
Masaryk University
Faculty of Informatics

⑥✇✁✂✄☎✆✝✞✟✡☛☞✌✍✏✑✒✓✔✕✖✗✘✙✚✤✥✦✧★✩✪✫✬✭✮✰✱✲✳✴✵✶✷✸✹✺❁②❆⑤
Algorithmic Analysis

of Code-Breaking Games

Master’s Thesis

Miroslav Klimoš

Brno, 2014

Declaration

I declare that this thesis is my own work and has not been submitted in any form
for another degree or diploma at any university or other institution of tertiary
education. Information derived from the published or unpublished work of others
has been acknowledged in the text and a list of references is given.

Advisor: prof. RNDr. Antońın Kučera, Ph.D.

iii

Acknowledgement

I would like to express my deepest appreciation and thanks to my advisor,
prof. RNDr. Antońın Kučera, Ph.D., for inspiring and valuable discussions and
for coming up with this fascinating topic.

I would also like to thank all the people who expressed their interest in this work
and provided constructive comments. All my friends deserve a special thanks for
their patience with me during the time I have been working on this thesis.

v

Keywords

code-breaking games,
deductive games,
strategy synthesis,
optimal strategy,
one-step look-ahead strategy,
SAT solving,
model counting,
Mastermind,
counterfeit coin

vii

Abstract

Code-breaking games are two-player games in which the first player selects a code
from a given set and the second player strives to reveal it using a minimal number
of experiments. A prominent example of a code-breaking game is the board game
Mastermind, where the codebreaker tries to guess a combination of coloured pegs.

There are many natural questions to ask about code-breaking games. What
strategy for experiment selection should the codebreaker use? Can we compute a
lower and upper bound for the number of experiments needed to reveal the code?
Is it possible to compute an optimal strategy? What is the performance of a given
heuristic? Much research on the topic has been done but the authors usually focus
on one particular game and little has been written about code-breaking games in
general.

In this work, we create a general model of code-breaking games based on proposi-
tional logic and design a computer language for game specification. Further, we
suggest general algorithms for game analysis and strategy synthesis and imple-
ment them in a computer program. Using the program, we can reproduce existing
results for Mastermind, analyse new code-breaking games and easily evaluate new
heuristics for experiment selection.

ix

Contents

1 Introduction . 3

2 Examples of code-breaking games and existing results 7

2.1 The counterfeit coin . 7

2.2 Mastermind . 10

2.3 Other games . 13

3 Code-breaking game model . 17

3.1 Notation and terminology . 17

3.2 Basic definitions . 17

3.3 Strategies in general . 23

3.4 One-step look-ahead strategies . 28

4 Experiment equivalence and algorithms 31

4.1 Experiment equivalence . 31

4.2 Well-formed check . 37

4.3 Analysis of one-step look-ahead strategies 37

4.4 Optimal strategy synthesis . 38

5 The Cobra tool . 43

5.1 Input language . 43

5.2 Compilation and basic usage . 47

5.3 Modes of operation . 47

5.4 Modularity and extensibility . 49

5.5 SAT solving . 50

5.6 Graph isomorphism . 54

5.7 Implementation details . 55

6 Experimental results . 57

6.1 Performance . 57

6.2 One-step look-ahead strategies . 59

7 Conclusions . 63

Bibliography . 65

Contents of the electronic attachment . 69

1

1 Introduction

Code-breaking games (sometimes also called deductive games or searching games)
are games of two players in which the first player, usually referred to as the
codemaker, chooses a secret code from a given set, and the second player, usually
referred to as the codebreaker, strives to reveal the code through a series of
experiments that give him partial information about the code.

Figure 1.1: Mastermind game
(illustrative image)1.

One prominent example of a code-breaking game is
the famous board game Mastermind. In this game,
the codemaker creates a puzzle for the codebreaker by
choosing a combination of four coloured pegs (with
colour repetitions allowed). The codebreaker makes
guesses about the colours, which are evaluated by the
codemaker with black and white markers. A black
marker corresponds to a position where the code and
the guess match. A white marker means that some
colour is present both in the code and in the guess
but at different positions.

Another example of a code-breaking game is the coun-
terfeit coin problem, the problem of identifying an
odd-weight coin among a collection of genuine coins
using only a balance scale. The codemaker is not a real
player here; the balance scale takes his function and
evaluates the weighings performed by the codebreaker.
Numerous other examples can be found among various board games and logic
puzzles; we present some of them in the next chapter.

Code-breaking games offer many interesting research problems.

• How should the codebreaker play in order to minimize the number of
experiments needed to undoubtedly determine the code?

• Is there a strategy for experiment selection that guarantees revealing the
code after at most k experiments?

• What strategy is optimal with respect to the average-case number of
experiments, given that the code is selected from the given set with uniform
distribution?

Synthesis of an optimal strategy is a computationally intensive task. In some
games, the optimal strategy might have a simple structure and can be described
easily, such as in the counterfeit coin problem (see section Section 2.1 for details).

1. Image adopted from http://commons.wikimedia.org/wiki/File:Mastermind_beispiel.

svg, by Thomas Steiner under GFDL.

3

http://commons.wikimedia.org/wiki/File:Mastermind_beispiel.svg
http://commons.wikimedia.org/wiki/File:Mastermind_beispiel.svg

1. Introduction

In general, however, the strategy may have complicated structure and there may
be no other way to discover an optimal strategy than to consider all possible
experiments in a given state and analyse the subproblems.

Therefore, one may prefer a suboptimal strategy or heuristic for experiment
selection that is computationally less demanding. This brings about more research
questions. Given a strategy, how can we compute the worst-case and the average-
case number of experiments the strategy needs to reveal the code?

Some particular code-breaking games, such as Mastermind and the counterfeit
coin problem, have been intensively studied in the last decades and most of these
questions are at least partially answered. A detailed summary of the existing
results is presented in Chapter 2. Nevertheless, little has been written about
code-breaking games in general. Some authors have suggested general methods
and applied them in one particular game[e.g. 1, 2], some have vaguely stated that
their approach can be applied to other games of the same kind but, to the best of
our knowledge, no one has tried to create a general framework and provide results
for code-breaking games in general.

We propose to bridge the gap and provide a general framework for code-breaking
games based on propositional logic. The secret code is encoded as a valuation
of a set of propositional variables and the codebreaker’s goal is to discover the
valuation through a series of experiments. Each experiment can result in several
outcomes, which are given in the form of a propositional formula.

This work addresses the following challenges in the suggested framework.

• Formally define code-breaking games and strategies.

• Propose general strategies or heuristics for experiment selection.

• Suggest efficient methods for state-space reduction based on symmetry
detection.

• Propose algorithms for strategy evaluation and optimal strategy synthesis.

• Design a computer language for game specification.

• Develop a computer program that parses a game description from the
designed language and implements the suggested algorithms.

Some of the proposed methods for code-breaking game analysis depend on algo-
rithms for related problems. To analyse propositional formulas emerging during
the course of a game, we need to decide satisfiability or count the number of
models of a formula. This can be done using a modern SAT solver. Further, our
symmetry detection approach is based on a reduction of experiment equivalence to
graph isomorphism. For this purpose, we need a tool that computes the canonical
labelling of a given graph.

We created a computer program for code-breaking game analysis and named it
Cobra, the code-breaking game analyser. Using this program, we can reproduce
some of the existing results for Mastermind, analyse new code-breaking games

4

1. Introduction

and easily evaluate new heuristics for experiment selection.

The thesis is structured as follows. Chapter 2 introduces several examples of
code-breaking games and discusses existing results, variants of the games and
related research. The general code-breaking game model is described in Chapter 3.
Chapter 4 is dedicated to our method for symmetry detection and other algorithms.
Our computer program, Cobra, with descriptions of its usage and abilities is
introduced in Chapter 5. Experimental results with comparisons of analysed
strategies are presented in Chapter 6. Finally, Chapter 7 concludes the work with
suggestions for future work and possible extensions of the program.

5

2 Game examples and existing results

Several examples of code-breaking games are introduced in this chapter. The
counterfeit coin problem and Mastermind are quite well known, the other examples
are based on various board games or less known logic puzzles. We briefly summarize
related research for each game, discuss its variations and applications and give a
list of references.

2.1 The counterfeit coin

Figure 2.1: Balance scale
(illustrative image)1.

The problem of finding a counterfeit coin among a collection
of genuine coins in the fewest number of weighings on a
balance scale is a folklore of recreational mathematics.

In all problems of this kind, you can only use the scale to
weigh the coins. You put some coins on the left pan, the
same number of coins on the right pan and get one of the
three possible outcomes. Either both the sides weigh the
same (denoted “=”), or the left side is lighter (“<”), or
the right side is lighter (“>”). The easiest version of the
problem can be formulated as follows.

Problem 2.2 (The nine coin problem). You are given n ≥ 3 (typically 9)
coins, all except one having the same weight. The counterfeit coin is known to be
lighter. Identify the counterfeit coin in the minimal number of weighings.

This problem is very easy as we can use a ternary search algorithm to identify
the underweight coin. In short, we divide the coins into thirds and put one third
on the left pan and another on the right pan of the balance scale. If both pans
weigh the same, the counterfeit coin must be among the unused coins. Otherwise,
it is one of the coins on the lighter pan. In this way, the size of the search space
is reduced by a factor of three in each step, which is optimal. In 1940s, more
complicated version was introduced by Grossman[3].

Problem 2.3 (The twelve coin problem). You are given n ≥ 3 (typically 12)
coins, all except one having the same weight. It is not known whether the counterfeit
coin is heavier or lighter. Identify the counterfeit coin and its weight relative to
the others in the minimal number of weighings.

The optimal solution for n = 12 requires 3 weighings. One of the optimal strategies
is shown in Figure 2.4 as a decision tree.

1. Image adopted from http://pixabay.com/en/justice-silhouette-scales-law-147214,
under CC0 1.0 License.

7

http://pixabay.com/en/justice-silhouette-scales-law-147214

2. Examples of code-breaking games and existing results

1 5 2 4 3 7 8 6

2 × 31 × 9 6 × 7

1 6 7 8 × 5 9 10 11

10 11 12 12 9 11 10

1× 129× 10 9× 10

1 2 3 × 9 10 11

3 4 6 8 7 5 1

6 × 72 × 3 1 × 9

1 9 10 11 × 5 2 3 4

9 2

1 2 3 4 × 5 6 7 8

=< >

=< > < > =< >=< >=< >=< =< > =< >

= ><

= >

= ><= ><

Figure 2.4: Decision tree for The Twelve Coin Problem.
x means that the x-th coin is lighter, x means that the x-th coin is heavier.

Known results

The research of the problems has mostly focused on finding bounds on the maximal
value of n for which the problem can be solved in w weighings, for a given w. The
following theorem presents a sample result of this kind.

Theorem 2.5 (Dyson, [4]). There is a strategy that identifies the counterfeit
coin and its type as described in Problem 2.3 in w weighings, if and only if

3 ≤ n ≤
3w − 3

2
.

Proof. We show the main part of the original Dyson’s proof[4] here because of its
elegant combinatorial idea. We show a strategy for n = 1

2
(3w − 3).

Let us number the coins from 1 to n. To the i-th coin, we assign two labels from
the set {0, 1, 2}w – those corresponding to the numbers i and 3w − 1 − i in ternary
form. Notice that all labels from the set are used exactly once, except for 0w,1w

and 2w, which were not assigned to any coin. The labelling has the property that
one label of a coin can be obtained form the other another by substituting zeros
with twos and vice versa.

A label is called “clockwise” if the leftmost change of digit in it is a change from 0
to 1, from 1 to 2, or from 2 to 0. Otherwise, the label is called “anticlockwise”.
Due to the above property, one label of a coin is always clockwise and the other is
anticlockwise.

Let C(i, d) be the set of coins with the symbol d at the i-th position of their
clockwise label. Since a substitution of 0 with 1, 1 with 2 and 2 with 0 in the coin
labels transfers all the coins from C(i,0) to C(i,1), from C(i,1) to C(i,2) and

8

2. Examples of code-breaking games and existing results

from C(i, 2) to C(i, 0), all the sets C(i, d) contain exactly n/3 coins. Now, let the
i-th experiment be the weighing of the set C(i,0) against C(i,2). We show that
these experiments uniquely identify the counterfeit coin.

Let ai be 0, 1, and 2 if the result of i-th experiment is <, = and >, respectively. If
the counterfeit code is overweight, the i-th symbol of its clockwise label must be
ai. On the other hand, if it is underweight, the i-th symbol of its anticlockwise
label must be ai. Therefore, the counterfeit coin must the label a1a2 . . . aw and it
is overweight if and only if this label is clockwise. Figure 2.6 shows an example of
the construction for n = 12 = 1

2
(33 − 3) with clockwise labels printed in bold.

coin label 1 label 2
1 001 221
2 002 220

3 010 212
4 011 211
5 012 210
6 020 202

7 021 201

8 022 200

9 100 122

10 101 121

11 102 120

12 110 112

Experiments:

1) 1, 3, 4, 5 × 2, 6, 7, 8
2) 1, 6, 7, 8 × 2, 9, 10, 11
3) 2, 3, 8, 11 × 5, 6, 9, 12

Solution:

the coin labelled a1a2a3,
where ai is the outcome of
the i-th experiment.

Figure 2.6: Demonstration of the ternary label construction for n = 12.

The case n < 1
2
(3w − 3) can be solved similarly with minor modifications to the

labelling. However, the strategy makes use of a genuine coin discovered in the
first weighing, so we cannot define other experiments without the knowledge of
the outcome of the first. Finally, the proof that the coin cannot be identified for
n > 1

2
(3w − 3) can be carried out using information theory. ∎

Generalizations and related research

Naturally, the problem has been generalized in various ways and studied by many
authors. In “Coin-Weighing Problems”[5], Guy and Nowakovski gave a great
overview of the research in the area until 1990s with an extensive list of references.
We list the most interesting variations and generalizations below.

Weight of the counterfeit coin. Either it is known whether the counterfeit
coin is underweight or overweight, or it is not. Due to its simple nature,
the first option allows for more generalizations, but both problems have
been heavily researched.

9

2. Examples of code-breaking games and existing results

Number of counterfeit coins. There is exactly one counterfeit coin in the
original version of the problems. Naturally, a variation of Problem 2.2 with
2 and 3 counterfeit coins have been studied[6][7] and some results have
been generalized for m counterfeit coins[8]. Some authors have also studied
the problem for an unknown number of counterfeit coins[9], or for at most
m counterfeit coins[10].

Additional regular coin(s). In some cases, it may help if an additional genuine
coin (or more coins) is available. For example, for n = 13 in Problem 2.3,
you need 4 weighings in the worst-case. However, if you are given one extra
genuine coin, the solution can be determined in 3 weighings[4].

Non-adaptive strategies. In this popular variation of the problem, you have
to announce all experiments in advance and then just collect the result. In
other words, later weighings must not depend on the outcomes of the earlier
weighings. Notice that the strategy constructed in the proof of Theorem 2.5
for n = 1

2
(3w − w) is indeed non-adaptive. However, the original proof

uses an adaptive strategy for n < 1
2
(3w − w). This was later amended,

showing that there always exists an optimal strategy for Problem 2.3 that
is non-adaptive[11].

Unreliable balance. This generalization introduces the possibility that one (or
more) answers may be erroneous. The problem of errors/lies in general
deductive games is well studied[see 12]. It was applied on the counterfeit
coin problem (Problem 2.2 variant) in [13] with at most one erroneous
outcome or in [14] with two.

Multi-pan balance scale. In this variation, the balance scale has k pans. You
put the same number of coins on every pan and you get either the infor-
mation that all weigh the same or the information which arm is lighter or
heavier than others[15].

Parallel weighing. In this generalization, you have 2 (or more) balance scales
and you can weigh different coins on the two scales simultaneously, which
counts as one experiment[16]. The motivation here is that weighing takes
significant time the goal is to minimize the time the whole process takes.

