
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Marika Ivanová

Adversarial Cooperative Patfinding

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the master thesis: RNDr. Pavel Surynek, Ph.D.

Study programme: Informatics

Specialization: Theoretical Computer Science

Prague 2014

Acknowledgements

Presented master thesis is focused on a novel problem based on Cooperative
Pathfinding. Work on this thesis started at the beginning of 2013 and so far its
results have been published in

• Marika Ivanová and Pavel Surynek. Adversarial cooperative path-finding:
A first view. AAAI Late Breaking Track, 2013

• Marika Ivanová and Pavel Surynek. Adversarial Cooperative Path-finding:
Complexity and Algorithms. In press, ICTAI 2014.

In the first publication we introduced the problem and described its complexity.
The paper was the only contribution from Czech Republic on AAAI 2013. Sec-
ond paper containing detailed proofs of the problem complexity with all technical
details and experimental evaluation were recently accepted as a regular paper on
ICTAI 2014 conference, which is going to take place in November 2014. There is
a wide range of further research and so more publications can be expected.

I am very grateful to my supervisor RNDr. Pavel Surynek, Ph.D. for his guid-
ance, endless patience and willingness to give me valuable advices regarding all
aspects of the thesis. Neither this thesis nor the publications would ever arise.

I would also like to thank prof. Jan Arne Telle from University in Bergen for
his suggested books concerning complexity of the studied problem.

I must not forget to thank my family and relatives that supported me all the
time and enabled me to study.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Kooperativńı hledáńı cest s protivńıkem

Autor: Marika Ivanová

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı diplomové práce: RNDr. Pavel Surynek, Ph.D., Katedra teoretické in-
formatiky a matematické logiky

Abstrakt: Předložená práce definuje a zkoumá problém kooperativńıho hledáńı
cest s protivńıkem (adversarial cooperative path finding - ACPF), který představuje
zobecněńı známé úlohy kooperativńıho hledáńı cest. Oproti standardńı koopera-
tivńı verzi, v ńıž je úkolem naj́ıt nekoliduj́ıćı cesty pro několik agent̊u spojuj́ıćı je-
jich počátečńı a ćılové pozice, ACPF uvažuje nav́ıc agenty ovládané protivńıkem.
Práce se zaměřuje jak na teoretické vlastnosti, tak na praktické techniky řešeńı
uvažovaného problému. Úlohu ACPF zavád́ıme formálně pomoćı pojmů z teorie
graf̊u a zkoumáme jej́ı výpočetńı složitost, kde ukazujeme, že úloha je PSPACE-
těžká a patř́ı do tř́ıdy EXPTIME. Představujeme a diskutujeme možné metody
vhodné pro praktické řešeńı ACPF. Uvažované řeš́ıćı postupy zahrnuj́ı hladové
algoritmy, minimaxové metody, Monte Carlo Tree Search a adaptaci algoritmu
pro kooperativńı verzi. Z provedeného experimentálńıho vyhodnoceńı vyplývá
mimo jiné překvapivě častá úspěšnost hladových metod a sṕı̌se slabš́ı výsledky u
Monte Carlo Tree Search.

Kĺıčová slova: Kooperativńı hledáńı cest, protivńık, Monte Carlo Tree Search

Title: Adversarial Cooperative path-finding

Author: Marika Ivanová

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Pavel Surynek, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: Presented master thesis defines and investigates Adversarial Cooper-
ative Path-finding problem (ACPF), a generalization of standard Cooperative
Path-finding. In addition to the Cooperative path-finding where non-colliding
paths for multiple agents connecting their initial positions and destinations are
searched, consideration of agents controlled by the adversary is included in ACPF.
This work is focused on both theoretical properties and practical solving tech-
niques of the considered problem. ACPF is introduced formally using terms
from graph theory. We study computational complexity of the problem where we
show that the problem is PSPACE-hard and belongs to EXPTIME complexity
class. We introduce and discuss possible methods suitable for practical solving
of the problem. Considered solving approaches include greedy algorithms, min-
imax methods, Monte Carlo Tree Search and adaptation of algorithm for the
cooperative version of the problem. Surprisingly frequent success rate of greedy
methods and rather weaker results of Monte Carlo Tree Search are indicated by
the conducted experimental evaluation.

Keywords: Cooperative Path-finding, adversarial, Monte Carlo Tree Search

Contents

Introduction 2

1 Multi-agent Path-finding 4

1.1 Basic Definitions and Properties 4
1.2 Theoretical properties . 5
1.3 Selected Algorithms . 6

1.3.1 Local Repair A* . 7
1.3.2 Cooperative A* . 7
1.3.3 Hierarchical Cooperative A* 9
1.3.4 Windowed Hierarchical Cooperative A* 9
1.3.5 Summary of CPF methods 9

2 Adversaries 11

2.1 Basic Attributes and Characteristics 11
2.1.1 Technical Difficulties . 12

2.2 Practical Usage . 12
2.3 Related problems with adversarial aspects 13
2.4 Formal Definition . 13

2.4.1 ACPF Problem . 13
2.4.2 Agent Movement . 14
2.4.3 Solution . 15
2.4.4 Quality of a Progress . 16

2.5 Problem Complexity . 17

3 Solving Adversarial Version 27

3.1 Greedy Methods . 27
3.2 CPF Approach . 28

3.2.1 Adversarial Cooperative A* 28
3.3 Game methods . 31

3.3.1 Game tree . 31
3.3.2 Minimax approach . 32
3.3.3 Monte Carlo approach . 34

3.4 Exploiting instance properties . 39
3.4.1 Offensive and defensive tactics 39

3.5 Method Summary . 39

4 Experiments 40

4.1 Methodology . 40
4.1.1 Instance pattern generation 40
4.1.2 Scenarios . 41

4.2 Results . 42
4.2.1 Greedy deciding . 42
4.2.2 Cooperative path-finding approach 44
4.2.3 Minimax methods . 45
4.2.4 Monte Carlo methods . 46

1

4.2.5 Strategy tournament . 48

Conclusion 52

List of Abbreviations 57

List of Figures 57

List of Tables 58

List of Algorithms 59

Appendix A 60

Appendix B 61

Appendix C 64

2

Introduction

This master thesis addresses adversarial cooperative path-finding (ACPF), a
problem from artificial intelligence field.

ACPF can be regarded as a generalization of cooperative path-finding (CPF)
[30] which is extended by adversarial element outside our control. The standard
cooperative path-finding is a path planning problem in a fully observable static
environment where agents must find non-colliding routes to given separate des-
tinations. All the agents are controlled centrally while agents themselves make
no decisions. CPF is motivated by problems arising in both real environments
and virtual worlds (multi-robot navigation, container relocation, path-finding in
computer games [37]).

The notion of CPF has however limited applicability as not all the environ-
ments are fully cooperative. That is, we cannot regard all the agents as control-
lable and the environment as static any more. Dealing with such adversarial or
hostile elements in the environment beyond the standard CPF is thus desirable.

Our suggestion is to introduce two or more teams of agents that compete in
finding paths to target destinations to model the adversarial element in CPF.
The objective in the ACPF problem is to control agents of one selected team so
that its agents reach their destinations before agents of adversarial teams. There
is a wide range of possibilities how teams of agents can harm each other (occu-
pying target destination, route blocking, agent blocking). Hence, combinatorial
difficulty in ACPF comes not only from the need of avoidance but also from the
need to consider possible harmful actions of adversaries.

The aim of presented work is to investigate the ACPF problem from theoretical
as well as practical perspective. Initially we will concentrate on formal defini-
tion of ACPF. Subsequently we will study theoretical properties of the problem,
particularly its computational complexity.

Investigation of possible solving methods and their experimental verification
is another objective of this work. As the problem is related to n-player games
and cooperative path-finding, we will also focus on methods developed for these
similar problems and consider their adaptation and application for ACPF. Con-
ducted experiments shall give us a closer insight into suitability of the suggested
methods in various ACPF instances. We would like to find out what approaches
are appropriate for different types of instances.

Solving ACPF can be approached from two different directions: combinatori-
al games and path-finding. In terms of artificial intelligence [23], ACPF is an
n-player zero-sum sequential and symmetric game with perfect information. We
can also compare ACPF to popular abstract strategy games like chess or checkers.

As a starting point we propose two greedy methods. Natural characteristics
of our problem immediately suggests application of existing techniques used in
diverse game-like applications. Minimax algorithm with alpha-beta pruning is
a traditional algorithm used for developing computer programs playing board
games. Monte Carlo methods offer an alternative approach, that was successfully
applied to computer go [6] and hex [1].

3

From the path-finding perspective we can be inspired by algorithms used for
multi-agent path-finding in non-adversarial environments. There is a possibility
to adjust these techniques and employ them in solving ACPF instances. One
such algorithm with few different versions is introduced and tested in this work.

Document Structure

The first chapter gives a detailed description of multi-agent path-finding, in par-
ticular cooperative path-finding since these tasks are closely related to the studied
ACPF problem.

Beginning of the second chapter is dedicated to introduction of the adversarial
element present in the studied problem. We provide a formal definition of ACPF
using terms from graph theory. Based on the introduced formalism we study
computational complexity of the problem and try to determine its membership
in complexity classes. Results of this thesis were partially published at AAAI
conference [16].

Remaining two chapters are focused on practical solving methods. The third
chapter discusses possible variants of greedy algorithms, describes common tech-
niques known from games and introduces an algorithm inspired by cooperative
path-finding. Final chapter consists of description of conducted experiments and
presentation of their results.

4

1. Multi-agent Path-finding

In this chapter we provide a general knowledge of multi-agent path-finding and
take a closer look at its special case known as cooperative path-finding. In the end
of the chapter we briefly summarize information about related work on similar
topics.

Basic path-finding is a well known task in computer science. The objective
is to find a route between two selected points. We will also use term source and
target to refer to these two points.

Let us consider an environment with several identical moving entities called
agents. Source and target locations are determined for each agent. The objective
is to find a route for every agent from its initial position to a given target location.
Agents must not collide with obstacles and other agents that are also moving along
planned routes towards their targets.

In the further text, we will use several abstractions in order to represent
the environment and model the movement of the agents. The environment is
modeled as an unweighted undirected graph. Agents can move along edges from
one vertex to another. Continuous time is divided into discrete time steps, where
the relocation from one vertex to its neighbor takes exactly 1 time step.

1.1 Basic Definitions and Properties

We recognize a few similar tasks and variants of path-finding for multiple agents
that slightly differs in various aspects from each other.

Muliti-agent path-finding (MPF) [11] supposes a group of agents in a given
environment, where initial and target positions are determined for each agent.
All individual agents must avoid collisions. Movement of the agents is carried
out in discrete time steps. Agent can shift from one vertex to its neighbor on
condition that the neighbor is either unoccupied or is being left by other agent
in the same time step. At most one agent is allowed to pass an edge within one
time step. That is, agents are not allowed to exchange their positions within one
time step.

Pebble motion on graphs [19, 36] is a very similar problem as MPF. It can
be regarded as a restricted variant of MPF. The difference consists in rules for
movement. While MPF enables entering a vertex that is simultaneously being
left by other agent, such transfer is not permissible in pebble motion. As an
illustration we can mention 15 puzzle also known as Lloyd’s 15.

Cooperative Path-finding [30] is a special case of MPF where each agent is
assumed to have full knowledge of all other agents and their planned routes.
Precisely speaking, solving algorithm can take into account paths1 planned for
agents that were processed earlier and adjust paths searched later according to
them.

1Strictly formally speaking, the term path is not fully accurate in this place. In the graph
theory, a term path is used when we want to address a sequence of adjacent vertices without
repeating the same vertex. In our context, vertices may repeat in one sequence, nevertheless
we will call it path, because it corresponds to usual phrase ”path-finding”.

5

Several every-day situations can be modeled by CPF. In traffic control we
need every car to safely pass a crossroad in a short time. Another example might
be found in logistics, where some objects are being simultaneously relocated.
Planning of data transfer between communication nodes can also be expressed as
a CPF instance [37]. Military operations can utilize CPF as a simulation of an
effective movement. There is also very wide usage of CPF in game industry. Unit
movement from one place to another, raw material extraction or transportation
in real-time strategical games and many others.

For completeness we provide a formal definition of the multi-agent path-
finding problem.

Definition. Multi-agent path-finding problem is a quadruple

Σ = (G,A, λ0, λ+)

where the symbols have following meaning:

G = (V,E) is an unweighted undirected graph

V = {v1, v2, . . . , vn} denotes a finite set of vertices

E ⊆
(
V
2

)
denotes a set of edges

A = {a1, a2, . . . , ak} is a a finite set of agents

λ0 : A → V is an injective mapping that assigns an initial vertex to each
agent

λ+ : A→ V denotes an injective mapping assigning a target vertex to each
agent

1.2 Theoretical properties

Unlike single-robot path-finding, where a path from a source to a target exists
whenever a graph is connected, existence of a solution in multi-robot path-finding
is not granted. In some cases, agents can obstruct each other. Let us imagine
a simple instance comprised of a path graph with agents seated at the ends of
the path and a target of each agent is located at the other agent’s initial vertex.
Such situation is clearly insoluble, because agents cannot get round each other
and hence will never reach their target destinations.

Regarding the time complexity, it is known that the pebble motion problem
and thus multi-robot path-finding can be solved in polynomial time O(|V |3) and
the solution consists of O(|V |3) moves [19, 37].

The objective is sometimes to find an optimal solution for a MPF instance.
Let P = {p1 . . . pk} be a set of paths found for k agents in an arbitrary solution
and let ti denote an arrival time of agent ai. There are three common objectives
that can be optimized [42]:

• Minimum total arrive time: min
∑k

i=1 ti

• Minimum makespan: minmax1≤i≤k ti

6

• Minimum total distance: min
∑k

i=1 len (pi)

These optimization variants can be modified into decision problems. For a
given natural number η we ask whether there exists a solution with total arrive
time (makespan or total distance) not greater than η. It was showed that the
decision problems are NP-hard [42]. A proof of NP-completeness of the decision
variant, particularly the case with makespan, were presented in [37].

1.3 Selected Algorithms

Methods for multi-robot path-finding can be divided into coupled (centralized)
and decoupled (decentralized) approaches [39]. Coupled methods regard whole
group of agents as a single entity and try to plan all their paths at the same
time. Although this approach is theoretically optimal, excessive complexity pre-
vents its wide practical usage. On the contrary, decoupled methods decompose
the problem into several sub-problems. Their strategy is to find paths for in-
dividual agents independently and subsequently resolve possible collisions that
might occur. Decoupled approach is neither optimal nor complete. Nevertheless,
it significantly reduces the time complexity.

