Algorithmic Analysis of Code-Breaking Games

Master’s Thesis

Miroslav Klimoš

Brno, 2014
Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Advisor: prof. RNDr. Antonín Kučera, Ph.D.
Acknowledgement

I would like to express my deepest appreciation and thanks to my advisor, prof. RNDr. Antonín Kučera, Ph.D., for inspiring and valuable discussions and for coming up with this fascinating topic.
I would also like to thank all the people who expressed their interest in this work and provided constructive comments. All my friends deserve a special thanks for their patience with me during the time I have been working on this thesis.
Keywords

code-breaking games,
 deductive games,
 strategy synthesis,
 optimal strategy,
 one-step look-ahead strategy,
 SAT solving,
 model counting,
 Mastermind,
 counterfeit coin
Abstract

Code-breaking games are two-player games in which the first player selects a code from a given set and the second player strives to reveal it using a minimal number of experiments. A prominent example of a code-breaking game is the board game Mastermind, where the codebreaker tries to guess a combination of coloured pegs. There are many natural questions to ask about code-breaking games. What strategy for experiment selection should the codebreaker use? Can we compute a lower and upper bound for the number of experiments needed to reveal the code? Is it possible to compute an optimal strategy? What is the performance of a given heuristic? Much research on the topic has been done but the authors usually focus on one particular game and little has been written about code-breaking games in general.

In this work, we create a general model of code-breaking games based on propositional logic and design a computer language for game specification. Further, we suggest general algorithms for game analysis and strategy synthesis and implement them in a computer program. Using the program, we can reproduce existing results for Mastermind, analyse new code-breaking games and easily evaluate new heuristics for experiment selection.
Contents

1 Introduction .. 3

2 Examples of code-breaking games and existing results 7
 2.1 The counterfeit coin .. 7
 2.2 Mastermind .. 10
 2.3 Other games ... 13

3 Code-breaking game model .. 17
 3.1 Notation and terminology .. 17
 3.2 Basic definitions .. 17
 3.3 Strategies in general .. 23
 3.4 One-step look-ahead strategies 28

4 Experiment equivalence and algorithms 31
 4.1 Experiment equivalence .. 31
 4.2 Well-formed check .. 37
 4.3 Analysis of one-step look-ahead strategies 37
 4.4 Optimal strategy synthesis 38

5 The Cobra tool .. 43
 5.1 Input language .. 43
 5.2 Compilation and basic usage 47
 5.3 Modes of operation ... 47
 5.4 Modularity and extensibility 49
 5.5 SAT solving .. 50
 5.6 Graph isomorphism .. 54
 5.7 Implementation details .. 55

6 Experimental results .. 57
 6.1 Performance ... 57
 6.2 One-step look-ahead strategies 59

7 Conclusions .. 63

Bibliography .. 65

Contents of the electronic attachment 69
1 Introduction

Code-breaking games (sometimes also called deductive games or searching games) are games of two players in which the first player, usually referred to as the codemaker, chooses a secret code from a given set, and the second player, usually referred to as the codebreaker, strives to reveal the code through a series of experiments that give him partial information about the code.

One prominent example of a code-breaking game is the famous board game Mastermind. In this game, the codemaker creates a puzzle for the codebreaker by choosing a combination of four coloured pegs (with colour repetitions allowed). The codebreaker makes guesses about the colours, which are evaluated by the codemaker with black and white markers. A black marker corresponds to a position where the code and the guess match. A white marker means that some colour is present both in the code and in the guess but at different positions.

Another example of a code-breaking game is the counterfeit coin problem, the problem of identifying an odd-weight coin among a collection of genuine coins using only a balance scale. The codemaker is not a real player here; the balance scale takes his function and evaluates the weighings performed by the codebreaker.

Numerous other examples can be found among various board games and logic puzzles; we present some of them in the next chapter.

Code-breaking games offer many interesting research problems.

- How should the codebreaker play in order to minimize the number of experiments needed to undoubtedly determine the code?
- Is there a strategy for experiment selection that guarantees revealing the code after at most \(k\) experiments?
- What strategy is optimal with respect to the average-case number of experiments, given that the code is selected from the given set with uniform distribution?

Synthesis of an optimal strategy is a computationally intensive task. In some games, the optimal strategy might have a simple structure and can be described easily, such as in the counterfeit coin problem (see section Section 2.1 for details).

1. Image adopted from http://commons.wikimedia.org/wiki/File:Mastermind_beispiel.svg, by Thomas Steiner under GFDL.
1. Introduction

In general, however, the strategy may have complicated structure and there may be no other way to discover an optimal strategy than to consider all possible experiments in a given state and analyse the subproblems. Therefore, one may prefer a suboptimal strategy or heuristic for experiment selection that is computationally less demanding. This brings about more research questions. Given a strategy, how can we compute the worst-case and the average-case number of experiments the strategy needs to reveal the code?

Some particular code-breaking games, such as Mastermind and the counterfeit coin problem, have been intensively studied in the last decades and most of these questions are at least partially answered. A detailed summary of the existing results is presented in Chapter 2. Nevertheless, little has been written about code-breaking games in general. Some authors have suggested general methods and applied them in one particular game[e.g. 1, 2], some have vaguely stated that their approach can be applied to other games of the same kind but, to the best of our knowledge, no one has tried to create a general framework and provide results for code-breaking games in general.

We propose to bridge the gap and provide a general framework for code-breaking games based on propositional logic. The secret code is encoded as a valuation of a set of propositional variables and the codebreaker’s goal is to discover the valuation through a series of experiments. Each experiment can result in several outcomes, which are given in the form of a propositional formula.

This work addresses the following challenges in the suggested framework.

- Formally define code-breaking games and strategies.
- Propose general strategies or heuristics for experiment selection.
- Suggest efficient methods for state-space reduction based on symmetry detection.
- Propose algorithms for strategy evaluation and optimal strategy synthesis.
- Design a computer language for game specification.
- Develop a computer program that parses a game description from the designed language and implements the suggested algorithms.

Some of the proposed methods for code-breaking game analysis depend on algorithms for related problems. To analyse propositional formulas emerging during the course of a game, we need to decide satisfiability or count the number of models of a formula. This can be done using a modern SAT solver. Further, our symmetry detection approach is based on a reduction of experiment equivalence to graph isomorphism. For this purpose, we need a tool that computes the canonical labelling of a given graph.

We created a computer program for code-breaking game analysis and named it Cobra, the code-breaking game analyser. Using this program, we can reproduce some of the existing results for Mastermind, analyse new code-breaking games.
and easily evaluate new heuristics for experiment selection.

The thesis is structured as follows. Chapter 2 introduces several examples of code-breaking games and discusses existing results, variants of the games and related research. The general code-breaking game model is described in Chapter 3. Chapter 4 is dedicated to our method for symmetry detection and other algorithms. Our computer program, Cobra, with descriptions of its usage and abilities is introduced in Chapter 5. Experimental results with comparisons of analysed strategies are presented in Chapter 6. Finally, Chapter 7 concludes the work with suggestions for future work and possible extensions of the program.
2 Game examples and existing results

Several examples of code-breaking games are introduced in this chapter. The counterfeit coin problem and Mastermind are quite well known, the other examples are based on various board games or less known logic puzzles. We briefly summarize related research for each game, discuss its variations and applications and give a list of references.

2.1 The counterfeit coin

The problem of finding a counterfeit coin among a collection of genuine coins in the fewest number of weighings on a balance scale is a folklore of recreational mathematics. In all problems of this kind, you can only use the scale to weigh the coins. You put some coins on the left pan, the same number of coins on the right pan and get one of the three possible outcomes. Either both the sides weigh the same (denoted “=”), or the left side is lighter (“<”), or the right side is lighter (“>”). The easiest version of the problem can be formulated as follows.

Problem 2.2 (The nine coin problem). You are given \(n \geq 3 \) (typically 9) coins, all except one having the same weight. The counterfeit coin is known to be lighter. Identify the counterfeit coin in the minimal number of weighings.

This problem is very easy as we can use a ternary search algorithm to identify the underweight coin. In short, we divide the coins into thirds and put one third on the left pan and another on the right pan of the balance scale. If both pans weigh the same, the counterfeit coin must be among the unused coins. Otherwise, it is one of the coins on the lighter pan. In this way, the size of the search space is reduced by a factor of three in each step, which is optimal. In 1940s, more complicated version was introduced by Grossman[3].

Problem 2.3 (The twelve coin problem). You are given \(n \geq 3 \) (typically 12) coins, all except one having the same weight. It is not known whether the counterfeit coin is heavier or lighter. Identify the counterfeit coin and its weight relative to the others in the minimal number of weighings.

The optimal solution for \(n = 12 \) requires 3 weighings. One of the optimal strategies is shown in Figure 2.4 as a decision tree.

2. Examples of code-breaking games and existing results

![Decision tree for The Twelve Coin Problem.](image-url)

The research of the problems has mostly focused on finding bounds on the maximal value of n for which the problem can be solved in w weighings, for a given w. The following theorem presents a sample result of this kind.

Theorem 2.5 (Dyson, [4]). There is a strategy that identifies the counterfeit coin and its type as described in Problem 2.3 in w weighings, if and only if $3 \leq n \leq \frac{3^w - 3}{2}$.

Proof. We show the main part of the original Dyson’s proof[4] here because of its elegant combinatorial idea. We show a strategy for $n = \frac{1}{2}(3^w - 3)$.

Let us number the coins from 1 to n. To the i-th coin, we assign two labels from the set $\{0,1,2\}^w$ – those corresponding to the numbers i and $3^w - 1 - i$ in ternary form. Notice that all labels from the set are used exactly once, except for 0^w, 1^w and 2^w, which were not assigned to any coin. The labelling has the property that one label of a coin can be obtained form the other another by substituting zeros with twos and vice versa.

A label is called “clockwise” if the leftmost change of digit in it is a change from 0 to 1, from 1 to 2, or from 2 to 0. Otherwise, the label is called “anticlockwise”. Due to the above property, one label of a coin is always clockwise and the other is anticlockwise.

Let $C(i,d)$ be the set of coins with the symbol d at the i-th position of their clockwise label. Since a substitution of 0 with 1, 1 with 2 and 2 with 0 in the coin labels transfers all the coins from $C(i,0)$ to $C(i,1)$, from $C(i,1)$ to $C(i,2)$ and
from $C(i, 2)$ to $C(i, 0)$, all the sets $C(i, d)$ contain exactly $n/3$ coins. Now, let the i-th experiment be the weighing of the set $C(i, 0)$ against $C(i, 2)$. We show that these experiments uniquely identify the counterfeit coin.

Let a_i be 0, 1, and 2 if the result of i-th experiment is $<$, \leq and $>$, respectively. If the counterfeit code is overweight, the i-th symbol of its clockwise label must be a_i. On the other hand, if it is underweight, the i-th symbol of its anticlockwise label must be a_i. Therefore, the counterfeit coin must have the label $a_1a_2\ldots a_w$ and it is overweight if and only if this label is clockwise. Figure 2.6 shows an example of the construction for $n = 12 = \frac{1}{2}(3^3 - 3)$ with clockwise labels printed in bold.

<table>
<thead>
<tr>
<th>coin</th>
<th>label 1</th>
<th>label 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001</td>
<td>221</td>
</tr>
<tr>
<td>2</td>
<td>002</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>010</td>
<td>212</td>
</tr>
<tr>
<td>4</td>
<td>011</td>
<td>211</td>
</tr>
<tr>
<td>5</td>
<td>012</td>
<td>210</td>
</tr>
<tr>
<td>6</td>
<td>020</td>
<td>202</td>
</tr>
<tr>
<td>7</td>
<td>021</td>
<td>201</td>
</tr>
<tr>
<td>8</td>
<td>022</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>122</td>
</tr>
<tr>
<td>10</td>
<td>101</td>
<td>121</td>
</tr>
<tr>
<td>11</td>
<td>102</td>
<td>120</td>
</tr>
<tr>
<td>12</td>
<td>110</td>
<td>112</td>
</tr>
</tbody>
</table>

Experiments:
1) 1, 3, 4, 5 \times 2, 6, 7, 8
2) 1, 6, 7, 8 \times 2, 9, 10, 11
3) 2, 3, 8, 11 \times 5, 6, 9, 12

Solution:
the coin labelled $a_1a_2a_3$, where a_i is the outcome of the i-th experiment.

The case $n < \frac{1}{2}(3^w - 3)$ can be solved similarly with minor modifications to the labelling. However, the strategy makes use of a genuine coin discovered in the first weighing, so we cannot define other experiments without the knowledge of the outcome of the first. Finally, the proof that the coin cannot be identified for $n > \frac{1}{2}(3^w - 3)$ can be carried out using information theory.

Generalizations and related research

Naturally, the problem has been generalized in various ways and studied by many authors. In "Coin-Weighing Problems"[5], Guy and Nowakowski gave a great overview of the research in the area until 1990s with an extensive list of references. We list the most interesting variations and generalizations below.

Weight of the counterfeit coin. Either it is known whether the counterfeit coin is underweight or overweight, or it is not. Due to its simple nature, the first option allows for more generalizations, but both problems have been heavily researched.
2. Examples of code-breaking games and existing results

Number of counterfeit coins. There is exactly one counterfeit coin in the original version of the problems. Naturally, a variation of Problem 2.2 with 2 and 3 counterfeit coins have been studied\[6\][7] and some results have been generalized for \(m \) counterfeit coins\[8\]. Some authors have also studied the problem for an unknown number of counterfeit coins\[9\], or for at most \(m \) counterfeit coins\[10\].

Additional regular coin(s). In some cases, it may help if an additional genuine coin (or more coins) is available. For example, for \(n = 13 \) in Problem 2.3, you need 4 weighings in the worst-case. However, if you are given one extra genuine coin, the solution can be determined in 3 weighings\[4\].

Non-adaptive strategies. In this popular variation of the problem, you have to announce all experiments in advance and then just collect the result. In other words, later weighings must not depend on the outcomes of the earlier weighings. Notice that the strategy constructed in the proof of Theorem 2.5 for \(n = \frac{1}{2}(3^w - w) \) is indeed non-adaptive. However, the original proof uses an adaptive strategy for \(n < \frac{1}{2}(3^w - w) \). This was later amended, showing that there always exists an optimal strategy for Problem 2.3 that is non-adaptive\[11\].

Unreliable balance. This generalization introduces the possibility that one (or more) answers may be erroneous. The problem of errors/lies in general deductive games is well studied[see 12]. It was applied on the counterfeit coin problem (Problem 2.2 variant) in [13] with at most one erroneous outcome or in [14] with two.

Multi-pan balance scale. In this variation, the balance scale has \(k \) pans. You put the same number of coins on every pan and you get either the information that all weigh the same or the information which arm is lighter or heavier than others\[15\].

Parallel weighing. In this generalization, you have 2 (or more) balance scales and you can weigh different coins on the two scales simultaneously, which counts as one experiment\[16\]. The motivation here is that weighing takes significant time the goal is to minimize the time the whole process takes.

2.2 Mastermind

Mastermind is a classic code-breaking board game for 2 players, invented by Mordecai Meirowitz in 1970. One player has the role of a *codemaker* and the other of a *codebreaker*. First, the codemaker chooses a secret combination of \(n \) coloured pegs. Colour repetitions are allowed. Then the codebreaker strives to
2. Examples of code-breaking games and existing results

reveal the code by making guesses. The codemaker evaluates each guess with black and white markers. A black marker corresponds to a position where the code and the guess match. A white marker means that some colour is present both in the code and in the guess but at different positions. The markers in the outcome are not ordered, so the codebreaker does not know which marker correspond to which peg in the guess. Codebreaker’s goal is to find out the colour combination in the minimal number of guesses.

More formally, let \(C \) be a set of colours of size \(c \). We define a distance \(d: C^n \times C^n \to \mathbb{N}_0 \times \mathbb{N}_0 \) of two colour sequences by

\[
d(u, v) = (b, w),
\]

where

\[
b = |\{ i \in \mathbb{N} \mid u[i] = v[i]\}|
\]

\[
w = \sum_{j \in C} \min(|\{ i \mid u[i] = j \}|, |\{ i \mid v[i] = j \}|) - b.
\]

If the codemaker’s secret code is a sequence \(h \in C^n \) and the codebreaker’s guess is a sequence \(g \in C^n \), the guess is awarded \(b \) black pegs and \(w \) white pegs, where \((b, w) = d(h, g) \). Therefore, if the codebreaker have made guesses \(g_1, g_2, \ldots, g_k \) and the outcomes have been \((b_1, w_1), \ldots, (b_k, w_k) \), the search space is reduced to the codes

\[
\{ u \in C^n \mid \forall i \leq k. d(u, g_i) = (b_i, w_i)\}.
\]

Another way of looking at the guess evaluation is using maximal matching of the pegs in the code \(h \) and the guess \(g \). A matching is a set of pairwise non-adjacent edges between the pegs in the guess (represented by \(i \) for \(1 \leq i \leq n \)) and the pegs in the code (represented by \(i \) for \(1 \leq i \leq n \)). Let \(M_{g,h} \) be a maximal matching such that

1. an edge connects only pegs of the same colour, i.e. if \((i_*, j^*) \in M_{g,h} \), then \(h[i] = g[j] \), and

2. if \(h[i] = g[i] \) then \((i_*, i^*) \in M_{g,h} \).

