

ŽILINSKÁ UNIVERZITA V ŽILINE
FAKULTA RIADENIA A INFORMATIKY

DIPLOMOVÁ PRÁCA

Študijný odbor:
Informačné systémy

Bc. Daniel Václavik

Využitie SVM na klasifikáciu znakov
získaných z evidenčných čísel vozidiel
Vedúci práce: Ing. Peter Tarábek, PhD.

Registračné číslo: 300/2013 Apríl 2014

ŽILINA, 2014

DECLARATION OF ORIGINALITY

I hereby declare that this thesis contains no material that has been accepted for any other

degree in any university. To the best of my knowledge and belief this thesis contains no

material previously published or written by any other person. The work submitted in this

thesis is the product of my own original research, except where I have duly acknowledged the

work of others.

Žilina, 29.4. 2014 DANIEL VÁCLAVIK

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Ing. Peter

Tarábek, PhD. for his continuous patience and guidance in all the time of research and writing

of the thesis. Also, I thank my parents for supporting me throughout all my studies at

University.

ABSTRACT

VÁCLAVIK, Daniel: Licence plate character classification using the SVM. Faculty of

Management Science and Informatics – Supervisor: Ing. Peter Tarábek, PhD. – Žilina 2014 –

53 pages.

The thesis’ main aim was to perform an assessment of the support vector machine (SVM)
and related methods, and develop a license plate character classification utilizing the SVM

classification model. Such classifier is required to run under real-time conditions and perform

the character recognition with a reasonable accuracy. The overview of object recognition and

the SVM-related methods is also outlined.

The novel image description method (utilizing image histogram projections) and

enhanced Directed Acyclic Graph SVM multi-class method are proposed. The grid-search

technique is utilized for the SVM and kernel parameter identification. The experimental

results and analysis are presented for a range of the SVM models.

Keywords: machine learning – optical character recognition – image classification – support

vector machine – LIBSVM

ABSTRAKT

VÁCLAVIK, Daniel: Využitie SVM na klasifikáciu znakov získaných z evidenčných čísel

vozidiel [diplomová práca] – Žilinská univerzita v Žiline. Fakulta riadenia a informatiky –

Vedúci práce: Ing. Peter Tarábek, PhD. – Žilina 2014 – 53 strán.

Hlavným cieľom práce je preskúmanie možností SVM pre klasikačné úlohy v oblasti
inteligentného rozpoznávania obrazu. Navrhnutá metóda pre klasifikáciu znakov získaných
z evidenčných čísel vozidiel je schopná pracovať v real-time podmienkach a vykazuje

nadpriemerné výsledky. Práca obsahuje krátke zhrnutie teoretických poznatkov o SVM a

rôznych metód rozpoznávania obrazu.

V práci je predstavená metóda deskripcie obrazu, ktorá využíva vertikálne a horizontálne
projekcie histogramu a nový spôsob klasikácie využívajúci rozhodovací orientovaný
acyklický graf. Výsledky experimentov pre rôzne nastavenie parametrov SVM a jadra

(kernel) sú predstavené spolu s vyhodnotením získaných výsledkov.

Kľúčové slová: strojové učenie – optické rozpoznávanie znakov – klasifikácia obrazu –

support vector machine – LIBSVM

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 IMAGE PROCESSING AND OBJECT RECOGNITION .. 3

2.1 FUNDAMENTALS OF IMAGE PROCESSING .. 3

2.1.1 Preprocessing ... 3

2.1.1.1 Histogram .. 3

2.1.1.2 Discrete convolution .. 4

2.1.1.3 Noise reduction .. 5

2.1.1.4 Thresholding .. 6

2.1.2 Feature description (extraction) ... 6

2.1.2.1 Vertical/Horizontal image projection plot analysis ... 7

2.1.2.2 Histogram of oriented gradients .. 7

2.1.2.3 Principal component analysis .. 8

2.1.3 Object recognition ... 9

2.1.3.1 Machine learning ... 9

2.2 SUPPORT VECTOR MACHINE ... 12

2.2.1 Linear SVM ... 13

2.2.1.1 Optimization problem behind the SVM .. 14

2.2.1.2 Soft Margin SVM .. 15

2.2.2 Non-linear SVM .. 16

2.2.2.1 Kernels ... 17

2.2.3 Multi-class SVM.. 19

2.2.3.1 One versus the rest ... 19

2.2.3.2 Pairwise classification ... 19

2.2.3.3 Directed acyclic graph SVM .. 20

3 SVM LIBRARIES AND TESTING APPLICATION ... 21

3.1 SUPPORT VECTOR MACHINE LIBRARIES ... 21

3.1.1 Toolboxes and frameworks.. 22

3.1.2 Dedicated SVM libraries ... 22

3.1.3 Selecting a suitable library... 23

3.2 SUPPORTING APPLICATION... 24

3.2.1 Libraries and tools ... 25

3.2.1.1 OpenCV .. 25

3.2.2 Application overview .. 26

4 SVM CLASSIFICATION METHOD .. 29

4.1 INPUT DATA AND METRICS .. 29

4.1.1 Suitable parameter value identification ... 30

4.2 SVM MODEL HYPERPARAMETERS .. 30

4.2.1 Regularization parameter ... 31

4.2.2 Stopping criterion .. 32

4.3 KERNELS AND KERNEL PARAMETERS .. 33

4.3.1 RBF kernel... 34

4.3.2 Polynomial kernel .. 35

4.3.3 Sigmoidal kernel .. 36

4.3.4 Conclusion ... 37

4.4 INPUT DATA PREPROCESSING .. 37

4.4.1 Proposed image feature descriptor ... 38

4.4.1.1 Feature descriptor variants .. 39

4.4.2 Image resizing ... 40

4.4.3 Image thresholding .. 41

4.4.4 Principal Component Analysis method ... 43

4.4.5 Conclusion ... 44

4.5 MULTI-CLASS ALGORITHM... 44

4.5.1 Proposed Enhanced DDAG character classification method ... 44

4.5.1.1 Improving the SVM error rate .. 45

4.6 TRAINING AND TESTING DATASET.. 47

5 CONCLUSION .. 49

5.1 OUTLOOK FOR THE FUTURE... 50

REFERENCES .. 51

TABLE OF FIGURES

Fig. 2.1 Histogram equalization ... 4

Fig. 2.2 Filtering kernels .. 5

Fig. 2.3 Smoothing operations .. 5

Fig. 2.5 Histogram of oriented gradients example ... 7

Fig. 2.4 Vertical and horizontal projection histogram plots ... 7

Fig. 2.6 Artificial neural network scheme .. 10

Fig. 2.7 Local, threshold and sigmoidal activation functions ... 11

Fig. 2.8 Finding the optimal hyperplane for linearly separable data points 13

Fig. 2.9 Separating hyperplane, maximum margin and support vectors 14

Fig. 2.10 Defining a separating hyperplane in two-dimensional feature space 14

Fig. 2.11 Soft margin SVM .. 15

Fig. 2.12 Input space and high dimensional feature space ... 16

Fig. 2.13 Linear, polynomial (d = 2), polynomial (d = 10) and RBF kernel 18

Fig. 2.14 Directed acyclic graph SVM ... 20

Fig. 3.1 OpenCV modules .. 25

Fig. 3.2 Batch SVM configuration generator ... 26

Fig. 3.3 Batch SVM classification launcher ... 27

Fig. 4.1 Building up the SVM classification method ... 29

Fig. 4.2 Percentage of support vector selected for different C parameter values 31

Fig. 4.3 Success rates for different C parameter values ... 32

Fig. 4.4 Percentage of support vector selected for different ε parameter values 32

Fig. 4.5 Percentage of misclassified images using different C and ε parameter values 33

Fig. 4.6 Linear kernel performance using different regularization parameter values 34