2.2 Mastermind

Mastermind is a classic code-breaking board game for 2 players, invented by
Mordecai Meirowitz in 1970. One player has the role of a codemaker and the
other of a codebreaker. First, the codemaker chooses a secret combination of n
coloured pegs. Colour repetitions are allowed. Then the codebreaker strives to

10

2. Examples of code-breaking games and existing results

reveal the code by making guesses. The codemaker evaluates each guess with black
and white markers. A black marker corresponds to a position where the code and
the guess match. A white marker means that some colour is present both in the
code and in the guess but at different positions. The markers in the outcome are
not ordered, so the codebreaker does not know which marker correspond to which
peg in the guess. Codebreaker’s goal is to find out the colour combination in the
minimal number of guesses.

More formally, let C be a set of colours of size c. We define a distance d ∶ Cn×Cn
→

N0 ×N0 of two colour sequences by d(u, v) = (b,w), where

b = ∣{i ∈ N ∣ u[i] = v[i]}∣
w =∑

j∈C

min (∣{i ∣ u[i] = j}∣, ∣{i ∣ v[i] = j}∣) − b.
If the codemaker’s secret code is a sequence h ∈ Cn and the codebreaker’s guess
is a sequence g ∈ Cn, the guess is awarded b black pegs and w white pegs, where(b,w) = d(h, g). Therefore, if the codebreaker have made guesses g1, g2, . . . , gk and
the outcomes have been (b1,w1), . . . , (bk,wk), the search space is reduced to the
codes {u ∈ Cn ∣ ∀i ≤ k. d(u, gi) = (bi,wi)}.

Figure 2.7: Guess evaluation
by maximal matching.

Another way of looking at the guess evaluation is using
maximal matching of the pegs in the code h and the
guess g. A matching is a set of pairwise non-adjacent
edges between the pegs in the guess (represented by
i● for 1 ≤ i ≤ n) and the pegs in the code (represented
by i● for 1 ≤ i ≤ n). Let Mg,h be a maximal matching
such that

1. an edge connects only pegs of the same colour,
i.e. if (i●, j●) ∈Mg,h, then h[i] = g[j], and

2. if h[i] = g[i] then (i●, i●) ∈Mg,h.

Maximality of the matching means that no edge can be added without breaking
one of the conditions. The edges in Mg,h correspond to the markers in the outcome,
a marker being black if and only if the corresponding edge connects i● with i● for
some i.

Known results and related research

Much research has been done on Mastermind, authors focusing on exact values,
asymptotics (e.g. [17]), or computer generated strategies. One of the fundamental

11

2. Examples of code-breaking games and existing results

theoretical results is that Mastermind satisfiability problem, asking whether there
exists at least one valid solution for a given set of guesses and their scores, is
NP-complete[18].

The goal for strategy synthesis is either to minimize the worst-case number of
guesses or the expected number of guesses, given that the code is selected from
the set of possible codes with uniform distribution.

Knuth[19] proposed a strategy that chooses a guess that minimizes the maximal
number of remaining possibilities over all possible outcomes. In the following, we
call this strategy “max-models”. In the worst-case, it requires 5 guesses in the
standard n = 4, c = 6 variant, which can be shown to be optimal. In the average
case, the strategy makes 4.48 guesses.

Other authors proposed similar strategies. Irving[20] suggested minimizing the
expected number of remaining possibilities (“exp-models”), Neuwirth[21] proposed
a strategy that maximizes the entropy of the number of possibilities in the
next round (“ent-models”). Many years later, Kooi[22] came up with a simple
strategy that maximizes the number of possible outcomes (“parts”), which is
computationally less demanding and performs better that the previous two. We
call this type of strategies one-step look-ahead.

Using a backtracking algorithm, Koyama and Lai[23] found the optimal strategy
for the expected case, which performs 4.34 guesses on average. The comparison of
the described strategies is shown in Table 2.8.

Strategy First guess Average-case Worst-case
Max-models AABB 4.476 5
Exp-models AABC 4.395/4.6262 6
Ent-models ABCD 4.416/4.6433 6
Parts AABC 4.373 6
Avg-case optimal AABC 4.340 6

Table 2.8: Comparison of one-step look-ahead strategies. Data from [24] and [22].

Apart from one-step look-ahead strategies, which do not scale very well for bigger
n or c, other approaches has been suggested. Many authors tried to apply genetic
algorithms (see [25] for an exhaustive overview and references therein), other
analysed various heuristic methods (e.g. [26]).

2. Irwing’s paper reports 4.395 as the expected number of experiments of this strategy. However,
he states that his strategy selects the first two experiments on the basis of the expected number
of models and the rest is done by exhaustive search. We were not able to reproduce this particular
result and the paper contains several more irreproducible results, which was already pointed out
in [22]. The number reported by our tool when strictly following this strategy is 4.626.
3. We were not able to reproduce Neuwirth’s result of 4.416, as he does not strictly follow the
strategy as described. The number reported by our tool is 4.643.

12

2. Examples of code-breaking games and existing results

Variations and applications

Bulls and Cows is an old game with a principle very similar to Mastermind.
The only difference is that it uses digits instead of colours and does not
allow repetitions. Slovesnov wrote an exhaustive analysis of the problem[see
27].

Static Mastermind is a variation of the game in which all guesses must be
made in one go. First, the codebreaker prepares a set of guesses, then the
codemakers evaluates all of them as usual and then the codebreaker has to
determine the code from the outcomes. This variation was introduced by
Chvátal[17] and partially solved (for n ≤ 4) by Goddard[28], proving that
for 4 pegs and k colours, the optimal strategy uses k − 1 guesses. Note that
this corresponds to so-called non-adaptive strategies for the counterfeit
coin problem.

Mastermind with black-markers , also called string matching, is a variation
without white markers, i.e. the only information the codebreaker gets
from a guess is the number of positions at which the guess is correct.
This problem was already studied by Erdős[29] who gave some asymptotic
results about the worst-case number of guesses. Later, this problem found
an application in genetics with a need of methods to select a subset of
genotyped individuals for phenotyping [30][31].

Extended Mastermind was introduced by Focardi and Luccio, who showed
that it is strictly related to cracking bank PINs for accessing ATMs by so-
called decimalization attacks[32]. In this variation, a guess is not a sequence
of colours but a sequence of sets of colours. For example, if there are six
colours {A,B,C,D,E,F} and the code is AECA, you can make a guess{A},{C,D,E},{A,B},{F}, which will be awarded two black markers (for
the first two positions) and one white marker (for A in the third set).

2.3 Other games

Black Box

Black Box is a code-breaking board game in which one player creates a puzzle by
placing four marbles on a 8 × 8 grid. The other player’s goal is to discover their
positions by the use of “rays”. The codebreaker chooses a side of the grid and an
exact row/column in which the ray enters the grid (thus having 32 choices). For
each ray, the codemaker announces the position where the ray emerged from the
grid, or says “hit” if the ray directly hit a marble[33].

The marbles interact with the rays in the following three ways.

13

2. Examples of code-breaking games and existing results

Hit. If a ray fired into the grid directly strikes a marble, the result is “hit” and
the ray does not emerge from the box.

Deflection. If a ray does not strike a marble but it should pass to one side of a
marble, the ray is “deflected” and changes its direction by 90 degrees.

Reflection. If a ray should enter a cell with marbles on both sides, it is “reflected”
and returns back the same way it came. The same happens if a marble is
at the edge of the grid and a ray is fired from a position next to it.

Figure 2.9: Illustration of the rules of Black Box game4.

Figure 2.10: An example of
ambigous configuration4.

A few examples are shown in Figure 2.9. The first
image shows rays that hit a marble, the second
shows rays deflected multiple times and emerging
from the box at a different place, and the third
demonstrates the two cases in which a reflection
happens.

Note that if the game is played with five or more
marbles, they can be placed in the grid so that
their position can not be uniquely determined. Fig-
ure 2.10 shows an example of such problematic
configuration.

Although Black Box is an interesting example of
a code-breaking game, there are configurations for
which the codebreaker has to fire a ray from all positions in order to discover
the positions of the marbles. This makes makes the game rather uninteresting
from a research point of view. However, the game has become a popular puzzle
for children and its principle has been used in other board games such as Laser
maze[34].

4. Images adopted from http://en.wikipedia.org/wiki/Black_Box_(game) under GFDL
1.2. with minor modifications.

14

http://en.wikipedia.org/wiki/Black_Box_(game)

2. Examples of code-breaking games and existing results

Code 777

During the board game named Code 777, players sit in a circle, each drawing
three cards at the beginning. Players must not look at their own cards but they
put them to a rack in front of them so that other players can see them. Each card
has one of seven colours and contains a number from one to seven. The goal of
the players is to determine their own cards, using questions like “Do you see more
yellow sevens or blue fives?”, which the others answer[35].

We can reformulate this as a code-breaking game in which a player receives some
cards, each having several attributes, each of which can have multiple values. A
player’s goal is to determine his cards using questions like “Do I have more [A]
or [B]”, where [A] and [B] are conditions on any subset of the attributes. For
example, if the attributes are number, colour, and shape, one can ask “Do I have
more triangles or green twos?”.

Bags of gold

Imagine you have 10 bags of gold coins. You were tipped off that some of the
bags may contain counterfeit coins, which weigh 9 grams instead of 10 but are
otherwise indistinguishable. Suppose all coins in one bag are the same. You have a
digital scale that can show you the exact weight of a set of coins. How to identify
the bags with counterfeit coins in the minimal number of weighings? Suppose
there is a sufficient number of coins in each bag.

In the original version of this riddle, the scale has unlimited capacity and there is
exactly one bag with counterfeit coins. In that case, the secret can be revealed
in a single experiment. You take one coin from the first bag, two coins from the
second and so on up to 10 coins from the last bag. You put all those 55 coins on
the scale and, if they are all genuine, they weigh 550 grams. If the weight is by x
grams lower, there must be exactly x counterfeit coins on the scale and, therefore,
the x-th bag is the one with counterfeit coins.

The game gets more interesting if the capacity of the scale is limited, or if there
are more bags with a limited number of coins. A special case in which each
bag contains a single coin is studied in [29], and is shown to be very similar to
Mastermind with black-markers. Otherwise, the game lives only in the form of
a logic puzzle and, to the best of our knowledge, no general results have been
established.

15

3 Code-breaking game model

In this chapter, we formally define code-breaking games within the framework of
propositional logic, where we represent a secret code as a valuation of propositional
variables. We define strategies in general, study several strategy classes and
introduce one-step look-ahead strategies.

3.1 Notation and terminology

Symbols N0 and N denote the set of natural numbers with and without zero; the
set of real numbers is denoted by R. The number of elements of a set X is denoted
by ∣X ∣. Notation X∗ = ∪i∈N0

X i is used to denote the set of finite sequences of
elements of X. The k-th element of a sequence s ∈X∗ is denoted by s[k].
The set of all permutations of a set X (bijections X →X) is denoted by permX

and idX is the identity permutation. A partition P of a set X is a set of disjoint
subsets of X, union of which is equal to X. Members of P are called cells. Let
P (x) be the cell containing x, i.e. P (x) = A, where A ∈ P and x ∈ A. For a function
f ∶X → Y and a set Z ⊆X, the restriction of f to Z is denoted by f ∣Z ∶ Z → Y .

Let formX denote the set of propositional formulas over the set of variables X
and let valX be the set of valuations (boolean interpretations) of variables
X. Apart from standard logical operators, we allow n-ary numerical opera-
tors exactlyk , atleastk , atmostk . For a valuation v ∈ valX and proposi-
tional formulas ϕ1, . . . , ϕn ∈ formX , the operator exactlyk has the semantics
v(exactlyk (ϕ1, . . . , ϕn)) = 1 if and only if ∣{i ∣ v(ϕi) = 1}∣ = k. The semantics of
atmost and atleast is defined analogically.

Formulas ϕ0, ϕ1 ∈ formX are equivalent, written ϕ0 ≡ ϕ1, if v(ϕ0) = v(ϕ1) for all
v ∈ valX . We say that v is a model of ϕ or that v satisfies ϕ if v(ϕ) = 1. For a
formula ϕ ∈ formX , let #

X
ϕ = ∣{v ∈ valX ∣ v(ϕ) = 1}∣ be the number of models

of ϕ. We often omit the index X if it is clear from the context. A fixed variable
of a formula ϕ is a variable that is assigned the same value in all models of ϕ. If
v(x) = 1 for all v ∈ val such that v(ϕ) = 1, we say that x is fixed to 1 (or true).
Similarly, if v(x) = 0, we say that x is fixed to 0 (or false).

3.2 Basic definitions

A code-breaking game can be represented by a set of variables, initial constraint
(a formula that is guaranteed to be satisfied), and a set of allowed experiments. An
experiment is defined by the set of outcomes in which it can result. The outcomes
are specified in the form of a propositional formula that represents the partial
information that the codebreaker gains if the experiment results in the outcome.

17

3. Code-breaking game model

The number of experiments in a code-breaking game is typically very large. For
example, in the counterfeit coin problem defined in Section 2.1, experiments
correspond to combinations of coins you put on the pans of the balance scale. It
can be calculated that there are 36,894 combinations for 12 coins. However, most
of them have the same structure, so it would be inefficient to specify them one
by one. Therefore we have opted for a compact representation with parametrized
experiments, where parametrization is a fixed-length string over a defined alphabet.
This whole idea is formalized below.

Definition 3.1 (Code-breaking game). A code-breaking game is a quintuple
G = (X,ϕ0,Σ, F, T), where

• X is a finite set of propositional variables,

• ϕ0 ∈ formX is a satisfiable propositional formula,

• Σ is a finite alphabet,

• F is a collection of mappings Σ→X with pairwise disjoint images,

• T is a set of parametrized experiments, defined below.

Definition 3.2 (Parametrized experiment). A parametrized experiment for
a game G = (X,ϕ0,Σ, F, T) is a triple t = (n,P,Φ), where

• n is the number of parameters of the experiment,

• P is a partition of the set {1, . . . , n},
• Φ is a set of parametrized formulas, defined below.

Parameters of the experiment are elements of the alphabet Σ. If k and l are in the
same cell of the partition P , the k-th and the l-th parameter must be different.
We denote the components of a parametrized experiment t ∈ T by nt, Pt, and Φt.

Definition 3.3 (Parametrized formula). A parametrized formula for
a parametrized experiment t of a game G = (X,ϕ0,Σ, F, T) is a string ψ generated
by the following grammar, specified in Backus–Naur Form.

< form> ∶∶= x ∣ f($k) ∣ < form> ○ < form> ∣ O(< form-list>) ∣ ¬ < form>,

< form-list> ∶∶= < form-list> , < form> ∣ < form>

where x ∈ X is a propositional variable, f ∈ F is a mapping, 1 ≤ k ≤ nt
is a parameter index, ○ ∈ {∧,∨,⇒} is a standard logical operator, and O ∈{exactlyk ,atmostk ,atleastk ∣ k ∈ N} is a numerical operator. The special
notation $k in f($k) is used to denote the k-th parameter.

18

3. Code-breaking game model

The set E of all experiments in the game G is given by

E = {(t, p) ∣ t ∈ T, p ∈ Σnt , ∀x, y ≤ nt. Pt(x) = Pt(y)⇒ p[x] /= p[y]}
An experiment e ∈ E is thus a pair (t, p), where t is referred to as the type of the
experiment, and p is referred to as its parametrization.

Let e = (t, p) ∈ E be an experiment, and ψ ∈ Φt a parametrized formula. By
ψ(p) we denote the application of the parametrization p on ψ, which is defined
recursively on the structure of ψ in the following way:

(x)(p) = x,
(f($k))(p) = f(p[k]),
(ψ1 ○ ψ2)(p) = ψ1(p) ○ ψ2(p),

O(ψ1, . . . , ψm)(p) = O(ψ1(p), . . . , ψm(p)),
(¬ψ)(p) = ¬(ψ(p)).

To simplify the notation, let us denote the set of outcomes of an experiment
e = (t, p) ∈ E by Φ(e) = {ψ(p) ∣ ψ ∈ Φt}.
Example 3.4. Consider the counterfeit coin problem with 4 coins. We use this
game as a running example throughout this chapter.