Maximality of the matching means that no edge can be added without breaking one of the conditions. The edges in \(M_{g,h} \) correspond to the markers in the outcome, a marker being black if and only if the corresponding edge connects \(i_* \) with \(i^* \) for some \(i \).

Known results and related research

Much research has been done on Mastermind, authors focusing on exact values, asymptotics (e.g. [17]), or computer generated strategies. One of the fundamental
2. Examples of code-breaking games and existing results

Theoretical results is that Mastermind satisfiability problem, asking whether there exists at least one valid solution for a given set of guesses and their scores, is NP-complete[18].

The goal for strategy synthesis is either to minimize the worst-case number of guesses or the expected number of guesses, given that the code is selected from the set of possible codes with uniform distribution.

Knuth[19] proposed a strategy that chooses a guess that minimizes the maximal number of remaining possibilities over all possible outcomes. In the following, we call this strategy “max-models”. In the worst-case, it requires 5 guesses in the standard \(n = 4, c = 6 \) variant, which can be shown to be optimal. In the average case, the strategy makes 4.48 guesses.

Other authors proposed similar strategies. Irving[20] suggested minimizing the expected number of remaining possibilities ("exp-models"), Neuwirth[21] proposed a strategy that maximizes the entropy of the number of possibilities in the next round ("ent-models"). Many years later, Kooi[22] came up with a simple strategy that maximizes the number of possible outcomes ("parts"), which is computationally less demanding and performs better that the previous two. We call this type of strategies one-step look-ahead.

Using a backtracking algorithm, Koyama and Lai[23] found the optimal strategy for the expected case, which performs 4.34 guesses on average. The comparison of the described strategies is shown in Table 2.8.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>First guess</th>
<th>Average-case</th>
<th>Worst-case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-models</td>
<td>AABB</td>
<td>4.476</td>
<td>5</td>
</tr>
<tr>
<td>Exp-models</td>
<td>AABC</td>
<td>4.395/4.626²</td>
<td>6</td>
</tr>
<tr>
<td>Ent-models</td>
<td>ABCD</td>
<td>4.416/4.643³</td>
<td>6</td>
</tr>
<tr>
<td>Parts</td>
<td>AABC</td>
<td>4.373</td>
<td>6</td>
</tr>
<tr>
<td>Avg-case optimal</td>
<td>AABC</td>
<td>4.340</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2.8: Comparison of one-step look-ahead strategies. Data from [24] and [22].

Apart from one-step look-ahead strategies, which do not scale very well for bigger \(n \) or \(c \), other approaches has been suggested. Many authors tried to apply genetic algorithms (see [25] for an exhaustive overview and references therein), other analysed various heuristic methods (e.g. [26]).

2. Irving’s paper reports 4.395 as the expected number of experiments of this strategy. However, he states that his strategy selects the first two experiments on the basis of the expected number of models and the rest is done by exhaustive search. We were not able to reproduce this particular result and the paper contains several more irreproducible results, which was already pointed out in [22]. The number reported by our tool when strictly following this strategy is 4.626.

3. We were not able to reproduce Neuwirth’s result of 4.416, as he does not strictly follow the strategy as described. The number reported by our tool is 4.643.
Variations and applications

Bulls and Cows is an old game with a principle very similar to Mastermind. The only difference is that it uses digits instead of colours and does not allow repetitions. Slovesnov wrote an exhaustive analysis of the problem [see 27].

Static Mastermind is a variation of the game in which all guesses must be made in one go. First, the codebreaker prepares a set of guesses, then the codemakers evaluates all of them as usual and then the codebreaker has to determine the code from the outcomes. This variation was introduced by Chvátal [17] and partially solved (for \(n \leq 4 \)) by Goddard [28], proving that for 4 pegs and \(k \) colours, the optimal strategy uses \(k - 1 \) guesses. Note that this corresponds to so-called non-adaptive strategies for the counterfeit coin problem.

Mastermind with black-markers, also called string matching, is a variation without white markers, i.e. the only information the codebreaker gets from a guess is the number of positions at which the guess is correct. This problem was already studied by Erdős [29] who gave some asymptotic results about the worst-case number of guesses. Later, this problem found an application in genetics with a need of methods to select a subset of genotyped individuals for phenotyping [30][31].

Extended Mastermind was introduced by Focardi and Luccio, who showed that it is strictly related to cracking bank PINs for accessing ATMs by so-called decimalization attacks [32]. In this variation, a guess is not a sequence of colours but a sequence of sets of colours. For example, if there are six colours \(\{A, B, C, D, E, F\} \) and the code is \(AEC \), you can make a guess \(\{A\}, \{C, D, E\}, \{A, B\}, \{F\} \), which will be awarded two black markers (for the first two positions) and one white marker (for \(A \) in the third set).

2.3 Other games

Black Box

Black Box is a code-breaking board game in which one player creates a puzzle by placing four marbles on a \(8 \times 8 \) grid. The other player’s goal is to discover their positions by the use of “rays”. The codebreaker chooses a side of the grid and an exact row/column in which the ray enters the grid (thus having 32 choices). For each ray, the codemaker announces the position where the ray emerged from the grid, or says “hit” if the ray directly hit a marble [33]. The marbles interact with the rays in the following three ways.
2. Examples of code-breaking games and existing results

Hit. If a ray fired into the grid directly strikes a marble, the result is “hit” and the ray does not emerge from the box.

Deflection. If a ray does not strike a marble but it should pass to one side of a marble, the ray is “deflected” and changes its direction by 90 degrees.

Reflection. If a ray should enter a cell with marbles on both sides, it is “reflected” and returns back the same way it came. The same happens if a marble is at the edge of the grid and a ray is fired from a position next to it.

![Figure 2.9: Illustration of the rules of Black Box game](image1)

A few examples are shown in Figure 2.9. The first image shows rays that hit a marble, the second shows rays deflected multiple times and emerging from the box at a different place, and the third demonstrates the two cases in which a reflection happens.

Note that if the game is played with five or more marbles, they can be placed in the grid so that their position can not be uniquely determined. Figure 2.10 shows an example of such problematic configuration.

Although Black Box is an interesting example of a code-breaking game, there are configurations for which the codebreaker has to fire a ray from all positions in order to discover the positions of the marbles. This makes the game rather uninteresting from a research point of view. However, the game has become a popular puzzle for children and its principle has been used in other board games such as Laser maze[34].

![Figure 2.10: An example of ambiguous configuration](image2)

2. Examples of code-breaking games and existing results

Code 777

During the board game named *Code 777*, players sit in a circle, each drawing three cards at the beginning. Players must not look at their own cards but they put them to a rack in front of them so that other players can see them. Each card has one of seven colours and contains a number from one to seven. The goal of the players is to determine their own cards, using questions like “Do you see more yellow sevens or blue fives?”, which the others answer[35].

We can reformulate this as a code-breaking game in which a player receives some cards, each having several attributes, each of which can have multiple values. A player’s goal is to determine his cards using questions like “Do I have more [A] or [B]”, where [A] and [B] are conditions on any subset of the attributes. For example, if the attributes are number, colour, and shape, one can ask “Do I have more triangles or green twos?”

Bags of gold

Imagine you have 10 bags of gold coins. You were tipped off that some of the bags may contain counterfeit coins, which weigh 9 grams instead of 10 but are otherwise indistinguishable. Suppose all coins in one bag are the same. You have a digital scale that can show you the exact weight of a set of coins. How to identify the bags with counterfeit coins in the minimal number of weighings? Suppose there is a sufficient number of coins in each bag.

In the original version of this riddle, the scale has unlimited capacity and there is exactly one bag with counterfeit coins. In that case, the secret can be revealed in a single experiment. You take one coin from the first bag, two coins from the second and so on up to 10 coins from the last bag. You put all those 55 coins on the scale and, if they are all genuine, they weigh 550 grams. If the weight is by x grams lower, there must be exactly x counterfeit coins on the scale and, therefore, the x-th bag is the one with counterfeit coins.

The game gets more interesting if the capacity of the scale is limited, or if there are more bags with a limited number of coins. A special case in which each bag contains a single coin is studied in [29], and is shown to be very similar to Mastermind with black-markers. Otherwise, the game lives only in the form of a logic puzzle and, to the best of our knowledge, no general results have been established.
3 Code-breaking game model

In this chapter, we formally define code-breaking games within the framework of propositional logic, where we represent a secret code as a valuation of propositional variables. We define strategies in general, study several strategy classes and introduce one-step look-ahead strategies.

3.1 Notation and terminology

Symbols \mathbb{N}_0 and \mathbb{N} denote the set of natural numbers with and without zero; the set of real numbers is denoted by \mathbb{R}. The number of elements of a set X is denoted by $|X|$. Notation $X^* = \cup_{i \in \mathbb{N}_0} X^i$ is used to denote the set of finite sequences of elements of X. The k-th element of a sequence $s \in X^*$ is denoted by $s(k)$.

The set of all permutations of a set X (bijections $X \to X$) is denoted by PERM_X and id_X is the identity permutation. A partition P of a set X is a set of disjoint subsets of X, union of which is equal to X. Members of P are called cells. Let $P\{x\}$ be the cell containing x, i.e. $P(x) = A$, where $A \in P$ and $x \in A$. For a function $f : X \to Y$ and a set $Z \subseteq X$, the restriction of f to Z is denoted by $f|_Z : Z \to Y$.

Let FORM_X denote the set of propositional formulas over the set of variables X and let VAL_X be the set of valuations (boolean interpretations) of variables X. Apart from standard logical operators, we allow n-ary numerical operators EXACTLY$_k$, ATLEAST$_k$, ATMOST$_k$. For a valuation $v \in \text{VAL}_X$ and propositional formulas $\varphi_1, \ldots, \varphi_n \in \text{FORM}_X$, the operator EXACTLY$_k$ has the semantics $v(\text{EXACTLY}_k(\varphi_1, \ldots, \varphi_n)) = 1$ if and only if $|\{i \mid v(\varphi_i) = 1\}| = k$. The semantics of ATMOST and ATLEAST is defined analogically.

Formulas $\varphi_0, \varphi_1 \in \text{FORM}_X$ are equivalent, written $\varphi_0 \equiv \varphi_1$, if $v(\varphi_0) = v(\varphi_1)$ for all $v \in \text{VAL}_X$. We say that v is a model of φ or that v satisfies φ if $v(\varphi) = 1$. For a formula $\varphi \in \text{FORM}_X$, let $\#_X \varphi = |\{ v \in \text{VAL}_X \mid v(\varphi) = 1 \}|$ be the number of models of φ. We often omit the index X if it is clear from the context. A fixed variable of a formula φ is a variable that is assigned the same value in all models of φ. If $v(x) = 1$ for all $v \in \text{VAL}$ such that $v(\varphi) = 1$, we say that x is fixed to 1 (or true). Similarly, if $v(x) = 0$, we say that x is fixed to 0 (or false).

3.2 Basic definitions

A code-breaking game can be represented by a set of variables, initial constraint (a formula that is guaranteed to be satisfied), and a set of allowed experiments. An experiment is defined by the set of outcomes in which it can result. The outcomes are specified in the form of a propositional formula that represents the partial information that the codebreaker gains if the experiment results in the outcome.
The number of experiments in a code-breaking game is typically very large. For example, in the counterfeit coin problem defined in Section 2.1, experiments correspond to combinations of coins you put on the pans of the balance scale. It can be calculated that there are 36,894 combinations for 12 coins. However, most of them have the same structure, so it would be inefficient to specify them one by one. Therefore we have opted for a compact representation with parametrized experiments, where parametrization is a fixed-length string over a defined alphabet. This whole idea is formalized below.

Definition 3.1 (Code-breaking game). A code-breaking game is a quintuple \(G = (X, \varphi_0, \Sigma, F, T) \), where
- \(X \) is a finite set of propositional variables,
- \(\varphi_0 \in \text{FORM}_X \) is a satisfiable propositional formula,
- \(\Sigma \) is a finite alphabet,
- \(F \) is a collection of mappings \(\Sigma \to X \) with pairwise disjoint images,
- \(T \) is a set of parametrized experiments, defined below.

Definition 3.2 (Parametrized experiment). A parametrized experiment for a game \(G = (X, \varphi_0, \Sigma, F, T) \) is a triple \(t = (n, P, \Phi) \), where
- \(n \) is the number of parameters of the experiment,
- \(P \) is a partition of the set \(\{1, \ldots, n\} \),
- \(\Phi \) is a set of parametrized formulas, defined below.

Parameters of the experiment are elements of the alphabet \(\Sigma \). If \(k \) and \(l \) are in the same cell of the partition \(P \), the \(k \)-th and the \(l \)-th parameter must be different. We denote the components of a parametrized experiment \(t \in T \) by \(n_t \), \(P_t \), and \(\Phi_t \).

Definition 3.3 (Parametrized formula). A parametrized formula for a parametrized experiment \(t \) of a game \(G = (X, \varphi_0, \Sigma, F, T) \) is a string \(\psi \) generated by the following grammar, specified in Backus–Naur Form.

\[
<\text{form}> ::= x \mid f(\$k) \mid <\text{form}> \circ <\text{form}> \mid O(\langle\text{form-list}\rangle) \mid \neg <\text{form}>,
<\text{form-list}> ::= <\text{form-list}>, <\text{form}> \mid <\text{form}>
\]

where \(x \in X \) is a propositional variable, \(f \in F \) is a mapping, \(1 \leq k \leq n_t \) is a parameter index, \(\circ \in \{\land, \lor, \Rightarrow\} \) is a standard logical operator, and \(O \in \{\text{EXACTLY}_k, \text{ATMOST}_k, \text{ATLEAST}_k \mid k \in \mathbb{N}\} \) is a numerical operator. The special notation \(\$k \) in \(f(\$k) \) is used to denote the \(k \)-th parameter.
The set E of all experiments in the game \mathcal{G} is given by

$$E = \{ (t, p) \mid t \in T, \ p \in \Sigma^n, \ \forall x, y \leq n. \ P_t(x) = P_t(y) \Rightarrow p[x] \neq p[y] \}$$

An experiment $e \in E$ is thus a pair (t, p), where t is referred to as the type of the experiment, and p is referred to as its parametrization.

Let $e = (t, p) \in E$ be an experiment, and $\psi \in \Phi_t$ a parametrized formula. By $\psi(p)$ we denote the application of the parametrization p on ψ, which is defined recursively on the structure of ψ in the following way:

\[
(x)(p) = x, \\
(f(\$k))(p) = f(p[k]), \\
(\psi_1 \circ \psi_2)(p) = \psi_1(p) \circ \psi_2(p), \\
O(\psi_1, \ldots, \psi_m)(p) = O(\psi_1(p), \ldots, \psi_m(p)), \\
(-\psi)(p) = -(\psi(p)).
\]

To simplify the notation, let us denote the set of outcomes of an experiment $e = (t, p) \in E$ by $\Phi(e) = \{ \psi(p) \mid \psi \in \Phi_t \}$.

Example 3.4. Consider the counterfeit coin problem with 4 coins. We use this game as a running example throughout this chapter.

The counterfeit coin and its relative weight to the others can be encoded as a valuation of variables x_1, x_2, x_3, x_4 and y, $v(x_i)$ being 1 if and only if the i-th coin is counterfeit and y determining its relative weight ($v(y) = 0$ means that the counterfeit coin of underweight, $v(y) = 1$ means overweight). The initial constraint φ_0 should capture the restriction that exactly one coin if counterfeit. Therefore, let φ_0 be exactly (x_1, x_2, x_3, x_4).

The experiments are parametrized by the coins on the pans of the balance scale. Let $\Sigma = \{1, 2, 3, 4\}$ and $F = \{f_x\}$ where f_x maps the number i to the corresponding variable x_i.

One parametrized experiment is weighing one coin against one, let us call it t. We need two parameters ($n_t = 2$), the first determining the coin on the left pan and the second determining the coin on the right pan that must be different from the first. P_t is therefore the trivial partition $\{\{1, 2\}\}$.