Fig. 4.7 Number of chosen support vectors for different σ values ... 34

Fig. 4.8 Model’s success rates for different σ values ... 35

Fig. 4.9 Polynomial kernel's testing success rate for different degrees 35

Fig. 4.10 Polynomial kernel’s success rates for different γ values... 36

Fig. 4.11 Polynomial kernel’s success rates for different a values... 36

Fig. 4.12 Success rate and % of output SVs using different γ values 37

Fig. 4.13 The testing success rates obtained using different scale factors and interpolation

algorithms ... 41

Fig. 4.14 The classification time for different scale factors and interpolation algorithms 41

Fig. 4.15 Testing success rate of global thresholding methods using different threshold values

 .. 42

file:///C:/Users/danoov/Documents/Skola/image_processing/SVM/thesis/Thesis.docx%23_Toc386573637
file:///C:/Users/danoov/Documents/Skola/image_processing/SVM/thesis/Thesis.docx%23_Toc386573639
file:///C:/Users/danoov/Documents/Skola/image_processing/SVM/thesis/Thesis.docx%23_Toc386573645
file:///C:/Users/danoov/Documents/Skola/image_processing/SVM/thesis/Thesis.docx%23_Toc386573648
file:///C:/Users/danoov/Documents/Skola/image_processing/SVM/thesis/Thesis.docx%23_Toc386573649

Fig. 4.16 Testing time per image [ms] of local thresholding methods using different filter

sizes .. 42

Fig. 4.17 Testing PCA success rates using different scaling options and principal component

numbers .. 43

Fig. 4.18 Testing times per image [ms] of PCA using different scaling options 43

Fig. 4.19 Proposed enhanced DDAGSVM multi-class method ... 46

Fig. 4.20 Examples of non-character input images .. 47

Fig. 4.22 The comparison of the success rates: LIBSVM and proposed enhanced DDAGSVM

 .. 48

Fig. 4.23 The comparison of the error rates: LIBSVM and proposed enhanced DDAGSVM 48

Fig. 4.21 DDAGSVM’s performance prior to and after a non-character group was added 47

file:///C:/Users/danoov/Documents/Skola/image_processing/SVM/thesis/Thesis.docx%23_Toc386573669
file:///C:/Users/danoov/Documents/Skola/image_processing/SVM/thesis/Thesis.docx%23_Toc386573672

LIST OF TABLES

Tab. 3.1 Dedicated SVM libraries overview .. 24

Tab. 4.1 Performance of the proposed image descriptor variants .. 40

Tab. 4.2 Similar character groups ... 45

GLOSSARY

ANPR Automatic Number Plate Recognition

LP License Plate

OCR Optical Character Recognition

ML Machine learning

PCA Principal component analysis

SV Support vector

DDAG Decision Directed Acyclic graph

ANN Artificial neural network

OSH Optimal separating hyperplane

RBF Radial basis function

XML eXtensible Markup Language

CSV Comma-separated values file

DLL Dynamically linked library

OO Object-oriented

SMO Machine learning

1

1 INTRODUCTION

The natural evolving in the traffic control management has led to the vivid development

in the field of Automatic Number (License) Plate Recognition systems (ANPR, ALPR) in the

past decades. A surveillance camera placed near the traffic is now capable of capturing a

vehicle moving in high speed. The retrieved video frames can be processed, analyzed and the

read LP identification number can be sent to the officer or traffic engineer in a blink of an eye.

The part of an ANPR software system responsible for the correct LP characters’
recognition usually employs some Optical character recognition (OCR) technique. Some

machine learning method can also be a part of such solution. Somewhere at the beginning of

the modern LP issuing era, there was obviously a motivation to construct a set of LP

characters which could be very easily distinguished from each other. The strict rules, which

apply for the license plate formats employed in the member countries of the European Union,

is very popular for the ANPR software system producers mainly because of the character

normalization.

The thesis’ main aim was to perform an assessment of the support vector machine (SVM)
and related methods, and develop a LP character classification utilizing the SVM

classification model. Such classifier is required to run under real-time conditions and perform

the character recognition with a reasonable accuracy. The SVM, in its conventional form a

binary classifier, must be adjusted in order to classify all 36 alphanumerical characters of the

English alphabet. Since most of the ANPR systems are deployed outdoors, the image

acquisition conditions can be very diverse and the SVM must be capable of learning to

perform the classification even under some less or more complicated terms.

The fundamentals of image processing, objects recognition methods and the Support

vector machine in particular are the presented in Section 2. Upon reading this chapter, the

reader shall be equipped with the general knowledge of the SVM fundamentals and the

methods employed in the preprocessing phase of the LP classification method.

Section 3 focuses on the set of available SVM libraries and frameworks. A comparison of

the libraries’ features, shortcomings and overall performance is presented. The core

functionalities of the application developed for the SVM training and LP classification

method testing is outlined.

In the experiment-filled Section 4, the important SVM hyperparameters and the kernel

configurations are identified, tested and evaluated. The image descriptor method employing

the horizontal/vertical image histogram projections on the overlapping regions within the

2

image grid is proposed. A novel approach to the Directed acyclic graph SVM formulation is

outlined and evaluated.

Section 5 features the final evaluation of the experimental results and the concluding

assessment of the proposed method as well as the suggested ideas for the further research in

the extensive Support vector machine field.

3

2 IMAGE PROCESSING AND OBJECT RECOGNITION

This chapter aims to provide the reader with a fast and comprehensive overview of the

image processing methods encompassed throughout the Thesis, and Support Vector Machine

(SVM) background in particular. Upon reading this chapter, the reader shall be equipped with

the basic ideas which stand behind the SVM and other learning algorithms.

2.1 FUNDAMENTALS OF IMAGE PROCESSING

In this section, we would like to outline the basic principles of some of the most

important image processing techniques used in computer vision. The basic image

manipulation techniques, which are used in early stages of computer vision applications, are

called preprocessing methods. These methods manipulate the image’s pixels in order to

enhance certain properties of the input image (color, sharpness, etc.). Feature extraction

methods’ purpose is to transform the input image into the set of features (called feature

vector). By extracting these features from the input images, the input data redundancy can be

suppressed so that only the relevant information is used in the later stages. These features are

usually used as the input for the object recognition algorithms such as Support Vector

Machine (SVM) or Artificial Neural Network (ANN), which aim is to detect and/or classify

the objects within the images.

2.1.1 Preprocessing

In this section, some of the image processing techniques which are used mainly in the

early stages of the learning algorithms are introduced. At first, the input images are

preprocessed using a combination of the preprocessing methods such as resizing, thresholding

or smoothing. Preprocessing methods like smoothing or thresholding play also an important

part in the overall performance of the learning algorithms such as the SVM or the ANN.

2.1.1.1 Histogram

A digital image is usually two-dimensional representation of a reality. It contains objects

and the background. Through the process of digitization, the image is transformed from its

4

natural, continuous form to the discrete form comprising of the finite set of points. Such

representation enables the computer to process images very naturally as a 2D matrix of values.

Each pixel is not only a point representation in the image but rather a rectangular region, the

elementary cell of the grid. The number at each pixel (basic picture element) position

represents a value of the brightness function b(x,y), also known as luminance or intensity.

The histogram is the graph which projects the distribution of the intensity levels (black

or gray pixels) in an image. In a sense, it is also a plot of the discrete probability density

function which defines the likelihood of a given pixel value occurring within the image [1].

The histogram can be formed by calculating the frequency of occurrence of each of the

permitted pixel values (e.g. 256 possible pixel values for grey-scale 8-bit image). The plot of

original (top left) and corresponding equalized (top right) histogram next to the Baboon

images are shown in Fig. 2.1 from [2].

Fig. 2.1 Histogram equalization

2.1.1.2 Discrete convolution

Discrete convolution is a method that uses a window of a specific finite size (usually a

square matrix of odd edge length) to scan across the image. The output pixel value is the

weighted sum of the pixels from the input image within the window. The weights are the

constants from a particular filter and are assigned to every pixel of the window itself. The

window with its weights is called the convolution kernel[3].

The convolution function formula is shown in (2.1). The indices i and j denote x and y

coordinates of the input image, g(i,j) is the intensity value of the [i,j]-pixel in the output image.

