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Abstract

This thesis focuses on the problem of automatic identification of tree species based on

images of leaves and bark. We propose to describe both leaves and bark using textural

features. FSRIT (Fast Scale- and Rotation- Invariant Texture), a novel method for texture

description and recognition, is introduced. The method combines an improved scale space

(used for multi-scale representation and scale invariant matching) with several state-of-

the-art approaches (including LBP-HF features and use of linear SVM classifiers with

approximate kernel map). Using the proposed method we achieve new state of the art

results in the classification of bark (Austrian Federal Forests bark dataset) and leaves

(Austrian Federal Forests leaf dataset, Flavia dataset, Foliage dataset, Swedish dataset and

Middle European Woods dataset), as well as on standard textural datasets KTH-TIPS2a

and KTH-TIPS2b, while achieving 99% accuracy on all other standard textural datasets

(KTH-TIPS, CUReT, UIUCTex, UMD and Brodatz32). The proposed recognition method

is very fast and thus suitable for real time applications, including e.g. mobile field guides

for plant identification.

Anotace

Tato práce je zaměřena na problém automatického rozpoznáváńı druhu stromu dle obrázk̊u

list̊u a k̊ury. Navrhujeme popisovat k̊uru i listy pomoćı texturálńıch př́ıznak̊u. Představujeme

FSRIT (Fast Scale- and Rotation- Invariant Texture), novou metodu pro popis a rozpoznáváńı

textury. Ta kombinuje vylepšený prostor měř́ıtek (pro multi-scale reprezentaci a scale-

invariantńı párováńı) s několika moderńımi př́ıstupy (včetně LBP-HF př́ıznak̊u či použit́ı

lineárńıch SVM klasifikátor̊u s aproximatińımi kernelovými mapami). S použit́ım této

navržené metody dosahujeme nejlepš́ıch výsledk̊u v klasifikaci k̊ury (na datasetu k̊ury

Austrian Federal Forests) a list̊u (na datasetech list̊u Austrian Federal Forests, Flavia, Fo-

liage, Swedish a Middle European Woods), jakož i na standardńıch texturálńıch datasetech

KTH-TIPS2a a KTH-TIPS2b, dosahuj́ıce 99% přesnosti na všech ostatńıch standardńıch

texturálńıch datasetech (KTH-TIPS, CUReT, UIUCTex, UMD and Brodatz32). Navržená

metoda je přitom velmi rychlá a tedy vhodná pro aplikace v reálném čase, včetně např.

mobilńıho kĺıče pro rozpoznáváńı rostlin.
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1 Introduction

Recognition of natural objects is a challenging computer vision problem that requires

dealing with irregular shapes and textures with high variability. Interest in methods for

image-based classification of specific parts of plants like leaves, flowers or bark has grown

recently [5–8]. The application potential of plant recognition has increased as devices

equipped with cameras became ubiquitous, making intelligent field guides, education tools

and automation in forestry and agriculture practical.

The so called intelligent field guides, using computer vision algorithms to make plant

identification easier, can be very helpful to botanists in the field, as discussed by Belhumeur

et al. [5]:

“Botanists in the field are racing to capture the complexity of the Earth’s flora

before climate change and development erase their living record. To greatly

speed up the process of plant species identification, collection, and monitoring,

botanists need to have the world’s herbaria at their fingertips.”

Such systems, sorting thousands of species to show the relevant results, can significantly

speed up the plant identification process, which in some cases would take hours or days

using a standard dichotomous key, even for specialists.

One of the key steps needed to create a system supporting the efforts of biologists

and botanists in the study of biodiversity on Earth is the development of fast and precise

image recognition methods for plant species classification, or rather plant species retrieval.

The resulting intelligent field guides using such methods can also be used in educa-

tion and by non-expert users, being simple to use and providing more user comfort than

traditional field guides (usually based on dichotomous keys for plant identification).

Although we also mention other possible applications of plant image analysis, including

automatic fruit inspection and quality evaluation or automatic identification of disease

symptoms, the focus of our work is on the problems of recognizing tree bark and leaves

from images and using the combination of bark and leaves for tree classification. We

develop a new automatic plant identification method taking into account the requirements

for practical applications. It is worth noting that, even though we primarily define and

evaluate the problems as image classification, the proposed recognition method is actually

very suitable for the retrieval too, using the ”one vs. all” classification scheme for Support

Vector Machines with probabilistic output.
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1.1 The proposed approach to leaf and bark recognition

We propose to approach both the bark and leaf recognition as a texture recognition prob-

lem.

While using only textural features for description is a common approach for bark

recognition, as discussed in Section 2.1.1, most leaf recognition methods are based on

features of different nature, often several of them combined together. However, as discussed

in Section 2.1.2, some of the previous methods also rely on texture description only.

To describe an image of leaf, we first need to perform a binary segmentation on the

input image, separating the leaf from the background. In practical applications it is

often too complicated or even impossible to take the picture on a light background and

the result is then strongly dependent on the quality of leaf segmentation, especially in

the case of shape features, where even details as leaf serration (illustrated in Figure 1a)

play an important role. One of the advantages of a recognition system based on textural

description is that the segmentation precision is not as critical in comparison to shape

description.

Shape description methods also have problems with recognition of damaged leaves

(Figure 1c) and with correct segmentation and description of compound leaves (Figure

1b). The leaf texture, on the other hand, may be damaged by a disease, as in Figure 1d.

To build a recognition system which is fast, accurate and robust to scale change, we

introduce a novel texture description and recognition system combining several state-of-

the-art methods with a novel scale space setting for Local Binary Patterns. The proposed

Fast Scale- and Rotation-Invariant Texture (FSRIT) recognition method is described step

by step in Section 3.

On pictures of bark, the whole image area is described using FSRIT, whereas in the

case of leaves only the leaf area is described. The leaf datasets used in our experiments

in Section 4.3 contain leaves scanned or photographed on a light (or white) background.

Our experimental setting can thus use a simple thresholding method, namely the Otsu’s

method [9]. To deal with complicated background in practical applications, any fast state-

of-the-art segmentation methods can be utilized, in the case of mobile applications the

segmentation method can also ask for user input or correction (as proposed by Sixta [10]).

