefix ec: <http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#> .
2

3 <Nuts> a rr:TriplesMap;
4 rr:logicalTable [rr:tableName "[dbo].[Nuts]";];
5 rr:subjectMap [
6 rr:template "http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/{Code}";
7 rr:class ec:NUTSRegion
8];
9 rr:predicateObjectMap [

10 rr:predicate ec:level;
11 rr:objectMap [
12 rr:column "Level";
13 rr:datatype xsd:int;
14];
15];
16 rr:predicateObjectMap [
17 rr:predicate ec:name;
18 rr:objectMap [rr:column "[Name]";];
19];
20 rr:predicateObjectMap [
21 rr:predicate ec:regionCode;
22 rr:objectMap [rr:column "[Code]";];
23];
24 rr:predicateObjectMap [
25 rr:predicate ec:hasSubRegion;
26 rr:objectMap [
27 rr:parentTriplesMap <Nuts>;
28 rr:joinCondition [
29 rr:child "[Code]";
30 rr:parent "[ParentRegion]";
31];
32];
33];
34 rr:predicateObjectMap [
35 rr:predicate ec:hasParentRegion;
36 rr:objectMap [
37 rr:parentTriplesMap <Nuts>;
38 rr:joinCondition [
39 rr:child "[ParentRegion]";
40 rr:parent "[Code]";
41];
42];
43];
44 .

Figure 1.8: Sample R2RML mapping

From the returned row, we create only triples defined by the mappings that

do not contain a reference to a triple map (even if it is a reference to the same

triples map). The mappings that do contain the reference are handled sep-

arately (in this sample the triples with the predicates ec:hasSubRegion and

ec:hasParentRegion).

If the subject map contains the rr:class node, we use it to create the first

RDF triple. The predicate is rdf:type and the value is defined in the rr:class

node. In this sample there is a constant ec:NUTSRegion, so the created triple is:

• <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ>

rdf:type ec:NUTSRegion

14

The node rr:class may also contain more complex definition than a constant,

and then it is written in the same way as the rr:objectMap node (with same

possibilities).

After that, we process every rr:objectMap node (only the ones that do not

contain a reference to a triple map). Their parent node (rr:predicateObjectMap

contains the definition of the predicate (in this sample the predicates are con-

stants and that is probably the most common way but it is possible to define

the predicates using the values from the row) and the definition of the object. In

this sample, the object maps have their value created from the specified column

value. For the selected row we will create following triples:

• <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ>

ec:level 0

• <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ>

ec:name "ČESKÁ REPUBLIKA"

• <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ>

ec:regionCode "CZ"

Using the same algorithm we process every returned row from the database.

The only missing step is to process the object maps that do contain a reference to

a triple map. They are processed separately. We will show the algorithm for the

object map that is used with the ec:hasSubRegion predicate. The referencing

object map needs a special SQL query to generate the triples. It has to join two

queries, to generate both subjects that will be connected with the predicate. The

join condition is defined in the rr:joinCondition node. For this referencing

object map we will get the query that is in the figure 1.9.

1 SELECT Child.Code, Parent.Code

2 FROM Nuts AS Child

3 INNER JOIN Nuts AS Parent ON Child.Code = Parent.ParentRegion

Figure 1.9: SQL query for the referencing object map

The triples are created from the returned rows by the application of the subject

maps of the used triple maps. The child triple map (the one where the object

map is present) uses the columns from the Child source, and the parent triple

map (the one that is referenced) uses the columns from the Parent source. So,

15

for example, the returned row with values Child.Code = ”CZ” and Parent.Code

= ”CZO” results in the following triple:

• <http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ>

ec:hasSubRegion

<http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/CZ0>

When the sample mapping is applied on a database with data from the figure

1.2, it will result in the triples shown in the RDF sample (the figure 1.5).

16

2. Related work

In this chapter, we will name several works that are related with this paper or

the implementation. First we will mention the tools that aim the similar task

as our work. Also, then we will also mention the tools that are used for our

implementation (dotNetRDF and r2rml4net) and a tool that should be able to

use our implementation as a data source (Payola).

2.1 Virtuoso Universal Server

The Virtuoso Universal Server1 is a multi-model data server. It offers the rela-

tional, XML, RDF and free text storage and several services with their proper

engines. It also offers several services to access these engines. The SPARQL

endpoint, ODBC connectors, document web server and so on.

The product is available in two different licenses. As a commercial product

and as an open source project (under GNU GPL v2 license).

In term of RDF storage, it works as a native storage. We fill it with triples

and then we are able to use the SPARQL endpoint over these loaded data. It is

also possible to define the Linked Data View over the RDBMS data source. That

is exactly what we are doing, but they are using their own mapping language,

and it is not possible to use that engine over other RDBMS.

Although it is possible to convert the R2RML file into their own mapping

language, it is quite limiting that it is not possible to use the mapping engine

over another RDBMS because the usage of the Virtuoso Universal Server as the

relational database is very minor in compare with the ORACLE, MSSQL, MySQL

and others.

For our purposes, this is an excellent tool to compare the correctness and

performance with our implementation. However, we believe that for most of the

companies it will be more convenient to use an extra mapping tool over their

running RDBMS than buying a new one and migrating all data (and possibly

modifying the queries if there will be some differences).

1Available at http://virtuoso.openlinksw.com/ (visited June, 2014)

17

http://virtuoso.openlinksw.com/

2.2 Morph

Morph2 is a tool created by Jean-Paul Calbimonte that uses the R2RML mapping

file to generate a dump of RDF triples from a relational database. It is an open

source software under Apache License v2.

It is written in Scala language (running on the Java Virtual Machine) and the

functional language seems to fit the task nicely. It is still in question whether it

will not be good to implement a part of our tool using F# (a functional language

in the .NET world) because the work with the mappings and the algebra may be

more efficient and more transparent using the functional approach.

During the creation of this paper there was also created Morph-RDB3 project

(under the Ontology Engineering Group), that added support for the SPAR-

QL language and now they are focusing the integration with the Linked Data

Platform. They state the support for the MySQL, PostgreSQL and MonetDB

databases.

2.3 TARQL

TARQL4 is a tool created by Richard Cyganiak to query CSV files using the

SPARQL syntax.

TARQL is a command line tool, and everything is passed as a parameter.

Several options that allow us to develop the SPARQL query correctly, forcing

some behaviour and so on. Also, the parameter where is defined the file with the

actual SPARQL query.

It enables to run a SPARQL query where we define a CSV file in the FROM

statement (or by passing a parameter to the tool). It is equivalent to executing

the query with the VALUES filled by the content of the CSV file. Moreover, it can

detect the column headings (if there is some), so then the variables are named

according to the headings.

This tool is very useful when we get a data dump in a CSV file, and we want

2Git repository available at https://github.com/jpcik/morph (visited June, 2014)
3Git repository available at https://github.com/oeg-upm/morph-rdb (visited June, 2014)
4Git repository available at https://github.com/cygri/tarql (visited June, 2014)

18

https://github.com/jpcik/morph
https://github.com/oeg-upm/morph-rdb
https://github.com/cygri/tarql

to generate the RDF triples. Using the CONSTRUCT query, we can achieve this

very quickly using the standard language we already know.

2.4 D2RQ Platform

The D2RQ Platform5 is a set of tools (created by Richard Cyganiak just as

TARQL) that can be used to map relational database to RDF data. It can

generate the mapping file and then to dump the data in RDF format or to create

a virtual SPARQL endpoint over the mapped relational data.

The D2RQ Platform is written in Java and supports several databases (like

Oracle, MySQL, PostgreSQL and several others). It is also possible to use the

platform as part of other Java applications, using the Jena API6.

It uses its own mapping language (or it is possible to use the direct mapping

mechanism), but they are planning to support the R2RML language. However,

currently the support is only in the development branch. Even after several

attempts we were not able to run complex queries using our sample data and

environment.

The D2RQ Platform is a state-of-the-art for the mapping from relational

databases to the RDF data. The D2RQ mapping language was used to develop

the R2RML language (Richard Cyganiak is a joint author of the specification).

2.5 dotNetRDF

The dotNetRDF7 is the major .NET library for the semantic web applications.

It offers an API to work with RDF, SPARQL and the semantic web.

As part of the dotNetRDF library, there are also RDF store (in-memory)

with their own SPARQL engine called Leviathan. If we do not want to use the

in-memory store, we need to use some third party store that has implemented a

connector in the DotNetRDF library. There are available several connectors to

5Available at http://d2rq.org/ (visited June, 2014)
6Apache Jena is an opensource framework for building semantic web applications, available

at https://jena.apache.org/ (visited June, 2014)
7Available at http://www.dotnetrdf.org/ (visited June, 2014)

19

http://d2rq.org/
https://jena.apache.org/
http://www.dotnetrdf.org/

the native RDF stores, for example for the Virtuoso Universal Server.

The dotNetRDF had developed an SQL backend as an RDF store. They store

the triples directly in the relational database. They moved away because it has

not proven as a performant store.

The library also offers API to develop custom storages, including the ability

to parse SPARQL language into their algebra representation (the algebra is op-

timized for the Leviathan, but it is very similar to the official SPARQL algebra).

2.6 r2rml4net

The r2rml4net8 is a library for reading and processing the R2RML mapping files.

The library provides functions to load mapping from file, create it from code

or generate it from the database schema (creates R2RML mapping analogous to

the direct mapping).

There are also functions to generate the RDF dump from the relational

database. However, there is no support for the virtual SPARQL endpoint. That

is the gap that will be filled by the proposed tool.

2.7 Payola

Payola9 is a web application which offers visualization for the RDF data. It

includes several visualization plugins for the RDF data, and it can get the data

from a SPARQL endpoint.

The Payola works with analysis. The analysis is an algorithm how to process

the data. It contains the information how to get the data (it can merge data from

sources like SPARQL endpoint) and how to process the gained data into the final

form. Then it is possible to visualize the final RDF data created in the analysis.

One of the analysis (COI.CZ inspections and sanctions by regions and sanction

8Git repository available at https://bitbucket.org/r2rml4net/core (visited June, 2014)
9Available at http://payola.cz (visited June, 2014)

20

https://bitbucket.org/r2rml4net/core
http://payola.cz

value10) was the aim of our implementation. The implementation supports the

SPARQL queries that are needed for this analysis.

10Available at http://live.payola.cz/analysis/7b2ee8cc-f03a-4a04-ba9d-e54e65346191
(visited June, 2014)

21

http://live.payola.cz/analysis/7b2ee8cc-f03a-4a04-ba9d-e54e65346191

3. SPARQL algebra

In this chapter we introduce the SPARQL algebra, the needed properties of its

parts and also the possible transformation of a query. There is an official algebra

described in [2], and the following definitions are inspired by this official algebra.

However, we propose the definitions in a way, that we can analyze it and process

it to the corresponding SQL query. There is also another algebra for SPARQL,

proposed in [6] exactly for converting to SQL, but it does not cover all possibilities

in SPARQL and therefore it does not solve all issues.

3.1 Query parts

First we need to define the elements of the SPARQL algebra. Basic elements are

an RDF term and a Query variable. The RDF term can be an IRI, RDF Literal

or a blank node. The Query variable is a name, bound to some RDF term during

the processing of the result of SPARQL query. These elements are defined in the

SPARQL Query Language [2].

Definition 3.1. Let RDF -I be the set of all IRIs, RDF -L be the set of all

literals and RDF -B be the set of all blank nodes.

Then the set of RDF terms is defined as RDF -T = RDF -I∪RDF -L∪RDF -B.

The SPARQL Query Language document [2] introduces a solution mapping.

The solution mapping is a mapping from a set of query variables to a set of RDF

terms. The result of any SPARQL query can be seen as a sequence of solution

mappings.

Definition 3.2. A solution mapping µ is a partial function, µ : V → RDF -T ,

where V is the set of variables and RDF -T is the set of RDF terms. The domain

of µ (the subset of V where µ is defined) we denote dom(µ).

A solution sequence M is a list of solution mappings, M = {µ1, µ2, ...}. The

domain of the solution sequence is dom(M) =
⋃

µ∈M
dom(µ).

Note 3.2.1. Also any RDF triple can be understood as a solution mapping. The

domain will contain three variables representing subject, predicate and object

in the RDF triple. For example dom(µ) = {?subject, ?predicate, ?object}.

22

These variables will be mapped into the corresponding RDF terms of the RDF

triple. ◦

Definition 3.3. To simplify the following definitions, we introduce also following

operators on solution mappings:

• Join: µ = µ1 ⋊⋉ µ2 where µ, µ1 and µ2 are solution mappings. It means that

dom(µ) = dom(µ1) ∪ dom(µ2), µ(dom(µ1)) = µ1(dom(µ1)), µ(dom(µ2)) =

µ2(dom(µ2)). The ⋊⋉ operator is defined only if µ1(dom(µ1) ∩ dom(µ2)) =

µ2(dom(µ1)∩dom(µ2)). We mark µ1 ∼ µ2 when µ1 ⋊⋉ µ2 is defined (µ1 and

µ2 are compatible), µ1 ≁ µ2 otherwise (µ1 and µ2 are incompatible).

• Reduce: µ = ρ(µ′, Vx) where µ and µ′ are solution mappings and Vx ⊆ V is

a set of variables. It means that dom(µ) = dom(µ′) ∩ Vx and µ(dom(µ)) =

µ′(dom(µ)).

• Equal: We mark µ1 ≡ µ2 when dom(µ1) = dom(µ2) and µ1 ∼ µ2 otherwise

we mark µ1 6≡ µ2.

Note 3.3.1. The ⋊⋉ operator joins two solution mappings into one resulting, that

has mapped the variables into same values as source solution mappings - so the

shared variables must be mapped to the same values.

The ρ operator reduces the source solution mapping into the one that has smaller

domain, but binds the variables to the same values as the source one.

We say that two solution mappings are equal if they have the same domain and

they are compatible. ◦

Note 3.3.2. Sample usage of the defined operators is in the figure 3.1. ◦

The solution sequence is a result of a query over a source dataset. So we

introduce also a formal definition what is a dataset and what is a query.

Definition 3.4. The RDF Dataset is the set of the default graph and the named

graphs (with their names). DS = {G, (u1, G1), (u2, G2), ..., (un, Gn)} where G and

each Gi are graphs and each ui is an unique IRI. The G is called default graph.

Definition 3.5. The SPARQL Query is a mapping Q : DS → P(MQ) where

DS is the source dataset, and P(MQ) is the set of all possible solution sequences

with variables (possibly) bound in Q. The domain of query Q is equal to the

set of (possibly) bound variables in resulting solution sequences and it is marked

23

µ1 = {v1 → a, v2 → b}
µ2 = {v1 → a, v3 → c}
µ3 = {v1 → a, v2 → c}

µ4 = {v3 → c}

(a) Solution mappings

µ1 ⋊⋉ µ2 = {v1 → a, v2 → b, v3 → c}
µ1 ⋊⋉ µ3 is not defined

µ1 ⋊⋉ µ4 = {v1 → a, v2 → b, v3 → c}

(b) The ⋊⋉ (join) operator

ρ(µ1, {v1}) = {v1 → a}
ρ(µ2, {v2}) = {}

ρ(µ3, {v1, v3}) = {v1 → a}

(c) The ρ (reduce) operator

µ1 6≡ µ2

µ1 ≡ µ2

(µ1 ⋊⋉ µ2) ≡ (µ1 ⋊⋉ µ4)
µ1 6≡ µ4

(d) The ≡ (equal) operator

Figure 3.1: Samples for the solution mapping operators

dom(Q). The incomplete SPARQL Query is a mapping Q : DS × P(Ve) →

P(M) where Ve is the set of external variables, denoted dome(Q). The external

variable is a variable that is used in the query, and moreover, it may be unbound.

P(Ve) is the set of all possible solution mappings which domains are a subset or

equal to Ve. P(MQ) is the set of all possible solution sequences with variables

(possibly) bound in Q. If a variable is an external variable but it is not in the

domain of the query (that means that the variable is used, but it is never bound),

we say that the variable is out of the scope. The set of the out of scope variables

we denote as the out of the scope domain, marked domo(Q).

Note 3.5.1. The out of the scope variable is a variable that is used in the query, but

the query does not introduce a value for the variable. The following definitions

include the information how the set is defined or modified using the defined

operators. ◦

Note 3.5.2. All variables out of the scope are used in the query and are unbound,

so domo(Q) ⊆ dome(Q). According to the definition, we can determine the out

of the scope domain, domo(Q) = dome(Q) \ dom(Q). ◦

Note 3.5.3. The external variables may influence the evaluation using a value that

is coming from another source than the query itself. If we specify the value of the

external variable and it is also bound in the query, the value must be the same.

So for Q(DS, µe)→M is true that ∀µ ∈M : µ ∼ µe. ◦

24

Note 3.5.4. The SPARQL Query is only a special case of the incomplete SPARQL

Query, with dome(Q) = ∅. ◦

1 {

2 ?x dc:title ?title.

3 OPTIONAL {

4 ?x ns:price ?price .

5 FILTER (bound(?hasPrice))

6 }

7 }

Figure 3.2: Sample SPARQL Query

Note 3.5.5. In the sample query in the figure 3.2 there is a SPARQL query Q

with following attributes:

• dom(Q) = {?x, ?title, ?price} - these variables may be bound

• domo(Q) = {?hasPrice} - this variable is used, but it cannot be bound

• dome(Q) = {?price, ?hasPrice} - these variables are used and may not

be bound, that means that the evaluation may be affected by an external

value (from other part of a larger query)

◦

We have introduced the complete block of the SPARQL Query, and now we

need to define the building blocks of the query. We will proceed from the basic

elements to the solution modifiers. The following operators represents a SPARQL

Query. However, most of them are using another SPARQL Queries as operands.