The counterfeit coin and its relative weight to the others can be encoded as a
valuation of variables x1, x2, x3, x4 and y, v(xi) being 1 if and only if the i-th
coin is counterfeit and y determining its relative weight (v(y) = 0 means that the
counterfeit coin of underweight, v(y) = 1 means overweight). The initial constraint
ϕ0 should capture the restriction that exactly one coin if counterfeit. Therefore,
let ϕ0 be exactly1 (x1, x2, x3, x4).
The experiments are parametrized by the coins on the pans of the balance scale.
Let Σ = {1, 2, 3, 4} and F = {fx} where fx maps the number i to the corresponding
variable xi.

One parametrized experiment is weighing one coin against one, let us call it t. We
need two parameters (nt = 2), the first determining the coin on the left pan and
the second determining the coin on the right pan that must be different from the
first. Pt is therefore the trivial partition {{1,2}}.
If the left pan is lighter, it is either the case that the coin on the left is underweight
(fx($1) ∧ ¬y) or the coin on the right is overweight (fx($2) ∧ y). If the right pan
is lighter, we get the symmetrical knowledge (fx($1) ∧ y) ∨ (fx($2) ∧ ¬y). If both
sides weigh the same, the counterfeit coins is not present on either pan and we
can conclude ¬fx($1) ∧ ¬fx($2). To sum it up,

t = (2, {{1,2}}, {(fx($1) ∧ ¬y) ∨ (fx($2) ∧ y),
(fx($1) ∧ y) ∨ (fx($2) ∧ ¬y),
¬fx($1) ∧ ¬fx($2) }).

19

3. Code-breaking game model

The second parametrized experiment is weighing two coins against two. There are
4 parameters, they must be pairwise distinct and the outcome formulas can be
constructed analogically. ⧫

Note that the compact representation with parametrized experiments does not
restrict the class of games that can fit Definition 3.1, compared to a possible
definition with direct experiment enumeration. The reason is that there can always
be a parametrized experiment with no parameters for each actual experiment.

Definition 3.5 (Solving process). An evaluated experiment is a pair (e,ϕ),
where e ∈ E and ϕ ∈ Φ(e). Let us denote the set of evaluated experiments by Ω.

A solving process is a finite or infinite sequence of evaluated experiments.

For a solving process λ = (e1, ϕ1), (e2, ϕ2), . . ., let

• ∣λ∣ denote the length of the sequence,

• λ(k) = ek denote the k-th experiment,

• λ[k] = ϕk denote the k-th outcome,

• λ[1 ∶ k] = (e1, ϕ1), . . . , (ek, ϕk) denote the prefix of length k, and

• λ⟨k⟩ = ϕ0 ∧ϕ1 ∧ . . .∧ϕk denote the accumulated knowledge after the first k
experiments (including the initial constraint ϕ0). For finite λ, let λ⟨⟩ = λ⟨∣λ∣⟩
be the overall accumulated knowledge.

We denote the set of valuations that satisfy ϕ0 by val′ = {v ∈ valX ∣ v(ϕ0) = 1}
and the set of reachable formulas (formulas that represent some accumulated
knowledge) by form′ = {λ⟨⟩ ∣ λ ∈ Ω∗}.
Course of the game

Let us now describe the course of the game in the defined terms.

1. The codemaker chooses a valuation v from val′.

2. The codebreaker chooses an experiment e from E.

3. The codemaker gives the codebreaker a formula ϕ ∈ Φ(e) that is satisfied
by the valuation v. In order for the codemaker to always be able to do so,
Φ(e) must contain a satisfied formula for every valuation in val′. This is
defined below as well-formed property of the game.

4. The evaluated experiment (e,ϕ) is appended to the solving process λ,
which is initially empty.

5. If #λ⟨⟩ = 1, the codebreaker can uniquely determine the valuation v and
the game ends. Otherwise, it continues with step 2.

20

3. Code-breaking game model

Definition 3.6 (Well-formed game). A code-breaking game is well-formed if
for all e ∈ E,

∀v ∈ val′. ∃ exactly one ϕ ∈ Φ(e) . v(ϕ) = 1

In the sequel, we focus only on well-formed games and we assume a given game is
well-formed unless otherwise stated.

Examples

In the rest of this section, we show two ways of defining the counterfeit coin problem
and a formal definition of Mastermind. We do not provide formal definitions of
other code-breaking games presented in Chapter 2, however, a computer language
for game specification that is based on this formalism is introduced in Chapter 5,
and specifications of all the code-breaking games in this language can be found in
the electronic attachment to the thesis.

Example 3.7 (The counterfeit coin problem). A formal definition of the
counterfeit coin problem with 4 coins has already been introduced in Exam-
ple 3.4. This is a straightforward generalization for n coins. We define a game
Fn = (X,ϕ0,Σ, F, T) with the following components.

• X = {x1, x2, . . . , xn, y}. Variable xi tells whether the i-th coin is counterfeit,
variable y tells whether it is lighter or heavier.

• ϕ0 = exactly1 (x1, . . . , xn), saying that exactly one coin is counterfeit.

• Σ = {1,2, . . . , n}, F = {fx}, where fx(i) = xi. The experiments are
parametrized with coins that are represented by numbers from 1 to n.

• T = {(2 ⋅m, {{1, . . . ,2m}}, Φm) ∣ 1 ≤m ≤ n/2}, where

Φm = {((fx($1) ∨ . . . ∨ fx($m)) ∧ ¬y) ∨ ((fx($m + 1) ∨ . . . ∨ fx($2m)) ∧ y),
((fx($1) ∨ . . . ∨ fx($m)) ∧ y) ∨ ((fx($m + 1) ∨ . . . ∨ fx($2m)) ∧ ¬y),
¬(fx($1) ∨ . . . ∨ fx($2m))}.

For every m ∈ N, m ≤ n/2, there is a parametrized experiment of weighing
m coins against m coins. It has 2m parameters, the first m are put on the
left pan, the last m are put on the right pan.
There are 3 possible outcomes. First, the left pan is lighter. This happens if
the counterfeit coin is lighter and it appears among the first m parameters,
or if it is heavier and it appears among the last m parameters. Second,
analogically, the right pan is lighter. Third, both pans weigh the same if
the counterfeit coin does not participate in the experiment.

21

3. Code-breaking game model

For demonstration purposes, we show another possible formalization of the same
problem. Let F ′n = (X,ϕ0,Σ, F, t) be a game with the following components.

• X = {x1, x2, . . . , xn, y1, y2, . . . , yn}. Variable xi tells that the i-th coin is
lighter, variable yi tells that the i-th coin is heavier.

• ϕ0 = exactly1 (x1, . . . , xn, y1, . . . , yn), saying that exactly one coin is odd-
weight.

• Σ = {1,2, . . . , n}, F = {fx, fy}, where fx(i) = xi, fx(i) = yi.
• T = {(2 ⋅m, {{1, . . . ,2m}}, Φm) ∣ 1 ≤m ≤ n/2}, where

Φ(wm) = {fx($1) ∨ . . . ∨ fx($m) ∨ fy($m + 1) ∨ . . . ∨ fy($2m),
fy($1) ∨ . . . ∨ fy($m) ∨ fx($m + 1) ∨ . . . ∨ fx($2m),
¬ (fx($1) ∨ . . . ∨ fx($2m) ∨ fy($1) ∨ . . . ∨ fy($2m))}.

In this formalization, the variables correspond one-to-one to possible codes, so
the outcome formulas effectively list all possibilities. ⧫

Example 3.8 (Mastermind). Mastermind game with n pegs and m colours
can be formalized as a code-breaking game Mn,m = (X,ϕ0,Σ, F, T) with the
following components.

• X = {xi,j ∣ 1 ≤ i ≤ n, 1 ≤ j ≤m}. Variable xi,j tells whether the i-th peg has
the colour j.

• ϕ0 = ⋀{exactly1 {xi,j ∣ 1 ≤ j ≤m} ∣ 1 ≤ i ≤ n}, saying that there is ex-
actly one colour at each position.

• Σ = {1, . . . ,m},
F = {f1, . . . , fn}, where fi(c) = xi,c for 1 ≤ i ≤ n,
T = {(n,P,Φ)}.
There is only one parametrized experiment with n parameters corresponding
to the colours. All parameters can be the same, so the partition P is the
discrete partition {{1}, . . . ,{n}}.

• Φ = {Outcome(b,w) ∣ 0 ≤ b ≤ n, 0 ≤ w ≤ n, b +w ≤ n}, where Outcome is
the function computed by the algorithm described below.

As described in Section 2.2, the outcome of an experiment in Mastermind corre-
sponds to some maximal matching between the pegs in the code and the pegs
in the guess. The idea here is to generate a formula that asserts existence of
such maximal matching with b edges corresponding to black markers and w edges
corresponding to white markers.

The computation of Outcome (b,w) is performed as follows. First, we generate
all admissible matchings. Let P = {1,2, . . . , n} be the set of positions.

• Select B ⊆ P such that ∣B∣ = b. These are the positions at which the colour
in the code matches the colour in the guess. They correspond to the black
markers.

22

3. Code-breaking game model

• Select W ⊆ P × P such that ∣W ∣ = w, p1(W) ∩ B = ∅, and p2(W) ∩ B =
∅, where p1, p2 are projections. These correspond to the white markers;(i, j) ∈W means that the colour at position i in the guess is at position j

in the code.

Recall that i● represents the i-th peg in the guess and i● represents the i-th
peg in the code. For a fixed combination (B,W), we define a matching M by
M = {(i●, i●) ∣ i ∈ B}∪ {(i●, j●) ∣ (i, j) ∈W}. We construct a parametrized formula
that asserts that M is the maximal matching satisfying conditions in Section 2.2
for a guess $1,$2, . . . ,$n and the code given by a valuation of the variables. The
formula has a form of a conjunction constructed in the following way.

• For i ∈ B, we add fi($i). This asserts that (i●, i●) is an edge in the matching.

• For (i, j) ∈ W , we add fj($i) ∧ ¬fi($i) ∧ ¬fj($j). This asserts that the
colour $i is at position j in the code and that (i●, i●), (j●, j●) are not edges
in the matching.

• For (i, j) ∈ (P ∖B∖p1(W))×(P ∖B∖p2(W)), we add ¬fj($i). This asserts
the matching is maximal as no edge can be added.

The result of Outcome(b,w) is a disjunction of all the conjunctions constructed
in this way for all combinations of B and W . For example, for n = 4, B = {1} and
W = {2,3}, the generated formula is

f1($1) ∧ f3($2) ∧ ¬f2($2) ∧ ¬f3($3) ∧ ¬f2($3) ∧ ¬f2($4) ∧ ¬f4($3) ∧ ¬f4($4).
The number of combinations for B and W grows exponentially with n and so
does the size of the generated formulas. For n = 4, the result of Outcome(1,1)
contains 24 clauses at the top level with 192 literals in total. ⧫

3.3 Strategies in general

This section introduces the concept of a strategy for experiment selection. We
define the worst-case and the average-case number of experiments of a strategy
and optimal strategies. Further, we examine several strategy classes.

Definition 3.9 (Strategy). A strategy is a function σ ∶ Ω∗ → E, determining
the next experiment for a given finite solving process.

A strategy σ together with a valuation v ∈ val′ induce an infinite solving process

λσv = (e1, ϕ1), (e2, ϕ2), . . . ,
23

3. Code-breaking game model

where ei+1 = σ(λσv [1 ∶ i]) and ϕi+1 is the formula from Φ(ei+1) satisfied by v, for all
i ∈ N. Due to the well-formed property of the game, there is exactly one such ϕi+1.

We define the length of a strategy σ on a valuation v, denoted ∣σ∣v, as the smallest
k ∈ N0 such that λσv ⟨k⟩ uniquely determines the code, i.e.

∣σ∣v =min {k ∈ N0 ∣ #λσv ⟨k⟩ = 1}
The worst-case number of experiments Λσ of a strategy σ is the maximal length
of the strategy on a valuation v, over all v ∈ val′, i.e.

Λσ
= max
v∈val′

∣σ∣v.
The average-case number of experiments Λσ

exp of a strategy σ is the expected
number of experiments if the code is selected from models of ϕ0 with uniform
distribution, i.e.

Λσ
exp =

∑v∈val′ ∣σ∣v
#ϕ0

.

We say that a strategy σ solves the game if Λσ is finite. Note that Λσ is finite
if and only if Λσ

exp is finite. The game is solvable if there exists a strategy that
solves the game.

Definition 3.10 (Optimal strategy). A strategy σ is worst-case optimal if
Λσ
≤ Λσ′ for any strategy σ′. A strategy σ is average-case optimal if Λσ

exp ≤ Λσ′

exp

for any strategy σ′.

The following lemma provides us with a lower bound on the number of experiments
of a worst-case optimal strategy. The next lemma presents an important observa-
tion about the induced solving processes, which is needed in several upcoming
theorems.

Lemma 3.11. Let b =maxt∈T ∣Φ(t)∣ be the maximal number of possible outcomes
of an experiment. Then for every strategy σ,

Λσ
≥ ⌈logb(#ϕ0)⌉.

Proof. Let us fix a strategy σ and k = Λσ. For an unknown model v of ϕ0, λσv ⟨k⟩
can take up to bk different values. By pigeon-hole principle, if #ϕ0 > bk, there
must be a valuation v such that #λσv ⟨k⟩ > 1. This would be a contradiction with
k = Λσ and, therefore, #ϕ0 ≤ bk, which is equivalent with the statement of the
lemma. ∎

24

3. Code-breaking game model

Lemma 3.12. Let σ be a strategy and let v1, v2 ∈ val′. If v1 is a model of λσv2
⟨k⟩,

then λσv1
[1 ∶ k] = λσv2

[1 ∶ k].
Proof. Let λ1 = λσv1

, λ2 = λσv2
and consider the first place where λ1 and λ2 differ.

It cannot be the i-th experiment as both λ1(i) and λ2(i) are values of the same
strategy on the same solving process: λ1(i) = σ(λ1[1 ∶ i − 1]) = σ(λ2[1 ∶ i − 1]) =
λ2(i).
Therefore, it must be an outcome of the i-th experiment, i.e. λ1[i] /= λ2[i] for some
i ≤ k. Since v1 satisfies λ2⟨k⟩ and i ≤ k, it satisfies λ2[i] as well. However, v1 always
satisfies λ1[i] and both λ1[i] and λ2[i] are from the set Φ(λ1(i)) = Φ(λ2(i)). Since
there is exactly one satisfied experiment for each valuation in the set, λ1[i] and
λ2[i] must be the same, which is a contradiction. ∎

Example 3.13. Recall our running example of the counterfeit coin problem with
four coins, introduced in Example 3.4.

Consider a strategy σ defined as follows. For simplicity, we denote experiments by
their parametrizations (this is sufficient, because the parametrized experiments
have different number of parameters) and the outcomes by symbols <, > and =,
instead of the corresponding formula.

σ(λ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

13 if λ = (12,<),
23 if λ = (12,>),
14 if λ = (12,=), (12,=),
34 if λ = (12,=), (12,=), (14,=),
12 otherwise.

Let v ∈ val′ be a valuation such that v(x3) = v(y) = 1. The solving process induced
by σ on v is

λσv = (12,=), (12,=), (14,=), (34,>), (12,=), (12,=), . . .
The length of σ on v is 4, because v is the only model of the accumulated knowledge
after 4 experiments,

exactly1(x1, x2, x3, x4)∧¬(x1∨x2)∧¬(x1∨x2)∧¬(x1∨x4)∧((x3∧y)∨(x4∧¬y)).
The strategy pointlessly repeats the experiment 12 if the outcome in the first step
is =. In fact, every valuation is revealed by σ in at most 4 experiments, which
means that Λσ

= 4.

Lemma 3.11 gives us the lower bound ⌈log3(8)⌉ = 2 on the worst-case number of
experiments of an optimal strategy. However, we already know from Theorem 2.5
that the minimal number of experiments needed to reveal the code in the worst-case
is 3. ⧫

25

3. Code-breaking game model

Non-adaptive strategies

Non-adaptive strategies correspond to the well-studied problems of static Mas-
termind and non-adaptive strategies for the counterfeit coin problem[28][11]. We
define them here only to show the possibility of formulating the corresponding
problems in our framework but we do not study them any further.