11



(a) Leaf serration segmenta-
tion

(b) Compound leaf

(c) Damaged leaf shape (d) Disease

Figure 1: Examples of possible leaf description problems, illustrated on images from Flavia
[1] and Swedish dataset [2]

1.2 Structure of the thesis

The thesis is structured as follows:

Section 2.1 provides a short overview of the computer vision approaches to plant recog-

nition. We propose to describe both bark and leaves using textural features. Practical

advantages of texture description for leaves, which is not a widely used approach, were

discussed in Section 1.1. A quick introduction to texture identification and the state-of-

the-art methods used for texture recognition problems is given in Section 2.2. A novel

texture recognition method satisfying the requirements for application in bark and leaf

classification is introduced in Section 3. This Fast Scale and Rotation Invariant Texture

(FSRIT) recognition method is compared to the state-of-the-art texture recognition meth-

12



ods in Section 4.1. The suitability of FSRIT to bark and leaf recognition is experimentally

verified in Section 4.3, mostly in terms of plant classification accuracy, but we also provide

more detail results in terms of plant retrieval, i.e. the probabilities of retrieving the cor-

rect species within the first N results. The retrieval experiments are performed in Section

4.5 on both bark images, using the AFF bark dataset, and leaf images, using MEW (the

largest leaf dataset in our experiments).

Classification using the combination of leaf and bark images is discussed and the im-

provement in accuracy achieved by this combination is shown in experiments in Section 4.4.

All plant classification experiments are also repeated using a rotation dependent version

of the method (denoted as FSIT), which could achieve better results given input images

acquired in a standard orientation (i.e. ”up is up” orientation for tree bark images).

The results are discussed and conclusions are made in Section 5.

13



2 State of the art

2.1 Plant recognition

2.1.1 Bark recognition

The problem of automatic tree identification based on photos of bark is usually formulated

as texture recognition.

Chi et al. [11] proposed a method using Gabor filter banks. Their accuracy reaches

96% on a dataset with 8 classes, containing 25 images (132×132 px) per class. The dataset

was not published. Wan et al. [12] performed a comparative study of bark texture features.

Four approaches were tested: the grey level run-length method, co-occurrence matrices

method (COMM), histogram method and auto-correlation method. COMM was found to

be the best, achieving 72% recognition rate using the 1-NN classifier on an unpublished

dataset of 160 images from 9 classes. The authors also show that the performance of

all classifiers improved significantly, up to 89% using COMM and 1-NN, when colour

information was added.

Song et al. [13] presented a feature-based method for bark recognition using a combina-

tion of grey-level co-occurrence matrix (GLCM) and a binary texture feature called Long

Connection Length Emphasis. Using 1-NN classification, 87.8% accuracy was achieved

on an unpublished dataset which contains 90 manually cropped (200 × 200) images of

18 classes. Huang et al. [14] used GCLM together with Fractal Dimension Features for

bark description. The classification was performed by artificial neural networks on an

unpublished dataset of 360 images of 24 classes. The highest recognition rate reached was

91.67%.

Since the image data used in the experiments discussed above is not available, it is

difficult to assess the quality of the results and to perform comparative evaluation.

Fiel and Sablatnig [7] proposed methods for automated identification of tree species

from images of the bark, leaves and needles. For bark description they created a Bag of

Words with SIFT descriptors in combination with GCLM and wavelet features. A Support

Vector Machine with radial basis function (RBF) kernel was used for classification. They

introduced the Österreichische Bundesforste AG (Austrian Federal Forests) bark dataset

consisting of 1182 photos from 11 classes. This dataset will be referred to as the AFF

bark dataset and will be used in our experiments in Sections 4.3.1 and 4.4. A recognition

accuracy of 64.2% and 69.7% was achieved on this dataset for training sets with 15 and

14



30 images per class (where available).

Fiel and Sablatnig also describe an experiment with two human experts, a biologist and

a forest ranger, both employees of Österreichische Bundesforste AG. Their classification

rate on a subset of the dataset with 9 images per class, 99 images in total, was 56.6%

(biologist) and 77.8% (forest ranger).

Sixta proposed a method for leaf and bark recognition in his diploma thesis [10] using

histograms of uniform LBPs on different scales (with use of multi-scale block LBP) for bark

description. However, only two of the ten scales were computed through LBP extraction,

the others were described using linear interpolation and extrapolation. The 1-NN classifier

was used. The distance between two images was defined as the best alignment of their

histograms using the χ2 distance function. For evaluation, Sixta used an incomplete

version of the AFF bark dataset, containing only 1081 images, which was provided to him

by the authors of [7]. With two-fold cross-validation, the recognition rate on this dataset

was 70.1%.

One of the issues of the bark recognition problem is the public dataset deficiency.

Luckily, the full version of the AFF dataset was kindly provided to us by the Computer

Vision Lab, TU Vienna, for academic purposes, with courtesy by Österreichische Bundes-

forste/Archiv.

We published a preliminary version of the proposed method for bark recognition, not

including the magnitude-LBP and using different solver settings with histogram intersec-

tion kernel map instead of the χ2 kernel map, as a conference paper [15] in 2013.

2.1.2 Leaf recognition

Recognition of leaves usually denotes only recognition of broad leaves, whereas needles

are treated separately. Several techniques have been proposed for leaf description, often

based on combining features of different character (shape features, colour features, etc.).

As mentioned above, Sixta [10] also proposed a method for leaf recognition, using the

IDSC (Inner Distance Shape Context) for shape recognition. To find the leaf orientation

for efficient shape matching, Centroid Contour Distance (CCD) curve has been utilised.

A 83.3% accuracy was measured on the Flavia database randomly divided into two halves

(training set and testing set).

The leaf recognition method by Fiel and Sablatnig [7] is based on a Bag of Words

model with SIFT descriptors and achieves 93.6% accuracy on the AFF leaf dataset. The

15



dataset contains 134 broad leaf images of 5 Austrian tree species, with 25 to 34 images per

species, and has also been kindly provided to us, even though it is not publicly available.

We use this datasets for our experiments in Sections 4.3.1 and 4.4

Kadir et al. compare several shape methods in recognizing plants [16]. From the com-

pared methods (geometric features, moment invariants, Zernike moments, Polar Fourier

Transform) Polar Fourier Transform performed best achieving 64% in accuracy on a

database of 52 plant species, each represented by 20 leaf samples. Unfortunately the

dataset was not published.

Kumar et al. [8] describe Leafsnap, a computer vision system for automatic plant

species identification, which has evolved from the previously proposed plant identification

systems by Agarwal et al. [17] and Belhumeur et al. [5]. Compared to the previous versions,

they introduced a pre-filter on input images, numerous speed-ups and additional post-

processing within the segmentation algorithm, the use of a simpler and more efficient

curvature-based recognition algorithm instead of Inner Distance Shape Context (IDSC);

a larger dataset of images, and a new interactive system for use by non-expert users.