So we can imagine the SPARQL Query as a tree, which nodes are operators (leafs

are the operators that do not have any SPARQL Query as an operand). Every

subtree of such tree is also a SPARQL Query (nevertheless it may be incomplete).

Definition 3.6. The Basic graph pattern BGP is a mapping BGP : DS →

P(MBGP) where DS is the source dataset, and P(MBGP) is the set of all possible

solution sequences with variables used in the pattern. The set of used variables is

the domain dom(BGP). The basic graph pattern does not have any variables out

of the scope, so the domo(BGP) = ∅. The empty graph pattern is a mapping

EGP : G → {ME} where ME is the solution sequence containing one solution

mapping µE : ∅ → ∅.

25

Note 3.6.1. The basic graph pattern is a SPARQL Query representing a triples

pattern. For example, the triples pattern ?x foaf:name ?name is represented by

the BGP with domain dom(BGP) = {?x, ?name}. ◦

To cover group graph patterns, we need to introduce a way, how to combine

multiple basic graph patterns into one group graph pattern. However, we will not

introduce it as a combination of basic graph patterns; we introduce combinations

of two queries.

Definition 3.7. The join operator ⋊⋉ is a binary operator to join two incomplete

queries into one. For Q′ = Q1 ⋊⋉ Q2, where Q′, Q1 and Q2 are incomplete

SPARQL queries, we denote Q′(DS, µ′e) → M ′. DS is the source dataset and

µ′e is the concrete solution mapping of external variables. The M ′ is the set of

µ1 ⋊⋉ µ2 for every µ1 and µ2 meeting following conditions:

• µ1 ∼ µ2

• µ1 ∼ µ′e

• µ2 ∼ µ′e

• µe
1 = ρ(µ2 ⋊⋉ µ′e, dome(Q1))

• µe
2 = ρ(µ1 ⋊⋉ µ′e, dome(Q2))

• µ1 ∈ Q1(DS, µe
1)

• µ2 ∈ Q2(DS, µe
2)

Note 3.7.1. The resulting solution mappings in M ′ has no additional variables,

on the contrary, the result can have the smaller set of external variables. So

dom(Q′) = dom(Q1) ∪ dom(Q2) and dome(Q′) = (dome(Q1) ∪ dome(Q2)) \

dom(Q′). ◦

This join operator works exactly in the way how the group graph pattern com-

bines the simple patterns - it joins every pair of compatible (the shared variables

are bound to same values) solution mappings from two subqueries. For exam-

ple, the group graph pattern in the figure 3.3 can be translated into the query

BGP{?x foaf:name ?name} ⋊⋉ BGP{?x foaf:mbox ?mbox}. We can also add constraints to

26

1 {

2 ?x foaf:name ?name .

3 ?x foaf:mbox ?mbox .

4 }

Figure 3.3: Simple group graph pattern

1 {

2 ?x foaf:name ?name .

3 ?x foaf:mbox ?mbox .

4 FILTER regex(?name, "Smith")

5 }

Figure 3.4: Group graph pattern with filter

the group graph pattern (as in the query in the figure 3.4) and for this rea-

son, we will introduce the selection operator. However, we will first define three

expressions that will be used to define the selection operator.

Definition 3.8. The filter expression is a mapping f : P(Vx)→ {true, false}

where Vx is the set of variables (Vx ⊆ V) and P(Vx) is the set of all solution

mappings µi which have domain dom(µi) = Vx. The set Vx is called the out of

the scope domain of f , domo(f).

Definition 3.9. The exists expression is the mapping fE : P(Vx) × P(Q) →

{true, false} where Vx is the set of variables (Vx ⊆ V), and P(Vx) is the

set of all solution mappings µi which have domain dom(µi) = Vx and P(Q)

is the set of all queries Qi for which the condition domo(Qi) ⊆ Vx and Vx ⊆

(dom(Qi) ∪ domo(Qi)) holds true.

fE(µ, Qi) is true exactly when for µ′ = ρ(µ, domo(Qi)) and Qi(DS, µ′) = M

is true that ∃µi ∈M : µ(dom(µ) ∩ dom(Qi)) = µi(dom(µ) ∩ dom(Qi)).

The set Vx is called the out of the scope domain of fE, domo(fE).

Definition 3.10. The not exists expression is the mapping fNE : P(Vx) ×

P(Q) → {true, false} (the same as the exists expression). The fNE(µ, Qi) for

µ ∈ P(Vx) and Qi ∈ P(Q) is true exactly when fE(µ, Q) is false, domo(fNE) =

domo(fE).

Note 3.10.1. The set Vx in (not) exists expression stands for variables that are

used inside the filter expression and are also present anywhere outside the filter.

For example the exists filter from query 3.5 has Vx = {?x, ?n}. ◦

27

1 {

2 ?x :p ?n

3 FILTER NOT EXISTS {

4 ?x :q ?m .

5 FILTER(?n = ?m)

6 }

7 }

Figure 3.5: Inner filter in exists filter

Note 3.10.2. The filter expressions contain the filtering function that will decide

whether the passed solution mapping is mapped to true or to false. On the

contrary, the (not) exists expressions always have the same filtering function,

that is using the extra parameter (a SPARQL query). They differ only in their

out of the scope domains. ◦

Definition 3.11. The selection operator σ is an operator to filter results of an

query. We define it as the tuple of the sets containing filters and (not) exists ex-

pressions (in tuples with their corresponding inner queries), σ = (Σf , ΣfE , ΣfNE):

• Σf = {f1, f2, ..., fk} where fi is a filter expression fi : P(V f
i) → {true,

false}.

• ΣfE = {(fE
1 , QE

1), (fE
2 , QE

2), ..., (fE
j , QE

j)} where (fE
i , QE

i) is the tuple of

exists expression and its inner query, fE
i : P(V E

i)×P(Q)→ {true, false}

and QE
i ∈ P(Q).

• ΣfNE = {(fNE
1 , QNE

1), (fNE
2 , QNE

2), ..., (fNE
k , QNE

k)} where (fNE
i , QNE

i) is

the tuple of not exists expression and its inner query, fNE
i : P(V NE

i) ×

P(Q)→ {true, false} and QNE
i ∈ P(Q).

The selection operator is an unary operator to filter results of an incomplete

query. Q′ = σ(Q), where Q′ and Q are incomplete SPARQL queries, means that:

• Operator σ does not bind any additional variables, so dom(Q′) = dom(Q).

• Expressions in σ may use variables that can be unbound in Q, so the oper-

ator σ can add additional external variables, dome(Q′) ⊆ dome(Q). It can

be calculated using following formula:

28

dome(Q′) =





dome(Q) ∪





⋃

fi∈Σf

domo(fi)



 ∪







⋃

(fE
1

,QE
1

)∈Σ
fE

domo(fE
1)







∪







⋃

(fNE
1

,QNE
1

)∈Σ
fNE

domo(fNE
1)











 \ dom(Q)

• We denote Q′(DS, µ′e) → M ′. DS is the source dataset and µ′e is the

concrete solution mapping of external variables. The M ′ is the set of all

solution mappings µ meeting following conditions:

– µe = ρ(µ′e, dome(Q))

– µ ∈ Q(DS, µe)

– µ ∼ µ′e

– µ′ = µ ⋊⋉ µ′e

– ∀fi ∈ Σf : µ′i = ρ(µ′, domo(fi)), fi(µ
′
i) = true

– ∀(fE
i , QE

i) ∈ ΣfE : µ′i = ρ(µ′, domo(fE
i)), fE

i (µ′i, QE
i) = true

– ∀(fNE
i , QNE

i) ∈ ΣfNE : µ′i = ρ(µ′, domo(fNE
i)), fNE

i (µ′i, QNE
i) = true

Note 3.11.1. The proposed definition of the selection operator seems complicated,

but it is straightforward. The selection operator contains the set of expression

and their inner queries for (not) exists expressions. The evaluation of the operator

is a filter of values - all expressions must be true. ◦

σ

⋊⋉

BGP BGP

FILTER regex(?name, "Smith")

?x foaf:name ?name ?x foaf:mbox ?mbox

Figure 3.6: Algebra for the query in the figure 3.4

In the group graph pattern, there can also be optional values. The optional

values are used only when applicable. Otherwise, it only extends the domain,

29

and the variables remain unbound. To handle the optional values we propose the

left join operator, in a similar way as we introduced the join operator.

Definition 3.12. The left outer join operator ⋊⋉σ is a binary operator to op-

tionally join two incomplete queries into one. For Q′ = Q1 ⋊⋉σ Q2, where Q′,

Q1 and Q2 are incomplete SPARQL queries and σ is the selection operator,

we denote Q′(DS, µ′e) → M ′. DS is the source dataset and µ′e is the con-

crete solution mapping of external variables. The M ′ = Mjoin ∪Mnotjoin where

Mjoin = σ(Q1 ⋊⋉ Q2)(DS, ρ(µ′e, dome(σ(Q1 ⋊⋉ Q2)))) and Mnotjoin is the set of all

µ1 meeting the following conditions:

• µe
1 = ρ(µ′e, dome(Q1))

• µ1 ∈ Q1(DS, µe
1)

• µe
2 = ρ(µ1 ⋊⋉ µ′e, dome(Q2))

• ∀µ2 ∈ Q2(DS, µe
2) : µ1 ⋊⋉ µ2 /∈Mjoin

Note 3.12.1. The left outer join is very similar to a standard join of two queries

with additional filter (with the scope over both source queries). However, when

for some solution mapping from the left operand there is no suitable solution

mapping from the right operand, then also the solution mapping from the left

operand is in the result, without any modifications. In other words, all solution

mappings from the left operand will be present in the result, and they will be

optionally extended by bindings from the right operand. ◦

Note 3.12.2. The resulting solution mappings in M ′ have no additional variables

in the domain. So dom(Q′) = dom(Q1) ∪ dom(Q2). However, the selection

operator σ can add another external variables and on top of that, all variables

from Q2 may be unbound. So the set of external variables can be calculated using

the following formula:

dome(Q′) = dome
(

σ(Q1 ⋊⋉ Q2)
)

∪
(

dom(Q2) \
(

dom(Q1) \ dome(Q1)
)

)

◦

Note 3.12.3. In the figure 3.7 is the sample for the left outer join operator. It

also shows the possible usage of the inner selection function, using two equivalent

algebra representations (the equivalence is shown later, in the theorem 3.25). ◦

30

1 {

2 ?x foaf:name ?name .

3 OPTIONAL {

4 ?x foaf:mbox ?mbox .

5 FILTER regex(?name, "Smith")

6 }

7 }

(a) The query

⋊⋉

BGP σ

BGP

FILTER regex(?name, "Smith")

?x foaf:name ?name

?x foaf:mbox ?mbox

(b) The algebra

⋊⋉σ

BGP BGP

FILTER regex(?name, "Smith")

?x foaf:name ?name ?x foaf:mbox ?mbox

(c) The algebra transformed using the theorem 3.25

Figure 3.7: Sample algebra containing the left outer join

In SPARQL, there is possible to assign a value to a variable using BIND

clause. It defines the calculation of value and the variable to be assigned. This

possibility is covered in the following definition.

Definition 3.13. The extend operator ε(?x;f) is an unary operator to assign

a value calculated in expression f to the variable ?x. The expression f is the

mapping f : P(Vx) → RDF -T where P(Vx) is a set of all solution mappings µi

which have domain dom(µi) = Vx, the set Vx is the out of the scope domain of f

denoted domo(f).

For Q′ = ε(?x;f)(Q), where Q and Q′ are incomplete queries, ?x is the variable

31

to be assigned and f is the assigning function, we denote Q′(DS, µ′e) → M ′.

DS is the source dataset and µ′e is the concrete solution mapping of external

variables. It must be true that the domain of Q does not contain the variable ?x

(?x /∈ dom(Q)). The M ′ is the set of all µ′ meeting the following conditions:

• val = µ′(?x)

• µe = ρ(µ′e ⋊⋉ {(?x, val)}, dome(Q))

• ∃µ ∈ Q(DS, µe) meeting the following conditions:

– µ′ = µ ⋊⋉ {(?x, val)}

– µc = ρ(µ ⋊⋉ µ′e, domo(f))

– val = f(µc)

The val is the assigned value of the variable. Actually, it is possible that the

assigning function will not return any value. In that case we understand val as

the unbound indicator. Then µe = ρ(µ′e, dome(Q)), µ′ = µ and f(µc) does not

return any value.

The BIND clause is not the only way how to assign a value to a variable. It

is also possible to use VALUES clause to specify multiple values for one or more

variables. Thus, we propose a definition for a query that has constant result (the

specified values).

Definition 3.14. The values query is a query VM : DS → M where DS is the

source dataset, and M is the selected solution sequence that is always returned as

the result. The domain of VM is the set of used variables in the solution sequence

M , so dom(VM) = dom(M). It does not have any variables out of the scope,

so domo(VM) = ∅. However, it is possible to let a variable unbound. The set

of external variables is the set of all possibly unbound variables, so it can be

calculated using the formula dome(VM) =
⋃

µ∈M

(

dom(M) \ dom(µ)
)

.

The SPARQL introduces two operators, that do the set operations on query

results. The union operator and the minus operator. These operators do exactly

what is expected according to their names.

Definition 3.15. The union operator ∪ is a binary operator to union two

queries. For Q′ = Q1 ∪ Q2, where Q′, Q1 and Q2 are incomplete SPARQL

32

Queries, we denote Q′(DS, µ′e) = M ′. DS is the source dataset and µ′e is

the concrete solution mapping of external variables. M ′ = M1 ∪ M2. M1 =

Q1(DS, ρ(µ′e, dome(Q1))) and M2 = Q2(DS, ρ(µ′e, dome(Q2))).

1 {

2 { ?book dc10:title ?title }

3 UNION

4 { ?book dc11:title ?title }

5 }

(a) The query

∪

BGP BGP

?book dc10:title ?title ?book dc11:title ?title

(b) The algebra

Figure 3.8: Sample algebra containing the union

Note 3.15.1. The union operator makes the simple union of the solution sequences,

so it affects the domain in the same way. dom(Q′) = dom(Q1) ∪ dom(Q2) and

dome(Q′) = dome(Q1) ∪ dome(Q2). ◦

Definition 3.16. The minus operator \ is a binary operator to filter the result

from left operand using the result from right operand. For Q′ = Q1 \ Q2, where

Q′, Q1 and Q2 are incomplete SPARQL Queries, we denote Q′(DS, µ′e) = M ′.

DS is the source dataset and µ′e is the concrete solution mapping of external

variables. The M ′ is the set of all solution mappings µ1 meeting the following

conditions:

• µe
1 = ρ(µ′e, dome(Q1))

• µe
2 = ρ(µ′e, dome(Q2))

• µ1 ∈ Q1(DS, µe
1)

• ∀µ2 ∈ Q2(DS, µe
2) : µ1 6∼ µ2 ∨ dom(µ1) ∩ dom(µ2) = ∅

33

Note 3.16.1. The minus operator removes all solution mappings from the left

operand that are compatible with any solution mapping from the right operand

and they share at least one variable. So when the dom(Q1) ∩ dom(Q2) = ∅ then

Q1 = Q1 \Q2. ◦

Note 3.16.2. The minus operators does not add any variables to the resulting

solution sequence. So dom(Q′) = dom(Q1). But the query Q2 may add some

external variables, so dome(Q′) = dome(Q1) ∪ dome(Q2). ◦

The group graph pattern also provides the capability to access the named

graphs from RDF dataset. The GRAPH clause changes the current active graph,

that will be used for matching basic graph patterns in the subquery of the GRAPH

clause.

Definition 3.17. The graph operator is an unary operator Γu. Γu(Q) for

Q : DS → P(MQ) where DS is the dataset {G, (u1, G1), (u2, G2), ..., (un, Gn)}

and u ∈ {u1, u2, ..., un} returns an identical query, the only difference is, that all

basic graph patterns in the query Q will be evaluated against graph Gu. When

no graph operator is used, the basic graph patterns are evaluated against the

default graph G.

Note 3.17.1. The graph operator does not do anything with variables, so the

domain and the set of external variables remain unchanged. ◦

The proposed definition is for the GRAPH clause, which does not have a vari-

able. The graph is restricted by an IRI name. For the GRAPH clause with

variable instead of IRI restriction, we define the vargraph operator.

Definition 3.18. The vargraph operator is an unary operator Γ{?g} (?g is a vari-

able used in graph clause) and it is defined using the graph operator (from defi-

nition 3.17). For DS = {G, (u1, G1), (u2, G2), ..., (un, Gn)} the vargraph operator

is defined using the following formula: Γ{?g}(Q) =
⋃

u∈{u1,...,un}

(

Γu(Q) ⋊⋉ V{(?g,u)}

)

.

The V{(?g,u)} is the values query that maps dataset into the solution sequence

containing only one solution mapping ?g→ u.

3.2 Allowed query parts operations

The query parts allow several operations that do not change the result of the

query. These operations could be used to optimize the transformation to the

34

SQL query or even make it possible to generate the SQL query. We do not list

every possible operation, only the ones that will be used in this work.

Theorem 3.19. The join operator is associative and commutative.