Kernel h (sometimes referred to as a filter) is the K x K (K is a positive odd value) matrix

having the origin at the centre of the kernel h(0,0).

(2.1)

5

2.1.1.3 Noise reduction

The level of noise present in the input images that are to be processed may have a severe

impact on the overall success rate of the machine learning methods. The methods used to

suppress the low image quality due to the high noise level are called smoothing (blurring)

filters. These methods utilize the use of a discrete convolution, and apply kernels of different

sizes and array values to get a filtered output image.

The basic smoothing method is considered to be mean filtering. It assigns equal weight

wK to all the pixels in the pixel’s neighborhood. A weight of wK = 1/(N∙M) is used for N x M

neighborhood. This approach should be able to eliminate the significance of the

unrepresentative pixels in the processed pixel’s surroundings. Often a 3 x 3 square kernel is

used, as shown in Fig. 2.2, although larger kernels (e.g., a 5 x 5 square) can be used for more

severe smoothing [4].

Fig. 2.2 Filtering kernels

Mean filtering kernel (left)and discrete approximation to Gaussian function (σ = 1) (right).

Mean filter is a simple and easy way to implement smoothing method, but accompanies

significant drawbacks. For example, a single pixel with a very unrepresentative value can

severely affect the mean value of all the pixels in its neighborhood. The filtering does not

preserve edges and may cause a problem if sharp edges are required in the output. Median

filter usually yields better results compared to the mean filter as we can observe in Fig. 2.3,

but it comes with the worse computational speed. Obviously, the computational complexity

rises because of the need to order the array of values for each pixel’s neighborhood to find the
median statistics of the set.

Fig. 2.3 Smoothing operations

From left to right: Original Baboon image, output image after 3 x 3 mean smoothing, output image after 3 x 3

median smoothing and output image after 3 x 3 Gaussian smoothing (σ = 1). Source:[2].

















111

111

111

9

1























14741

41626164

72641267

41626164

14741

273

1

6

In some cases, Gaussian filtering might be more suitable solution because of its ability to

preserve the neighborhood’s natural weights, which are more significant towards the “centre”
of the matrix. Because of this, Gaussian filtering provides better smoothing and edge-

preservation results at the same time. “Gaussian smoothing commonly forms the first stage of
an edge-detection algorithm, where it is used as a means of noise suppression.” [1]

2.1.1.4 Thresholding

Thresholding (sometimes referred to as binarization) is considered to be the simplest

method of image segmentation. The actual image segmentation is done by comparing the

intensity values of each pixel with the respect to the threshold and assigning new value –

usually black (representing the object) and white (background) to the corresponding pixel in

the output image. This corresponds to Black (0) and white (255) respresenting an object and a

background in 8 bit grey-scale output image in (2.2). (2.2)

Adaptive thresholding

The extremely challenging task of selecting the optimal global threshold value can be

overcome by applying a different threshold value for each pixel in the input image. The local

threshold is determined by the values of the pixels in the neighborhood of given pixel. This

approach assumes that illumination may differ significantly over the whole image but is

usually uniform within a local neighborhood. The local threshold value t is determined by the

thresholding function which takes the local N x N pixel neighborhood into consideration only. (2.3)

 Some of the well known local binarization methods include Niblack, Bernsen, Savakis

and Savuola methods which prove to be more than competitive alternatives to the global

binarization methods such as Mean, Median or Otsu [5]. The main disadvantage is the

computational complexity of such methods, which sometimes makes them not suitable for

real-time applications.

2.1.2 Feature description (extraction)

Feature extraction methods are used to decrease the size of the input vector required to

describe the input data with a sufficient accuracy. Edge detection descriptors (Canny, Sobel,

Prewitt), corner detection descriptors (Harris operator, Shi and Tomasi) or Histogram of

gradients (HoG) are just some of the most widely used techniques.

7

2.1.2.1 Vertical/Horizontal image projection plot analysis

Vertical projection plot analysis is the method which is widely used in object (character)

segmentation. The potential occurrence of an object having certain shape or size can be

detected processing a vertical or a horizontal projection histogram plot. “Obtaining a binary

image, the idea is to add up image columns or rows and obtain a vector (or projection),

whose minimum values allow us to segment characters.” [6]

Generally the black pixels or gradient values of a plate are projected vertically. The local

minimums called valleys are assumed to be the spaces between the characters. This approach

does not work on such vertical projected histogram when there has been an overlap which

could be because of bad thresholding or noise or even drop of rain [7].

2.1.2.2 Histogram of oriented gradients

The basic idea behind the Histogram of oriented gradients (HoG) descriptor is that local

object appearance and shape can often be characterized by the distribution of local intensity

gradients or edge directions, even without precise knowledge of the corresponding gradient or

edge positions [8]. First, the image is divided into small connected regions called cells. A

histogram of gradient directions or edge orientations is calculated from the pixels within each

cell. The most common method is to apply the one-dimensional filtering mask [–1,0,1] and [–
1,0,1]T in horizontal and/or vertical direction for all pixels within the cell. The combination of

these histograms then represents the descriptor.

Fig. 2.5 Histogram of oriented gradients example

Fig. 2.4 Vertical and horizontal projection histogram plots

8

As for the vote weight, pixel contribution can either be the gradient magnitude itself, or

some function of the magnitude. In the actual tests done by the researchers who first described

the HoG descriptor in [8], the gradient magnitude itself generally produced the best results.

We can see the original image, the image tilled into 8 x 8 pixel cells, the image with the

dominant directions and their magnitude and the HOG descriptor in Fig. 2.5 from [9].

For improved accuracy, the local histograms can be contrast-normalized by calculating a

measure of the intensity across a larger region of the image, called a block, and then using this

value to normalize all cells within the block. This normalization results in better invariance to

changes in illumination or shadowing. The HOG descriptor maintains a few key advantages

over other descriptor methods. Since the HOG descriptor operates on localized cells, the

method upholds invariance to geometric and photometric transformations, except for object

orientation.

2.1.2.3 Principal component analysis

The Principal Component Analysis (PCA) is a method used in data analysis. Its goal is to

transform the input variables (the term “correlated” in statistics theory) to a set of new
independent variables (thus "uncorrelated"). These new variables are called principal

components, or axes [10]. Decreasing the number of principal components causes the problem

to shrink in size. “From a set of images in a space of descriptors, the goal of this method

is to find a representation in a small space of dimensions (≪)” [10] which preserves the

“best description” of an object.

The method’s input are the variables structured in a matrix with rows and

columns as shown in (2.4).

 (2.4)

The output are then the variables , ,…, ,…, , where and
are uncorrelated, of maximum variance and of decreasing importance. Each random variable has a mean and standard deviation . The method’s aim is to

determine the correlation matrix in order to measure the dependences among variables and

subsequently create a variable list in a decreasing importance.

 (2.5)

9

2.1.3 Object recognition

In image processing, object recognition (pattern recognition) methods are the algorithms

devised to predict (classify) the class membership of an unknown patterns. These methods can

be split into two main groups according to the nature of the specific task they intended to

perform:

 Detection methods are algorithms dealing with detecting instances of certain objects

(such as vehicles, roads on the satellite images, or human faces) in the input images or

video streams. They usually yield binary decision – the instance of an object is either in

the image, or it is not present at all.

 Classification methods perform various recognition routines in order to assign a certain

class membership to the given object within the image. Obviously, any detection problem

is a classification problem as well – only the number of possible class assignments is

binary (an object is either present, or it is not in the image). The number of classes

usually determines the complexity of the given classification task, and may vary from

some tens (optical character recognition) to some hundreds (vehicle’s make and model
recognition) to possibly thousands of different classes (protein classification).