They introduce the Leafsnap database of 184 tree species, which is presented as public,

however at the time of writing this thesis it was not available online1. On this database,

96.8% of queries have a species match within the top 5 results shown to the user with the

used method. The resulting electronic field guide, developed by researches from Columbia

University, the University of Maryland, and the Smithsonian Institution, is available as

a free mobile app for iOS devices. Although the app (screenshots in Figure 2) runs on

iPhone and iPad devices, the leaf images are actually processed at a server, thus internet

connection is required for recognition, which might cause problems in natural areas with

slow or no data connection. Another requirement is to take the photos of the leaves on a

fully-white background.

Wu et al. [1] proposed a Probabilistic Neural Network for leaf recognition using 12

commonly used digital morphological features (DMFs), derived from 5 basic features (di-

ameter, physiological length, physiological width, leaf area, leaf perimeter). The authors

also collected a publicly available database of plant leaves called Flavia, containing 1907

images of leaves from 32 species. The average accuracy on the current version of the

dataset is 93% (according to the Flavia web page2). The Flavia dataset is discussed in

Section 4.3.2, together with the comparison of our results to the best reported results by

1The author’s responded they have not been able to prepare the database in a suitable form.
2http://flavia.sourceforge.net
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(a) The iPhone version (b) The iPad version makes use of the larger screen area

Figure 2: The Leafsnap application for iOS devices

Kadir et al. [18,19] and Lee et al. [20,21], as well as to the results reported by Sixta [10],

Novotný and Suk [22], and Karuna et al. [23], who used a different evaluation method.

Kadir et al. [24] prepared the Foliage dataset, consisting of 60 classes of leaves, each of

them containing 120 images. The comparison of results on the Foliage dataset is available

in Section 4.3.3. The best reported result on this dataset by Kadir et al. [18] was achieved

by a combination of shape, vein, texture and colour features processed by Principal Com-

ponent Analysis before classification by a Probabilistic Neural Network.

Söderkvist [2] proposed a computer vision system classification of leaves from Swedish

trees and collected the so called Swedish dataset. The dataset contains scanned images

of 15 tree classes, 75 samples each. Wu et al. [25] introduced a visual descriptor for scene

categorization called spatial Principal component Analysis of Census Transform (spatial

PACT), achieving a 97.9% accuracy on the Swedish dataset. Qi et al. (according to their
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website3) achieve 99.38% accuracy on the Swedish dataset using their texture descriptor

called PRI-CoLBP [26] with SVM classification. In Section 4.3.4 we provide experimental

results on the Swedish dataset.

Novotný and Suk [22] proposed a leaf recognition system for identification of Central

European woody species, using Fourier descriptors of the leaf contour normalised to trans-

lation, rotation, scaling and starting point of the boundary. The authors also collected

a new large leaf dataset called Middle European Woods (MEW) containing 153 classes

(from 151 botanical species) of native or frequently cultivated trees and shrubs of the

Central Europe Region. The dataset contains at least 50 samples per species and a total

of 9745 samples. When dividing this dataset into two halves (training and testing set),

their method achieves 84.92% accuracy.

One of the possible applications of leaf description is the identification of a disease

symptom. Pydipati et al. [27] proposed a system for identification of citrus disease using

CCM textural features, achieving accuracies of over 95% for 4 classes (normal leaf samples

and diseased citrus leaf samples with greasy spot, melanose, and scab).

2.1.3 Combination of leaves and bark

Kim et al. [28] proposed tree classification using a combination of leaf, flower and bark

photos of the same tree. They used 20 features of wavelet decomposition with 3 levels

for a grey and a binary image for description of bark, 32 features of Fourier descriptor

for leaf and 72 features of HS colour plane for flower. The results were tested on their

own (unpublished) dataset consisting of 16 classes. They report 31%, 75% and 75%

recognition accuracy for individual leaf, flower and bark classification and 84%, 75% and

100% accuracy for combinations of leaf+flower, leaf+bark and bark+flower. However, in

all cases only one image per class was tested (without any repetition using other images),

which makes the results unreliable and misleading.

Although experiments with both leaves and bark have been performed by Fiel and

Sablatnig [7], they did not carry out experiments with the combination of leaf and bark

images, relying on sufficiently accurate results achieved using the leaf images only.

Pl@ntNet4 is an interactive plant identification and collaborative information system

providing an image sharing and retrieval application for plant identification. It is developed

by scientists from four French research organisations (Cirad, INRA, Inria and IRD) and

3http://qixianbiao.github.io
4http://www.plantnet-project.org/
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the Tela Botanica network. The Pl@ntNet-identify Tree Database provides identification

by combining information from images of the habitat, flower, fruit, leaf and bark, but the

exact algorithms used in the Pl@ntNet-identify web service5 and their accuracies are not

publicly documented.

2.1.4 Other images of plants

Several other approaches have been proposed to recognize trees and plants from images

of their organs.

Nilsback and Zisserman [6] investigated the segmentation and classification of flower

images. They introduced 2 new datasets for flower classification, the smaller of them

containing 17 categories and the larger containing 102 categories. A recognition rate of

75.3% was achieved on the larger dataset, where in 95.2% cases the correct class was among

first 10 results. Flower recognition was also studied by Kim et al. [29], who proposed

a mobile based flower recognition system and implemented it for Windows Mobile 5.0

Pocket PC. Other flower description and recognition methods were described by Saitoh et

al. [30, 30], Pornpanomchai et al. [31, 32] and Cho et Lim [33]. Mattos et al. [34] recently

described an efficient approach for flower classification that is suitable for deployment in

mobile devices.

Fiel and Sablatnig [7] also discussed a method for recognition of needles (or more

precisely coniferous branches), and introduced the AFF needle dataset, which included

275 images of the needles of the 6 most common Austrian conifers. They concluded

that no method has been found for the classification of the needle images and proposed

a method to distinguish at least between fir and spruce. A semi-automatic method for

coniferous branches recognition and a dataset of coniferous branches from 4 common Czech

conifers was published in my bachelor thesis [35], but the classification results were not

very reliable, achieving 72.3% accuracy among 4 classes.

Arivazhagan et al. [36] proposed a fusion of colour and texture features for fruit recog-

nition. Yang et al. [37] presented a fruit recognition method for automatic harvesting.

Brosnan and Sun [38] provided a review on the possibilities of computer vision in food

inspection, including the inspection and grading of fruits and vegetables. Kim et al. [39]

investigated the potential of using colour texture features for detecting citrus peel diseases,

achieving best results (96.7% classification accuracy among 6 classes of grapefruits - with

5http://identify.plantnet-project.org/en/

19

http://identify.plantnet-project.org/en/


normal and five common diseased peel conditions) using 14 selected HSI texture features.