Proof. First we will prove that the join operator is commutative. The Q1 ⋊⋉ Q2 =

Q2 ⋊⋉ Q1, if and only if DS
Q1−−→ M1, DS

Q2−−→ M2 and ∀µ1 ∈ M1,∀µ2 ∈ M2, µ1 ∼

µ2 : µ1 ⋊⋉ µ2 ≡ µ2 ⋊⋉ µ1 and ∀µ1 ∈ M1,∀µ2 ∈ M2, µ1 6∼ µ2 : µ2 6∼ µ1. If µ1 ∼ µ2

then µ2 ∼ µ1 according to definition. So µ1 ⋊⋉ µ2 is defined if and only if µ2 ⋊⋉ µ1

is defined. The domain is equal for both variants because the operator set union

is also commutative. Moreover, according to the definition, the resulting solution

mapping maps the shared variables to the same values and the rest is mapped

independently on the fact, whether it is from left or right operand.

The proof of the associative property is in the same way. We need to show,

that (µ1 ⋊⋉ µ2) ⋊⋉ µ3 ≡ µ1 ⋊⋉ (µ2 ⋊⋉ µ3). When µ1 ∼ µ2 and (µ1 ⋊⋉ µ2) ∼

µ3 then ∀v ∈ dom(µ2) : v /∈ dom(µ3) ∨ µ2(v) = µ3(v) because µ2(v) = (µ1 ⋊⋉

µ2)(v) according to definition. The same way it is true that ∀v ∈ dom(µ1) : v /∈

dom(µ3) ∨ µ1(v) = µ3(v). So µ1 ∼ µ3, µ2 ∼ µ3. Because of that, it is true that

∀v ∈ dom(µ2 ⋊⋉ µ3) : v /∈ dom(µ1)∨(µ2 ⋊⋉ µ3)(v) = µ1(v). So we have shown, that

if and only if µ1 ∼ µ2 and (µ1 ⋊⋉ µ2) ∼ µ3 then µ2 ∼ µ3 and µ1 ∼ (µ2 ∼ µ3). And

if it is true then (µ1 ⋊⋉ µ2) ⋊⋉ µ3 and µ1 ⋊⋉ (µ2 ⋊⋉ µ3) are defined and equal.

Note 3.19.1. The proof is simplified to work only with complete queries. The

proof for incomplete queries could be done the same way, the only difference is,

that it will also work with the external variables. ◦

Theorem 3.20. The union operator is associative and commutative.

Proof. The union operator is defined as a set operation on the resulting solution

sequences. The set union operation is associative and commutative, so the union

operator is also associative and commutative.

Theorem 3.21. The join operator is distributive over the union operator.

Proof. The join operator is commutative, so we need only to show, that it is

left-distributive. We need to prove that Q1 ⋊⋉ (Q2∪Q3) = (Q1 ⋊⋉ Q2)∪(Q1 ⋊⋉ Q3).

Denote Q = Q1 ⋊⋉ (Q2 ∪ Q3) and DS
Q
−→ M, DS

Q1−−→ M1, DS
Q2−−→, DS

Q3−−→

, DS
Q2∪Q3−−−−→M ′, Q2 = Q1 ⋊⋉ Q2, DS

Q2

−−→ M2, Q3 = Q1 ⋊⋉ Q3, DS
Q3

−−→ M3. Then

for all µ ∈ M is true that it as product of µ1 ⋊⋉ µ′ where µ′ ∈ M ′ and µ1 ∈ M1.

35

But according to the definition of union M ′ = M2 ∪M3, µ′ is either in M2 or in

M3 and therefore µ is either in M2 or in M3. So M ⊆M2 ∪M3.

∀µ2 ∈ M2 is true that µ2 is a product of µ1 ⋊⋉ µ2 where µ1 ∈ M1 and

µ2 ∈ M2. Because M2 ⊆ M ′, µ2 ∈ M ′ and therefore µ2 ∈ M . We have proven

that M2 ⊆ M , analogically we can show that M3 ⊆ M and for that reason is

true that M2 ∪M3 ⊆M .

Note 3.21.1. The proof is simplified to work only with complete queries. The

proof for incomplete queries could be done the same way, the only difference is,

that it will also work with the external variables. ◦

Theorem 3.22. The selection operator can ascend over the join operator, so

(σ(Q1) ⋊⋉ Q2) = σ(Q1 ⋊⋉ Q2).

Proof. When we filter results from one operand, they cannot be present in the

resulting join. So σ(Q1 ⋊⋉ Q2) cannot contain more solution mappings than

(σ(Q1) ⋊⋉ Q2). We need to show, that it also does not exclude any extra solution

mapping. That could be only if there can be any solution mapping in σ(Q1) ⋊⋉ Q2

that is not present in σ(Q1) ⋊⋉ σ(Q2). For simplicity we assume, that the selection

operator σ uses only one variable ?x. If ?x is bound in Q1, than all incorrect values

of ?x are filtered in σ(Q1) and the join operator cannot add another one. If v

is not bound in Q1 but it is bound in Q2 than the selection σ in σ(Q1) ⋊⋉ Q2

is evaluated according to the value from Q2 (thanks to the definition of the join

operator). If ?x is not bound in Q1 and Q2 then ?x is not bound in Q1 ⋊⋉ Q2, so

it stays out of the scope and the rows are filtered equally whichever way it was

used, (σ(Q1) ⋊⋉ Q2), (Q1 ⋊⋉ σ(Q2)) or σ(Q1 ⋊⋉ Q2).

Theorem 3.23. The selection operator can ascend over left outer join operator,

but only from left operand, so (σ(Q1) ⋊⋉σ′ Q2) = σ(Q1 ⋊⋉σ′ Q2).

Proof. The proof is the same as for the join operator, the only difference is, that

it cannot ascend from the right operand. That is because when we filter all values

in the right operand of left outer join, than the result is not empty, it only does

not process the join.

Theorem 3.24. The selection operator can ascend over the minus operator,

but only from the left operand, so (σ(Q1) \Q2) = σ(Q1 \Q2).

Proof. The minus operator is used as a filter to the left operand. The result of

Q1 \ Q2 cannot contain any solution mapping that is not present in the result

36

of Q1 and every solution mapping in the result of Q1 \ Q2 is also in the result

of Q1. Every solution mapping from the result of (σ(Q1) \ Q2) must satisfy the

selection operator σ and it must not be contained by Q2. It does not matter in

which order we apply these conditions.

Theorem 3.25. The selection operator can ascend into the left outer join

operator (into its inner selection operator), so Q1 ⋊⋉σ1
σ2(Q2) = Q1 ⋊⋉σ′ Q2 where

σ′ is a selection operator containing all filter expressions (and their corresponding

queries) from both selection operators σ1 and σ2.

Proof. This is true according to the definition of the left outer join operator. It

does not matter whether the value is not contained in the result of the right

operand, or it does not satisfy the inner selection.

Note 3.25.1. This is the reason, why there is such thing as the inner selection of

the left outer join operator. We want to have the option to ascend the selection

operator as much as possible to have all variables in the scope. ◦

Theorem 3.26. The extend operator can ascend over the join operator, but

only if the other operand has not the variable in the domain. So (ε(?x;f)(Q1) ⋊⋉

Q2) = ε(?x;f)(Q1 ⋊⋉ Q2) when ?x /∈ dom(Q2).

Proof. The condition that the operand does not have the variable in the scope

assure us that also the join Q1 ⋊⋉ Q2 does not have the variable in the scope. The

rest of the proof is simple. It does not matter in which step we introduce the

variable to the solution mapping, in both cases it is added with the same value.

Also, it cannot influence the join because the variable is out of the scope both

Q1 and Q2.

Theorem 3.27. The graph operator Γu can descend to all basic graph patterns

in its subquery. So the query Γu(Q) can be changed to Q′ where are all basic

graph patterns BGP are replaced with Γu(BGP).

Proof. The proof is only rewriting definition of graph operator. The graph oper-

ator only changes the graph that is used to evaluate the basic graph pattern. So

when we apply it to every BGP in the subtree of Γu then we can simply remove

it from the root.

37

3.3 Query result modifications

We have already proposed the parts that are used to build up the query. The

result modifications can be understood as an operator, taking a query as an

operand. However, when the solution modifier is applied to a query, the eval-

uation does not depend on any external value, even in the case, that the inner

query was incomplete.

3.3.1 Aggregation

The SPARQL language offers a way to aggregate results in a very similar way as

it is done in the SQL language. To divide the solution into one or more groups, we

can use the GROUP BY clause. In the language definition [2] there is mentioned

that every solution set is understood as a grouped solution - when not changed,

it consists of a single group, containing all solutions. So if we do not use the

GROUP BY clause, but we use aggregates as the result of the query, then the

solution sequence is taken to be a single group containing all solutions.

Definition 3.28. The aggregation operator AX groups the solution sequence

by the variables from set X ⊆ V . Q′ = AX(Q) means that:

• the set of all grouped variables X ⊆ dom(Q)

• the set of all not grouped variables X ′ = dom(Q) \X

• the aggregates variables F = {(v, f)|v ∈ X ′, f ∈ P(F)}

• the group aggregates FG is a mapping FG = {(v, f)→ f(G, v)|(v, f) ∈ F}

where f(G, v) is an aggregate f of a variable v in a group G

• the domain of Q′ = X ∪ F

• for DS
Q
−→M , DS

Q′

−−→M ′

– the set of all keys K ′ = {µ′|µ ∈M ′, µ′ = ρ(µ, X)}

– the set of distinct keys K ⊆ K ′: ∀k′ ∈ K ′∃k ∈ K : k′ ≡ k and

∀k1, k2 ∈ K : k1 6≡ k2

– the group with key k, Gk = {µ|µ ∈M, µ ∼ k}

– the result M ′ = {k ⋊⋉ FGk
|k ∈ K}

38

Note 3.28.1. The aggregate functions (P(F)) defined in version 1.1 of SPAR-

QL language [2] are COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT and

SAMPLE. ◦

The provided definition of aggregation operator groups the results and it offers

the aggregated variables as the standard variables (with a unique name), so we

do not need to define the HAVING clause, because it is the same as selection

operator (except it can use only in scope variables).

3.3.2 The solution modifiers

The last applied operators are the solution modifiers. They are used after pattern

matching (and aggregation if present) in the following order:

• ORDER BY

• PROJECTION

• DISTINCT

• REDUCED

• OFFSET

• LIMIT

Definition 3.29. The cardinality of an solution mapping µ in a solution se-

quence M , card[M](µ) = |{µ′|µ′ ∈M : µ′ ≡ µ}|.

Note 3.29.1. The cardinality notes how many equal solution mappings are present

in the solution sequence. ◦

Definition 3.30. The OrderBy operator orders the resulting solution sequence.

Q′ = OrderBy(Q, order) means that for DS
Q
−→ M and DS

Q′

−−→ M ′ is M ′ =

{µ|µ ∈M} and the M ′ is ordered to satisfy the ordering condition order.

Note 3.30.1. The OrderBy does not change the cardinality of solution mappings,

card[OrderBy(Q, order)](µ) = card[Q](µ) and also it does not change the domain

dom(OrderBy(Q, order)) = dom(Q). ◦

39

Definition 3.31. The Projection operator selects and possibly renames the

variables in the resulting solution sequence. It is marked Project(Q, PV) where

PV : V → V ′ is a mapping from variables to variables. PV may not be defined

for every v ∈ V . Project(Q, PV) means that for DS
Q
−→ M and DS

Q′

−−→ M ′ is

M ′ = {µ′|µ ∈ M, µ′ = Proj(µ, PV)}. Proj(µ, PV) = {v′ → x|v
µ
−→ x, v

P V
−−→

v′}. The Project operator must not change the order of the solution sequence.

Note 3.31.1. The Project does not change the cardinality of solution mappings,

card[Project(Q, PV)](Proj(µ, PV)) = card[Q](µ), but it does change the do-

main dom(Project(Q, PV)) = {v′|v ∈ dom(Q), v
P V
−−→ v′}. ◦

Definition 3.32. The Distinct operator filters the solution sequence that there

will be no equal solution mappings. Q′ = Distinct(Q) means that for DS
Q
−→M

and DS
Q′

−−→M ′ is M ′ ⊆M for which is true that ∀µ ∈M ∃µ′ ∈M ′ : µ ≡ µ′ and

∀µ1, µ2 ∈ M ′ : µ1 6≡ µ2. The Distinct operator must not change the order of the

solution sequence.

Note 3.32.1. The Distinct does not change the domain dom(Distinct(Q)) =

dom(Q) but it changes the cardinality of solution mappings card[Distinct(Q)](µ)

= 1. ◦

Definition 3.33. The Reduced operator filters the solution sequence, but not

so strictly as the distinct operator. Q′ = Reduced(Q) means that for DS
Q
−→ M

and DS
Q′

−−→ M ′ is M ′ ⊆ M for which is true that ∀µ ∈ M ∃µ′ ∈ M ′ : µ ≡ µ′.

The Reduced operator must not change the order of the solution sequence.

Note 3.33.1. The Reduced operator does not change the domain dom(Reduced(Q))

= dom(Q) but it may change the cardinality of solution mappings. The cardi-

nality is not strictly set, 1 ≤ card[Reduced(Q)](µ) ≤ card[Q](µ). ◦

Definition 3.34. The Slice operator is used for both OFFSET and LIMIT

clause. Q′ = Slice(Q, start, length) means that for DS
Q
−→ M and DS

Q′

−−→ M ′

is M ′ ⊆ M , where the first start − 1 mappings are skipped and it contains the

following mappings, but not more than length. The Slice operator must not

change the order of the solution sequence.

Note 3.34.1. The Slice operator does not change the domain dom(Slice(Q)) =

dom(Q) but it may change the cardinality. The cardinality is not strictly set,

1 ≤ card[Distinct(Q)](µ) ≤ card[Q](µ). ◦

The provided definitions cover all operators introduced in the SPARQL lan-

guage, but we did not distinguish between the query forms. We described the

SELECT form. However, it does not change anything - the forms CONSTRUCT,

40

ASK and DESCRIBE may be modeled using the SELECT form (it only needs to

represent the result in another way - as a boolean value or an RDF graph).

41

4. Transforming SPARQL query

to SQL query

In this chapter, we will describe the process of the transformation of a SPARQL

query to an SQL query and then the conversion of the results of the SQL query

back to the solution mappings corresponding to the SPARQL query. The imple-

mented tool offers only partial support for the SPARQL query. It provides the

support for the basic graph patterns with some additions. So therefore we will

focus on the parts that are implemented. However, we will also discuss several

problems that must be handled for the not implemented parts of the SPARQL

query.

The SPARQL algebra is defined in a recursive way, as a tree where every

node is a SPARQL query. Also, the tree root is possibly modified by several

result modifications. In this document, we try to propose an algorithm that

will respect the recursive nature and will be able to generate a corresponding

SQL query for every subtree. Proposed algorithm is inspired by the translation

algorithm from [7] however it had not worked with the possibilities of the R2RML

language and it do not fully cover the operators in SPARQL (and the problems

they can cause).

4.1 Transformation phases

The query transformation can be separated into several phases. To be able to

work with the SPARQL query, we need to transform it into its algebra represen-

tation. That allows us to use operations that are introduced in the section 3.2.

Because our algebraic representation is very similar to the algebra given in [2] we

can use the standard approach to generate the algebra (also presented in [2]).

The next phase is the transformation of the algebraic representation into

a correct form, the form from which it can be converted into an SQL query. The

transformation goes through the algebraic tree from leafs to root, so we need to

be able to create an SQL query representing any node from the tree. That is

possible only when we meet every condition that is needed for creating the SQL

query, as mentioned in section 4.4.

42

Now we have the correct form of the algebra, but we are not still able to

create the SQL query. Till this point, there has not been used any information

we have from the R2RML mapping. Therefore in the following step we transform

the algebra while adding the information from the mapping. After that, we have

enough information to know which table we should query and how the query will

look like.

At this point, we are able to transform the algebra, but first we will optimize

the SPARQL algebra (using approaches described in section 5.1) and only then

we will transform it into the SQL query. The SQL query form does not hold only

the query information, but it also has to contain the functions that will be used

to convert the query result back to the SPARQL form (so-called value binders).

Before the execution of the SQL query form, we will run optimizations that

are specific for this form (as described in section 5.2). Finally, the optimized SQL

query is executed using selected RDBMS. That is not the end of the transfor-

mation, after that we will need to transform the query result to the form that is

expected from the SPARQL query, according to the query type.

4.2 Value binders

For every created SQL query (and every subquery) we need to know how to

reconstruct the SPARQL variables. So for every SPARQL variable we attach

exactly one value binder that holds the information how to construct the SPARQL

value according to the column values from the SQL result. The value binder does

not only contain a function that will be used after executing the SQL query, but

we also use it to construct SQL expression when it is needed. So for every SQL

query (and every subquery) we hold also the set of value binders used.

The value binders can get quite complex. When processing the query they can

contain other value binders and choose which to use according to some condition

(that can be written in SQL using the CASE statement), or take first bound

variable (in SQL written using the COALESCE statement). Even when the value

binder does not contain other value binders it can still reference multiple columns

(for example when it represents a variable that is constructed using template, in

SQL written using the CONCAT expression), or it can also reference no column

(when the variable is a constant).

43

In some cases, it may be needed (or maybe it could optimize the query per-

formance) if we create the variable value using the SQL statement. In SELECT

statement, we can use the value binders expression to create a new calculated

column that will contain the exact variable value. So the value can be then easily

used. In that case, we need to replace the old value binder with a new one that

will read the exact variable value from a single column. In some cases we will

need to add another extra column, that will hold the information of the variable

type, for example in a case when the variable can have various datatype (or even

when it can be both literal and IRI).

4.3 Adding the R2RML mapping information to

the algebra

The algebraic representation of the SPARQL query does not have any connection

to a relational database, so we will not be able to decide which table we should

query. That is changed in this phase. The operator that means the actual query

to the dataset is the basic graph pattern (definition 3.6). The BGP operator

means a query to all triples in the dataset that is possibly filtered. According

to the R2RML definition, that means to query all possible combinations of the

graph, subject, predicate and object mappings.