A typical decoupled method employs A* algorithm [12, 34] for finding paths
for every agent independently. A* is similar to Dijkstra’s algorithm [10] suitable
for weighted graphs. These algorithms finds shortest path between two vertices
in a given graph. The difference consists in employing heuristic estimation of
a distance between source and target vertex in A*. Basic principle of A* is
described by the algorithm 1 below.

Algorithm 1 A* algorithm

function search(source, target)
create OPEN list, OPEN ← {source}
create CLOSED list, CLOSED ← {∅}
while OPEN 6= ∅ do
v ← remove v with the lowest cost from OPEN
if v is equal to target then
return reconstruct path(target)

end if

CLOSED ← CLOSED ∪ {v}
for all s ∈ Successors(v) do
if s /∈ OPEN then

if s /∈ CLOSED then

estimate cost for s
parent(s)← v
OPEN ← OPEN ∪ {s}

end if

end if

end for

end while

return failure

7

A* algorithm considers following values for every vertex v:

• g (v), a distance from s to v,

• h (v), heuristic estimation of a distance between v and target t

• f (v) = g (v) + h (v)

Heuristic function should be consistent (or monotone) in order to algorithm
be optimal. In other words, if vertex u is a successor of vertex v and dst (u, v)
is a distance between them, then h(v) ≤ h(u) + dst(u, v). Dijkstra’s algorithm
always considers zero heuristic value, which is indeed consistent, but the search
is not directed towards the target vertex and therefore takes longer time.

Solving adversarial extension of CPF were inspired by several cooperative
algorithms. Their description is provided here.

1.3.1 Local Repair A*

One of the simplest path-finding algorithm for multiple agents is known as Local
repair A* (LRA*) [43]

When paths for all the agents are found using A*, it is necessary to check
whether agents will collide in following planned steps. If a collision is encoun-
tered, additional calculation have to be conducted in order to repair paths of the
colliding agents. Parts of the planned paths are gradually prolonged until the
whole pre-calculated movement is legal.

LRA* calculation can take very long time, especially in ragged graphs or with
a high density of agents. This algorithm does not expect any shared information
between agents, only their current positions.

Once we have an information about paths planned for previously processed agents,
we can incorporate this knowledge in further calculations. Agents whose paths
are calculated later, respect the scheduled movement of the previously considered
agents.

1.3.2 Cooperative A*

Cooperative A* (CA*) [30] is a decoupled algorithm, that works with three di-
mensional space-time (spatial graph). We can imagine a spatial graph as t copies
(levels) of the original graph G0 = (V0, E0). These levels are piled up and rep-
resent time dimension of the movement of the agents. For this reason the edges
between vertices belonging to one level are removed while neighboring levels are
connected according to the edges in G0. Spatial graph is directed, because agents
must not be allowed to move back in time. If a vertex in the original graph is
a target of some agent, all corresponding vertices in the spatial graph are also
considered as the agent’s targets, because they represent the same vertex in the
original graph.

Suppose (u0, v0) ∈ E0 undirected and u1 and v1 are corresponding vertices in
the next level. Directed edges in the spatial graph will then be (u0, v1), (v0, u1),
(v0, v1) and (u0, u1). Corresponding vertices in adjoining levels are always con-
nected by directed edge, which ensures that the agent can remain at a vertex

8

for several time steps. Figure 1.1a shows an exemplary initial position2 with two
cooperating agents and possible spatial graph with planned paths (1.1b).

2
1

1

2

(a) Initial position

x

y

z

(b) Spatial graph

Figure 1.1: An exemplary instance with two cooperating agents (a) and possible
spatial graph with reservations

Algorithm planned path for agent 1 first, directly from upper left corner to the
upper right corner, ignoring the fact that agent 2 currently occupies neighboring
location. When the agent 2 is processed, first agent’s planned path has to be taken
into account and the solving algorithm must make way for it. Hence second agent
will make 3 steps: down, left and up to its target position. Reservations on [2, 1,
2] and [1, 1, 3] are not visible in the figure (b).

Having this structure we can place agents to their initial vertices in the lowest
level and run A* algorithm for each agent one by one. Once a path for an agent
is found in the spatial graph, vertices on the path are reserved in time steps
when the agent should enter these vertices and all other agents of which paths
are calculated later will have to avoid them in the specified time steps.

2

1

2

1

Figure 1.2: Example of
blocking agents

The resulting paths depend on the order in
which the solving algorithm calculated movement
of the agents. In some cases, this approach will not
find all paths, although the solution exists. Consid-
er the situation in the figure 1.2. If the movement
of agent a1 is planned as first, it reaches its tar-
get λ+(a1) after two time steps. However, another
agent a2, that was processed afterwards, cannot get
into its destination λ+(a2), because the first agent
standing on its target blocks the bottleneck with
the path leading to λ+(a2). Hence there will be no
path leading from second agent’s initial position to
its target in the corresponding spatial graph. The solution is to process agent 2
before agent 1. In such situation we have to change the agent ordering and start
whole calculation again. In the worst case we have to do k! restarts, where k is
the number of robots, which is inconceivable. Some approaches how to reduce
this complexity were proposed, for example constructing a priority scheme [3],
which in practice allows to find the best ordering faster, but does not guarantee
finding the most suitable ordering in every case.

2Explanation of diagrams used in this text is to be found in the Appendix C 4.2.5

9

1.3.3 Hierarchical Cooperative A*

As the algorithms above are based on A* algorithm, some admissible heuristic
is necessary. The idea of the Hierarchical Cooperative A* (HCA*) [30] is to
compute heuristic on demand, which is more appropriate in a dynamic context.
HCA* algorithm is a generalization of Hierarchical A* [13] for the cooperative
context. The heuristic is calculated using a domain abstraction, where the time
dimension and other agents are ignored and heuristic is a distance from source
to target in this simplified environment.

1.3.4 Windowed Hierarchical Cooperative A*

There are several difficulties with the algorithms mentioned so far. Besides al-
ready discussed problem with agent blocking narrow corridors and sensitivity to
the agent ordering, there is also problem with computing whole route in a large
spatial graph, moreover, since the environment is dynamic, precomputed paths
are rarely used till the end. Usually they have to be re-planned several times
during the whole process, especially in crowded environments.

Windowed Hierarchical Cooperative A* (WHCA*) [30] tries to overcame this
issue. Paths are not fully calculated, but the computation is limited to a fixed
depth of w steps (window size). In other words, we execute classic cooperative
search, but only for first w steps. Beyond this limit, all other agents are ignored
and only abstract search as used in HCA* is performed. In fact, the path is
fully calculated, but interaction with other agents is considered only w steps
ahead. In addition, the windowed search can continue once the agent has reached
its destination. The agent’s goal is no longer to reach the destination, but to
complete the window via a terminal edge.

1.3.5 Summary of CPF methods

Besides algorithms described above, approaches for solving MPF were being de-
signed and studied in recent decades and the research still continues. Designed
algorithms sometimes require special types of graph or have specific requirements
for agents.

Operator Decomposition and Independence Detection (OD+ID) techniques
were proposed in [32]. This algorithm is optimal, complete and anytime, but
prematurely terminated runs of the algorithm return only conflicting paths. Fur-
thermore its running time is prohibitively expensive for many practical applica-
tions. [33] presents an enhancement of this method.

An alternative approach using so called directional maps for solving CPF were
suggested in [17,18].

Generally incomplete, algorithm MAPP [40] has favourable polynomial worst-
case upper bounds for the running time, the memory requirements and the length
of solution. MAPP is complete for some special classes of problems.

Two multiflow models that compute minimum last arrival time and minimum
total distance respectively were introduced in [42].

Polynomial algorithm BIBOX [35] was designed for MPF on bi-connected
graphs with at least two unoccupied vertices. Time complexity of BIBOX is
O(|V |3).

10

Graph decomposition [24] produced another sub-optimal MPF algorithm.
Planning then becomes a search in the much smaller space of subgraph con-
figurations.

FAR (Flow Annotation Replanning) [14] is a method designed for grid graphs.
FAR solves problems more quickly and requires less memory then WHCA*. As
many other approaches, FAR trades the completeness for an improved efficiency.

Push and Swap [22] is another CPF algorithm that claims completeness, how-
ever, in [8] were identified instances for that this algorithm fails to find a solution.
Algorithm Push and Rotate is then presented as an adaptation of the Push and
Swap technique. By fixing the Push and Swap’s shortcomings, authors obtained
an algorithm that is complete for the class of instances with two unoccupied
locations in a connected graph.

[4] is focused on coordinating self-interested agents. A self-interested agent
in MPF always chooses to follow the path with the best individual social welfare
(minimum sum of tax and travel costs).

Alternative approach introduces a two-level Increasing Cost Tree Search (ICTS)
algorithm [29]. ICTS is consequently compared with A* based techniques. An-
other algorithm capable to solve wider range of instances than ICST is called
Conflict-based Search (CBS) [28]. All low-level searches in CBS are performed as
single-agent searches.

Following table 1.1 summarizes properties of several algorithms mentioned
in this section. The second column expresses whether an algorithm is optimal
relative to at least one objective (total distance, makespan, or total arrival time).

Algorithm
Optimal Complete Coupled (C)/ Requirements

Decoupled (D) on graph

(WH)CA* [30] ✗ ✗ D Arbitrary
OD+ID [33] ✓ ✓ D Arbitrary
BIBOX [35] ✗ ✗ C Biconnected, 2 blanks
MAPP [40] ✗ ✗ D Grid graph
FAR [14] ✗ ✗ D Grid graph

Push&Rotate [8] ✗ ✓ C 2 blanks
CBS [28] ✓ ✓ C Arbitrary

Table 1.1: Properties of selected MPF algorithms

Among these algorithms we chose a basic idea of one of the solving algorithms
for the adversarial version of CPF. Due to its efficiency and simplicity we selected
cooperative A*.

11

2. Adversaries

As we have seen in section 1, basic path-finding, where the task is to search a
path from given source vertex to a certain target vertex, can be generalized by
multi-agent path-finding and further by cooperative path-finding. Nevertheless
we can generalize further. This time we will divide agents into groups, where
members of one group cooperate and try to defeat adversarial groups. Let us use
term teams for these cooperative groups.

2.1 Basic Attributes and Characteristics

The aim of adversarial cooperative path-finding is to find suitable paths for select-
ed team of agents in a given undirected unweighted graph. Agents are placed at
vertices and can move along edges. Unlike CPF, agents are divided into compet-
ing teams. Agents that belong to other teams than the selected one are considered
as adversaries. Another distinction from CPF is that an agent has not only single
target vertex, but generally can have a target set of vertices. If the target set of
vertices of an agent is empty, such agent’s terminal location can be arbitrary ver-
tex. The goal of one team is to lead all its agents to their targets before opposing
teams manage to relocate their agents to the corresponding opponent’s targets.
Competing teams can potentially harm each other by blocking opponent’s targets
or paths towards them.

Proposed algorithm searches a solution for a given team, i.e. finds a sequence
of moves, that leads all members of the team to their targets. No matter how the
opponents act, we want the selected team to accomplish the target positions. In
order to succeed this task, one should try to predict the behavior of adversarial
teams. Knowledge about opponents’ locations is also essential for preserving the
legality of a move.

Performance of the agent movement is divided into discrete time steps exactly
as it is in CPF. The agents’ positions are known for every time step - in other
words, there exists a mapping that assigns current vertex to each agent. All
the teams have information about target vertices of every agent, even targets of
adversarial agents.

The connection of ACPF with n-player games suggests its comparison with
popular board games. Unlike classical board games, ACPF do not define any
specific opening formation, size or shape of the environment, number of agents,
location of target positions. Such freedom of assignment leads to a huge number
of different instances of the problem with very diverse characteristic properties.
Another difference between considered problem and typical board games consist
in moving the agents (term piece is more common in board games). Agents of
a team in ACPF move simultaneously within a time-step, while in board games,
player usually selects one particular piece and perform a single move with it. This
fact makes the state space extremely large, as we shall see in the theoretical part
of this work. Game principles are very diverse, some are more resembling our
problem than others. ACPF is closer related to abstract strategy games, where
pieces can move and interact among each other. Well known examples are check-
ers, agon, chess and many variants of chess like shoggi or xiangqi. Other strategy

12

games where pieces remains on a fixed positions after being placed are rather
distantly related to ACPF. Go, hex or tic-tac-toe are some of many examples of
such games.

2.1.1 Technical Difficulties

Agents belonging to a particular team has all aspects of cooperative agents de-
scribed in the section 1.1. Within one move, an agent can vacate its current vertex
for its teammate and prevent the opponent to take over the vertex. Nonetheless
a team has no information about further moves of any opposing team. Even
though our team can plan the approach in advance, it is not always guaranteed
that the plan will be feasible. The opponent can make an unexpected move and
the planned moves may be suddenly impossible. Solving algorithm must be able
to handle such situation and create a new plan.

Since the teams are competing, a situation when two agents from different
teams want to access one vertex may occur. It is necessary to decide who will
enter and who should not be allowed. Due to this issue we determine an ordering
of teams to move, as is commonly known from board or card games. When the
simulation is visualized it seems that teams moves parallelly, but in fact they take
turns.

Another consequence of unknown opponent’s moves is that in most cases
achievement of a target vertex is not necessarily possible. Opposing agent might
block the way towards some other agent’s target vertex. This blocked agent would
never reach its target. To overcome this inconvenience we limit the progress to
a certain number of time steps. Whenever some team reaches a target positions
within the time limit, calculation is over. If no team succeeds in it, we evaluate
which team came closer to its goal. This team is then considered as winner.

2.2 Practical Usage

The most obvious application is in game industry. Real-time strategies are one
example, where ACPF can be useful. For example raw material extraction units
while meeting opponent units, patrolling agents, transporters and surely many
other tasks in so diverse world of computer games can be modeled using ACPF.

There are also examples in the real world, where ACPF can be useful. Police
actions or military operations can be simulated by ACPF as well. One could
object, that behavior of participating groups is far from following rules defined
later in this chapter. That is true indeed, nevertheless our simulation could
identify weaknesses and bottlenecks in a plan, so the plan can be enhanced soon
enough.

Investigated topic may serve as a starting point for studying tactical military
manoeuvres. Manoeuvres such as blockade, encirclement or flanking could be
studied and modeled using ACPF.

13

2.3 Related problems with adversarial aspects

Although competitive elements can be found in many different fields of artificial
intelligence research, our studied problem is quite specific and mentioned works
are rather distantly related.