Another systems for visual identification and classification of affected and normal fruits

was presented by Pujari et al. [40]. The developments in the application of artificial vision

systems for the automatic inspection and quality evaluation of fruits and vegetables were

presented by Cubero et al. [41].

2.2 Texture recognition

Texture description and recognition techniques have been the subject of many studies

for their wide range of applications. The early work focused on the problem of terrain

analysis [42,43] and material inspection [44]. Later applications of texture analysis include

face recognition [45], facial expressions [46, 47] and object recognition [48]. The relation

between scene identification and texture recognition is discussed by Renninger and Malik

[49]. Texture analysis is a standard problem with several surveys available, e.g. [50–52].

Several recent approaches report fine results on the standard datasets, often using

complex texture description methods. A cascade of invariants computed using scattering

transforms is used to construct an affine invariant texture representation by Sifre and

Mallat [53]. A sparse representation based Earth Mover’s Distance (SR-EMD) presented

by Li et al. [54] achieves good results in both image retrieval and texture recognition.

Local Higher-Order Statistics (LHS) proposed by Sharma et al. [47] describe higher-order

differential statistics of local non-binarized pixel patterns. The method by Cimpoi et

al. [55] uses Improved Fisher Vectors (IFV) for texture description. This work also shows

further improvement when combined with describable texture attributes learned on the

Describable Textures Dataset (DTD).

Many texture description methods are based on the Local Binary Patterns [3, 56–62],

which is a computationally simple and powerful approach.
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3 The Fast Scale and Rotation Invariant Texture (FSRIT)
recognition method

3.1 Local Binary Patterns

The FSRIT description is based on the well known Local Binary Patterns [56, 57]. The

common LBP operator (further denoted as sign-LBP) computes the signs of differences

between the 3 × 3 neighbourhood and the center pixel. The operator can be simply

extended [3] to work with arbitrary number of neighbours P on a circle of radius R

(Figure 3). The computation of the LBPP,R for a center point (x, y) is expressed in Eq.

1, using an image function f(x, y) and neighbourhood point coordinates (xp, yp).

LBPP,R(x, y) =
P−1
∑

p=0

s(f(x, y) − f(xp, yp))2
p, s(x) =







1 : x ≤ 0

0 : else
(1)

Figure 3: Illustration of the LBPP,R operator neighbourhoods from [3]

The LBP8,1 operator is similar to the standard LBP operator on a 3×3 neighbourhood,

only the values of the diagonal pixels are determined by interpolation and the pixels in

the neighbour set are indexed so that they form a circular chain.

3.2 Rotation invariant description

To achieve rotation invariance6, we use the so called LBP Histogram Fourier Features

(LBP-HF) introduced by Ahonen et al. [4]. The Histogram Fourier Features are a highly

discriminative rotation invariant description for the histogram of uniform patterns built

using the discrete Fourier transform (DFT). Uniform LBP are patterns with at most 2

spatial transitions (bitwise 0-1 changes), as illustrated in Figure 4. Unlike the simple

rotation invariant description using LBPri [3, 63], which assigns all uniform patterns with

6LBP-HF (as well as LBPri) are rotation invariant only in the sense of a circular bit-wise shift, e.g.
rotation by multiples 22.5◦ for LBP16,R.
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the same number of 1s into one bin (Equation 2), the LBP-HF features preserve the

information about relative rotation of the patterns.

LBPri
P,R = min {ROR (LBPP,R, i) | i = 0, 1, .., P − 1} (2)

Denoting a uniform pattern Un,r
p , where n is the number of true bits and r denotes the

rotation of the pattern, the DFT for given n can be expressed as:

H(n, u) =
P−1
∑

r=0

hI(Un,r
p )e−i2πur/P (3)

Figure 4: Illustration of the uniform LBP8,1 patterns ordered by their n,r, as used to
compute the histogram Fourier features from [4]

where the histogram value hI(Un,r
p ) denotes the number of occurrences of given uniform

pattern in the image.

The Fourier magnitude spectrum (respectively LBP-HF features) is then computed as

the absolute value of the DFT magnitudes, which corresponds to multiplying the DFT
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magnitudes by their complex conjugate values (preventing the phase shift introduced by

rotation):

|H(n, u)| =

√

H(n, u)H(n, u) (4)

Because the result is symmetrical, only one half (more precisely
⌊

P
2

⌋

+ 1) of the DFT

magnitudes are used for each set of uniform patterns with n true bits. Three other bins

are then added to the resulting histogram, namely two for the ”1-uniform” patterns (with

all bins of the same value) and one for all non-uniform patterns.

It is also worth noting that the LBP-HF features contain all LBPri features - two of

them representing the 1-uniform patterns (red bins in Figure 5c) and the rest (blue bins

in Figure 5c) being contained in the DFT magnitudes.

(a) Input image (b) Histogram of uniform LBP8,1

features
(c) Histogram of LBP-HF fea-
tures

Figure 5: Rotation invariant LBP-HF features computed from the uniform LBP, illustrated
on tree bark

3.3 Additional information using Magnitude-LBP

The LBP histogram Fourier features can be generalized for any set of uniform features.

In FSRIT the LBP-HF-S-M description introduced by Zhao et al. [60] is used, where
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the histogram Fourier features of both sign- and magnitude-LBP are used to build the

descriptor. The combination of both sign- and magnitude-LBP was introduced by Guo

and Zhang [62] and denoted as Completed Local Binary Patterns (CLBP). The so called

magnitude-LBP describes whether the magnitude of the difference of the neighbouring

pixel (xp, yp) against the central pixel (x, y) exceeds a threshold tp:

LBP-MP,R(x, y) =
P−1
∑

p=0

s(|f(x, y) − f(xp, yp)| − tp)2
p (5)

We use the common practice of choosing the threshold value (for neighbours at p-th

bit) as the mean value of all m differences in the whole image:

tp =
m
∑

i=1

|f(xi, yi) − f(xip, yip)|
m

(6)

The LBP-HF-S-M histogram is created by simply joining histograms of LBP-HF-S and

LBP-HF-M (computed from uniform sign-LBP and magnitude-LBP).

In Section 4 we also experiment with a variant of the method not requiring the ro-

tation invariance. This variant of the method is using the original CLBP histogram (i.e.

concatenated sign-LBP and magnitude-LBP histograms) instead of LBP-HF-S-M and is

denoted as FSIT (Fast Scale-Invariant Texture).

3.4 Multi-scale description and scale invatiance

A scale space is built by computing LBP-HF-S-M from circular neighbourhoods with

exponentially growing radius R. Gaussian filtering is used7 to overcome pixel noise and

gather intensity information from the pixels surroundings.

