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Chapter 1

Multimedia exploration problematic

1.1 Multimedia

The last decade witnessed a massive growth of multimedia contents. Gantz [1] shows that
the amount of data stored got bigger ten times between years 2006 and 2011 and this
exponential growth continues, mostly driven by the amount of videos, still images and
sounds [1]. Jonathan Good [2] estimated 3.5 trillion photos taken till the year 2011 and
Yahoo [3] estimates 880 billion photos taken just this year, 2014. This explosion of data
was possible mainly because of the availability of capturing devices such as smart phones
and compact cameras. They are getting cheaper every year and more than a fifth of people
in the world owns one [4].

A lot of this data is stored not only locally on authors’ computers or capturing devices,
but also uploaded online to web portals for sharing photos or videos, often directly from
the capturing device. The most popular galleries are Youtube, Flickr, Instragram and most
importantly, the social network Facebook [2]. Facebook employees reported [5] 350 million
photos uploaded every day. This makes Facebook the largest image gallery on the Internet.

1.2 Text-based search

All this data and its online accessibility led to a significant research activity in multimedia
retrieval. The problem is to satisfy user’s search intention with relevant objects from a huge
database, preferably without any delay. Traditional web search engines like Google, Yahoo
and Bing utilize text-based approaches, where a multimedia object is described/annotated
by a set of keywords. Such retrieval approach is very efficient and allows the reuse of
well established search architectures utilized for textual data. The keywords are usually
extracted from the surrounding HTML page or from a human-entered description. For
example, human annotation is often used in photo galleries, where the concept of tags
is used to provide search functionality. However, for web-scale collections the automatic
annotation (e.g., based on surrounding texts on the web page) is necessary, because the
approach with human-entered annotation has several drawbacks. First, it is possible to
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annotate only a small fraction of the available data due to limited number of human
annotators (or experts in case of domain specific data). Also, the annotation can be
subjective and thus the results of the search may not satisfy all users. There are also works
focusing on automatic annotation, but they often yield only a limited precision.

To search multimedia data without any textual information, their content has to be
analyzed and used. One way to utilize the content is to filter the objects based on some
characteristics. Google Images allow this in their advanced search with the option to
narrow the results by size, color and other properties [6].

1.3 Similarity Search

In content-based retrieval [7, 8, 9], the content of the data is analyzed and used for search-
ing. To query a content-based retrieval system, user has to provide an object as the
query. Both Google Images and Bing Images use the query-by-example paradigm in their
content-based retrieval functions, in which a user selected image serves as the query. Since
the query object does not have to be present in the searched database, the systems often
implement a similarity model to return at least the most similar images.

1.3.1 Similarity model

The similarity model is usually defined as tuple (F, δ), where F represents a feature space in
which multimedia objects are mapped using a feature extraction technique, and δ represents
a distance function F×F → R, where the lower the distance, the more similar two objects
are. The multimedia collection is then represented as a subset S of the feature space F,
and distance function δ(o, q) defined for two image descriptors o, q ∈ F is used to rank
the similarity between two corresponding multimedia objects. The similarity query then
usually consists of ranking of all database objects according to a query object and selecting
the most relevant (top ranked) database objects. For specific collections like EEG curves,
x-ray images or military satellite images, the similarity model has to be designed with the
help of domain experts. The experts help with the selection of representative descriptors
and suitable similarity measures in order to obtain the most relevant rankings.

Metric space approach

For huge multimedia collections, ranking of all database objects using a similarity model
to answer a query is not feasible, and thus an index for efficient similarity searching is nec-
essary. A popular technique for efficient similarity searching is the metric space approach
where the distance function satisfies metric axioms, especially the triangle inequality. The
triangle inequality is crucial for metric indexing. Following definitions in this chapter are
taken from the work of Zezula et al. and from the thesis of Lokoč[10, 11], where you can
also find more details and examples.
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Definition 1 Let F be a feature space, δ a distance function measured on F. M = (F, δ)
is called metric space, if distance function δ: F × F 7→ R fulfills following postulates:

(p1) ∀x, y ∈ F, δ(x, y) ≥ 0 non-negativity

(p2) ∀x, y ∈ F, δ(x, y) = δ(y, x) symmetry

(p3) ∀x ∈ F, δ(x, x) = 0 reflexivity

(p4) ∀x, y ∈ F, x 6= y ⇒ δ(x, y) > 0 positiveness

(p5) ∀x, y, z ∈ F, δ(x, z) ≤ δ(x, y) + δ(y, z) triangle inequality

Although the metric axioms represent restrictions for the similarity model, we can
still utilize many general metric indexing techniques that will work in a large number of
applications across several domains.

Feature extraction

Feature extraction is a transformation of the raw input data to a point o in the feature
space, o ∈ F. This transformation reduces description complexity of modeled objects (e.g.,
from matrix of pixels to simple histogram) while it should still preserve relevant features
and possibly also reduce noise information in the data. In the domain of image and video
retrieval, feature extraction techniques often represent objects using color, shape, texture
features or using a combination of these features.

The resulting set of features can take a variety of forms. The following section shows
some examples of feature extractions used in image processing. Other examples with their
implementation can be found for example in the Lucene Image Retrieval library [12].

MPEG-7

MPEG-7 [13] is a standard for description of multimedia content. There are many different
parts describing various aspects of multimedia data. The resulting descriptors are usually
fixed-sized vectors describing the content of the whole image. The vectors can be combined
together to form a better performing descriptor. Mufin [14] is an example of content-based
retrieval system that uses linear combination of several MPEG-7 descriptors.

Scale invariant feature transform

Scale invariant feature transform [15] (SIFT) is an example of descriptor focusing on local
features. Instead of a global description of an image, the algorithm detects interesting
keypoints in the image and describes them separately resulting in many-vectors-per-image
representation. To store the image in a more compact way, bag-of-visual-words (BoVW)
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approach [16] is used to represent the image as a frequency histogram of so called codewords.
This model can be further extended with compaction techniques such as vector of locally
aggregated descriptors (VLAD) [17, 18]. A lot of research was spent on improving the
original SIFT algorithm, Wu et al focused on their comparison [19].

Feature Signatures

The feature signatures are popular tool for flexible image description, where the main
advantage of using feature signatures is their variable size, which makes them suitable for
both simple and complex images [20, 21] .

Definition 2 Given a feature space F, the feature signature So of a multimedia object o

is defined as a set of tuples from F × R
+ consisting of representatives ro ∈ F and weights

wo ∈ R
+

Each representative ro from a feature signature represents an area with a central point.
The feature space we used in this work for feature signatures is a 7-dimensional vector of
real numbers comprising the following components:

X. The x-coordinate

Y. The y-coordinate

L. Lightness, L* in CIE LAB1 color space

A. Color position between magenta and green, a* in CIE LAB color space

B. Color position between yellow and blue, b* in CIE LAB color space

C. Contrast

E. Entropy

Unlike SIFT, feature signatures do not use a frequency histogram based on a global vocab-
ulary (BoVW model), but each feature signature uses its own vocabulary of visual words.
Therefore, the feature signatures have to be compared by more expensive adaptive dis-
tance functions that compare these local vocabularies [23]. Christian Beecks [24] provides
an extensive work on the topic of feature signatures.

1LAB color space, which was designed to approximate human vision [22]. CIE states for International
Commission on Illumination (Commission internationale de l’éclairage in French).
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Distance functions

Distance functions are used to quantify the closeness of objects from the feature space F

and thus measure their dissimilarity. It is up to the domain experts to choose and even-
tually parameterize a suitable distance function that should mostly correspond to user
expectations. The same descriptors can be compared by many different distances, which
can result in different effectiveness and performance.

In this section we will present the distances used in this work.

Minkowsi metrics

The Minkowski metrics (or Lp metrics) are the most popular dissimilarity measures used
in various applications. However, the metrics are restricted just to vector spaces, where a
distance between two vectors (points) is computed.

Definition 3 Let V be an n-dimensional vector space and x, y ∈ V, then an Lp metric is
defined as:

Lp(x, y) = (
∑n

i=1
|xiyi|

p)
1

p

Only for p ≥ 1 holds that Lp is a metric, for p < 1 it does not satisfy the triangle
inequality. L1 distance is known as the Manhattan distance, the L2 metric is the Euclidean
distance and the L∞ is called the Chessboard distance. The time complexity of the distance
evaluation is O(n), hence Lp metrics are considered as cheap dissimilarity measures. The Lp

metrics are suitable to model a dissimilarity in vector spaces with independent dimensions,
such as the MPEG-7 descriptors.

There also exist cases, where it is profitable to prefer more significant coordinates and
to suppress the less significant ones. For such cases, the weighted Lp metric can be used
as a generalized variant of the original Lp metric [11].

Signature Quadratic Form Distance

The Signature Quadratic Form Distance is a generalization of the Quadratic Form Dis-
tance [11] for feature signatures. It is defined as follows:

Definition 4 Given two feature signatures Sq = {〈rq
i , w

q
i 〉}n

i=1 and So = {〈ro
i , wo

i 〉}m
i=1 and

a similarity function fs : F × F → R over a feature space F, the signature quadratic form
distance SQFDfs

between Sq and So is defined as:

SQFDfs
(Sq, So) =

√

(wq | −wo) · Afs
· (wq | −wo)T ,

where Afs
∈ R

(n+m)×(n+m) is the similarity matrix arising from applying the similarity
function fs to the corresponding feature representatives, i.e., aij = fs(ri, rj). Further-
more, wq = (wq

1, . . . , wq
n) and wo = (wo

1, . . . , wo
m) form weight vectors, and (wq | −wo) =

(wq
1, . . . , wq

n, −wo
1, . . . , −wo

m) denotes the concatenation of weights wq and −wo.
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The similarity function fs is used to determine similarity values between all pairs of rep-
resentatives from the feature signatures. In our implementation we use the similarity func-
tion fs(ri, rj) = e−αL2(ri,rj)2

, where α is a constant for controlling the precision-indexability
tradeoff, and L2 denotes the Euclidean distance.

The time complexity of SQFD is O(n2 ∗ Tfs
) , where Tfs

is the time complexity of
the fs similarity function. The time complexity of the SQFD can be a performance bot-
tleneck of the retrieval, especially when using larger feature signatures. Therefore the
number of SQFD computations becomes an important performance measure in indexing
techniques [25, 26].

Cosine similarity

Cosine similarity measures the cosine of the angle between two vectors.

Definition 5 Let V be an n-dimensional vector space and A, B ∈ V, then the cosine
similarity is defined as:

σcos(A, B) =
A · B

‖A‖‖B‖
=

n
∑

i=1
Ai × Bi

√

n
∑

i=1
(Ai)2 ×

√

n
∑

i=1
(Bi)2

The return values range from -1 meaning the exact opposite to +1 meaning an exact
match.