Definition 4.1. The Restricted basic graph pattern is the BGP operator

restricted by a tuple < g; s; p; o > of the graph, subject, predicate and object

mapping from the R2RML mapping file. BGP<g;s;p;o> : DS → P(MBGP) and

for every solution mapping µ ∈ BGP<g;s;p;o>(DS) is true that µ ∈ BGP and

it is generated according to the R2RML mapping using the graph g, subject s,

predicate p and object o mapping.

According the definition of the R2RML mapping (as presented in [3]), it gen-

erates a query for every tuple < g; s; p; o > so we can take the nonrestricted basic

graph pattern as the union of the restricted ones. So therefore we will replace

every basic graph pattern using the rule BGP =
⋃

<g;s;p;o>∈R2RML
BGP<g;s;p;o>.

After this replacement, we know the exact SQL query for every restricted

basic graph pattern. Because every tuple < g; s; p; o > is from an R2RML triples

map, that has the rr:logicalTable node. In that node is stored the needed

query. Also, when the o is an object map with reference to another triples map,

44

we know the exact triple map, that is referenced. From that triple map, we can

also get the SQL query using the rr:logicalTable node. So we know all the

SQL queries needed for this particular BGP<g;s;p;o>.

4.4 Creating the SQL query

In this section, we will describe the transformation of the SPARQL operators

and result modifiers.The creation of the SQL query works in a recursive way, we

handle every operator after we have transformed its child nodes. Result of the

transformation is not only the corresponding SQL query, but also information

that will be used to reconstruct the SPARQL values on the basis of the SQL

query execution result. This information is called a value binder and for every

variable there is not more than one value binder.

4.4.1 The basic graph pattern

Because our algebra is modified, in a way, that every basic graph pattern is

restricted, we know the exact SQL query (from R2RML mapping) that will gen-

erate all triples that conform the restriction. That can be in two possible forms.

A simple select clause from a table (or a statement) or select clause with inner

join in the case when the object mapping is a referenced object map.

So we know the tuple < g; s; p; o > that is in a triple map with defined logical

table using the rr:logicalTable node. That node defines an SQL query (we

denote it Q1) that can be used to retrieve the data. If the object mapping contains

a reference to another triple map, we know also the other SQL query (we denote it

Q2) and moreover, we know the join condition. In that case, the object mapping

uses the columns from the Q2 source to generate the value (using the subject

mapping of the referenced triple map). The query scheme is shown in the figure

4.1.

The basic graph pattern contains three patterns, for the subject, the predicate

and the object. The pattern can contain a variable match pattern, a node match

pattern and a blank node match pattern. For the subject, the predicate and the

subject we do the following steps according to the type of the pattern:

45

1 SELECT <<used columns>>

2 FROM Q1

3 WHERE <<the conjunction of

→֒ conditions >>

(a) If the object mapping does not contain
a reference

1 SELECT <<used columns>>

2 FROM Q1

3 INNER JOIN Q2 ON <<the join

→֒ condition >>

4 WHERE <<the conjunction of

→֒ conditions >>

(b) If the object mapping contains a refer-
ence

Figure 4.1: The query scheme for the basic graph pattern

• Variable match pattern - We create a value binder using the correspond-

ing R2RML mapping from the tuple < g; s; p; o >, and using the referenced

columns from the mapping. If this SELECT statement already contains

a value binder for the same variable, we add a condition to the SELECT

statement, that the value must be the same as the previously created value

binder. However, in that case, we do not add the value binder to the SE-

LECT statement. If this SELECT statement does not contain such value

binder, we add the value binder to the SELECT statement.

• Node match pattern - We create a value binder using the corresponding

R2RML mapping from the tuple < g; s; p; o >, and using the referenced

columns from the mapping. Then we add a condition to the SELECT

statement, that the value must be the same as the value in the node match

pattern. The value binder is here used only to create the condition.

• Blank node match pattern - The blank node pattern is handled like

the variable pattern because in the SPARQL language the blank nodes in

the where clause are very similar to standard variables. They have only

a different scope.

The columns in the SELECT statement is created in a way, that we take all

columns that are used in the value binders in the created SELECT statement.

4.4.2 The join operator

The join operator has two subqueries that are recursively converted to an SQL

statement. We assume that they will be converted into a SELECT clause. If the

statement is not a SELECT clause, it can be easily wrapped into one.

46

The SPARQL join operator is semantically the same as the SQL join. The

most straightforward way, how to transform it, is to take the SELECT clause

from the first subquery and add the SELECT clause from the second subquery

as the last joined source (in the form of the subselect statement). To create the

join condition, we need to take the value binders for variables that are present in

both of the subqueries. Then for every value binder from this collection we have

a condition that the value is equal, or the variable remains from at least one of

the subqueries unbound.

1 SELECT <<used columns>>

2 FROM Q1

3 INNER JOIN Q2 ON <<the conjunction of the join conditions >>

Figure 4.2: The query scheme for the join operator

The simplest approach is shown in the figure 4.2. We take the SQL statements

of the left operand (we denote it Q1) and the right operand (we denote it Q2).

For every SPARQL variable, that is present in the query Q1 and not in the query

Q2, or it is present in the Q2 and not in the query Q1, we add its value binder

to the created SELECT statement. For the variables, which are present in both

queries we need to create a new value binder. For every such variable, we take

the value binder from the query Q1 (we denote it V B1) and the value binder

from the query Q2 (we denote it V B2). Then the created value binder is a value

binder V B that works in a way, that it returns the value using the value binder

V B1 if it is not null. Otherwise, it returns the value using the value binder V B2.

In the SQL language, it can be written as it is shown in the figure 4.3a. This

newly created value binder is then added to the created query. Moreover, for

every variable that is in both queries Q1 and Q2 we need to add a condition, that

the values are the same using the scheme in the figure 4.3b.

1 COALESCE(<<expression for value from VB1>>

2 , <<expression for value from VB2>>)

(a) The value binder scheme

1 <<value from VB1 is NULL>>

2 OR <<value from VB2 is NULL>>

3 OR <<values are equal from both VB1 and VB2>>

(b) The join condition scheme

Figure 4.3: The other schemes for the join operator

47

In some cases, it is possible to create the join without using the subselect

statement. It can be joined in a flattened form - we will join the first SELECT

clause with the original source (the one from the FROM clause) from the second

SELECT clause with the condition created, in the same way, as it is created using

the subselect. Then we will add other sources from the second SELECT clause

(the sources from joins and left outer joins). We need to be aware of two issues.

First of all this approach can produce a different result, because the SELECT

clause can contain modifiers for the result (like LIMIT, OFFSET, aggregation

and orderings). When there is some of them, we have to use the subselect because

otherwise we have no chance to apply the modifier in the same way. The other

issue is that we need to ensure that every column used in conditions in the SQL

statement has to be accessible in the moment of use (so its source has to be

declared in the statement before the first use of the column).

4.4.3 The selection operator

The selection operator is performed over an inner query which is firstly trans-

formed into an SQL SELECT statement. The selection operator is semantically

very similar to the WHERE clause in the SQL SELECT statement. In the re-

lational query, it is also possible to create a filter and (not) exists expressions

and use their conjunction (using AND). That is exactly what will be the result of

the transformation. We will transform every expression in the selection operator

into an SQL form and all of them we will add as a conjunction to the WHERE

statement from the transformed inner query.

The filter expression transformation is straightforward. We need only to trans-

form the operators and function in the SPARQL expression into the SQL form.

However, it can be easily done only when domo(f)∩ dome(Q) = ∅ (f is the filter

expression, Q is the inner expression of the selection operator). In other words,

all used variables are bound in the inner query of the selection operator. Other-

wise we will not be able to easily create the SQL expression for the variables that

may have unknown value in the time of the transformation. Even if we know

how the value binder will look like (that it will be present in some ascendant of

the selection operator), we cannot use that information without assuring that all

used columns are introduced before they will be used here).

The exists expressions can be transformed into the EXISTS statement. First

we will transform the inner query of the exists expression, but we need to handle

48

the variables from domo(fE) (variables that are present in the inner query of the

exists expression, but also outside of it). Every variable from domo(fE) in the QfE

should be replaced using the value binder that we take from the transformation

of Q (or get using the same way as in the filter expression if the variable is outside

of the scope). The not exists expressions are transformed the same way but with

negation of the result (NOT EXISTS statement).

As mentioned, we need to handle the problem when the domo(f)∩dome(Q) 6=

∅. There are two possibilities how to solve this. We can transform the algebra

using the allowed operations to ensure that all variables will be bound when they

are used. We try to move the filter expressions upwards through the algebraic tree

(this step is part of the algebra transformation into a correct form). However, it

is not always possible to remove every external variable. In this case, we need to

use the other approach. The other approach is more complex than the previous

one, we need to find the final value binder for the variable (he should be present

in some ascendant in the algebraic tree) and this value binder should be used

in the transformation. We need to ensure that the columns used by the value

binder are introduced in the SQL expression before they are used (this must be

also done using the allowed operations).

4.4.4 The left outer join operator

The left outer join operator can be in a state that it will not return the proper

results. We will correct it during the transformation phase when we are cor-

recting the algebra. After that, we can transform the operator using the same

mechanics as in the join operator transformation. However, we will use the LEFT

OUTER JOIN statement instead of the INNER JOIN statement. Moreover, we

need to add to the join condition also the left outer join filter (with the same

transformation process used to transform the selection operator).

The nested OPTIONAL problem

The SQL left outer join statement does not have exactly the same semantic as

the OPTIONAL clause. The difference appears in a case when there are two or

more OPTIONALs nested. The problem is mentioned in [6] with the query in

the figure 4.4 (its algebraic representation with the only one possible assignment

in BGPs is in the figure 4.5).

49

1 x :p1 1; :p2 2; :p3 3.

2

3 SELECT ?b ?c

4 WHERE

5 {

6 ?a :p1 ?b

7 OPTIONAL {

8 ?a :p2 ?c

9 OPTIONAL { ?a :p3 ?b }

10 }

11 }

Figure 4.4: The ”NESTED OPTIONALSs” problem from [6]

⋊⋉

?a← x

?b← 1
⋊⋉

?a← x

?c← 2

?a← x

?b← 3

Figure 4.5: Algebraic representation of the problem 4.4

What is the expected result of the 4.4 query? There is only one possible

assignment, from the triple ?a : p1 ?b we assign x to ?a and 1 to ?b. The triple

inside of the first optional ?a : p2 ?c matches with ?a ← x; ?c ← 2. And that

can be joined with the previously matched triple. The last triple inside the nested

optional with ?a← x; ?b← 3 and that cannot be joined with the previous, so the

nested optional will fail. So the expected result is ?b← 1; ?c← 2. The expected

processing is in the figure 4.6.

⋊⋉

?a← x

?b← 1
⋊⋉

?a← x

?c← 2

?a← x

?b← 3

✗

✓

Figure 4.6: SPARQL processing of the problem 4.4

However, when we evaluate the query using SQL, we will get a different result.

SQL evaluates the left outer join from bottom, so it will first join the OPTIONAL

50

with the nested one, that will result in the assignment ?a ← x; ?b ← 3; ?c ← 2

and when we try to join this with the assignment of the top level triple (?a ←

x; ?b ← 1), it will fail because we have already assigned ?b ← 3. So we get the

result ?b← 1 and ?c is unbound. The relational processing is in the figure 4.7.

⋊⋉

?a← x

?b← 1
⋊⋉

?a← x

?c← 2

?a← x

?b← 3

✓

✗

Figure 4.7: Relational processing of the problem 4.4

The problematic of the nested optionals are also described in [8], and there

is also proposed a solution to this problem. We need to transform the algebra in

the form that the processing from left to right will be the same as from bottom.

This can be done as shown in the figure 4.8. We take the left operand of the

left outer join #2 and assign him as the right operand of the left outer join #1.

The left operand of the left outer join #2 will be the left outer join #1. So we

changed the order of evaluation, that the from bottom means the same as the

order from left to right. However, we also need to modify the condition of the

left outer join #2, it can join the right operand only if the right operand of the

left outer join #1 has been joined. It can be done using several approaches. In

this case, we can check whether the variable ?c is bound, but it is also possible to

add a calculated variable to check whether it is bound (to simplify the checking,

checking an arbitrary variable could result in some complex condition, if we add

a suitable variable, we will check only whether one column is NULL or not).

⋊⋉

#1

?a← x

?b← 1
⋊⋉

#2

?a← x

?c← 2

?a← x

?b← 3

(a) Before

⋊⋉

#2

⋊⋉

#1

?a← x

?b← 1

?a← x

?c← 2

?a← x

?b← 3

(b) After

Figure 4.8: Transformation of the NESTED optional

51

4.4.5 The extend operator

The extend operator assigns a result of an expression into a variable. We do

not need to transform it in any way, we only create a value binder (with the

expression from the extend operator) for the value binder and add this created

value binder into the transformed inner query. Then when we need to use the

variable we know how to construct its value, but we do not need to modify the

query. For the transformation, we may need to use the same mechanism as in

the filter expression for the variables that are out of the scope.

4.4.6 The values operator

The values query can be transformed into an SQL SELECT statement which

source will be defined using the VALUES clause. The exact form depends on the

type of the RDBMs, for the T-SQL language (used in MS SQL, described in [9])

is the transformation shown in the figure 4.9. To this select statement we need

to add also the value binders for the variables. They need to handle the NULL

value (it results in an unbound variable) and also it has to handle the variable

type. In this case, we know that the book column contains an IRI (or NULL),

so the value binder take the value as an IRI. However, it can differ, it can be

a literal in one row and IRI in an another. In that case, we need to add an extra

column to the SQL VALUES collection that will be used to recognize the type.

1 PREFIX : <http://example.org/book/>

2

3 VALUES (?book ?title)

4 {

5 (UNDEF "SPARQL Tutorial")

6 (:book2 UNDEF)

7 }

(a) SPARQL query

1 SELECT book, title

2 FROM (VALUES

3 (NULL, 'SPARQL Tutorial'),

4 ('http://example.org/book/book2', NULL)

5) AS vs(book, title)

(b) SQL query

Figure 4.9: Transformation of the values operator

52

4.4.7 The union operator

Although there is the union operator in the SQL language, it is not so straight-

forward to use it.

1 SELECT <<Q1COLS>>

2 FROM Q1

(a) The query for the left operand

1 SELECT <<Q2COLS>>

2 FROM Q2

(b) The query for the left operand

1 SELECT <<Q1COLS>>, <<Q2COLSM>>, 0 AS source_id

2 FROM Q1

3

4 UNION ALL

5

6 SELECT <<Q2COLS>>, <<Q1COLSM>>, 1 AS source_id

7 FROM Q2

(c) The query scheme

1 CASE

2 WHEN source_id = 0 THEN <<expression for value from VB1>>

3 WHEN source_id = 1 THEN <<expression for value from VB2>>

(d) The value binder scheme

Figure 4.10: The schemes for the union operator

The query scheme for the union operator is shown in the figure 4.10c. For

simplicity, we used very simple queries for the operands, but they can be any SE-

LECT statement. We need to add a column, so it must be a SELECT statement

(otherwise, we wrap it in one, as mentioned earlier). There can be different value

binders for the same variable (we have multiple possible sources for the value) so

we need to decide, which value we can use. That is done using the added column

to the queries (source_id) with specific values for every source.

Also, we need to modify the value binders. For every variable present in the

query of the left (with the value binder V B1) or the right (with the value binder

V B2) operand, we create a new value binder that will return the value according

to the value in the column source_id. In the SQL language, it can be written

using the scheme in the figure 4.10d. This newly created value binder is then

added to the created query.

In the query schema in the figure 4.10c there are extra columns «Q1COLSM»

and «Q2COLSM». That is because the SQL requires that both unioned queries

53

do have the same columns. So «Q1COLSM» is created in the way, that we take

every column from «Q1COLS» and we add it to «Q1COLSM» in the form NULL

AS «column name».

4.4.8 The minus operator

The minus operator in the SQL language and the SPARQL language do exactly

the same thing, but it cannot be used without extra processing. Although it does

the elimination of the result the same way, in the SQL language we are working

with the column values and in the SPARQL language with the variable values.

These variables may be represented with more columns, and the same variable

value can be produced by different column values. So we can use two different

approaches. We can transform the select, in a way, that the variable values will

be identified by the column values. That can be done when we create the variable

value exactly into a single column (and possibly one extra column holding the

variable type). However, creating the variable is not so effective, the expression

will probably contain CASE statement and for the variables mapped using the

template also the CONCAT expression.

The other approach is not to use the MINUS statement, but to change it to

selection operator, exactly the NOT EXISTS statement. This method can be

used only when there is some shared variable between left and right operands

(but that is not a problem because we know that if there is no variable shared

then the minus operator does not remove any result). If there is shared variable,

we can simply change the minus operator into the selection with not exists filter

with a query taken from the right operand of the minus operator. That works if

there is a shared variable because in not exists pattern we ask whether there is any

solution mapping corresponding to the inner query. In that case we replace the

occurrences of the shared variables by the actual values from the left operand, so

with share variable we ask for any compatible mapping. Using the minus operator

we ask for the compatible solution mapping. So it is the same.

4.4.9 The graph operator

Using the theorem 3.27, we can descend all the graph operators right to the BGP

operator. When we have a graph operator over the BGP operator, we only need

to add the condition that the used mapping of subject, predicate and object is in

54

the selected graph.