Unlike the MS-LBP approach by Mäenpää and Pietikäinen [59], where the radii of the

LBP operators are chosen so that the effective areas of different scales touch each other,

as in Figure 6a, we use a finer scaling with a
√

2 step between scales radii Ri:

Ri = Ri−1

√
2 (7)

This radius change illustrated in Figure 6b is equivalent to decreasing the image area

to one half. A finer scale change like that allows us to capture more information about

the texture. The first LBP radius used is R1 = 1, as the LBP with low radii capture

important high frequency texture characteristics.

7The Gaussian filtering is actually used for a scale i only if σi > 0.6, as filtering with lower σi leads to
significant loss of information.
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Similarly to [59], the filters are designed so that 95% of their mass lies within an

effective area of radius ri. We select the effective area diameter, such that the effective

areas at the same scale touch each other:

ri = Ri sin
π

P
(8)

The proportion of normal distribution mass in z standard deviations is equal to

erf
(

z√
2

)

, where erf denotes the Gauss error function. There from the standard devia-

tion σi for the Gaussian filter at scale i can be expressed as:

σi =
ri
z

=
ri√

2 · erf−1(0.95)
≈ ri

1.959964
(9)

(a) Scale space by Mäenpää [59] (b) The scale space proposed in FSRIT

Figure 6: The effective areas of filtered pixel samples in a multi-resolution LBP8,R operator

Having the obtained scale space, LBP-HF-S-M histograms from c adjacent scales are

concatenated into a single descriptor. Invariance to scale changes is increased by creating

nconc multi-scale descriptors for one image.

In the experiments in Section 4, nconc = 3 multi-scale descriptors are used, each con-

sisting of c = 6 scales of LBP-HF-S-M features. The effect of parameters c (i.e. the length

of multi-scale description) and nconc = 3 (i.e. the robustness to scale change) is illustrated

in Section 4.

See Algorithm 1 for the overview of the texture description method.
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Algorithm 1 The FSRIT description method overview

R1 := 1
for all scales i = 1...(nconc + c− 1) do

σi := Ri sin π
P /1.959964

if σi > 0.6 then
apply Gaussian filter (with std. dev. σi) on the original image

end if
extract LBPP,Ri

-S and LBPP,Ri
-M and build the LBP-HF-S-M descriptor

for j = 1...c do
if i ≥ j and i < j + nconc then

attach the LBP-HF-S-M to the j-th multi-scale descriptor
end if

end for
Ri+1 := Ri

√
2

end for
apply an approx. χ2 kernel map on the concatenated multi-scale descriptor

3.5 Support Vector Machine and feature maps

In common applications, a Support Vector Machine (SVM) classifier with non-linear kernel

usually provides higher recognition accuracy at the price of significantly higher time com-

plexity and higher storage demands (dependent on the size of training set). An approach

for efficient additive kernels via explicit feature maps is described by Vedaldi and Zisser-

man [64] and can be combined with linear SVM classifiers. Using linear SVMs on feature

mapped data improves the recognition accuracy, while preserving the linear SVM advan-

tages like fast evaluation and low storage load (independent on the number of training

samples), which are both very practical in real time applications.

In our experiments we use a Stochastic Dual Coordinate Ascent [65] linear SVM solver

implemented in the VLFeat library [66].

In FSRIT we make use of the explicit feature map approximation of the χ2 kernel,

though in some cases the histogram intersection kernel map may give even better results,

as discussed in Section 4. In common applications, the data are only trained once and the

training precision is more important than the training time. Thus in our SVM parameter

setting, we demand high accuracy: σ = 10−7, ǫ = 10−7, max. # of iterations: 108.

The “One versus All“ classification scheme is used for multi-class classification, im-

plementing the Platt’s probabilistic output [67, 68] to ensure SVM results comparability

among classes. The maximal posterior probability estimate over all scales is used to de-

termine the resulting class.
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4 Experiments

In all following experiments, we use the same setting of our method: nconc = 3 multi-scale

descriptors per image are used, each of them consisting of c = 6 scales described using

LBP-HF-S-M. The final histogram is kernelized using the χ2 kernel map. We use the

unified setting in order to show the generality of FSRIT description, although setting the

parameter individually for a given dataset can further increase the accuracy. Figures 7

and 8 illustrate the effect of different parameter settings on the recognition accuracy for

the KTH-TIPS2b texture database.

1 2 3 4 5 6 7 8
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8 neighbours, chi2map
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16 neighbours

8 neighbours

Figure 7: Feature mapping and concatenating features from multiple scales in FSRIT,
KTH-TIPS2b

To reduce the effect of random training and testing data choice, the presented results

are averaged from 10 experiments.
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Figure 8: Dependency on the number c of multiscale descriptors in FSRIT, KTH-TIPS2b

4.1 Texture classification

To evaluate the accuracy of FSRIT, it was tested on the following texture datasets and

the results were compared to state-of-the-art texture classification results (Tables 1 and

2).

4.1.1 Brodatz32

The Brodatz32 dataset [69] was published in 1998, and it contains low resolution (64x64

px) grey-scale images of 32 textures from the photographs published by Phil Brodatz [70]

in 1966, with artificially added rotation (90◦) and scale change (a 64x64 px scaled block

obtained from 45x45 pixels in the middle). Totally there are 64 images for each texture

class.

The standard protocol for this dataset simply divides the data into two halves (i.e. 32

images per class in the training set and 32 in the testing set).

Even though the original images are copyrighted and the legality of their usage in
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academic publications is unclear8, Brodatz textures are one of the most popular and

broadly used sets in texture analysis.

4.1.2 UIUCTex

The Ponce Group Texture Database, which is usually referred to as UIUCTex, was pub-

lished by Lazebnik et al. [71] in 2005 and features 25 different texture classes, 40 samples

each. All images are in VGA resolution (640x480 px) and in grey-scale.

The surfaces included in the database are of various nature (wood, marble, gravel,

fur, carpet, brick, ..) and were acquired with significant viewpoint, scale and illumination

changes and additional sources of variability, including, but not limited to, non-rigid mate-

rial deformations (fur, fabric, and water) and viewpoint-dependent appearance variations

(glass). Examples of images from different classes are in Figure 9.

(a) Brick 1 (b) Brick 2

(c) Plaid (d) Bark 3

Figure 9: Examples of 4 texture classes from the UIUCTex database

The results on this dataset are usually evaluated using 20 or 10 training images per

class. In our experiments, the former case with a larger training set is performed.