To turn this similarity function into the cosine distance, we can subtract the value
from 1:

Dcos(A, B) = 1 − σcos(A, B)

Such distance however violates the triangle inequality metric postulate. As an proper
metric, the deviation metric can be used [27]:

Ddev(A, B) = arccos(σcos(A, B))

The cosine similarity is especially useful for bag-of-words approaches and is often used
in information retrieval [28]. It is also the recommended distance for the bag-of-visual-
words used for local features like SIFT, because it effectively normalizes the number of
extracted keypoints. In the case of information retrieval, the vectors are never negative.
This means that the return value of cosine similarity can never be negative as well and the
values range from 0 to 1. When cosine distance is used, the values also range from 0 to 1.

1.3.2 Queries

Besides many others, there are two most popular similarity queries used in similarity search
tasks: the range query and the nearest neighbor query (k−NN).
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Definition 6 Let q be a query object in domain F and r be a distance. Range query is
defined as R(q, r) = {o ∈ X, δ(o, q) ≤ r}, where δ is a metric function on domain F and
X ⊆ F.

Definition 7 Let q be a query object in domain F and k be a number of wanted results.
The k nearest neighbor query is defined as kNN(q) = {R ⊆ X, |R| = k ∧ ∀x ∈ R, y ∈
X − R : δ(q, x) ≤ δ(q, y)}, where δ is a metric function on domain F and X ⊆ F.

As we can see in Figure 1.3.2 , both similarity queries are represented by a ball region,
where the radius of the ball is dynamically adjusted for the k−NN query.

Figure 1.1: (a) Range query ball with radius rq (b) 2NN query

1.3.3 Metric indexes

When executing a query in large-scale multimedia databases, it is unacceptable to compute
the distance function between the query object and every other object in the database. To
reduce the number of distance computations, some form of indexing has to be applied.
The metric space model can use no other information than the distances between objects.
Thanks to the triangle inequality postulate, a previously computed distance can be used
to estimate a lower bound and an upper bound of the real distance to the query object.
Having the database objects p, q, x ∈ S and previously computed distances d1 = δ(p, x)
and d2 = δ(p, q), we can calculate from the triangle inequality the lower and upper bound
of distance δ(x, q) ∈ 〈|d1 − d2| , d1 + d2〉. If the lower bound is greater than the radius of
current query, we can exclude x from the result set for query q without calculating the
exact distance.

A wide family of metric indexes, so called Metric access methods (MAMs) [10, 11],
utilizes this approach. The majority of indexes maintains precomputed distances from
every database object to a fixed set of pivots, P ⊂ S. Various techniques for selecting
pivots and their comparison can be found in the work of Bustos and Amato[29, 30, 31].
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LAESA

In the case of LAESA [32], the index consists just of distances from all database objects
to pivots. When performing a search, distances from query to pivots are used to eliminate
objects using the lower-bound estimate. All remaining objects are directly compared to
the query object.

M-Tree

The M-Tree [33] is a hierarchical index structure with good performance in secondary
memory. The index is build in a bottom-up way resulting in a balanced hierarchy of
nested metric ball regions. During query processing, each ball region is checked for the
overlap with the query ball, and if the balls "intersect", the query has to recursively follow
this part of the M-Tree potentially ending in leaf nodes, where data objects are stored.

Modifications to this index exist, such as Pm-Tree [34] which enhances the original
structure with a global set of pivots. The pivots cut ball-shaped regions by a set of rings
to form more compact regions [35, 36].

M-Index

M-Index is a state-of-the-art structure combining practically all existing techniques for
metric space pruning and filtering [37]. M-Index creates again a hierarchy of metric clusters,
but unlike M-Tree employing ball-regions, the M-Index uses a recursive Voronoi-based
partitioning of the metric space using a preselected set of global pivots resulting in the
cluster tree structure. The cluster tree and stored distances from objects to pivots are then
used for efficient metric space search employing object-pivot distance constraint, double-
pivot distance constraint and range-pivot distance constraint [37].

M-Index was also proven to be very efficient in approximate search. In approximate
search, there is a tradeoff between accuracy of the search and its performance. A compari-
son of approximate search techniques was shown by Novák, Batko and Lokoč et al. [37, 38]
and will be further described in section 2.2.

1.4 Multimedia Exploration

Both text-based search and query-by-example systems require a query formulation to sat-
isfy user’s need. This can only be successful when the user’s information needs can be
(clearly) specified [39]. Sometimes, the user does not have an example object or does not
know how to formulate a query correctly. Even if he does, a search engine based on subjec-
tive annotations may return completely irrelevant results from user’s point of view. Often
the only thing the user has is an idea, a picture of the result in his head. Only once he sees
some result he can decide whether it is relevant or not (“I don’t know what I’m looking
for, but I’ll know when I find it” [40]). Multimedia retrieval systems also do not allow the

15



user to gain insight of a collection, possibly very large one, without starting with a query
first.

Multimedia exploration tries to solve these problems by making the user a significant
part of the search process. The exploration is intended to maximize the use of the dis-
criminative power of the user and allow him to examine the contents of the collection in
an effective way.

1.4.1 Initial view

At the beginning of an exploration process, user is presented with an initial view (e.g.,
see [41, 42]). The initial view should give a basic overview of the collection, enabling
users to start browsing to images of his/her interest. Composition of the initial view is a
challenging problem especially in large collections and is commonly referred as the Page-
Zero problem [43]. From the initial view, users should be able to reach different parts of
the collection by exploration operations like zooming-in, zooming-out, panning [44] or just
by selecting objects of his/her interest.

1.4.2 Exploration/Exploitation

Suditu et al. [45] divide exploration queries into two regimes : Exploration and Exploita-
tion.

Exploration is supposed to give an insight at higher level and present the categories to
the user. Authors state: “The exploration step aims at driving the search towards different
areas of the feature space in order to discover not only relevant images but also informative
images”[45]. Exploitation phase should dive more into the collection, converge to specific
images and return more objects relevant to the user.

Their proposed system tries to balance the tradeoff between the two regimes adaptively
to user’s actions and transition between them seamlessly.

1.4.3 Relevance feedback

Some systems try to deduce the ideal similarity model adaptively from the exploration
history, utilizing relevance feedback techniques in the process. This process can change
the similarity model underneath, for example by changing the weights used in weighted
Lp metric and preferring some dimensions over the others [46] or by changing the weights
for two different similarity models combined together [43]. The work of Urban et al. [47]
describes different ways of collecting relevance feedback in content-based image retrieval
and provides basic terminology for systems with build-in relevance feedback techniques.
The authors have also utilized the Dempster-Shafer mechanism to combine multiple number
of sources to a single ranked list based on the trust in each source calculated from previous
steps.
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1.4.4 Graphical user interface

Conventional search engines show the search results in form of a ranked list. Such pre-
sentation loses information about similarity between retrieved results. Several exploration
systems provide the search results in more attractive and interactive graphical user inter-
faces (GUI), often utilizing some form of similarity based layout [48]. According to Nguyen
and Worring [48], such layout should reflect the similarity between multimedia objects and
should also offer an overview of the multimedia collection.

Different approaches to similarity based GUI exist, most of them try to visualize the
search results as a graph [49, 42, 41, 50]. Automatic graph drawing can be computationally
very expensive [51] and is often only approximated for better performance. Lokoč et
al. [41, 42] proposed to leverage the graph drawing to a force-directed layout [52] running
in the browser, which saves server resources and provides better interactivity options.

The GUI can also be presented in 3D for better user experience. Experimental systems
have been shown by Schoeffmann et al. for video browsing using a 3D carousel [53] and
for image browsing on a 3D globe [54].

Other exploration systems have been developed in the last decade and evaluated in
extensive surveys [55, 56]. Effective and efficient exploration is requested not only for
common users, but also for special cases, like medical images or videos. Specialists searching
for a specific frame in a video often spent long time doing mentally challenging work.

To compare different systems for video browsing under the same conditions, the Video
Browser Showdown [57] is hold every year since 2012 as part of the Multimedia modeling
conference. In this contest, researchers can compare the performance of their systems on a
common dataset and on the same set of tasks. The evaluation results [58] describe the tools
and show how they performed in direct comparison. Recent success of a novel approach
shown by Lokoč et al. [59, 60] shows that even state-of-the-art tools can be outperformed
and that the field of browsing tools still has a lot of room for improvement.

1.4.5 Efficiency of the exploration

When exploring through a collection, users expect to see the results almost immediately
without noticeable delay. This can be a problem in large scale databases or even in smaller
systems using a nontrivially expensive distance function like the SQFD. The sequential
scan is not feasible in these scenarios and some form of index has to be used. Previously
mentioned systems did not pay a lot of attention to indexing and as Beecks et al. stated [39],
index support for multimedia exploration remains a challenge.

Previously mentioned MAMs are designed and optimized for range and k−NN queries.
This may however not be sufficient for an exploration system that needs to support many
other operations. Also, simply returning the most relevant objects disables the option to
get insight of the collection and cannot support the exploration regime [45].

Lokoč et al. [61] focused on native exploration of metric indexes. Native exploration
uses the inner representation of the structure instead of issuing traditional k−NN or range
queries. This approach can support traversing the same structure with different strategies
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and can be used with zero or almost zero distance computations. Comparison of these
approaches will be shown in 2.2.

The ultimate goal is to have a structure capable of both efficient answering of explo-
ration queries and a fast generation of similarity based layout, preferably without any
distance computations. A baseline approach could be a generation of complete similarity
graph between all objects and cutting of distances above a certain threshold. Exploration
would then traverse the graph and return the relevant subgraphs as the result. However,
this would require O(n2) computations of the distance function and additional space, which
is not feasible even for smaller databases.

A different problem is the indexing of adaptive similarity models used in relevance
feedback techniques. Traditional MAMs consider a fixed distance function and its change
would break the functionality of the index. Bustos et al. and Skopal [62, 63] proposed mod-
ifications to MAMs that enable indexing not only for one distance function, but for a linear
combination of possibly many distance functions. Those weights can then change during
querying. This approach cannot deal with other than linear combinations of distances,
such as the Dempster-Shafer mechanism mentioned earlier.
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Chapter 2

Exploration with M-Index

As part of our work, we have investigated approximate search using the M-Index structure
and researched the options of efficient multimedia exploration using the M-Index.

In the following chapter, we will briefly describe the structure of M-Index, show our
experimental results for approximate k−NN search and present two approaches to mul-
timedia exploration based on M-Index. First approach utilizes fast approximate k−NN
search, second one exploits the structure of M-Index in the exploration process. Explo-
ration approaches we have developed were compared in a user study called Find the image
and the results are presented in section 6.2.

2.1 Structure of M-Index

Two key properties of the M-Index are repetitive partitioning of the metric space and
mapping of all objects to a numeric domain. Partitioning divides the metric space into
disjoint clusters, which enables pruning during search. Mapping to a numeric domain
allows to store objects using well established structures, such as B+-tree, and efficient
retrieval using interval queries. The numeric key for an object consists of two parts. The
integral part is based on the partition the object belongs to. The fractional part uses the
distance to the closest pivot normalized to 〈0, 1). In our work, we have used a simplified
variant of the M-Index only for the specialized cases of approximate k−NN search and data
exploration. We were also running the index only in primary memory. For those reasons,
we did not use nor implement the mapping to a numeric domain, which is required mainly
for data in secondary memory, exact search techniques or distributed storage scenarios.
When we refer to M-Index in following sections, we will describe our simplified variant of
this data structure.