4.4.10 Aggregation

The aggregation system in the SPARQL language is the same as in the SQL

language. To be able to use the SQL functions we need first to convert the

value binders in a form where the whole variable value is in a column, in a way,

in which it can be processed by the aggregation function (in case of the SUM,

MIN, MAX and AVG functions). For the COUNT function, we do not need

any processing (because one row in SQL result represents exactly one solution

mapping in SPARQL result). The functions GROUP_CONCAT and SAMPLE

do not have any analogous functions in the SQL language, but it may be possible

to simulate the aggregation using functions specific to the used RDBMS. For

example MSSQL offers functionality connected with XML documents, that can

be used for the advanced processing of multiple rows into one.

4.4.11 The solution modifiers

The SPARQL language provides several solution modifiers. They are applied

over the final SELECT clause.

The ORDER BY operator works in the same manner as in the SQL language,

but we need to add columns that will be used to order in SQL. However, the

columns must simulate the situation when we have a variable with more possible

types. We need to follow the order introduced in the definition of SPARQL

language (see [2]), that means the following order:

1. Not bound variables

2. Blank nodes

3. IRIs

4. RDF literals

The projection operator does not involve any changes in the SQL query. We

only work with the value binders. Some remain untouched, some are renamed,

and some are removed at all.

55

For the distinct operator, we need to transform the columns (and the value

binders) in a way that the row will uniquely identify a solution mapping. So for

every variable we will have one column with the variable value (or two columns

with the variable value and type as mentioned in section 4.2). To this transformed

SQL query we only add DISTINCT statement.

For the reduced operator, we can (optionally) add the DISTINCT statement

too, without any transformation. It will remove all duplicities in the SQL execu-

tion result. It may not remove all duplicities in the SPARQL result set (because

two different SQL results may end up in the same SPARQL solution mapping),

but it does not remove any solution mapping that must not be removed.

For the slice operator, we can use the SQL statement because we have our

data in a manner that one row in SQL result corresponds to exactly one solution

mapping. Unfortunately, the slice operator differs in various RDBMS, so we need

to produce the right statement for the used RDBMS. Moreover, also meet any

restrictions of a particular RDBMS implementation, for example, MSSQL can

use OFFSET only if the operator ORDER BY is used.

4.4.12 Other needed operations

There are several operations that are needed to generate the SQL query, and we

have not them covered.

Property path

The triple pattern in SPARQL may not be only in the form subject, predicate and

object, it can contain more complex structure for the predicate. However, these

are not mentioned in our proposed algebra. That is because we can convert the

property path into the simple form. In the figure 4.11, we propose the conversion

of the common property path expression. There are several more, that can be

converted too, but the conversion is not so plain (property sets and ZeroOrOne)

and there are property paths that will be difficult to map into an SQL query

(OneOrMorePath and ZeroOrMorePath). These are not yet supported by the

proposed solution.

56

Name Form Transformed to

Predicate ?x iri ?y -
Inverse ?x p̂ath ?y ?y path ?x

Sequence ?x path1/path2 ?y (?x path1 ?z) ⋊⋉ (?z path2 ?y)
Alternative ?x path1|path2 ?y (?x path1 ?y) ∪ (?x path2 ?y)

Figure 4.11: Converting the property path

The vargraph operator

In our proposed solution, we work only with a static set of graphs. In R2RML

language, it is also possible to assign the graph dynamically (according to the

column(s) value). Our proposed solution (to generate all possible graphs and

make the union of this) can still be used, but it is not effective and there probably

is some more effective approach. However, our algebra currently does not provide

any better support.

4.5 Transformation of the SQL result

After we have created and executed the SQL query, we need to transform the

SQL result to the form that is expected by the SPARQL query. If we have the

SPARQL query in the SELECT form, we only need to use value binders for every

row. Every value binder represents a variable, and every row represents a solution

mapping. So that is the only processing needed.

If the SPARQL query is in the CONSTRUCT form, we need first to create

solution mapping for every row from the SQL result and then apply the template

from CONSTRUCT to build the triples from the solution mappings. The sample

is shown in the figure 4.12. The template is applied for every returned solution

mapping. The template can contain blank nodes, these blank nodes are generated

unique for every single solution mapping, for different solution mappings there

will be different blank nodes generated.

For the ASK form, we need only to check whether the solution has any possible

solution mapping or not. Because we have our query in a form that every row

from the SQL result represents a solution mapping, so we need only to check

whether there is at least one row returned. To optimize this, we can improve our

query using slice operator, to limit the returned result count, so we will have zero

or one result.

57

1 CONSTRUCT { ?x vcard:N _:v .

2 _:v vcard:givenName ?gname .

3 _:v vcard:familyName ?fname }

(a) The template

?x ?gname ?fname

1 _:a Alice Hacker
2 _:b Bob Hacker

(b) Variable bindings

subject predicate object

1 _:a vcard:N _:x1
2 _:x1 vcard:givenName Alice
3 _:x1 vcard:familyName Hacker
4 _:b vcard:N _:x2
5 _:x2 vcard:givenName Bob
6 _:x2 vcard:familyName Hacker

(c) Results set

Figure 4.12: Sample CONSTRUCT template processing

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 DESCRIBE ?x

3 WHERE { ?x foaf:name "Alice" }

(a) DESCRIBE form

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 CONSTRUCT { ?x ?p ?o }

3 WHERE

4 {

5 ?x foaf:name "Alice";

6 ?p ?o.

7 }

(b) CONSTRUCT form

Figure 4.13: Converting the DESCRIBE into the CONSTRUCT form
.

The DESCRIBE form has no exact specification what should be returned,

but we can convert it into a CONSTRUCT form returning all resources that are

connected with the node that should be described, example shown in the figure

4.13.

58

5. Optimizing query

In this chapter, we will discuss methods that can be use to optimize the query or

the transformation process. We have two main types of optimization. The one

focused on optimizing the SPARQL query and the other focused on optimizing

SQL query. We will also discuss other options how to improve the performance.

5.1 SPARQL algebra optimization

In this section, we will propose several methods that can be used to optimize the

process using some transformations on SPARQL algebra. This kind of optimiza-

tion is used to simplify the algebra for the conversion into the SQL query.

We detect the cases when we are able statically to decide that the operator

will not return any result. Moreover, this observation we propagate through the

algebraic tree to the ascendant operator. The ascendant operator must process

the information. An example is shown in the figure 5.1. Join operator, with one

operand that will not return any result, also cannot return any result (step 1).

Also, when one operand of the union operator will not return any result, we can

replace the operator with the other operand (step 2). So the whole tree from the

figure 5.1 will be replaced by the node Q2.

∪

⋊⋉

∅ Q1

Q2

step 1

step 2

Figure 5.1: Sample processing of the ”no possible result” information

5.1.1 Filtering the restricted basic graph pattern

In the section 4.3, we introduced a system how to replace the basic graph patterns

by the union of the restricted graph patterns. If the basic graph pattern contains

59

an IRI or literal match in subject, predicate or object we can decide which of the

restricted basic graph pattern can actually return some results.

For example, when there is mapping with a template we need to decide

whether the template can match or not (as seen in the figure 5.2), we decide

according to the possible values that can come from the column. Note that if

the template results in an IRI, the column values are converted into an IRI-safe

version (see [3]), so as visible in the sample #3 and #4 (from the figure 5.2)

”12/45” cannot match column value, but ”12-45” can. If we load the column

types and for example we will get that the Code column has integer type, then

we know that the sample #4 cannot match.

BGP pattern R2RML mapping template Can match

1 http://s.com/12345 http://s.com/{Code} ✓

2 http://s.com/12/45 http://s.com/{Code}/{Label} ✓

3 http://s.com/12/45 http://s.com/{Code} ✗

4 http://s.com/12-45 http://s.com/{Code} ✓

5 http://s.com/12-45 http://s.com/{Code}-{Label} ✓

6 http://s.com/12-45 http://s.com/{Code}/{Label} ✗

Figure 5.2: R2RML mapping matches

5.1.2 The join optimization

The other optimization method also uses the mapping information from the

R2RML language. In lots of cases, we can decide whether a join can return

something.

For simplicity we will show the method on two joined basic graph patterns,

that share only one variable (the figure 5.2, the first line represents BGP1, second-

one BGP2). With restricted basic graph patterns, we consider the join in the form

BGP1<g;s1;p1;o1> ⋊⋉ BGP2<g;s2;p2;o2>. The shared variable is ?nuts2 as the object

in BGP1 and the subject in BGP2. So this join can return something only if the

mapping o1 can produce the same value as the mapping s2.

1 ?nuts1 ec:hasSubRegion ?nuts2.

2 ?nuts2 ec:name ?name2.

Figure 5.3: Sample basic graph patterns

60

In the common case, the method goes through all the shared variables. To im-

prove the results it is better not to see the join as an operator with two operands,

but to take nested joins as one large join and process all operands at once. That

means that there may be some variable shared between more than two BGP

operands, and therefore we will dismiss more operators that will not return any

results.

5.1.3 The union optimization

The join optimization (previous subsection, 5.1.2) works with the joins of restrict-

ed basic graph patterns. However, these restricted graph patterns are generated

in a union. The join operator is usually the ascendant of these created unions,

so we cannot apply the previous optimization. From the theorem 3.21, we know

that Q1 ⋊⋉ (Q2∪Q3) = (Q1 ⋊⋉ Q2)∪(Q1 ⋊⋉ Q3) so we can move the union operator

over the join operator.

Using this approach, we can enable the use of the join optimization (mentioned

in 5.1.2) so we can more precisely select the joins that can return some results.

Moreover, we can achieve a more efficient form of the SQL query when we have

the union of simply joined tables instead of the join of complex (unioned) sources.

A sample is shown in the figure 5.4. The triples patterns BGP1 and BGP2

assigns to variables ?x and ?type. The triples pattern BGP3 assigns to variables

?x and ?name. After the application of the union optimization, the algebra is

bigger, but the corresponding SQL query is slightly faster. However, the benefit

is that this optimization method prepared the algebra for the join optimization.

After the application of the join optimization (the templates for the variable

?x in BGP2 and BGP3 cannot match), we have only a single join. The join

BGP2 ⋊⋉ BGP3 is discarded because the templates for the variable ?x cannot

match.

However, it also has its drawbacks. We need to reckon with the fact, that

it can produce lots of unioned joins (it is actually the cartesian product of the

unions). For example, when we have the join of ten triple basic graph patterns

(and that is not a large count, especially when we create some from the property

path patterns) and every basic graph pattern will have five valid restricted basic

graph patterns (after filtering using the mechanism from the subsection 5.1.1)

then we will create a union of 510 = 9765625 joins.

61

⋊⋉

∪

BGP1 BGP2

BGP3

?x← http : //s.com/{Code}
rdf : type

?type← sample : s

?x← http : //x.com/{Code}
rdf : type

?type← sample : x

?x← http : //s.com/{Code}
rdfs : label

?name← {Name}

(a) Original algebra

∪

⋊⋉

BGP1 BGP3

⋊⋉

BGP2 BGP3

(b) After the application of the union optimization

⋊⋉

BGP1 BGP3

(c) After the application of the join optimization

Figure 5.4: The union optimization sample

To optimize the method, we will merge this method with the join optimization

(mentioned in 5.1.2). We will apply the join optimization method during the

creation of the cartesian product. And that will filter only the joins that can

return some result. And because we do it on the fly we discard lots of joins

before they are completed. Most of them will be discarded when it creates the

join of two basic graph patterns with a shared variable, because typically the

62

shared variables are in the subject of the pattern and the IRIs (usually mapped

using a template). And they will not match so often (commonly the subject IRI

template uniquely identifies the R2RML triples map.

The merge with the join optimization can be even more performant if we sort

the joins (using the associativity and commutativity, theorem 3.19) in a way that

the basic graph patterns with shared variables will be as close as possible, so the

join optimization will be able to discard the joins sooner (and therefore it will

work faster).

5.1.4 The select into union optimization

Using the method mentioned in subsection 4.4.7 it is possible that the column

will rise dramatically. For example, if we have 10 sources and each will need 10

columns for the value binders, then we can create the union operator with 101

columns (and most of the values will be a null value). In most of the cases, it is

unnecessary, especially when there is a select over the union operator that will

reduce the variable count.

We can decide which variables will be needed over the union operator and

then apply simple projection operator over the operands of the union operator.

That will possibly reduce the variable count (and so it can also reduce the column

count).

5.2 SQL query optimization

In this chapter, we will discuss several methods that can be used to optimize the

SQL query that is generated using the proposed transformation.

5.2.1 The condition optimization

The query transformation can create quite complex conditions that are more

complex than it is necessary. In this subsection, we will show methods that can

be used to optimize these conditions.

63

We simplify the conditions and also in some cases we detect the cases when

we can decide the condition result without the knowledge of data (the condition

that will always be false or always true). And we work with these conditions

through the logical operands. From the AND (alternatively OR) operator we can

remove all operands that we know that are always true (alternatively always

false). And if we find one operand in the AND (alternatively OR) operator that is

always false (alternatively always true) we can then replace the whole operator

with a condition that is always false(alternatively always true). But it does not

need to be the same condition that we marked as always false(alternatively always

true), that condition can be still quite complex for the SQL query engine, so we

will replace it with a condition in a simple form, 1=0 (alternatively 1=1).

The null column optimizer

In the produced SQL query, there will be lots of conditions that will detect

whether the column value is NULL or not. Even a simple join of two triple

patterns can result in a query with several ”is NULL” conditions (as in the figure

5.5).

1 SELECT COALESCE(L1.Code, L2.Code) AS Code

2 FROM (SELECT Code FROM Lau WHERE Code IS NOT NULL) AS L1

3 INNER JOIN (SELECT Code FROM Lau WHERE Code IS NOT NULL) AS L2

4 ON (L1.Code IS NULL) OR (L2.Code IS NULL) OR (L1.Code = L2.Code)

Figure 5.5: Sample SQL query for join operator

To improve this query we need to analyze whether the column can be NULL

or not. We can detect it from the source that is the origin of the column, from

conditions that are applied or from the expression that is used to create the

column. For example, if we use the query from 5.5 as a subquery of an another

query and we want to decide whether the column Code can be NULL. It is NULL

if and only if COALESCE(L1.Code, L2.Code) is NULL, that means if L1.Code

and L2.Code are both NULL. When we check their sources, we can see that none

of them can be NULL, so the column Code can be NULL.

Even if there will not be the condition WHERE Code IS NOT NULL, we can load

the database schema for the Lau table to get the information whether the column

can be null.

64

If we get the information that the column cannot be NULL, we will then

replace the ”is NULL” conditions with some condition that is always false. We

can also transform some expression, for example, the COALESCE expression can

remove all arguments after first that cannot be NULL. And in the case that there

will remain only one argument, we can replace the COALESCE expression with the

argument. So the sample from the figure 5.5 can be transformed into the form

shown in the figure 5.6 (5.6a is the case when we do not have any information

from the database schema, or we have the information that the column Code can

be null, 5.6b is the case when we get from database schema that the column Code

can not be null.

1 SELECT L1.Code AS Code

2 FROM (SELECT Code FROM Lau WHERE Code IS NOT NULL) AS L1

3 INNER JOIN (SELECT Code FROM Lau WHERE Code IS NOT NULL) AS L2

4 ON L1.Code = L2.Code

(a) Without information from the database schema

1 SELECT L1.Code AS Code

2 FROM (SELECT Code FROM Lau) AS L1

3 INNER JOIN (SELECT Code FROM) AS L2

4 ON L1.Code = L2.Code

(b) With the information from the database schema that Code cannot be NULL

Figure 5.6: Sample transformed SQL query for join operator

The concatenation optimization

When we are creating conditions for the value binders that are based on the

mapping containing the template, the conditions will usually be in the form of

comparison of the CONCAT expression. But this condition can be possibly split

up. We can compare prefixes and suffixes and if it is an IRI safe values from

columns we can split the concatenation more precisely (it is the same logic as in

the filtering of the restricted basic graph pattern, subsection 5.1.1).

The splitting of the concatenation works, in a way, as seen in the figure 5.7.

The first step is to split up the concatenation. And then we can remove the

conditions that are decidable whether they will always be true (comparison of

two constants). If there is some that will always be false then the whole condition

is always false.

65

1 CONCAT('http://s.com/', L.Code, '/', L.Label)

2 = 'http://s.com/12/45'

(a) Original condition

1 ('http://s.com/' = 'http://s.com/')

2 AND (L.Code = '12')

3 AND ('/' = '/')

4 AND (L.Label = '45')

(b) Splitted up condition

1 (L.Code = '12') AND (L.Label = '45')

(c) Cleaned condition

Figure 5.7: The splitting of the concatenation

Comparison of constants

It was used in the concatenation optimization (in the subsection 5.2.1). However,

we will process all comparison of constants, not only the ones that come from the

concatenation splitting. For the SQL engine, it is better to compare 1=0 than

comparing two long strings as a sample.

5.2.2 Flattening the query

Another possible optimization is the effort to achieve the maximum flatness of the

query (having the subquery depth as minimal as possible). We already described

the transformation algorithm, in a way, that it will try to produce the flat queries,

if possible.

The flat queries are better for the SQL engine, because most of the modern

engines contains some form of the query execution optimization. And having

deeply nested subqueries is a way to confuse the engine optimization to not be

able to work properly.

The query from the figure 5.5 will be generated, in a way as shown in the

figure 5.8a. So the optimized version from the figure 5.6b will look like as in the

figure 5.8b.