2.1.3.1 Machine learning

 Machine learning (ML) is a field of study which is not limited not only to the object

recognition. It is considered to be a branch of artificial intelligence, which focuses on the

systems, which are capable of learning from the data. A machine learning system is usually

trained on a dataset consisting of known and labeled patterns I order to learn to distinguish

between the classes present. After successful learning, such system is capable of a new

sample classification. There are three main approaches in ML training procedures [11]:

 Supervised learning, in which a “teacher” provides output targets for each input pattern,
and corrects the network’ s errors explicitly;

 Semi-supervised (or reinforcement) learning, in which a teacher merely indicates whether

the network’ s response to a training pattern is “good” or “bad”;
 Unsupervised learning, in which there is no teacher, and the network must find

regularities in the training data by itself.

 A set of the ML methods include well known and widely used algorithms such Artificial

neural networks (ANN), Support vector machine (SVM), Bayesian networks (BN) or

Decision tree learning and many other novel approaches. We present an introduction to the

10

ANN and BN fundamentals in the following chapter. Section 2.2 focuses entirely on the

fundamentals of the SVM as it is also the main study subject of the Thesis.

Artificial neural network

 An artificial neural network (ANN) is a system that is inspired by a system of

interconnected neurons such as the human central nervous system, brain in particular. A

system emulating this natural behavior is capable of completing tasks such as machine

learning and pattern recognition.

A neural network contains a large number of very simple processing units, analogous to

neurons in the brain. At each moment in time, each unit simply computes a scalar function of

its local inputs, and broadcasts the result (called the activation value) to its neighboring units.

The units in a network are typically divided into input units, which receive data from the

environment; hidden units, which may internally transform the data representation; and/or

output units, which represent decisions.

Fig. 2.6 Artificial neural network scheme

The units in a network are organized into a given topology by a set of connections, or

weights, shown as lines in a diagram in Fig. 2.6 from [12]. Each weight has a real value,

typically ranging from –∞ to +∞, although sometimes the range is limited [11]. The value (or

strength) of a weight describes how much influence a unit has on its neighbor; a positive

weight causes one unit to excite another, while a negative weight causes one unit to inhibit

another. Connectivity between two groups of units, such as two layers, is often complete

(connecting all to all), but it may also be random (connecting only some to some), or local

(connecting one neighborhood to another).

Computation always begins by presenting an input pattern to the network, or clamping a

pattern of activation on the input units. Then the activations of all of the remaining units are

computed. In unstructured networks, this process is called spreading activation; in layered

networks, it is called forward propagation, as it progresses from the input layer to the output

layer. A given unit is typically updated in two stages: first we compute the unit’s net input (or

internal activation), and then we compute its output activation as a function of the net input.

11

 Net input xj is usually computed as the weighted sum of its inputs,
(2.6)

where yi is the output activation of an incoming unit, and wij is the weight from unit i to unit j.

In general, the net input is offset by a variable bias term θj, but, in practice, this bias is usually

treated as another weight wj0 connected to an invisible unit with activation y0 = 1 [11].

Once we have computed the unit’s net input xj, we compute the output activation yj as a

function of xj. This activation function (also called a transfer function) usually takes one of

three forms – linear, threshold, or sigmoidal – as shown in Fig. 2.7 from [11]. In the linear

case, we have simply y = x. This is not used very often because it’s not very powerful:
multiple layers of linear units can be collapsed into a single layer with the same functionality.

In order to construct nonlinear functions, a network requires nonlinear units. The simplest

form of nonlinearity is provided by the threshold activation function illustrated in Fig. 2.7(b).



 


otherwise

xif
y

1

00
 (2.7)

The most common function, according to [13] is now the sigmoidal function illustrated in

Fig. 2.7(c). or (2.8)

“Training a network, in the most general sense, means adapting its connections so that
the network exhibits the desired computational behavior for all input patterns.” [11] In

general, networks are nonlinear and multilayered, and their weights can be trained only by an

iterative procedure, such as gradient descent on a global performance measure [14]. This

requires multiple passes of training on the entire training set; each pass is called iteration or

epoch. Moreover, since the accumulated knowledge is distributed over all of the weights, the

weights must be modified very gently so as not to destroy all the previous learning. A small

constant called the learning rate (ε) is thus used to control the magnitude of weight

modifications [11].

Fig. 2.7 Local, threshold and sigmoidal activation functions

12

Bayesian network

Bayesian networks, also known as belief networks, belong to the family of probabilistic

graphical models. These graphical structures are used to represent knowledge about an

uncertain domain. [15] (In particular, each node in the graph represents a random variable,

while the edges between the nodes represent probabilistic dependencies among the

corresponding random variables). These conditional dependencies in the graph are often

estimated by using known statistical and computational methods.

Bayesian network is defined by:

 A directed acyclic graph (DAG) G = (V, E), where V is a set of nodes of G, and E is a

set of the edges of G;

 A finite probabilistic space (Ω, Z, p);

 A set of random variables associated with graph nodes and defined on (Ω, Z, p) as:
 (2.9)

where C(Vi) is a set of causes (parents) of Vi in graph G.

The BN learning problem is to, given training data and prior information (e.g., expert

knowledge, casual relationships), estimate the graph topology (network structure) and the

parameters of the joint probability distribution in the BN. Learning the BN structure is

considered a harder problem than learning the BN parameters. “It has been proven that [BN

structure learning] is an NP-Hard problem, and therefore any learning algorithm that would

be appropriate for use on such a large dataset such as microarray data would require some

form of modification for it to be feasible.” [10] Therefore, some heuristic method, such as the

Maximum-likehood estimation, is usually introduced, according to [15].

2.2 SUPPORT VECTOR MACHINE

Consider a typical classification problem. Some input vectors (feature vectors) and some

labels (classes of objects) are given. “The objective of the classification problem is to predict

the labels of new input vectors so that the error rate of the classification is minimal.” [16] We

have N training points, each input point xi is a vector consisting of D feature values

(dimensionality of D) and a single binary value yi – so called label (+1 and -1 for example).

The training data point can be expressed in the following form: (2.10)

13

2.2.1 Linear SVM

Basic application of the Support Vector Machine (SVM) solves only a binary (two-class)

classification problem. The aim of the classifier is to learn the similarities in the objects’
feature vectors within the same class and generalize these similarities sufficiently enough so

that the unseen data point from the same class could be predicted. “Support Vector Machines

can be thought of as a method for constructing a special kind of rule, called a linear classifier,

in a way that produces classifiers with theoretical guarantees of good predictive performance

(the quality of classification on unseen data)” [17].

We can simplify the task, which usually consists of several tens, hundreds or even

thousands dimensions, and consider only a two-dimensional input space (feature vectors with

D=2). An example (Fig. 2.8 from [16]) shows the case in which two-dimensional objects can

be separated by a line and form class <green> and class <red> with no inter-class member

swapping. We call such set of objects linearly separable.

Fig. 2.8 Finding the optimal hyperplane for linearly separable data points

As we can see, there are many possible “lines” (or hyperplanes if D > 2, which separate

the space into two half spaces) separating the objects of the two classes which can be drawn

(in Fig. 2.8). Any given hyperplane can be described by: (2.11)

where w is a norm to the hyperplane and
 is a perpendicular distance from the hyperplane

to the origin.

“Among all hyperplanes separating the data, there exists a unique one, called the optimal

hyperplane, distinguished by the maximum margin of separation between any training point

and the hyperplane.” [18] We can see that such an optimal separating line is the one on the

bottom right picture in Fig. 2.8. “A special characteristic of SVM is that the solution to a

classification problem is represented by the support vectors that determine the maximum

margin hyperplane.” [19]

14

Fig. 2.9 Separating hyperplane, maximum margin and support vectors

2.2.1.1 Optimization problem behind the SVM

“Support vectors are the examples closest to the separating hyperplane and the aim of

the SVM is to orientate this hyperplane in such a way as to be as far as possible from the

closest members of both classes.” [20] Once the separating hyperplane is chosen, only

support vectors (data points lying on the margin – circled points in Fig. 2.9 from [16] and in

Fig. 2.10 from [20]) are considered for the classification task and other data points become

irrelevant and not needed anymore. Support vectors can be geometrically described as: for H1 (2.12) for H2 (2.13)

The distance between the origin and the hyperplane H1 is equal to |+1 – b| / ||w|| (d1 in Fig.