Definition 3.14 (Non-adaptive strategy). A strategy σ is non-adaptive if it
decides the next experiment based on the length of the solving process only, i.e.
whenever λ1 and λ2 are processes such that ∣λ1∣ = ∣λ2∣, then σ(λ1) = σ(λ2).
Non-adaptive strategies can be considered functions τ ∶ N0 → E, where τ(∣λ∣) =
σ(λ).

Memory-less strategies

According to the general definition, a strategy can decide the next experiment on
the basis of the exact history of the solving process. In can be argued that the
accumulated knowledge should be sufficient for the decision as the overall nature
of code-breaking games is memory-less and the course of a game depends only
on the accumulated knowledge. Here we define memory-less strategies and prove
that it is indeed the case.

Definition 3.15 (Memory-less strategy). A strategy σ is memory-less if it
decides the next experiment based on the accumulated knowledge only, i.e. when-
ever λ1 and λ2 are processes such that if λ1⟨⟩ ≡ λ2⟨⟩ then σ(λ1) = σ(λ2).
Memory-less strategies can be considered functions τ ∶ form′ → E such that
ϕ1 ≡ ϕ2⇒ τ(ϕ1) = τ(ϕ2). Then σ(λ) = τ(λ⟨⟩).

Note that the number of non-equivalent formulas over variable X is finite and,
therefore, the number of memory-less strategies for a fixed code-breaking game is
finite as well.

Now we prove some basic properties of memory-less strategies. The following
lemma says that once we do not get any new information from the experiment
selected by a experiment, we never get any new information with the strategy.
Then, the theorem below proves that there exists an optimal memory-less strategy.

Lemma 3.16. Let σ be a memory-less strategy and v ∈ val′. If there exists k ∈ N
such that #λσv ⟨k⟩ =#λσv ⟨k + 1⟩, then #λσv ⟨k⟩ =#λσv ⟨k + l⟩ for any l ∈ N.

26

3. Code-breaking game model

Proof. To simplify the notation, let αk = λσv ⟨k⟩ be the accumulated knowledge after
k experiments. Since every model of αk+1 is also a model of αk and #αk =#αk+1,
the sets of models of αk and αk+1 are exactly the same and the formulas are
thus equivalent. This implies σ(αk) = σ(αk+1) and αk+2

≡ αk+1. By induction,
σ(αk+l) = σ(αk) and αk+l ≡ αk for any l ∈ N. ∎

Theorem 3.17. Let σ be a strategy. Then there exists a memory-less strategy τ
such that ∣σ∣v ≥ ∣τ ∣v for all v ∈ val′.

Proof. Let us show the exact construction of τ from σ. First, we order the formulas
of form′ by their number of models from the least. Let ϕi be the i-th formula
in this order. We build a sequence of strategies σ0, σ1, σ2, . . . inductively in the
following way. Let σ0 = σ.

• If there is no v ∈ val′, k ∈ N0 such that λσi−1
v ⟨k⟩ ≡ ϕi, select any e ∈ E and

define σi by

σi(λ) = { σi−1(λ) if λ⟨⟩ /≡ ϕi,
e if λ⟨⟩ ≡ ϕi.

Clearly, the induced solving processes for σi and σi−1 are the same.

• If there exists v ∈ val′, k ∈ N0 such that λσi−1
v ⟨k⟩ ≡ ϕi, choose the largest l

such that λσi−1
v ⟨l⟩ ≡ ϕi and define

σi(λ) = { σi−1(λ) if λ⟨⟩ /≡ ϕi,
λσi−1
v (l) if λ⟨⟩ ≡ ϕi.

First we prove that this definition is correct. Let v1, v2, k1, k2 be such that
λσi−1
v1
⟨k1⟩ ≡ ϕi ≡ λσi−1

v2
⟨k2⟩ and let l1, l2 be the largest numbers such that

λσi−1
v1
⟨l1⟩ ≡ ϕi ≡ λσi−1

v2
⟨l2⟩. Since v1 satisfies λσi−1

v2
⟨l2⟩ ≡ ϕi, λσi−1

v2
[1 ∶ l2] =

λσi−1
v1
[1 ∶ l2] by Lemma 3.12. The same holds for l1 which means that

l1 = l2 and λσi−1
v1
(l1) = λσi−1

v1
(l2), which proves that the definition of σi is

independent of the exact choices of v and k.
Now ∣σi∣v = ∣σi−1∣v − (l − k), where k is the smallest number such that
λσi−1
v ⟨k⟩ ≡ ϕi and l is the largest number such that λσi−1

v ⟨l⟩ ≡ ϕi, because
λσi−1
v (l) = λσiv (k) and due to the order of the formulas, the rest of the

process is already independent of the beginning.

The last strategy of the sequence is clearly memory-less and satisfies the condition
in the lemma. ∎

Corollary 3.18. There exists a worst-case optimal strategy that is memory-less
and there exists an average-case optimal strategy that is memory-less.

27

3. Code-breaking game model

Example 3.19. Recall the game and the strategy σ from Example 3.13. The
strategy is clearly not non-adaptive, as σ((12,<)) /= σ((12,>)). It is neither
memory-less as σ((12,=)) /= σ((12,=), (12,=)) but the accumulated knowledge of
the solving processes is the same.

Consider a non-adaptive strategy τ ∶ 1↦ 12, 2↦ 13, 3↦ 14. If the counterfeit coin
is among the first three coins, it is discovered by the strategy in two experiments.
If the counterfeit coin is the fourth coin, it requires three experiments. Hence
Λτ
= 3 and the value of τ on greater numbers is irrelevant.

If we apply the construction in Theorem 3.17 on σ, we get a memory-less strategy
σ′, given by

σ′(ϕ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

13 if ϕ ≡ ϕ0 ∧ (x1 ∧ ¬y) ∨ (x2 ∧ y),
23 if ϕ ≡ ϕ0 ∧ (x1 ∧ y) ∨ (x2 ∧ ¬y),
14 if ϕ ≡ ϕ0 ∧ ¬x1 ∧ ¬x2,

34 if ϕ ≡ ϕ0 ∧ ¬x1 ∧ ¬x2 ∧ ¬x4,

12 otherwise.

Notice that the valuation v with v(x3) = v(y) = 1 is now discovered in 3 experiments
as the strategy does not repeat the experiment 12. Therefore, Λσ′

= 3.

Both strategies τ and σ′ are worst-case optimal. ⧫

3.4 One-step look-ahead strategies

Specification of a strategy in general can be very complicated. In this section, we
study a subclass of memory-less strategies that we call one-step look-ahead. These
strategies select an experiment that minimizes the value of a given function on
the set of possible knowledge in the next step.

Definition 3.20 (One-step look-ahead strategy). Let f be a function of
type 2form′

→ R and ⪯ a total order of experiments. A one-step look-ahead
strategy with respect to f and ⪯ and is a memory-less strategy σ, such that
σ(ϕ) = e is the minimal element of (E,⪯) satisfying

∀e′ ∈ E. f({ϕ ∧ψ ∣ ψ ∈ Φ(e) }) ≤ f({ϕ ∧ψ ∣ ψ ∈ Φ(e′) }).

We refer to the value f({ϕ ∧ψ ∣ ψ ∈ Φ(e)}) as the value of the function f on the
experiment e. The purpose of ⪯ is to resolve the cases in which the value of the
function is the same on more experiments.

Several one-step look-ahead strategies for Mastermind have been already intro-
duced in Section 2.2. In the following, we define them formally for the general

28

3. Code-breaking game model

model of code-breaking games. Unless otherwise stated, the total order ⪯ is the
lexicographical order of the experiments.

Max-models. This strategy minimizes the worst-case number of remaining codes.
For Mastermind, this was suggested by Knuth[19].

f(Ψ) =max
ϕ∈Ψ

#ϕ.

Exp-models. This strategy minimizes the expected number of remaining codes.
For Mastermind, this was suggested by Irwing[20].

f(Ψ) = ∑ϕ∈Ψ(#ϕ)2
∑ϕ∈Ψ #ϕ

.

Ent-models. This strategy maximizes the entropy of the numbers of remaining
codes. For Mastermind, this was suggested by Neuwirth[21].

f(Ψ) = ∑
ϕ∈Ψ

#ϕ

N
⋅ log

#ϕ

N
, where N = ∑

ϕ∈Ψ

#ϕ.

Parts. This strategy maximizes the number of satisfiable outcomes. For Master-
mind, this was suggested by Kooi[22].

f(Ψ) = − ∣{ϕ ∣ ϕ ∈ Ψ, SAT (ϕ)}∣.
We suggest and analyse two more one-step look ahead strategies that are based
on the number of fixed variables of the formulas. Let

#fixed ϕ = ∣{x ∈X ∣ ∀v.v(ϕ) = 1⇒ v(x) = 1} ∪ {x ∈X ∣ ∀v.v(ϕ) = 1⇒ v(x) = 0}∣
be the number of fixed variables of ϕ. Note that while the strategies above does not
depend on the exact formalization of a problem, the number of fixed variables may
differ for different encodings. For example, recall the two possible formalisations
of the counterfeit coin problem defined in Example 3.7. The numbers of the fixed
variables in the outcome formulas differ, which means that the strategy may select
different experiments.

Min-fixed. Maximize the worst-case number of fixed variables, i.e.

f(Ψ) = −min
ϕ∈Ψ

#fixed ϕ.

Exp-fixed. Maximize the expected number of fixed variables, i.e.

f(Ψ) = −∑ϕ∈Ψ #ϕ ⋅#fixed ϕ

∑ϕ∈Ψ #ϕ
.

29

3. Code-breaking game model

Example 3.21. Recall Example 3.4 and consider the following two experiments
in the first step. First, the experiment of weighing coin 1 against coin 2. All the
three outcomes are satisfiable, the number of models is 2 for the outcome <, 2 for
> and 4 for =. If the experiment results in < or >, we know that the counterfeit
coin is the first or the second coin. If it results in =, it must be the third or the
fourth coin. Therefore, every outcome fixes two variables.

Second, the experiment of weighing coins 1 and 2 against coins 3 and 4. As exactly
one coin must be counterfeit, the outcome = is impossible. The outcomes < and >
are symmetrical, both have 4 models and fix no variables.

12 1234
Max-models 4 4
Exp-models 3 4
Ent-models -1.04 -0.69
Parts -3 -2
Min-fixed -2 0
Exp-fixed -2 0

Table 3.22: Values of various one-step look-ahead strategies in the counterfeit
coin problem with four coins on experiments 12 and 1234.

Table 3.22 shows the values of the defined one-step look-ahead strategies on these
two experiments. In all strategies except for “max-models”, the experiment 12
winds over 1234 and is selected as the first experiment. In “max-models”, the
values on 12 and 1234 are the same but the experiment 12 is still selected because
it is lexicographically smaller. ⧫

30

4 Experiment equivalence and algorithms

What makes the analysis of code-breaking games difficult is typically the large
number of experiments. For example, during the evaluation a one-step look-ahead
strategy with respect to function f , we need to compute the value of f on all
experiments. The number of experiments is even more important for optimal
strategy synthesis, where we have to consider all possible experiments in every
state and analyse whether the experiment can lead to an improvement of the
number of experiments of a strategy.

Fortunately, some experiments are usually equivalent to some others in the sense
that the knowledge they can give us is either exactly the same or symmetrical.
In the counterfeit coin problem, for example, the parametrized experiment of
weighing 4 coins against 4 coins has 1

2
⋅(12

4
) ⋅(8

4
) = 17, 325 possible parametrizations.

In the initial state, however, all of them are equivalent as they give us symmetrical
knowledge.

This chapter formally introduces the concept of experiment equivalence. We
prove that in various situations, it is sufficient to consider one experiment from
each equivalence class. This fact is used in the presented algorithms for well-
formed check, evaluation of a one-step look-ahead strategies and optimal strategy
synthesis.

4.1 Experiment equivalence

We start with a formal definition of equivalence of two experiments. The section
continues with our suggestion on a method for equivalence testing based on
isomorphism of labelled graphs. This method is crucial for the algorithms presented
in the following sections.

Definition 4.1 (Experiment equivalence). Let e ∈ E be an experiment and
π ∈ permX a variable permutation. A π-symmetrical experiment to e is an
experiment eπ ∈ E such that {ϕπ ∈ Φ(e)} = {ϕ ∈ Φ(eπ)}. Clearly, no π-symmetrical
experiment to e may exists.

A symmetry group Π of a given game is the maximal subset of permX such that
for every π ∈ Π and e ∈ E, there exists a π-symmetrical experiment to e.

Finally, an experiment e1 ∈ E is equivalent to e2 ∈ E with respect to ϕ, written
e1 ≅ϕ e2, if and only if there exists a permutation π ∈ Π such that

{ϕ ∧ψ ∣ ψ ∈ Φ(e1)} ≡ {(ϕ ∧ψ)π ∣ ψ ∈ Φ(e2)}.

31

4. Experiment equivalence and algorithms

Example 4.2. Recall the running example from the previous chapter, introduced
in Example 3.4. Experiment 23 is a (x1x3)-symmetrical experiment to 12, because
for π = (x1x3),

{ ((x1 ∧ ¬y) ∨ (x2 ∧ y))π, ((x1 ∧ y) ∨ (x2 ∧ ¬y))π, (¬(x1 ∨ x2))π } =
{ (x3 ∧ ¬y) ∨ (x2 ∧ y), (x3 ∧ y) ∨ (x2 ∧ ¬y), ¬(x3 ∨ x2) }.

In fact, for every experiment e = (t, p) and every permutation π stabilizing y, we
can permute the parameters of t accordingly and get a π-symmetrical experiment
to e. Therefore, the symmetry group Π is {π ∈ permX ∣ π(y) = y}.
Since Π is also the symmetry group of ϕ0, all experiments of the same type are
equivalent, and the quotient set of E by ≅ϕ0

has only two equivalence classes.
For a more complex example, let ϕ = ϕ0 ∧ ¬(x1 ∨ x2). Experiment 3124 is now
equivalent to 43, with π = idX . The corresponding formulas are equivalent even
though they are syntactically different. ⧫

In the rest of the section, we suggest a method for testing whether two given
experiments are equivalent with respect to a given formula.

First, we show a construction of the base graph for a given game, automorphisms
of which are a subset of the symmetry group Π. Then we describe the construction
of the experiment graph for a given experiment, which is build on top of the base
graph. We prove that if the experiment graphs are isomorphic, the corresponding
experiments are equivalent.

Recall that a labelled graph is a triple (V,E, l), where (V,E) is a graph and
l ∶ V → L is a labelling function (L being a set of labels). Isomorphism of two
labelled graphs is a bijection between their sets of vertices that preserves edges
and labels.

Base graph construction

The base graph for a game G = (X,ϕ0,Σ, F, T) is a labelled graph B = (V,E, l)
described below.

• There is a vertex for every proposition variable and every mapping, i.e.
V =X ⊍ F .

• A mapping is connected by edges with all variables in its value range, i.e.(f, x) ∈ E if there is a symbol a ∈ Σ such that f(a) = x,

• Two variables are connected by an edge if they are values of different
mappings on the same symbol of the alphabet, and these mappings appear in
outcome formulas of the same parametrized experiment. Formally, (x1, x2) ∈
E if there is a symbol a ∈ Σ and mappings f1, f2 ∈ F such that f1(a) = x1,
f2(a) = x2, and there is a parametrized experiment t ∈ T and a number

32

4. Experiment equivalence and algorithms

k ≤ nt such that both f1($k) and f2($k) appear in the outcome formulas
of the parametrized experiment t.

• The vertices corresponding to mappings have their own labels. The vertices
corresponding to variables are labelled “variable”, expect for the variables
that appear directly in some outcome formula of a parametrized experiment.
These have their own labels as well.

Example 4.3. The base graph for the counterfeit coin problem with 4 coins is
shown in Figure 4.4 on the left. Note that vertices y and fx have separate labels
while other vertices are labelled “variable”.

y x1 x2 x3 x4

fx

1A 1C1B

2B 2C

3A 3B 3C

2A

f1

f2

f3

Figure 4.4: Base graph for the counterfeit coin problem with 4 coins (left) and
for Mastermind with 3 pegs and 3 colours (right).