66

1 SELECT COALESCE(L1.Code, L2.Code) AS Code

2 FROM Lau AS L1

3 INNER JOIN Lau AS L2

4 ON (L1.Code IS NULL) OR (L2.Code IS NULL) OR (L1.Code = L2.Code)

5 WHERE L1.Code IS NOT NULL AND L2.Code IS NOT NULL

(a) Original query flattened

1 SELECT L1.Code AS Code

2 FROM Lau AS L1

3 INNER Lau AS L2

4 ON L1.Code = L2.Code

(b) The optimized query flattened

Figure 5.8: Flattening the query

5.2.3 Reduced optimizer

If we have an SQL source that does not need to return every result (not only

in the DISTINCT or REDUCED query, but also the exists subquery and so on)

we can use another optimization. In the R2RML mapping, there are quite often

mappings that do have a constant value (typical sample is the class of the triple

map and the predicates). And when the SPARQL query asks for these values

and the count is not important for us, we can ask only whether there is at least

one (we cannot remove the query, because we still need to check whether there

will be at least one instance of the constant value).

The benefit of this optimization is that the query execution will not return as

many results. That will make a difference especially with the DISTINCT query

because we reduce the count how many times will be the discount processed by

the SQL engine (because we know the result of the selected subquery).

Is is quite simple to use this optimization method. We only take subqueries

that do not have any non-constant columns (the constant expression as a column

does not bother us), and we add a limit to them, to restrict the result count to

one.

67

5.2.4 The union creation optimization

In the subsection 5.1.4, we have shown the problem with the column count when

generating the SQL query for the union operator. And we proposed an SPARQL

optimization.

We can further reduce the column count if we decide which columns (from

different sources) can have the same name across the union (that means to decide

which columns can be unioned into one column). For this, we need to analyze

the column types (because in the SQL only columns of the same type can be

unioned).

5.3 Other methods

The mentioned methods are used in the transformation algorithm. But there are

also other methods that need to be considered. And they should be handled by

the user.

The database design can affect the effectiveness of the created query. Ideally

we want to query the tables directly but SQL (and also R2RML) language offers

us the possibility to create views. For example the sample from the figure 1.8 can

be changed to take a view as a logical table. For example, in a form as seen in the

figure 5.9. It represents the exact RDF values, but the transformation algorithm

will loose the information that the subject is identified by the Code column.

1 SELECT

2 CONCAT('http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/',

→֒ Code) AS Id,

3 Name,

4 Level,

5 CONCAT('http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/',

→֒ ParentRegion) AS ParentId

6 FROM Nuts

Figure 5.9: Sample view for RDF data

Even when we produce simple query from such view, we can notice the perfor-

mance difference. Although the query from the figure 5.10a seems to be simpler

and more efficient, it is slower than the query from the figure 5.10b (in our testing

68

environment that produced 500 results it was 15% slower).

1 SELECT N.Id AS Id, N2.Id AS ParentId

2 FROM NutsView AS N

3 INNER JOIN NutsView AS N2 ON N2.Id = N.ParentId

(a) Using a view

1 SELECT

2 CONCAT('http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/',

3 N.Code) AS Id,

4 CONCAT('http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/',

5 N2.Code) AS ParentId

6 FROM Nuts AS N

7 INNER JOIN Nuts AS N2 ON N2.Code = N.ParentRegion

(b) Without a view

Figure 5.10: SQL query with view and without a view

In the common queries, there will the most of the conditions use the columns

that are used to create the subject. Because these columns will be usually used

in the joins from the basic graph patterns. So for the database design is very

crucial that these queries should be as effective as possible. That means that it is

ideal to have the subject created from columns (preferable a single column) that

can be easily compared (for example numeric types).

It is good to use indexes, to improve the effectiveness of the column compar-

ison. However, we need to take into consideration, that over-indexing can result

into a worse performance than under-indexing. The proper index selection will

depend on the database schema, and the typical queries used over the database.

However, in most of the cases, it will be good to have indexes over the columns

that are used as a subject in some triple map.

Although the typical usage of the R2RML mapping is the case when we have

a relational database, and we create the R2RML mapping over the fixed database

schema, there is another thing to take into consideration. In the sample 1.1, we

have shown the relational database schema for the NUTS regions. There are 4

levels of the NUTS regions, and it is possible that every level can have some extra

properties. This is the case of type inheritance, and there are several ways how

to represent it in a relational database. Two main possible approaches are:

• One table containing the share properties and several tables with the con-

69

crete types

• One large table containing all possible properties (with NULL values when

the property is not relevant) and a column defining the instance type (ac-

tually the approach used in the sample 1.1, the Level column determines

the type)

We will not discuss their advantages and disadvantages in the term of the

relational database storage. If the inherited types do have so different subjects

that we cannot write the shared type into a shared triples map and we need to

create special logical views for the inherited types. But commonly the inherited

types will have very similar subject so it can be possible to create one triples map

with all shared properties (or with all properties in the second approach).

But what about shared properties defined in different triple maps. For exam-

ple, if we have the same properties, although they are created in other way for

every type. As a sample, we can think about the case with five inherited types

and four properties that will be in all inherited types with the same name but

specific value creation. Then the SPARQL query asking for all these properties

will result in the union of 625 (54) joins. So it is good to avoid this scenario,

because in larger queries the complexity can grow exponential.

70

6. Evaluation

In this chapter, we will evaluate our transformation algorithm. First we will show

several tests that are used to prove the correctness. Then we will compare the

performance of our tool with other possible approaches.

We are not able to evaluate the whole scope of the algorithm. We can test

only the part that is implemented. Also, the evaluation lacks from the current

state of the implementation. If there is some bad result, we will discuss the reason

and what can be done in the future to improve it.

The actual R2RML mapping and database data can be found on the attached

CD (details described in appendix A).

6.1 Correctness

The current implementation is able to serve the queries containing only the BGP

pattern (with limited support for the property path). The queries we will check

are shown on the figures 6.1, 6.6, 6.8, 6.10 and 6.12.

1 PREFIX schema: <http://schema.org/>

2

3 SELECT *

4 WHERE

5 {

6 ?law a schema:Law

7 }

Figure 6.1: Query #1

The first query only gets the list of all subjects of the law type. This type is

represented by a single table (the Laws table, see the figure 6.2) with 30 rows.

The query is translated into the SQL query 6.4. It makes a simple SELECT to

the Laws table and filters out the rows where the column LawId is null, because

that is the column needed to build the subject of the triples. It is a part of

the template in the R2RML mapping file. The SQL query is then successfully

converted into the SPARQL result form, and it contains 30 results.

71

LawId Law

991 OpatřMZDR

992 Syst.RAPEX

993 Vyhl.174/1992

994 Vyhl.478/2000

995 Zák. 102/2001

996 Zák. 145/2010

997 Zák. 159/1999

998 Zák. 185/2001

999 Zák. 22/1997

1000 Zák. 226/2013

1001 Zák. 247/2006

1002 Zák. 253/2008

1003 Zák. 255/2012

1004 Zák. 256/2001

1005 Zák. 307/2013

1006 Zák. 311/2006

1007 Zák. 321/2001

1008 Zák. 353/2003

1009 Zák. 379/2005

1010 Zák. 455/1991

1011 Zák. 477/2001

1012 Zák. 500/2004

1013 Zák. 539/1992

1014 Zák. 552/1991

1015 Zák. 56/2001

1016 Zák. 634/1992

1017 Zák. 64/1986

1018 Zák. 676/2004

1019 Zák. 86/2002

1020 Zák. OSTATNÍ

Figure 6.2: The Laws table

72

?ca

1 http://linked.opendata.cz/resource/domain/coi.cz/law/991

2 http://linked.opendata.cz/resource/domain/coi.cz/law/992

3 http://linked.opendata.cz/resource/domain/coi.cz/law/993

4 http://linked.opendata.cz/resource/domain/coi.cz/law/994

5 http://linked.opendata.cz/resource/domain/coi.cz/law/995

6 http://linked.opendata.cz/resource/domain/coi.cz/law/996

7 http://linked.opendata.cz/resource/domain/coi.cz/law/997

8 http://linked.opendata.cz/resource/domain/coi.cz/law/998

9 http://linked.opendata.cz/resource/domain/coi.cz/law/999

10 http://linked.opendata.cz/resource/domain/coi.cz/law/1000

11 http://linked.opendata.cz/resource/domain/coi.cz/law/1001

12 http://linked.opendata.cz/resource/domain/coi.cz/law/1002

13 http://linked.opendata.cz/resource/domain/coi.cz/law/1003

14 http://linked.opendata.cz/resource/domain/coi.cz/law/1004

15 http://linked.opendata.cz/resource/domain/coi.cz/law/1005

16 http://linked.opendata.cz/resource/domain/coi.cz/law/1006

17 http://linked.opendata.cz/resource/domain/coi.cz/law/1007

18 http://linked.opendata.cz/resource/domain/coi.cz/law/1008

19 http://linked.opendata.cz/resource/domain/coi.cz/law/1009

20 http://linked.opendata.cz/resource/domain/coi.cz/law/1010

21 http://linked.opendata.cz/resource/domain/coi.cz/law/1011

22 http://linked.opendata.cz/resource/domain/coi.cz/law/1012

23 http://linked.opendata.cz/resource/domain/coi.cz/law/1013

24 http://linked.opendata.cz/resource/domain/coi.cz/law/1014

25 http://linked.opendata.cz/resource/domain/coi.cz/law/1015

26 http://linked.opendata.cz/resource/domain/coi.cz/law/1016

27 http://linked.opendata.cz/resource/domain/coi.cz/law/1017

28 http://linked.opendata.cz/resource/domain/coi.cz/law/1018

29 http://linked.opendata.cz/resource/domain/coi.cz/law/1019

30 http://linked.opendata.cz/resource/domain/coi.cz/law/1020

Figure 6.3: The SPARQL result for the query 6.1

73

1 SELECT tab.LawId AS LawId

2 FROM dbo.Laws AS tab

3 WHERE NOT tab.LawId IS NULL

Figure 6.4: SQL query for query 6.1

For this particular query, we will show the source and the final data. The

source database table is shown on the figure 6.2). The R2RML mapping of

the subject for the triple map is a template, as it is seen in the whole R2RML

LawTriples mapping (in the figure 6.5). And as can be seen on the result (the

figure 6.3) the translation into the SPARQL result form works correctly.

Although it is a simple SPARQL query, it has to compare the predicate and

the object. It can be (and it is) done statically, so we exactly know where to get

the triples.

1 <LawTriples > a rr:TriplesMap;
2 rr:logicalTable [rr:tableName "[dbo].[Laws]"];
3 rr:subjectMap [
4 rr:template "http://linked.opendata.cz/resource/domain/coi.cz/law/{LawId}";
5 rr:class schema:Law;
6];
7 rr:predicateObjectMap [
8 rr:predicate rdfs:label;
9 rr:objectMap [rr:column "[Law]";];

10];
11 .

Figure 6.5: The R2RML mapping for laws

To test the filtering that cannot be done statically, there is the second query

(the figure 6.6). For the simplicity, we use very similar query, but we add a triples

pattern that will request another triple with the same subject, the predicate

rdfs:label and the literal object Syst.RAPEX.

The second query translates into the SQL query in the figure 6.7. It is very

similar to the query from the figure 6.7, but it joins the same table to itself

and additionally filters out the results according to the Law column. The query

efficiency will be discussed in the following section, where we evaluates the query

performance. There is also discussed the presence of the casts, that are not

needed in this query. The SQL query returns a single result. The value 992

and the created SPARQL result is also only one, with the value http://linked.

opendata.cz/resource/domain/coi.cz/law/992 assigned to the ca variable.

74

http://linked.opendata.cz/resource/domain/coi.cz/law/992
http://linked.opendata.cz/resource/domain/coi.cz/law/992

1 PREFIX schema: <http://schema.org/>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3

4 SELECT *

5 WHERE

6 {

7 ?ca a schema:Law;

8 rdfs:label "Syst.RAPEX"

9 }

Figure 6.6: Query #2

1 SELECT tab.LawId AS LawId

2 FROM [dbo].[Laws] AS tab

3 INNER JOIN [dbo].[Laws] AS tab2

4 ON CAST(tab.LawId AS nvarchar(MAX))=CAST(tab2.LawId AS nvarchar(

→֒ MAX))

5 WHERE

6 NOT tab.LawId IS NULL

7 AND NOT tab2.LawId IS NULL

8 AND CAST(tab2.[Law] AS nvarchar(MAX))=CAST('Syst.RAPEX' AS

→֒ nvarchar(MAX))

Figure 6.7: SQL query for query 6.6

The third query is getting more complex so we will not show the R2RML map-

ping. The schema:CheckAction represents an inspection that can end (schema:

result) in a ban or sanction. The sanction (not a ban) has a financial im-

pact (schema:result) on the inspected. And the financial value is stored in

gr:hasCurrencyValue. There are 86009 check actions, 26526 sanctions and ev-

ery sanction has set the financial value. However, 2215 sanctions refer to the

check actions that are not stored in our database (they are in the previous time

period that is not present in our database). So there are 24311 sanctions with

assigned financial value and which check action is present in our dataset. The

SPARQL query is converted into the SQL query from the figure 6.9. It has the

same issues as the previous one (and it will be also discussed in the following

section), but it correctly returns 24311 rows that are correctly transformed into

the SPARQL result.

75

1 PREFIX schema: <http://schema.org/>

2 PREFIX gr: <http://purl.org/goodrelations/v1#>

3

4 SELECT *

5 WHERE

6 {

7 ?ca a schema:CheckAction;

8 schema:result/schema:result/gr:hasCurrencyValue ?result.

9 }

Figure 6.8: Query #3

1 SELECT tab6.[Sanction] AS [Sanction], tab.Id AS Id

2 FROM [dbo].[CheckAction] AS tab

3 INNER JOIN [dbo].[CheckAction] AS tab2

4 ON CAST(tab.Id AS nvarchar(MAX))=CAST(tab2.Id AS nvarchar(MAX))

5 INNER JOIN [dbo].[Sanction] AS tab3

6 ON CAST(tab2.[Id] AS nvarchar(MAX))=CAST(tab3.[CheckActionId] AS

→֒ nvarchar(MAX))

7 INNER JOIN [dbo].[Sanction] AS tab4

8 ON CAST(tab3.Id AS nvarchar(MAX))=CAST(tab4.Id AS nvarchar(MAX))

9 INNER JOIN [dbo].[Sanction] AS tab5

10 ON CAST(tab4.[Id] AS nvarchar(MAX))=CAST(tab5.[Id] AS nvarchar(

→֒ MAX))

11 INNER JOIN [dbo].[Sanction] AS tab6

12 ON CAST(tab5.Id AS nvarchar(MAX))=CAST(tab6.Id AS nvarchar(MAX))

13 WHERE NOT tab.Id IS NULL AND NOT tab2.Id IS NULL

14 AND NOT tab3.Id IS NULL AND NOT tab4.Id IS NULL

15 AND NOT tab5.Id IS NULL AND NOT tab6.Id IS NULL

16 AND NOT tab6.[Sanction] IS NULL

Figure 6.9: SQL query for query 6.8

The fourth query contains the DISTINCT query of all classes present in the

query. Although the R2RML mappping has set all the classes statically, we need

to perform a query to decide whether there is at least one instance or not. So

the final SQL query will look as in the figure 6.11. It correctly returns 14 results.

That means all classes defined in the mapping because all the tables used in triple

maps are not empty and produce at least one triple.

76

1 SELECT DISTINCT ?t

2 WHERE

3 {

4 [] a ?t

5 }

Figure 6.10: Query #4

1 SELECT DISTINCT

2 CASE

3 WHEN CAST(un.uncase AS nvarchar(MAX))=CAST(0 AS nvarchar(MAX))

4 THEN 'http://ec.europa.eu/eurostat/ramon/ontologies/geographic

→֒ .rdf#NUTSRegion'

5 WHEN CAST(un.uncase AS nvarchar(MAX))=CAST(1 AS nvarchar(MAX))

6 THEN 'http://ec.europa.eu/eurostat/ramon/ontologies/geographic

→֒ .rdf#LAURegion'

7

8 ...

9 END AS expr

10 FROM (

11 SELECT TOP 1 0 AS uncase

12 FROM [dbo].[Nuts] AS tab

13 WHERE NOT tab.Code IS NULL

14

15 UNION

16

17 SELECT TOP 1 1 AS uncase

18 FROM [dbo].[Lau] AS tab2

19 WHERE NOT tab2.Code IS NULL

20

21 UNION

22

23 ...

24)

Figure 6.11: SQL query for query 6.10

The last fifth query only extends the previous one, but instead of the DIS-

TINCT we use the REDUCED. It joins the classes with their found properties.

Now it is not needed to convert the value binders, so we do not have to convert

the value binders into the exact value. So the SQL query is a list of numbers and

each of it represents one combination of class and property. The query correctly

returns all 73 combinations.

77

1 SELECT REDUCED ?class ?prop

2 WHERE

3 {

4 [] a ?class;

5 ?prop [].

6 }

Figure 6.12: Query #5

1 SELECT DISTINCT un.uncase AS expr FROM (

2 SELECT TOP 1 0 AS uncase FROM [dbo].[Nuts] AS tab

3 INNER JOIN [dbo].[Nuts] AS tab2

4 ON CAST(tab.Code AS nvarchar(MAX))=CAST(tab2.Code AS nvarchar(

→֒ MAX))

5 WHERE NOT tab.Code IS NULL AND NOT tab2.Code IS NULL AND NOT

→֒ tab2.Level IS NULL

6

7 UNION

8

9 ...