2.10). Similarly, the distance between the origin and the hyperplane H2 is equal to |-1 – b| /

||w|| (d2). “We can easily calculate that the margin of the linear classifier H (the distance

between hyperplanes H1 and H2) equals
 .” [19]

Fig. 2.10 Defining a separating hyperplane in two-dimensional feature space

Considering the above, the process of finding the optimal separating hyperplane can be

formulated as solving a mathematical optimization problem, which can be expressed by the

following model [9] p.13:

15

 (2.14) (2.15) (2.16)

Or equivalently: (2.17) (2.18)

This optimization problem represents the minimization of a quadratic function under the

linear constraints, which can be solved via quadratic programming.

2.2.1.2 Soft Margin SVM

 In the previous text, we introduced linear SVM model, which works only if the training

set is linearly separable, which causes the separating hyperplane to correctly classify all

patterns. Such classifiers are also known as hard margin classifiers. However,

“the linear separability of two classes of the patterns might not be a valid assumption for

real-life applications.” [19] The non-separability of the input data might be caused by the

noise in the input data, or there is simply a high degree of “similarity” between the training

members of the two classes. We can see such example in Fig. 2.11 from [9]. Of course, no

linear (hard margin) classifier can be computed for this learning set, but “several hyperplanes

can be calculated in such a way as to minimize the number of classification errors.” [19] The

majority of the data points lie on the correct “side” of the hyperplane, but there is a small

number of misclassified objects.

Fig. 2.11 Soft margin SVM

16

In order to adapt the SVM to handle the not fully linearly separable data, we can relax the

constraints (2.18) by allowing for some misclassified points. Introducing a positive slack

variable (ξ), we can add a penalty to the points lying on the “wrong” side of the hyperplane.

The penalty for the patterns classified correctly will then equal to zero. We can add a penalty

increasing with the point’s distance from the “correct” hyperplane in the case of misclassified

data points. We have an example of a misclassified data point, margin violating point and the

correctly classified points in the Fig. 2.11. Support vector machines which allow the linear

constraint relaxations are commonly referred to as soft margin classifiers.

As we are trying to minimize the number of misclassifications and the extent of the

“impact” these points have on the overall classification error, we need to adapt the objective

function (2.17) to minimize the new penalty term as well: (2.19) (2.20) (2.21)

Parameter C in (2.19) controls the trade-off between the slack variable penalty and the

size of the margin [20]. C is also referred to as a regularization parameter. We can observe

that every constraint can be satisfied if ξi is sufficiently large. It can be adjusted by the user,

and can either increase or decrease the penalty for classification errors. “A large C assigns a

higher penalty to classification errors, thus minimizing the number of misclassified patterns.

A small C maximizes the margin so that the OSH (optimal separating hyperplane) is less

sensitive to the errors from the learning set.” [19]

2.2.2 Non-linear SVM

“SVM models were originally defined for the classification of linearly separable classes

of objects,” [19] but can be adapted to classify even the models where more complex

relationships exist between input parameters and the pattern labels. To discriminate linearly

non-separable data, we can fit the SVM model with nonlinear functions to provide an efficient

classifier.

Fig. 2.12 Input space and high dimensional feature space

17

The main idea is to map the data into a different space, called feature space, and to

construct a linear classifier in this space. “It can also be seen as a way to construct non-linear

classifiers in the original space.” [17] (See also Fig. 2.12 from [21].) This process is

sometimes referred to as a kernel trick.

The non-linear functions used to fit the non-linear models are all based on calculating the

inner products of two vectors, “which can be a significant problem if the feature space is too
large and it is often not possible at all.” [16] The aim of the kernel trick is to avoid the

explicit inner product calculation.

If we have a function ϕ (called feature mapping function), (2.22) (2.23)

which maps the input space into the high-dimensional feature space ω, we can define (under

certain conditions), an inner product in feature space which has an equivalent kernel in input

space: (2.24)

To safely assume that the kernel K represents an inner product in a feature space, it has to,

according to the Mercer’s theorem, which says that kernel K must be a symmetric positive

definite function, satisfy the following conditions:
 (2.25)

 (2.26)

Using kernel to calculate the inner product of the feature vector in higher dimension the

linear constraints (2.20) can be rewritten to (2.28). The following optimization problem is

then solved. (2.27) (2.28) (2.29)

2.2.2.1 Kernels

The following are some of the most popular kernels used in the Support vector machine

according to [22]. The schematic plots of the kernel are in Fig. 2.13 from [19].

18

Linear (Dot) kernel

 The basic – linear kernel “should be used as a test of the nonlinearity in the training set,
as well as a reference for the eventual classification improvement obtained with nonlinear

kernels.” [19] (2.30)

Polynomial kernel

 The polynomial kernel is a simple and efficient method for modeling nonlinear

relationships but has the downside of possible overfitting that may appear when the degree

(parameter d) increases. (2.31)

Radial Basis Function (RBF) kernel

 The Gaussian form of the RBF kernel is commonly used, with parameter σ controlling

the shape of the separating hyperplane. (2.32)

Sigmoid kernel

 Also known as a neural kernel. The hyperbolic tangent (tanh) function, with a sigmoid

shape, is the most used transfer function for artificial neural networks, but can be uses a

kernel function for SVMs as well. (2.33)

Fig. 2.13 Linear, polynomial (d = 2), polynomial (d = 10) and RBF kernel

19

2.2.3 Multi-class SVM

Until now, only binary (two-class) classification has been discussed. “Many real-world

problems, however, have more than two classes – an example being the widely studied optical

character recognition (OCR) problem.” [18] Due to various problems evolving from the

nature of the multi-class problems, a direct solution of multiclass problems using a single

SVM formulation is usually avoided according to [23]. The usual approach is to train a

combination of several binary SVMs to solve a given multiclass problem.

2.2.3.1 One versus the rest

One vs. Rest or one-against-all is probably the earliest multi-class method according to

[22]. It constructs k SVM models considering the k-class classification problem. In the i-th

SVM, one class represents the data points from the i-th class, the other class contains all

example from the other classes (e.g. class <K> and class<A..J,L..Z,0..9> in OCR

classification problem).

The main disadvantage of this approach lies in so called winner-takes-all strategy. “The
binary classifiers used are obtained by training on different binary classification problems,

and thus it is unclear whether their real-valued outputs (before thresholding) are on

comparable scales. This can be a problem, since situations often arise where several binary

classifiers assign the pattern to their respective class (or where none does); in this case, one

class must be chosen by comparing the real-valued outputs.” [18] On the other hand, the

arguably important advantage is the small number of SVMs which is required for the

classification, as opposed to the one-versus-one approach.

2.2.3.2 Pairwise classification

Pairwise or one-against-one method constructs one binary classifier for every pair of

distinct classes. Therefore, together K(K−1)/2 binary classifiers are constructed. Each binary

SVM is trained taking the examples from data points from class i as positive and the examples

from j as negative. During the classification, so called max-vote strategy is applied. After

each of the K(K−1)/2 binary classifiers makes its vote, max-vote strategy assigns x to the

class with the largest number of votes.

For thirty six alphanumerical classes (letters A..Z,0..9), one-against-one approach results

in total number of 36(36-1)/2 = 630 binary SVM classifiers, which is significantly higher than

using one-against-all approach which needs only 36 classifiers. The difference of the

computational cost of both methods is obvious. “Although this suggests larger training times,
the individual problems that we need to train on are significantly smaller, and if the training

20

algorithm scales superlinearly with the training set size, it is actually possible to save time.”

[18] Individual classifiers, however, tend to result in the fewer support vectors than they

would be in the one-against-all approach, which may potentially save some computational

cost, considering the overall model reduction.