If the left pan is lighter, it is either the case that the coin on the left is underweight $(f_x(\$1) \land \neg y)$ or the coin on the right is overweight $(f_x(\$2) \land y)$. If the right pan is lighter, we get the symmetrical knowledge $(f_x(\$1) \land y) \lor (f_x(\$2) \land \neg y)$. If both sides weigh the same, the counterfeit coins are not present on either pan and we can conclude $\neg f_x(\$1) \land \neg f_x(\$2)$. To sum it up,

\[
t = (2, \ \{\{1, 2\}\}, \ \{(f_x(\$1) \land \neg y) \lor (f_x(\$2) \land y), \\
(f_x(\$1) \land y) \lor (f_x(\$2) \land \neg y), \\
\neg f_x(\$1) \land \neg f_x(\$2) \}).
\]
3. Code-breaking game model

The second parametrized experiment is weighing two coins against two. There are 4 parameters, they must be pairwise distinct and the outcome formulas can be constructed analogically.

Note that the compact representation with parametrized experiments does not restrict the class of games that can fit Definition 3.1, compared to a possible definition with direct experiment enumeration. The reason is that there can always be a parametrized experiment with no parameters for each actual experiment.

Definition 3.5 (Solving process). An evaluated experiment is a pair \((e, \varphi)\), where \(e \in E\) and \(\varphi \in \Phi(e)\). Let us denote the set of evaluated experiments by \(\Omega\).

A solving process is a finite or infinite sequence of evaluated experiments.

For a solving process \(\lambda = (e_1, \varphi_1), (e_2, \varphi_2), \ldots\), let

- \(|\lambda|\) denote the length of the sequence,
- \(\lambda(k) = e_k\) denote the \(k\)-th experiment,
- \(\lambda[1:k] = \varphi_k\) denote the \(k\)-th outcome,
- \(\lambda[1:k] = (e_1, \varphi_1), \ldots, (e_k, \varphi_k)\) denote the prefix of length \(k\), and
- \(\lambda(k) = \varphi_0 \land \varphi_1 \land \ldots \land \varphi_k\) denote the accumulated knowledge after the first \(k\) experiments (including the initial constraint \(\varphi_0\)). For finite \(\lambda\), let \(\lambda|\lambda| = \lambda[|\lambda|]\) be the overall accumulated knowledge.

We denote the set of valuations that satisfy \(\varphi_0\) by \(\text{val}' = \{v \in \text{val}_X \mid v(\varphi_0) = 1\}\) and the set of reachable formulas (formulas that represent some accumulated knowledge) by \(\text{form}' = \{\lambda() \mid \lambda \in \Omega^*\}\).

Course of the game

Let us now describe the course of the game in the defined terms.

1. The codemaker chooses a valuation \(v\) from \(\text{val}'\).
2. The codebreaker chooses an experiment \(e\) from \(E\).
3. The codemaker gives the codebreaker a formula \(\varphi \in \Phi(e)\) that is satisfied by the valuation \(v\). In order for the codemaker to always be able to do so, \(\Phi(e)\) must contain a satisfied formula for every valuation in \(\text{val}'\). This is defined below as well-formed property of the game.
4. The evaluated experiment \((e, \varphi)\) is appended to the solving process \(\lambda\), which is initially empty.
5. If \(#\lambda() = 1\), the codebreaker can uniquely determine the valuation \(v\) and the game ends. Otherwise, it continues with step 2.
3. Code-breaking game model

Definition 3.6 (Well-formed game). A code-breaking game is well-formed if for all \(e \in E \),
\[
\forall v \in \text{VAL}', \exists \text{ exactly one } \varphi \in \Phi(e) \cdot v(\varphi) = 1
\]

In the sequel, we focus only on well-formed games and we assume a given game is well-formed unless otherwise stated.

Examples

In the rest of this section, we show two ways of defining the counterfeit coin problem and a formal definition of Mastermind. We do not provide formal definitions of other code-breaking games presented in Chapter 2, however, a computer language for game specification that is based on this formalism is introduced in Chapter 5, and specifications of all the code-breaking games in this language can be found in the electronic attachment to the thesis.

Example 3.7 (The counterfeit coin problem). A formal definition of the counterfeit coin problem with 4 coins has already been introduced in Example 3.4. This is a straightforward generalization for \(n \) coins. We define a game \(\mathcal{F}_n = (X, \varphi_0, \Sigma, F, T) \) with the following components.

- \(X = \{x_1, x_2, \ldots, x_n, y\} \). Variable \(x_i \) tells whether the \(i \)-th coin is counterfeit, variable \(y \) tells whether it is lighter or heavier.
- \(\varphi_0 = \text{EXACTLY1} \ (x_1, \ldots, x_n) \), saying that exactly one coin is counterfeit.
- \(\Sigma = \{1, 2, \ldots, n\}, \ F = \{f_x\}, \) where \(f_x(i) = x_i \). The experiments are parametrized with coins that are represented by numbers from 1 to \(n \).
- \(T = \{(2 \cdot m, \\{1, \ldots, 2m\}, \Phi_m) \mid 1 \leq m \leq n/2\} \), where
\[
\Phi_m = \{((f_x(1) \lor \ldots \lor f_x(m)) \land \lnot y) \lor ((f_x(m+1) \lor \ldots \lor f_x(2m)) \land y),
((f_x(1) \lor \ldots \lor f_x(m)) \land y) \lor ((f_x(m+1) \lor \ldots \lor f_x(2m)) \land \lnot y),
-(f_x(1) \lor \ldots \lor f_x(2m))\}.
\]

For every \(m \in \mathbb{N}, \ m \leq n/2 \), there is a parametrized experiment of weighing \(m \) coins against \(m \) coins. It has \(2m \) parameters, the first \(m \) are put on the left pan, the last \(m \) are put on the right pan.

There are 3 possible outcomes. First, the left pan is lighter. This happens if the counterfeit coin is lighter and it appears among the first \(m \) parameters, or if it is heavier and it appears among the last \(m \) parameters. Second, analogically, the right pan is lighter. Third, both pans weigh the same if the counterfeit coin does not participate in the experiment.
For demonstration purposes, we show another possible formalization of the same problem. Let $F'_{m} = (X, \varphi_0, \Sigma, F, t)$ be a game with the following components.

- $X = \{x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n\}$. Variable x_i tells that the i-th coin is lighter, variable y_i tells that the i-th coin is heavier.
- $\varphi_0 = \text{EXACTLY}_1(x_1, \ldots, x_n, y_1, \ldots, y_n)$, saying that exactly one coin is odd-weight.
- $\Sigma = \{1, 2, \ldots, n\}$, $F = \{f_x, f_y\}$, where $f_x(i) = x_i, f_x(i) = y_i$.
- $T = \{(2 \cdot m, \{(1, \ldots, 2m)\}, \Phi_m) \mid 1 \leq m \leq n/2\}$, where
 \[
 \Phi(w_m) = \{f_x(1) \lor \ldots \lor f_x(m) \lor f_x(m+1) \lor \ldots \lor f_x(2m),
 \]
 \[
 f_y(1) \lor \ldots \lor f_y(m) \lor f_x(m+1) \lor \ldots \lor f_x(2m),
 \]
 \[
 \neg (f_x(1) \lor \ldots \lor f_x(m) \lor f_y(1) \lor \ldots \lor f_y(2m))\}.
\]

In this formalization, the variables correspond one-to-one to possible codes, so the outcome formulas effectively list all possibilities.

Example 3.8 (Mastermind). Mastermind game with n pegs and m colours can be formalized as a code-breaking game $M_{n,m} = (X, \varphi_0, \Sigma, F, T)$ with the following components.

- $X = \{x_{i,j} \mid 1 \leq i \leq n, 1 \leq j \leq m\}$. Variable $x_{i,j}$ tells whether the i-th peg has the colour j.
- $\varphi_0 = \wedge \{\text{EXACTLY}_1(x_{i,j} \mid 1 \leq j \leq m) \mid 1 \leq i \leq n\}$, saying that there is exactly one colour at each position.
- $\Sigma = \{1, \ldots, m\}$, $F = \{f_1, \ldots, f_n\}$, where $f_i(c) = x_{i,c}$ for $1 \leq i \leq n$, $T = \{(n, P, \Phi)\}$.

There is only one parametrized experiment with n parameters corresponding to the colours. All parameters can be the same, so the partition P is the discrete partition $\{\{1\}, \ldots, \{n\}\}$.

- $\Phi = \{\text{OUTCOME}(b, w) \mid 0 \leq b \leq n, 0 \leq w \leq n, b + w \leq n\}$, where OUTCOME is the function computed by the algorithm described below.

As described in Section 2.2, the outcome of an experiment in Mastermind corresponds to some maximal matching between the pegs in the code and the pegs in the guess. The idea here is to generate a formula that asserts existence of such maximal matching with b edges corresponding to black markers and w edges corresponding to white markers.

The computation of OUTCOME (b, w) is performed as follows. First, we generate all admissible matchings. Let $P = \{1, 2, \ldots, n\}$ be the set of positions.

- Select $B \subseteq P$ such that $|B| = b$. These are the positions at which the colour in the code matches the colour in the guess. They correspond to the black markers.

22
Select \(W \subseteq P \times P \) such that \(|W| = w \), \(p_1(W) \cap B = \emptyset \), and \(p_2(W) \cap B = \emptyset \), where \(p_1, p_2 \) are projections. These correspond to the white markers; \((i, j) \in W\) means that the colour at position \(i \) in the guess is at position \(j \) in the code.

Recall that \(i \bullet \) represents the \(i \)-th peg in the guess and \(i^* \) represents the \(i \)-th peg in the code. For a fixed combination \((B, W) \), we define a matching \(M \) by

\[
M = \{ (i \bullet, i^*) \} \cup \{ (i \bullet, j^*) \mid (i, j) \in W \}.
\]

We construct a parametrized formula that asserts that \(M \) is the maximal matching satisfying conditions in Section 2.2 for a guess \(\$1, \$2, \ldots, \$n \) and the code given by a valuation of the variables. The formula has a form of a conjunction constructed in the following way.

- For \(i \in B \), we add \(f_i(\$i) \). This asserts that \((i \bullet, i^*)\) is an edge in the matching.
- For \((i, j) \in W\), we add \(f_j(\$i) \land \lnot f_i(\$i) \land \lnot f_j(\$j) \). This asserts that the colour \(\$i \) is at position \(j \) in the code and that \((i \bullet, i^*)\), \((j^*, j^*)\) are not edges in the matching.
- For \((i, j) \in (P \setminus B \setminus p_1(W)) \times (P \setminus B \setminus p_2(W))\), we add \(\lnot f_j(\$i) \). This asserts the matching is maximal as no edge can be added.

The result of \(\text{OUTCOME}(b, w) \) is a disjunction of all the conjunctions constructed in this way for all combinations of \(B \) and \(W \). For example, for \(n = 4 \), \(B = \{1\} \) and \(W = \{2, 3\} \), the generated formula is

\[
f_1(\$1) \land f_3(\$2) \land \lnot f_2(\$2) \land \lnot f_3(\$3) \land \lnot f_2(\$3) \land \lnot f_2(\$4) \land \lnot f_3(\$3) \land \lnot f_4(\$4).
\]

The number of combinations for \(B \) and \(W \) grows exponentially with \(n \) and so does the size of the generated formulas. For \(n = 4 \), the result of \(\text{OUTCOME}(1, 1) \) contains 24 clauses at the top level with 192 literals in total.

3.3 Strategies in general

This section introduces the concept of a strategy for experiment selection. We define the worst-case and the average-case number of experiments of a strategy and optimal strategies. Further, we examine several strategy classes.

Definition 3.9 (Strategy). A strategy is a function \(\sigma : \Omega^* \to E \), determining the next experiment for a given finite solving process.

A strategy \(\sigma \) together with a valuation \(v \in \text{VAL}' \) induce an infinite solving process

\[
\lambda_v^\sigma = (e_1, \varphi_1), (e_2, \varphi_2), \ldots,
\]
3. Code-breaking game model

where \(e_{i+1} = \sigma(\lambda^*_{i}[1:i]) \) and \(\varphi_{i+1} \) is the formula from \(\Phi(e_{i+1}) \) satisfied by \(v \), for all \(i \in \mathbb{N} \). Due to the well-formed property of the game, there is exactly one such \(\varphi_{i+1} \).

We define the length of a strategy \(\sigma \) on a valuation \(v \), denoted \(|\sigma|_v \), as the smallest \(k \in \mathbb{N}_0 \) such that \(\lambda^*_v(k) \) uniquely determines the code, i.e.

\[
|\sigma|_v = \min \{ k \in \mathbb{N}_0 \mid \#\lambda^*_v(k) = 1 \}
\]

The worst-case number of experiments \(\Lambda^\sigma \) of a strategy \(\sigma \) is the maximal length of the strategy on a valuation \(v \), over all \(v \in \text{VAL}' \), i.e.

\[
\Lambda^\sigma = \max_{v \in \text{VAL}'} |\sigma|_v.
\]

The average-case number of experiments \(\Lambda^\exp_\sigma \) of a strategy \(\sigma \) is the expected number of experiments if the code is selected from models of \(\varphi_0 \) with uniform distribution, i.e.

\[
\Lambda^\exp_\sigma = \frac{\sum_{v \in \text{VAL}'} |\sigma|_v}{\#\varphi_0}.
\]

We say that a strategy \(\sigma \) solves the game if \(\Lambda^\sigma \) is finite. Note that \(\Lambda^\sigma \) is finite if and only if \(\Lambda^\exp_\sigma \) is finite. The game is solvable if there exists a strategy that solves the game.

Definition 3.10 (Optimal strategy). A strategy \(\sigma \) is worst-case optimal if \(\Lambda^\sigma \leq \Lambda^\sigma' \) for any strategy \(\sigma' \). A strategy \(\sigma \) is average-case optimal if \(\Lambda^\exp_\sigma \leq \Lambda^\exp_\sigma' \) for any strategy \(\sigma' \).

The following lemma provides us with a lower bound on the number of experiments of a worst-case optimal strategy. The next lemma presents an important observation about the induced solving processes, which is needed in several upcoming theorems.

Lemma 3.11. Let \(b = \max_{t \in T} |\Phi(t)| \) be the maximal number of possible outcomes of an experiment. Then for every strategy \(\sigma \),

\[
\Lambda^\sigma \geq \lceil \log_b(\#\varphi_0) \rceil.
\]

Proof. Let us fix a strategy \(\sigma \) and \(k = \Lambda^\sigma \). For an unknown model \(v \) of \(\varphi_0 \), \(\lambda^*_v(k) \) can take up to \(b^k \) different values. By pigeon-hole principle, if \(\#\varphi_0 > b^k \), there must be a valuation \(v \) such that \(\#\lambda^*_v(k) > 1 \). This would be a contradiction with \(k = \Lambda^\sigma \) and, therefore, \(\#\varphi_0 \leq b^k \), which is equivalent with the statement of the lemma. \(\blacksquare \)
Lemma 3.12. Let \(\sigma \) be a strategy and let \(v_1, v_2 \in \text{VAL}' \). If \(v_1 \) is a model of \(\lambda^*_{v_2}(k) \), then \(\lambda^*_{v_1}[1 : k] = \lambda^*_{v_2}[1 : k] \).

Proof. Let \(\lambda_1 = \lambda^*_{v_1}, \lambda_2 = \lambda^*_{v_2} \) and consider the first place where \(\lambda_1 \) and \(\lambda_2 \) differ. It cannot be the \(i \)-th experiment as both \(\lambda_1(i) \) and \(\lambda_2(i) \) are values of the same strategy on the same solving process: \(\lambda_1(i) = \sigma(\lambda_1[1 : i - 1]) = \sigma(\lambda_2[1 : i - 1]) = \lambda_2(i) \).

Therefore, it must be an outcome of the \(i \)-th experiment, i.e. \(\lambda_1[i] \neq \lambda_2[i] \) for some \(i \leq k \). Since \(v_1 \) satisfies \(\lambda_2(k) \) and \(i \leq k \), it satisfies \(\lambda_2[i] \) as well. However, \(v_1 \) always satisfies \(\lambda_1[i] \) and both \(\lambda_1[i] \) and \(\lambda_2[i] \) are from the set \(\Phi(\lambda_1(i)) = \Phi(\lambda_2(i)) \). Since there is exactly one satisfied experiment for each valuation in the set, \(\lambda_1[i] \) and \(\lambda_2[i] \) must be the same, which is a contradiction.

Example 3.13. Recall our running example of the counterfeit coin problem with four coins, introduced in Example 3.4.