M-Index uses repetitive Voronoi partitioning to divide all database objects into groups
by their relations to a global list of pivots. Relations to pivots are formalized using distance
permutations from object to the global list of pivots. Two objects belong to the same group
if they share the same prefix of that permutation. Authors of the M-Index propose several
variants of it based on the length of that prefix.
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Figure 2.1: Repetitive Voronoi partitioning

Level-1 M-Index uses only the closest pivot to determine an appropriate group for an
object. In other words, the distance permutation prefix used has length 1. We can see
example of such clustering with 6 global pivots C1-C6 in figure 2.1a).

Multi-level M-Index applies further partitioning of the clusters. The M-Index with l

levels uses permutation prefix of size l to assign each object to a cluster. With n pivots
and l levels, M-Index could partition the space into n × (n − 1) × ... × (n − l + 1) clusters.
However, this number is just theoretical and in practice the number of non-empty clusters
is lower than this number.

Dynamic-level M-Index determines the length of the distance permutation prefix dy-
namically at runtime by the size of the appropriate cluster. With larger levels of multi-level
M-Index, the space can be fragmented in a lot of small parts which brings additional over-
head for query processing. To deal with this issue, dynamic-level M-Index applies further
partitioning of a cluster only after it reaches a maximal capacity of objects. In the example
in figure 2.1, partitioning begins with 6 groups in part a). When we insert more objects
into the group C1 and it reaches its maximal capacity, the node has to split into partitions
with level 2 (i.e., the second closest pivot is considered for partitioning). Situation after
the split is shown in part b) of the figure.

The structure used to store the actual clustering of the metric space in dynamic-level
M-Index is called cluster tree. For static M-Index the cluster tree is balanced while for
dynamic M-Index the cluster tree is unbalanced. In the root of the cluster tree, clusters
determined by prefix of size 1 are stored (C1-C6 in figure 2.1a). If any cluster in the cluster
tree is split, then a new node is appended to the cluster tree, where the item storing
the split cluster is linked with the new node, forming a hierarchy corresponding to the
repetitive Voronoi partitioning.
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InnerNode . I n s e r t ( byte [ ] d istancePermutat ion , data )
{

var c h i l d = t h i s . Chi ldren [ d i s tancePermutat ion [ 0 ] ]
i f ( c h i l d . Shou ldSp l i t ( ) )
{

c h i l d = c h i l d . S p l i t ( )
t h i s . Chi ldren [ d i s tancePermutat ion [ 0 ] ] = c h i l d

}
c h i l d . I n s e r t ( d i s tancePermutat ion . Skip ( 1 ) ] , data )

}

LeafNode . I n s e r t ( byte [ ] d istancePermutat ion , data )
{

Store data toge the r with the remaining
part o f i t s d i s tancePermutat ion

}

Figure 2.2: Cluster tree insert

2.1.1 Algorithms for cluster tree

In our implementation, cluster tree has the form of an unbalanced tree with two types of
nodes. Inner nodes do not contain any data and have a fixed-sized array of pointers to
its child nodes. On n−th level of the tree, the children are divided into the child nodes
according to n−th closest pivot. Leaf nodes contain the data and are referenced by a
parent inner node. If the number of data items goes beyond a given threshold, by default
50 in our implementation, the leaf node is transformed into an inner node with the data
divided into new leaf nodes. If the level of the node is already equal to the number of
pivots, the algorithm has no more information for splitting the data into child nodes and
the leaf buckets begin to grow in size instead.

Insert

Figure 2.2 show a polymorphic algorithm used for inserting data into our implementation
of the cluster tree. The algorithm begins by inserting the data and its distance permutation
into the root of the cluster tree. With each level, the first item of the permutation is used
to determine the appropriate child. The Insert function is then called recursively with the
distance permutation without the first item. Recursion ends in a leaf node, where it stores
the actual data.
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Approximate search

When issuing an approximate k−NN search, data has to be processed in an effective
manner to achieve a high recall even when the search is terminated early. The structure
of the cluster tree is used to return leaf nodes in an order that should approximate their
closeness to the query where the only available/stored information are distances to pivots
and corresponding distance permutations.

When the leaf nodes are returned to the k−NN algorithm, their data objects are fil-
tered by the lower-bound distances computed from their distances to pivots. The filtering
threshold (query radius) is computed dynamically as the distance to the k−th closest ob-
ject changes in the current result set. Rest of the objects are compared directly to the
query object by computing original distance computations and the result set is updated
accordingly. The search terminates when a specified number of distance computations has
been spent on direct comparison of objects.

Figure 2.3 describes the algorithm used for ordering of leaf nodes during approximate
search. When searching for k−NN, we assume that objects closest to the query will prob-
ably be in the cluster in which the query would belong. Other candidates reside in the
clusters defined by pivots which are closest to the query object.

In this algorithm, we calculate a penalty for each node determining the proximity of
the cluster to the query object. Then we visit the nodes in order of this penalty and return
them in case of leaf nodes or add their children to a heap ordered by the calculated penalty
in case of inner nodes. Note that the penalty is divided by the current level to normalize
differences between different levels of the tree. This means that even a leaf node deep in the
hierarchy can be processed earlier then some level-1 clusters, if its distance permutation
differs only slightly from the distance permutation of the query object.

The algorithm begins with the root node of the cluster tree and returns the leaf nodes
lazily. This means that the algorithm proceeds with processing of the heap only when
caller of the function requests more results.

This algorithm is based on the original method proposed by the authors of M-Index [37].

2.2 Approximate search using SQFD

In the bachelor thesis of Tomáš Grošup [64], we were observing precision and indexability
characteristics of SQFD under changing values of the α parameter. This parameter is
used inside the SQFD in the function fs to determine the similarity between all pairs of
representatives in the signatures using the formula fs(ri, rj) = e−αL2(ri,rj)2

. For precision,
we measured MAP of exact search considering predefined ground truth of the collection.
The indexability was determined by intrinsic dimensionality, which has been proven as a
good approximation of the indexability of MAMs [65]. It is defined as ρ = µ2

2σ2 , where µ

and σ2 are the mean and the variance of the distance distribution for the entire collection.
The lower this value is, the better are the indexability options for the collection. Our
conclusion was that selected values of α can gain up to two orders of magnitude better
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type DistancesToPivots = { Dis tances : f l o a t [ ] , Permutation : byte [ ] }
ApproxSearch ( DistancesToPivots query )
{
heap = {Node = MIndexRoot , Penalty = 0 , Leve l = 0}
whi le ( ! heap . IsEmpty )
{

min = heap . DeleteMin ( )
i f (min i s LeafNode )

// l a z i l y re turn next next re turn value ,
// cont inue only when c a l l e r o f the func t i on
// r eque s t s more va lue s
y i e l d re turn min . Node

e l s e
f o r ( i = 0 ; i < min . Node . Chi ldren . Length ; i++)
{

pena l ty = min . Penalty ∗ min . Leve l
pena l ty += | query . Di s tances [ i ] −

query . Di s tances [ query . Permutation [ min . Leve l ] ] |
pena l ty /= min . Leve l +1
heap+= {

Node = min . Node . Chi ldren [ i ] ,
Penalty = penalty ,
Leve l = min . Leve l +1

}
}

}
}

Figure 2.3: Ordering of leaf nodes during approximate search
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retrieval performance over the most-precise configuration only for a 5% loss of precision. It
was concluded that indexability is an important aspect of the distance modeling process.

In our recent paper [38], we focused on retrieval precision of the SQFD under limited
constrains. By limited constrains we mean a fixed number of distance computations given
as a limit to the retrieval procedure. The number of distance computations is important
especially in the case of nontrivially expensive distances, like O(n2) when using SQFD.
We compared different values of the α parameter in approximate search using M-Index
and we expected similar behavior as in the exact search scenario where the lower values
of α resulted in better trade-offs. However, it turned out that under limited number of
distance calculations the model trained for the best effectiveness (but low indexability) has
given better results than a model optimized for good trade-off (sufficient effectiveness, good
indexability). We have concluded that a high intrinsic dimensionality is not an obstacle
for approximate search using M-Index and SQFD, and modeling a SQFD distance space
for the best precision is sufficient. Let us note, we have also tested these observations for
retrieval using models based on MPEG-7, where instead of changing a distance parameter,
we were reducing the number of dimensions by omitting the less important ones. It was
again shown that in approximate search with a limited number of distance computations,
the best results were achieved when using the most precise model, even if it had high
intrinsic dimensionality.

2.2.1 Experimental results

In our experiments, we observed the M-Index under different values of α supplied to SQFD
when approximate search with fixed number of distance computations is used. We mea-
sured precision of the results for k−NN queries issued to two different collections, Profi-
media and TWIC. For these experiments, a static 3-level variant of the M-Index was used.

Profimedia dataset [66] contains 21 993 images divided into 100 classes by a semi-
automatical procedure and human verification. TWIC dataset [67] consists of of 11 555
images forming 197 classes, where each class represents images obtained by a keyword
query to the Google images search engine.

Feature signatures for those collections were generated using a GPU extraction tool [68].
In the first experiment, we have measured the impact of different number of fixed

distance computations on precision of the search. As we can see in figure 2.4, best results
were always achieved by the highest value of α. This is the value which has best precision in
exact search scenario, but also the worst intrinsic dimensionality. We can also see that even
for ten distance computations, which really means just reading the first ten objects from
the first M-Index bucket obtained by the described approximate k−NN search heuristic,
the M-Index was able to achieve an interesting precision.

In the second experiment, we have fixed the number of allowed distance computations
and focused on percentage of buckets visited during the search. As we can see in figure 2.5,
higher values of α do not only achieve better precision, but also need much less buckets to
visit because the distances are spent in first few buckets and then the algorithm stops. For
lower values of α with a low intrinsic dimensionality, the triangle inequality allows to skip
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Figure 2.4: Results of the approximate search controlled by the fixed number of allowed
distance computations

a lot of distance computation and the search has to go trough a lot of buckets to spent 500
distance computations. Terminating the search early also affects the overall performance
of the search by reducing the amount of memory accesses.

To sum up the results, the configuration resulting in the best mean average precision
but worst intrinsic dimensionality is highly competitive in approximate search.

2.3 Exploration techniques

We have utilized the dynamic-level variant of M-Index to create two approaches to multi-
media exploration.

In the first approach, we have employed the fast approximative search with a fixed
limit of allowed distance computations. This approach was used to iteratively query the
database with k − NN queries, where the query object is always selected by the exploring
user. Thanks to the approximate search, the response can be generated almost in real-time
and the result set contains a lot of relevant objects.