4.1.3 KTH-TIPS

The KTH-TIPS texture database [72, 73] contains images of 10 materials. There are 81

images (200x200 px) of each material with different combination of pose, illumination and

scale.

The standard evaluation scheme on this dataset uses 40 training images per material.

8http://graphics.stanford.edu/projects/texture/faq/brodatz.html
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4.1.4 KTH-TIPS2

The KTH-TIPS2 database was published [74, 75] shortly after KTH-TIPS. It builds on

the KTH-TIPS database, but provides multiple sets of images - denoted as samples - per

material class (examples in Figure 10).

There are 4 samples for each of the 11 materials in the KTH-TIPS2 database, con-

taining 108 images per sample (again with different combination of pose, illumination and

scale). However, in the first version of this dataset, for 4 of those 44 samples only 72

images were used. This first version is usually denoted as KTH-TIPSa, and the standard

evaluation method uses 3 samples from each class for training and 1 for testing. The

”complete” version of this database, KTH-TIPSb, is usually trained only on 1 sample per

class and tested on the remaining 3 samples.

(a) Cotton (b) Wool

(c) White bread (d) Aluminium foil

Figure 10: Examples of 4 texture classes from the KTH-TIPS2 database

4.1.5 CUReT

The CUReT [76] image database contains textures from 61 classes, each observed with 205

different combinations of viewing and illumination directions, i.e. 12505 images in total.

In the commonly used version of the dataset, all images have a resolution of 200x200 px.

Though CUReT also contains a BRDF (bidirectional reflectance distribution function)

30



Method KTH-TIPS2a KTH-TIPS2b KTH-TIPS

FSRIT8, Kχ2 86.2±5.5 72.1±5.1 98.9±0.7

FSRIT16, Kχ2 84.6±5.8 70.8±2.9 98.8±0.8

IFVSIFT [55] 82.5±5.2 69.3±1.0 99.7±0.1

Scattering [53] – – 99.4±0.4

LHS [47] 73.0±4.7 – –

SR-EMD-M [54] – – 99.8

Table 1: Evaluation of FSRIT on the KTH-TIPS datasets, compared to the state-of-the-
art methods

database, for purposes of standard texture recognition methods, only the image (resp.

bidirectional texture function) database is used. We use 46 training images per class,

which is a standard evaluation scheme for the CUReT database.

(a) Felt (b) Polyester

(c) Lettuce Leaf (d) Corn Husk

Figure 11: Examples of 4 texture classes from the CUReT database

4.1.6 UMD

The UMD dataset [77] consists of 1000 uncalibrated, unregistered grey-scale images of

size 1280x960 px, 40 images for each of 25 different textures. The UMD database contains

non-traditional textures like images of fruits, shelves of bottles and buckets, various plants,
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or floor textures.

The standard evaluation scheme for UMD is dividing the data into two halves (i.e. 20

images per class in the training set and 20 in the testing set).

(a) (b)

(c) (d)

Figure 12: Examples of 4 texture classes from the UMD database

Method Brodatz32 UIUCTex UMD CUReT

FSRIT8, Kχ2 99.2±0.3 98.6±0.6 99.3±0.3 98.5±0.2

FSRIT16, Kχ2 99.7±0.3 99.3±0.3 99.3±0.4 98.8±0.2

IFVSIFT [55] – – 99.2±0.4 99.6±0.3

Scattering [53] – 99.4±0.4 99.7±0.3 –

LHS [47] 99.5±0.2 – – –

SR-EMD-M [54] – – 99.9 99.5

Table 2: Evaluation of FSRIT on other standard datasets, compared to the state-of-the-art
methods

4.2 Suitability for real-time applications

Table 3 shows comparison of our image processing times to the state-of-the-art texture

recognition method by Cimpoi et al. [55] using IVFSIFT. Both the implementation of

FSRIT and IVFSIFT
9 used MATLAB scripts with a C code in the VLFEAT [66] framework

(where we added a new CLBP implementation for our method). The processing times were

measured on a standard laptop (1.3 GHz Intel Core i5, 4 GB 1600 MHz DDR3) without

9Using the code kindly provided by the authors of [55]
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parallelization.

Method KTH-TIPS2b KTH-TIPS CUReT

FSRIT16, Kχ2 0.059 s / im. 0.057 s / im. 0.025 s / im.

FSRIT8, Kχ2 0.038 s / im. 0.032 s / im. 0.014 s / im.

IFVSIFT [55] 0.106 s / im. 0.149 s / im. 0.055 s / im.

Table 3: Average image description time on selected datasets, compared to IFVSIFT

The average description time for a low resolution (0.4 Mpx) image for FSRIT8 is at

most 0.04 s, while for higher resolutions the processing time will grow proportional to the

image resolution, as the number of local operations will increase with the number of pixels.

4.3 Recognition of leaves and bark

The following experiments are focused on the application of texture recognition using

the FSRIT method for recognition of trees and show that the method is suitable both

for recognition of tree bark and leaves. The parameter setting is the same as in the

previous experiments, the only difference is that the leaf images are segmented (simply by

thresholding using the Otsu’s method [9]) and the texture statistics are computed only

from the leaf area.

4.3.1 Austrian Federal Forest (AFF) datasets

Fiel and Sablatnig [7] used the Österreichische Bundesforste – Austrian Federal Forests

(AFF) datasets for recognition of trees based on images of its leaves, bark and needles.

Although the datasets are not publicly available, the Computer Vision Lab, TU Vienna,

kindly made them available to us for academic purposes, with courtesy by Österreichische

Bundesforste/Archiv. The AFF dataset of bark contains 1182 bark images from 11 classes

(tree species). The AFF dataset of leaves contains 134 photos of leaves (on white back-

ground) of the 5 most common Austrian broad leaf trees.

The results comparison using the Fiel-Sablatnig protocol, i.e. using 8 training images

per leaf class and 15 training images per bark class, is in Table 4. The results using 10-fold

cross validation in Table 5 show that the accuracy increases significantly using a larger

training set.