A more complicated example is the base graph for Mastermind with 3 pegs and 3
colours, shown on the right-hand side. The vertices f1, f2, f3 have separate labels,
all other vertices are labelled “variable”. For simplicity, we leave out the symbol x
in the figure, e.g. write 1A instead of x1A. ⧫

Lemma 4.5. Let π be an automorphism of B. Then π∣X ∈ Π.

Proof. Let π be an automorphism ofB and (t, p) an experiment with a parametriza-
tion p = p1p2 . . . pn. We show that there exists a π-symmetrical experiment to(t, p).
Let Fi ⊆ F be a set of mappings that are present in some outcome formula of t
with parameter $i. The vertices f(pi) for f ∈ Fi form a clique in B and so must
the vertices π(f(pi)) for f ∈ Fi. Since mappings F have pairwise disjoint images,
two variables x1, x2 can be connected by an edge only if there is a symbol k ∈ Σ
and mappings f, g ∈ F such that f(k) = x1, g(k) = x2.

We define ri as a symbol of Σ that satisfies f(ri) = π(f(pi)) for some f ∈ Fi. There
always exists such ri, because f(pi) cannot be mapped to a vertex that is not
connected to f . Due to the property above, if f(ri) = π(f(pi)) holds for some
f ∈ Fi, it holds for all f ∈ Fi and the definition is thus correct.

Now, consider the experiment (t, r), where r = r1r2, . . . rn. All variables appearing
directly in the parametrized formula are stabilized by π and for all expressions

33

4. Experiment equivalence and algorithms

f($i) it holds f(ri) = π(f(pi)) by the construction of ri, which means that (t, r)
is π-symmetrical to (t, p). ∎

Experiment graph

Let ϕ ∈ formX be a formula. An x-rooted tree of ϕ is a graph created from the
syntax tree of ϕ by unification of the leaves that correspond to the same variables
and adding a special vertex with label x that is connected to the root of the syntax
tree, i.e. to the top-level operator of ϕ. Other vertices of the graph are labelled by
their type (e.g. “variable”, “and-operator”, etc.)

In this construction, we need the trees of two formulas to be isomorphic if and
only if the formulas are syntactically equivalent. This clearly holds if all the
operators are commutative. As the only non-commutative operator is implication,
we substitute subformulas of the form ϕ→ ψ with an equivalent formula ψ ∨ ¬ϕ.

Let B be the base graph for the given game, ϕ ∈ form′ some partial knowledge
and e an experiment. The experiment graph Bϕ,e is constructed as follows.

• Begin with the graph B.

• Add the “knowledge”-rooted tree of ϕ.

• For each outcome ψ ∈ Φ(e), add the “outcome”-rooted tree of ψ.

Theorem 4.6. If Bϕ,e1
is isomorphic to Bϕ,e2

, then e1 ≅ϕ e2.

Proof. Let ρ be the graph isomorphism of Bϕ,e1
and Bϕ,e2

and let π = ρ∣X , consid-
ered as a permutation of X. Since B is the vertex-induced subgraph of both Bϕ,e1

and Bϕ,e2
by the set of vertices X ⊍ F , π is a member of Π by Lemma 4.5.

The isomorphism ρ maps the only “knowledge”-labelled vertex in the first graph
to the only “knowledge”-labelled vertex in the second graph, which implies the
equivalence of the formulas, ϕπ ≡ ϕ. Similarly, “outcome”-labelled vertices are
mapped to “outcome”-labelled vertices, which means that {ψπ ∣ψ ∈ Φ(e1)} = Φ(e2).
This is sufficient for the experiments to be equivalent with respect to ϕ. ∎

Example 4.7. Recall the running example of the counterfeit coin problem with
four coins. Base graph for the game was shown in Example 4.3. Let ϕ = ϕ0∧¬(x1∨

x2) be the accumulated knowledge of the solving process (12,=) and let e be the
experiment 3124. The experiment graph Bϕ,e is shown in Figure 4.8; Ex1 denotes
the exactly1 operator.

Unfortunately, the graph for experiment 43 is clearly not isomorphic to this
graph, although the experiments are equivalent with respect to ϕ. We address
this problem in the following. ⧫

34

4. Experiment equivalence and algorithms

y

x1

x3

x2

x4fx

knowledge

∨

Ex1

outcome

outcome
outcome

∨

∧

∧

∧

∧

∨

∨

∨

¬ ¬

∨

∨

¬

∨

¬

Figure 4.8: Experiment graph for 3124 with knowledge ϕ0 ∧ ¬(x1 ∨ x2).

y

x1

x3

x2

x4fx

knowledge
Ex1

outcome

outcome
outcome

∨

∧

∧

∧

∧

∨

∨

¬

¬

¬

Figure 4.9: Simplified experiment graph for 3124 with knowledge ϕ0 ∧ ¬(x1 ∨ x2).

Improvement by fixed variables

The previous example shows that the method explained above does not detect some
basic equivalences. To address the problem, we suggest the following improvement
to the construction of Bϕ,e.

1. Compute fixed variables of the formula ϕ using a SAT solver.

2. Simplify the formula ϕ with the knowledge of its fixed variables.

3. Simplify the outcomes of e, formulas ψ ∈ Φ(e), with the knowledge of fixed
variables of ϕ.

4. Construct the graph as described above.

5. Label the vertices corresponding to the fixed variables with the label “false”
or “true”, according to their fixed value.

35

4. Experiment equivalence and algorithms

As the simplified formulas are equivalent to the original formulas, Theorem 4.6
also holds if the graphs Bϕ,e1

, Bϕ,e2
are constructed with this approach.

Example 4.10. Let us apply the suggested improvement on the previous example.
The formula ϕ = ϕ0∧¬(x1∨x2) fixed variables x1 and x2 to false. Figure 4.9 shows
the constructed experiment graph after the simplification of the formulas.

The vertices x1 and x2 are now labelled “false” and are connected only to the
vertex fx. Compare the structure with the graph in Figure 4.8. Note that the
graph is now isomorphic to the graph of the experiment 43. ⧫

Algorithm 4.11 describes the elimination of equivalent experiments with respect
to a formula ϕ, which is a straightforward application of the method described in
this section. We assume there is a tool available for construction of the canonical
labelling of a given graph, which is used to decide graph isomorphism.

Algorithm 4.11: Elimination of equivalent experiments

Input: formula ϕ
Output: set S ⊆ E, such that ∀e ∈ E ∃s ∈ S. e ≅ϕ s

1 B ← construct the base graph for the game
2 fixed← compute fixed variables of ϕ using a SAT solver
3 ϕ′ ← substitute values for fixed variables in ϕ and simplify
4 Label the vertices in B corresponding to the fixed variables with their fixed

value
5 Add the “knowledge”-rooted tree of ϕ′ to B
6 S ← ∅

7 hash← an empty hash table for graphs
8 for e ∈ E do
9 Be ← clone B

10 for ψ ∈ Φ(e) do
11 ψ′ ← substitute values for fixed in ψ and simplify
12 Add the “outcome”-rooted tree of ψ′ to Be

13 Be ← canonize Be

14 if Be is not present in hash then
15 hash.insert(Be)
16 S ← S ∪ {e}
17 return S

36

4. Experiment equivalence and algorithms

4.2 Well-formed check

Experiment equivalence can be used during the verification that a given game is
well-formed, as stated by the following lemma.

Lemma 4.12. Let S ⊆ E be a subset of experiments such that for every e ∈ E,
there exists s ∈ S such that e ≅ϕ0

s. If the formula ϕ0 ⇒ exactly1 (Φ(e′)) is a
tautology for all s ∈ S, then the game is well-formed.

Proof. Assume by contradiction that the game is not well formed, i.e. there is
e ∈ E and v ∈ val′ such that the number of formulas in Φ(e) satisfied by v is not
equal to one.

If e ∈ S, the formula ϕ0⇒ exactly1 (Φ(e′)) is not satisfied by v. Contradiction.

Otherwise, there exists s ∈ S such that e ≅ϕ0
s, which means that there exists

π ∈ permX such that {ϕ0 ∧ ψ ∣ ψ ∈ Φ(e)} = {(ϕ0 ∧ ψ)π ∣ ψ ∈ Φ(s)}. Since ϕ0 ⇒

exactly1 (Φ(s)) is a tautology, the permuted formula ϕπ0 ⇒ exactly1 (ψπ ∣ ψ ∈
Φ(s)) is a tautology as well. Therefore, exactly one formula from the set {(ϕ0 ∧

ψ)π ∣ ψ ∈ Φ(s)} is satisfiable and the same holds for {ϕ0 ∧ ψ ∣ ψ ∈ Φ(e)}, which
implies that ϕ0⇒ exactly1 (Φ(e)) is a tautology. ∎

4.3 Analysis of one-step look-ahead strategies

The following lemma gives us a right to disregard equivalent experiments during
the analysis of some one-step look-ahead strategies.

Lemma 4.13. Let f ∶ 2form′
→ R be a function such that f(Ψ) = f({ϕπ ∣ ϕ ∈ Ψ})

for any Ψ ⊆ form′ and π ∈ permX and let ⪯ be a total order of E. Let σ be
the one-step look-ahead strategy with respect to f and ⪯, and let ϕ be a formula.
Suppose there are experiments e1, e2 such that e1 ≅ϕ e2 and e1 ⪯ e2. Then σ(ϕ) /= e2.

Proof. If follows directly from Definition 4.1 and the property of f that the
function f have the same value on e1 and e2, i.e.

f({ϕ ∧ψ ∣ ψ ∈ Φ(e1)}) = f({ϕ ∧ψ ∣ ψ ∈ Φ(e2)}).
Since e1 ⪯ e2, the strategy always prefers e1 to e2. ∎

Note that all one-step look-ahead strategies discussed in Section 3.4 satisfy the
condition of the lemma. In general, any function based on satisfiability, the number
of models and/or the number of fixed variables of the formulas will satisfy this
requirement as these function are permutation independent.

A recursive approach for the analysis of one-step look-ahead strategies is shown
in Algorithm 4.14. There are two options in line 5 of the Analyse function. The

37

4. Experiment equivalence and algorithms

Algorithm 4.14: Analysis of a one-step look-ahead strategy

Input: function f ∶ 2form′
→ R, total order ⪯ of E

Output: (w,a), where w and a is the worst-case and the average-case
number of experiments performed by the strategy

1 globalsum← 0
2 globalmax← 0
3 Analyse(ϕ0, 1)
4 return (globalmax, globalsum /#ϕ0)
1 Function Analyse(ϕ, depth)
2 choice←None
3 bestvalue←∞

4 S ← eliminate equivalent experiments by running Algorithm 4.11 on ϕ,
where the experiments are considered in the order given by ⪯

5 for e ∈ S (variant 1) or e ∈ E (variant 2) do
6 value← f(e) if value < bestvalue then
7 choice← e

8 bestvalue← value

9 for ψ ∈ Φ(e) do
10 if not SAT (ϕ ∧ψ) then continue
11 if #(ϕ ∧ψ) = 1 then
12 globalsum← globalsum + depth

13 globalmax←max(globalmax, depth)
14 else
15 Analyse(ϕ ∧ψ, depth + 1)

first is to use the algorithm to eliminate equivalent experiments and thus evaluate
the strategy only on a subset of experiments. The second is to go through all
possible experiments.

In general, it cannot be said which variant is faster. This depends on the ratio
between the time needed for graph canonization and the time needed for strategy
evaluation.

4.4 Optimal strategy synthesis

We suggest a method for worst-case and average-case optimal strategy synthesis
based on backtracking. In every state, we consider all possible experiments and
compute the number of steps we need if we start with this experiment. Our goal
in this section is to prove that it is enough to analyse only one experiment from

38

4. Experiment equivalence and algorithms

each equivalence class, as equivalent experiments give the same results.

First, let us define κ(ϕ) and κexp(ϕ) as the optimal number of experiments needed
to reveal the secret code when starting with knowledge ϕ in the worst-case and
in the average-case, respectively. We can say that κ(ϕ) (κexp(ϕ)) is the number
of experiments of a worst-case (average-case) optimal strategy if we change the
initial constraint of the game to ϕ.

Similarly, we define κ(ϕ, e) and κexp(ϕ, e) as the optimal number of experiment
needed to reveal the secret code when starting with knowledge ϕ and with e as
the first experiment.

There is an obvious relationship between κ(ϕ) and κ(ϕ, e) and between κexp(ϕ)
and κexp(ϕ, e). For any ϕ ∈ form′,

κ(ϕ) =min
e∈E

κ(ϕ, e), and κexp(ϕ) =min
e∈E

κexp(ϕ, e). (4.1)

Further, we can compute κ(ϕ, e) and κexp(ϕ, e) from the optimal values for the
subproblems after the first experiment. These relationships are based on the
definitions of the worst-case and average-case number of experiments of a strategy
(Λσ and Λσ

exp). For any ϕ ∈ form′ and e ∈ E,

κ(ϕ, e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if #ϕ = 1,
∞ if ∃ψ ∈ Φ(e). ϕ ∧ψ ≡ ϕ,
1 +maxψ∈Φ(e) κ(ϕ ∧ψ) otherwise.

(4.2)

κexp(ϕ, e) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if #ϕ = 1,
∞ if ∃ψ ∈ Φ(e). ϕ ∧ψ ≡ ϕ,
1 +

∑ψ∈Φ(e)#(ϕ∧ψ)⋅κexp(ϕ∧ψ)

#ϕ
otherwise.

Let us now define the sets of optimal choices in a state. For a ϕ ∈ form′, we define

ε(ϕ) = {e ∈ E ∣ ∀e′ ∈ E. κ(ϕ, e) ≤ κ(ϕ, e′)}, and

εexp(ϕ) = {e ∈ E ∣ ∀e′ ∈ E. κexp(ϕ, e) ≤ κexp(ϕ, e′)}.
The following lemma is a straightforward consequence of the definitions of κ and ε.

Lemma 4.15. If σ is a strategy such that σ(ϕ) ∈ ε(ϕ) for every ϕ ∈ form′, σ
is worst-case optimal. Similarly, if σ′ is a strategy such that σ′(ϕ) ∈ εexp(ϕ) for
every ϕ ∈ form′, σ′ is average-case optimal.

Now, we are ready for the main theorem of this section. The first part gives us a
right to compute the value of κ on symmetrical formulas only once. The second
part allows us to consider only one experiment from each equivalence class of
E/ ≅ϕ in every state. The exact algorithm for optimal strategy synthesis with
further optimizations is described in Section 5.3.

39

4. Experiment equivalence and algorithms

Theorem 4.16. For every ϕ ∈ form′,

1. κ(ϕ) = κ(ϕπ) and κexp(ϕ) = κexp(ϕπ) for all π ∈ Π, and

2. if e1 ≅ϕ e2, then e1 ∈ ε(ϕ)⇔ e2 ∈ ε(ϕ) and e1 ∈ εexp(ϕ)⇔ e2 ∈ εexp(ϕ).

Proof. The proof for the worst case (κ, ε) and for the average case (κexp, εexp) is
exactly the same, so we show only the proof for the worst case.

Since π ∈ Π, there exists a π-symmetrical experiment eπ to e for every e ∈ E.
Recall that Φ(eπ) = {ψπ ∣ ψ ∈ Φ(e)}. We show by induction on the number of
models of ϕ that κ(ϕ, e) = κ(ϕπ, eπ), which is sufficient for the first part.

As #ϕ = #ϕπ, the statement follows directly from (4.1) and (4.2) for formulas
with one model. For the induction step, observe that #(ϕπ ∧ψπ) = #(ϕ ∧ψ) and,
by the induction hypothesis, κ(ϕπ ∧ ψπ) = κ(ϕ ∧ ψ) if ϕ /≡ ϕ ∧ ψ. The statement
now follows from (4.2) as the right sides are equal.