Capture the flag [15] is a resembling problem: two-sided game played by teams.
Each team owns a territory with a flag located there. The flag can be captured
by an opposing agent. An agent in opponent’s territory can be intercepted by
some opposing agent. The objective of the game is to capture opponent’s flag
and return with it to safety while protecting one’s own flag from the enemies with
symmetric goal.

Similar work in adversarial search predominantly addresses applications in
video games, especially in real-time strategies. This research usually considers
more complex agents with wider range of actions, whereas we focus merely on
movement.

Pacman is nowadays already rather a classical video game. Its features resem-
ble ACPF: A single agent is supposed to gather up tokens in a maze. Adversaries
try to prevent the agent from succeeding this task. Whenever an adversary clash-
es with the agent, the game is over. [26] investigates application of Monte Carlo
tree search methods for Pacman.

Simulation based adversarial planning in real-time strategies is studied in [25].
Heuristics for large multi-agent simulations are investigated in [21]. [7] presents
Monte Carlo methods in strategy games, particularly capture the flag.

Another very large category of related topics is comprised of various n-player
games. For example games where pieces can move and interact among each other
(chess, checkers) are closer related to our problem than those games considering
merely placing pieces on chosen locations (go, hex, gomoku).

2.4 Formal Definition

We are not aware of any other work dealing with ACPF since its first introduction
in [16]. This section provides essential formalism and terminology of the studied
problem. Definitions are based on usual CPF terminology. Adversarial element
present in ACPF requires extension and adaptation of these existing definitions.

2.4.1 ACPF Problem

Definition. Adversarial cooperative path-finding problem (ACPF) is a 7-tuple

Σ = (G,A, T , t∗, λ0, λ+, α̂)

where

G = (V,E) is an undirected graph

V = {v1, v2, . . . , vn} denotes a finite set of vertices

E ⊆
(
V
2

)
denotes a set of edges

A = {a1, a2, . . . , ak} is a a finite set of agents

14

T = {T1, T2, . . . , Tt} is a finite set of teams, t ≤ n. Teams are disjunct sets
of agents and every agent belongs to exactly 1 team, formally:

t⋃

i=1

Ti = A ∀Ti, Tj ∈ T , i 6= j : Ti ∩ Tj = ∅

t∗ ∈ {1, 2, . . . , t} denotes an index of a team, for which the algorithm search-
es a solution

λ0 : A → V is an injective mapping that assigns an initial vertex to each
agent

λ+ : A→ P(V) assigns a target set of vertices to each agent

α̂ : L → A1 is a partial functional, that from given previous sequence of all
the agents’ placement determines a subsequent placement of the adversary
agents. The domain and range of this functional can be defined as follows:

Ll = {(λm1
, . . . , λml

)|λmi
: A → V, 1 ≤ i ≤ l} a set of placement

sequences of length l

L =
⋃

i∈N L
i a set of placement sequences of all possible lengths

A1 = {α|α : A \ Tt∗ → V } a set of all adversary agents’ placements.

The functional itself is unknown, but it is supposed to be an intelligent
black box. It is a partial functional, because not every placement sequence
can occur. Section 2.4.2 describes rules for legal movement of the agents.
Note that α̂ determines the placement only for adversarial agents. The
agents belonging to the team Tt∗ are handled by developed algorithm.
Note: Sometimes we demand additional limitation for mapping λ+ :

∀T ∈ T ∀a1, a2 ∈ T, a1 6= a2 : λ+(a1) ∩ λ+(a2) = ∅

if an agent’s set of target vertices should be distinct from all targets of
other agents belonging to the same team. Or even stricter condition can be
applied:

∀a1, a2 ∈ A, a1 6= a2 : λ+(a1) ∩ λ+(a2) = ∅

when any two agents must have distinct set of vertices, regardless their
teams.

2.4.2 Agent Movement

Agents move along edges or stay at a vertex. The moves are taken as discrete
transformations of agents’ positions. For this purpose, we divide time into a dis-
crete time steps. Arbitrary number of agents can move at every time step and
every vertex can be occupied by at most one agent. In order to describe move-
ment formally, we use a mapping λi : A→ V for time step i and the generalized
inverse λ−1

i : V 2→ A ∪ {⊥} that satisfies:

15

1. ∀a ∈ A : λi(a) = λi+1(a) ∨ {λi(a), λi+1(a)} ∈ E
(Agent moves along an edge or stay at a vertex.)

2. ∀a, a′ ∈ A ∀u, v ∈ V : (λi(a) 6= λi+1(a)⇒ λ−1
i (λi+1(a)) = ⊥) ∨

(λi(a) = u & λi+1(a) = v & λ−1
i (v) = a′ 6= a⇒ λi+1(a

′) /∈ {u, v})
(Agent can move to unoccupied vertex v or if v was occupied at time i by
agent a′ different from a, agent a′ must move away. Position swapping is
not allowed.)

3. ∀a, b ∈ A : a 6= b⇒ λi(a) 6= λi(b)
(λi is an injective mapping. Every vertex can be occupied by at most 1
agent.)

4. ∀a ∈ A \ Ti+1 (mod t) : λi(a) = λi+1(a)
(Rotation of a team to move. The only agents that can move between time
i and i+1 are those from the team Ti+1 (mod t). All the others must stay at
their earlier vertices.)

2.4.3 Solution

Since our goal is to find a solution for specific team and the domain of λi is
whole set A of agents, we introduce λ∗i : Tt∗ → V as a restriction of λi to Tt∗
for every time step i. We can also write λ∗i (a) = λi|Tt∗

(a) for some a ∈ Tt∗ .
The expression on the right side of this equation is just a standard notation
for mapping restriction, but for better readability and simplicity we’ll prefer the
notation on the left side.

Intuitively, a solution is a movement of agents of a specific team that leads
them to some of their target positions. Before we define the solution formally, let
us consider some situations. The problem definition doesn’t guarantee existence
of the solution. For instance the graph is not required to be connected and the
agents are not necessarily in the same component as their targets. Even some CPF
instances does not have any solution. Another example is when an adversarial
agent blocks the path to a desired vertex, therefore such vertex can’t be reached
by other agents.

Aware of these properties we propose two auxiliary definitions before the so-
lution definition itself.

Definition. A progress of length m of an ACPF problem Σ is a sequence of
mapping

~s =
[
λ∗0, λ

∗
1, . . . , λ

∗
m−1

]

The mapping λ∗i determines position at time step i for every agent a ∈ Tt∗ . Other
agents (those from A\T ∗

t) are controlled by adversarial functional â This mapping
must satisfy:

∀a ∈ Tt∗ : λ
∗
0(a) = λ0(a)

in other words, the starting position of agents is known from the problem def-
inition. Note that the constraints from section 2.4.2 are also satisfied by these
mappings, because it is a restriction to domain Tt∗ . The length of a progress is
regarded as a number of time steps. After the last step, all agents can occupy
arbitrary vertex they reached, no matter if it’s agent’s target or not.

16

Definition. A partial solution of length m of an ACPF problem Σ is a progress
of length m, where following holds:

∃a ∈ Tt∗ : λ
∗
m−1(a) ∈ λ+(a)

In partial solution, at least one agent of considered team must occupy its target
vertex.

Definition. A solution of length m of an ACPF problem Σ is a partial solution
of length m, where

∀a ∈ Tt∗ : λ
∗
m−1(a) ∈ λ+(a)

After carrying out all steps of the solution, there must be no agent located at a
vertex different from its targets.

2.4.4 Quality of a Progress

The nature of defined problem admits situations, where solution achievement is
impossible, sometimes we cannot even accomplish partial solution. Hence we
need to estimate quality of a progress. Two different progresses may lead to the
same state. There exists several ways how to evaluate a progress and one of the
simplest method counts number of agents that reached their target positions.

Definition. Let S denote a set of all possible progresses of an ACPF prob-
lem Σ. Goal evaluation is a function γ0 : S → N determining a number of agents
occupying their goal positions after the last step of the progress. Formally

∀~s ∈ S, |~s| = m : γ0(~s) = |{a ∈ Tt∗ : λ
∗
m−1(a) ∈ λ+(a)}|

Such definition estimates the quality of a progress, but doesn’t take into ac-
count any adversaries, even though they can be added straightforwardly: Func-
tion γ1 : S → N determines difference between number of agents from team Tt∗
occupying their targets and adversary agents occupying their targets:

∀~s ∈ S, |~s| = m : γ1(~s) = γ0(~s)− |{e ∈ A \ Tt∗ : λm−1(e) ∈ λ+(e)}|

Clearly, there can occur many progresses with equal γ1 value and it would
be useful, if we were able to fine the ordering and distinguish the quality of a
progress in a better way. Hence we will also consider the distance of agents to
their targets, such that the closer is the agent to its target, the better.

Definition. Let P (s, t) be the shortest path from source vertex s to target
vertex t and dst(P (s, t)) be a length of such path. For a progress ~s of the length
i we define distance evaluation δ0(~s) as a sum of all lengths of the shortest paths
from agents’ current positions to their closest targets. Formally

δD(~s) =
∑

a∈Tt∗

min
t∈λ+(a)

{dst(P (λi(a), t))} −
∑

a∈A\Tt∗

min
t∈λ+(a)

{dst(P (λi(a), t))}

17

If we require more realistic estimation of the length from source to target, we
can define PE(s, t) as a shortest path between s and t consisting merely unoccu-
pied vertices. In this case we have empty distance evaluation δE(~s)

δE(~s) =
∑

a∈Tt∗

min
t∈λ+(a)

{dst(PE(λi(a), t))} −
∑

a∈A\Tt∗

min
t∈λ+(a)

{dst(PE(λi(a), t))}

Remark. If the shortest path between two vertices does not exist, we use length
of the longest possible path in considered graph.

Observation. ∀~s ∈ S : δD(~s) ≤ δE(~s)

Having the definitions above, an ordering on progresses, partial solutions and
solutions can be introduced. A total ordering on S can then then defined as

∀~s1, ~s2 ∈ S : ~s1 ≤ ~s2 ⇔

γ1(~s2) ≤ γ1(~s1)

∨γ1(~s1) = γ1(~s2) & δx(~s1) ≤ δx(~s2)

Which means that first we take interest into fulfilled targets, and if we can’t
decide by this property we consider how close are remaining agents to their tar-
gets. Instead index x in δx we can choose D or E depending on whether we want
to consider merely distances in graph or whether we also want to consider other
agents.

There are more possibilities how to define ordering on S, but these are suffi-
cient for our purposes.

2.5 Problem Complexity

Firstly let us specify what kind of problem are we trying to solve. With respect to
complexity we are interested in the decision variant of the problem given a graph
and placement of all agents (instance of ACPF problem), we want to decide
whether there exists a winning strategy for a selected team.

Before we continue, lets remind needful definitions commonly present in lit-
erature [31]:

Definition. PSPACE is the class of languages that are decidable in polyno-
mial space on a deterministic Turing machine. In other words,

PSPACE =
⋃

k

SPACE(nk)

Definition. A language B is PSPACE-complete if it satisfies two conditions:

1. B is in PSPACE

18

2. every A ∈ PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

For determining a complexity class of ACPF problem lets look at some similar
problems. Since the problem is basically an n-player game, our first attempt will
be to show its membership in PSPACE-complete complexity class. According
to definition of PSPACE-completeness, to prove this, we must show that the
problem is PSPACE and PSPACE-hard.

To show membership in PSPACE is easier on the first sight, but unfortunate-
ly our attempts failed so far. By contrast, we already know that the question
whether an instance of ACPF problem has a winning strategy for a selected team
is PSPACE-hard. [16] offers a sketch of proof, here we will give an alternative and
technically easier proof with detailed explanation.

Proof of PSPACE-hardness of ACPF is based on several definitions presented
for example in [31] and [38]:

Definition. Boolean formula φ is in conjunctive normal form, (CNF), if and
only if φ = D1 ∧ · · · ∧Dm, where each Di is a disjunction of literals. Individual
Dis are called clauses.

In case that every clause of formula φ has exactly three literals we say that φ
is in 3CNF.

Definition. Boolean formula is said to be fully quantified when each variable of
the formula appears within the scope of some quantifier. Sometimes we use term
sentence.

Definition. Game formula is a fully quantified boolean formula φ written in
form Q1x1Q2x2 . . . Qnxnψ(x1, x2, . . . , xn), where each Q2i is ∀ and each Q2i+1 is
∃. ψ is a quantifier free boolean formula.

Definition. Further we introduce a language GF:

GF = {φ : φ is a valid game formula}

Language GF is known to be PSPACE-complete.

Following auxiliary lemmas are useful in the main proof.

Lemma 1. (Vertex booking). Let Σ = (G = (V,E) , A, T , t∗, λ0, λ+, α̂) be
an ACPF instance and v ∈ V be so called booked vertex. Next, let b ∈ N

be so called booking time and Ttb be some selected team (not necessarily Tt∗)
for what the vertex should be booked. Then there exists a modified instance
Σ′ =

(
G′ = (V ′, E ′) , A′, T , t∗, λ′0, λ

′
+, α̂

′
)
such that the booked vertex v is not ac-

cessible by any other agent a ∈ A before time-step b.

Proof. Σ′ is derived from Σ by adding an extra vertex v′ that is connected by an
edge to the vertex v.

19

a'

v'

v

Figure 2.1: Vertex booking

Alongside we put a new agent a′ ∈ Ttb on the vertex v. Controlling functional
α̂′ shall lead agent a to the vertex v′ at time-step b. Hence any teammate located
at a vertex adjacent to v can enter v at time step b. If it does not happen,
opponent could have the opportunity to occupy v at time step b+ 1.

Formally we have V ′ = V ∪{v′}, E ′ = E∪{(v, v′)}, A′ = A∪{a′}, λ0(a
′) = v,

λ+(a
′) = ∅

Lemma 1 addresses the ability of agents to reserve place for their teammates.
If a vertex is occupied by an agent from some team, this agent can wait till its
teammate reaches an adjacent vertex and hold the ground, which will prevent
opponent’s agents to enter the vertex.

Next we will formulate a similar lemma that will be useful for forcing agents
to enter a particular vertex in desired time step.

Lemma 2. (Hazardous vertex). Let Σ = (G = (V,E) , A, T , t∗, λ0, λ+, α̂) be
an ACPF instance and Tth be some selected team (not necessarily Tt∗) and let
v ∈ V be so called hazardous vertex. Next, let s ∈ N. Then there exists a modified
instance Σ′ =

(
G′ = (V ′, E ′) , A′, T , t∗, λ′0, λ

′
+, α̂

′
)
such that the hazardous vertex

v can be occupied by an agent a′ ∈ A \ Tth at time step s, if this vertex is not
entered by any agent a ∈ Tth.