Consider a strategy \(\sigma \) defined as follows. For simplicity, we denote experiments by their parametrizations (this is sufficient, because the parametrized experiments have different number of parameters) and the outcomes by symbols \(<, >\) and \(=\), instead of the corresponding formula.

\[
\sigma(\lambda) = \begin{cases}
13 & \text{if } \lambda = (12,<), \\
23 & \text{if } \lambda = (12,>), \\
14 & \text{if } \lambda = (12,=), (12,=), \\
34 & \text{if } \lambda = (12,=), (12,=), (14,=), \\
12 & \text{otherwise.}
\end{cases}
\]

Let \(v \in \text{VAL}' \) be a valuation such that \(v(x_3) = v(y) = 1 \). The solving process induced by \(\sigma \) on \(v \) is

\[
\lambda^*_v = (12,=), (12,=), (14,=), (34,>), (12,=), (12,=), \ldots
\]

The length of \(\sigma \) on \(v \) is 4, because \(v \) is the only model of the accumulated knowledge after 4 experiments,

\[
\text{EXACTLY}_1(x_1, x_2, x_3, x_4, y) \land \neg(x_1 \lor x_2) \land \neg(x_1 \lor x_2) \land \neg(x_1 \lor x_4) \land ((x_3 \land y) \lor (x_4 \land \neg y)).
\]

The strategy pointlessly repeats the experiment 12 if the outcome in the first step is \(=\). In fact, every valuation is revealed by \(\sigma \) in at most 4 experiments, which means that \(\Lambda^* = 4 \).

Lemma 3.11 gives us the lower bound \([\log_3(8)] = 2\) on the worst-case number of experiments of an optimal strategy. However, we already know from Theorem 2.5 that the minimal number of experiments needed to reveal the code in the worst-case is 3.

\(\top\)
3. Code-breaking game model

Non-adaptive strategies

Non-adaptive strategies correspond to the well-studied problems of static Mastermind and non-adaptive strategies for the counterfeit coin problem\cite{28}\cite{11}. We define them here only to show the possibility of formulating the corresponding problems in our framework but we do not study them any further.

Definition 3.14 (Non-adaptive strategy). A strategy σ is non-adaptive if it decides the next experiment based on the length of the solving process only, i.e. whenever λ_1 and λ_2 are processes such that $|\lambda_1| = |\lambda_2|$, then $\sigma(\lambda_1) = \sigma(\lambda_2)$.

Non-adaptive strategies can be considered functions $\tau : \mathbb{N}_0 \rightarrow E$, where $\tau(|\lambda|) = \sigma(\lambda)$.

Memory-less strategies

According to the general definition, a strategy can decide the next experiment on the basis of the exact history of the solving process. In can be argued that the accumulated knowledge should be sufficient for the decision as the overall nature of code-breaking games is memory-less and the course of a game depends only on the accumulated knowledge. Here we define memory-less strategies and prove that it is indeed the case.

Definition 3.15 (Memory-less strategy). A strategy σ is memory-less if it decides the next experiment based on the accumulated knowledge only, i.e. whenever λ_1 and λ_2 are processes such that if $\lambda_1() \equiv \lambda_2()$ then $\sigma(\lambda_1) = \sigma(\lambda_2)$.

Memory-less strategies can be considered functions $\tau : \text{FORM}' \rightarrow E$ such that $\varphi_1 \equiv \varphi_2 \Rightarrow \tau(\varphi_1) = \tau(\varphi_2)$. Then $\sigma(\lambda) = \tau(|\lambda|)$.

Note that the number of non-equivalent formulas over variable X is finite and, therefore, the number of memory-less strategies for a fixed code-breaking game is finite as well.

Now we prove some basic properties of memory-less strategies. The following lemma says that once we do not get any new information from the experiment selected by a strategy, we never get any new information with the strategy. Then, the theorem below proves that there exists an optimal memory-less strategy.

Lemma 3.16. Let σ be a memory-less strategy and $v \in \text{VAL}'$. If there exists $k \in \mathbb{N}$ such that $\#\lambda^v_\sigma(k) = \#\lambda^v_\sigma(k + 1)$, then $\#\lambda^v_\sigma(k) = \#\lambda^v_\sigma(k + l)$ for any $l \in \mathbb{N}$.

26
3. Code-breaking game model

Proof. To simplify the notation, let $\alpha^k = \lambda_0^k\{k\}$ be the accumulated knowledge after k experiments. Since every model of α^{k+1} is also a model of α^k and $\#\alpha^k = \#\alpha^{k+1}$, the sets of models of α^k and α^{k+1} are exactly the same and the formulas are thus equivalent. This implies $\sigma(\alpha^k) = \sigma(\alpha^{k+1})$ and $\alpha^{k+2} \equiv \alpha^{k+1}$. By induction, $\sigma(\alpha^{k+l}) = \sigma(\alpha^k)$ and $\alpha^{k+l} \equiv \alpha^k$ for any $l \in \mathbb{N}$. \hfill \blacksquare

Theorem 3.17. Let σ be a strategy. Then there exists a memory-less strategy τ such that $|\sigma|_v \geq |\tau|_v$ for all $v \in \text{VAL}'$.

Proof. Let us show the exact construction of τ from σ. First, we order the formulas of FORM' by their number of models from the least. Let φ_i be the i-th formula in this order. We build a sequence of strategies $\sigma_0, \sigma_1, \sigma_2, \ldots$ inductively in the following way. Let $\sigma_0 = \sigma$.

- If there is no $v \in \text{VAL}'$, $k \in \mathbb{N}_0$ such that $\lambda_{v_i}^{\sigma_i-1}(k) \equiv \varphi_i$, select any $e \in E$ and define σ_i by

$$\sigma_i(\lambda) = \begin{cases} \sigma_{i-1}(\lambda) & \text{if } \lambda(e) \# \varphi_i, \\ e & \text{if } \lambda(e) \equiv \varphi_i. \end{cases}$$

Clearly, the induced solving processes for σ_i and σ_{i-1} are the same.

- If there exists $v \in \text{VAL}', k \in \mathbb{N}_0$ such that $\lambda_{v_i}^{\sigma_i-1}(k) \equiv \varphi_i$, choose the largest l such that $\lambda_{v_i}^{\sigma_i-1}(l) \equiv \varphi_i$ and define

$$\sigma_i(\lambda) = \begin{cases} \sigma_{i-1}(\lambda) & \text{if } \lambda(l) \# \varphi_i, \\ \lambda_{v_i}^{\sigma_i-1}(l) & \text{if } \lambda(l) \equiv \varphi_i. \end{cases}$$

First we prove that this definition is correct. Let v_1, v_2, k_1, k_2 be such that $\lambda_{v_1}^{\sigma_{i-1}}(k_1) \equiv \varphi_i \equiv \lambda_{v_2}^{\sigma_{i-1}}(k_2)$ and let l_1, l_2 be the largest numbers such that $\lambda_{v_1}^{\sigma_{i-1}}(l_1) \equiv \varphi_i \equiv \lambda_{v_2}^{\sigma_{i-1}}(l_2)$. Since v_1 satisfies $\lambda_{v_2}^{\sigma_{i-1}}(l_2) \equiv \varphi_i$, $\lambda_{v_2}^{\sigma_{i-1}}[1 : l_2] = \lambda_{v_2}^{\sigma_{i-1}}[1 : l_2]$ by Lemma 3.12. The same holds for l_1 which means that $l_1 = l_2$ and $\lambda_{v_1}^{\sigma_{i-1}}(l_1) = \lambda_{v_1}^{\sigma_{i-1}}(l_2)$, which proves that the definition of σ_i is independent of the exact choices of v and k.

Now $|\sigma_i|_v = |\sigma_{i-1}|_v - (l - k)$, where k is the smallest number such that $\lambda_{v_i}^{\sigma_{i-1}}(k) \equiv \varphi_i$ and l is the largest number such that $\lambda_{v_i}^{\sigma_{i-1}}(l) \equiv \varphi_i$, because $\lambda_{v_i}^{\sigma_{i-1}}(l) = \lambda_{v_i}^{\sigma_i}(k)$ and due to the order of the formulas, the rest of the process is already independent of the beginning.

The last strategy of the sequence is clearly memory-less and satisfies the condition in the lemma. \hfill \blacksquare

Corollary 3.18. There exists a worst-case optimal strategy that is memory-less and there exists an average-case optimal strategy that is memory-less.
3. Code-breaking game model

Example 3.19. Recall the game and the strategy σ from Example 3.13. The strategy is clearly not non-adaptive, as $\sigma((12, <)) \neq \sigma((12, >))$. It is neither memory-less as $\sigma((12, =)) \neq \sigma((12, =), (12, =))$ but the accumulated knowledge of the solving processes is the same.

Consider a non-adaptive strategy $\tau : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 14$. If the counterfeit coin is among the first three coins, it is discovered by the strategy in two experiments. If the counterfeit coin is the fourth coin, it requires three experiments. Hence $\Lambda = 3$ and the value of τ on greater numbers is irrelevant.

If we apply the construction in Theorem 3.17 on σ, we get a memory-less strategy σ', given by

$$
\sigma'(\varphi) = \begin{cases}
13 & \text{if } \varphi \equiv \varphi_0 \land (x_1 \land \neg y) \lor (x_2 \land y), \\
23 & \text{if } \varphi \equiv \varphi_0 \land (x_1 \land y) \lor (x_2 \land \neg y), \\
14 & \text{if } \varphi \equiv \varphi_0 \land \neg x_1 \land \neg x_2, \\
34 & \text{if } \varphi \equiv \varphi_0 \land \neg x_1 \land \neg x_2 \land \neg x_4, \\
12 & \text{otherwise.}
\end{cases}
$$

Notice that the valuation v with $v(x_3) = v(y) = 1$ is now discovered in 3 experiments as the strategy does not repeat the experiment 12. Therefore, $\Lambda = 3$.

Both strategies τ and σ' are worst-case optimal.

3.4 One-step look-ahead strategies

Specification of a strategy in general can be very complicated. In this section, we study a subclass of memory-less strategies that we call one-step look-ahead. These strategies select an experiment that minimizes the value of a given function on the set of possible knowledge in the next step.

Definition 3.20 (One-step look-ahead strategy). Let f be a function of type $\mathbb{F} \rightarrow \mathbb{R}$ and \preceq a total order of experiments. A one-step look-ahead strategy with respect to f and \preceq and is a memory-less strategy σ, such that $\sigma(\varphi) = e$ is the minimal element of (E, \preceq) satisfying

$$
\forall e' \in E. \ f(\{ \varphi \land \psi \mid \psi \in \Phi(e) \}) \leq f(\{ \varphi \land \psi \mid \psi \in \Phi(e') \}).
$$

We refer to the value $f(\{ \varphi \land \psi \mid \psi \in \Phi(e) \})$ as the value of the function f on the experiment e. The purpose of \preceq is to resolve the cases in which the value of the function is the same on more experiments.

Several one-step look-ahead strategies for Mastermind have been already introduced in Section 2.2. In the following, we define them formally for the general
3. Code-breaking game model

model of code-breaking games. Unless otherwise stated, the total order \(\preceq \) is the lexicographical order of the experiments.

Max-models. This strategy minimizes the worst-case number of remaining codes. For Mastermind, this was suggested by Knuth[19].

\[
f(\Psi) = \max_{\varphi \in \Psi} \# \varphi.
\]

Exp-models. This strategy minimizes the expected number of remaining codes. For Mastermind, this was suggested by Irwing[20].

\[
f(\Psi) = \frac{\sum_{\varphi \in \Psi} (\# \varphi)^2}{\sum_{\varphi \in \Psi} \# \varphi}.
\]

Ent-models. This strategy maximizes the entropy of the numbers of remaining codes. For Mastermind, this was suggested by Neuwirth[21].

\[
f(\Psi) = \sum_{\varphi \in \Psi} \frac{\# \varphi}{N} \log \frac{\# \varphi}{N}, \text{ where } N = \sum_{\varphi \in \Psi} \# \varphi.
\]

Parts. This strategy maximizes the number of satisfiable outcomes. For Mastermind, this was suggested by Kooi[22].

\[
f(\Psi) = -|\{ \varphi \mid \varphi \in \Psi, SAT(\varphi) \}|.
\]

We suggest and analyse two more one-step look ahead strategies that are based on the number of fixed variables of the formulas. Let

\[
\#_{\text{fixed}} \varphi = |\{ x \in X \mid \forall v. v(\varphi) = 1 \Rightarrow v(x) = 1 \} \cup \{ x \in X \mid \forall v. v(\varphi) = 1 \Rightarrow v(x) = 0 \}|
\]

be the number of fixed variables of \(\varphi \). Note that while the strategies above does not depend on the exact formalization of a problem, the number of fixed variables may differ for different encodings. For example, recall the two possible formalisations of the counterfeit coin problem defined in Example 3.7. The numbers of the fixed variables in the outcome formulas differ, which means that the strategy may select different experiments.

Min-fixed. Maximize the worst-case number of fixed variables, i.e.

\[
f(\Psi) = -\min_{\varphi \in \Psi} \#_{\text{fixed}} \varphi.
\]

Exp-fixed. Maximize the expected number of fixed variables, i.e.

\[
f(\Psi) = -\frac{\sum_{\varphi \in \Psi} \# \varphi \cdot \#_{\text{fixed}} \varphi}{\sum_{\varphi \in \Psi} \# \varphi}.
\]
3. Code-breaking game model

Example 3.21. Recall Example 3.4 and consider the following two experiments in the first step. First, the experiment of weighing coin 1 against coin 2. All the three outcomes are satisfiable, the number of models is 2 for the outcome $<$, 2 for $>$ and 4 for $=$. If the experiment results in $<$ or $>$, we know that the counterfeit coin is the first or the second coin. If it results in $=$, it must be the third or the fourth coin. Therefore, every outcome fixes two variables.

Second, the experiment of weighing coins 1 and 2 against coins 3 and 4. As exactly one coin must be counterfeit, the outcome $=$ is impossible. The outcomes $<$ and $>$ are symmetrical, both have 4 models and fix no variables.

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>1234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-models</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Exp-models</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Ent-models</td>
<td>-1.04</td>
<td>-0.69</td>
</tr>
<tr>
<td>Parts</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>Min-fixed</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>Exp-fixed</td>
<td>-2</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.22: Values of various one-step look-ahead strategies in the counterfeit coin problem with four coins on experiments 12 and 1234.

Table 3.22 shows the values of the defined one-step look-ahead strategies on these two experiments. In all strategies except for “max-models”, the experiment 12 wins over 1234 and is selected as the first experiment. In “max-models”, the values on 12 and 1234 are the same but the experiment 12 is still selected because it is lexicographically smaller.

 comercial
4 Experiment equivalence and algorithms

What makes the analysis of code-breaking games difficult is typically the large number of experiments. For example, during the evaluation a one-step look-ahead strategy with respect to function \(f \), we need to compute the value of \(f \) on all experiments. The number of experiments is even more important for optimal strategy synthesis, where we have to consider all possible experiments in every state and analyse whether the experiment can lead to an improvement of the number of experiments of a strategy.

Fortunately, some experiments are usually equivalent to some others in the sense that the knowledge they can give us is either exactly the same or symmetrical. In the counterfeit coin problem, for example, the parametrized experiment of weighing 4 coins against 4 coins has \(\frac{1}{2} \cdot (\binom{12}{1}) \cdot (\binom{8}{4}) = 17,325 \) possible parametrizations. In the initial state, however, all of them are equivalent as they give us symmetrical knowledge.

This chapter formally introduces the concept of experiment equivalence. We prove that in various situations, it is sufficient to consider one experiment from each equivalence class. This fact is used in the presented algorithms for well-formed check, evaluation of a one-step look-ahead strategies and optimal strategy synthesis.

4.1 Experiment equivalence

We start with a formal definition of equivalence of two experiments. The section continues with our suggestion on a method for equivalence testing based on isomorphism of labelled graphs. This method is crucial for the algorithms presented in the following sections.

Definition 4.1 (Experiment equivalence). Let \(e \in E \) be an experiment and \(\pi \in \text{PERM}_X \) a variable permutation. A \(\pi \)-symmetrical experiment to \(e \) is an experiment \(e^\pi \in E \) such that \(\{ \varphi^\pi \in \Phi(e) \} = \{ \varphi \in \Phi(e^\pi) \} \). Clearly, no \(\pi \)-symmetrical experiment to \(e \) may exists.

A *symmetry group* \(\Pi \) of a given game is the maximal subset of \(\text{PERM}_X \) such that for every \(\pi \in \Pi \) and \(e \in E \), there exists a \(\pi \)-symmetrical experiment to \(e \).