For the second part, it suffices to prove that κ(ϕ, e1) = κ(ϕ, e2). As the experiments
are equivalent, there exists a permutation π ∈ Π, such that {ϕ ∧ψ ∣ ψ ∈ Φ(e1)} ={(ϕ ∧ ψ)π ∣ ψ ∈ Φ(e2)}. The equation now follows from (4.2) and the facts that
#ϕ =#ϕπ and κ(ϕ) = κ(ϕπ) (proven in the first part). ∎

A recursive algorithm for the computation of the value of the worst-case and the
average-case optimal strategy, κ(ϕ) and κexp(ϕ), is shown in Algorithm 4.17. The
lines marked with [W] applies only to the worst case, the lines marked with [A]
applies only to the average case.

The algorithm makes use of the first part of the theorem by caching the results and
checking that the function has not yet been called on the same or a symmetrical
formula in the begging. This is done similarly to the symmetry detection described
in Section 4.1. We construct the base graph of the game, add the “knowledge”-
rooted tree of ϕ, canonize the graph and compare with the graphs we have already
seen.

Apart from the formula ϕ, the recursive function takes another argument, opt,
which is used for branch pruning in the computation of the worst-case optimal
strategy. The value of opt is an upper bound on κ(ϕ). Therefore, if we are sure
that κ(ϕ, e) > opt for a given experiment e, we can continue with the analysis of
another experiment. A lower bound on κ(ϕ, e) can be computed using Lemma 3.11.
The initial value of opt should be ∞ or any known upper bound on κ(ϕ0).
Note that the order of the experiments in line 7 is not necessary for the correctness
of the algorithm. The idea here is to try to find a good experiment as soon as
possible, so that we can prune some branches on the lower bound check.

40

4. Experiment equivalence and algorithms

Algorithm 4.17: Computation of the worst-case (W) and the average-case (A)
optimal number of experiments.

1 Function Optimum(ϕ, opt)
2 if #ϕ = 1 then return 0
3 Compute a canonical form of ϕ. If the function has already been called on

ϕ or a symmetrical formula, use the cached result.
4 [W] lb← LowerBound(ϕ)
5 [W] if lb > opt then return ∞

6 S ← compute a subset of experiments such that e ∈ E ⇒ ∃e′ ∈ S. e ≅ϕ e′

7 for s ∈ S, ordered by maxψ∈Φ(s)#(ϕ ∧ψ) do
8 if only one of ϕ ∧ψ, ψ ∈ Φ(s) is satisfiable then continue
9 val ← 0

10 for ψ ∈ Φ(s) do
11 if SAT (ϕ ∧ψ) then
12 [W] val ←max(val,1 +Optimum(ϕ ∧ψ, opt − 1))
13 [A] val ← val +#(ϕ ∧ψ) ⋅ (1 +Optimum(ϕ ∧ψ, opt − 1))
14 [A] val ← val /#(ϕ)
15 if val < opt then opt← val

16 Store the information that the value for ϕ is opt
17 return opt

41

5 The Cobra tool

Development of a general tool for code-breaking game analysis and verification of
feasibility and applicability of the suggested algorithms is an important part of
this work.

We named the created tool Cobra, the code-breaking game analyser. Input of
the tool is a game specification in a special language, which we describe first.
Basic usage is explained afterwards with descriptions of various tasks the tool
can perform with a given game. Notes on dependencies on external tools, on
extensibility of Cobra and some more implementation details are described in
later sections.

Well-documented source codes of the tool, together with specifications of code-
breaking games described in Chapter 2 can be found in the electronic attachment
of the thesis. A git repository on GitHub1 has been used during the development
process, so another way of obtaining the source codes is by cloning the repository
at https://github.com/myreg/cobra. This website also serves as a homepage
of the project, and contains all related documents.

Cobra is available under BSD 3-Clause License2, text of which is a part of the
source codes.

5.1 Input language

First, we describe the low-level language that is the input format of Cobra. Then,
the language is equipped with a preprocessor that allows macro generation of the
low-lever language.

Low-level language

The low-level language is based directly on Definition 3.1, the formal definition of
code-breaking games. It is case-sensitive and whitespace is not significant at any
position.

From a lexical point of view, there are three atoms. Identifier (<ident>), is a string
starting with a letter or underscore that can contain letters, digits and underscores.
Integer (<int>) is a sequence of digits. String (<string>) is a sequence of arbitrary
characters enclosed in quotes. Further, list of X (<x-list>) is a comma-separated
list of atoms of type X, generated by the grammar

<x-list> ∶∶= <x> ∣ <x-list> , <x>.

1. http://www.github.com

2. http://opensource.org/licenses/BSD-3-Clause

43

https://github.com/myreg/cobra
http://www.github.com
http://opensource.org/licenses/BSD-3-Clause

5. The Cobra tool

Variable <ident> Declares a variable with a given identifier.
Variables <ident-list> Declares variables with given identifiers.
Constraint <formula> Defines the initial constraint ϕ0.
Alphabet <string-list> Defines the parameter alphabet Σ.
Mapping <ident> <ident-list> Defines a mapping with a given identifier.

The seconds argument is a list of variable
identifiers defining the values of the mapping
for all elements of the alphabet.

Experiment <string> <int> Opens a section defining a new experiment
named by the first argument and having the
number of parameter given by the second ar-
gument. The section is closed automatically
with a definition of a new experiment.

Params-distinct <int-list> Defines a restriction on the parameters of
the experiment, requiring that parameters
at specified positions are different. This is
the only type of allowed restriction.

Params-sorted <int-list> Declares that the order of the parameters
at specified positions is not important and,
therefore only parametrizations where these
parameters are sorted can be considered.
This is not necessary for the game speci-
fication but can significantly improve the
execution time.

Outcome <string> <formula> Defines an outcome of the experiment named
by the first argument.

Table 5.1: Statements in the low-level language.

A game specification is a sequence of statement on separate lines.
Supported statements are and their descriptions are listed in Ta-
ble 5.1. Valid values of <formula> are defined by the grammar
<formula> ::= <ident1> ∣ (<formula>) ∣ ! <formula>∣ <formula> ○ <formula> ∣ X-<int1> (<formula-list>),∣ <ident2> ($ <int2>),

where <ident1> is an identifier of a variable and ○ ∈ {and, &, or, ∣ , –>, <–, <–>} is
a standard logical operator with its usual meaning.

X is a numerical operator atleast, atmost or exactly, explained in Section 3.1.
These operators are non-standard and could be cut out. However, they are
quite common and useful in specification of code-breaking games and their naive

44

5. The Cobra tool

expansion to standard operators causes exponential expansion of the formula
(with respect to k). Hence we support these operators in the language and we
handle them specifically during the transformation to the conjunctive normal
form, avoiding the exponential expansion by introduction of new variables. The
conversion is described in detail in Section 5.5.

The last rule of the grammar describes application of a mapping on a parameter
and is not allowed in the formula defining the initial constraint of the game.

Example 5.2. Recall the running example introduced in Example 3.4. The
counterfeit-coin problem with four coins can be specified in the low-level language
as follows.

VARIABLES y, x1 , x2 , x3 , x4

CONSTRAINT Exactly -1(x1 , x2 , x3 , x4)

ALPHABET ’1’, ’2’, ’3’, ’4’

MAPPING X x1 , x2 , x3 , x4

EXPERIMENT ’weighing2x2 ’ 4

PARAMS_DISTINCT 1, 2, 3, 4

OUTCOME ’lighter ’ ((X$1 | X$2) & !y) | ((X$3 | X$4) & y)

OUTCOME ’heavier ’ ((X$1 | X$2) & y) | ((X$3 | X$4) & !y)

OUTCOME ’same ’ !(X$1 | X$2 | X$3 | X$4)

⧫

To parse this language, we use a standard combination of GNU Flex3 for lexical
analysis and GNU Bison4 for parser generation. The exact LALR grammar we
use can be found in the cobra.ypp file in the source codes.

Python preprocessing

Although the low-level language is sufficient for code-breaking game specification,
it is not very user-friendly and simple changes in a game may require extensive
changes in the input file. For example, if you want to change the number of coins
in the counterfeit coin problem, you have to add or remove some experiment
sections.

The situation is even worse in Mastermind, where the outcome formulas are
generated by the algorithm described in Example 3.8. We would need to write a
script to generate a specification of the game.

This is the reason why we suggest using a preprocessor. As the demands of different
games may significantly differ, we decided not to create a special preprocessing
engine and use Python5, a popular and intuitive scripting language, instead.

3. http://flex.sourceforge.net/

4. http://www.gnu.org/software/bison/

5. https://www.python.org

45

http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
https://www.python.org

5. The Cobra tool

Function Type of x Type of y
Variable(x) string -
Variables(x) list of strings -
Constraint(x) formula (as a string) -
Alphabet(x) list of strings -
Mapping(x, y) string list of strings
Experiment(x, y) string integer
Params-distinct(x) list of integers -
Params-sorted(x) list of integers -
Outcome(x, y) string formula (as a string)

Table 5.3: Types of the extra functions allowed in the input files.

Now, the input can be an arbitrary Python script with calls to our extra functions
Variable, Variables, Constraint, Alphabet, Mapping, Experiment,
Params-distinct and Outcome, which are directly mapped to the constructs
in the low-level language. The generation of the low-level language is carried out
by execution of the Python file with those special function ingested. The functions
only print the corresponding low-level language constructs to an output file. Types
of their parameters are listed in Table 5.3.

Example 5.4. We show one possible way to specify the counterfeit coin problem
in the code snipped below.

N = 12

x_vars = ["x" + str(i) for i in range(N)]

VARIABLES (["y"] + x_vars)

CONSTRAINT ("Exactly -1(%s)" % ",".join(x_vars))

ALPHABET ([str(i) for i in range(N)])

MAPPING ("X", x_vars)

Helper for generation of a disjunction of parameters

For example , params (2 ,4) = "X$2 | X$3 | X$4"

params = lambda n0 , n1: "|".join("X$" + str(i)

for i in range(n0 , n1 + 1))

for m in range (1, N//2 + 1):

EXPERIMENT (" weighing " + str(m), 2*m)

PARAMS_DISTINCT (range (1, 2*m + 1))

OUTCOME (" lighter ", "((%s) & !y) | ((%s) & y)" %

(params (1, m), params (m+1, 2*m)))

OUTCOME (" heavier ", "((%s) & y) | ((%s) & !y)" %

(params (1, m), params (m+1, 2*m)))

OUTCOME ("same", "!(%s)" % params (1, 2*m))

46

5. The Cobra tool

5.2 Compilation and basic usage

To compile Cobra, run make in the program folder. This automatically compiles the
external tools and builds the necessary libraries. If everything finishes successfully,
the binary executable cobra-backend is created and ready for being used. If a
problem occurs during the compilation, please refer to the Requirements paragraph
of Section 5.7.

The basic syntax to launch the tool is the following.

./cobra [-m <mode>] [-s <sat solver>] [other options] <input file>

The mode of operation, given with the -m switch, specifies the task that will be
performed with a given game. The four possible modes are described in Section 5.3,
together with descriptions of supplemental options for each mode. The -b switch
specifies a SAT solver that will be used for analysis of propositional formulas.
Details can be found in Section 5.5.

The main executable, cobra, is a Python script that preprocesses the input file
and writes the low-level game specification to the .cobra.in file. Then it executes
cobra-backend and passes on all the options given by the user. Therefore, you
can run Cobra on a low-level input format by launching cobra-backend directly
with the same syntax.

Before cobra-backend exits, it always outputs a time overview section, with
information on how much time have been spent on which operations and how
many calls to the SAT solver and to the graph canonization tool have been made.

===== TIME OVERVIEW =====

Total time: 74.68s

Bliss (calls/time): 1984 / 0.10s

SAT solvers sat fixed models

* PicoSolver 59 / 0.09s 197 / 0.26s 5635 / 73.23s

Figure 5.5: An example of the time overview section.

5.3 Modes of operation

Overview mode [o, overview] (default)

./cobra -m overview <input file>

Overview mode serves as a basic check that the input file is syntactically correct
and that the specified game is sensible. In this mode, the tool prints the basic
information about the loaded game, such as the number of variables, the number

47

5. The Cobra tool

of experiments, size of the search space, size of the preprocessed input file, trivial
bounds on the worst-case and the average-case number of experiments and so on.

It also performs a well-formed check, i.e. it verifies that the specified game is well-
formed according to Definition 3.6. The algorithm for this purpose follows directly
from Lemma 4.12. For each experiment, we verify that ϕ0 → exactly1(ψ1, . . . , ψk),
where ψ1, . . . ψk are the outcomes of the experiment, is a tautology. This is be
done by negating the formula, passing it to a SAT solver, asking for satisfiability
and expecting a negative result.

If a problem is found, the tool outputs an assignment and an experiment for which
no outcome, or more that one outcome, is satisfied.

Well - formed check ... failed !

EXPERIMENT : weighing1 1 2

PROBLEMATIC ASSIGNMENT :

TRUE: y x3

FALSE: x1 x2 x4 x5 x6 x7 x8 x9 x10 x11 x12

Figure 5.6: An example of a failed well-formed check in the
counterfeit coin problem with no “=” outcome.

Simulation mode [s, simulation]

./cobra -m simulation -e <strategy> -o <strategy> <input file>

In the simulation mode, you specify a strategy for the codebreaker (for experiment
selection) and for the codemaker (for outcome selection). This can be done using
the -e and -o switches.

Here, the codemaker is not considered a player who chooses the secret code in
the beginning and then only evaluates the experiments, but a player who chooses
the outcomes of the experiments as they come according to his will. The only
condition is that the outcomes are consistent.

For the codebreaker, Cobra supports all one-step look-ahead strategies described
in Section 3.4: max-models, exp-models, ent-models, parts, min-fixed and
exp-fixed. The codemaker can either use the strategy models that selects an
outcome with the maximal number of models, or the strategy fixed that select
an outcome with the minimal number of fixed variables.

Apart from these, the tool supports two extra options for both players,
interactive and random, which are not strategies in the sense of Definition 3.9.

If interactive is specified as the codebreaker’s strategy, the tool prints a list of all
experiments in each round and the user is asked to select an experiment from the
list. This effectively allows a user to play the game against a codemaker’s strategy.
Similarly, if interactive is the codemaker’s strategy, all possible outcomes

48

5. The Cobra tool

are printed after each experiment and the user is asked to select one of them.
Unsatisfiable outcomes are printed as well but are marked accordingly and cannot
be selected. In the random mode, the experiment, or the outcome of an experiment,
is chosen from the list at random.

The default values for both players are interactive, so if you run the simulation
mode without any further options, you will be first asked to select the experiment
and then to select its outcome.

Strategy analysis mode [a, analysis]

./cobra -m analysis -e <strategy> <input file>

In the analysis mode, the tool computes the worst-case and the average-case
number of experiments needed by a given codebreaker’s strategy to reveal the
secret valuation of the variables. Supported strategies for the codebreaker are the
same as in the simulation mode.

The algorithm for this task has been described in Algorithm 4.14. Two variants on
the algorithm have been proposed, one with and one without symmetry detection.
By default, the symmetry detection in turned on but can be turned off with the
--no-symmetry switch.

Optimal strategy mode [ow, optimal-worst, oa, optimal-average]

./cobra -m optimal-worst [--opt-bound <double>] <input file>

./cobra -m optimal-average [--opt-bound <double>] <input file>

In the optimal strategy mode, the tool computes the number of experiments
needed by a worst-case optimal, or an average-case optimal strategy for a given
code-breaking game.

The algorithm for this purpose has been described in Algorithm 4.17. An up-
per bound can be specified with --opt-bound switch. In some cases, this can
significantly speed up the process.

Note that the tool currently does not output the strategy in any format, it only
computes the number of experiments needed by the optimal strategy. Also note
that the this task is currently very slow even for small instances of code breaking
games. Further optimizations would be necessary for the tool to synthesise the
optimal strategy for Mastermind with 4 pegs and 6 colours in a reasonable time.