In the second approach, we have focused on browsing of the hierarchical structure of
the cluster tree used inside the M-Index. It was necessary to extend cluster-tree by a
preview function that returns example objects for a given node, since our implementation
physically stores data only in leaf nodes and not in inner nodes. With this modification, it
is possible to browse the index in a top-down manner from root to leafs. The user drives
the direction of exploration trough the index by selecting objects of interest that always
correspond to a node. This approach does not use any distance computations at all and
generates the result almost immediately.
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Figure 2.5: Precision and number of visited buckets for growing number of nearest neigh-
bors

2.4 Iterative querying

Iterative querying is an approach to multimedia exploration that delegates exploration to
k − NN queries. We have utilized the structure of the cluster tree to generate the initial
view for the exploration process and the approximate k − NN search for fast yet precise
query execution. We also believe that the approximate search can lead to a more variable
result set than an exact search, which can be beneficial for the exploration process. In this
section, we will present an algorithm that uses structure of the cluster tree to generate the
initial view.

The initial view is computed by a recursive strategy that asks each node to return a
number of representatives. The requested number is computed using the ratio of number of
all node’s descendants and all objects in total. Once the recursive function hits a leaf node,
the first objects from that node are returned. A pseudocode for this strategy is described
in figure 2.6. For the initial view, the GetExamples function is called for the root node
with 50 samples to take.

2.5 Iterative browsing

Iterative browsing uses the structure of the index to execute all exploration queries, not just
for generation of the initial view. Instead of issuing a k − NN search during exploration,
strategy for recursive traversing of the cluster tree described in figure 2.6 is used again.
The data structure holds a map from returned objects in previous result sets to nodes they
were returned from. When an exploration query is issued, this map is looked up to find a
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s t r u c t Samples = (Node , l i s t o f o b j e c t s )

GetExamples ( InnerNode innerNode , i n t samplesToTake ){
i f ( innerNode . CountOfNonEmptyChildNodes > samplesToTake )

re turn ( innerNode , f i r s t o b j e c t s from samplesToTake c h i l d r e n )

t o t a l I t e m s L e f t = innerNode . TotalNumberOfDescendantItems
r e s u l t = {}
fo r each (MIndexNode c h i l d in innerNode . Chi ldren )
{

ch i l dTota l = c h i l d . TotalNumberOfDescendantItems
canTake = samplesToTake ∗ ch i l dTota l / t o t a l I t e m s L e f t
samplesToTake −= canTake
t o t a l I t e m s L e f t −= ch i l dTota l
i f ( c h i l d i s LeafNode )

r e s u l t+= ( ch i ld , f i r s t canTake o b j e c t s )
e l s e i f ( c h i l d i s InnerNode )

r e s u l t+= GetExamples ( ch i ld , canTake )
}
re turn r e s u l t
}

Figure 2.6: M-Index initial view
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node that was used in the previous exploration step. The response is build again using the
GetExamples function as in the case of initial view. Instead of calling that function with
the root node, the node found in the map is used. Once the exploration reaches leaf nodes,
an approximate k − NN search with zero distance computations limit is issued. However,
this usually causes the exploration to cycle between a few nodes with no option to traverse
to a different part of the cluster tree.

With this approach, all objects of the database can be reached by a limited number
of operations from the initial view. The number of operations is limited by the height
of the cluster tree, if both number of pivots and maximal size of a leaf node are lower
than the number of objects displayed at each step of the exploration. Reachability is a
qualitative criterion for exploration structures and is defined as the ratio of objects that can
be reached by any number of operations and all objects in the database. Iterative browsing
of the cluster tree guarantees 100% reachability. It also guarantees realtime responsiveness,
since it does not use any distance computations at query time at all.
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Chapter 3

Multi-model approach to multimedia
exploration

This chapter is devoted to multi-model exploration of multimedia collections. We describe
the concept of multi-model exploration and present two new approaches we have developed.

Although these two approaches could be used for any similarity models, we have de-
scribed them on two specific similarity models for demonstration purposes. This allows us
to highlight their differences and show scenarios, in which our approaches are beneficial.
Similarity models we have used are also described in this chapter.

3.1 Multiple similarity models

As we have shown in section 1.3.1, many approaches to model similarity between multi-
media objects exist. As you can see on the examples like SIFT or Feature Signatures, the
models can use completely different techniques to create a feature space and to compute
the similarity using a distance function. To obtain even better retrieval results, multiple
similarity models can be combined together to form a new similarity model. This approach
is called multi-model and is already used in content-based multimedia retrieval. One com-
mon example is the usage of MPEG-7 descriptors, which are rarely used solo and more
often several of them are used in a weighted combination to produce better results [69]. It
has been also shown [67] that various combinations of basic MPEG-7 descriptors using L1

metric and Feature Signatures using SQFD outperform the mean average precision (MAP)
of any of the models used alone in content-based image search.

3.1.1 Multiple modalities

The term multi-model should not be confused with multi-modal which refers to using
multiple modalities to perform search. Each modality is a different source of data with
a different form. The multi-modal approach is used in video retrieval a lot, where search
systems combine audio features, visual features from video frames, transcript from speech
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recognition or other information [70]. It has been utilized for image retrieval as well by
combining visual features and textual annotation and was shown to be successful for both
generic image search [71] and specialized search for online shopping [72]. In this work,
we have not focused on the multi-modal approach as we have focused primarily on the
content-based exploration of data without any external annotation.

3.2 Similarity models used

We have decided to combine two modern similarity models for images, both of them achiev-
ing good results in content-based image retrieval and yet using completely different math-
ematical models underneath. The first similarity model uses feature signatures and the
SQFD to compute distances between signatures. We will refer to it as FS + SQFD. The
second similarity model uses SURF detector to extract local features from an image, VLAD
algorithm to aggregate the features into a single normalized descriptor and cosine distance
function to compute dissimilarity between VLAD descriptors. We will refer to this model
as SURF + V LAD

We tried two ways of combining these two similarity models together – distance com-
bination and mixing of results.

3.3 Distance combination

This approach uses a combination of distances from the similarity models FS + SQFD

and SURF + V LAD to form a new similarity model. At the beginning of the exploration,
a random subset of the database is returned as the initial view. When the user explores,
50 nearest neighbors in the new similarity model are returned.

3.3.1 Weighting scheme

First we started with a simple non-weighted combination. This was, however, shown to
be ineffective and produced confusing results, since the distance values returned from the
individual models have different meanings. The distribution of those distances is also
different and simple rescaling to a normalized value would not help it. We chose to utilize
a dynamic weighting scheme determined by progress of the user to set weights for the
individual models. For the beginning, the weights are selected according to observed values
for the distances among nearest 50 objects. In our case, it was detected that FS + SQFD

produces three times smaller distance values than SURF + V LAD on average. We set the
weighting scheme 3 × (FS + SQFD) + 1 × (SURF + V LAD) as the default value for the
new similarity model. During the exploration, new weights are generated.

When an object is returned to the user, it is passed together with metadata information
M that holds the original distances to the query object in the basic similarity models we
are combining together. MSURF +V LAD holds the distance from the returned object to
the query object in the SURF + V LAD similarity model. MF S+SQF D holds the distance
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between the same objects in the FS + SQFD similarity model. When user proceeds with
exploration, this information is parsed out of the metadata of the query object. The ratio
of the original distances determines the new weighting scheme for the current exploration
step. To smooth the differences in edge cases, a small constant value is added to both
of the distances, so the ratio never reaches extreme values and both underlying similarity
models always participate in the combined similarity model at least partially. The formula
for the weighting scheme is as follows:

α =
0.05 + MSURF +V LAD

0.05 + MF S+SQF D

new weighting scheme = α × (FS + SQFD) + 1 × (SURF + V LAD)

3.3.2 Relevance feedback

This dynamic approach can be seen as a relevance feedback technique that detects user’s
search intention by inclining more to one or the other similarity model. When user focuses
on objects with similar color distribution, the FS + SQFD returns smaller values for
distances, as the signatures are likely to be similar as well. The SURF +V LAD model, on
the other hand, does not focus on color at all and will likely return high distance values if
there are not common keypoints between compared images. This will produce a high value
of α (for example ten or more) and incline to the FS + SQFD model more, since even
small differences in this model will outweigh the differences in the SURF + V LAD model.
The opposite case can occur when user explores via an object that shares almost no color
information with the previous query object, but exhibits the same structure. This can be
for example two bottles of wine with different color and different background, which are
not similar in the FS + SQFD model, but share a lot of common keypoints detected by
the SURF algorithm. This will result in a value of α smaller than 1 and the FS + SQFD

model will be suppressed for the current exploration step.
This relevance feedback technique does not require to remember exploration history

and does not need to track user’s steps. The exploration function does therefore not hold
any kind of mutable state and is functionally pure. This means that for the same query
object with the same metadata the same results will always be returned. This property is
important for horizontally scaled scenarios, in which more computers response to requests.
With pure functions, it does not matter which one of the machines answers the request and
the distribution of requests between machines can be controlled e.g. by a load balancer.

3.3.3 SURF drawback

We have observed that for images without any complex structure, the SURF algorithm
detects no keypoints and this results in a VLAD vector full of zeros. When it is compared
against other VLAD vector using the cosine distance, division by zero occurs and NaN
result is returned. In those cases, we replace the NaN results with a constant value 2.0
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(the maximal value for the cosine distance), and let the FS + SQFD model define the
similarity alone.

Figure 3.1: Image with no keypoints detected by the SURF algorithm

3.3.4 Indexing

In our prototype, we used no indexing structure for this approach and search was performed
via a simple sequential scan over the database. When the Profimedia collection is searched,
the exploration query takes 450 ms on average, which is almost unnoticeable for the user.
For larger collections, an index structure could be utilized. To utilize any of the MAMs,
the combined distance used in our approach would have to fulfill metric postulates. The
SQFD is already a metric. Cosine distance does violate the triangle inequality, but could be
changed to deviation metric mentioned in section 1.3.1 while preserving the same ordering
of objects as cosine distance does.

A linear combination of distances preserves the metric postulates if the weights are non-
negative, which is true for our dynamic weighting scheme. To index a dynamically changing
distance function, one of the proposed modifications to MAMs for dynamic distances could
be utilized [63].

3.3.5 Similarity based layout

To generate similarity based layout, we used a component [41, 42] that computes complete
similarity graph and passes it to the particle physics model which distributes images on
the screen. To generate the similarity graph, a distance function has to be passed in to
compute the values of edges between objects.

When we tried to pass in the combined distance function, the screen did not form
clusters which could be visually recognized from a high-level point of view. As it turned
out, the FS + SQFD similarity model fits much better to generation of the similarity
graph. It clusters images with similar color distribution together and those clusters can
be quickly observed by human vision. The SURF + V LAD model, on the other hand,
focuses a lot on details inside the images and the clusters do not make any sense in a
high-level point of view. The similarity inside those clusters can be seen first after noticing
the common details between them.
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For those reasons, we ended up with generating the similarity graph based only on the
FS + SQFD similarity model.

3.4 Mixed results

The second approach does not form a new similarity model. Instead, it issues queries to
the underlying FS + SQFD and SURF + V LAD models and mixes the returned results
together. This way it effectively deals with the mismatch of meaning of the values returned
by distance functions, and it does not need any weighting scheme to adjust the distances.