2.2.3.3 Directed acyclic graph SVM

A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no

cycles [24]. Multi-class SVM model utilizing some desired properties of a DAG is called

(Decision) Directed acyclic graph (DAGSVM) and was first introduced in [24]. This method

modifies one-against-one approach – the training phase of the both is the same – all K(K-1)/2

binary SVMs need to be trained, although not all binary SVMs are used during a new

pattern’s classification. A rooted binary directed acyclic graph is constructed with the internal

nodes and the leaves representing the binary SVMs as shown in Fig. 2.14 from [24].

Fig. 2.14 Directed acyclic graph SVM

Given a test sample, starting at the root node, the binary decision function is evaluated.

Then it moves to either left or right depending on the output value. Therefore, we go through

a path before reaching a leaf node which indicates the predicted class. An advantage of using

a DAG is that some analysis of generalization can be established [25]. The advantage of

DAGSVM is that classification is faster than by conventional pairwise support vector [26]

which is given by the expected height of the binary DAG being .

21

3 SVM LIBRARIES AND TESTING APPLICATION

In this section, the review of the popular SVM solutions is presented. A comparison of

the libraries’ features, shortcomings and overall performance is presented. The core
functionalities of the application developed for the SVM training and testing purposes is

outlined.

3.1 SUPPORT VECTOR MACHINE LIBRARIES

The quest to the labyrinth of the online SVM community was initially a search for the

perfect SVM package that is around. Great expectations set for the tool’s complexity and the
ease of use were soon terminated. We have not found any library or framework incorporating

all the required tasks at the same time, although some of the examined libraries are very

professional and powerful tools indeed. The initial requirements set for the library

implementing SVM are as follows:

 Certain level of complexity and robustness (and compactness at the same time),

 Written preferably in C/C++,

 Open Source code,

 Capable of solving large-scale problem – possibly tens of thousands of input data and

input features

 Utilizing the SVM and kernel parameters and sparse model structure as described in

Section 3.1.3

There are multiple relevant SVM library listings available online – [27], [28], [29] and

[30] for example. These lists were put together independently by the researches in the field of

computer vision and SVM in particular which were mostly evaluated or studied themselves.

Basically all top ranked libraries in these lists were written in C/C++ which proves that the

family of the popular managed languages such Java or C# is not a competitive player in this

field.

The preferability of C/C++ to Java or C# is due to the computational complexity of the

studied problem. In terms of computation speed, C/C++ can easily outperform these. All other

libraries other than those written in C/C++ were taken out from the further search. As we can

observe from the list of SVM software compiled from the Google search directory ranks in

22

[28], there are hardly any Java or C# libraries, and if, they are usually just a ported versions of

some of the popular C/C++ libraries as the case of LIBSVM.

3.1.1 Toolboxes and frameworks

There is a number of possibilities in utilizing some of the existing solutions in the field of

machine learning (ML). Some of the established machine learning frameworks also offer the

SVM support. However, these frameworks (or toolboxes) tend to be of rather massive

dimensions. It is simply a natural consequence of the ability to support the numerous

algorithms and methods at the same time. Some of the most popular ML frameworks include:

 SHOGUN – general purpose machine learning (C++) package with focus on large scale

learning and kernel methods (SVM) in particular; provides generic SVM object

interfacing to several different SVM implementations (LIBSVM, SVMLight, liblinear,

etc.) [31],

 Shark – a cross-platform feature-rich C++ machine learning library; provides methods for

linear and non-linear optimization, kernel-based learning algorithms, artificial neural

networks and other ML techniques [32],

 dlib – another ISO C++ portable ML library, which provides, on top of the numerous

learning algorithms implemented, a very detailed documentation and useful debugging

modes [33].

Other very popular and highly regarded tools include some MATLAB toolboxes (Spider

[34]) and python-based packages (scikit-learn [35]).

3.1.2 Dedicated SVM libraries

The user popularity and the citation figures for the relevant dedicated SVM libraries are

presented by Martin Sewel in [28]. We reckon the top three libraries from this list to be

probably the most widely used tools utilized by the researchers in the field of ML and SVM.

The following five libraries were ranked highest in this listing:

 LIBSVM – Definitely the most popular SVM dedicated library endorsed by both

researchers and ordinary users, introduced by Chang and Lin in [36]; it provides different

SVM formulations as well as efficient cross-validation model selection, multi-class

classification support and other common SVM learning features; apart from its original

C/C++ implementation, LIBSVM offers interface in other 15 different languages together

with many extensions and domain-specialized plugins. It is open source and the source

code and binaries can be downloaded from [37],

23

 SVMLight – C implementation of SVM classification method introduced by Joachims in

[38] provides fast optimization algorithm as well as the ability to solve both classification

and regression problems; other useful features include the error rate, the precision and the

recall estimation calculations for the given SVM model, it is also capable of handling

large-scale problem and many thousands of support vectors. This library is open source,

however, the source code is reportedly compilable only on some of the Linux distribution

operating systems. Linux, Windows and Mac OS binaries are available at [39],

 SVMTorch – originally a C library completely rewritten in C++ in object style introduced

by Collobert in [40] features the common SVM framework methods and introduces the

sparse vector and binary file format for the SVM model persistency and is tailored

especially for large-scale problems. It runs (and compiles) under Linux and Windows and

can be downloaded from [41],

 mySVM – a C++ library with a unique built-in support of the novel anova kernel;

available for UNIX/Windows operating systems at [42],

 TinySVM – another C++ implementation of the support vector classification and support

vector regression method; it utilizes the fast optimization algorithm stemming from [38];

the authors report that the optimization for handling the binary features is two times faster

than in the SVMLight’s implementation. It provides multi-platform source files and

binaries [43] and ports to Perl, python and Java.

3.1.3 Selecting a suitable library

In order to select a relevant library, one might consider some dedicated SVM package to

be a smarter solution compared to utilizing a bulky general machine learning framework. An

undisputed advantage a compactness of such solution, which usually come in few source code

files, is the fact that it can be easily recompiled without the need to deal with the possible

build issues which tend to happen with more complex software. Another convenient offer of

the dedicated SVM libraries is the fact that, in most cases, there is a university researcher with

a certain level of expertise in the field of SVM, which guarantees the correctness of the

particular SVM methods employed in the library.

Prior to any testing or development, we identified certain parameters which needed to be

met for the selected library, which would serve as a supporting package for the research in the

Thesis (see Tab. 3.1).

All of the “top five” SVM packages offer the same kernel selection and the sparse vector

file format seems to be a common standard. The availability of an SVM multiclass algorithm

played an important role in the decision making. Both LIBSVM and SVMTorch use well

known and researched multiclass algorithms (see Section 0 for details). The main deciding

point, however, turned out to be the date of the most recent update of a particular package. All

24

libraries except LIBSVM were are a bit outdated versions mostly from a decade ago. The

user’s community for these libraries is either non-existent or one must cope with a rather

austere “readme.txt” kind of documentation. All of the specified parameters were met by the
LIBSVM package only.

LIBSVM SVMLight SVMTorch mySVM TinySVM

Language C/C++ C C++ C++ C++

Multiclass algorithm 1-vs-1 proprietary 1-vs-rest  

Cross-validation     

Sparse data format     

Kernel - linear     

Kernel - polynomial     

Kernel - RBF     

Kernel - Sigmoidal     

Kernel - User defined     

Recent update IV/2014 VIII/2008 XI/2001 VI/2004 VIII/2002

Tab. 3.1 Dedicated SVM libraries overview

The authors of the LIBSVM have created a vivid community around the library,

therefore its development is progressing. “From 2000 to 2010, there were more than 250,000
downloads of the package. In this period, we answered more than 10,000 emails from users”,

the LIBSVM authors remark in [36]. The library is also successfully used in the fields of

computer vision (LIBPMK), natural language processing (Maltparser), neuroimaging

(PyMVPA), or Bioinformatics (BDVal).

The library’s regular updates include both functionality improvements (employing a

novel approach, supporting new SVM model formulations and so on) and bug fixes, which

are usually submitted by its loyal users. The library features easy-to-understand source code

and usable API. The library’s complex FAQ list is also available online [37].