Proof. Σ′ is derived from Σ by attaching a path v′0 . . . v
′
s−1to the vertex v.

a'
v'1

v

v'3

v'2

v'0

Figure 2.2: Hazardous vertex, s = 4

Vertex v′0 contains an agent a′ ∈ A\Tth . This agent can approach the vertex v
every time step and enter it in the s-th step, unless any other agent do it earlier.

Formally we have V ′ = V ∪{v′0 . . . v
′
s−1}, E

′ = E∪{(v′0, v
′
1), (v

′
1, v

′
2) . . . (v

′
s−1, v)},

A′ = A ∪ {a′}, λ0(a
′) = v′0, λ+(a

′) = ∅

Lemma 2 points out a situation, where some vertex v is approached by an
agent and if other agent from different team want to enter it, it should do it
before time step s, because at that time it will not be possible. We say that
vertex v is hazardous from step s.

20

Lemma 3. (Winning strategy). Let Ts denote a selected team. For each game
formula φ there exists an ACPF instance such that if there exists a winning strate-
gy for team Ts, then the only winning approach is the fastest possible advancement
of agents from Ts towards their targets.

Remark: By the fastest possible advancement we mean that every agent rushes
towards its target using a path with minimal length. An agent is also not allowed
to wait at a vertex other than its target. The construction of an ACPF instance
is based on the proof of NP-hardness of the optimization variant of multi-robot
path-planning [42].

Proof. First we construct an ACPF instance for given formula. Then we show
that the fastest possible advancement of team Ts is the only way how to succeed.

Let φ : Q1x1 . . . Qnxnψ be a game formula. Without loss of generality, we can
assume that ψ, the quantifier free part of φ, is in 3CNF1. Next, let m stands for
number of clauses and n denote number of variables in φ. Further we assume
that every variable is present in both literals. If some variable or its negation
does not appear in any clause, we can add an extra clause containing the missing
variable and its negation, so the clause would be always satisfied and the truth
value of the formula would not change.

vx

v'x

wx=w'x

tx,1tx,2

fx,1

tx,m tx,m-1

fx,m fx,m-1 fx,2

(a) Existentially quantified
variable gadget

vy

v'ywy

ty,1ty,2

fy,1fy,2

w'y

ty,m ty,m1

fy,m fy,m-1

uy

(b) Universally quantified
variable gadget

Figure 2.3: Variable gadgets

For every variable x that occurs in φ we construct a variable gadget - two ver-
tices wx and v′x connected by two paths of length m (number of vertices between
wx and v′x, see figure 2.3). Vertices of the horizontal gadget paths are numbered
from the right-hand side, tx,i for lower path and fx,i for upper path, i = 1 . . .m.

There will be an extra path connected to wx ended by vertex vx. The length
of this path corresponds to the variable order in the quantifier part of φ. Paths
connected to gadgets of variables x1 and x2 are 1 vertex long and are thus identical
to the vertex wx. Paths of every next pair of variable gadgets are one vertex longer
then the paths of previous pair. Hence the length of the longest path is ⌈n/2⌉.

vcj,1vcj,2vcj,n/2-1 vcj,n/2-2

Figure 2.4: Clause gadget

1Each formula is logically equivalent to a formula in CNF and every formula in CNF can be
transormed into 3CNF [38].

21

The rightmost vertex, where the upper and lower paths meet, is connected to
a path which is ended by vertex v′x. Length of this path is determined such that
all agents have the same distances to their targets.

Vertex vx of an existentially quantified variable is an initial vertex for agent
ax belonging to the selected team Ts (associated with green color). Vertex v′x
represents a target vertex of the agent ax.

Universally quantified variable y has an additional vertex w′
y connected to

the upper and lower horizontal path. At the vertex vy, there sits an agent ay
belonging to the adversarial team (associated with red color). Vertex v′y is the
target vertex of the agent ay, similarly as for the existentially quantified variable
gadget. Another path ended by vertex uy is connected to the vertex w′

y. The
length of this path is exactly one vertex longer than the path wy . . . vy. A green
agent ay,u is placed at the vertex uy. Vertex w

′
y is a target of the agent ay,u.

Agent ax entering either upper or lower path of the x variable gadget simulates
evaluation of x. Order in which an agent x is able to enter one of these two paths
is exactly the order in which the variable x is evaluated.

Further we construct clause gadgets (fig. 2.4). For the j-th clause there is a
path vcj ,1 . . . vcj ,⌊n/2⌋−1. Vertex vcj ,1 contains a green agent aj, j = 1 . . .m.

Let x be the i-th quantified variable and k = ⌊i/2⌋+1. A clause vertex vcj ,k is
connected to vertex fx,j if x appears as a positive literal or to tx,j if x appears as a
negative literal in clause cj. Example of full construction is depicted in the figure
2.5, where the connection between variable and clause gadgets is showed. There
are always three edges connecting a clause gadget and the rest of the graph, as
there are 3 literals in every clause.

Finally we add target vertices for agents starting from clause gadgets. Let us
denote them v′cj , j = 1 . . .m. These vertices are connected to the variable gadgets
representing variables that appeared in a clause. For example if a variable x is
present in clause cj, we add a path between v′cj and w′

x. Number of vertices
between v′cj and w′

x is exactly

⌊n

2

⌋

+ j −

⌊
i

2

⌋

− 1

where i stands for order of variable x in the quantifier part of a formula. Our
intention is that the length of the shortest path between source and target vertex
is equal for all clause agents. If agent aj starting from vcj ,1 selects x variable
gadget for its advancement towards the target, the total length of the route
would then be

⌊
i

2

⌋

+ 1

︸ ︷︷ ︸

clause gadget

+ m− j + 2
︸ ︷︷ ︸

variable gadget

+
⌊n

2

⌋

+ j −

⌊
i

2

⌋

︸ ︷︷ ︸

rest

= m+ 3 +
⌊n

2

⌋

which is a constant.
Target vertices of green agents ax and aj and corresponding agents in other

gadgets are hazardous from time

2(m+ 2 +
⌊n

2

⌋

)

That is right after the agents could arrive there, in case they use the shortest
possible paths. (18 in the example in 2.5)

22

For a better insight into the construction, let us consider following example.
For formula

φ : ∃x∀a∃y∀b∃z∀c

(b ∨ c ∨ x) ∧ (¬a ∨ ¬b ∨ y) ∧ (a ∨ ¬x ∨ z) ∧ (¬c ∨ ¬y ∨ ¬z)

we get an ACPF instance depicted in the figure 2.5. Red numbers near some
vertices indicates that the vertex is hazardous from a particular time, i. e. such
vertex can be entered by red agent in a specified time step. Black numbers near
some arcs signifies that there is some number of vertices on a particular arc. For
clearer arrangement these vertices are not displayed implicitly.

v'x

v'a

v'y

v'b

v'z

v'c

vc1

vc4

v'c1

v'c3

v'c2

vx

=va

vb

wa

w'a

=w'x=wx

=w'ywy

w'b
wb

=w'zwz

wc
w'c

v'c4

vy

vz

vc

ua

ub

uc

vc3

vc2

3

5

0

2

3

3

4

3

5

4

3

1

18

18

18

18

1

2

3

3

2

118

18

18

Figure 2.5: Example of reduction

The construction of an ACPF instance for a given formula is now finished. The

23

claim that if there is a winning strategy for selected team, then it is the fastest
possible advancement remains to be proved. We will show that any deviation of
an agent from the fastest route leads to failure of the agent’s achievement.

If green agents tried to use another path then the shortest one, they would
give up their opportunity to win. The same would happen if an agent stayed
at a vertex. That is because target vertices of agents starting from existentially
quantified variable gadgets and clause gadgets are hazardous exactly one time
step after the expected arrival time. If agents held up somewhere, its target
would become occupied by an adversarial agent.

Now we have necessary apparatus for proving following statement.

Proposition 1. Decision problem whether there exists a winning strategy for
selected team in a given ACPF instance is PSPACE-hard.

Proof. We will show a polynomial reduction from GF to ACPF.
Formally correct proof requires proving of following equivalence: Boolean for-

mula φ is valid if and only if there exists a winning strategy for the selected team
in the provided ACPF instance.

Let us start with implication from left to right. Suppose φ to be valid. Vari-
ables gradually acquire their truth value one by one according to the order in
quantifier part of φ. In our example all possible sequences of evaluation showing
validity (validity certificate) of φ are indicated in the evaluation tree depicted in
the figure 2.6. Each path from root to leaf in the tree represents one sequence of
evaluations. According to each such sequence we can lead the agents so that the
selected (green) team wins.

x = 1

a = 0

y = 0

b = 0

z = 1

c = 0 c = 1

b = 1

z = 1

c = 0 c = 1

a = 1

y = 1

b = 0

z = 0

c = 1 c = 0

b = 1

z = 0

c = 0 c = 1

Figure 2.6: Validity certificate (evaluation tree)

Suppose we start in the root. Every time we visit a vertex associated with a
variable during descending towards some leaf, another agent in the constructed
ACPF instance is ready to enter upper or lower path within the variable gadget.
If some variable x is evaluated as true, corresponding agent ax enters the lower
path (vertex tx,m), otherwise the agent goes to the upper path (vertex fx,m). Since
the evaluation satisfies the formula, every clause cj has at least one variable x
that causes satisfaction of cj. In such case, the clause gadget is connected to the
variable gadget through a vertex in the other path than the one through which ax
advances towards its target. Clause agent aj can then enter the variable gadget
without encountering ax. Both agents can continue undisturbed. Descending

24

path from root to leaf in the validity certificate can be regarded as a pattern for
the advancement of agents in the constructed ACPF instance.

A purpose of green agents ay,u (u-agents) is to prevent red agents from un-
wanted behavior. Now lets inquire into what happens if the red team behaves
unexpectedly:

1. Waiting: If aa tried to be binding at a vertex wa or before it reaches wa,
u-agent would be able to help a clause agent to reach its target, even if the
formula were not valid: u-agent would control vertices w′

a and fa,m or ta,m
and red agent would not have any opportunity to impact next progress of
any other agent. u-agent acts as the agent a′ from the booking lemma 1.

2. Transfer to another vertex gadget: Red agent could also try to get into
another variable gadget through some clause gadget. Suppose that adver-
sarial agent axi

wants to get to vertex gadget corresponding to variable xk
through clause gadget of cj. Number i is even and number k is odd, be-
cause adversarial agents are associated with even variables, i ≤ k. Further
assume that clause gadget is connected to vertex fxk,j.

xi

xk

cj

Figure 2.7: Transfer to another variable gadget

Our objective is to calculate that adversarial agent axi
would arrive at

fxk,j always later than green agent axk
. Let dst(a, v) denote the shortest

distance from an initial vertex of agent a to vertex v. Now we can compare
the two distances:

dst(axk
, fxk,j) ≤ dst(axi

, fxk,j)

k

2
+ 1

︸ ︷︷ ︸
path

to wxk

+ m− j + 1
︸ ︷︷ ︸

variable gadget

≤
i

2
︸︷︷︸
path

to wxi

+ m− j + 1
︸ ︷︷ ︸

variable gadget

+
k − i+ 1

2
︸ ︷︷ ︸

clause gadget

+ 1
︸︷︷︸

fxk,j

k

2
≤
k

2
+

1

2

which always holds. This inequality ensures that whenever red agent de-
cides to enter another variable gadget, green agents are not affected by this
unexpected behavior.

At this point we have showed that any pathological movement of the red team
would not affect the winning strategy.

25

Now we will show the direction from right to left. Whenever there exists a
winning strategy for the constructed ACPF instance, variable and clause agents
must reach their targets on time. This is possible only in case variable agents and
clause agents do not meet on the horizontal path. They must use different paths.
The variable agents’ selection of paths determines the evaluation of corresponding
variables. Whenever an agent and clause pass by each other on the parallel
horizontal paths, corresponding variable causes satisfying of the clause.

The next attempt will be to show that ACPF belongs to the EXPTIME class.
According to [31], we define

EXPTIME =
⋃

k∈N

TIME(2n
k

)

For this proof we will provide an algorithm that decides whether there exists
a winning strategy. Game tree can be regarded as an AND-OR tree. Although
theoretically there can be more teams involved and AND-OR trees are suitable for
two player games, simple assertion will prevent complications. For the purposes
of the proof we will assume that all adversarial teams are considered as one
adversary and the move alternation is going on between the selected team and
the adversary containing all other teams.

Proposition 2. Question whether in a given instance of ACPF exists a winning
strategy for a selected player belongs to EXPTIME complexity class.

Proof. Let n be a number of nodes and k be a number of agents. Size of the state
space is then 2

(
n
k

)
k! and since there can be up to n agents, we get 2n! state space.

Because we distinguish which team is to move, we have to multiply by 2. Since

O(n!) ⊆ O(nn) = O((n)n) ⊆ O((2n)n) ⊆ O(2n
2

)

we have DTIME(n!) ∈ EXPTIME, where DTIME(n!) are languages recog-
nizable by deterministic algorithms running in O(n!).

Algorithm 2 requires an initial state root and a determination of the selected
teamme. It returns true when there exists a winning strategy for teamme, false
otherwise. We need to show that it runs in exponential time.

Possible problem could arise with infinite loops: some state is repeatedly
visited. To prevent such behavior we create a visited list that contains all states
that have been already visited. As a consequence of the list usage, we visit
every state at most once . Finally, member operation of the list takes time
|visited| × O(n). Size of the visited list is not greater than O(n!). Hence the
time complexity of the deciding algorithm is exponential.

26

Algorithm 2 Decides whether an instance of ACPF problem has a winning
strategy for the selected team

function ACPF decider (root,me, first to move)
create global list visited← {root}
if first to move == me then
return ACPF me(root)

else

return ACPF adv(root)
end if

end function

function ACPF me(node)
visited← visited ∪ {node}
if is terminal(node) then
return false

end if

for all s ∈ Successors (node) do
if s /∈ visited then

if ACPF adv(s) then
return true

end if

end if

end for

return false

end function

function ACPF adv(node)
visited← visited ∪ {node}
if is terminal(node) then
return true

end if

for all s ∈ Successors (node) do
if s /∈ visited then

if not ACPF me(s) then
return false

end if

end if

end for

return true

end function

27

3. Solving Adversarial Version

An instance of the ACPF problem can be treated in different ways. Since the
problem is a generalization of cooperative path-finding, one option is simply to
adapt methods for CPF and use them while solving ACPF. Probably the most
promising possibility was mentioned in the introduction. Since the problem has
all aspects of n-player game with perfect information, we can try to find solution
using existing techniques for such games. Another approach is to extract some
information from a particular problem. It is also possible to combine different
methods.