5.4 Modularity and extensibility

Cobra uses several external tools for SAT solving and graph canonization. Nowa-
days, many high-performance SAT solvers are available and multiple tools for
graph canonization exist. Cobra was developed so that other external tools with

49

5. The Cobra tool

Python

preprocessor

Code-breaking game

specification

Low-level

language

Parser

Graph

canonizer

Minisat

Picosat

Bliss

Simple solver

Computation engine

Program

options SAT

solver

Non-equivalent

experiments generator

Figure 5.7: Component diagram of Cobra.

the same functionality can be easily integrated. Figure 5.7 shows a component
diagram of the modular design of Cobra.

To integrate another SAT solver, create a new solver class that inherits from
the abstract class Solver and implement all the necessary methods. Details can
be found in the solver.h file in the source codes and the required methods are
described in the next section.

Cobra can also be easily extended with a new strategy for experiment selection.
The implementations of the supported strategies can be found in the strategy.h

and strategy.cpp files. To add a new strategy, create a corresponding function
in this file and add an entry about the strategy to the breaker strategies table
in strategy.h. The strategy function should take a list of experiments as its only
argument and return the index of the selected experiment in the list.

If the strategy is one-step look-ahead, you can use a provided template with
a corresponding lambda function. We demonstrate this possibility with a code
snippet of the implementation of the “exp-models” strategy below. For exact
details, see the documentation in the source codes.

uint breaker :: exp_num (vec <Experiment >& list) {

return minimize ([](Experiment & e){

uint sumsq = 0;

for (uint i = 0; i < e. numOfOutcomes (); i++) {

auto models = e. NumOfModelsOfOutcome (i);

sumsq += models * models ;

}

return static_cast <dobule >(sumsq) / e. TotalNumOfModels ();

}, list);

}

5.5 SAT solving

Cobra uses a SAT solver for the following tasks.

50

5. The Cobra tool

• Compute the total number of possible codes.

• Verify that an experiment is well-formed (see Section 5.3).

• Identify satisfiable outcomes of an experiment and disregard the others.

• Decide whether the game is finished – whether the accumulated knowledge
as a formula has only one model.

• Evaluate the strategies – count models, fixed variables, etc.

Most of these tasks require an incremental SAT solver, by which we mean a SAT
solver that supports incremental adding and removing constraints. Without this
feature, we would have to call the solver from a clean state many times on the
whole formula, which would ruin the computation time.

The solver must implement the following methods.

• AddConstraint(formula). Adds a constraint.

• Satisfiable() → Bool. Decides whether the current constraints are satis-
fiable.

• GetAssignment() → Assignment. After a successful Satisfiable call,
this function retrieves the satisfying assignment from the solver.

• OpenContext(), CloseContext(). OpenContext adds a context to
a stack. Every call to AddConstraint adds the constraint to the context
on the top of the stack. CloseContext removes all constraints in the
current context and removes it from the stack. It must be possible to nest
contexts arbitrarily.

• HasOnlyOneModel() → Bool. Decides whether the current constraints
have only one model. This can be done by asking whether the formula
is satisfiable and if it is, retrieving the satisfying assignment, adding a
constraint that rejects this assignment, and asking for satisfiability again.
The pseudocode of this method is shown in Algorithm 5.8.

• CountModels() → Int. SAT solvers do not typically include support
for model counting, the problem commonly referred to as #SAT. One
solution is to use a special tool designed for this purpose, such as Sharp-
SAT6[36]. However, we have not found a model counting tool that supports
incremental SAT solving.
Another option is to use an incremental SAT solver and a simple back-
tracking approach, progressively assuming a variable to be true or false
and cutting the non-perspective (unsatisfiable) branches. The pseudocode
in the form of a recursive in shown Algorithm 5.9, where the initial value
of X in the set of propositional variables.

Cobra includes three SAT solver implementations that are described next.

6. https://sites.google.com/site/marcthurley/sharpsat

51

https://sites.google.com/site/marcthurley/sharpsat

5. The Cobra tool

Algorithm 5.8: Decision whether a formula has exactly one model

1 if not Satisfiable() then return false
2 v ← GetAssignment()
3 OpenContext()
4 AddConstraint(x1 ∣ . . . ∣ xn), where xi is ¬xi if v(xi) = 1 and xi otherwise
5 sat←Satisfiable()
6 CloseContext()
7 return ¬sat

Algorithm 5.9: Model counting

1 Function Count(X)
2 models← 0
3 if X = ∅ then return 1
4 x← any variable from X

5 OpenContext()
6 AddConstraint(x)
7 if Satisfiable() then models←models + Count(X ∖ {x})
8 CloseContext()
9 OpenContext()

10 AddConstraint(¬x)
11 if Satisfiable() then models←models + Count(X ∖ {x})
12 CloseContext()
13 return models

PicoSat

Picosat7 [37] is a simple, extensible SAT solver, which supports incremental SAT
solving exactly in the way we need. Picosat is available under the MIT License.

Bindings to Picosat are implemented in the PicoSolver class. This class also
implements the model counting algorithm 5.9 as Picosat does not support model
counting itself.

MiniSat

Minisat8 [38] is a minimalistic, extensible SAT solver, which won several SAT
competitions in the past. Minisat is also available under the MIT License.

Minisat does not support incremental SAT solving in the manner we described but

7. http://fmv.jku.at/picosat/

8. http://minisat.se/

52

http://fmv.jku.at/picosat/
http://minisat.se/

5. The Cobra tool

it supports “assumptions”. You can assume arbitrary number of unit clauses (i.e.
that a variable is true of false) and ask for satisfiability under these assumptions.

The behaviour we need can be simulated by the assumptions in the following way.
For each context, we create a new variable, say a. Then, instead of adding clauses
C1,C2, . . . ,Cn to the context, we add clauses {¬a,C1}, {¬a,C2}, ... {¬a,Cn} and
ask for satisfiability under the assumption a (in general, under the assumption
that all variables corresponding to the open contexts are true). Afterwards, when
a context is closed, we add a unit clause {¬a}, which effectively removes all the
clauses in the context.

Bindings to Minisat are implemented in the MiniSolver class. This class imple-
ments the context opening and closing in the way described above and the model
counting algorithm 5.9.

Simple solver

We include a special SAT solver, called SimpleSolver to compare the proper SAT
solvers with a simple approach based on model enumeration. Simple solver uses
another SAT solver (Minisat) to generate all models of the first constraint, which
is carried out in the same way as model counting described above.

Satisfiability questions with additional constraint are resolved by going though
all possible codes (assignments) and checking that the constraints are satisfied.
Model counting and the other functions are implemented similarly.

Note that Simple solver is optimized for context opening and closing. It remembers
which models become unsatisfied in which contexts and adds them back to the
list of possibilities when the context is closed.

Transformation to CNF

The input formula for a SAT solver must be typically specified in the conjunctive
normal form (CNF). Since we do not have such requirement for formulas in our
input format, and since we allow non-standard numerical operators, we need to
transform a formula to CNF first.

The standard transformation works as follows. First, we express the formula in a
form that uses only negations, conjunctions and disjunctions. Then, we transform
the formula to negation normal form using De Morgan’s laws and, finally, we use
distributivity of conjunction and disjunction to move all conjunctions to the top
level. This procedure may lead to exponential explosion of the formula, so another
solution, called Tseitin transformation, is commonly used for transformation of a
formula to CNF[39].

Imagine the input formula as a circuit with gates corresponding to the logical
operators. Input vectors correspond to variable assignments and the circuit output

53

5. The Cobra tool

is true if and only if the input assignment satisfies the formula. For each gate, a new
variable representing its output is created. The resulting formula is a conjunction
of subformulas that enforce the proper operation of the gates.

For example, consider an AND gate, inputs of which corresponds to variables x, y
and output corresponds to a variable w. We need to ensure that w is true if and
only if both x and y are true, which is done by adding a subformula w↔ (x ∧ y),
which can be expressed in CNF as

(¬x ∨ ¬y ∨w) ∧ (x ∨ ¬w) ∧ (y ∨ ¬w).
Other gate types are handled similarly and this is done for all gates in the circuit.
Finally, the variable corresponding to the result of the top level operator is added
to the resulting formula as a unit clause.

It remains to explain how we handle the numerical operators atleast, atmost
and exactly. We show the transformation of exactlyk (f1, . . . , fn), the other
operators are transformed analogically. For simplicity, assume fi are variables; if
not, we take the variable corresponding the the subformulas.

For each l ∈ {0,1, . . . , k} and m ∈ {1, . . . , n}, l ≤m, we create a new variable zl, m
which will be true if and only if the formula exactlyl (f1, . . . , fm) is satisfied. To
enforce this assignment, we add subformulas

zl, m↔ (fm ∧ zl−1, m−1) ∨ (¬fm ∧ zl, m−1)
for each l > 1, m > 1 (in CNF). Special cases l =m and l = 0 are equivalent to a
conjunction and to a conjunction of the negated variables, respectively, and are
transformed accordingly.

The size of the resulting subformula is linear in n⋅k. Although this is not polynomial
in the size of the input (supposing k is encoded in binary form) it is much better
than a naive solution that expresses the formula as a conjunction of the (n

k
)

possibilities, which would be double exponential.

5.6 Graph isomorphism

To implement the suggested method for detection of equivalent experiments, we
need a method to decide whether two given graphs are isomorphic. This problem is
famous for not being proven either P-complete or NP-complete, so no polynomial
algorithm for the problem is known. However, software tools are available for
graph canonization, which are quite efficient for sparse graphs and can be used to
decide graph isomorphism by comparison of the canonical forms of the graphs.

Nauty9[40] and Bliss10[41] are the most well-known tools for this purpose. These
programs are primarily designed to compute automorphism groups of graphs but

9. http://pallini.di.uniroma1.it

10. http://www.tcs.hut.fi/software/bliss

54

http://pallini.di.uniroma1.it
http://www.tcs.hut.fi/software/bliss

5. The Cobra tool

they can produce a canonical labelling of the graph as well. For various reasons
including simple integration, we decided to use Bliss, which is available under the
GNU GPL v3 license.

For comparison of Nauty and Bliss, there are several benchmarks on the Nauty’s
website and we recommend an overview of the algorithms used by these tools in
[42].

5.7 Implementation details

Programming language and style

Since the problems we attempt to solve are computationally very demanding, we
had to choose a high-performing programming language. Since the external tools
we use are written in C and C++, a natural choice of a language for our tool
was C++. Cobra is written in the latest standard of the language, C++11, which
contains significant changes both in the language and in the standard libraries
and, in our opinion, improves readability and programmer’s efficiency compared
to previous versions.

We wanted the style of our code to be consistent and to use the language in the
best manner possible according to industrial practice. From the wide range of
style guides available online we chose Google C++ Style Guide[43] and made the
code compliant with all its rules except for a few exception. The only significant
violation are lambda functions, which are forbidden due to various reasons but we
think that they are more beneficial than harmful in this project.

Requirements

The usage of a modern programming language requires a modern compiler that
supports all the C++11 features we use. We have successfully tested compilation
with gcc version 4.8.2 and clang version 3.2. For the Python preprocessing, the
Python interpreter version 2.6 or higher is required.

The tool is platform independent. We have been able to successfully compile and
test the functionality of the tool on Linux (Ubuntu 14.04) and Mac OS X (10.9).

Testing

Correctness is automatically a top priority for a tool of this kind so we implemented
two automatic testing methods to capture potential programmer’s error as soon
as possible.

Unit testing has became a popular part of software development process in the
last decades and is very effective for testing the functionality of particular modules

55

5. The Cobra tool

and functions. From the large amount of unit test frameworks available for C++,
we have chosen Google Test11, because of its simplicity, minimal amount of work
needed to add new tests and very good assertion support. The unit tests are
automatically compiled and executed if you run make utest in the tool directory.

Functional tests provide a great method to test end-to-end functionality of the
software. These tests execute the program on sample inputs and compare the
output with their expectations. We have implemented several functional tests
for the most common operations. They can be run by make ftest in the tool
directory.

11. https://code.google.com/p/googletest/

56

https://code.google.com/p/googletest/

6 Experimental results

In this chapter, we present experimental results of our tool on several code-breaking
games. We compare the running times of the tool on various tasks with different
SAT solvers and evaluate the proposed one-step look-ahead strategies.

In the tables below, MM(n,m) refers to Mastermind with n pegs and m colours,
CC(n) refers to the counterfeit coin problem with n coins, BG(n,m) refers to the
Bags of gold problem with n bags and balance scale capacity m and SM(n,m)
refers to Mastermind with black markers with n pegs and m colours.

6.1 Performance

All experiments have been run on Intel Core i7-3770 3.40GHz and Cobra was
compiled with gcc 4.8.2. The symmetry breaking engine has been turned off for
this section, so that the differences between SAT solvers become more apparent.

The numbers in the following tables report the running times in seconds with
the respective SAT solvers. The last column (“# calls”) states the total number
of calls to the SAT solver during the task. Model counting and counting of the
number of fixed variables are considered one call.

Table 6.1 lists the running times of the well-formed check of several code-breaking
games. Naturally, proper SAT solvers are orders of magnitude faster than Simple
solver as well-formed check is based on verification of unsatisfiability of a (relatively)
large formula.

Game Simple Minisat Picosat # calls
MM(4,6) 174 2.7 3.2 1,296
MM(5,4) 217 14.3 34.8 1,024
BG(12,12) 3,539 0.5 1.1 271

Table 6.1: Running times (in seconds) of the well-formed check.

The first two lines of Table 6.2 show the execution times of the first experiment
selection in Mastermind with 4 pegs and 6 colours. The last two lines of the table
list the running times of the simulation of the respective strategies on the EDEE
code.

As can be seen from the numbers, evaluation of the “parts” strategy is slightly
faster with Minisat than with Simple solver. However, since our model counting
algorithm implemented on top of Minisat and Picosat is naive and unoptimized,
the evaluation of the “max-models” strategy is significantly faster with Simple
solver.

57

6. Experimental results

Task Simple Minisat Picosat # calls
Select first exp. (parts) 3.9 2.6 523 17,108
Select first exp. (max-models) 9.3 45.3 > 5,000 3,145
Simulate (parts on EDEE) 10.5 7.9 749 92,644
Simulate (max-models on EDEE) 15.1 32.3 3,024 31,061

Table 6.2: Running times (in seconds) of simulation and strategy evaluation on MM(4,6).

Game Strategy Simple Minisat Picosat # calls
MM(3,4) parts 0.1 0.4 13.5 13,769
MM(3,4) max-models 0.1 2.1 179 9,349
MM(3,4) exp-fixed 0.3 17.4 1,974 15,002
MM(4,4) parts 6.9 237 > 5,000 260,144
MM(4,4) max-models 5.0 1,126 > 5,000 188,828
MM(4,4) exp-fixed 24 > 5,000 > 5,000 329,820
CC(20) parts 0.1 0.3 12.8 7,718
CC(20) max-models 0.2 28 3,161 12,117
CC(20) exp-fixed 0.3 73 > 5,000 14,273

Table 6.3: Running times (in seconds) of strategy analysis.

Table 6.3 shows the running times of strategy analysis. The clear winner in this
case is Simple solver, which is not unexpected. On lower levels of the backtracking
algorithm, the analysed formulas have only very few models and the overhead with
calling a proper SAT solver is greater than the naive approach used by Simple
solver.

The results also show that for proper SAT solvers, model counting is much harder
than satisfiability questions. That is the reason why the analysis of the “max-
models” strategy takes Minisat and Picosat much more time than analysis of the
“parts” strategy.

To summarize the results of this section, Picosat turned out to be very slow on
instances of this size. Minisat proved to be useful for strategy evaluation in the
first rounds, when the number of possible models of the formula is relatively large.
Simple solver is a clear winner for strategy analysis.

A question arises whether we can benefit from a hybrid approach of using a proper
SAT solver in the first steps and switching to Simple solver when the number of
possibilities shrinks. This was, however, beyond the scope of this thesis.

58

6. Experimental results

6.2 One-step look-ahead strategies

In this section, we compare performance of one-step look-ahead strategies proposed
in Section 3.4 on the counterfeit coin problem, Mastermind, and Mastermind with
black markers only.

The counterfeit coin problem

The average-case number of experiments performed by one-step look-ahead strate-
gies in the counterfeit coin problem for the number of coins from 3 to 40 is shown
in Figure 6.4.