Finally, an experiment \(e_1 \in E \) is equivalent to \(e_2 \in E \) with respect to \(\varphi \), written \(e_1 \equiv_{\varphi} e_2 \), if and only if there exists a permutation \(\pi \in \Pi \) such that

\[
\{ \varphi \land \psi \mid \psi \in \Phi(e_1) \} \equiv \{ (\varphi \land \psi)^\pi \mid \psi \in \Phi(e_2) \}.
\]
Example 4.2. Recall the running example from the previous chapter, introduced in Example 3.4. Experiment 23 is a \((x_1,x_3)\)-symmetrical experiment to 12, because for \(\pi = (x_1,x_3)\),

\[
\{ ((x_1 \land y) \lor (x_2 \land y))^\pi, ((x_1 \lor y) \lor (x_2 \land \neg y))^\pi, (\neg(x_1 \lor x_2))^\pi \} = \\
\{ (x_3 \land \neg y) \lor (x_2 \land y), (x_3 \lor y) \lor (x_2 \land \neg y), (\neg(x_3 \land x_2) \lor (x_3 \land \neg y)) \).
\]

In fact, for every experiment \(e = (t,p)\) and every permutation \(\pi\) stabilizing \(y\), we can permute the parameters of \(t\) accordingly and get a \(\pi\)-symmetrical experiment to \(e\). Therefore, the symmetry group \(\Pi\) is \(\{\pi \in \text{PERM}_X | \pi(y) = y\}\).

Since \(\Pi\) is also the symmetry group of \(\varphi_0\), all experiments of the same type are equivalent, and the quotient set of \(E\) by \(\varphi_0\) has only two equivalence classes. For a more complex example, let \(\varphi = \varphi_0 \land (x_1 \lor x_2)\). Experiment 3124 is now equivalent to 43, with \(\pi = \text{id}_X\). The corresponding formulas are equivalent even though they are syntactically different.

In the rest of the section, we suggest a method for testing whether two given experiments are equivalent with respect to a given formula.

First, we show a construction of the base graph for a given game, automorphisms of which are a subset of the symmetry group \(\Pi\). Then we describe the construction of the experiment graph for a given experiment, which is build on top of the base graph. We prove that if the experiment graphs are isomorphic, the corresponding experiments are equivalent.

Recall that a labelled graph is a triple \((V,E,l)\), where \((V,E)\) is a graph and \(l : V \rightarrow L\) is a labelling function \((L\) being a set of labels). Isomorphism of two labelled graphs is a bijection between their sets of vertices that preserves edges and labels.

Base graph construction

The base graph for a game \(\mathcal{G} = (X,\varphi_0,\Sigma,F,T)\) is a labelled graph \(B = (V,E,l)\) described below.

- There is a vertex for every proposition variable and every mapping, i.e. \(V = X \cup F\).
- A mapping is connected by edges with all variables in its value range, i.e. \((f,x) \in E\) if there is a symbol \(a \in \Sigma\) such that \(f(a) = x\),
- Two variables are connected by an edge if they are values of different mappings on the same symbol of the alphabet, and these mappings appear in outcome formulas of the same parametrized experiment. Formally, \((x_1,x_2) \in E\) if there is a symbol \(a \in \Sigma\) and mappings \(f_1, f_2 \in F\) such that \(f_1(a) = x_1\), \(f_2(a) = x_2\), and there is a parametrized experiment \(t \in T\) and a number
4. Experiment equivalence and algorithms

\[k \leq n_t \text{ such that both } f_1(k) \text{ and } f_2(k) \text{ appear in the outcome formulas of the parametrized experiment } t. \]

- The vertices corresponding to mappings have their own labels. The vertices corresponding to variables are labelled “variable”, except for the variables that appear directly in some outcome formula of a parametrized experiment. These have their own labels as well.

Example 4.3. The base graph for the counterfeit coin problem with 4 coins is shown in Figure 4.4 on the left. Note that vertices \(y \) and \(f_x \) have separate labels while other vertices are labelled “variable”.

![Figure 4.4: Base graph for the counterfeit coin problem with 4 coins (left) and for Mastermind with 3 pegs and 3 colours (right).](image)

A more complicated example is the base graph for Mastermind with 3 pegs and 3 colours, shown on the right-hand side. The vertices \(f_1, f_2, f_3 \) have separate labels, all other vertices are labelled “variable”. For simplicity, we leave out the symbol \(x \) in the figure, e.g. write 1A instead of \(x_{1A} \).

Lemma 4.5. Let \(\pi \) be an automorphism of \(B \). Then \(\pi|_X \in \Pi \).

Proof. Let \(\pi \) be an automorphism of \(B \) and \((t,p) \) an experiment with a parametrization \(p = p_1 p_2 \ldots p_n \). We show that there exists a \(\pi \)-symmetrical experiment to \((t,p) \).

Let \(F_i \subseteq F \) be a set of mappings that are present in some outcome formula of \(t \) with parameter \$i\$. The vertices \(f(p_i) \) for \(f \in F_i \) form a clique in \(B \) and so must the vertices \(\pi(f(p_i)) \) for \(f \in F_i \). Since mappings \(F \) have pairwise disjoint images, two variables \(x_1, x_2 \) can be connected by an edge only if there is a symbol \(k \in \Sigma \) and mappings \(f, g \in F \) such that \(f(k) = x_1, g(k) = x_2 \).

We define \(r_i \) as a symbol of \(\Sigma \) that satisfies \(f(r_i) = \pi(f(p_i)) \) for some \(f \in F_i \). There always exists such \(r_i \), because \(f(p_i) \) cannot be mapped to a vertex that is not connected to \(f \). Due to the property above, if \(f(r_i) = \pi(f(p_i)) \) holds for some \(f \in F_i \), it holds for all \(f \in F_i \) and the definition is thus correct.

Now, consider the experiment \((t,r) \), where \(r = r_1 r_2 \ldots r_n \). All variables appearing directly in the parametrized formula are stabilized by \(\pi \) and for all expressions
4. Experiment equivalence and algorithms

\(f(\$i) \) it holds \(f(r_i) = \pi(f(p_i)) \) by the construction of \(r_i \), which means that \((t,r) \) is \(\pi \)-symmetrical to \((t,p) \).

Experiment graph

Let \(\varphi \in \text{FORM}_X \) be a formula. An \(x \)-rooted tree of \(\varphi \) is a graph created from the syntax tree of \(\varphi \) by unification of the leaves that correspond to the same variables and adding a special vertex with label \(x \) that is connected to the root of the syntax tree, i.e. to the top-level operator of \(\varphi \). Other vertices of the graph are labelled by their type (e.g. “variable”, “and-operator”, etc.)

In this construction, we need the trees of two formulas to be isomorphic if and only if the formulas are syntactically equivalent. This clearly holds if all the operators are commutative. As the only non-commutative operator is implication, we substitute subformulas of the form \(\varphi \rightarrow \psi \) with an equivalent formula \(\psi \lor \neg \varphi \).

Let \(B \) be the base graph for the given game, \(\varphi \in \text{FORM}' \) some partial knowledge and \(e \) an experiment. The experiment graph \(B_{\varphi,e} \) is constructed as follows.

- Begin with the graph \(B \).
- Add the “knowledge”-rooted tree of \(\varphi \).
- For each outcome \(\psi \in \Phi(e) \), add the “outcome”-rooted tree of \(\psi \).

Theorem 4.6. If \(B_{\varphi,e_1} \) is isomorphic to \(B_{\varphi,e_2} \), then \(e_1 \approx_{\varphi} e_2 \).

Proof. Let \(\rho \) be the graph isomorphism of \(B_{\varphi,e_1} \) and \(B_{\varphi,e_2} \) and let \(\pi = \rho|_X \), considered as a permutation of \(X \). Since \(B \) is the vertex-induced subgraph of both \(B_{\varphi,e_1} \) and \(B_{\varphi,e_2} \) by the set of vertices \(X \cup F \), \(\pi \) is a member of \(\Pi \) by Lemma 4.5.

The isomorphism \(\rho \) maps the only “knowledge”-labelled vertex in the first graph to the only “knowledge”-labelled vertex in the second graph, which implies the equivalence of the formulas, \(\varphi^\pi \equiv \varphi \). Similarly, “outcome”-labelled vertices are mapped to “outcome”-labelled vertices, which means that \(\{ \psi^\pi \mid \psi \in \Phi(e_1) \} = \Phi(e_2) \).

This is sufficient for the experiments to be equivalent with respect to \(\varphi \).

Example 4.7. Recall the running example of the counterfeit coin problem with four coins. Base graph for the game was shown in Example 4.3. Let \(\varphi = \varphi_0 \land \neg(x_1 \lor x_2) \) be the accumulated knowledge of the solving process \((12, =)\) and let \(e \) be the experiment 3124. The experiment graph \(B_{\varphi,e} \) is shown in Figure 4.8; Ex1 denotes the EXACTLY1 operator.

Unfortunately, the graph for experiment 43 is clearly not isomorphic to this graph, although the experiments are equivalent with respect to \(\varphi \). We address this problem in the following.

\[\]
4. Experiment equivalence and algorithms

Figure 4.8: Experiment graph for 3124 with knowledge $\varphi_0 \land \neg (x_1 \lor x_2)$.

Figure 4.9: Simplified experiment graph for 3124 with knowledge $\varphi_0 \land \neg (x_1 \lor x_2)$.

Improvement by fixed variables

The previous example shows that the method explained above does not detect some basic equivalences. To address the problem, we suggest the following improvement to the construction of $B_{\varphi,e}$.

1. Compute fixed variables of the formula φ using a SAT solver.
2. Simplify the formula φ with the knowledge of its fixed variables.
3. Simplify the outcomes of e, formulas $\psi \in \Phi(e)$, with the knowledge of fixed variables of φ.
4. Construct the graph as described above.
5. Label the vertices corresponding to the fixed variables with the label “false” or “true”, according to their fixed value.
4. Experiment equivalence and algorithms

As the simplified formulas are equivalent to the original formulas, Theorem 4.6 also holds if the graphs $B_{\varphi,e_1}, B_{\varphi,e_2}$ are constructed with this approach.

Example 4.10. Let us apply the suggested improvement on the previous example. The formula $\varphi = \varphi_0 \land \neg(x_1 \lor x_2)$ fixed variables x_1 and x_2 to false. Figure 4.9 shows the constructed experiment graph after the simplification of the formulas.

The vertices x_1 and x_2 are now labelled “false” and are connected only to the vertex f_x. Compare the structure with the graph in Figure 4.8. Note that the graph is now isomorphic to the graph of the experiment 43.

Algorithm 4.11 describes the elimination of equivalent experiments with respect to a formula φ, which is a straightforward application of the method described in this section. We assume there is a tool available for construction of the canonical labelling of a given graph, which is used to decide graph isomorphism.

Algorithm 4.11: Elimination of equivalent experiments

1. **Input:** formula φ
2. **Output:** set $S \subseteq E$, such that $\forall e \in E \exists s \in S \iff_{\varphi} s$
3. $B \leftarrow$ construct the base graph for the game
4. $fixed \leftarrow$ compute fixed variables of φ using a SAT solver
5. $\varphi' \leftarrow$ substitute values for fixed variables in φ and simplify
6. Label the vertices in B corresponding to the fixed variables with their fixed value
7. Add the “knowledge”-rooted tree of φ' to B
8. $S \leftarrow \emptyset$
9. $hash \leftarrow$ an empty hash table for graphs
10. **for** $e \in E$ **do**
11. $B_e \leftarrow$ clone B
12. **for** $\psi \in \Phi(e)$ **do**
13. $\psi' \leftarrow$ substitute values for $fixed$ in ψ and simplify
14. Add the “outcome”-rooted tree of ψ' to B_e
15. $B_e \leftarrow$ canonize B_e
16. **if** B_e is not present in $hash$ **then**
17. $hash.insert(B_e)$
18. $S \leftarrow S \cup \{e\}$
19. **return** S
4.2 Well-formed check

Experiment equivalence can be used during the verification that a given game is well-formed, as stated by the following lemma.

Lemma 4.12. Let \(S \subseteq E \) be a subset of experiments such that for every \(e \in E \), there exists \(s \in S \) such that \(e \equiv_{\varphi_0} s \). If the formula \(\varphi_0 \Rightarrow \text{EXACTLY}_1(\Phi(e')) \) is a tautology for all \(s \in S \), then the game is well-formed.

Proof. Assume by contradiction that the game is not well formed, i.e. there is \(e \in E \) and \(v \in \text{Val}' \) such that the number of formulas in \(\Phi(e) \) satisfied by \(v \) is not equal to one.

If \(e \in S \), the formula \(\varphi_0 \Rightarrow \text{EXACTLY}_1(\Phi(e')) \) is not satisfied by \(v \). Contradiction. Otherwise, there exists \(s \in S \) such that \(e \equiv_{\varphi_0} s \), which means that there exists \(\pi \in \text{PERM}_X \) such that \(\{ \varphi_0 \land \psi \mid \psi \in \Phi(e) \} = \{(\varphi_0 \land \psi)^\pi \mid \psi \in \Phi(s)\} \). Since \(\varphi_0 \Rightarrow \text{EXACTLY}_1(\Phi(s)) \) is a tautology, the permuted formula \(\varphi_0^\pi \Rightarrow \text{EXACTLY}_1(\psi^\pi \mid \psi \in \Phi(s)) \) is a tautology as well. Therefore, exactly one formula from the set \(\{(\varphi_0 \land \psi)^\pi \mid \psi \in \Phi(s)\} \) is satisfiable and the same holds for \(\{\varphi_0 \land \psi \mid \psi \in \Phi(e)\} \), which implies that \(\varphi_0 \Rightarrow \text{EXACTLY}_1(\Phi(e)) \) is a tautology.

4.3 Analysis of one-step look-ahead strategies

The following lemma gives us a right to disregard equivalent experiments during the analysis of some one-step look-ahead strategies.

Lemma 4.13. Let \(f : 2^{\text{form}'} \rightarrow \mathbb{R} \) be a function such that \(f(\emptyset) = f(\{\varphi \mid \varphi \in \Psi\}) \) for any \(\Psi \subseteq \text{form}' \) and \(\pi \in \text{PERM}_X \) and let \(\preceq \) be a total order of \(E \). Let \(\sigma \) be the one-step look-ahead strategy with respect to \(f \) and \(\preceq \), and let \(\varphi \) be a formula. Suppose there are experiments \(e_1, e_2 \) such that \(e_1 \preceq_{\varphi} e_2 \) and \(e_1 \preceq e_2 \). Then \(\sigma(\varphi) \neq e_2 \).

Proof. If follows directly from Definition 4.1 and the property of \(f \) that the function \(f \) have the same value on \(e_1 \) and \(e_2 \), i.e.

\[
f(\{\varphi \land \psi \mid \psi \in \Phi(e_1)\}) = f(\{\varphi \land \psi \mid \psi \in \Phi(e_2)\}).
\]

Since \(e_1 \preceq e_2 \), the strategy always prefers \(e_1 \) to \(e_2 \). Note that all one-step look-ahead strategies discussed in Section 3.4 satisfy the condition of the lemma. In general, any function based on satisfiability, the number of models and/or the number of fixed variables of the formulas will satisfy this requirement as these function are permutation independent.

A recursive approach for the analysis of one-step look-ahead strategies is shown in Algorithm 4.14. There are two options in line 5 of the ANALYSE function. The
4. Experiment equivalence and algorithms

Algorithm 4.14: Analysis of a one-step look-ahead strategy

Input: function \(f : 2^\text{FORM} \rightarrow \mathbb{R} \), total order \(\preceq \) of \(E \)

Output: \((w, a)\), where \(w \) and \(a \) is the worst-case and the average-case number of experiments performed by the strategy

1. \(\text{globalsum} \leftarrow 0 \)
2. \(\text{globalmax} \leftarrow 0 \)
3. \(\text{Analyse}(\varphi_0, 1) \)
4. \(\text{return} \ (\text{globalmax}, \ \text{globalsum} / \#\varphi_0) \)

Function \(\text{Analyse}(\varphi, \text{depth}) \)

1. \(\text{choice} \leftarrow \text{None} \)
2. \(\text{bestvalue} \leftarrow \infty \)
3. \(S \leftarrow \text{eliminate equivalent experiments by running Algorithm 4.11 on } \varphi, \)
 where the experiments are considered in the order given by \(\preceq \)
4. for \(e \in S \) (variant 1) or \(e \in E \) (variant 2) do
5. \(\text{value} \leftarrow f(e) \) if \(\text{value} < \text{bestvalue} \) then
6. \(\text{choice} \leftarrow e \)
7. \(\text{bestvalue} \leftarrow \text{value} \)
8. for \(\psi \in \Phi(e) \) do
9. if not \(\text{SAT}(\varphi \land \psi) \) then continue
10. if \(\#(\varphi \land \psi) = 1 \) then
11. \(\text{globalsum} \leftarrow \text{globalsum} + \text{depth} \)
12. \(\text{globalmax} \leftarrow \max(\text{globalmax}, \text{depth}) \)
13. else
14. \(\text{Analyse}(\varphi \land \psi, \text{depth} + 1) \)

first is to use the algorithm to eliminate equivalent experiments and thus evaluate the strategy only on a subset of experiments. The second is to go through all possible experiments.