This chapter describes suggested methods and discuss their suitability for the
solved problem. The biggest emphasis is put on methods that has been tested in
the experimental part of the thesis. We focus on 4 basic approaches:

• Greedy

• Cooperative

• Minimax

• Monte Carlo

Greedy and cooperative approaches are introduced in this thesis for the first
time. Remaining two are well-known methods that were adapted for our purposes
and applied on solving ACPF instances.

3.1 Greedy Methods

Although greedy algorithms are known for their low computational cost and sim-
plicity, they are not expected to represent too powerful solving approaches. Nev-
ertheless we will describe them here as greedy methods are a good starting point.
Moreover their combination with other methods might be beneficial. Greedy
move selection in ACPF is decided every time a team is to move. We can distin-
guish two types of greedy methods:

Centralized: From a given position all possible moves of a whole team have
to be generated. Moves are then evaluated one by one. The move that leads to
a placement with the best quality of state is selected.

Decoupled: Agents are processed one by one and next moves are always gen-
erated only for the currently considered agent. A move leading an agent to the
best position is remembered and following agents must take into account already
reserved vertices. In contrast to the centralized greedy algorithm, decoupled ap-
proach does not necessarily lead to the best possible next placement from a given
state, because agents whose target is computed earlier may prevent other team
members to move on more suitable vertices. Decoupled greedy method is always
worse than the centralized one. On the other hand, decoupled algorithm does not
need to generate all possible moves, which makes it suitable when we integrate it
with other approaches, where efficiency is important.

28

11

2

1

2

1

Figure 3.1: Failure of the
distance evaluation

Decision for the next move is determined by the
evaluation function. It is not surprising that two
greedy methods with different evaluation functions
behave differently. Consider following situation in
the figure 3.1 on the right. If the green agent uses
distance evaluation, it seems more advantageous
to remain in the corner (2 steps from the target)
rather then move one cell down (3 steps from the
target). But since the red agent 1 will not move
anymore, greedy strategy with distance evaluation
will not succeed in this instance, because it will not
force the green agent to move towards its target
and red agent 2 reaches its target after 4 steps. If
the greedy method used empty distance evaluation,
the right path for the green agent would be found.

12

1 2

Figure 3.2: Instance that
cannot be handled by greedy
strategies

It is generally known that greedy methods are
myopic and it holds in our case as well. Greedy
algorithms are sometimes not able to find paths
for agents, even if any interaction with opponent’s
agents occurs. Figure 3.2 shows a simple situation,
where two agents from the same team have to get
round each other in a narrow corridor. The optimal
movement of the agents is marked with dashed ar-
rows. Agent 2 should reach its target after 5 steps.
Unfortunately, greedy methods will never find this
solution, because the side steps of agent 2 means
temporary deterioration of its position, and greedy
method would never let it happen. Cooperative approach described in the fol-
lowing section would discover this solution and lead the agents to their targets.

3.2 CPF Approach

This approach uses methods developed for CPF problems. Naturally, we cannot
simply ignore the opponent’s agents. On the other hand, we do not need to treat
them as an adversaries, but rather as obstacles in the environment, that are able
to change their locations every time step they are to move. We must follow the
rules for movement (see section 2.4.2), but it is not necessary to care about our
opponent’s targets, although it could be also included.

Common foundations of many CPF methods is an adaptation of A* algorithm
for multi-agent environment. Similarly works experimentally tested method that
is introduced here. In the following text we will call the suggested technique
ACA* (Adversarial Cooperative A*).

3.2.1 Adversarial Cooperative A*

Suggested ACA* algorithm is based on CA* technique. We compute the paths
for our agents in a spatial graph and every time step during the simulation we
select next planned move from pre-calculated paths and check, whether the move

29

is legal taking into consideration all adversaries, that can unpredictably change
their locations. If it is, the move is carried out, otherwise we have to re-plan.
Pseudocode 3 shows the ACA* algorithm.

Algorithm 3 Adversarial Cooperative A*

paths← plan paths using CA* for each member of a selected team
while terminal condition not satisfied do

move← select next move from paths for all agents
if move is currently illegal then
paths← plan paths using CA* from current position
move← select next move from paths for all agents

end if

play(move)
opponent’s turn

end while

Re-planning

Path plan update is absolutely essential. We can never know the opponent’s
answer (if there is more than one possible move, which usually is), and hence we
cannot get by re-planning. It is not specified how the re-planning phase should
be performed. One possibility is throw away all other paths every time a conflict
is detected. Advantage of this action consists in finding more suitable global plan
for present situation. On the other hand, we often have to spend more time than
necessary. Alternatively we can try to repair only conflicting paths and keep those
that are still admissible. This approach avoids unnecessary computing, although
perhaps neglects more favourable solutions. Potential combination assumes for
example detection of a conflicting agent and an attempt to repair its path. If
such minor adaptation does not help, algorithm re-calculate all paths again.

A question about how to deal with adversaries during path-planning arises
naturally. To be more precise, how to cope with vertices, that are in the current
situation occupied by adversarial agents. There are basically two options:

• Ignore: paths are calculated as there were only teammates and all ad-
versaries are omitted. The idea is based on assumption, that adversarial
agents also changes their positions and one should hope, that the currently
occupied vertex will be clear when the agent reaches it.

• Avoid: suppose that adversaries are not going to move from their current
vertices and thus we need to find more suitable path, possibly longer.

There also exists a compromise between the two cases. We can ignore the
locations of the adversaries when they are far away, but try to avoid them when
their distance is shorter then some threshold. Another possibility is to avoid only
those agents that already accomplished their targets.

It is easy to understand, that the approach that completely ignores adversaries
will often fail to lead an agent to its target. When the paths is planned through an
occupied vertex, the agent would possibly wait forever near the vertex expecting

30

that the opponent will eventually leave it. Hence at least some threshold is neces-
sary.

1

1

123

123

Figure 3.3: Tricky instance
for ACA* with opponent omit-
ting

Unfortunately, ignoring opponent’s agents in some
types of instances is very precarious and may cause
inability to achieve target vertex for an agent,
who’s target is reachable otherwise. Figure 3.3
illustrates a sample situation. Suppose that the
threshold is set for 2, so the algorithm will ignore
agents that are further than 2 steps from the pro-
cessed agent. Green agent 1 can easily reach its
target by going around the chain of red adversar-
ial agents. However, the variant of ACA* that
ignores adversaries would lead it along the right
wall through the opponents. When it arrives on
the vertex below red agent 1, the re-planning pro-
cedure will repair the path plan and provide new
one steered through vertex with red agetn 3, which
was omitted, because is 3 steps away from the cur-
rent location of the green agent. When the agent
launches out, reaches the location below the red
agent 3 and realizes that the next planned step is impossible, re-planning will
update again its schedule. This time the red agent 1 will be ignored again and so
forth. So the resulting movement of the green agent is patrolling under the chain
of adversarial agents.

This problem would not occur if at least opponent’s agents standing on their
targets were not neglected and path plans would be adjusted according to their
locations. One should also mention that the situation in the figure is not fully
displayed, otherwise it would be a winning placement for the red team. There
are other agents that did not arrive on their desired vertices, but they are not
relevant for this particular example.

Even though we try to avoid pointless waiting near an opponent who is not
moving from its location, excessive circumvention is also unintentional, because
it might make place for opponent. A simple heuristic can be suggested: as we
have information about opponent’s targets, we will try to go around adversarial
agent only if it stays on its target, otherwise we will adamantly stay and wait for
a reaction of the opponent.

Agent Priorities

As already mentioned in the section 1.3.2, prioritizing of the agents may have
an impact on ability to find a solution. Several heuristics for sorting agents can
be implemented in order to improve finding paths leading to all agents’ targets.
Agents can be sorted by different attributes, for example distance to its target,
distance to the closest opponent, number of necessary re-plannings so far, etc.

The heuristic employed in experimentally tested algorithm is inspired by ’fail-
first’ [9], a heuristic known from dynamic variable ordering used in constraint
programming. In our case it means, that we compute paths for agents with
less unoccupied adjacent vertices earlier then for agents with more unoccupied
adjacent vertices. This idea is based on assumption, that those agents with higher

31

freedom are more likely to find a suitable path, therefore we can process them
later and rather focus on more vulnerable teammates.

3.3 Game methods

Traditional approaches for games seem to be most suitable options. However,
a closer look at the problem reveal some difficulties. These difficulties are con-
sequent upon the problem complexity, especially its excessive branching factor
growing exponentially with the number of agents.

3.3.1 Game tree

Let us imagine some initial position of the ACPF problem as a root of a tree.
All possible situations that can be achieved in 1 step are descendants of the
root. Their descendants will be constructed in the same way etc. First we focus
on ACPF instances with two players called MIN and MAX 1. A position which
satisfies terminal conditions (i. e. all agents or a required number of agents of
a particular team reached their target positions or maximal allowed number of
steps were accomplished) represents leaves vi of the tree. Leaves have assigned a
number value(vi) such that

value(vi) =

1 if the corresponding state is winning for player MAX

0 if the state is a draw

−1 if the state is winning for player MIN

(3.1)

Optimal strategy can be determined from theminimax value of each node [23].
Minimax value stands for the utility of one player being in the corresponding state,
assuming that both players play optimally to the end of the game. Formally, the
minimax value for a state s is

minimax(s) =

value(s) s is terminal state

max
a∈Actions(s)

{minimax(f(s, a))} player MAX to move

min
a∈Actions(s)

{minimax(f(s, a))} player MIN to move

(3.2)

f(s, a) stand for resulting state if action a (move of entire team) is applied in
state s.

For multiplayer games, which includes ACPF, single value of each node is
replaced by vector of values, where individual components give utility of the
state from each player’s viewpoint.

Action selection process requires trying of different sequences of actions and
determine a value of situation that has arisen. From the very beginning of the
game strategy programming, the selection process had been divided into two
distinct approaches [27]: Brute force search (type A) and selective search (type
B). This theory dates back to the fifties, when power of computers did not achieve

1These terms are prevalent in literature.

32

the power for effective brute force utilization and hence selective search was rather
promoted. The importance of brute force method increased with progressive
advancement of computers. In case of ACPF, most instances are too complex for
brutal force, even using modern computers.

3.3.2 Minimax approach

Minimax algorithm is a well known example of a brute force algorithm, detailed
description is provided for example in [23]. The efficiency of the minimax algo-
rithm can be very easily improved by a slight modification of the algorithm. This
enhancement is called alpha-beta pruning. The idea is grounded by observation,
that some branches, that are clearly worse than other branches explored so far,
can be ignored without any risk of losing the optimal result.

An example of a game tree is depicted in the figure 3.4. Numbers in the nodes
stand for their minimax value. Basic minimax algorithm would have to visit every
node in the tree, while alpha-beta pruning avoid searching non-promising gray
subtrees . No matter whether we use pruning or not, for a certain depth the
algorithm always returns the same node.

6

3 6 4

5 3 6 7 4 8

5 2 3 6 6 7 4 8 1

5 8 7 2 5 3 6 6 9 7 4 9 8 1

MAX

MIN

MAX

MIN

MAX

Figure 3.4: Alpha-beta search tree

Let b denote a branching factor and d be the assigned depth. Then we get

b+ b2 + ...+ bd = bd+1 − 1 (3.3)

performed moves, bd callings of the evaluation function and thus exponential time
complexity. Algorithm 4 shows detailed pseudocode of the alpha-beta algorithm.
From a current position (root) we call method AlphaBetaMAX with the widest
possible (α, β) interval. Functions AlphaBetaMAX and AlphaBetaMIN are defined
in terms of each other, or so called mutual recursion.

33

Algorithm 4 Alpha-beta pruning algorithm

function AlphaBeta() ⊲ call from the root
score← AlphaBetaMAX(−∞,+∞, depth)

end function

function AlphaBetaMAX(α, β, depth)
if depth == 0 then

return evaluate state()
end if

possible moves← generate moves()
for move ∈ possible moves do

play move(move)
score←AlphaBetaMIN(α, β, depth− 1)
undo move(move)
if score ≥ β then

return β ⊲ beta cutoff
end if

if score > α then

α← score
end if

end for

return α
end function

function AlphaBetaMIN(α, β, depth)
if depth == 0 then

return −evaluate state()
end if

possible moves← generate moves()
for move ∈ possible moves do

play move(move)
score← AlphaBetaMAX(α, β, depth− 1)
undo move(move)
if score ≤ α then

return α ⊲ alpha cutoff
end if

if score < β then

β ← score
end if

end for

return β
end function

Iterative deepening

One possible disadvantage of the alpha-beta algorithm consists in the inability to
stop the computation at any time or ”on demand”. The algorithm has to finish
the level of the search tree in the assigned depths, otherwise some important

34

branches would be neglected, which may lead to an inaccurate result. However,
this drawback can be overcome by using so called iterative deepening technique,
which combines both BFS (breadth first search) and DFS (depth first search)
approach. At the beginning, the iterative deepening runs minimax (or alpha-
beta) search with depth 1 and every next iteration increases the depth. Best
successor found so far is stored and computation can be stopped in any time,
even if the current iteration has not finished. Best successor from the previous
iteration would then be returned.

Algorithm 5 Iterative deepening

function IterativeDeepening(maxDepth)
for depth = 0 to maxDepth do

bestMove← findBestMove(depth) ⊲ using DFS
end for

return bestMove
end function

Time complexity of the iterative deepening search is certainly worse, but
asymptotically remains unchanged:

db1 + (d− 1)b2 + · · ·+ 3bd−2 + 2bd−1 + bd ∈ O(bd) (3.4)

Performance of the alpha-beta algorithm is affected by move order. If more
promising moves are calculated earlier, then bigger branches are pruned which
leads to faster algorithm running. Since iterative deepening evaluates the moves
during every iteration, we can order them according their value from previous
iteration.

Move returned by some minimax algorithm using iterative deepening will be
always the same as move returned by minimax without this technique, provided
they both searched to the same depth. Only in the first case the calculation
would take longer time. So the reason for it is mainly when the computation is
limited by computational time instead of search depth, or in some applications,
when we need to react on a user input and return the result whenever the user
wishes (some user event occurs).

3.3.3 Monte Carlo approach

Monte Carlo methods have wide usage in various applications including numerical
algorithms, statistical physics and artificial intelligence.