Notice that larger number of coins does not necessarily mean that identifying the
counterfeit coin is more difficult. For example, the “max-models” strategy needs
3.44 experiments on average to identify the counterfeit coin among 16 coins but
only 3.41 if the number of coins is 17. That is because the additional coin changes
the number of models of some outcomes, which may lead to better experiment
selection.

Interestingly, the “exp-fixed” strategy outperforms all others on 20, 21, 23, 25
and 27 coins, while it seems to be generally worse. The strategies “parts” and
“min-fixed” are clearly unsuitable for a problem of this kind.

Figure 6.4: Average-case number of experiments in the counterfeit coin problem.

59

6. Experimental results

Mastermind

Results for Mastermind are shown in Table 6.5, rounded to three decimal places.
The clear winner in the average case is the “parts” strategy, closely followed by
“max-models”.

In the worst case, “max-models” outperforms other strategies in all cases except
MM(3,2). In this case, “max-models” is unlucky in the initial state and selects the
guess AAA, which has the same maximal number of models over the outcomes
as AAB but is lexicographically smaller. All other strategies select AAB, which
turns out to be a better choice in this case.

Again, notice that larger size of the problem does not necessarily mean that
revealing the secret is more difficult, as can be seen on the values for MM(5,2)
and MM(5,3).

Game max-mod parts exp-mod ent-mod min-fix exp-fix
MM(2,3) 2.667 4 2.333 3 2.444 3 2.444 3 2.667 4 2.444 3
MM(2,6) 3.667 5 3.667 5 3.861 5 3.861 5 4.611 7 4.167 6
MM(3,2) 2.625 4 2.250 3 2.250 3 2.250 3 2.625 4 2.25 3
MM(3,6) 4.046 5 3.977 5 4.227 5 4.218 5 5.259 8 4.546 6
MM(3,8) 4.787 6 4.701 6 4.879 6 4.844 6 6.688 10 5.631 8
MM(4,2) 2.750 4 2.750 4 3.063 4 3.063 4 3.250 5 3.063 4
MM(4,6) 4.476 5 4.374 6 4.626 6 4.643 6 5.765 9 5.231 7
MM(4,7) 4.837 6 4.743 6 4.962 6 4.947 6 6.476 10 5.945 8
MM(4,8) 5.183 6 5.102 7 5.293 7 5.272 7 7.213 11 6.410 9
MM(5,2) 3.500 5 3.313 5 3.938 5 3.625 5 3.875 6 3.781 5
MM(5,3) 3.407 4 3.379 4 3.634 4 3.609 4 4.444 7 3.942 5
MM(5,4) 3.991 5 3.880 5 4.092 5 4.083 5 5.014 9 4.617 6

Table 6.5: Average-case and worst-case number of experiments
of one-step look-ahead strategies in Mastermind.

Mastermind with black markers only (string matching)

Mastermind with black markers only is an example of a code-breaking game, where
“max-models” does not perform so well. Exact values rounded to two decimal points
are shown in Table 6.6.

The best one-step look-ahead strategy for this game is “ent-models”, the strategy
based on the entropy of the number of models, closely followed by the “parts”
strategy.

60

6. Experimental results

Game max-mod parts exp-mod ent-mod min-fix exp-fix

SM(3,3) 3.15 4 2.89 4 2.89 4 2.89 4 3.52 4 3.52 4
SM(3,6) 6.1 8 5.58 7 5.74 8 5.53 7 8.3 13 8.28 13
SM(3,12) 10.76 14 10.28 13 10.5 14 10.23 13 17.41 31 13.3 22

SM(6,3) 4.94 6 4.5 7 4.5 6 4.47 6 6.5 7 6.16 7
SM(6,6) 8.61 12 8.2 12 7.99 11 7.93 11 15.8 25 15.75 25

Table 6.6: Average-case and worst-case number of experiments of one-step look-ahead strategies
in Mastermind with black markers only.

61

7 Conclusions

We presented a general model of code-breaking games based on propositional
logic, which can fit Mastermind, the counterfeit coin problem and many others.
Experiment equivalence was introduced and we proved that equivalent experiments
can be disregarded during strategy analysis and optimal strategy synthesis. We
suggested an algorithm for equivalence testing based on graph isomorphism.

A computer language for code-breaking game specification was introduced and
we developed a computer program that can perform various tasks with a given
code-breaking game. Using the tool, we reproduced some of the existing results
for Mastermind, analysed other code-breaking games and evaluated strategies for
experiment selection based on the number of fixed variables.

There are many more interesting things to try in this framework. We present a
few suggestions for future work in the next paragraphs.

First, our code-breaking game model can be further generalized in many ways.
Numerous possibilities arise if we allow experiments to have different costs. Imagine
Mastermind with another type of experiment that directly tells you a colour at a
specified position. What price must the new experiment have so that it is worth
using it, given that the standard guess has a unit cost?

Second, one-step look-ahead strategies provide us with a simple heuristics to
select experiments. However, if some experiments are assigned the same value,
the lexicographically smaller experiment is chosen, which is not very reasonable.
Randomized strategies, where the experiment is selected from the experiments
with the best value with uniform distribution may lead to many interesting results.

Third, look-ahead strategies can be naturally extended to more than one step. This
would lead to the minimax algorithm applied to the tree of possible outcomes and
experiments in the next rounds. Evaluation of such strategies would be much more
computationally demanding. Would their performance be significantly better?

Finally, several completely different approaches for strategy synthesis were sug-
gested for Mastermind. In particular, genetic algorithms proved to be very useful
for problems of larger sizes as they scale much better than the backtracking
approach. Can we apply these methods in our model?

For now, these interesting questions remain open. We hope they will lead to
further research in this area.

63

Bibliography

[1] Shan-Tai Chen, Shun-Shii Lin, and Li-Te Huang. “A two-phase optimization
algorithm for Mastermind”. In: The Computer Journal 50.4 (2007), pp. 435–
443.

[2] JJ Merelo-Guervós, P Castillo, and VM Rivas. “Finding a needle in a
haystack using hints and evolutionary computation: the case of evolutionary
MasterMind”. In: Applied Soft Computing 6.2 (2006), pp. 170–179.

[3] Howard D Grossman. “The twelve-coin problem”. In: Scripta Mathematica
11 (1945), pp. 360–363.

[4] Freeman J Dyson. “1931. The Problem of the Pennies”. In: The Mathematical
Gazette (1946), pp. 231–234.

[5] Richard K Guy and Richard J Nowakowski. “Coin-weighing problems”. In:
American Mathematical Monthly (1995), pp. 164–167.

[6] Ratko Tošić. “Two counterfeit coins”. In: Discrete Mathematics 46.3 (1983),
pp. 295–298.

[7] Anping Li. “Three counterfeit coins problem”. In: Journal of Combinatorial
Theory, Series A 66.1 (1994), pp. 93–101.

[8] László Pyber. “How to find many counterfeit coins?” In: Graphs and Com-
binatorics 2.1 (1986), pp. 173–177.

[9] Xiao-Dong Hu, PD Chen, and Frank K. Hwang. “A new competitive algo-
rithm for the counterfeit coin problem”. In: Information Processing Letters
51.4 (1994), pp. 213–218.

[10] Martin Aigner and Anping Li. “Searching for counterfeit coins”. In: Graphs
and Combinatorics 13.1 (1997), pp. 9–20.

[11] Axel Born, Cor AJ Hurkens, and Gerhard J Woeginger. “How to detect a
counterfeit coin: Adaptive versus non-adaptive solutions”. In: Information
processing letters 86.3 (2003), pp. 137–141.

[12] Andrzej Pelc. “Searching games with errors—fifty years of coping with liars”.
In: Theoretical Computer Science 270.1 (2002), pp. 71–109.

[13] A Pelc. “Detecting a counterfeit coin with unreliable weighings”. In: Ars
Combinatoria 27 (1989), pp. 181–192.

[14] Wen-An Liu, Qi-Min Zhang, and Zan-Kan Nie. “Searching for a counterfeit
coin with two unreliable weighings”. In: Discrete applied mathematics 150.1
(2005), pp. 160–181.

65

[15] Annalisa De Bonis, Luisa Gargano, and Ugo Vaccaro. “Optimal detection of a
counterfeit coin with multi-arms balances”. In: Discrete applied mathematics
61.2 (1995), pp. 121–131.

[16] Tanya Khovanova. “Parallel Weighings”. In: arXiv preprint arXiv:1310.7268
(2013).

[17] Vasek Chvátal. “Mastermind”. In: Combinatorica 3.3-4 (1983), pp. 325–329.

[18] Jeff Stuckman and Guo-Qiang Zhang. “Mastermind is NP-complete”. In:
arXiv preprint cs/0512049 (2005).

[19] Donald E Knuth. “The computer as master mind”. In: Journal of Recre-
ational Mathematics 9.1 (1976), pp. 1–6.

[20] Robert W Irving. “Towards an optimum Mastermind strategy”. In: Journal
of Recreational Mathematics 11.2 (1978), pp. 81–87.

[21] E Neuwirth. “Some strategies for Mastermind”. In: Zeitschrift für Operations
Research 26.1 (1982), B257–B278.

[22] Barteld P Kooi. “Yet Another Mastermind Strategy.” In: ICGA Journal
28.1 (2005), pp. 13–20.

[23] Kenji Koyama and Tony W Lai. “An optimal Mastermind strategy”. In:
Journal of Recreational Mathematics 25.4 (1993), pp. 251–256.

[24] Geoffroy Ville. “An Optimal Mastermind (4, 7) Strategy and More Results
in the Expected Case”. In: arXiv preprint arXiv:1305.1010 (2013).

[25] Lotte Berghman, Dries Goossens, and Roel Leus. “Efficient solutions for
Mastermind using genetic algorithms”. In: Computers & operations research
36.6 (2009), pp. 1880–1885.

[26] Alexandre Temporel and Tim Kovacs. “A heuristic hill climbing algorithm
for Mastermind”. In: UKCI’03: Proceedings of the 2003 UK Workshop on
Computational Intelligence, Bristol, United Kingdom. 2003, pp. 189–196.

[27] Alexey Slovesnov. Search of optimal algorithms for bulls and cows game.
2013. url: http://slovesnov.users.sourceforge.net/bullscows/

bullscows.pdf (visited on 04/20/2014).

[28] Wayne Goddard. “Static mastermind”. In: Journal of Combinatorial Mathe-
matics and Combinatorial Computing 47 (2003), pp. 225–236.

[29] Paul Erdős and Alfréd Rénei. On two problems of information theory.
1963. url: http://193.224.79.10/˜p_erdos/1963-12.pdf (visited on
04/20/2014).

[30] Michael T Goodrich. “The mastermind attack on genomic data”. In: Security
and Privacy, 2009 30th IEEE Symposium on. IEEE. 2009, pp. 204–218.

66

http://slovesnov.users.sourceforge.net/bullscows/bullscows.pdf
http://slovesnov.users.sourceforge.net/bullscows/bullscows.pdf
http://193.224.79.10/~p_erdos/1963-12.pdf

[31] Julien Gagneur, Markus C Elze, and Achim Tresch. “Selective phenotyping,
entropy reduction, and the mastermind game”. In: BMC bioinformatics 12.1
(2011), p. 406.

[32] Riccardo Focardi and Flaminia L Luccio. “Guessing bank pins by winning a
mastermind game”. In: Theory of Computing Systems 50.1 (2012), pp. 52–
71.

[33] Wikipedia. Black Box (game) — Wikipedia, The Free Encyclopedia. 2014.
url: http://en.wikipedia.org/wiki/Black_Box_(game) (visited on
04/20/2014).

[34] Jonathan H. Liu. Laser Maze: A Delightful Puzzle Game. 2013. url: http:

//geekdad.com/2013/06/laser-maze (visited on 04/20/2014).

[35] Board game geek. Code 777 (1985). url: http://boardgamegeek.com/

boardgame/443/code-777 (visited on 04/20/2014).

[36] Marc Thurley. “sharpSAT–counting models with advanced component
caching and implicit BCP”. In: Theory and Applications of Satisfiability
Testing-SAT 2006. Springer, 2006, pp. 424–429.

[37] Armin Biere. “PicoSAT Essentials.” In: JSAT 4.2-4 (2008), pp. 75–97.

[38] Niklas Eén and Niklas Sörensson. “An extensible SAT-solver”. In: Theory
and applications of satisfiability testing. Springer. 2004, pp. 502–518.

[39] Wikipedia. Tseitin transformation — Wikipedia, The Free Encyclopedia.
2014. url: http://en.wikipedia.org/wiki/Tseitin_transformation

(visited on 04/27/2014).

[40] Brendan D. McKay and Adolfo Piperno. “Practical graph isomorphism, {II}”.
In: Journal of Symbolic Computation 60 (2014), pp. 94–112. issn: 0747-7171.
doi: http://dx.doi.org/10.1016/j.jsc.2013.09.003. url: http:

//www.sciencedirect.com/science/article/pii/S0747717113001193.

[41] Tommi A Junttila and Petteri Kaski. “Engineering an Efficient Canonical
Labeling Tool for Large and Sparse Graphs.” In: ALENEX. Vol. 7. SIAM.
2007, pp. 135–149.

[42] Hadi Katebi, Karem A Sakallah, and Igor L Markov. “Graph symmetry
detection and canonical labeling: Differences and synergies”. In: arXiv
preprint arXiv:1208.6271 (2012).

[43] Google. Google C++ Style Guide. 2013. url: http://google-styleguide.

googlecode.com/svn/trunk/cppguide.xml (visited on 04/20/2014).

67

http://en.wikipedia.org/wiki/Black_Box_(game)
http://geekdad.com/2013/06/laser-maze
http://geekdad.com/2013/06/laser-maze
http://boardgamegeek.com/boardgame/443/code-777
http://boardgamegeek.com/boardgame/443/code-777
http://en.wikipedia.org/wiki/Tseitin_transformation
http://dx.doi.org/http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Contents of the electronic attachment

An archive with source codes of Cobra is available in the thesis repository in IS
MU, available online at https://is.muni.cz/th/359972/fi_m/.

The archive contains the following files and directories.

examples/ Directory with sample code-breaking game specifications, including
Mastermind, the counterfeit coin problem and others.

src/ Directory with soures codes of Cobra.
test/ Directory with unit tests and functional tests.
tools/ Directory with source codes of external tools, Picosat release 957,

Minisat version 2.2 and Bliss version 0.72.
cobra The main executable.
makefile Makefile with compilation rules and dependencies.
LICENSE Full text of the BSD License.
README Short description of Cobra with basic information.

69

https://is.muni.cz/th/359972/fi_m/

	Introduction
	Examples of code-breaking games and existing results
	 The counterfeit coin
	 Known results
	 Generalizations and related research

	 Mastermind
	 Known results and related research
	 Variations and applications

	 Other games
	 Black Box
	 Code 777
	 Bags of gold

	Code-breaking game model
	 Notation and terminology
	 Basic definitions
	 Course of the game
	 Examples

	 Strategies in general
	 Non-adaptive strategies
	 Memory-less strategies

	 One-step look-ahead strategies

	Experiment equivalence and algorithms
	 Experiment equivalence
	 Base graph construction
	 Experiment graph
	 Improvement by fixed variables

	 Well-formed check
	 Analysis of one-step look-ahead strategies
	 Optimal strategy synthesis

	The Cobra tool
	 Input language
	 Low-level language
	 Python preprocessing

	 Compilation and basic usage
	 Modes of operation
	 Overview mode [o, overview] (default)
	 Simulation mode [s, simulation]
	 Strategy analysis mode [a, analysis]
	 Optimal strategy mode [ow, optimal-worst, oa, optimal-average]

	 Modularity and extensibility
	 SAT solving
	 PicoSat
	 MiniSat
	 Simple solver
	 Transformation to CNF

	 Graph isomorphism
	 Implementation details
	 Programming language and style
	 Requirements
	 Testing

	Experimental results
	 Performance
	 One-step look-ahead strategies
	 The counterfeit coin problem
	 Mastermind
	 Mastermind with black markers only (string matching)

	Conclusions
	Bibliography
	Contents of the electronic attachment