In general, it cannot be said which variant is faster. This depends on the ratio between the time needed for graph canonization and the time needed for strategy evaluation.

4.4 Optimal strategy synthesis

We suggest a method for worst-case and average-case optimal strategy synthesis based on backtracking. In every state, we consider all possible experiments and compute the number of steps we need if we start with this experiment. Our goal in this section is to prove that it is enough to analyse only one experiment from
4. Experiment equivalence and algorithms

Each equivalence class, as equivalent experiments give the same results.
First, let us define \(\kappa(\varphi) \) and \(\kappa_{\text{exp}}(\varphi) \) as the optimal number of experiments needed to reveal the secret code when starting with knowledge \(\varphi \) in the worst-case and in the average-case, respectively. We can say that \(\kappa(\varphi) \) (\(\kappa_{\text{exp}}(\varphi) \)) is the number of experiments of a worst-case (average-case) optimal strategy if we change the initial constraint of the game to \(\varphi \).

Similarly, we define \(\kappa(\varphi, e) \) and \(\kappa_{\text{exp}}(\varphi, e) \) as the optimal number of experiment needed to reveal the secret code when starting with knowledge \(\varphi \) and with \(e \) as the first experiment.

There is an obvious relationship between \(\kappa(\varphi) \) and \(\kappa(\varphi, e) \) and between \(\kappa_{\text{exp}}(\varphi) \) and \(\kappa_{\text{exp}}(\varphi, e) \). For any \(\varphi \in \text{FORM}' \),

\[
\kappa(\varphi) = \min_{e \in E} \kappa(\varphi, e), \quad \text{and} \quad \kappa_{\text{exp}}(\varphi) = \min_{e \in E} \kappa_{\text{exp}}(\varphi, e). \quad (4.1)
\]

Further, we can compute \(\kappa(\varphi, e) \) and \(\kappa_{\text{exp}}(\varphi, e) \) from the optimal values for the subproblems after the first experiment. These relationships are based on the definitions of the worst-case and average-case number of experiments of a strategy (\(\Lambda^\sigma \) and \(\Lambda_{\text{exp}}^\sigma \)). For any \(\varphi \in \text{FORM}' \) and \(e \in E \),

\[
\kappa(\varphi, e) = \begin{cases}
0 & \text{if } \#\varphi = 1, \\
\infty & \text{if } \exists \psi \in \Phi(e). \varphi \land \psi \equiv \varphi, \\
1 + \max_{\psi \in \Phi(e)} \kappa(\varphi \land \psi) & \text{otherwise}.
\end{cases} \quad (4.2)
\]

\[
k_{\text{exp}}(\varphi, e) = \begin{cases}
0 & \text{if } \#\varphi = 1, \\
\infty & \text{if } \exists \psi \in \Phi(e). \varphi \land \psi \equiv \varphi, \\
1 + \sum_{\psi \in \Phi(e)} \frac{\#(\varphi \land \psi) \cdot k(\varphi \land \psi)}{\#\varphi} & \text{otherwise}.
\end{cases}
\]

Let us now define the sets of optimal choices in a state. For a \(\varphi \in \text{FORM}' \), we define

\[
\varepsilon(\varphi) = \{ e \in E \mid \forall e' \in E. \kappa(\varphi, e) \leq \kappa(\varphi, e') \}, \quad \text{and} \quad \varepsilon_{\text{exp}}(\varphi) = \{ e \in E \mid \forall e' \in E. \kappa_{\text{exp}}(\varphi, e) \leq \kappa_{\text{exp}}(\varphi, e') \}.
\]

The following lemma is a straightforward consequence of the definitions of \(\kappa \) and \(\varepsilon \).

Lemma 4.15. If \(\sigma \) is a strategy such that \(\sigma(\varphi) \in \varepsilon(\varphi) \) for every \(\varphi \in \text{FORM}' \), \(\sigma \) is worst-case optimal. Similarly, if \(\sigma' \) is a strategy such that \(\sigma'(\varphi) \in \varepsilon_{\text{exp}}(\varphi) \) for every \(\varphi \in \text{FORM}' \), \(\sigma' \) is average-case optimal.

Now, we are ready for the main theorem of this section. The first part gives us a right to compute the value of \(\kappa \) on symmetrical formulas only once. The second part allows us to consider only one experiment from each equivalence class of \(E/ \equiv_\varphi \) in every state. The exact algorithm for optimal strategy synthesis with further optimizations is described in Section 5.3.
4. Experiment equivalence and algorithms

Theorem 4.16. For every \(\varphi \in \text{FORM}' \),

1. \(\kappa(\varphi) = \kappa(\varphi^\pi) \) and \(\kappa_{\text{exp}}(\varphi) = \kappa_{\text{exp}}(\varphi^\pi) \) for all \(\pi \in \Pi \), and
2. if \(e_1 \cong \varphi \ e_2 \), then \(e_1 \in \varepsilon(\varphi) \iff e_2 \in \varepsilon(\varphi) \) and \(e_1 \in \varepsilon_{\text{exp}}(\varphi) \iff e_2 \in \varepsilon_{\text{exp}}(\varphi) \).

Proof. The proof for the worst case \((\kappa, \varepsilon) \) and for the average case \((\kappa_{\text{exp}}, \varepsilon_{\text{exp}}) \) is exactly the same, so we show only the proof for the worst case.

Since \(\pi \in \Pi \), there exists a \(\pi \)-symmetrical experiment \(e^\pi \) to \(e \) for every \(e \in E \). Recall that \(\Phi(e^\pi) = \{ \psi^\pi \mid \psi \in \Phi(e) \} \). We show by induction on the number of models of \(\varphi \) that \(\kappa(\varphi, e) = \kappa(\varphi^\pi, e^\pi) \), which is sufficient for the first part.

As \(\#\varphi = \#\varphi^\pi \), the statement follows directly from (4.1) and (4.2) for formulas with one model. For the induction step, observe that \(\#(\varphi^\pi \land \psi^\pi) = \#(\varphi \land \psi) \) and, by the induction hypothesis, \(\kappa(\varphi^\pi \land \psi^\pi) = \kappa(\varphi \land \psi) \) if \(\varphi \cong \varphi \land \psi \). The statement now follows from (4.2) as the right sides are equal.

For the second part, it suffices to prove that \(\kappa(\varphi, e_1) = \kappa(\varphi, e_2) \). As the experiments are equivalent, there exists a permutation \(\pi \in \Pi \), such that \(\{ \varphi \land \psi \mid \psi \in \Phi(e_1) \} = \{ (\varphi \land \psi)^\pi \mid \psi \in \Phi(e_2) \} \). The equation now follows from (4.2) and the facts that \(\#\varphi = \#\varphi^\pi \) and \(\kappa(\varphi) = \kappa(\varphi^\pi) \) (proven in the first part).

A recursive algorithm for the computation of the value of the worst-case and the average-case optimal strategy, \(\kappa(\varphi) \) and \(\kappa_{\text{exp}}(\varphi) \), is shown in Algorithm 4.17. The lines marked with [W] applies only to the worst case, the lines marked with [A] applies only to the average case.

The algorithm makes use of the first part of the theorem by caching the results and checking that the function has not yet been called on the same or a symmetrical formula in the begging. This is done similarly to the symmetry detection described in Section 4.1. We construct the base graph of the game, add the “knowledge”-rooted tree of \(\varphi \), canonize the graph and compare with the graphs we have already seen.

Apart from the formula \(\varphi \), the recursive function takes another argument, \(opt \), which is used for branch pruning in the computation of the worst-case optimal strategy. The value of \(opt \) is an upper bound on \(\kappa(\varphi) \). Therefore, if we are sure that \(\kappa(\varphi, e) > opt \) for a given experiment \(e \), we can continue with the analysis of another experiment. A lower bound on \(\kappa(\varphi, e) \) can be computed using Lemma 3.11.

The initial value of \(opt \) should be \(\infty \) or any known upper bound on \(\kappa(\varphi_0) \).

Note that the order of the experiments in line 7 is not necessary for the correctness of the algorithm. The idea here is to try to find a good experiment as soon as possible, so that we can prune some branches on the lower bound check.
Algorithm 4.17: Computation of the worst-case (W) and the average-case (A) optimal number of experiments.

1. **Function** OPTIMUM(φ, opt)
2. \hspace{1em} if $\#\varphi = 1$ then return 0
3. \hspace{1em} Compute a canonical form of φ. If the function has already been called on φ or a symmetrical formula, use the cached result.
4. \hspace{1em} [W] $lb \leftarrow$ LOWERBOUND(φ)
5. \hspace{1em} [W] if $lb > opt$ then return ∞
6. $S \leftarrow$ compute a subset of experiments such that $e \in E \Rightarrow \exists e' \in S. e \equiv \varphi e'$
7. for $s \in S$, ordered by $\max_{\psi \in \Phi(s)} (\varphi \land \psi)$ do
8. \hspace{1em} if only one of $\varphi \land \psi$, $\psi \in \Phi(s)$ is satisfiable then continue
9. \hspace{1em} $val \leftarrow 0$
10. \hspace{1em} for $\psi \in \Phi(s)$ do
11. \hspace{2em} if SAT($\varphi \land \psi$) then
12. \hspace{3em} [W] $val \leftarrow \max(val, 1 + \text{OPTIMUM}(\varphi \land \psi, opt - 1))$
13. \hspace{3em} [A] $val \leftarrow val + \#(\varphi \land \psi) \cdot (1 + \text{OPTIMUM}(\varphi \land \psi, opt - 1))$
14. \hspace{1em} [A] $val \leftarrow val / \#(\varphi)$
15. \hspace{1em} if $val < opt$ then $opt \leftarrow val$
16. Store the information that the value for φ is opt
17. return opt
5 The Cobra tool

Development of a general tool for code-breaking game analysis and verification of feasibility and applicability of the suggested algorithms is an important part of this work.

We named the created tool Cobra, the code-breaking game analyser. Input of the tool is a game specification in a special language, which we describe first. Basic usage is explained afterwards with descriptions of various tasks the tool can perform with a given game. Notes on dependencies on external tools, on extensibility of Cobra and some more implementation details are described in later sections.

Well-documented source codes of the tool, together with specifications of code-breaking games described in Chapter 2 can be found in the electronic attachment of the thesis. A git repository on GitHub1 has been used during the development process, so another way of obtaining the source codes is by cloning the repository at \url{https://github.com/myreg/cobra}. This website also serves as a homepage of the project, and contains all related documents.

Cobra is available under \textit{BSD 3-Clause License}2, text of which is a part of the source codes.

5.1 Input language

First, we describe the low-level language that is the input format of Cobra. Then, the language is equipped with a preprocessor that allows macro generation of the low-level language.

Low-level language

The low-level language is based directly on Definition 3.1, the formal definition of code-breaking games. It is case-sensitive and whitespace is not significant at any position.

From a lexical point of view, there are three atoms. Identifier \(<\text{ident}>\), is a string starting with a letter or underscore that can contain letters, digits and underscores. Integer \(<\text{int}>\) is a sequence of digits. String \(<\text{string}>\) is a sequence of arbitrary characters enclosed in quotes. Further, list of X \(<\text{x-list}>\) is a comma-separated list of atoms of type X, generated by the grammar

\[<\text{x-list}> ::= <\text{x}> | <\text{x-list}>, <\text{x}>.\]

1 \url{http://www.github.com}
2 \url{http://opensource.org/licenses/BSD-3-Clause}
5. The Cobra tool

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE <ident></td>
<td>Declares a variable with a given identifier.</td>
</tr>
<tr>
<td>VARIABLES <ident-list></td>
<td>Declares variables with given identifiers.</td>
</tr>
<tr>
<td>CONSTRAINT <formula></td>
<td>Defines the initial constraint φ_0.</td>
</tr>
<tr>
<td>ALPHABET <string-list></td>
<td>Defines the parameter alphabet Σ.</td>
</tr>
<tr>
<td>MAPPING <ident> <ident-list></td>
<td>Defines a mapping with a given identifier. The seconds argument is a list of variable identifiers defining the values of the mapping for all elements of the alphabet.</td>
</tr>
<tr>
<td>EXPERIMENT <string> <int></td>
<td>Opens a section defining a new experiment named by the first argument and having the number of parameter given by the second argument. The section is closed automatically with a definition of a new experiment.</td>
</tr>
<tr>
<td>PARAMS-DISTINCT <int-list></td>
<td>Defines a restriction on the parameters of the experiment, requiring that parameters at specified positions are different. This is the only type of allowed restriction.</td>
</tr>
<tr>
<td>PARAMS-SORTED <int-list></td>
<td>Declares that the order of the parameters at specified positions is not important and, therefore only parametrizations where these parameters are sorted can be considered. This is not necessary for the game specification but can significantly improve the execution time.</td>
</tr>
<tr>
<td>OUTCOME <string> <formula></td>
<td>Defines an outcome of the experiment named by the first argument.</td>
</tr>
</tbody>
</table>

Table 5.1: Statements in the low-level language.

A game specification is a sequence of statement on separate lines. Supported statements are and their descriptions are listed in Table 5.1. Valid values of $<\text{formula}>$ are defined by the grammar

\[
<\text{formula}> ::= <\text{ident}_1> \mid (<\text{formula}>) \mid ! <\text{formula}> \\
|<\text{formula}> \circ <\text{formula}> \mid X-<\text{int}_1> (<\text{formula-list}>), \\
|<\text{ident}_2> ($<\text{int}_2>$),
\]

where $<\text{ident}_1>$ is an identifier of a variable and $\circ \in \{\text{and}, \&\text{, or}, |, \rightarrow, \leftarrow, \leftarrow\}$ is a standard logical operator with its usual meaning.

X is a numerical operator ATLEAST, ATMOST or EXACTLY, explained in Section 3.1. These operators are non-standard and could be cut out. However, they are quite common and useful in specification of code-breaking games and their naive
expansion to standard operators causes exponential expansion of the formula (with respect to k). Hence we support these operators in the language and we handle them specifically during the transformation to the conjunctive normal form, avoiding the exponential expansion by introduction of new variables. The conversion is described in detail in Section 5.5.

The last rule of the grammar describes application of a mapping on a parameter and is not allowed in the formula defining the initial constraint of the game.

Example 5.2. Recall the running example introduced in Example 3.4. The counterfeit-coin problem with four coins can be specified in the low-level language as follows.

```plaintext
VARIABLES y, x1, x2, x3, x4
CONSTRAINT Exactly-1(x1, x2, x3, x4)
ALPHABET '1', '2', '3', '4'
MAPPING X x1, x2, x3, x4
EXPERIMENT 'weighing2x2' 4
  PARAMS_DISTINCT 1, 2, 3, 4
  OUTCOME 'lighter' ((X$1 | X$2) & !y) | ((X$3 | X$4) & y)
  OUTCOME 'heavier' ((X$1 | X$2) & y) | ((X$3 | X$4) & !y)
  OUTCOME 'same' !(X$1 | X$2 | X$3 | X$4)
```

To parse this language, we use a standard combination of *GNU Flex*³ for lexical analysis and *GNU Bison*⁴ for parser generation. The exact LALR grammar we use can be found in the `cobra.ypp` file in the source codes.

Python preprocessing

Although the low-level language is sufficient for code-breaking game specification, it is not very user-friendly and simple changes in a game may require extensive changes in the input file. For example, if you want to change the number of coins in the counterfeit coin problem, you have to add or remove some experiment sections.

The situation is even worse in Mastermind, where the outcome formulas are generated by the algorithm described in Example 3.8. We would need to write a script to generate a specification of the game.

This is the reason why we suggest using a preprocessor. As the demands of different games may significantly differ, we decided not to create a special preprocessing engine and use Python⁵, a popular and intuitive scripting language, instead.

5. https://www.python.org
5. The Cobra Tool

<table>
<thead>
<tr>
<th>Function</th>
<th>Type of x</th>
<th>Type of y</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE(x)</td>
<td>string</td>
<td>-</td>
</tr>
<tr>
<td>VARIABLES(x)</td>
<td>list of strings</td>
<td>-</td>
</tr>
<tr>
<td>CONSTRAINT(x)</td>
<td>formula (as a string)</td>
<td>-</td>
</tr>
<tr>
<td>ALPHABET(x)</td>
<td>list of strings</td>
<td>-</td>
</tr>
<tr>
<td>MAPPING(x, y)</td>
<td>string</td>
<td>list of strings</td>
</tr>
<tr>
<td>EXPERIMENT(x, y)</td>
<td>string</td>
<td>integer</td>
</tr>
<tr>
<td>PARAMS-DISTINCT(x)</td>
<td>list of integers</td>
<td>-</td>
</tr>
<tr>
<td>PARAMS-SORTED(x)</td>
<td>list of integers</td>
<td>-</td>
</tr>
<tr>
<td>OUTCOME(x, y)</td>
<td>string</td>
<td>formula (as a string)</td>
</tr>
</tbody>
</table>

Table 5.3: Types of the extra functions allowed in the input files.