General characteristics

Monte Carlo Tree Search (MCTS) represents a method for finding optimal deci-
sions that combines tree search and random simulations [5]. In general, MCTS is
usually useful when standard methods fails due to excessively large state space,
difficult evaluation function or complicated rules. Besides that, it is suitable for
games with imperfect information or certain randomness. MCTS were success-
fully applied in computer Go [6], where surprisingly outperformed alpha-beta
algorithm.

35

Important property of MCTS follows from the fact that it does not need any
domain specific knowledge and hence is useful in games where calculation of a
fitness function is difficult. Unlike depth limited minimax, The only necessary
knowledge is the ability to recognize terminal state. However, additional problem
dependent knowledge can achieve improvement.

Basically the algorithm is composed of 4 stages:

• Selection

• Expansion

• Simulation

• Backpropagation

Selection Expansion Simulation Backpropagation

Iterate n-times

Figure 3.5: Stages of MCTS

Selection phase starts in the root node and recursively selects children until
a node representing a non-terminal state or having unvisited children is reached.

Expansion phase adds one or more child nodes corresponding to the actions
available from a state represented by node selected in the previous phase. Selec-
tion and expansion are often called tree policy.

A sequence of actions is run during the simulation phase until a terminal
conditions are fulfilled, typically a terminal state is reached. This simulation
produces a reward value. Term default policy is sometimes used for addressing
the simulation phase.

Reward value is then during the backpropagation stage propagated up and
visited nodes update their statistics.

These stages are repeated in certain number of iterations and game tree is
gradually built. The more iterations are accomplished, the larger search tree is
built and hence the performance of the algorithm increases. The way that deter-
mines how are the nodes selected (tree policy) represents crucial characteristics
of the MCTS algorithm. More formal description of the algorithm 6 is presented
at the end of this section.

36

Before we give an overview of MCTS variants, lets make a reference to the
Bandit problem and exploitation-exploration dilemma, that are important for
understanding the algorithm run.

Bandit problem

Suppose we have K arms of multi-armed bandit slot machine and the objective
is to sequentially choose among K possible arms in order to maximize the total
reward. Reward distribution is unknown at the beginning, therefore the every
next optimal action selection must be guessed according to previous observations.
This leads to the well known exploitation-exploration dilemma: should we exploit
the arm that is currently believed to be optimal, or should we rather explore other
possibly suboptimal actions, that could potentially turn out to be advantageous?

A possible approach is called UCB1 (Upper confidence bound) [2]. Selected
arm k satisfies

k ∈ argmax
j∈J

(

X̄j +

√

2 lnn

nj

)

(3.5)

where X̄j is an average reward from arm j, n is a total number of attempts
and nj denote how many times was the arm j selected.

Upper Confidence Bounds for Trees

Combining of the MCTS algorithm and UCB approach for solving bandit problem
leads to the Upper Confidence Bounds for Trees (UCT) algorithm. Individual
vertices of the MCTS tree are regarded as individual arms of the bandit problem.
During the selection phase, every successor of a vertex is selected in order to meet

k ∈ argmax
j∈J

(

X̄j + 2Cp

√

2 lnn

nj

)

(3.6)

Constant Cp adjusts exploitation-exploration ratio. If for example Cp = 0, the
successor with the highest average reward is selected in every step. The higher
Cp constant, the more favourable exploration.

In comparison to minimax, tree search carried out in UCT is more resembling
human approach People usually do not try to consider exhaustively all possible
options, but rather focus on promising ones and examine them more carefully.

Variants

Several variants of MCTS method were proposed in [5]. The method itself does
not specify tree policy, i. e. how are the nodes of the tree selected and expanded.

Flat Monte Carlo is a simple Monte Carlo based method that does not build a
search tree. It merely runs certain number of random simulations from a current
state and returns the successor with the highest average reward.

Flat UCB regards the current state successor selection as a bandit problem.
Similarly to the Flat Monte Carlo, Flat UCB does not build a tree.

37

MCTS builds a tree using a tree policy.

UCT is a MCTS with an arbitrary UCB policy. Every node on the path from
root to leaf during the selection phase is treated as a bandit problem.

Greedy move probability

We believe that greedy move probability were firstly introduced in this work. It is
a heuristic that can be used during the simulation phase. Moves are not selected
only randomly, but with a certain probability p we can use a greedy move that
can direct the simulation phase. Random move is then played with probability
1− p.

Since the simulation phase has to try large number of moves, it would be very
time consuming to evaluate all possible moves and select the best one, especially
with high number of agents. Instead of that we use decoupled greedy approach
described in the section 3.1.

38

Algorithm 6 general MCTS

function UCTSearch(s0)
create root node v0 with state s0
while within computational budget do

vl ← TreePolicy (v0)
⊲ State (v) denotes a state corresponding to vertex v

value← DefaultPolicy (State (vl))
Backup (vl, value)

end while

return Action (BestChild (v0, 0))
end function

function TreePolicy(v)
while v is nonterminal do
if v is not fully expanded then

return Expand(v)
else

v ← BestChild(v)
end if

end while

end function

function DefaultPolicy(v)
while s is nonterminal do
choose random v ∈ Successors (v)
s← f (v, a) ⊲ apply action a in state s
return reward for state s

end while

end function

function Backup(v, value)
while v 6= null do
N (v)→ N (v) + 1
Q (v)→ Q (v) + value
v → Parent (v)

end while

end function

function Expand(v)
⊲ Actions (s) denotes all feasible actions from state s

choose a ∈ untried actions from Actions (State (v))
add a new child v′ to v
return v′

end function

function BestChild(v)

return argmaxv∈v′
Q(v′)
N(v′)

+ c
√

2 lnN(v)
N(v′)

end function

39

3.4 Exploiting instance properties

Games such as go [6], chess [27] and others were studied in detail and appropri-
ate algorithms were tailored to their needs. Unlike most board games, solving
ACPF is not that straightforward, because the graph, numbers of agents and
their placements are not fixed. Therefore some methods can be successfully used
in some particular situations and fail in others. This fact suggests to decide
solving method when the problem instance is known and perhaps combine more
approaches or possibly change them during the simulation.

3.4.1 Offensive and defensive tactics

One possible suggestion is motivated by a security operation with a protected
person (VIP) and guards who are trying to secure relocation of VIP to its desti-
nation as suggested in [16] along with other ideas. Three different roles for agents
are proposed, let us call them VIA (very important agent), guard and attacker.
Roles merely indicate that agents are treated differently by a solving algorithm.
An objective of every VIA is to reach its target as soon as possible, while guards
should support them and defend them against opponent. Attackers try to harm
adversarial agents for example by preventing opponent’s VIA to reach its target.

The definition of ACPF allows instances where several agents do not have any
particular target location. An agent without any target can be used as guard or
attacker while an agent with a target should be treated as VIA and protected
by other agents. Agent’s role is not necessarily fixed, but can vary during the
simulation.

Game-based methods would naturally use agents without target in order to
find the most suitable move. Cooperative and greedy algorithms would normally
ignore them, but simple heuristic can assign them new targets. New target could
be some adversarial agent’s target and the agent would become an attacker.

3.5 Method Summary

All approaches addressed in this chapter have some typical characteristics. They
can be distinguished by their basic principle, dealing with adversaries or time
complexity.

To sum up this chapter we include following table containing selected at-
tributes of studied methods:

Algorithm
Principle Coupled (C)/ Call

Decoupled (D)

Greedy 3.1 - C every move
ACA* 3.2.1 path-finding D when needed

Alpha-Beta [27] state space search C every move
MCTS [5] state space search C every move

Table 3.1: Properties of studied algorithms for ACPF

40

4. Experiments

In this chapter we describe performed experiments and show their outcomes.
We implemented several strategies that were supposed to solve ACPF instances.
Strategies were tested and compared in different environments (graphs and agent
placements). An application for testing and comparing strategies were developed
and its user documentation can be found in the appendix 4.2.5, which was created
in order to ensure reproducibility of the experiments.

Some strategies have adjustable parameters and experiments were carried out
with different settings. Our objective is to experimentally measure convenient
values of the parameters within particular technique and subsequently compare
individual algorithms among others. We will also try to identify and categorize
types of instances suitable for individual techniques.

4.1 Methodology

Problem definition in chapter 2 is very general and for our experimental reasons
we will consider several simplifications, so we can model practical problems in
more representative way. Following simplifications were employed:

• Graph is a 4-connected grid with possible obstacles

• Always two adversarial teams

• An agent has either one particular target vertex or no target at all (every
vertex can be its terminal position).

4-connected grid graph Gm,n is defined as graph Cartesian product Pm × Pn

of path graphs on m and n vertices [41].

4.1.1 Instance pattern generation

For obtaining more reliable data, we need to conduct as many runs on different
graphs as possible. Although individual graphs should be various, usually we
need graphs fulfilling definite properties like width, height, number of agents
etc. Sometimes we also demand agent and target placement limited to certain
positions.

For this purpose we use so called map patterns, that define properties of
graph and agents. Particular instances are generated randomly, but have to
fulfill defined pattern.

A pattern defines a graph and 2 subsets of vertices, initial region and terminal
region for each team. Initial region of team t determines all possible starting
positions (sources) for members of t, while terminal region dictates possible target
vertices of agents from t. In general, vertices belonging to one region are not
required to be adjacent and all regions can overlap arbitrarily. Exact positions
are generated randomly. There is also information about number of agents and
how many of them do have particular target veretx.

41

4.1.2 Scenarios

Definition of the ACPF problem offers a wide range of possible problem instances.
These instances may be very diverse: various size and structure of a graph as
well as number of agents might significantly influence a performance of studied
algorithms. Furthermore, different algorithms can be more successful in different
environments.

In this work we try to capture diverse classes of instances and test the algo-
rithms on them. We will use term scenario for a class of instances. All these
scenarios can be parametrized by several attributes.

Following paragraphs describes particular scenarios and their properties. Ap-
pendix 4.2.5 contains explanation of diagrams present in this chapter.

Exchange

Initial region of team t1 is identical to the target region of adversarial team t2
and terminal region of t1 is identical to the initial region of t2, in other words,
teams try to exchange their positions. Initial and target regions of a team do not
overlap. Maximal number of agents in a team t is less or equal than the number
of vertices of the t’s initial region. Exemplary map is depicted in the figure 4.1a
and its possible randomly generated instance is showed in the figure 4.1b.

Race

Initial region and terminal region of both teams are identical. Similarly to the
previous case, the initial and terminal regions do not have any common vertices.
Teams race each other in positioning the agents at their targets. Size of a team
must not be greater than half of the initial region, because this region is shared
with the opponent’s team. Figure 4.1c shows and example of a race map. Figure
4.1d depicts a possible instance generated from the map.

Mingled

Mingled scenario supposes distinct terminal and initial regions for both teams.
No identical regions are allowed. Initial and terminal regions of a team must not
have common vertices. Some overlaps between regions belonging to two different
teams are allowed. Shortest paths from initial region vertices to target region
vertices of one team should cross respective paths of the other team. The idea
for this scenario is an imitation of a crossroad. Exemplary map and its instance
are showed in the figure 4.1e and 4.1f respectively.

42

(a) Exchange map

1

132
1 2 3

2 3
3 2 1

(b) Exchange instance

(c) Race map

1

2

12

2 11 2

(d) Race instance

(e) Mingled map

1

22 1
2

1

3

3

32 1

3

(f) Mingled instance

Figure 4.1: Exemplary maps of individual scenarios and their potential randomly
generated instances

4.2 Results

This section presents conducted experiments. Settings of individual experiments
are described and their outcomes are showed. We also try to discuss and explain
particular outcomes. In the end we provide a general findings that emerged from
our experiments.

4.2.1 Greedy deciding

Greedy strategy is the simplest approach without many adjustable parameters. It
is possible to choose between two different evaluation functions according which

43

the greedy move is selected. The result of following experiment may seem sur-
prising, but closer contemplation suggests an explanation.

Distance vs. empty distance evaluation

In this experiment we examine behavior of distance evaluation (do not consider
other agents when computing distances to the targets) and empty distance eval-
uation (consider agents) defined in section 2.4.4. These two versions of greedy
strategy repeatedly plays against one another. Experiments were performed in
two different scenarios. Firstly in exchange scenario without obstacles and then
in mingled scenario with obstacles. Both scenarios employed a grid graph 7 × 7
with the same number of agents in both teams, each agent had a single target.
Results are presented on graphs 4.2 and 4.3.

0

50

100

150

200

250

2 3 4 5 6

N
u

m
b

e
r

o
f

g
a

m
e

s

Number of agents per team

Exchange scenario: distance (D) vs empty

distance (E) evaluation strategy

Total finished

Finished E wins

Unfinished E wins

Finished D wins

Unfinished D wins

Figure 4.2

0

20

40

60

80

100

120

140

160

180

200

2 3 4 5 6

N
u

m
b

e
r

o
f

g
a

m
e

s

Number of agents per team

Mingled scenario: distance (D) vs empty

distance (E) evaluation strategy

Total finished

Finished E wins

Unfinished E wins

Finished D wins

Unfinished D wins

Figure 4.3

Horizontal axis determines number of agents in one team, vertical axes repre-
sents number of runs. For every number of agents we see five columns: blue color

44

denote winning runs of the team that uses empty distance evaluation strategy
(team E). Winning runs of team that uses distance evaluation strategy (team
D) are represented by green color. Dark blue and dark green columns represent
simulations when all agents belonging to a particular team reached their targets
(finished runs). Their sum gives the black column, which denotes number of fin-
ished runs, no matter which strategy won. Light blue and light green columns
stand for the runs when not all agents necessarily reached their targets. Winner
was determined after position evaluation when time limit elapsed. Light blue and
light green columns sums up to 200, which was the total number of simulations
for each number of agents: 100 runs with D team first to move and 100 moves
with E team first to move.

As the strategy with empty distance evaluation provides more realistic es-
timation, it was supposed to outperform the strategy with distance evaluation.
Unexpectedly the strategy with just distance evaluation is more successful in our
experiment. The explanation of this counterintuitive conclusion is that agents
of team D try to go around adversarial agents, which often clear path for the
opponent’s E team that just try to approach the targets without compromises.
Thus the ”stubborn” approach seems to be much more successful.

4.2.2 Cooperative path-finding approach

Adaptation of cooperative methods in adversarial environment gave us ACA*
algorithm. We will examine the behavior of this algorithm while using different
settings.