Figure 3.2: Query object

When the exploration starts, the same random subset of the database as in the case
of distance combination approach is returned. After the first exploration step, both of
the similarity models are asked to fill half of the exploration result. In figure 3.3, you
can see a result of an exploration step via the query object displayed in figure 3.2. The
objects returned by the FS + SQFD similarity model are displayed with a red border
for demonstration purposes. As you can see, they exhibit the same color distribution as
the query object did. The object from the SURF + V LAD similarity model, displayed
without any border, have different colors than the query object and yet we can see a lot of
relevant objects among them. Mixing of results extended the results by new objects that
would never be displayed with the use of a single similarity model.

3.4.1 Relevance feedback

However, the mixing of results comes at a cost. Once the user wants that kind of similarity
he is interested in, the mixed results may be not useful to him and may just take space for
the objects he finds relevant. To deal with this issue, we introduced a relevance feedback
technique that dynamically changes the number of objects returned by a single model.

By default, the FS +SQFD similarity model returns 25 nearest neighbors to the query
object. The SURF + V LAD similarity model is used to fill the result set with nearest
neighbors which are not already present up to total number of 50 objects. For each image in
the result set, we store metadata M with the positions within a list of all database objects
ordered by the distance to the current query object for both similarity models. To do so,
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Figure 3.3: Exploration with mixed results

we have to compute the distances to all database objects using a sequential scan and order
the results. MSURF +V LAD contains the position of the returned object within the list of
all database objects sorted by the distance to current query object in the SURF + V LAD

similarity model. MF S+SQF D is computed the same way, just from the list sorted by the
distances to current query object in the FS + SQFD similarity model instead.

When an object with the metadata M is used as a query object, number of nearest
neighbors for the FS + SQFD model is computed using this metadata. The better the
position of the query object in FS+SQFD model was compared to the position in SURF +
V LAD, the more objects can FS + SQFD model return in this exploration step and vice
versa. The SURF +V LAD similarity model is always used to fill the rest of the result set.
Since the Profimedia collection has a size of 21 993 images, ratios between positions within
individual similarity models can be quite huge. To soften this ratio, we used fourth root
of the ratio instead. To always mix at least some results from both similarity models, the
ratio is kept within the range < 1

9
; 9 >. In the case of 50 images per screen, this means the

minimum of 5 objects per similarity model and the maximum of 45 objects per similarity
model. The formula for calculating the ratio ρ from metadata M and to calculate the

34



number of nearest neighbors kF S+SQF D for the FS + SQFD model is as follows:

ρ = min

(

max

(

4

√

MSURF +V LAD

MF S+SQF D

,
1

9

)

, 9

)

kF S+SQF D =
ρ × 50

ρ + 1

We can observe that for the initial value of ρ = 1, the kF S+SQF D is computed as
1×50
1+1

= 25 and both similarity models have to fill half of the result set. As the exploration
continues, the ratio changes for each step. When user selects an object similar to the
current query only in the FS + SQFD model and not similar in the SURF + V LAD

model at all, the ratio immediately changes in favor of the FS + SQFD model. User is
still given the option to explore via objects returned by the SURF + V LAD model, since
it is guaranteed that it participates in the result set (at least 10% of displayed objects).

3.4.2 Indexing

In our prototype, we also used sequential scan of all objects in the database to perform
search. The query time is a little higher than in the distance combination approach, about
700 ms on average. For metadata generation, we have to hold two ordered lists of all
distances in memory and also two lookup tables from object to position within the result
set, which increases memory requirements and affects the overall performance.

The indexing of the individual k−NN searches could employ any of the known indexing
techniques after we turn cosine distance to deviation metric to fulfill the triangle inequality.
However, for metadata generation, we would need a structure that is able to return at
least approximate position of an object within results, without computing all distances as
in sequential search. A hierarchical index comes to mind, such as M-Tree or PM-Tree.
Having the space divided into clusters, the position could be approximated by counting
sizes of clusters that have all objects definitely closer to the query object just by calculating
the distance to the center of the cluster. In addition, the distances to centers of clusters
could be already computed in the first phase of the k−NN search. Such algorithm would
however require modification to one of the indexes and is outside of scope of this work.

3.4.3 Similarity based layout

For the generation of similarity based layout, basically the same reasoning as for the dis-
tance combination approach applies. In advance to the first approach, we also have the
positions stored as the metadata. This makes, however, no sense in the generation of a
similarity graph, since none of the feature spaces has a natural ordering of objects. Close-
ness of positions to the query object does not give any guarantee about similarity between
two objects.

Therefore, we also ended up with using just the FS + SQFD similarity model to
generate the similarity graph.
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3.5 Experiments

We have compared our two multi-model approaches together with other exploration strate-
gies we have built. The testing scenario and the evaluation results can be found in sec-
tion 6.2.
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Chapter 4

Motivation to create an exploration
framework

To develop and test new approaches to multimedia exploration, we needed a codebase
with all the necessary parts to create an exploration system. We needed something to turn
our research ideas into visual applications without a lot of plumbing code and use those
applications to measure the impact of these ideas.

4.1 Functional requirements

Developing such system usually requires several steps, and each of them can be complicated
itself. For example, a system might have to deal with the following steps:

• Obtaining metadata for a collection, or downloading it online.

• Download of the raw multimedia data, such as images or videos.

• Storing the raw data.

• One or more feature extraction functions.

• Distance evaluation by one or more distance functions.

• Building a data structure for extracted features and efficient insertion in this struc-
ture.

• Building the Page zero.

• Generation of similarity based layout.

• Generating the GUI with controls.

• Communication and data transmission from back-end to front-end.
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• Data conversions between storage format, communication format and display format.

• Processing of different types of exploration queries.

• Efficient utilization of data structures for exploration queries.

• Communication from front-end to back-end and utilization of the relevance feedback.

• Managing concurrent access to shared resources.

As we can see, this requires a tremendous amount of programming work. And typically,
a researcher is only focusing on a small subset of these steps, often even just on one. But
he still needs to be able to build an end-to-end system to prove and validate the ideas
in practice, because exploration is an interactive process with focus on the user. Even
if we can automatically measure performance, data size, system throughput and lots of
other metrics, we cannot automatically measure the main problem - whether user’s search
intention was satisfied - without having a user actually using the system.

4.2 Extensibility

What we wanted to create was a prepared framework for multimedia exploration. De-
velopers could plug in just the one part they are interested in and keep the rest on the
framework, which would already contain a small set of existing implementations for any
of the basic concepts. After plugging in their part, they would have an application they
can use to present the effect of their part and easily measure and collect data they are
interested in.

An example situation is a developer coming up with a new index which seems to be
perfect for exploration queries. He does not want to build a whole new system, so he plugs
in the index by implementing a specified interface and switches it on as the default index
implementation. After that, he can launch the application and let human testers evaluate
the influence of this new implementation in a predefined scenario.

A scenario we used in our comparison of data structures for image exploration [61]
was using ground truth provided by the collection we were using [66]. This ground truth
has metadata for each object saying to which image class it belongs, what are the default
query objects for search tasks and how big each image class is. This information can be
compared against results of an exploration session and determine how many images of the
given class the user has found, how many image classes he visited in total etc. A more
detailed description of our testing scenario will be given in section 6.2.

4.3 Graphical user interface

Since exploration is a user-centered interactive process, the GUI is a very important aspect
of exploration systems. The framework should provide a GUI by default and represent
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explored data in an intuitive way, preferably utilizing the similarity based layout, which is
a popular choice in demo applications for multimedia exploration[48, 39].

4.4 Non-functional requirements

Besides the core functional parts we wanted the framework to provide, there were also
some non-functional requirements. They would affect mainly the programmer using the
framework and could help him with some common operations. There are also some concepts
which should be kept in mind when developing the framework according to our opinion:

• Caching of data used across several requests and not retrieving it every time.

• Persistent caching of data that is costly to compute, such as extracted features from
images downloaded from a web page. These results should survive the restart of the
application so they do not have to be computed ever again.

• Support for concurrent updates of core structures.

• Utilization of multi-core environment in CPU-intensive parts of the framework.

• Monitoring of operations happening in the back-end.

• Performance tracing for different kinds of operations.

• Prepared infrastructure for automatic integration testing.

4.5 Related work

We investigated existing systems to see if we could find anything that at least partially fits
our needs. A lot of multimedia exploration systems have been proposed in the past [56, 55],
but they do not offer the kind of extensibility and interchangeability of components we
needed. Also, they might not be publicly available at all. Most often, they are just singe-
purpose demos and not general systems, like our demo showing image exploration using
online feature extraction and re-ranking [41, 42]. Also, they often skip a few aspects that
are important, such as the possibility to work with larger databases and support for modern
indexing methods.

For some parts of the system, an existing specialized library might be useful. For image
processing and feature extraction, the OpenCV library could be used [73]. It is an open
source computer vision library that contains hundreds of algorithms that can be applied to
content-based image retrieval as well. Another interesting library for content-based image
retrieval is the Lucene Image Retrieval library [12], that can not only extract various image
features, but also indexes the results using a Lucene [74] index.
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For metric space indexing, the Siret Object Library (SOL) could be utilized. It is
a framework for efficient metric and non-metric similarity search developed by the Siret
Research Group (SRG).

An open source collection of metric space indexes can be also found in the results section
of the Laboratory of Data Intensive Systems and Applications (DISA). The implementation
of M-Index presented there is used to power the large-scale image search system MUFIN [14]
which can search for visually similar images in a collection of 100 million images.
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Chapter 5

Implementation of exploration
framework

After collection of the functional and non-functional requirements, we decided to build a
new framework for multimedia exploration. Author of this thesis was the software archi-
tect of the framework and designed interfaces of the core components and the main data
flows. Besides that, he also implemented the infrastructure needed to support all the non-
functional requirements and integrated them into the rest of the framework. Implemen-
tation of the individual components was done within a small team of software developers,
each responsible for a specified region of the framework. Besides the author of this thesis,
the team consisted of Přemysl Čech, Jakub Kinšt, Miroslav Macík and Lukáš Navrátil.

5.1 Framework design

The framework is deployed as a single web server together with several dynamically loaded
libraries. It was developed in the C# 5.0 language and the web layer was build using the
ASP.NET MVC and ASP.NET WebAPI frameworks.

It consists of many loosely coupled components. It is written in object-oriented manner
and utilizes some concepts from the functional paradigm as well, especially with the use of
C#’s LINQ feature1. When creating the system, we tried to develop the parts according
to SOLID principles [75]. SOLID is a set of 5 principles for a good object-oriented class
design first summarized by Robert C. Martin:

• Single Responsibility Principle: A class should have one, and only one, reason to
change.

• Open Closed Principle: You should be able to extend a classes behavior, without
modifying it.

1Language-Integrated Query (LINQ) is a feature that allows to write queries directly in the C# lan-
guage.
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• Liskov Substitution Principle: Derived classes must be substitutable for their base
classes.

• Interface Segregation Principle: Make fine grained interfaces that are client specific.

• Dependency Inversion Principle: Depend on abstractions, not on concretions.

With the dependency inversion principle in mind, we designed our components to require
their lower-level dependencies as constructor arguments, and not to create them directly.
This makes it possible to create highly reusable components in which specific parts can be
changed without touching the code of the component [76]. This is commonly known as the
Dependency Injection pattern.