Now, the input can be an arbitrary Python script with calls to our extra functions VARIABLE, VARIABLES, CONSTRAINT, ALPHABET, MAPPING, EXPERIMENT, PARAMS-DISTINCT and OUTCOME, which are directly mapped to the constructs in the low-level language. The generation of the low-level language is carried out by execution of the Python file with those special function ingested. The functions only print the corresponding low-level language constructs to an output file. Types of their parameters are listed in Table 5.3.

Example 5.4. We show one possible way to specify the counterfeit coin problem in the code snippet below.

```python
N = 12
x_vars = ["x" + str(i) for i in range(N)]
VARIABLES(["y"] + x_vars)
CONSTRAINT("Exactly -1(" +\n" ",").join(x_vars))
ALPHABET([str(i) for i in range(N)])
MAPPING("X", x_vars)

# Helper for generation of a disjunction of parameters
# For example, params(2,4) = "X$2 \mid X$3 \mid X$4"
params = lambda n0, n1: "|".join("X$" + str(i)\nfor i in range(n0, n1 + 1))

for m in range(1, N//2 + 1):
    EXPERIMENT("weighing" + str(m), 2*m)
    PARAMS_DISTINCT(range(1, 2*m + 1))
    OUTCOME("lighter", "((%s) \& !y) \mid ((%s) \& y)" %\n(params(1, m), params(m+1, 2*m)))
    OUTCOME("heavier", "((%s) \& y) \mid ((%s) \& !y)" %\n(params(1, m), params(m+1, 2*m)))
    OUTCOME("same", "!(%s)" % params(1, 2*m))
```

46
5.2 Compilation and basic usage

To compile Cobra, run `make` in the program folder. This automatically compiles the external tools and builds the necessary libraries. If everything finishes successfully, the binary executable `cobra-backend` is created and ready for being used. If a problem occurs during the compilation, please refer to the `Requirements` paragraph of Section 5.7.

The basic syntax to launch the tool is the following.

```
./cobra [-m <mode>] [-s <sat solver>] [other options] <input file>
```

The mode of operation, given with the `-m` switch, specifies the task that will be performed with a given game. The four possible modes are described in Section 5.3, together with descriptions of supplemental options for each mode. The `-b` switch specifies a SAT solver that will be used for analysis of propositional formulas. Details can be found in Section 5.5.

The main executable, `cobra`, is a Python script that preprocesses the input file and writes the low-level game specification to the `.cobra.in` file. Then it executes `cobra-backend` and passes on all the options given by the user. Therefore, you can run Cobra on a low-level input format by launching `cobra-backend` directly with the same syntax.

Before `cobra-backend` exits, it always outputs a time overview section, with information on how much time have been spent on which operations and how many calls to the SAT solver and to the graph canonization tool have been made.

```
====== TIME OVERVIEW ======
Total time: 74.68s
Bliss (calls/time): 1984 / 0.10s
SAT solvers           sat  fixed     models
* PicoSolver          59 / 0.09s  197 / 0.26s 5635 / 73.23s
```

Figure 5.5: An example of the time overview section.

5.3 Modes of operation

Overview mode [o, overview] (default)

```
./cobra -m overview <input file>
```

Overview mode serves as a basic check that the input file is syntactically correct and that the specified game is sensible. In this mode, the tool prints the basic information about the loaded game, such as the number of variables, the number
of experiments, size of the search space, size of the preprocessed input file, trivial bounds on the worst-case and the average-case number of experiments and so on. It also performs a well-formed check, i.e. it verifies that the specified game is well-formed according to Definition 3.6. The algorithm for this purpose follows directly from Lemma 4.12. For each experiment, we verify that $\phi_0 \rightarrow \text{EXACTLY}_1(\psi_1, \ldots, \psi_k)$, where ψ_1, \ldots, ψ_k are the outcomes of the experiment, is a tautology. This is be done by negating the formula, passing it to a SAT solver, asking for satisfiability and expecting a negative result.

If a problem is found, the tool outputs an assignment and an experiment for which no outcome, or more that one outcome, is satisfied.

Well-formed check... failed!
EXPERIMENT: weighing1 1 2
PROBLEMATIC ASSIGNMENT:
 TRUE: y x3
 FALSE: x1 x2 x4 x5 x6 x7 x8 x9 x10 x11 x12

Figure 5.6: An example of a failed well-formed check in the counterfeit coin problem with no “=” outcome.

Simulation mode [s, simulation]

./cobra -m simulation -e <strategy> -o <strategy> <input file>
In the simulation mode, you specify a strategy for the codebreaker (for experiment selection) and for the codemaker (for outcome selection). This can be done using the -e and -o switches.

Here, the codemaker is not considered a player who chooses the secret code in the beginning and then only evaluates the experiments, but a player who chooses the outcomes of the experiments as they come according to his will. The only condition is that the outcomes are consistent.

For the codebreaker, Cobra supports all one-step look-ahead strategies described in Section 3.4: max-models, exp-models, ent-models, parts, min-fixed and exp-fixed. The codemaker can either use the strategy models that selects an outcome with the maximal number of models, or the strategy fixed that select an outcome with the minimal number of fixed variables.

Apart from these, the tool supports two extra options for both players, interactive and random, which are not strategies in the sense of Definition 3.9.

If interactive is specified as the codebreaker’s strategy, the tool prints a list of all experiments in each round and the user is asked to select an experiment from the list. This effectively allows a user to play the game against a codemaker’s strategy. Similarly, if interactive is the codemaker’s strategy, all possible outcomes
are printed after each experiment and the user is asked to select one of them. Unsatisfiable outcomes are printed as well but are marked accordingly and cannot be selected. In the random mode, the experiment, or the outcome of an experiment, is chosen from the list at random. The default values for both players are interactive, so if you run the simulation mode without any further options, you will be first asked to select the experiment and then to select its outcome.

Strategy analysis mode [a, analysis]

```
./cobra -m analysis -e <strategy> <input file>
```

In the analysis mode, the tool computes the worst-case and the average-case number of experiments needed by a given codebreaker’s strategy to reveal the secret valuation of the variables. Supported strategies for the codebreaker are the same as in the simulation mode. The algorithm for this task has been described in Algorithm 4.14. Two variants on the algorithm have been proposed, one with and one without symmetry detection. By default, the symmetry detection in turned on but can be turned off with the --no-symmetry switch.

Optimal strategy mode [ow, optimal-worst, oa, optimal-average]

```
./cobra -m optimal-worst [--opt-bound <double>] <input file>
./cobra -m optimal-average [--opt-bound <double>] <input file>
```

In the optimal strategy mode, the tool computes the number of experiments needed by a worst-case optimal, or an average-case optimal strategy for a given code-breaking game. The algorithm for this purpose has been described in Algorithm 4.17. An upper bound can be specified with --opt-bound switch. In some cases, this can significantly speed up the process. Note that the tool currently does not output the strategy in any format, it only computes the number of experiments needed by the optimal strategy. Also note that the this task is currently very slow even for small instances of code breaking games. Further optimizations would be necessary for the tool to synthesise the optimal strategy for Mastermind with 4 pegs and 6 colours in a reasonable time.

5.4 Modularity and extensibility

Cobra uses several external tools for SAT solving and graph canonization. Nowadays, many high-performance SAT solvers are available and multiple tools for graph canonization exist. Cobra was developed so that other external tools with
the same functionality can be easily integrated. Figure 5.7 shows a component diagram of the modular design of Cobra.

To integrate another SAT solver, create a new solver class that inherits from the abstract class `Solver` and implement all the necessary methods. Details can be found in the `solver.h` file in the source codes and the required methods are described in the next section.

Cobra can also be easily extended with a new strategy for experiment selection. The implementations of the supported strategies can be found in the `strategy.h` and `strategy.cpp` files. To add a new strategy, create a corresponding function in this file and add an entry about the strategy to the `breaker_strategies` table in `strategy.h`. The strategy function should take a list of experiments as its only argument and return the index of the selected experiment in the list.

If the strategy is one-step look-ahead, you can use a provided template with a corresponding lambda function. We demonstrate this possibility with a code snippet of the implementation of the “exp-models” strategy below. For exact details, see the documentation in the source codes.

```c++
uint breaker::exp_num(vec<Experiment>& list) {
    return minimize([](Experiment& e){
        uint sumsq = 0;
        for (uint i = 0; i < e.numOfOutcomes(); i++) {
            auto models = e.NumOfModelsOfOutcome(i);
            sumsq += models * models;
        }
        return static_cast<double>(sumsq) / e.TotalNumOfModels();
    }, list);
}
```

5.5 SAT solving

Cobra uses a SAT solver for the following tasks.
5. The Cobra tool

- Compute the total number of possible codes.
- Verify that an experiment is well-formed (see Section 5.3).
- Identify satisfiable outcomes of an experiment and disregard the others.
- Decide whether the game is finished – whether the accumulated knowledge as a formula has only one model.
- Evaluate the strategies – count models, fixed variables, etc.

Most of these tasks require an incremental SAT solver, by which we mean a SAT solver that supports incremental adding and removing constraints. Without this feature, we would have to call the solver from a clean state many times on the whole formula, which would ruin the computation time.

The solver must implement the following methods.

- \texttt{AddConstraint(formula)}. Adds a constraint.
- \texttt{Satisfiable()} \rightarrow \texttt{Bool}. Decides whether the current constraints are satisfiable.
- \texttt{GetAssignment()} \rightarrow \texttt{Assignment}. After a successful \texttt{Satisfiable} call, this function retrieves the satisfying assignment from the solver.
- \texttt{OpenContext()}, \texttt{CloseContext()}. \texttt{OpenContext} adds a context to a stack. Every call to \texttt{AddConstraint} adds the constraint to the context on the top of the stack. \texttt{CloseContext} removes all constraints in the current context and removes it from the stack. It must be possible to nest contexts arbitrarily.
- \texttt{HasOnlyOneModel()} \rightarrow \texttt{Bool}. Decides whether the current constraints have only one model. This can be done by asking whether the formula is satisfiable and if it is, retrieving the satisfying assignment, adding a constraint that rejects this assignment, and asking for satisfiability again. The pseudocode of this method is shown in Algorithm 5.8.
- \texttt{CountModels()} \rightarrow \texttt{Int}. SAT solvers do not typically include support for model counting, the problem commonly referred to as \#SAT. One solution is to use a special tool designed for this purpose, such as SharpSAT6[36]. However, we have not found a model counting tool that supports incremental SAT solving. Another option is to use an incremental SAT solver and a simple backtracking approach, progressively assuming a variable to be true or false and cutting the non-perspective (unsatisfiable) branches. The pseudocode in the form of a recursive in shown Algorithm 5.9, where the initial value of \(X\) in the set of propositional variables.

Cobra includes three SAT solver implementations that are described next.

\[6. \text{https://sites.google.com/site/marcthurley/sharpsat}\]
5. The Cobra tool

Algorithm 5.8: Decision whether a formula has exactly one model

1. if not Satisfiable() then return false
2. \(v \leftarrow \text{GetAssignment()} \)
3. OpenContext()
4. AddConstraint(\(x_1 \lor \ldots \lor x_n \)), where \(x_i \) is \(\neg x_i \) if \(v(x_i) = 1 \) and \(x_i \) otherwise
5. \(sat \leftarrow \text{Satisfiable()} \)
6. CloseContext()
7. return \(\neg sat \)

Algorithm 5.9: Model counting

1. Function Count(\(X \))
2. \(models \leftarrow 0 \)
3. if \(X = \emptyset \) then return 1
4. \(x \leftarrow \text{any variable from } X \)
5. OpenContext()
6. AddConstraint(\(x \))
7. if Satisfiable() then \(models \leftarrow models + \text{Count}(X \setminus \{x\}) \)
8. CloseContext()
9. OpenContext()
10. AddConstraint(\(\neg x \))
11. if Satisfiable() then \(models \leftarrow models + \text{Count}(X \setminus \{x\}) \)
12. CloseContext()
13. return \(models \)

PicoSat

Picosat\(^7\) [37] is a simple, extensible SAT solver, which supports incremental SAT solving exactly in the way we need. Picosat is available under the MIT License. Bindings to Picosat are implemented in the PicoSolver class. This class also implements the model counting algorithm 5.9 as Picosat does not support model counting itself.

MiniSat

Minisat\(^8\) [38] is a minimalistic, extensible SAT solver, which won several SAT competitions in the past. Minisat is also available under the MIT License. Minisat does not support incremental SAT solving in the manner we described but

7. http://fmv.jku.at/picosat/
8. http://minisat.se/
it supports “assumptions”. You can assume arbitrary number of unit clauses (i.e. that a variable is true of false) and ask for satisfiability under these assumptions. The behaviour we need can be simulated by the assumptions in the following way. For each context, we create a new variable, say a. Then, instead of adding clauses C_1, C_2, \ldots, C_n to the context, we add clauses \{-a, C_1\}, \{-a, C_2\}, \ldots \{-a, C_n\} and ask for satisfiability under the assumption a (in general, under the assumption that all variables corresponding to the open contexts are true). Afterwards, when a context is closed, we add a unit clause \{-a\}, which effectively removes all the clauses in the context.

Bindings to Minisat are implemented in the MiniSolver class. This class implements the context opening and closing in the way described above and the model counting algorithm 5.9.

Simple solver

We include a special SAT solver, called SimpleSolver to compare the proper SAT solvers with a simple approach based on model enumeration. Simple solver uses another SAT solver (Minisat) to generate all models of the first constraint, which is carried out in the same way as model counting described above. Satisfiability questions with additional constraint are resolved by going through all possible codes (assignments) and checking that the constraints are satisfied. Model counting and the other functions are implemented similarly. Note that Simple solver is optimized for context opening and closing. It remembers which models become unsatisfied in which contexts and adds them back to the list of possibilities when the context is closed.

Transformation to CNF

The input formula for a SAT solver must be typically specified in the conjunctive normal form (CNF). Since we do not have such requirement for formulas in our input format, and since we allow non-standard numerical operators, we need to transform a formula to CNF first.

The standard transformation works as follows. First, we express the formula in a form that uses only negations, conjunctions and disjunctions. Then, we transform the formula to negation normal form using De Morgan’s laws and, finally, we use distributivity of conjunction and disjunction to move all conjunctions to the top level. This procedure may lead to exponential explosion of the formula, so another solution, called Tseitin transformation, is commonly used for transformation of a formula to CNF\[39\].

Imagine the input formula as a circuit with gates corresponding to the logical operators. Input vectors correspond to variable assignments and the circuit output
5. The Cobra tool

is true if and only if the input assignment satisfies the formula. For each gate, a new variable representing its output is created. The resulting formula is a conjunction of subformulas that enforce the proper operation of the gates.

For example, consider an AND gate, inputs of which corresponds to variables \(x, y \) and output corresponds to a variable \(w \). We need to ensure that \(w \) is true if and only if both \(x \) and \(y \) are true, which is done by adding a subformula \(w \leftrightarrow (x \land y) \), which can be expressed in CNF as

\[
(\neg x \lor \neg y \lor w) \land (x \lor \neg w) \land (y \lor \neg w).
\]

Other gate types are handled similarly and this is done for all gates in the circuit. Finally, the variable corresponding to the result of the top level operator is added to the resulting formula as a unit clause.

It remains to explain how we handle the numerical operators\(\text{ATLEAST}, \text{ATMOST} \) and\(\text{EXACTLY} \). We show the transformation of \(\text{EXACTLY}_k(f_1, \ldots, f_n) \), the other operators are transformed analogically. For simplicity, assume \(f_i \) are variables; if not, we take the variable corresponding the the subformulas.

For each \(l \in \{0, 1, \ldots, k\} \) and \(m \in \{1, \ldots, n\} \), \(l \leq m \), we create a new variable \(z_{l,m} \) which will be true if and only if the formula \(\text{EXACTLY}_l(f_1, \ldots, f_m) \) is satisfied. To enforce this assignment, we add subformulas

\[
z_{l,m} \leftrightarrow (f_m \land z_{l-1,m-1}) \lor (\neg f_m \land z_{l,m-1})
\]

for each \(l > 1, \ m > 1 \) (in CNF). Special cases \(l = m \) and \(l = 0 \) are equivalent to a conjunction and to a conjunction of the negated variables, respectively, and are transformed accordingly.

The size of the resulting subformula is linear in \(n \cdot k \). Although this is not polynomial in the size of the input (supposing \(k \) is encoded in binary form) it is much better than a naive solution that expresses the formula as a conjunction of the \(\binom{n}{k} \) possibilities, which would be double exponential.