Agent sorting

We already discussed, that cooperative algorithms based on spatial search may
fail to find paths when using certain agent order, while for another order it can
successfully find required path plans. Aim of this experiment is to compare
performance of two cooperative approaches, when one uses agent sorting from
section 3.2.1. We would like to find out whether the different performance will
be manifested in our adversarial adaptation.

All simulations of this experiment are conducted in exchange scenario on a
symmetric grid map with dimension 10 × 6 cells and 4 obstacles Agents and
targets are placed on the first two, resp. last two columns. Number of agents
were gradually increased from 1 up to 10 per each team. 10 simulations were
accomplished for every number of agents. Opponent’s team were guided by greedy
strategy. Every time the search algorithm fails to find paths, we try to re-arrange
order of the agents in a team. We observe and compare numbers of necessary
rearrangements.

From the graph 4.4 is perceptible that initial sorting of agents influences the
number of necessary agent rearrangements. It is more likely to find paths with
some heuristic agent sorting.

45

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

sh
u

ff
li

n
g

s

Number of agents in one team

sort

no sort

Figure 4.4: Average shuffle count depending on number of agents

Maximal number of rearrangements in our experiment were 30. After exceed-
ing this limit the algorithm concluded that there is no way how to reach targets
and let the whole team stay on the current places. Indeed, the algorithm does
not try all possible agent ordering, because for k agents there are k! different or-
derings and to try them all would be too time consuming. Hence we try a limited
number of orderings and if we don’t succeed to find paths, we do nothing and
wait for opponent’s response. Search is then started again as soon as our team is
to move.

4.2.3 Minimax methods

Minimax algorithm is together with alpha-beta pruning a traditional method for
solving game-like problems. By this experiment we gain a better insight into its
properties when applied on ACPF.

Number of leaves

Every time minimax or alpha-beta algorithm reach a leaf node, it has to evaluate
the position corresponding to the current leaf. Minimax must visit all possible
leaves, but pruning can significantly reduce their number. This experiment tries
to find out how significant the reduction is in case of ACPF.

We perform two types of experiments concerning number of leaves. First we
use exchange scenario on grid graph 7× 7. Search depth was set on 2 steps and
the number of agents varies from 2 to 6 per each team. Following table shows
the results.

46

Number of no pruning pruning pruning

agents no sorting no sorting sorting

2 283 113 52

3 4730 464 392

4 52336 6966 1408

5 1736716 28970 9224

6 - 36096 28432

Table 4.1: Number of leaves for different minimax settings and agent counts

It is clear how the alpha-beta pruning rapidly decreases number of leaves and
hence brings a major improvement. In our case the reduction was even 2 orders
for 5 agents. Basic minimax used in environment with 6 agents on both sides is
not able to work in a meaningful time. Furthermore move sorting at the root node
can also reduce the number of leaves, although the difference is not so noticeable.

Second experiment concerning number of leaves were conducted using one
particular ACPF instance. Figure 4.5 shows a progress of the leaf count during
the run. Left graph depicts all three minimax variants, where the basic minimax
without pruning visits significantly more leaves then variants with pruning. Right
graph should offer better image of alpha-beta pruning with and without move
sorting, because on the left graph it is not easily recognizable.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7 8 9

Le
a

f
co

u
n

t

move

No pruning, no sorting Pruning, no sorting Pruning, sorting

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9

Le
a

f
co

u
n

t

move

Pruning, no sorting Pruning, sorting

Figure 4.5: Progress of the number of leaves during one run

Again we see that move pre-sorting saves some leaves visits, but we must not
forget that the sorting also costs some time.

4.2.4 Monte Carlo methods

Second method for game environments were Monte Carlo tree search, specifically
its variant known as UCT. In our experiments we focus on UCT parameter and
greedy move probability.

Tuning UCT parameter

As mentioned in the algorithm section, UCT parameter determines the balance
between exploration and exploitation of the branches within MCTS tree. The

47

aim of this test is to find optimal value of the UCT parameter. We try to find
the order, where the optimal UCT parameter belongs.

MCTS run against cooperative strategy from the section 3.2. Each tested
value of the UCT parameter were used in 100 games.

UCT coefficient exchange race

0.001 30 68

0.01 38 56

0.1 30 62

1.0 54 72

10.0 39 61

100.0 29 57

1000 35 63

Table 4.2: Number of won games with different UCT parameter value

Greedy move probability

Greedy moves can be used in the simulation phase of the MCTS algorithm as
described in the section 3.3.3. A purpose of this experiment is to estimate the
optimal value of the greedy move probability and to see how its increasing value
affects success rate of the algorithm.

Experiments were conducted in all three described scenarios: exchange, race
and mingled. Width and height of the map was always 7 cells and both sides
used 3 agents. First team was led by MCTS strategy, while its opponent used
cooperative strategy. 100 matches were conducted for each environment. The
result of this experiment is depicted in the figure 4.6

0

10

20

30

40

50

60

70

80

90

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

W
in

n
in

g
 r

a
te

 [
]%

]

Greedy rollout probability

mingled

exchange

race

Figure 4.6: Greedy roll-out move probability

From the graph we can clearly see, that the winning rate increases with grow-
ing greedy roll-out probability until a certain point. The MCTS with zero greedy

48

move probability is very weak and almost always loses. The winning rate stag-
nates around probability 0.7 and rather decreases with higher probabilities.

4.2.5 Strategy tournament

A substantial objective of the experimental section is to provide a summary of
performance of studied strategies. We strive to draw a comparison of implemented
algorithms. In the previous sections we showed that some algorithms evince
different performance with different settings. In this section we try to pick the best
settings of each algorithm and conduct a tournament among examined strategies.

We are aware of very different success rates of algorithms in different types of
environment. Owing this fact we performed experiments in different types and
sizes of scenarios. We inquired into exchange, race and mingled scenario, each
with smaller and bigger map.

Certain inequity follows from the advantage of starting player. To overcome
this issue we always run 100 matches when strategy A plays in the first step and
100 matches when strategy B begins.

Results of matches are stated in the following tables. Every cell contains
two scores. The upper score indicates finished runs, when all agents of one team
reached their targets. Lower score is total score, when we consider unfinished runs
as well. In such case a winner is determined using empty distance evaluation.

Small instances

Small instances are generated on 6× 6 map with 3 agents in both teams. Greedy
algorithms uses distance evaluation. Depth of alpha-beta is set on 3, agent sorting
is not employed. MCTS expands 4000 nodes and greedy move probability is 0.7.
ACA* algorithm uses agent sorting. Heuristic for A* computes distances between
vertices ignoring agents.

Large instances

Large instances used map 10× 10 with 6 agents at each side. It was necessary to
reduce depth of alpha-beta algorithm on 1, because otherwise it did not compute
in practical time. MCTS were used in variant Flat UCB, when only first level
of the search tree is built. Number of expanded nodes was 14000. Greedy and
cooperative algorithms remained unchanged.

49

Small exchange

Exchange Greedy ACA* Alpha-beta MCTS

Greedy
34:14 5:4 0:12

81:19 44:56 74:26

ACA*
34:37 19:45 34:54

43:57 25:75 41:59

Alpha-beta
9:6 42:11 4:4

81:19 81:19 88:12

MCTS
20:3 66:24 14:8

35:65 70:30 29:71

Table 4.3: Strategy tournament with small exchange scenario

Small race

Race Greedy ACA* Alpha-beta MCTS

Greedy
52:20 5:26 25:41

58:42 36:64 41:59

ACA*
34:40 10:62 27:59

54:46 19:81 38:62

Alpha-beta
27:10 68:5 36:3

75:25 84:16 88:12

MCTS
54:15 67:20 9:27

71:29 69:31 24:76

Table 4.4: Strategy tournament with small race scenario

Small mingled

Mingled Greedy ACA* Alpha-beta MCTS

Greedy
47:33 9:13 4:27

62:38 37:63 62:38

ACA*
46:31 32:34 21:53

54:46 46:54 41:59

Alpha-beta
22:4 60:11 3:10

81:19 84:16 83:17

MCTS
36:7 56:29 18:6

53:47 65:35 32:68

Table 4.5: Strategy tournament with small mingled scenario

50

Large exchange

Exchange Greedy ACA* Alpha-beta MCTS

Greedy
27:20 1:0 1:0

67:33 52:48 58:42

ACA*
22:24 18:33 8:0

42:58 31:69 52:48

Alpha-beta
0:0 37:17 0:0

61:39 72:28 53:47

MCTS
1:2 0:17 0:3

48:52 49:51 56:44

Table 4.6: Strategy tournament with large exchange scenario

Large race

Race Greedy ACA* Alpha-beta MCTS

Greedy
20:27 7:7 8:2

52:48 57:43 55:45

ACA*
30:13 38:10 24:2

64:46 66:34 59:41

Alpha-beta
11:2 29:16 11:1

61:39 61:39 50:50

MCTS
1:7 3:18 1:7

50:50 51:49 43:57

Table 4.7: Strategy tournament with large race scenario

Large mingled

Mingled Greedy ACA* Alpha-beta MCTS

Greedy
45:26 3:4 12:0

62:38 61:39 65:35

ACA*
31:40 35:28 11:00

45:55 49:51 47:53

Alpha-beta
5:0 32:39 3:0

56:44 34:26 49:51

MCTS
0:3 59:41 1:3

58:42 49:51 56:44

Table 4.8: Strategy tournament large mingled scenario

51

Findings

From the results of strategy tournament we can infer several conclusions. Game
methods on small instances evidently outperform greedy and cooperative meth-
ods. This result is caused by the fact, that the state space is not too large and
game methods are able to calculate greater part. Greedy method is more suc-
cessful in exchange scenario, because cooperative algorithm tries to go around,
which is what greedy method waits for.

Runs in large scenarios finishes much less often than in small scenarios. Game
methods have still quite good results, but they would not be able to compute with
higher number of agents. ACA* algorithm is successful in race scenario. Greedy
strategy succeeds in exchange scenario again.

Overall result of the strategy tournament is that game methods are good as
long as they are able to compute. With higher number of agents we observed
that greedy method is surprisingly successful, especially when agents are suppose
to go facing each other. Nevertheless a shortcoming of greedy method is that
it cannot deal with some situations, that can be easily solved by cooperative
strategy. Unfortunately, cooperative strategies in the competitive environment
are too loyal towards opponent and hence there are not many types of instances
where cooperative algorithm succeeds.

52

Conclusion

This master thesis addressed Adversarial Cooperative Path-finding, a generalized
and extended version of traditional Cooperative Path-finding.

Since the adversarial version of CPF was not introduced in any previous work,
the first aim of this thesis was to formally define considered problem. Based on
the definitions, we tried to prove its membership in complexity classes. The prob-
lem belongs to PSPACE-hard complexity class, which was briefly showed in [16].
An alternative proof of PSPACE-hardness with detailed description and expla-
nation was presented here. Unfortunately our attempts for proving PSPACE-
completeness of the problem failed so far and hence it remains an open question.
If it were possible to polynomially reduce number of moves, as is possible in
CPF, we would be able to prove that ACPF belongs to PSPACE and imme-
diately PSPACE-completeness. Nevertheless at least we have an upper bound,
because we proved that the problem is also member of EXPTIME.

Subsequently we described possible techniques for controlling selected team
against its opponents. Two main different approaches were discussed: adapt-
ed methods known from cooperative path-finding and application of the game
methods. The excessive complexity of the problem make game methods impos-
sible when the ACPF instance is big, i. e. when there are too many agents,
since the branching factor of the problem grows exponentially with the number
of agents. Despite our low expectation, surprisingly successful seem to be greedy
methods.

Experimental part provides us a closer insight. We see how does the minimax
algorithm perform when different settings are used and how it deals with increas-
ing number of agents. Similar tests were conducted for Monte Carlo methods.
The most noticeable conclusion is that game methods can be employed only for
instances with limited number of agents. Our hypothesis that MCTS could be a
suitable solving technique was disproved. In case of more agents the time spent
by computing is excessive and leads us to inference that there has to be another
way how to deal with bigger or more crowded instances.

Possible approach is adaptation of algorithms for the cooperative path-finding
problems, that were plentifully studied and researched in recent decades. Ad-
versarial Cooperative A*, an adaptation of CA* algorithm, were proposed with
different settings. We studied its behavior in various environments. This method
is suitable for environments where agents from one team have to cooperate and
do not interact with adversarial agents very often. Despite rather weaker perfor-
mance in the tournament, development of a refined cooperative based algorithm
might be interesting task for future research. Investigation of domain dependent
heuristics could be a potential starting point.

53

Bibliography

[1] Broderick Arneson, Ryan B. Hayward, and Philip Henderson. Monte car-
lo tree search in hex. IEEE Trans. Comput. Intellig. and AI in Games,
2(4):251–258, 2010.

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[3] M. Bennewitz, W. Burgard, and S. Thrun. Finding and optimizing solvable
priority schemes for decoupled path planning techniques for teams of mobile
robots. Robotics and Autonomous Systems, 41(2):89–99, 2002.

[4] Zahy Bnaya, Roni Stern, Ariel Felner, Roie Zivan, and Steven Okamoto.
Multi-agent path finding for self interested agents. In Malte Helmert and
Gabriele Röger, editors, SOCS. AAAI Press, 2013.

[5] Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. A survey of monte carlo tree search
methods. IEEE Trans. Comput. Intellig. and AI in Games, 4(1):1–43, 2012.

[6] Bernd Brügmann. Monte carlo go, 1993.

[7] Michael Chung, Michael Buro, and Jonathan Schaeffer. Monte carlo planning
in rts games. In IEEE SYMPOSIUM ON COMPUTATIONAL INTELLI-
GENCE AND GAMES (CIG), pages 117–124, 2005.

[8] Boris de Wilde, Adriaan ter Mors, and Cees Witteveen. Push and rotate:
cooperative multi-agent path planning. In AAMAS, pages 87–94, 2013.

[9] Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[10] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959. 10.1007/BF01386390.

[11] Michael Erdmann and Tomas Lozano-prez. On multiple moving objects.
Algorithmica, 2:1419–1424, 1987.

[12] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4:100–107, 1968.

[13] R.C. Holte, R. C. Holte, M.B. Perez, M. B. Perez, R. M. Zimmer, R. M.
Zimmer, A.J. MacDonald, and A. J. Macdonald. Hierarchical a*: Searching
abstraction hierarchies efficiently. In In Proceedings of the National Confer-
ence on Artificial Intelligence, pages 530–535, 1996.

[14] Ko hsin Cindy Wang and Adi Botea. Fast and memory-efficient multi-agent
pathfinding. In In ICAPS, pages 380–387, 2008.