The LIBSVM consists of the four modules – the core module (now completely rewritten

in OO style C++), training, testing and scaling modules, which usually serve as the user API.

The SVM optimization method employs the Sequential Minimal Optimization (SMO) method

introduced by Platt in [44] and offer additional functionalities such as shrinking (shortens the

time needed for a SVM model training, kernel caching (the values of kernel calculations are

retained in RAM for fast retrieval), or posterior prediction probability estimation.

3.2 SUPPORTING APPLICATION

From early on, there was a obvious need for a tool capable of performing automated

SVM tests. The time and energy dedicated to the application development were rewarded

later on in the final stages of the research, while conducting numerous experiments. We

25

reckon that such complex tasks would have not been accomplished in such a timely manner

with this level of ease.

3.2.1 Libraries and tools

As discussed in the previous section, LIBSVM package was utilized for the testing

purposes during the course of the thesis’ research. However, not only its API functions alone

were used. Some of the core LIBSVM functions were altered or completely rewritten (eg. in

the case of the proposed Enhanced DDAGSVM multi-class method – see Section 4.5.1). For

the image manipulation routines, computer vision and image/video processing library

OpenCV, was employed.

3.2.1.1 OpenCV

OpenCV (Open Source Computer Vision) is a library consisting of the functions aimed

mainly at performing real time computer vision tasks. OpenCV’s application areas include
motion tracking, segmentation, gesture recognition, object identification, human-computer

interaction and many others.

This popular library offers a cross-platform solution (on-demand support for Windows,

UNIX, Mac OS, Android and iOS). It was originally written in C, but completely rewritten in

OO C++. This interface is the most widely used version nowadays, a variety of customized

wrappers for other languages such as C# (EmguCV), Python, Java and Ruby is available.

OpenCV incorporates Intel's Integrated Performance Primitives (IPP), a multi-threaded

library optimized for data processing applications. Once the IPP library is detected on the OS

environment, the IPP’s set of optimized routines is employed to accelerate the performance of

the OpenCV-dependent application. The general OpenCV package comes with the support of

Intel Threading Building Blocks (TBB), library for easier multithread image processing

handling.

Fig. 3.1 OpenCV modules

Dependencies within OpenCV’s modules which are grouped into four main components. Source: [45]

26

The SVM supporting application features OpenCV’s core, imgproc and highgui modules.

The OpenCV’s functions employed for our purposes are not directly dealing with any
machine learning methods. The main usage is during the preprocessing phase of the SVM

classifier training and prior to the actual character classification procedure, however the ease

of use and the familiar interface made OpenCV a great supporting utility for the main –

classification task.

3.2.2 Application overview

At first, we must note that the application is not intended to serve as a general SVM

testing tool. Some assertions are given, thus the image file format, image bit depth or a

possible number of classes currently supported are limited. This tool performs three main

tasks, which evolved in our research to be almost a regular indispensable routine:

 SVM training and testing wizard – this functionality enables the user to choose from

the range of the supported parameters, kernels, preprocessing functions or multi-class

algorithms to put together a suiting SVM model configuration, which is subsequently trained

and tested on the given datasets,

 Batch SVM configuration generator – this tool makes the routine of batch SVM

configuration generation an easy task – a user can select the parameters and a range of values,

which are to be generated. These options are then combined and configuration files are

generated in XML format ready to be processed by the engine. This “batch” approach saves
both time and effort which would be otherwise needed to perform the task manually.

Fig. 3.2 Batch SVM configuration generator

27

 Batch SVM classification launcher – when using this mode, the input SVM

configuration files are read and the SVM models are trained (if needed) and tested on the

given datasets. The SVM training and testing can be a time consuming routine, which may

require hours to complete. While using the batch launcher, all the procedures are done

automatically, and after training & testing for a single SVM model is finished, the preliminary

results are exported in a CSV file. A user can pause or stop a single SVM run task or terminate

the whole batch.

The application utilizes a rather functional approach to the user interface and focuses on

the application compactness and ease of use. The outputs are generated in user-friendly

formats (XML, CSV). The optional settings also allow a user to generate the misclassified

images, a list of most frequently misclassified class pairs with the total figures for each pair,

or the list of the misclassified (or rejected) images per class. User is continuously given the

latest updates from the SVM engine (current number of misclassified/rejected/positive images,

average computational speed, etc.).

 The core engine (SVM functionalities) is available as C++ DLL. The application logic

and the user interface are implemented in C#. The application engine runs in a worker thread,

which keeps the application responsive. C++/C# Interop (Marshalling) services are used when

converting the C++ structures to its C# counterparts (and vice versa). A simple API exposing

Fig. 3.3 Batch SVM classification launcher

28

the common SVM methods (train an SVM classifier with the given configuration, classify

given sample) was created for the DLL.

29

4 SVM CLASSIFICATION METHOD

In this section, we present the experimental results of various SVM related techniques

employed during the time of our research. The image descriptor method employing the

horizontal/vertical image histogram projections on the overlapping regions within the image

grid is proposed. A novel approach to the Directed acyclic graph SVM formulation is outlined

and its ability to reduce an SVM model’s error rate is evaluated.

Fig. 4.1 Building up the SVM classification method

4.1 INPUT DATA AND METRICS

A dataset comprised of some hundreds of license plate character images was used while

developing the character classification method. It consists of 10 digits and 25 letter of the

English alphabet (letter ‘Q’ is omitted due to the lack of samples for this particular class). The

set of images within each class was split into two subsets – 200 images, which were processed

during the training phase, and 500 images used for testing purposes. Such a high number of

samples in the training set than may yield better generalization performance indicator for the

particular SVM classification model.

The input images were already normalized to 8-bit grayscale with the size of

pixels. The fairly large input image dimensions and the level of similarities within images

from a particular class resulted in the very promising classification success rates early on.

Somewhere at the beginning of the modern LP issuing era, there was obviously a motivation

to construct a set of LP characters which could be very easily distinguished from each other.

The strict rules, which apply for the license plate formats employed in the member countries

of the European Union, is very popular for the ALPR software system producers mainly

because of the character normalization.

 The feature vector values (0 – 255 using the 8-bit images) were scaled to the [-1; +1]

range. The process of the input feature scaling has an important influence on the overall SVM

classifier performance according the LIBSVM author Lin as remarked in [22]: “The main
advantage of scaling is to avoid attributes in greater numeric ranges dominating those in

smaller numeric ranges. Another advantage is to avoid numerical difficulties during the

SVM
hyperparameters

Kernels and
kernel

parameters

Input data
preprocessing

methods

Multi-class SVM
algorithms

30

calculation. Because kernel values usually depend on the inner products of feature vectors,

e.g. the linear kernel and the polynomial kernel, large attribute values might cause numerical

problems.” The authors of [22] recommend linearly scaling each attribute to the range [1; +1]

or [0; 1]. The same scaling technique than applies to both training and testing data.

We employ the metrics called success rate, which is used to express the particular’s
model generalization performance on the testing data. Given the size of the testing dataset ,

and the number of successfully classified images using an SVM classifier , the classifier’s
success rate can be calculated as the following ratio: (4.1)

 The tests described throughout the Thesis were conducted on a regular Windows PC with

3.4 GHz Intel i7 processor and 16 GB of RAM.

4.1.1 Suitable parameter value identification

The authors in [22] identify so called “grid-search” as the viable way in the process of

finding the optimal parameter values for the given classification problem: “There are two

motivations why we prefer the simple grid-search approach. One is that, psychologically, we

may not feel safe to use methods which avoid doing an exhaustive parameter search by

approximations or heuristics. The other reason is that the computational time required to find

good parameters by grid-search is not much more than that by advanced methods since there

are only [small number of] parameters.” The process of grid-searching can be easily

parallelized because the coupled parameters in the grid are independent. “Many of advanced

methods are iterative processes, e.g. walking along a path, which can be hard to parallelize.”