The application infrastructure is then responsible for resolving fully instantiated graphs
of cooperating objects. To resolve those graphs of objects at runtime, we use an Inversion
of Control (IoC) Container [77], in our case the Autofac library. The container does three
important things during application lifetime for each object:

• Register: Before any object is created by the container, its dependencies must be
registered. The container allows both manual and automatic registration of classes,
interfaces and even generic templates. If more implementations for the same interface
exist, the interface is registered manually, e.g. from the current configuration setting.
During registration, the lifetime of objects is also specified. In our work, we used
three basic types of lifetime: One instance for entire application, one instance per
web request and one instance per each dependency.

• Resolve: When an instance of a class is requested by the container, it begins to
recursively resolve its dependencies and call their constructors with the correct ar-
guments. Dependencies are looked up in the current collection of registrations and
dependent on the lifetime of the registration either reused or created from scratch.
The container also allows to resolve factory methods that can be used to create the
objects by supplying a subset of the constructor arguments and letting the container
to resolve the rest.

• Release: At the end of each object’s lifetime, the container is responsible for correct
releasing of the object. This is done by invoking the .Dispose() method if the object
implements the IDisposable interface. This is crucial for objects holding references
to shared resources or objects not managed by the .NET runtime, such as file handles
or database connections.

5.2 Basic components

Figure 5.1 shows a high-level flow of messages between individual abstract components. It
is not bound to any specific implementation, it is just an outline for the common flow and
a demonstration how interfaces are meant to cooperate.
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Figure 5.1: Flow of messages between abstract components

Components are ordered from the high-level ones starting at the top to the low-level
ones at the bottom. An arrow means having the component at lower-level of abstraction
as a dependency and calling some of its methods.

• Processing starts with an incoming request. It is passed to a controller and current
configuration settings are parsed out.

• Current settings are looked up in global Inversion Of Control registrations and marked
as default for the processing of current request.

• Controller uses the IoC container to resolve an instance of Service component with
the correct dependencies and calls its processing method.

• Service takes the exploration request and passes it to query processor.

• Query processor invokes exploration queries on a data structure and combines the
individual results to form an unified exploration result.
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• The data structure is either picked up from cache or created on demand using a data
source.

• The data source might return already precomputed results or start with additional
operations such as downloading and image processing.

• Data structure uses the currently registered distance provider to answer the explo-
ration query.

• Service passes the exploration result to a result transformer to form a view-model for
the current application.

This basic description shows only abstract concepts, which may have several implemen-
tations with different flows of data. An application might for example require additional
processing to handle its requirements, and add some components into the process.

A more complex example is the case of our exploration portal publicly available online
at http://herkules.ms.mff.cuni.cz/ which downloads images from 3rd party services and
processes them on the fly, while delivering response in a few seconds. Figure 5.2 is similar
to the first one, but instead of showing abstract concepts, specific implementations of classes
are shown. Documentation for public APIs, request and response objects and their depen-
dencies can be found in the online API help available at http://herkules.ms.mff.cuni.cz/Help.

• Exploration begins with passing a request, ExplorationQuery, to the controller.

• The query contains a configuration token which is used as a key in the database of
stored configuration settings.

• The settings is looked up and all of the contained components are looked up and
registered using Autofac IoC container.

• Autofac IoC container is used with the current registrations to resolve an instance of
MultiQueryService, and the controller passes the current query object to it.

• MultiQueryService uses MultiQueryProcessor to execute the query.

• All query objects are executed in parallel in case of multi-query or panning.

• MIndex is either looked up in a cache, or created from scratch.

• To create a new MIndex , WebDataSource is asked for data.

• WebDataSource asks ImageResultsSynchronizer to return the first batch of images

• It executes ten queries to Bing to load paginated metadata for current text query
(e.g. “Jaguar”).
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Figure 5.2: Specific flow for the exploration portal
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• The first query that completes is passed to ImageProvider to load up 50 bitmaps
according to Bing metadata. It is either found on the hard-drive or downloaded from
the web.

• The images are passed to PixelGridExtraction component, which creates feature
signatures using image thumbnails. These signatures are accessible as properties of
the WebDataSource.

• The rest of Bing queries execute on background threads within the same pipeline and
enlarge the WebDataSource once completed.

• MIndex chooses a set of pivots randomly and uses the feature signatures to compute
distances to pivots using SqfdDistanceProvider and stores the data in its internal
structure.

• MIndex answers the query for a query object.

• MultiQueryProcessor combines individual results and orders items by the position
within each returned set. If panning was used, items from the previous screen are
excluded. 50 items with the best score are returned.

• MultiQueryService uses GraphHelper to prepare the result for our implementation
of similarity based layout, the particle-physics model.

• Edges for similarity graph are computed using SqfdDistanceProvider and object
metadata for images is loaded from WebDataSource.

• The result of exploration is returned and converted to JSON format using ASP.NET
WebApi response formatter.

5.3 Existing implementations

Together with the core infrastructure and abstract interfaces we also provided several
implementations for each of the components.

5.3.1 Image collections

The users can choose from one of three basic sources of images.

Profimedia

Profimedia [66] is a static collection consisting of 21 993 images. It used mainly for testing
purposes and evaluation of performance and effectiveness of individual approaches.

46



Bing

Bing is a dynamically downloaded collection from text-based image search engine Bing
Images http://www.bing.com/images. The user inputs a textual search query and first
500 images returned for that query are provided for exploration. The textual search also
allows typical modifiers for information retrieval systems, such as negation (’apple -mac’)
or URL restriction (’bmw site:ebay.com’).

Facebook

Facebook is an option to explore own images uploaded to the social network Facebook
https://www.facebook.com/. When user logs in to the web portal using his Facebook
account, permissions to his albums are asked for. The portal then dynamically downloads
all the albums and their images and allows to explore trough them.

5.3.2 Data source

Each of the image collections has three options to convert the images into data and compute
similarity between them.

Feature Signatures

This option extracts feature signatures from the images and computes the similarity be-
tween them using the Signature Quadratic Form Distance. For the Profimedia collection,
the signatures were precomputed using a GPU extractor [68] and are loaded from a file. For
dynamic collections, the signatures are computed online from thumbnails of the images.

Bag-of-Words

The bag-of-words [16] approach utilizes a shared vocabulary of visual words to represent
each image by a vector of occurrences of each of the individual words.

During the vocabulary training phase, the algorithm first creates descriptors for the
images and then uses all of the extracted features to create a shared vocabulary of de-
scriptors. The features are clustered using k-means clustering algorithm into a fixed-size
vocabulary, by default 10000 features.

After the vocabulary is created, each feature from each image is assigned to a nearest
neighbor in the vocabulary. This is done using the M-Index structure to speed up the
process. The image is then represented by a vector of the same size as the vocabulary is,
having the number of occurrences of the corresponding visual word in each dimension.

Distance between two vectors is computed using the cosine distance function.

VLAD

VLAD descriptor [17], vector of locally aggregated descriptors, is a state-of-the-art exten-
sion to the bag-of-words model. Instead of storing the number of occurrences for each
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dimension, a sum of differences between a feature and vocabulary word is computed. The
model uses a smaller vocabulary, by default 32, and also computes the distance between
two vectors using the cosine distance function. Since the VLAD descriptor can contain
negative values, the range of values returned by the cosine distance is from 0 to 2. In the
standard bag-of-words approach, number of occurrences cannot be negative, so the vector
cannot contain negative numbers. Thus the range of values returned by the cosine distance
is from 0 to 1 in the case of standard bag-of-words.

5.3.3 Feature extraction

For bag-of-words and VLAD data sources, three different feature extractors are offered.
Each of them extracts a set of features of each image. SIFT and SURF are state-of-the-
art extraction techniques, PixelGrid is our modification to feature signature extraction.
Although feature signatures are meant to be compared with an adaptive distance function
such as SQFD, it is also possible to use them in bag-of-words techniques like we did.

SIFT

SIFT is an algorithm to detect and describe local features of an image. It detects interesting
keypoints in an image and then describes each such point with a 128-dimensional vector
of floating point numbers. The results are robust to scaling, rotation and illumination
changes [15].

We used the EmguCV library for both keypoints detection and feature extraction.

SURF

Speeded Up Robust Features(SURF) is a local feature detector inspired by the SIFT al-
gorithm. It uses several numerical approximations and is several times faster than the
standard SIFT algorithm. It is also claimed to be more robust to image transformations
than the SIFT algorithm [78].

We also used the EmguCV library for both keypoints detection and feature extraction.

PixelGrid

The pixel grid is a simplified variant of feature signature extraction mentioned earlier.
The original algorithm locates clusters within the image by random Gaussian sampling
and k-means clustering. Then the centroids are used for extraction of low level features.
This algorithm is fine in typical scenarios where the extraction happens once during a
preprocessing phase and the feature signatures are stored in a persistent storage. For the
collections obtained online (Bing, Facebook) a more performant extraction is necessary

Our modification works with two extremely small thumbnails of the input image. The
minification also serves as a noise reduction step. One of the thumbnails has a little
higher resolution and is used to extract features from the middle of the image. The other
one has a lower resolution and extracts features from the edges of the image, which is
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Figure 5.3: Clustering feature signature extraction

usually just background. This modification skips the most CPU-intensive part, k-means
clustering, entirely. Instead of clustering, each pixel from the two small thumbnails is
used to describe the image. To simplify the process even more, we skipped the calculation
of contrast and entropy. Figure 5.3 shows the visual representation of extracted feature
signatures for three images using the original clustering algorithm, figure 5.4 below shows
the same representation of extracted feature signature using the simplified, non-clustering
modification of the algorithm.

5.3.4 Exploration structures

An exploration structure has to provide an initial view and executes exploration queries.
They can be used in combination with any of the previously mentioned components.

Sequential k−NN

This is a baseline structure that only executes k−NN queries when exploring and presents
a random subset of the database as its initial view. During exploration, it always computes
distances to all objects in the database and does not utilize any kind of indexing.

Pm-Tree k−NN

This structure uses the Pm-Tree metric index. Exploration queries are translated into
exact search k−NN queries. Initial view is formed by the root of the index structure and
its direct children.

M-Index k−NN

This structure uses the iterative querying strategy for M-Index described in section 2.4.
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Figure 5.4: Non-clustering feature signature extraction

M-Index traversing

This structure uses the iterative browsing strategy for M-Index described in section 2.5.

Pm-Tree traversing strategies and Static M-Tree

The framework provides three other strategies for exploring Pm-Tree and one strategy for
exploration of static M-Tree. Their description is outside of scope of this work and their
details can be found in the thesis of Přemysl Čech [79].

5.4 Implementation details

Implementation details for the core components and other parts of the framework as well
can be found in the Programmer’s documentation, which can be found on the attached
CD-ROM. It presents the key classes, describes extensibility points and shows several short
code examples. It describes how we dealt with generic in-memory and persistent caching,
performance monitoring, GUI creation and other functional and non-functional require-
ments. The documentation was written by the entire team of developers who participated
on creation of the framework and contains also description of modules that aren’t men-
tioned in this thesis at all.