54

[15] Haomiao Huang, Jerry Ding, Wei Zhang 0013, and Claire J. Tomlin. A
differential game approach to planning in adversarial scenarios: A case study
on capture-the-flag. In ICRA, pages 1451–1456. IEEE, 2011.

[16] Marika Ivanová and Pavel Surynek. Adversarial cooperative path-finding: A
first view. AAAI Late Breaking Track, 2013.

[17] M. Renee Jansen and Nathan R. Sturtevant. Direction maps for cooperative
pathfinding, 2008.

[18] M. Renee Jansen and Nathan R. Sturtevant. A new approach to cooperative
pathfinding. In Lin Padgham, David C. Parkes, Jörg P. Müller, and Simon
Parsons, editors, AAMAS (3), pages 1401–1404. IFAAMAS, 2008.

[19] Daniel Kornhauser, Gary L. Miller, and Paul Spirakis. Coordinating pebble
motion on graphs, the diameter of permutation groups, and applications. In
FOCS25, pages 241–250. IEEE, October 1984.

[20] Petr Koupý. Visualization of problems of motion on a graph, 2010.

[21] Viliam Lisý. Adversarial planning for large multi-agent simulations. In
Wiebe van der Hoek, Gal A. Kaminka, Yves Lespérance, Michael Luck, and
Sandip Sen, editors, AAMAS, pages 1665–1666. IFAAMAS, 2010.

[22] Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative path-
finding with completeness guarantees. In Toby Walsh, editor, IJCAI, pages
294–300. IJCAI/AAAI, 2011.

[23] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach (2nd Edition). Prentice Hall, December 2002.

[24] Malcolm Ross Kinsella Ryan. Exploiting subgraph structure in multi-robot
path planning. J. Artif. Intell. Res. (JAIR), 31:497–542, 2008.

[25] Franisek Sailer, Michael Buro, and Marc Lanctot. Adversarial planning
through strategy simulation. In CIG, pages 80–87. IEEE, 2007.

[26] Spyridon Samothrakis, David Robles, and Simon M. Lucas. Fast approxi-
mate max-n monte carlo tree search for ms pac-man. IEEE Trans. Comput.
Intellig. and AI in Games, 3(2):142–154, 2011.

[27] Claude Shannon. Programming a computer for playing chess. Technical
report, Bell Telephone Laboratories, Inc., Murray Hill, N.J., March 1950.

[28] Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant. Conflict-
based search for optimal multi-agent path finding. In to appear in AAAI,
2012.

[29] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing
cost tree search for optimal multi-agent pathfinding. In Toby Walsh, editor,
IJCAI, pages 662–667. IJCAI/AAAI, 2011.

[30] David Silver. Cooperative pathfinding. In AIIDE, pages 117–122, 2005.

55

[31] Michael Sipser. Introduction to the theory of computation. PWS Publishing
Company, 1997.

[32] Trevor Scott Standley. Finding optimal solutions to cooperative pathfinding
problems. In Maria Fox and David Poole, editors, AAAI. AAAI Press, 2010.

[33] Trevor Scott Standley and Richard E. Korf. Complete algorithms for coop-
erative pathfinding problems. In Toby Walsh, editor, IJCAI, pages 668–673.
IJCAI/AAAI, 2011.

[34] Bryan Stout. The Basics of A* for Path Planning. Charles River Media,
Inc., Rockland, MA, USA, 2001.

[35] Pavel Surynek. A novel approach to path planning for multiple robots in
bi-connected graphs. In ICRA, pages 3613–3619. IEEE, 2009.

[36] Pavel Surynek. On pebble motion on graphs and abstract multi-robot path
planning. In Proceedings of the ICAPS 2009 Workshop on Generalized Plan-
ning: Macros, Loops, Domain Control. September 20th, 2009, Thessaloniki,
Greece, 2009.

[37] Pavel Surynek. Abstract path planning for multiple robots: A theoretical
study, 2010.

[38] M. Walicki. Introduction to Mathematical Logic. World Scientific, 2012.

[39] Ko-Hsin Cindy Wang. Bridging the gap between centralised and decen-
tralised multi-agent pathfinding. In Innovative Applications of Artificial In-
telligence. Fourteenth Annual AAAI/SIGART Doctoral Consortium, 2009.

[40] Ko-Hsin Cindy Wang and Adi Botea. Tractable multi-agent path planning
on grid maps. In Craig Boutilier, editor, IJCAI, pages 1870–1875, 2009.

[41] Eric W. Weisstein. Grid graph. From MathWorld—A Wolfram Web Re-
source. Last visited on 03/3/2014.

[42] J. Yu and S. M. LaValle. Structure and intractability of optimal multi-
robot path planning on graphs. In The Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[43] Alexander Zelinsky. Mobile robot navigation exploration algorithm, 1992.

56

List of Abbreviations

• ACPF Adversarial Cooperative Path-finding

• BFS Breadth First Search

• CA* Cooperative A*

• CPF Cooperative Path-finding

• DFS Depth First Search

• HCA* Hierarchical Cooperative A*

• MCTS Monte Carlo Tree Search

• MPF Multi-agent Path-finding

• UCB Upper Confidence Bound

• UCT Upper Confidence Bound for Trees

• WHCA* Windowed Hierarchical Cooperative A*

57

List of Figures

1.1 An exemplary instance with two cooperating agents (a) and pos-
sible spatial graph with reservations 8

1.2 Example of blocking agents . 8

2.1 Vertex booking . 19
2.2 Hazardous vertex, s = 4 . 19
2.3 Variable gadgets . 20
2.4 Clause gadget . 20
2.5 Example of reduction . 22
2.6 Validity certificate (evaluation tree) 23
2.7 Transfer to another variable gadget 24

3.1 Failure of the distance evaluation 28
3.2 Instance that cannot be handled by greedy strategies 28
3.3 Tricky instance for ACA* with opponent omitting 30
3.4 Alpha-beta search tree . 32
3.5 Stages of MCTS . 35

4.1 Exemplary maps of individual scenarios and their potential ran-
domly generated instances . 42

4.2 . 43
4.3 . 43
4.4 Average shuffle count depending on number of agents 45
4.5 Progress of the number of leaves during one run 46
4.6 Greedy roll-out move probability 47
4.7 Meaning of a map cell . 64
4.8 Example of a map pattern with 3 agents and possible instance

generated from it . 64

58

List of Tables

1.1 Properties of selected MPF algorithms 10

3.1 Properties of studied algorithms for ACPF 39

4.1 Number of leaves for different minimax settings and agent counts 46
4.2 Number of won games with different UCT parameter value 47
4.3 Strategy tournament with small exchange scenario 49
4.4 Strategy tournament with small race scenario 49
4.5 Strategy tournament with small mingled scenario 49
4.6 Strategy tournament with large exchange scenario 50
4.7 Strategy tournament with large race scenario 50
4.8 Strategy tournament large mingled scenario 50
4.9 Property file description . 62

59

List of Algorithms

1 A* algorithm . 6
2 Decides whether an instance of ACPF problem has a winning strat-

egy for the selected team . 26
3 Adversarial Cooperative A* . 29
4 Alpha-beta pruning algorithm . 33
5 Iterative deepening . 34
6 general MCTS . 38

60

Appendix A

Content of the CD

• dist: executable version of the application used for experiments

• source: source code of the application (NetBeans project)

• maps: files with maps used in the tournament

• stats: directory with output files of conducted experiments. Every experi-
ment has its own folder that further contains

– graphs recorded instances, that can be used as inputs again.

– runs recorded progresses of individual matches. These files can be
used as an input for the program Graphrec [20].

– acpf.properties property file associated with the experiment

– matchinfo.log file with recorded statistics of the experiment

• thesis.pdf: electronic version of this text

61

Appendix B

SW prototype user documentation

A part of the thesis is also a console application which were used in the exper-
imental part. The application is written in Java. Communication between the
application and user is solved by editing the property file of which format is
described in the following section.

Property file format

File acpf.properties stores the configuration of the application run and is used
as an user interface of the program. It defines input file, maximal number of steps
before the simulation finishes, number of teams and what strategies do the teams
use. Every strategy has settings of its own parameters. Defined items are

Attribute possible values description

input file path to file A path to the input file

max move count N
Maximal number of moves
performed

unsaved entity count N ∪ {0}

Number of entities that are
not required to reach its
target

simulation count N

How many runs with this
settings should be
conducted

<team>.strategy {mc, cp, ab, gr}

Strategy for team name.
Abbreviations stands for
Monte Carlo Tree Search,
Cooperative, Alpha-Beta
and Greedy

<team>.ab.timeLimit N

Number of milliseconds
that minimax algorithm
can use for one move
calculation. If 0, then there
is no restriction and depth
limit is used.

<team>.ab.depth N

Minimax search depth.
Value is ignored if the
time limit is set.

<team>.ab.usePruning {true, false}
Should minimax use
alpha-beta pruning?

<team>.mcts.timeLimit N Time limit for MCTS

62

<team>.mcts.playOuts N
Number of MCTS
iterations

<team>.mcts.uctCoef R+ UCT coefficient

<team>.mcts.useFlatUcb {true, false} Should be the MCTS tree
constructed?

<team>.mcts.grRollProb < 0, 1 > Greedy roll-out probability

<team>.mcts.rollCount N
Length of the MCTS
simulation phase

<team>.gr.considerAgents {true, false}
Should the greedy strategy
consider other agents?

<team>.coop.shuffleCount N

How many times should
the agents be shuffled
in order to find paths for
agents in different order
(current ordering fails)

<team>.coop.sortAgents {true, false} Should the agents be sorted
before the first search

Table 4.9: Property file description

Input files

There are two types of input files that will be described in following sections.
Name of the input file is specified in the property file.

Graph file is a XML input file that provides unambiguous description of an
ACPF instance. File is composed from the XML header and a single root ele-
ment <graph width=”[width]” height=”[height]>”, where width and height
specifies the dimension of the grid graph that will be produced. Root element
contains:

• <entity id=[entity id] startnodeid=[start node id] teamid=[team id]

/>

• <target entityid=[entity id] nodeid=[node id] />

• <obstacle nodeid=[node id] />

Map file input format Files *.map define exactly how shall the graph look
like, but the agent and target placements are ambiguous. Let us look at the
following example, that represents small mingled scenario:

63

5 5 3 3 3 3

2 0 0 0 01

1 XX XX 1

1 1

1 XX XX 1

10 0 0 0 2

First line with numbers describes dimension of the grid graph. In our case the
width and height of the graph are 5. Next two digits defines number of agents in
selected and adversarial team respectively. Last two numbers indicate how many
agents do have a target vertex.

Following lines defines a map pattern. Numbers 0 and 1 respectively denote
selected and adversarial team respectively. Number 2 stands for both teams.
Character X means that there is an obstacle at the represented vertex. Every
possible vertex is associated with two characters. Left position defines possible
source and right position stands for possible target. So in our example the upper
left corner is a vertex, that can be a source vertex of agent belonging to any team.
Lower left corner represents a vertex, that can be initial vertex of an agent from
the adversarial team, but can be also a target of the selected team.

Output files

Every experiment defines number of runs for a given input file (usually map
file). Output files are created into a new folder within stats directory. Program
creates two types of output files. First are records of the processed instances
(graph file from the previous section). In case that the input file was graph file,
the output file is actually its copy. Second file defines movement of the agents
carried out in the processed instance. These files are inputs for visualization
program Graphrec [20].

64

Appendix C

Several passages of this thesis contain instance and map diagrams to illustrate
exemplary situations. This section clarifies and explain the meaning of used
symbols. One square in diagrams represents a one vertex of a grid graph.

Map patterns

Player's

agent

P
la

y
e
r'

s

ta
rg

e
t

A
d

v
e

rs
a

ry
's

ta
rg

e
t

Adver-

sarial agent

Figure 4.7: Mean-
ing of a map cell

In some cases we would like to describe a whole class of
instances satisfying a certain properties. For this reason
we introduced so called map patterns. Using map patterns
together with given number of players we are able to ex-
press where the agents can appear on the map and where
are possible locations for their targets. Structure of a grid
graph is fixed, while exact agents’ and their targets’ loca-
tions may vary.

The diagram on the right clarifies the meaning of a map
cell. There can be up to four types of objects on a cell, each
has its position in the square and for better orientation
we use a color to distinguish individual objects. Instance
generator always assigns at most one agent and at most
one target to a cell.

Figure 4.8a depicts an example of a grid map pattern with an obstacle in the
center. The map definition also contains information of determined number of
agents and targets. The depicted map has 3 agents on both sides, each with a
single target. Agents of a player can be placed in the upper two lines, their targets
lays on the bottom line. Agents of the adversarial team can initially occupy two
bottom lines and their goals lay on the top line.

(a) Map pattern

1

1 2

3

3

2
2

2

1

1

3

3

(b) Instance diagram

Figure 4.8: Example of a map pattern with 3 agents and possible instance generated
from it

65

Instance diagrams

For describing a particular situation (ACPF instance) we use instance diagrams.
These diagrams give information about current position of all agents present in
the situation and their targets. Agents belonging to one team are marked off
from other teams. We used green circles to characterize the selected team and
red circles for the adversarial team.

One possible example that could be generated from previously described map
pattern is depicted in the picture 4.8b. Individual agents are marked with num-
bers. Small numbers in the corner of some cells means, that the vertex is a target
location of an agent with the same number. Green color of the cell indicates, that
the agent belongs to the selected team. Red color is used for opponent’s agents.
Possible obstacles and borders are represented as dark gray blocks.

66

	Introduction
	Multi-agent Path-finding
	Basic Definitions and Properties
	Theoretical properties
	Selected Algorithms
	Local Repair A*
	Cooperative A*
	Hierarchical Cooperative A*
	Windowed Hierarchical Cooperative A*
	Summary of CPF methods

	Adversaries
	Basic Attributes and Characteristics
	Technical Difficulties

	Practical Usage
	Related problems with adversarial aspects
	Formal Definition
	ACPF Problem
	Agent Movement
	Solution
	Quality of a Progress

	Problem Complexity

	Solving Adversarial Version
	Greedy Methods
	CPF Approach
	Adversarial Cooperative A*

	Game methods
	Game tree
	Minimax approach
	Monte Carlo approach

	Exploiting instance properties
	Offensive and defensive tactics

	Method Summary

	Experiments
	Methodology
	Instance pattern generation
	Scenarios

	Results
	Greedy deciding
	Cooperative path-finding approach
	Minimax methods
	Monte Carlo methods
	Strategy tournament

	Conclusion
	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Appendix A
	Appendix B
	Appendix C