10) AS un

Figure 6.13: SQL query for query 6.12

6.2 Performance

We evaluate the performance of the implementations using the created SPARQL

endpoints. We use develop branch of the D2RQ implementation1, the Virtuoso

Universal Server and our implementation. All these contain the support for

creating the standard SPARQL endpoint. To create the proper environment we

test it in a virtual machine hosted on a PC with Intel Core 2 Duo P9500 CPU2.

The virtual machine has assigned 4GB of RAM (from a total of 8GB on the host

PC). As the back database was used the MS SQL 2014 Express, the D2RQ code

is latest3 and the Virtuoso Universal Server is in version 07.10.3207. The virtual

machine runs Windows 7 64-bit.
1The D2RQ is missing several entries, because the queries was not served by the endpoint.

The implementation of the R2RML in the D2RQ server is not a final version, so we can test
only a minority of queries.

22 cores clocked on 2.53GHz
3Downloaded June, 2014

78

Query # Our D2RQ Virtuoso

1 11.5ms 24.8ms 3.24ms

2 18.0ms - 2.97ms

3 2562.1ms - 603.6ms

4 12.0ms 2763.6ms 34.9ms

5 267.6ms - 4866.0ms

Figure 6.14: Table of query execution times

We use the same queries as in the correctness evaluation (figures 6.1, 6.6, 6.8,

6.10 and 6.12). Every query was executed 15-times against the created endpoint.

Then the best and the worsest time was removed and in the table in the figure

6.14 (or comparison in the figure 6.15) you can see the average of the rest 13

executions.

#1 #2 #3 #4 #5
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

11
.5

18

2,
56

2.
1

12

26
7.

6

24
.8

2,
76

3.
6

3.
24

2.
97

60
3.

6

34
.9

4,
86

6

Query

T
im

e
[m

s]

Our D2RQ Virtuoso

Figure 6.15: Query execution times comparison

79

As you can see our transformation works pretty well for the queries #1, #2,

#4 and #5. Although the Virtuoso server is faster for the queries #1 and #2,

there is not so much we can do more to optimize the results. The native solution

is just faster for this type of queries, and we will hardly beat that. On the other

hand, the times are so low, that it probably does not matter.

For the queries #4 and #5 our solution provides the best result. That is

because we need to do only a minimal query to the database, we know the result

from the mapping file. It seems like the D2RQ server does not do optimizations

like our solution. Interesting is the difference between the query execution time

of the queries #4 and #5 using the Virtuoso endpoint. It seems like the classes

are indexed, but their properties do not have an index. So the query perform

very badly.

The query #3 performs very badly using our solution. We believe that it can

be improved. And probably provide very similar performance as the Virtuoso or

maybe even slightly better. The issue is in the generated SQL query (the figure

6.9). There are present too many unneeded casts. It is because our implementa-

tion is not yet able to load the SQL types from the database. If we implement

a database schema loader, that will get all the information about the database

schema we will be able to remove the casts from the query (so the query will look

as it is in the figure 6.16).

1 SELECT tab6.[Sanction] AS [Sanction], tab.Id AS Id

2 FROM [dbo].[CheckAction] AS tab

3 INNER JOIN [dbo].[CheckAction] AS tab2

4 ON tab.Id=tab2.Id

5 INNER JOIN [dbo].[Sanction] AS tab3

6 ON tab2.[Id]=tab3.[CheckActionId]

7 INNER JOIN [dbo].[Sanction] AS tab4

8 ON tab3.Id=tab4.Id

9 INNER JOIN [dbo].[Sanction] AS tab5

10 ON tab4.[Id]=tab5.[Id]

11 INNER JOIN [dbo].[Sanction] AS tab6

12 ON tab5.Id=tab6.Id

13 WHERE NOT tab.Id IS NULL AND NOT tab2.Id IS NULL

14 AND NOT tab3.Id IS NULL AND NOT tab4.Id IS NULL

15 AND NOT tab5.Id IS NULL AND NOT tab6.Id IS NULL

16 AND NOT tab6.[Sanction] IS NULL

Figure 6.16: Optimized version of the query 6.9

And we can optimize it even more. If we load the information that the columns

Id of the table CheckAction and Sanction are their primary keys (we only need

80

the uniqueness) we can remove the joins (because we know, that we cannot join

the row with another row than with the same one). So we will get even better

query, from the figure 6.17.

1 SELECT tab2.[Sanction] AS [Sanction], tab.Id AS Id

2 FROM [dbo].[CheckAction] AS tab

3 INNER JOIN [dbo].[Sanction] AS tab2

4 ON tab.[Id]=tab2.[CheckActionId]

5 WHERE NOT tab.Id IS NULL AND NOT tab2.Id IS NULL

6 AND NOT tab2.[Sanction] IS NULL

Figure 6.17: Optimized version of the query 6.9

The SQL query 6.17 executes approximately ten times faster than the query

6.9, so we believe that it will be possible to reduce the execution time. It will not

be ten times faster because the SQL query execution time is not the only factor.

For example, it will take more time to create an optimized query like this, and

there are things that will take the same time as before, like final transformation

of the SQL results. However, we believe that it is possible to have very similar

or even better time than the Virtuoso server.

6.3 Payola

The target of the implementation is to support the queries for an analysis in the

payola system. The selected analysis is ”COI.CZ inspections and sanctions by

regions and sanction value”4. The required queries are shown in the figures 6.18

and 6.19.

We will not show the transformed queries because they are too long. They

do have the same performance issue as mentioned in the previous section for

the query #3 (in the figure 6.8). So we believe that we will be able to cre-

ate a more performant transformation using the improvement mentioned in the

previous section. However, there is also another thing that results in the less

performant query. The check action location contains a reference to the LAU

regions of both levels using the same predicate s:location. Although we know

which node refers which level, the transformation algorithm does not have this

4Available at http://live.payola.cz/analysis/7b2ee8cc-f03a-4a04-ba9d-e54e65346191
(visited July, 2014)

81

http://live.payola.cz/analysis/7b2ee8cc-f03a-4a04-ba9d-e54e65346191

1 PREFIX gr: <http://purl.org/goodrelations/v1#>

2 PREFIX ruian: <http://ruian.linked.opendata.cz/ontology/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX ec: <http://ec.europa.eu/eurostat/ramon/ontologies/

→֒ geographic.rdf#>

5 PREFIX s: <http://schema.org/>

6 PREFIX dcterms: <http://purl.org/dc/terms/>

7

8 CONSTRUCT {

9 ?ca a s:CheckAction;

10 s:location ?region ;

11 s:geo ?geo;

12 s:title ?title;

13 s:description ?desc;

14 dcterms:date ?date ;

15 rdf:value ?value.

16 ?geo s:latitude ?lat;

17 s:longitude ?lon.

18 }

19 WHERE

20 {

21 ?ca a s:CheckAction;

22 s:location/s:location ?region;

23 s:location/s:geo ?geo;

24 s:object ?object;

25 dcterms:date ?date ;

26 s:result ?result.

27 ?result a <http://linked.opendata.cz/ontology/coi.cz/Sanction >;

28 s:result/gr:hasCurrencyValue ?value.

29 ?object gr:legalName ?title .

30 ?region a ec:LAURegion;

31 ec:level 2.

32 ?geo s:latitude ?lat;

33 s:longitude ?lon.

34 BIND (CONCAT('', ?title, '') as ?desc

→֒)

35 }

Figure 6.18: Query #1 for Payola analysis

information because both levels have the same subject map. So it is not possible

to decide which node refers to the LAU region of ec:level 2.

The performance is shown in the figure 6.20. It was tested on the same

hardware as used in the performance section.

Although the performance is not yet able to compete with the Virtuoso Uni-

versal Server, it returns correct results. For the query #1, the where condition

matches 4273 solution mappings. They are then transformed into 37572 unique

triples. The construct template has 9 triple patterns, so the expected count

is 38457. The difference is 885 triples. That is because the returned solution

82

1 PREFIX gr: <http://purl.org/goodrelations/v1#>

2 PREFIX ruian: <http://ruian.linked.opendata.cz/ontology/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX ec: <http://ec.europa.eu/eurostat/ramon/ontologies/

→֒ geographic.rdf#>

5 PREFIX s: <http://schema.org/>

6 PREFIX dcterms: <http://purl.org/dc/terms/>

7 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

8

9 CONSTRUCT {

10 ?region a ec:LAURegion;

11 ec:level 2;

12 rdfs:label ?l2label ;

13 ec:hasParentRegion ?lau1.

14 ?lau1 rdfs:label ?l1label ;

15 ec:hasParentRegion ?nuts3 .

16 ?nuts3 rdfs:label ?n3label ;

17 ec:hasParentRegion ?nuts2 .

18 ?nuts2 rdfs:label ?n2label ;

19 ec:hasParentRegion ?nuts1 .

20 ?nuts1 rdfs:label ?n1label.

21 }

22 WHERE

23 {

24 ?check a s:CheckAction;

25 s:location/s:location ?region;

26 s:result/s:result [] .

27 ?region a ec:LAURegion;

28 ec:level 2;

29 dcterms:title ?l2label ;

30 ec:hasParentRegion ?lau1.

31 ?lau1 dcterms:title ?l1label ;

32 ec:hasParentRegion ?nuts3 .

33 ?nuts3 rdfs:label ?n3label ;

34 ec:hasParentRegion ?nuts2 .

35 ?nuts2 rdfs:label ?n2label ;

36 ec:hasParentRegion ?nuts1 .

37 ?nuts1 rdfs:label ?n1label.

38 }

Figure 6.19: Query #2 for Payola analysis

Query # Our Virtuoso

1 6098.7ms 1418.1ms
2 8492.4ms 2021.9ms

Figure 6.20: Performance of the Payola queries

mappings contain 4164 unique check actions. So, without the triple with predi-

cate rdf:value, we generate 33312 triples. The solution mappings contain 4260

unique combinations of check action and sanction value. So the total count should

be 37572 triples, and that is the returned count of triples.

83

For the query #2, the where condition matches 5217 solution mappings. They

contain 934 unique LAU2 regions, 75 unique LAU1 regions, 13 unique NUTS3

regions, 7 unique NUTS2 regions and 1 unique NUTS1 region. That means

934 ∗ 4 + 75 ∗ 2 + 13 ∗ 2 + 7 ∗ 2 + 1 = 3927 unique triples. That is exactly the

returned count of triples.

84

7. Implementation

One of the main purposes of this thesis is also the implementation of the tool

that can be used as a virtual SPARQL endpoint over the relational data. As we

mentioned in the evaluation chapter 6, we did not implement the full support for

the SPARQL algebra.

The tool (called R2RMLStore) basically offers the support for:

• The triple pattern (containing variables, nodes or blank nodes)

• Join (multiple triple patterns)

• Property path (but only sequence, inverse and alternative path)

• Limit and offset (but offset can be used only when ordering is used)

• SELECT clause

• CONSTRUCT clause

• BIND pattern (but the expression can contain only CONCAT)

• REDUCED operator

There is also a limited support for:

• DISTINCT

• Ordering

The limited support for these two types means that it is partly implemented,

but it needs some extra work. The DISTINCT operator loses all information

about the node types (whether it is an IRI, literal and the type of the literal)

and returns everything as a string literal. The implemented ordering does not

exactly follow the SPARQL specification, it orders the results only by sorting the

string form of the value. But the ordering is needed when we want to use the

offset (that is the limitation of the MS SQL RDBMS) so we provide this partial

implementation.

85

7.1 Used technologies

The C# 4.5 (currently the newest version of the major language for the .NET

Framework) was selected as the programming language. It is a modern lan-

guage that enables using of various paradigms – imperative, declarative, generic,

object-oriented and event-driven programming. It offers us the option to imple-

ment some parts using other .NET languages, like F# that can be more efficient

for specific tasks, but the current implementation is purely in C#. The disad-

vantage of this selection is that the .NET Framework 4.5 runs nowadays only on

following operation systems1:

• Windows 8.1

• Windows 8

• Windows 7 SP1

• Windows Vista SP2

• Windows Server 2012 R2

• Windows Server 2012 (64-bit edition)

• Windows Server 2008 R2 SP1

• Windows Server 2008 SP2

We have used third-party libraries to work with the RDF data. That means

the dotNetRDF library (section 2.5) for working with RDF and SPARQL. And

the r2rml4net (section 2.6) library for loading the mapping file. These two are

the major libraries for their purposes on the .NET platform.

As a relational database, we have chosen the MS SQL 2014. That is currently

the newest version of a standard database used in .NET applications. But we

plan to implement the support also for other RDBMS.

To create a website that will host the SPARQL endpoint we have chosen the

ASP.NET MVC 5 website. That is a standard approach when building .NET

websites and we did not have any requirements for our tool. The website is only

hosting an already implemented endpoint (in the dotNetRDF library).
1Using Mono project2it may be possible to run the application on other systems, but it was

not tested
2Available at http://mono-project.com/ (visited June, 2014)

86

http://mono-project.com/

7.2 Project

The project can be opened in a Microsoft Visual Studio 2013 Update 2 where is

installed the NuGet Package Manager extension. The project is separated into the

two parts, the website and the storage library. The storage library contains the

complete logic for the data querying. The website is responsible for creating the

instance of the storage with the selected mapping and connection to a database,

configuring the standard SPARQL endpoint and handle all query executions by

the user (calling the storage and printing out its results).

7.3 The storage library

The storage library contains all the logic and models needed for the data querying.

The library consists principally of the following folders:

• Mapping - The R2RML mapping holder and several methods to access the

mapping

• Optimization - The optimization methods, both for SPARQL and SQL

algebra

• Query - The processor executing the whole algorithm and the context for

the query

• Sparql - The models for representing the SPARQL algebra and the builder

that constructs the model from the dotNetRDF representation

• Sql - The models for representing the SQL algebra (including the value

binders), vendor implementation (generating the concrete SQL query and

executing it) and the builder that creates the SQL algebra from the SPAR-

QL algebra

In the root folder there is the class R2RMLStorage that is used from the ap-

plications. This class is only a holder implementing a needed dotNetRDF in-

terface (IQueryableStorage) and for every query calling a proper method on

a QueryProcessor.

87

7.3.1 Processing the query

The processing of the query is shown on the figure 7.1. The query enters the query

processor where we create the context (QueryContext) and prepare the result

handlers. Then the SPARQL query is parsed (using the dotNetRDF library).

The parsed query is then transformed (using the class SparqlAlgebraBuilder)

to our algebra representation (an instance of the interface ISparqlQuery). Then

is the algebra transformed by adding the R2RML mapping information (using the

class MappingProcessor). After that, we call every optimizer for the SPARQL

query (registered instances of the interface ISparqlAlgebraOptimizer). At this

point, we have our final SPARQL algebra.

SPARQL query

Process

query

Parse

query

Build

SPARQL

algebra

Process

R2RML

mapping

Optimize

SPARQL

algebra

Build SQL

algebra

Optimize

SQL

algebra

Create

SQL query

Execute

SQL query

Transform

the SQL

result

SPARQL result

Figure 7.1: Processing the query

The next step is to convert the SPARQL algebra into the SQL form. For that,

there is the class SqlAlgebraBuilder. During the conversion, there are called on-

the-fly optimizers (registered instances of the interface ISqlAlgebraOptimizer-

OnTheFly) for created parts. The created SQL algebra is an instance of the

88

interface INotSqlOriginalDbSource that represents not only an SQL query, but

also value binders that are represented by the query (instances of the interface

IBaseValueBinder). After that, we optimize the SQL algebra (using registered

instances of the interface ISqlAlgebraOptimizer).

The created SQL algebra is then converted to the concrete SQL query. First

all used columns and sources are named (using the class BaseSqlNameGenerator)

and then the query is created (using the class BaseSqlQueryBuilder). We are

preparing the implementation to the form where the conversion will be handled

according to the selected database vendor.

Then the QueryProcessor calls the database vendor implementation (the

class MSSQLDb) to execute the query. To be able to work with different databases,

we have our special interface IQueryResultReader that represents the reader

of the query execution results. So for other vendors than MS SQL we can use

some absolutely different approach to the query execution than the standard

ADO.NET.

The last step is to convert the SQL result into the SPARQL form. It differs

according to the type of the query. For the select form, we simply convert the

values using the value binders (created with the SQL algebra). For other forms, we

do extra processing like transformation using the CONSTRUCT clause template.

The value binders create the concrete value using the LoadNode method. This

method is called for every row, so it is needed to be optimized. Especially for the

standard value binder ValueBinder, it contains complex logic that depends on

the R2RML mapping. For this value binder we prepare the LoadNode function

on the first call, we create an expression tree where all conditions depending on

the R2RML mapping is already evaluated. This expression tree is compiled into

a function, cached (so the function is created only on the first call) and then

called.

The instance registration is done in the class QueryProcessor, but in the

future it will be done using some dependency injection container to make it more

flexible and configurable. Also, there is currently no support for configuration or

logging.

To implement the support for another SPARQL query you need to modify

the SparqlAlgebraBuilder class. This class converts the dotNetRDF repre-

sentation into our algebra representation. If needed, the new SPARQL oper-

89

ator should be implemented in the Slp.r2rml4net.Storage.Sparql.Algebra.

Operator namespace and inherit the ISparqlQueryPart interface (the ISparql-

QueryModifier interface for the solution modifiers). The SPARQL expression

parts are in the Slp.r2rml4net.Storage.Sparql.Algebra.Expression names-

pace and inherit the ISparqlQueryExpression. The new parts need to be sup-

ported in the SqlAlgebraBuilder class, that converts the SPARQL algebra to

the SQL representation. It may be needed to create new classes to represent

another statement (the ISqlOriginalDbSource interface for original database

sources, the INotSqlOriginalDbSource interface for created SQL statements

that can be used as a source), condition (the ICondition interface), expres-

sion (the IExpression interface) or value binder (the IBaseValueBinder inter-

face). That is all enclosed in the Slp.r2rml4net.Storage.Sql namespace. Not

only the SqlAlgebraBuilder class is used to create an SQL query. The class

ConditionBuilder is used to create the conditions, and the class Expression-

Builder is used to create the SQL expressions. The text representation of the

SQL query is then generated using the BaseSqlQueryBuilder class. So the new

SQL parts have to be supported also in this class.