5.6 Graph isomorphism

To implement the suggested method for detection of equivalent experiments, we need a method to decide whether two given graphs are isomorphic. This problem is famous for not being proven either P-complete or NP-complete, so no polynomial algorithm for the problem is known. However, software tools are available for graph canonization, which are quite efficient for sparse graphs and can be used to decide graph isomorphism by comparison of the canonical forms of the graphs.

\textit{Nauty}9[40] and \textit{Bliss}10[41] are the most well-known tools for this purpose. These programs are primarily designed to compute automorphism groups of graphs but

9 \texttt{http://pallini.di.uniroma1.it}

10 \texttt{http://www.tcs.hut.fi/software/bliss}
they can produce a canonical labelling of the graph as well. For various reasons including simple integration, we decided to use Bliss, which is available under the GNU GPL v3 license.

For comparison of Nauty and Bliss, there are several benchmarks on the Nauty’s website and we recommend an overview of the algorithms used by these tools in [42].

5.7 Implementation details

Programming language and style

Since the problems we attempt to solve are computationally very demanding, we had to choose a high-performing programming language. Since the external tools we use are written in C and C++, a natural choice of a language for our tool was C++. Cobra is written in the latest standard of the language, C++11, which contains significant changes both in the language and in the standard libraries and, in our opinion, improves readability and programmer’s efficiency compared to previous versions.

We wanted the style of our code to be consistent and to use the language in the best manner possible according to industrial practice. From the wide range of style guides available online we chose Google C++ Style Guide[43] and made the code compliant with all its rules except for a few exception. The only significant violation are lambda functions, which are forbidden due to various reasons but we think that they are more beneficial than harmful in this project.

Requirements

The usage of a modern programming language requires a modern compiler that supports all the C++11 features we use. We have successfully tested compilation with gcc version 4.8.2 and clang version 3.2. For the Python preprocessing, the Python interpreter version 2.6 or higher is required.

The tool is platform independent. We have been able to successfully compile and test the functionality of the tool on Linux (Ubuntu 14.04) and Mac OS X (10.9).

Testing

Correctness is automatically a top priority for a tool of this kind so we implemented two automatic testing methods to capture potential programmer’s error as soon as possible.

Unit testing has became a popular part of software development process in the last decades and is very effective for testing the functionality of particular modules
5. The Cobra tool

and functions. From the large amount of unit test frameworks available for C++, we have chosen Google Test11, because of its simplicity, minimal amount of work needed to add new tests and very good assertion support. The unit tests are automatically compiled and executed if you run make utest in the tool directory. Functional tests provide a great method to test end-to-end functionality of the software. These tests execute the program on sample inputs and compare the output with their expectations. We have implemented several functional tests for the most common operations. They can be run by make ftest in the tool directory.

11 https://code.google.com/p/googletest/
6 Experimental results

In this chapter, we present experimental results of our tool on several code-breaking games. We compare the running times of the tool on various tasks with different SAT solvers and evaluate the proposed one-step look-ahead strategies.

In the tables below, MM\((n,m)\) refers to Mastermind with \(n\) pegs and \(m\) colours, CC\((n)\) refers to the counterfeit coin problem with \(n\) coins, BG\((n,m)\) refers to the Bags of gold problem with \(n\) bags and balance scale capacity \(m\) and SM\((n,m)\) refers to Mastermind with black markers with \(n\) pegs and \(m\) colours.

6.1 Performance

All experiments have been run on Intel Core i7-3770 3.40GHz and Cobra was compiled with \texttt{gcc} 4.8.2. The symmetry breaking engine has been turned off for this section, so that the differences between SAT solvers become more apparent. The numbers in the following tables report the running times in seconds with the respective SAT solvers. The last column (“\# calls”) states the total number of calls to the SAT solver during the task. Model counting and counting of the number of fixed variables are considered one call.

Table 6.1 lists the running times of the well-formed check of several code-breaking games. Naturally, proper SAT solvers are orders of magnitude faster than Simple solver as well-formed check is based on verification of unsatisfiability of a (relatively) large formula.

<table>
<thead>
<tr>
<th>Game</th>
<th>Simple</th>
<th>Minisat</th>
<th>Picosat</th>
<th># calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM((4,6))</td>
<td>174</td>
<td>2.7</td>
<td>3.2</td>
<td>1,296</td>
</tr>
<tr>
<td>MM((5,4))</td>
<td>217</td>
<td>14.3</td>
<td>34.8</td>
<td>1,024</td>
</tr>
<tr>
<td>BG((12,12))</td>
<td>3,539</td>
<td>0.5</td>
<td>1.1</td>
<td>271</td>
</tr>
</tbody>
</table>

Table 6.1: Running times (in seconds) of the well-formed check.

The first two lines of Table 6.2 show the execution times of the first experiment selection in Mastermind with 4 pegs and 6 colours. The last two lines of the table list the running times of the simulation of the respective strategies on the EDEE code.

As can be seen from the numbers, evaluation of the “parts” strategy is slightly faster with Minisat than with Simple solver. However, since our model counting algorithm implemented on top of Minisat and Picosat is naive and unoptimized, the evaluation of the “max-models” strategy is significantly faster with Simple solver.
6. Experimental results

<table>
<thead>
<tr>
<th>Task</th>
<th>Simple</th>
<th>Minisat</th>
<th>Picosat</th>
<th># calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select first exp. (parts)</td>
<td>3.9</td>
<td>2.6</td>
<td>523</td>
<td>17,108</td>
</tr>
<tr>
<td>Select first exp. (max-models)</td>
<td>9.3</td>
<td>45.3</td>
<td>> 5,000</td>
<td>3,145</td>
</tr>
<tr>
<td>Simulate (parts on EDEE)</td>
<td>10.5</td>
<td>7.9</td>
<td>749</td>
<td>92,644</td>
</tr>
<tr>
<td>Simulate (max-models on EDEE)</td>
<td>15.1</td>
<td>32.3</td>
<td>3,024</td>
<td>31,061</td>
</tr>
</tbody>
</table>

Table 6.2: Running times (in seconds) of simulation and strategy evaluation on MM(4,6).

<table>
<thead>
<tr>
<th>Game</th>
<th>Strategy</th>
<th>Simple</th>
<th>Minisat</th>
<th>Picosat</th>
<th># calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM(3,4)</td>
<td>parts</td>
<td>0.1</td>
<td>0.4</td>
<td>13.5</td>
<td>13,769</td>
</tr>
<tr>
<td>MM(3,4)</td>
<td>max-models</td>
<td>0.1</td>
<td>2.1</td>
<td>179</td>
<td>9,349</td>
</tr>
<tr>
<td>MM(3,4)</td>
<td>exp-fixed</td>
<td>0.3</td>
<td>17.4</td>
<td>1,974</td>
<td>15,002</td>
</tr>
<tr>
<td>MM(4,4)</td>
<td>parts</td>
<td>6.9</td>
<td>237</td>
<td>> 5,000</td>
<td>260,144</td>
</tr>
<tr>
<td>MM(4,4)</td>
<td>max-models</td>
<td>5.0</td>
<td>1,126</td>
<td>> 5,000</td>
<td>188,828</td>
</tr>
<tr>
<td>MM(4,4)</td>
<td>exp-fixed</td>
<td>24</td>
<td>> 5,000</td>
<td>> 5,000</td>
<td>329,820</td>
</tr>
<tr>
<td>CC(20)</td>
<td>parts</td>
<td>0.1</td>
<td>0.3</td>
<td>12.8</td>
<td>7,718</td>
</tr>
<tr>
<td>CC(20)</td>
<td>max-models</td>
<td>0.2</td>
<td>28</td>
<td>3,161</td>
<td>12,117</td>
</tr>
<tr>
<td>CC(20)</td>
<td>exp-fixed</td>
<td>0.3</td>
<td>73</td>
<td>> 5,000</td>
<td>14,273</td>
</tr>
</tbody>
</table>

Table 6.3: Running times (in seconds) of strategy analysis.

Table 6.3 shows the running times of strategy analysis. The clear winner in this case is Simple solver, which is not unexpected. On lower levels of the backtracking algorithm, the analysed formulas have only very few models and the overhead with calling a proper SAT solver is greater than the naive approach used by Simple solver.

The results also show that for proper SAT solvers, model counting is much harder than satisfiability questions. That is the reason why the analysis of the “max-models” strategy takes Minisat and Picosat much more time than analysis of the “parts” strategy.

To summarize the results of this section, Picosat turned out to be very slow on instances of this size. Minisat proved to be useful for strategy evaluation in the first rounds, when the number of possible models of the formula is relatively large. Simple solver is a clear winner for strategy analysis.

A question arises whether we can benefit from a hybrid approach of using a proper SAT solver in the first steps and switching to Simple solver when the number of possibilities shrinks. This was, however, beyond the scope of this thesis.
6. Experimental results

6.2 One-step look-ahead strategies

In this section, we compare performance of one-step look-ahead strategies proposed in Section 3.4 on the counterfeit coin problem, Mastermind, and Mastermind with black markers only.

The counterfeit coin problem

The average-case number of experiments performed by one-step look-ahead strategies in the counterfeit coin problem for the number of coins from 3 to 40 is shown in Figure 6.4.

Notice that larger number of coins does not necessarily mean that identifying the counterfeit coin is more difficult. For example, the “max-models” strategy needs 3.44 experiments on average to identify the counterfeit coin among 16 coins but only 3.41 if the number of coins is 17. That is because the additional coin changes the number of models of some outcomes, which may lead to better experiment selection.

Interestingly, the “exp-fixed” strategy outperforms all others on 20, 21, 23, 25 and 27 coins, while it seems to be generally worse. The strategies “parts” and “min-fixed” are clearly unsuitable for a problem of this kind.

Figure 6.4: Average-case number of experiments in the counterfeit coin problem.
6. Experimental results

Mastermind

Results for Mastermind are shown in Table 6.5, rounded to three decimal places. The clear winner in the average case is the “parts” strategy, closely followed by “max-models”.

In the worst case, “max-models” outperforms other strategies in all cases except MM(3,2). In this case, “max-models” is unlucky in the initial state and selects the guess AAA, which has the same maximal number of models over the outcomes as AAB but is lexicographically smaller. All other strategies select AAB, which turns out to be a better choice in this case.

Again, notice that larger size of the problem does not necessarily mean that revealing the secret is more difficult, as can be seen on the values for MM(5,2) and MM(5,3).

<table>
<thead>
<tr>
<th>Game</th>
<th>max-mod</th>
<th>parts</th>
<th>exp-mod</th>
<th>ent-mod</th>
<th>min-fix</th>
<th>exp-fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM(2,3)</td>
<td>2.667</td>
<td>4</td>
<td>2.333</td>
<td>3</td>
<td>2.444</td>
<td>3</td>
</tr>
<tr>
<td>MM(2,6)</td>
<td>3.667</td>
<td>5</td>
<td>3.667</td>
<td>5</td>
<td>3.861</td>
<td>5</td>
</tr>
<tr>
<td>MM(3,2)</td>
<td>2.625</td>
<td>4</td>
<td>2.250</td>
<td>3</td>
<td>2.250</td>
<td>3</td>
</tr>
<tr>
<td>MM(3,6)</td>
<td>4.046</td>
<td>5</td>
<td>3.977</td>
<td>5</td>
<td>4.218</td>
<td>5</td>
</tr>
<tr>
<td>MM(3,8)</td>
<td>4.787</td>
<td>6</td>
<td>4.701</td>
<td>6</td>
<td>4.844</td>
<td>6</td>
</tr>
<tr>
<td>MM(4,2)</td>
<td>2.750</td>
<td>4</td>
<td>2.750</td>
<td>4</td>
<td>3.063</td>
<td>4</td>
</tr>
<tr>
<td>MM(4,6)</td>
<td>4.476</td>
<td>5</td>
<td>4.374</td>
<td>6</td>
<td>4.626</td>
<td>6</td>
</tr>
<tr>
<td>MM(4,7)</td>
<td>4.837</td>
<td>6</td>
<td>4.743</td>
<td>6</td>
<td>4.947</td>
<td>6</td>
</tr>
<tr>
<td>MM(4,8)</td>
<td>5.183</td>
<td>6</td>
<td>5.102</td>
<td>7</td>
<td>5.293</td>
<td>7</td>
</tr>
<tr>
<td>MM(5,2)</td>
<td>3.500</td>
<td>5</td>
<td>3.313</td>
<td>5</td>
<td>3.938</td>
<td>5</td>
</tr>
<tr>
<td>MM(5,3)</td>
<td>3.407</td>
<td>4</td>
<td>3.379</td>
<td>4</td>
<td>3.634</td>
<td>4</td>
</tr>
<tr>
<td>MM(5,4)</td>
<td>3.991</td>
<td>5</td>
<td>3.880</td>
<td>5</td>
<td>4.092</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 6.5: Average-case and worst-case number of experiments of one-step look-ahead strategies in Mastermind.

Mastermind with black markers only (string matching)

Mastermind with black markers only is an example of a code-breaking game, where “max-models” does not perform so well. Exact values rounded to two decimal points are shown in Table 6.6.

The best one-step look-ahead strategy for this game is “ent-models”, the strategy based on the entropy of the number of models, closely followed by the “parts” strategy.
6. Experimental results

<table>
<thead>
<tr>
<th>Game</th>
<th>max-mod</th>
<th>parts</th>
<th>exp-mod</th>
<th>ent-mod</th>
<th>min-fix</th>
<th>exp-fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM(3,3)</td>
<td>3.15</td>
<td>4</td>
<td>2.89</td>
<td>4</td>
<td>2.89</td>
<td>4</td>
</tr>
<tr>
<td>SM(3,6)</td>
<td>6.1</td>
<td>8</td>
<td>5.58</td>
<td>7</td>
<td>5.74</td>
<td>8</td>
</tr>
<tr>
<td>SM(3,12)</td>
<td>10.76</td>
<td>14</td>
<td>10.28</td>
<td>13</td>
<td>10.5</td>
<td>14</td>
</tr>
<tr>
<td>SM(6,3)</td>
<td>4.94</td>
<td>6</td>
<td>4.5</td>
<td>7</td>
<td>4.47</td>
<td>6</td>
</tr>
<tr>
<td>SM(6,6)</td>
<td>8.61</td>
<td>12</td>
<td>8.2</td>
<td>12</td>
<td>7.99</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 6.6: Average-case and worst-case number of experiments of one-step look-ahead strategies in Mastermind with black markers only.
7 Conclusions

We presented a general model of code-breaking games based on propositional logic, which can fit Mastermind, the counterfeit coin problem and many others. Experiment equivalence was introduced and we proved that equivalent experiments can be disregarded during strategy analysis and optimal strategy synthesis. We suggested an algorithm for equivalence testing based on graph isomorphism. A computer language for code-breaking game specification was introduced and we developed a computer program that can perform various tasks with a given code-breaking game. Using the tool, we reproduced some of the existing results for Mastermind, analysed other code-breaking games and evaluated strategies for experiment selection based on the number of fixed variables.

There are many more interesting things to try in this framework. We present a few suggestions for future work in the next paragraphs. First, our code-breaking game model can be further generalized in many ways. Numerous possibilities arise if we allow experiments to have different costs. Imagine Mastermind with another type of experiment that directly tells you a colour at a specified position. What price must the new experiment have so that it is worth using it, given that the standard guess has a unit cost?

Second, one-step look-ahead strategies provide us with a simple heuristics to select experiments. However, if some experiments are assigned the same value, the lexicographically smaller experiment is chosen, which is not very reasonable. Randomized strategies, where the experiment is selected from the experiments with the best value with uniform distribution may lead to many interesting results. Third, look-ahead strategies can be naturally extended to more than one step. This would lead to the minimax algorithm applied to the tree of possible outcomes and experiments in the next rounds. Evaluation of such strategies would be much more computationally demanding. Would their performance be significantly better?

Finally, several completely different approaches for strategy synthesis were suggested for Mastermind. In particular, genetic algorithms proved to be very useful for problems of larger sizes as they scale much better than the backtracking approach. Can we apply these methods in our model?

For now, these interesting questions remain open. We hope they will lead to further research in this area.
Bibliography

Contents of the electronic attachment

An archive with source codes of Cobra is available in the thesis repository in IS MU, available online at https://is.muni.cz/th/359972/fi_m/.

The archive contains the following files and directories.

- examples/ Directory with sample code-breaking game specifications, including Mastermind, the counterfeit coin problem and others.
- src/ Directory with soures codes of Cobra.
- test/ Directory with unit tests and functional tests.
- tools/ Directory with source codes of external tools, Picosat release 957, Minisat version 2.2 and Bliss version 0.72.
- cobra The main executable.
- makefile Makefile with compilation rules and dependencies.
- LICENSE Full text of the BSD License.
- README Short description of Cobra with basic information.