The code of the framework is also available on the attached CD-ROM or in an online
SVN repository at http://subversion.assembla.com/svn/multimedia-exploration/. The repos-
itory can be publicly read, write-rights need to be requested at tomasgrosup@gmail.com.
The documentation also describes how to build the code and how to publish it to a web
server.
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Chapter 6

Applications of multimedia
exploration

6.1 Multimedia exploration framework

One of the main contributions of this work is the exploration framework itself. We have
analyzed its requirements, implemented its core and developed several implementations of
its components. We also developed two plug-ins for multi-model exploration as plug-ins
for this framework. In the following sections, we will show the applications we have build
on this framework and describe them shortly.

6.2 Find the image

Find the image is an artificial search scenario designed for testing and comparison of our
exploration techniques. The task is to use our web-based exploration application to find
as much images from a predetermined class as possible. This predetermined class should
correspond to a search intention that cannot be easily transformed to a text-based query
or to a query-by-example. The user is presented with an initial view of the Profimedia
collection and has a limit of ten exploration operations to find the images. The image class
is presented to the user as displayed object in the top-left corner.

Image classes for this task were selected from the ground truth of the Profimedia collec-
tion which contains 100 classes of images. We narrowed the classes only for those classes,
which do not appear in the initial view in any of our exploration strategies. Thanks to this
filtering, we also have an interesting sub-task included: how many clicks are spent before
first image of the query class is found.

The classes that were used as query classes are displayed in figure 6.1.
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Figure 6.1: Find the image query classes

Figure 6.2: Initial view

6.2.1 Web application

The web application used for the test scenario is available online at siret.cz/MaMExploration.
It is the same application we used for our comparison of two exploration strategies, itera-
tive querying with M-Index and iterative browsing using PM-Tree [61]. We presented those
results on the CBMI 2014 international conference and demonstrated the application to
the participants of the conference.

At the beginning of the exploration, an exploration strategy is picked at random. It
is used for one search task and it is randomly picked again with each refresh of the page.
Also a query class is picked at random and presented to the user in the top-left corner
of the window, as you can see in figure 6.19. The rest of the screen is covered mainly
by the initial view, which was generated by the randomly picked exploration strategy and
presented to the user using our layout based on the particle physics model.

User has options to move with the images via mouse dragging, zoom in or out using
the mouse wheel or enlarge an image by a single-click. When user double-clicks an image,
it is passed to the underlying exploration strategy as an exploration query. A new result
set is generated and displayed to the user, as you can see in figure 6.3.
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Figure 6.3: Exploration detail

Whenever user finds an image within the same class as the query image, status bar
at the top of the page is updated. It displays current percentual progress, the number of
found images and the total number of all images in the desired class. An information bar
below informs the user how many exploration steps he has left. You can see both these bars
in figure 6.4. All found images are displayed in the bottom of the page, as in the example
in figure 6.5. This example also shows a very successful exploitation step, which has led
to an increase of found images by more than 30. As our experimental results show, such
exploitation was possible only with some exploration strategies. Other strategies, even if
they have found some representatives of the query class, are not capable of finding a larger
number of images in the limited number of ten operations.

User can view also the previous exploration queries he issued and he can issue them
again using history displayed on the left side of the screen, where each item can be visited
again by clicking on it. Visiting of the history is not counted as an exploration operation
to the total number of ten clicks, and can be used to emulate breadth-first search of the
explored collection. To do so, the user can always go back to the initial view and issue new
query from there until he finds a satisfactory result set. An example of the exploration
history is in figure 6.6

6.2.2 Experimental results

During the exploration, our server is collecting results and exploration history of each
session. We analyzed the results and compared our exploration strategies using multiple
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Figure 6.4: Exploration progress

Figure 6.5: Exploitation step
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Figure 6.6: Exploration history

criteria.
This experiment and the processing of the results was done together with Přemysl Čech,

who also uses the results for his master thesis. Each of us developed several exploration
strategies and we compared them directly to each other. While this work focuses on the
results of M-Index and multi-model approaches, his work focuses on various techniques for
native exploration of tree-based structures, such as the M-Tree and PM-Tree. The graphs
presented in this section are a common work and some of them are displayed both in this
thesis and in the master thesis of Přemysl Čech [79].

The exploration strategies we were comparing are M-index based techniques from chap-
ters 2.4 and 2.5 and two multi-model exploration strategies described in chapter 3. All
single-model strategies were using only the FS + SQFD similarity model, multi-model
strategies were using both FS + SQFD and SURF + V LAD similarity models.

Unsuccessful search

In the first figure 6.7, we show the percentage of unsuccessful search. Unsuccessful search
means that given a query class, the user was unable to find at least one image from that
class during ten explorations steps. The M-Index Traversing strategy has roughly three
times less percent of unsuccessful search than the other strategies we are comparing. This
can be caused mainly by its construction and exploration algorithms which guarantee 100%
reachability. The clusters created by the partitioning in M-Index are presented evenly to
the user and the exploration continues in this approach. The multi-model approaches and
M-Index k-NN all use a k-NN search underneath and had basically the same percent of
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Figure 6.7: Unsuccessful search

unsuccessful search. When the query image isn’t at least partially similar to any of the
images presented in the initial view, users often have to guess and try more images from
the initial view before they find a match.

Clicks to first found image

The figure 6.8 shows the number of clicks needed to find at least one matching image. The
results are the average value for all of the successful cases. We have excluded all cases of
unsuccessful search from this graph, and from some others as well. If they are excluded,
the header of the graph has “Only successful search” in it.

As you can see, all strategies needed between 2 and 4 clicks to find a first match on
average. An interesting difference can be found between Distance combination and Mixed
results. Mixed results strategy, which displays results for queries to two similarity models
at the same time, finds a matching image faster. Combination of multiple models can
increase recall and help user to find an object of interest more quickly. It is also interesting
to see that these results have no correlation to the percentage of unsuccessful search.

Found images

Number of found images matching the query class is the main criterion of this task. The
results are displayed in figure 6.9. They are the average values of all cases. The best scores
were achieved by our two multi-model approaches, Mixed results and Distance combination.
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Figure 6.8: Clicks to find first image

By achieving better score than any of the single-model approaches, they validate the idea
of multi-model to multimedia exploration and we will focus on it more in our future work.

M-Index Traversing achieved a very low score, even when it had one of the best results
for unsuccessful search percentage. By exploring only through space partitioned by M-
Index, this strategy has no option of exploitation and retrieving more results if user already
finds a match.

Figure 6.10 shows also the percentage of found images matching the query class, but
divided into individual exploration steps. As we can see, the results correspond to the
results in figure 6.9 with the exception of the Distance combination strategy. We believe
that the rapid gain after 5th click comes from the utilized relevance feedback technique.
Once the user finds a first few objects, he starts on using them as exploration queries
an the combined similarity model adapts exactly to the query class he is trying to find.
Thanks to this approach, Distance combination strategy achieves better results than Mixed
results strategy, which had the best results up to the 6th click. Mixing of results shows
a better recall and stably increases the number of found images with each click. M-Index
traversing strategy could not get any more results after first 5 clicks and is clearly missing
an exploitation step that would help it to retrieve more results similar to the objects user
is interested in.
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Figure 6.9: Found images
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Figure 6.10: Found images per click
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Figure 6.11: Number of found images per query

Differences between queries

We also observed the results for individual query classes we presented in figure 6.1. The
results for individual query classes in figure 6.11 show how much is an exploration strategy
affected by the query class. The poorest performance was observed for images of Buddha.
It is a hard class to determine using content-based retrieval, since the Profimedia collection
also contains images of sphinx, pyramids, deserts and other objects exhibiting very similar
color distribution and sharing common keypoints.

Except for Buddhas, multi-model approaches had the best score in all query classes.
M-Index k−NN achieved very good results in all classes except for Shopping. Shopping
contains various images from a supermarket, with different people and different products.
Such images are hard to match using only the FS + SQFD similarity model, since their
color distribution can vary a lot.

Images viewed during exploration

Secondary metrics we observed were the numbers of viewed images and classes during
exploration, not considering what the current query class was. As you can see in figure 6.12,
the average number of viewed images varied between 200 and 400 images per exploration
session.With the initial view and ten exploration operations, a theoretical maximum is
550 images per session. The lowest number of view images was achieved by exploration
strategies based on traversing an index structure. The users were presented with a lot of
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Figure 6.12: Number of images viewed

duplicate images and may have get stuck in a small part of the index. The best results were
achieved by the multi-model approaches. Their usage of relevance feedback also minimizes
the changes of a duplicate result set presented to the user, since the query parameters are
changing with each exploration step.

Number of viewed classes presented in figure 6.13 is displayed separately for each explo-
ration step. Multi-model strategies, which use a random initial view, had on average nine
more classes in the initial view than the other strategies which are relying on capabilities
of an index structure to cluster objects and display the relevant representatives.

Increasing number of viewed classes after the first matching image is found basically
means presenting non-relevant objects to the user. It was happening to every exploration
strategy in a small amount. If those non-relevant objects take only a small portion of
the screen, it shouldn’t be harmful to the exploration process. New classes will give more
exploration options to the user, which may be beneficial in some cases.

6.2.3 Comparison of all strategies

In this section, we directly compare results of proposed strategies together with the strate-
gies from the thesis of Přemysl Čech.

As you can see in figures 6.14 and 6.15, multi-model approaches were achieving the
best results together with the M-Index k−NN approach. M-Index k−NN had the best
score of all single-model approaches. It was also a lot better than similar approaches using
PM-Tree and k−NN search, which may be affected by the approximate search used in the
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Figure 6.13: Number of classes viewed

M-Index k−NN strategy. By approximating the search, we can gain more variable results
that can be beneficial to the exploration process.

We also think that exploration approaches utilizing a PM-Tree were handicapped by
our selection of query classes. The Pm-Tree should perform better for the classes contained
in the root of the tree. However, we filtered away all the classes appearing in the initial
view and thus we did not run our experiments on any of the classes contained in the root.
We plan to extend our experiments to support this opinion in the future.

6.2.4 Discussion

We have observed that the multi-model approach to image exploration increases the ef-
fectiveness of the exploration process. The utilization of relevance feedback techniques
boosts the exploration process as well, especially in the exploitation phase. We will further
analyze different relevance feedback techniques and implement them in our exploration
strategies.

In the future, we plan to focus on efficiency of multi-model search. To do so, we will
investigate different indexing options and native exploration of the corresponding indexing
structures.
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Figure 6.14: Found images per query for all strategies

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
ta

g
e

 o
f 

fo
u

n
d

 i
m

a
g

e
s 

in
 c

la
ss

 

Number of clicks 

Profimedia, only successful search 

Found percentage during exploration 
Mixed results

M-Index KNN

PM-Tree Iterative browsing DC

Distance combination

PM-Tree Level-based KNN

Static M-Tree

PM-Tree Iterative browsing

M-Index Traversing

Figure 6.15: Found images for all strategies
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6.3 Image exploration portal

Exploration portal is an application that demonstrates most of the features implemented
in our multimedia exploration framework. It is an online exploration system in which users
can explore images from three different image sources: Bing, Facebook and Profimedia.