It is possible to implement new optimization algorithms. It is needed to inher-

it the interface ISparqlAlgebraOptimizer for the optimizations of the SPARQL

algebra, the interface ISqlAlgebraOptimizer for the optimizations of the SQL

algebra and the interface ISqlAlgebraOptimizerOnTheFly for the optimizations

of the SQL algebra that are used during the creation of the query. The optimiza-

tion inheriting ISqlAlgebraOptimizer is called only once after the whole algebra

was created. The new optimization class needs to be added to the corresponding

list in the constructor of the QueryProcessor class to register the optimization.

7.4 The website

The website is a standard ASP.NET MVC application. That implies we are

using the Model-View-Controller pattern. That means that every request calls

a method on a controller, which prepares the data in the form of a model, and

the model is then send back as a response in the form that is defined by the view.

The website application is partitioned into the following folders:

• App_Data - Configuration and mapping files

90

• App_Start - Routes and bundles registration

• Content - Static files (stylesheets, javascripts, fonts and images)

• Controllers - Controllers that are handling the requests

• Models - Models for the controllers

• R2RML - Wrappers for the storage library

• Views - Views (html templates) for the controllers

The website provides two options how to execute the query. It can execute the

query using our page (that uses Ajax to call our controller) and display the result

as part of the HTML page. For this approach, we have implemented a method on

JsonController that serves the query (and also includes the internal execution

time - time spend in the storage library). The result is then written on the page

using javascript.

The other option is to use the standard dotNetRDF SPARQL endpoint (im-

plemented as an HttpHandler). It only needs the configuration to access the

storage. For this purpose, we needed to create a factory (R2RMLStorageFactory-

ForQueryHandler) that returns the storage when we reference it in the configu-

ration file. It returns the singleton instance of the storage that is hosted in the

class StorageWrapper).

The class StorageWrapper ensures the creation of the R2RMLStorage in-

stance. On the application start, it loads the database connection string (from

the Web.config file) and the mapping file (path to the file is found in the Web.con-

fig file). After that it tries to parse the R2RML mapping (using the r2rml4net

library) and then create the storage. If anything fails, it sets the StartException

property, and that is checked on the every action executing of the MainController.

If it is not null, it redirects to a special error page where is the exception listed.

91

8. User guide

The R2RMLStore is a web application that is providing a virtual SPARQL end-

point over relational data stored in the MS SQL database. The mapping is defined

by an R2RML mapping file.

8.1 Installation

The R2RMLStore is written for Windows-based hostings capable of running

ASP.NET MVC 5 applications on the .NET 4.5 Framework. The supported OS

are listed in the section 7.1. For the proper use, we will also need a connection

to a MS SQL database, local or remote. We do support MS SQL of version 2012

and newer.

To use the application on a local machine it is needed to have installed In-

ternet Information Services with the support for ASP.NET 4.5 applications. The

IIS can be installed using the Add or Remove features dialog in the Windows

control panel (we need to install the IIS with all the components connected to

the ASP.NET). To register the .NET framework 4.5 into IIS, there is a tool called

aspnet_regiis1.

Using the Internet Information Services Manager tool (it can also be installed

using the Add or Remove features dialog in the Windows control panel) we have

to create a website that will point to some selected folder. Into this folder we will

copy the application from the CD (see appendix A).

If we want to use a local MS SQL database2, we need to install it first. We

only follow the installation instructions and create a default or named database

instance. The configuration (like instance naming, access type etc.) only modifies

the connection string that will be used for the web application configuration.

1Description at http://msdn.microsoft.com/en-US/library/k6h9cz8h(v=vs.80).ASPX

(visited June, 2014)
2Express (free) version of the MS SQL is available at http://www.microsoft.com/

en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx (visited
July, 2014)

92

http://msdn.microsoft.com/en-US/library/k6h9cz8h(v=vs.80).ASPX
http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx

8.2 Configuration

At this point, it is possible to access the web at the virtual address chosen in

the previous step. If the installation proceeded correctly, you should see a page

labeled R2RMLStore. It may show an error ”Application start failed” or the

queries will fail (in error). The SPARQL Endpoint will not be accessible at all.

First we need to set the path to the R2RML mapping definition. This path is

stored in the Web.config file as the value in the configuration/appSettings

section with the key r2rmlConfig.

Then we need to set the connection string to the MS SQL database. It

depends3 on the SQL server we want to use (whether it is local or remote).

There is only one connection string, and it is named r2rmlstoreconnection,

this connection string will be used by the application. The connection string

can be found in the Web.config file in the configuration/connectionStrings

section.

If you configure these two values correctly, it will be possible to run the query

successfully. To test the application, you can use sample data and sample map-

pings from the CD (see appendix A).

8.3 Using the application

There are two possible ways how to use the application. Both options are ac-

cessible from the home page, using the links ”SPARQL Query” and ”SPARQL

Endpoint”.

The ”SPARQL Query” is our implementation of the query execution. It is

accessible from the web browser. After typing the query into the large textarea,

the query is executed by the ”Execute” button. If there is any error, it will be

displayed on the top of the page. Otherwise the result (and the time needed) will

be shown bellow the query.

The ”SPARQL Endpoint” is the standard SPARQL Endpoint implemented in

3Samples are shown at http://www.connectionstrings.com/sql-server-2012/ (visit-
ed June, 2014) and at http://msdn.microsoft.com/en-us/library/jj653752(v=vs.110)

.aspx (visited June, 2014)

93

http://www.connectionstrings.com/sql-server-2012/
http://msdn.microsoft.com/en-us/library/jj653752(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/jj653752(v=vs.110).aspx

the dotNetRDF library. Its configuration is in the ~/App_Data/rdf_config.ttl

file4, but it is set to use the same storage as the ”SPARQL Query” and it should

not be changed. The ”SPARQL Endpoint” does not provide us a pleasant user

interface, but it can be used by a third-party application. It tries to return the

results in the requested format, so it formats the result as HTML in the browser,

but as XML when accessed, for example, from PowerShell (that was the way how

the evaluation tests were ran). To run a query from an external tool, we can pass

the query as the GET parameter named query that means in the query string in

the URL encoded format.

When using, the user should keep on mind that the application is now intended

to use for smaller queries. It is not implemented for creating database dumps and

so on. This restriction results from the fact, that the query execution first loads

the whole result in the memory and then the result is written to the output. This

is the default dotNetRDF behaviour, and it should be probably changed in the

future (for queries with extremely large results).

4The configuration is documented at https://bitbucket.org/dotnetrdf/dotnetrdf/

wiki/UserGuide/ASP/Creating%20SPARQL%20Endpoints (visited June, 2014)

94

https://bitbucket.org/dotnetrdf/dotnetrdf/wiki/UserGuide/ASP/Creating%20SPARQL%20Endpoints
https://bitbucket.org/dotnetrdf/dotnetrdf/wiki/UserGuide/ASP/Creating%20SPARQL%20Endpoints

9. Conclusion

In this master thesis, we presented a formal model for a SPARQL algebra that can

be used to transform the SPARQL query into the SQL query using a user-defined

mapping. This model was then successfully used in the implementation of such

an algorithm. The implementation does not fully cover the possibilities of the

SPARQL query, but it shows the technique how to transform the query to the

SQL form and the SQL result back to the SPARQL form.

Although the transformation is not completely implemented, we have shown

that it is possible for the RDB2RDF system to be effective and even able to

compete with the native solutions. For the query that was not so efficient we

have discussed the way how it can be optimized.

We have found several problems with the transformation. We have shown

that the SPARQL and SQL languages differs, in a way that we have to do some

extra handling before using the similar operator, or we are not able to use it at

all. The difference is primarily in the way of evaluation and how does it work

with types.

The dotNetRDF library is primarily aimed at the usage where the full dataset

is loaded in memory. That results in the fact that the endpoint is not effective

to be used to dump the whole dataset because it typically exceeds the memory

capabilities. If it is needed to return large results (the whole dump, large count of

triples or solution mappings) it may be better to use native RDF solutions (like

virtuoso). However, if the typical queries are returning small results (although the

whole dataset can be large), then our solution fits great. Moreover, our solution

is quite easy to deploy on an existing website. So we can imagine the usage on

various e-commerce and blogging engines.

9.1 Future work

Currently, the implementation has only a limited support for the SPARQL alge-

bra. The first task is to finalize the support for the basic parts of the algebra -

loading the database scheme, load the database types. The database types allow

us to work correctly as it is defined in the R2RML specification (the final RDF

literal type may depend on the database type). Moreover, the schema can be

95

used (as it is mentioned in the section 6.2) to optimize the query.

The next task will be to complete the implementation to support the whole

SPARQL algebra. It may result in several minor changes in the algebra, and it

is also possible that there will be found a better approach than the mentioned

in this work. However, we believe that the proposed algorithm is implementable,

although it will need much code (even for the filter pattern there will be much

code for the transformation to the corresponding SQL functions). The newly

implemented parts may also result in new optimization methods for them.

There is also a group of optimization methods that has not been discussed

at all. We may be able to produce more efficient queries if we first load data

statistics from the database. Then we can modify the optimization methods

accordingly to these data. For example, using the union optimization (described

in the subsection 5.1.3) may not be optimal in all cases.

The current implementation of the SPARQL endpoint is now not working as

efficient as it could be. We will need to implement the endpoint, in a way, that

it will be able efficiently to work with large datasets that exceed the memory

capabilities. The default dotNetRDF endpoint, which is used, is created to work

with datasets stored in memory. Therefore, it is implemented, in a way that it

stores the whole result in the memory and then it is written to the output.

96

Bibliography

[1] RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation 25 February

2014.

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225

[2] SPARQL 1.1 Query Language. W3C Recommendation 21 March 2013.

http://www.w3.org/TR/2013/REC-sparql11-query-20130321

[3] R2RML: RDB to RDF Mapping Language. W3C Recommendation 27

September 2012.

http://www.w3.org/TR/r2rml/

[4] RDF 1.1 Turtle. W3C Recommendation 25 February 2014.

http://www.w3.org/TR/2014/REC-turtle-20140225/

[5] Linked Data - Connect Distributed Data across the Web. [Cited: June, 2014.]

http://linkeddata.org/

[6] Cyganiak, Richard. A relational algebra for SPARQL. Digital Media Sys-

tems Laboratory, HP Laboratories Bristol, 2005. HPL-2005-170

http://www.hpl.hp.com/techreports/2005/HPL-2005-170.pdf

[7] Chebotko, Artem - Lu, Shiyong - Fotouhi, Farshad. Semantics preserv-

ing SPARQL-to-SQL translation. Data & Knowledge Engineering Volume

68, Issue 10, October 2009, Pages 973–1000

[8] Chebotko, Artem - Lu, Shiyong - Jamil, Hasan M. - Fotouhi, Far-

shad. Semantics Preserving SPARQL-to-SQL Query Translation for Op-

tional Graph Patterns. Technical Report TR-DB-052006-CLJF, May 2006.

Revised November 2006

[9] Transact-SQL Reference (Database Engine). Microsoft Developer Network,

[Cited: June, 2014.]

http://msdn.microsoft.com/en-us/library/bb510741

[10] Litwin, Paul. Fundamentals of Relational Database Design. Microsoft Ac-

cess 2 Developer’s Handbook, Sybex 1994

[11] Bizer, Christian - Heath, Tom - Berners-Lee, Tim. Linked Data - The

Story So Far. International Journal on Semantic Web and Information Sys-

tems, Vol. 5(3), Pages 1-22 (2009)

97

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2013/REC-sparql11-query-20130321
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://linkeddata.org/
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.pdf
http://msdn.microsoft.com/en-us/library/bb510741

[12] Bornea, Mihaela A. - Dolby, Julian - Kementsietsidis, Anastasios -

Srinivas, Kavitha - Dantressangle, Patrick - Udrea, Octavian - Bhat-

tacharjee, Bishwaranjan. Building an efficient RDF store over a relational

database. In Proceedings of the 2013 ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD ’13). ACM, New York, NY, USA,

Pages 121-132.

[13] Priyatna, Freddy - Corcho, Oscar - Sequeda, Juan. Formalisation

and Experiences of R2RML-based SPARQL to SQL query translation us-

ing Morph. Proceedings of the 23rd International Conference on World Wide

Web, International World Wide Web Conferences Steering Committee, Pages

479-490, 2014

[14] Harris, Stephen - Shadbolt, Nigel SPARQL Query Processing with Con-

ventional Relational Database Systems. Proceedings of the 2005 Internation-

al Conference on Web Information Systems Engineering, Springer-Verlag,

Pages 235-244, 2005

98

A. CD Contents

The enclosed CD contains this document in a portable document format, pub-

lished folder of the web application (in the folder Publish), the source codes of

the implementation (in the folder Source) and the software documentation (in

the folder Documentation). There are two sample scenarios, the CTIA sample

and the demography sample. The CTIA sample (in the folder Sample/CTIA) is

the sample used in this work, to evaluate the correctness and the performance.

It was also used for the Payola evaluation. The source of the data is taken from

the public database of check actions, sanctions and bans1. The other sample, the

demography sample, (in the folder Sample/Demography) is a sample taken from

open data datasets2. This sample models the demographic data about the Czech

population. It was used in the early stages of the development.

1The source data is available at http://www.coi.cz/cz/spotrebitel/

open-data-databaze-kontrol-sankci-a-zakazu/ (visited June, 2014)
2Available at http://opendata.cz/linked-data (visited June, 2014)

99

http://www.coi.cz/cz/spotrebitel/open-data-databaze-kontrol-sankci-a-zakazu/
http://www.coi.cz/cz/spotrebitel/open-data-databaze-kontrol-sankci-a-zakazu/
http://opendata.cz/linked-data

B. List of Figures

1.1 Database schema sample . 8

1.2 Sample relational data . 8

1.3 Sample SQL query . 9

1.4 Sample SQL query result . 9

1.5 Sample RDF data . 11

1.6 Sample SPARQL Query . 12

1.7 Sample SPARQL query result . 12

1.8 Sample R2RML mapping . 14

1.9 SQL query for the referencing object map 15

3.1 Samples for the solution mapping operators 24

3.2 Sample SPARQL Query . 25

3.3 Simple group graph pattern . 27

3.4 Group graph pattern with filter 27

3.5 Inner filter in exists filter . 28

3.6 Algebra for the query in the figure 3.4 29

3.7 Sample algebra containing the left outer join 31

3.8 Sample algebra containing the union 33

4.1 The query scheme for the basic graph pattern 46

4.2 The query scheme for the join operator 47

100

4.3 The other schemes for the join operator 47

4.4 The ”NESTED OPTIONALSs” problem from [6] 50

4.5 Algebraic representation of the problem 4.4 50

4.6 SPARQL processing of the problem 4.4 50

4.7 Relational processing of the problem 4.4 51

4.8 Transformation of the NESTED optional 51

4.9 Transformation of the values operator 52

4.10 The schemes for the union operator 53

4.11 Converting the property path . 57

4.12 Sample CONSTRUCT template processing 58

4.13 Converting the DESCRIBE into the CONSTRUCT form 58

5.1 Sample processing of the ”no possible result” information 59

5.2 R2RML mapping matches . 60

5.3 Sample basic graph patterns . 60

5.4 The union optimization sample 62

5.5 Sample SQL query for join operator 64

5.6 Sample transformed SQL query for join operator 65

5.7 The splitting of the concatenation 66

5.8 Flattening the query . 67

5.9 Sample view for RDF data . 68

5.10 SQL query with view and without a view 69

101

6.1 Query #1 . 71

6.2 The Laws table . 72

6.3 The SPARQL result for the query 6.1 73

6.4 SQL query for query 6.1 . 74

6.5 The R2RML mapping for laws . 74

6.6 Query #2 . 75

6.7 SQL query for query 6.6 . 75

6.8 Query #3 . 76

6.9 SQL query for query 6.8 . 76

6.10 Query #4 . 77

6.11 SQL query for query 6.10 . 77

6.12 Query #5 . 78

6.13 SQL query for query 6.12 . 78

6.14 Table of query execution times 79

6.15 Query execution times comparison 79

6.16 Optimized version of the query 6.9 80

6.17 Optimized version of the query 6.9 81

6.18 Query #1 for Payola analysis . 82

6.19 Query #2 for Payola analysis . 83

6.20 Performance of the Payola queries 83

7.1 Processing the query . 88

102

	Introduction
	Motivation
	Contribution
	The document structure

	Technical background
	Relational databases
	RDF
	R2RML

	Related work
	Virtuoso Universal Server
	Morph
	TARQL
	D2RQ Platform
	dotNetRDF
	r2rml4net
	Payola

	SPARQL algebra
	Query parts
	Allowed query parts operations
	Query result modifications

	Transforming SPARQL query to SQL query
	Transformation phases
	Value binders
	Adding the R2RML mapping information to the algebra
	Creating the SQL query
	Transformation of the SQL result

	Optimizing query
	SPARQL algebra optimization
	SQL query optimization
	Other methods

	Evaluation
	Correctness
	Performance
	Payola

	Implementation
	Used technologies
	Project
	The storage library
	The website

	User guide
	Installation
	Configuration
	Using the application

	Conclusion
	Future work

	Bibliography
	CD Contents
	List of Figures