33



(1) Ash (2) Beech (3) Black pine

(4) Fir (5) Hornbeam (6) Larch

(7) Mountain oak (8) Scots pine (9) Spruce

(10) Swiss stone pine (11) Sycamore maple

Figure 13: Examples from the AFF bark dataset

Method Bark Leaves

FSRIT8, Kχ2 80.8±2.3 96.5±1.2

FSITu2
8 , Kχ2 82.0±2.2 96.3±1.6

SIFT (Bag of Words) [7] – 93.6

+ GCLM + wavelet features [7] 69.7 –

MB-LBP [10] reimplemented in [15] 51.2±2.9

Table 4: Evaluation of FSRIT on the AFF datasets of leaves and bark using the Fiel-
Sablatnig protocol
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(1) Ash

(2) Hornbeam

(3) Beech

(4) Mountain oak

(5) Sycamore maple

Figure 14: Examples from the AFF leaf dataset

Method Bark Leaves

FSRIT8, Kχ2 93.6±1.9 97.3±4.3

FSITu2
8 , Kχ2 96.6±2.0 98.2±3.8

Table 5: Evaluation of FSRIT on the AFF datasets of leaves and bark using 10 fold cross
validation

4.3.2 Flavia leaf dataset

The Flavia dataset contains 1907 images (1600x1200 px) of leaves from 32 plant species

on white background, 50 to 77 images per class.

Even though in the original paper by Wu et al. [1] 10 images per class are used for

testing and rest of the images for training, most recent publications use 10 randomly

selected testing images and 40 randomly selected training images per class, achieving

better recognition accuracy even with the lower number of training samples. In the case

of the two best result reported by Lee et al. [20,21], the number of training samples is not

clearly stated10. Some papers divide the set of images for each class into two halves, one

10Especially in [20] the result presented as ”95.44% (1820 / 1907)” seems to be tested on all images
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being used for training and the other for testing. The comparison of results using both

schemes is in Table 6.

(a) Castor aralia (b) Deodar

(c) Southern magnolia (d) Tangerine

Figure 15: Examples of 4 classes from the Flavia leaf dataset

4.3.3 Foliage leaf dataset

The Foliage leaf dataset [19,24] contains 60 classes of leaves from 58 species. The dataset

is already divided into a training set with 100 images per class and a testing set with 20

images per class. The accuracy using this evaluation protocol is compared to the best

reported results in Table 6.

(a) Hibiscus rosa-sinensis (b) Bauhinia acuminata

(c) Ipomoea lacunose (d) Tradescantia spathacea ”Vittata”

Figure 16: Examples of 4 classes from the Foliage dataset
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4.3.4 Swedish leaf dataset

The Swedish leaf dataset was introduced in the Söderkvist’s diploma thesis [2] and contains

images of leaves scanned using 300 dpi colour scanner. There are 75 images for each of 15

contained tree classes. The standard evaluation scheme uses 25 images for training and

the remaining 50 for testing. Our results on the Swedish dataset are included in Table 6.

(a) Ulmus carpinifolia (b) Acer

(c) Salix aurita (d) Quercus

Figure 17: Examples of 4 classes from the Swedish dataset

4.3.5 Middle European Woods (MEW) dataset

The MEW dataset recently introduced by Novotný and Suk [22] contains 300 dpi scans

of leaves belonging to 153 classes of Central European trees and shrubs. There are 9745

samples in total, at least 50 per class. Our experiment is performed using half of the

images in each class for training and the other half for testing and the results in Table 6

are compared to the authors’ using the same evaluation scheme.
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(a) Acer campestre (b) Actinidia arguta

(c) Berberis thunbergii (d) Zelkova serrata

Figure 18: Examples of 4 classes from the MEW dataset

Method
Flavia

10 × 40

Flavia
1

2
× 1

2

Foliage Swedish MEW

FSRIT8, Kχ2 98.3±0.6 97.8±0.4 96.17 99.6±0.3 96.8±0.3

FSITu2
8 , Kχ2 98.6±0.6 98.1±0.3 95.25 99.6±0.5 97.2±0.3

Fourier descriptors [22] – 91.5 – – 84.9

Circular Shift Method [23] – 96.5 – – –

IDSC+CCD [10] – 83.3 – – –

Shape, vein, texture and colour

features + PCA + PNN [18]
95.0 – 95.8 – –

Zernike moments of different

features + PNN [19]
94.7 – 93.3 – –

Methods by Lee et al. [20, 21]a 97.2, 95.4 – – – –

Spatial PACT [25] – – – 97.9 –

PRI-CoLBPg + SVM [26]b – – – 99.4 –

Table 6: Evaluation of FSRIT on the leaf datasets (Flavia, Foliage, Swedish, Middle
European Woods)

athe evaluation scheme in this papers is not clearly described, as discussed in Section 4.3.2
baccording to the project homepage http://qixianbiao.github.io
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4.4 Combining leaf and bark

For both the description of bark and leaf, the probabilistic outputs of SVM classifiers

are computed, as discussed in Section 3.5. Thus for i-th class ci we have the estimates of

posterior probabilities P (ci|yBi) and P (ci|yLi), where yBi and yLi denote the SVM outputs

for bark and leaf samples before the sigmoid mapping. Under the assumption that the

observations from leaf and bark are class-conditionally independent, we may compute the

probability of belonging to a given class ci given the observations as:

P (ci|yBi, yLi) =
P (yBi, yLi|ci) · P (ci)

P (yBi, yLi)
=

P (yBi|ci) · P (yLi|ci) · P (ci)

P (yBi, yLi)
=

=

P (ci|yBi) · P (yBi)

P (ci)
· P (ci|yLi) · P (yLi)

P (ci)
· P (ci)

P (yBi, yLi)
=

=
P (yBi) · P (yLi)

P (yBi, yLi)
· P (ci|yBi) · P (ci|yLi)

P (ci)
= k · P (ci|yBi) · P (ci|yLi)

P (ci)

(10)

where k is class independent. Assuming that all class prior probabilities P (ci) are

equal, we end up with a simple product rule, where the resulting class is found as follows:

c∏ = arg max
i

(P (ci|yBi) · P (ci|yLi)) (11)

The experimental results of Kittler et al. [78] show that combining classifiers using a

simple sum rule can lead to a better accuracy than using the product rule. We thus also

use a sum rule for comparison:

c∑ = arg max
i

(P (ci|yBi) + P (ci|yLi)) (12)

Our experiment was performed on pairs of bark and leaf images from the AFF databases.

Five classes common to the AFF bark dataset and AFF leaf dataset were combined, each

containing at least 16 images of each kind. From each class, we have randomly selected

8 bark and 8 leaf samples for training and another 8 pairs of bark and leaf for testing.

The results of this experiment in Table 7 show that both proposed rules of combining the

classifiers lead to improvement in accuracy, the sum rule performing slightly better.
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Combination

Method Bark Leaves
∏ ∑

FSRIT8, Kχ2 90.0±6.0 96.0±2.7 97.5±2.9 98.0±2.0

FSITu2
8 , Kχ2 88.8±6.9 97.8±2.2 98.8±1.8 99.0±1.3

Table 7: Evaluation of FSRIT on the AFF datasets, combining both leaves and bark
classification

4.5 Species retrieval and classification errors

As discussed in Section 1, even results which are not correctly classified may be useful, if

the correct species appears in a shortlist (i.e. among the several first returned results).