The application has a modern user interface that leaves most of the screen for our
similarity based layout presenting the results. The layout is based in the particle physics
model and supports several operations, such as exploration via an image, multi-queries or
moving in different directions.

The exploration can be driven by any of the similarity models implemented in our
framework. To change the configuration of the backend for upcoming requests, a variety
of options can be changed in a settings window. Those options can be also changed during
exploration, which brings new options to comparison of various techniques.

The portal is available online at http://herkules.ms.mff.cuni.cz/. User’s guide describ-
ing the controls and options of the portal can be found online in a public Google document
linked from the homepage of the portal or on the attached CD-ROM. This guide also
contains a lot of screen-shots from the portal which show the exploration process in action.

Portal’s functions can also be accessed via a web API, which is described in generated
API documentation.

6.4 Similarity analytics

6.4.1 Motivation

Our multimedia exploration framework is not designed just for images or videos and can
be applied to a broader range of data. With our model, any kind of data that can be vi-
sualized and compared to each other using a distance function can be used for multimedia
exploration. We began to develop a tool called similarity analytics, which should help ex-
perts from various domains to explore their data and get a better high-level understanding
of it. It should also help when modeling a distance function or when tuning its parameters,
by directly visualizing impact of the change to the distance function. In addition to that,
the tool should be able to quickly propose a distance function that learns from annotation
of the data, and let the domain expert manually tune eventual details. By strong focus on
visualization, users should quickly see whether the current distance function corresponds
to their understanding of relations between the objects or not.

This tool is meant to replace current manual and often hard to use methods, in which
experts are only running measurements against data collections with some kind of ground
truth and reading the results in the form of a text file containing different values, such
as mean average precision, recall and other metrics. We believe that visualization and
exploration techniques could not only improve the process of modeling a distance, but
also can be used for some other tasks, such as correcting the ground truth or observing
completely new patterns in the data.
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6.4.2 Network events

We began to develop this tool for a research division of the CISCO company. The research
team is developing a technology that can monitor behavior of the entire computer network
at real-time and detect potential security threads. To do so, they utilize behavior analysis
and custom machine learning and artificial intelligence algorithms. By monitoring the
network, they are also learning how the network works and learn suspicious activities from
that.

Research of this technology first started as a research project at Czech Technical Uni-
versity (ČVUT) and a company called Cognitive Security was established as a result of
this research. In February 2013, CISCO announced the acquisition of Cognitive Security
and integrated it as a part of their security division.

With our tool, we are trying to help the research team with modeling a distance function
used for classification of network events. Each event contains information that was captured
during monitoring of the network. An event consists of one or many flows of data between
two network nodes in a limited time-frame.

By classifying the event, the system can decide whether it is a known network traffic,
known cyber-thread or an unknown type of network traffic.

Examples of known classifications can be seen in figure 6.17, details for an event that
are displayed in our tool are shown in figure 6.16.

6.4.3 Distance between events

For distance computation, each event is converted to several histograms. This conversion
was already done by domain experts from CISCO and our tool receives the data already
with the computed histograms. Each histogram corresponds to a property computed from
the event’s flows, such as number of bytes sent, length of the domain name or elapsed time
between request and response. The property is transformed to a number for each flow and
assigned to a bin in the histogram.

To compute distance between two events, a linear combination of L1 metrics over the
individual histograms is used right now. We plan to propose more distances over histograms
in the future. What is unknown are the weights of the linear combination used to form the
final distance. By default, each histogram is assigned the same weight 1.0 for computation
of the distance.

6.4.4 Event exploration

The tool should help to find a better linear combination than the default setting. The
users start by selecting a combination of data files they want to explore, as you can see in
figure 6.18. Any subset of data files can be used together, for example a mix of annotated
and unannotated data. The user can also upload a new data file, which has the format of
a .zip archive containing .json files describing the events.
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Figure 6.16: Event details

65



Figure 6.17: Filtering classes for initial view
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Figure 6.18: Custom data exploration

Figure 6.19: Initial view
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Figure 6.20: Exploration result

After that, an initial view containing at least one event for each classification and a
random subset of the database is presented in a layout based on the particle physics model.
You can see an example of the initial view in figure 6.19. On the left side of the screen,
individual histograms are shown to the user together with current weights for the linear
combination. As you can see, it begins with every value set to 1.0. The center of the screen
is used for exploration of the events.

To explore the events, double-click on an event is used. This triggers a k−NN query in
the entire dataset and applies the current weights for the linear combination of histogram
distances. Results of the exploration step are shown in figure 6.20.

6.4.5 Visualization

Each event is visualized by a border representing the event’s classification, a textual de-
scription of that classification and a small bitmap giving a high-level view of the data used
for distance computation. As you can see in figure 6.21, the bitmap has the form of a
small histogram. This can be enlarged by a mouse-click. Each bin corresponds to a single
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Figure 6.21: Histogram visualization
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Figure 6.22: Vectorized data overview

histogram from the event’s data. The height of the bin is determined by the largest value
within that histogram. Bins are ordered in the same way as the histograms on the left
side of the screen and such representation gives a basic understanding of why two events
are or aren’t connected with an edge, meaning the distance between them is or isn’t below
a threshold value. You can see that connected events have similar representation of the
histogram. You can also see that events with same classification are connected together,
but events with other classification are mixed with them as well.

For a detail view over the data used for distance computation, vectors of histogram
values can be rendered for all of the objects presented in the current view. Each event
is represented by a row of values, where each column represents a single bin within a
histogram. Individual histograms are in the same order as presented on the left side
of the screen and are divided by vertical lines. Horizontal lines are dividing individual
classifications, which are written on the right side of the rendered image. Cells of the
image correspond to bin values of the histogram, taking the linear combination for distance
combination into account by multiplying the value. Resulting values are normalized into
the range from 0 to 255 and each value is assigned a different drawing. Values of 0 stay
white and as you can see, this is the vast majority of values in the image. This means
that the histograms are very sparse and usually contain just a single value. Small values
between 1 and 7 are represented by a red circle with lightness decreasing linearly from 1 to 7
. Rest of the values is represented by a gray square with different shades of gray. Lightness
of the square also decreases linearly from 8 to 255. You can see the rendered bitmap in
figure 6.22 and a zoomed-in view in figure 6.23, which also shows the classifications visible
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Figure 6.23: Small differences in vectorized data

on the right side of the bitmap.

6.4.6 Distance tuning

If the user is not satisfied with the results of a k−NN query or with the clustering of the
events on the screen, he can manually change the weights used for the linear combination
of histogram distances. Each histogram has a slider which allows to set a weight between
0 and ten to adjust the linear combination. After the weights are changed, the screen is
automatically updated with the new distance function. The user can observe how change
of the weights affects clustering of events. He can also continue with exploration and new
weights are used to find nearest neighbors in the entire dataset. The response is shown
withing a second and user can quickly evaluate impact of his change.

It is also possible to go back to initial view while keeping the current weights. This
enables to see how those weights affect the clustering of all types of classifications at once.
To evaluate the weights only on a small subset of the database, an option to pick classi-
fications for the initial view exists. To do so, user has to select the desired classifications
in the top right section of the window, as can be seen in figure 6.17. After going back to
the initial view, only events with one of the selected classifications are present. This can
be used to see if two classifications share events that are similar or not. An example of a
view filtered to contain only classifications “rss feed”, “wpad misuse” and “very anomalous
http traffic” is in figure 6.24.
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Figure 6.24: Filtered initial view
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Figure 6.25: Automatic optimization

6.4.7 Automatic optimization

To simplify the process of finding a good combination of weights manually, we added an
option to optimize the weights automatically. Given a result set and a selected event, the
button “Optimize clustering of last selected event’s class” can be pressed. It tries to find
such configuration that gives the best clustering of the classification selected by the user.
To do so, the application randomly generates weights configurations and creates similarity
graph for the currently visible events. To pick the best configuration, a fitness function
to evaluate the configuration is passed in. The current implementation uses a function
that counts edges between events of the selected classification and subtracts count of edges
going from an event of the selected classification to an event of a different one.

This operation gives quickly a sketch of the weights, which can be manually refined later.
A result of this operation can be seen in figure 6.25. The algorithm tried to optimize the
clustering for all events with the classification “unusual http traffic” (yellow background).
Several clusters have formed and some of them contain only a single classification. The
clusters can be reviewed by the domain expert and potentially be used to describe a new
type of behavior. As figure 6.26 shows, the algorithm tried to generate a configuration in
192 iterations and the optimization took 4.002 ms.
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Figure 6.26: Optimization information

6.4.8 Discussion

We have developed the similarity analytics tool and used it for exploration of network
events. In our future work, we plan to focus more on this tool and improve the tool and
its user interface intuitiveness. We would like to use it on bigger data collections and add
new features that would enable the experts to annotate unknown events and to create new
classifications. We would also like to use the GUI to correct classifications for a cluster
of events by propagating the classification to all connected events. The application would
then allow to download the corrected data.

Big data

The tool uses sequential scan over the entire dataset to find nearest neighbors to an event.
It also holds all the data in memory. If the data gets too big, a different approach will be
needed. Traditional MAMs cannot be used, since the tool allows to change the resulting
distance during the process. Additions to MAMs that allow to index dynamic distances
are an option, but their efficiency quickly drops when more than 3 models are combined
together [63]. Currently, we are combining 11 distances and utilization of such index
wouldn’t be very big. If needed, we would like to come up with a new approach for
dynamic distance, possibly based on approximate search with M-Index.
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Conclusion

We have investigated multi-model approach to multimedia exploration and implemented
two different strategies. We have also developed two strategies for M-Index exploration and
compared them with our multi-model approaches in a user study called Find the image.
All strategies were built in a new multimedia exploration framework we have designed and
implemented.

Our comparative work focusing on approximative search using M-Index was published
and presented at international conference SISAP 2013. Results of the user study Find the
image and the demo application itself were presented at international conference CBMI
2014.

Our main contribution lies also in the new exploration framework we have developed.
In this work, we have analyzed its requirements, described its implementation and deployed
several applications using it. We have applied it not only to exploration of images, but
also to exploration of network events in a tool called similarity analytics.

Future work

In the future, we plan to focus mainly on the similarity analytics tool and continue in
the started cooperation with the CISCO company. We would also like to improve our
multi-model exploration strategies and utilize indexing methods to make them available
for large-scale exploration.
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Attachments

The following documents can be found on the attached CD-ROM:

• PDF version of this thesis

• Source code of the exploration framework containing multi-model plug-ins, find the
image application and similarity analytics tool

• Programmer’s guide to the exploration framework

• User’s guide to the exploration portal

• Files used for evaluation of find the image results
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Nomenclature

BoVW Bag of visual words

GUI Graphical user interface

IoC Inversion of Control

k-NN k nearest neighbors

MAMs Metric access methods

MAP Mean average precision

SIFT Scale invariant feature transform

SOL Siret Object Library

SQFD Signature quadratic form distance

SURF Speeded up robust features

VLAD Vector of locally aggregated descriptors
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