Figure 19: Retrieval precision for different lengths of shortlist, MEW leaf dataset (153
classes)

Figures 19 and 20 illustrate the precision of our method in retrieval on the MEW leaf

database (153 classes, using half of the images for training and half for testing) and AFF

bark database (11 classes, using 10-fold cross validation).
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Figure 20: Retrieval precision for different lengths of shortlist, AFF bark dataset (11
species)

Figures 21 and 22 in Appendix C contain examples of misclassification on the AFF

bark dataset and MEW leaf dataset. For illustration, the images are in displayed grey-

scale, as processed by the FSRIT method. In the examples of leaf misclassification, the

segmented background is represented by blue color.
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5 Conclusions

This thesis has several contributions:

We proposed to approach the problems of bark and leaf identification from images as

texture recognition problems. In order to obtain a suitable and robust texture description

which will be obtained and recognized quickly, we proposed a novel texture recognition

method. This Fast Scale and Rotation Invariant Texture method (FSRIT) is based on

multi-scale texture description using concatenated rotation invariant features obtained

from uniform LBP histograms computed at multiple scales. Robustness to scale changes

is handled by creating multiple descriptors concatenated from different scales. A linear

SVM classifier was chosen for its fast evaluation and low memory footprint. To improve

recognition accuracy, the Support Vector Machines was learned and evaluated on data

”kernelized” using feature map approximating the χ2 kernel.

Experimental results show that the proposed method outperforms the state of the art

for both bark recognition and leaf recognition, as well as the best reported results on the

most challenging standard texture datasets.

In the bark recognition problem we achieved 93.6% accuracy on the AFF bark dataset

with 10-fold cross validation (respectively 96.6% accuracy using rotation-dependent de-

scription, which can be used in applications like a mobile field guide, where it is simple

for the user to take the picture of tree trunk in ”up-is-up” orientation). Even experiments

using only 15 training samples per class achieved 80.8% accuracy (respectively 82.0% us-

ing rotation-dependent description), which outperforms the best reported results, as well

as accuracy of both human experts from the Austrian Federal Forests in bark recognition

experiments [7].

In the leaf recognition problem, we exceeded the best reported results on all tested

datasets. The average accuracies obtained with the rotation invariant description were

98.3% on the Flavia dataset, 96.2% on the Foilage dataset, 99.6% on the Swedish dataset

and 96.2% on the Middle European Woods (MEW) dataset.

In terms of retrieval the correct species is obtained in the top 3 results in more than

99% cases on the MEW leaf dataset as well as on the AFF bark dataset.

In addition show that combining both the observations of bark and leaf can further

improve the recognition. Both the product rule and sum rule for combining the bark and

leaf classifiers improved the accuracy, the later achieving slightly better results.

Experiments using the proposed FSRIT method with the same setting also proved
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its suitability for general texture problems. Our average accuracies on the KTH-TIPS2

databases (86% for KTH-TIPS2a and 72% for KTH-TIPS2b) are higher than the best

reported results, while the method achieves 99% accuracy results on other standard texture

datasets (KTH-TIPS, CUReT, UIUCTex, UMD and Brodatz32).

We have shown that the proposed recognition method is very fast and suitable for

real-time applications, including (but not limited to) implementation on mobile devices,

e.g. to create an intelligent mobile field guide.

5.1 Future work

Because the FSRIT description is performed on grey-scale images, combining it with some

colour features might further improve the recognition accuracy in cases, where the colour

is a distinctive attribute.

The leaf recognition accuracy might also be improved by combining with shape fea-

tures, as we can observe, that some misclassified leaf samples (in Figure 22, Appendix C)

might be similar in texture, but different in shape.

Description of high resolution images could be further sped up by computing the CLBP

features for only a subset of points, obtained by pseudo-random sampling. An analysis

comparing the dependency of accuracy on the number of sampled points would be needed.
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Appendices

A Contents of the enclosed DVD

Directory Content description

src The MATLAB scripts for the proposed FSRIT method

lib The VLFEAT open source library with added CLBP implementation

thesis This thesis in PDF

Table 8: DVD contents description

B Publicly available datasets

Name URL

Flavia http://flavia.sourceforge.net

Foliage http://rnd.akakom.ac.id/foliage

Swedish http://www.isy.liu.se/cvl/ImageDB/public/blad

Middle European Woods (MEW 2012) http://zoi.utia.cas.cz/node/662

Table 9: Leaf datasets

Name URL

UIUCTex http://www-cvr.ai.uiuc.edu/ponce_grp/data

KTH-TIPS and KTH-TIPS2 http://www.nada.kth.se/cvap/databases/kth-tips

CUReT http://www1.cs.columbia.edu/CAVE/software/curet

+ images of selected regions http://www.robots.ox.ac.uk/~vgg/research/texclass

UMD http://www.cfar.umd.edu/~fer/website-texture/texture.htm

Table 10: Texture datasets
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http://www.cfar.umd.edu/~fer/website-texture/texture.htm


C Visualisation of misclassified samples

(a) Ash misclassified as Scots pine (b) Black pine misclassified
as Scots pine

(c) Fir misclassified as Larch (d) Larch misclassified as Scots
pine

(e) Larch misclassified as Scots
pine

(f) Scots pine misclassified
as Larch

(g) Swiss stone pine misclassified
as Scots pine

Figure 21: Examples of misclassification on the AFF bark dataset
(left: query image, right: example from wrongly assigned class)
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(a) Acer negundo mis-
classified as Sambucus
nigra

(b) Alnus incana
misclassified as Vitis
vinifera

(c) Catalpa bignon-
ioides misclassified
as Corylus colurna

(d) Chaenomeles
japonica misclas-
sified as Alnus
glutinosa

(e) Corylus avellana
misclassified as Sorbus
aria

(f) Maclura pomifera
FEMALE misclassified
as Tilia cordata

(g) Maclura
pomifera FE-
MALE misclassi-
fied as Maclura
pomifera MALE

(h) Mahonia aquifolium
misclassified as Prunus ma-
haleb

(i) Quercus frainetto
misclassified as Acer
campestre

(j) Quercus rubra
misclassified
as Quercus robur

(k) Tilia cordata misclas-
sified as Corylus colurna

(l) Ulmus minor misclassified
as Carpinus betulus

(m) Rhamnus cathartica misclassified as Euony-
mus verrucosa

Figure 22: Examples of misclassification on the MEW leaf dataset
(left: query image, right: example from wrongly assigned class)
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