Since conducting a complete grid-search may be time-consuming the authors in [22]

recommend using a coarse grid first. A possible way is to construct the grid of exponentially

growing parameter values, and conduct the initial search. We use the powers of two (2n)

throughout all the tests while searching for the optimal parameter values. This approach has

proven to be both feasible (not very time consuming) and sufficient in terms of the results

obtained while using this technique. After the coarse grid-search is done and a possible

“optimal” value range is set, one can conduct a finer grid-search within this range to identify

the “optimal” parameter value.

4.2 SVM MODEL HYPERPARAMETERS

Finding the fitting SVM model hyperparameters (meta-parameters) – regularization

constant and stopping criterion – which contribute enormously to the overall classification

success rate are reasonably considered to be the first step in any SVM model creation.

31

Although the optimal selection of these parameters is highly data-dependent, a certain

generality can be deduced.

The authors in [22] consider the RBF kernel with SVM hyperparameter values C = 1 a γ

= 1/N (N is the number of classes in the classification problem) a reasonable starting point.

The default value for a stopping criterion ε is usually to 0.001 (adopted by LIBSVM as well).

This parameter is also tuned, after the initial “sufficiently good” value of C, which has a grave

influence on the overall result, is found.

4.2.1 Regularization parameter

Regularization parameter introduced in the objective function term (2.20) is the penalty

assigned to the classification points laying on the “wrong” side of the separating hyperplane.
“The penalty for classification errors increases when the capacity C increases, with the

consequence that the number of erroneously classified patterns decreases when C increases.

On the other hand, the margin decreases when C increases, making the classifier more

sensitive to noise or errors in the training set.” [19]

In order to fulfill both of these requirements – reasonably small C for a large margin

classifier and a large C for a small number of classification errors at same time, one must

accept a certain tradeoff. Setting the appropriate C can balance the tradeoff between margin

maximization and error minimization [46]. The grid-search for parameter C was done within

the range of [2-15
; 2

15].

Fig. 4.2 Percentage of support vector selected for different C parameter values

As we can observe in Fig. 4.2, the increase in the value of C caused the classifier to

continuously create larger margin, ie. the output number of model’s support vectors was
decreasing. There is also a continuous increase in the number of support vectors (up to the

point when all training data points are treated as the support vectors) defining the model while

the value of C decreases. This increase caused the SVM training process to take up more than

20

30

40

50

60

70

80

90

100

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

SV [%]

C [2x]

Resulting support vectors

32

ten times more compared to the lower values of C, with the significantly worsened testing

time per image.

The danger of model overfitting is clearly visible and can be avoided by choosing the

value of parameter C near the peak in the curve of the success rate figures on the testing

dataset as shown in Fig. 4.3. C value was set to 16, as this value lies within the curve’s peak
range and yields both reasonable classification and testing speed rates.

Fig. 4.3 Success rates for different C parameter values

4.2.2 Stopping criterion

The tolerance of stopping, or termination criterion, while optimizing (ie. minimizing a

loss function) the SVM model during the training phase is set by parameter ε. This value can

affect the number of output support vectors – the bigger ε, the fewer support vectors are

selected [47]. “An increase in ε means a reduction in requirements for the accuracy of

approximation. It also decreases the number of SVs, leading to data compression.” [48]

We have assumed that any ε value from the relevant range of ε values can be chosen

without losing the level of optimality of the output SVM model, because of the high

dependency on the input data volume. Initially, a grid-search in the reasonable range [2-14;20]

was conducted for C = 16.

Fig. 4.4 Percentage of support vector selected for different ε parameter values

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

Success rate [%]

C [2x]

Training dataset

Testing dataset

0
2.5

5
7.5
10

12.5
15

17.5
20

22.5
25

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

SV [%]

ε [2x]

Resulting number of

support vectors

33

 As shown in Fig. 4.4, the model complexity increases with the decreasing value of

parameter ε. It is clearly a result of a more thorough optimization, as we can observe in the

increasing number of iterations done to achieve approximately the same results as with the

model with higher ε. Another negative product of the decrease in ε is the higher number of

support vectors generated by the SVM, which causes an increase in the testing speed while

maintaining the testing success rates.

 Another, finer, grid-search was conducted using the full range (near the curve’s peak as

shown in Fig. 4.3) of the C values. As presumed, the results (as shown in Fig. 4.5) confirmed

the suitability of both values, C = 16 and ε = 2-1 = 0.5.

Fig. 4.5 Testing success rate for different C and ε parameter values

4.3 KERNELS AND KERNEL PARAMETERS

 When trying to find the appropriate kernel and its parameter’s values, one could consider
the number of features and the number of instances (training and testing dataset). Hsu et al. in

[22] suggest the three possible cases:

 Number of instances ≪ number of features

 Both numbers of instances and features are large

 Number of instances ≫ number of features

 The authors in [22] suggest using linear kernel in the first case – “Apparently, when the
number of features is very large, one may not need to map the data [to the higher dimensional

feature space].” When both numbers of instances and features are sufficiently large, the linear

and non-linear usually yield similar results. The last case should be treated the opposite way

as the first one – one often maps data to higher dimensional spaces according to [22].

 Our training dataset consisting of 7000 instances and around 1500 features would lay

among the first category, but we decided to find the most suitable kernel setup by conducting

grid-search. According to [47], “selecting a particular kernel type and kernel function

parameters is usually based on application-domain knowledge and also should reflect

distribution of input (x) values of the training data.”

97.1

97.3

97.5

97.7

97.9

98.1

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Success rate [%]

ε [2x]

C = 4

C = 8

C = 16

C = 32

34

 The linear kernel’s undisputed advantage is the fact that one may not need to map the

data to the higher-dimensional feature space and only the dot product is calculated for each

point while conducting the model optimization. This kernel does not have any additional

parameters, therefore it can be used right “out of box”.
The negative effect of dataset’s linear non-separability can be further improved by

adjusting the value of a regularization parameter C. The peak in the success rate curve, as

plotted in Fig. 4.6, is achieved while fixing parameter C value to the range of [2-7; 2-4].

Fig. 4.6 Linear kernel performance using different regularization parameter values

4.3.1 RBF kernel

 The Radial Basis Function’s parameter σ controls the shape of the separating hyperplane.

This parameter plays an important role in the proper model fitting for a particular

classification problem. The RBF kernel’s performance is highly dependent on this parameter,
which can cause the output number of support vector to increase rapidly while choosing the

value from an inappropriate range of values. It results in the overfitted model with poor

generalization properties (low error rates for training dataset and high error rates for the

testing set) and an increased computation time of the classification.

 In order to find suitable value of this parameter, we conducted a grid-search for σ value

from range [2-25; 20]. The results seem to be a demonstration of Gaussian roots of this kernel

as can be observed from the shape of the curve in Fig. 4.7.

Fig. 4.7 Number of chosen support vectors for different σ values

96

96.5

97

97.5

98

98.5

99

99.5

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

Success rate [%]

C [2x]

Success rate

0
10
20
30
40
50
60
70
80
90

100

-25 -23 -21 -19 -17 -15 -13 -11 -9 -7 -5 -3 -1

SV [%]

σ [2x]

Number of support vectors

35

 An obvious model overfitting can be seen with σ value approaching 20. The training

dataset’ perfect error rate is in big contrast with its testing error rate. The SVM models

treating whole training dataset (7000) as the support vectors are also trained with the

decreasing σ values resulting in the rapidly increasing classification times, but the testing

dataset classification remains stable below 4%. The best value for σ was proved to be value

near the curve’s saddle point 2-11 in Fig. 4.7.

Fig. 4.8 Model’s success rates for different σ values

4.3.2 Polynomial kernel

 There is usually a new parameter γ introduced (4.2) to the basic polynomial kernel

formula (2.31) in the popular SVM libraries polynomial kernel’s formulations such as

LIBSVM or SVMLight. This parameter can provide further improvement by scaling the inner

product first prior to applying the kernel function. (4.2)

 The degree in the polynomial kernel formula determines the “shape” of the separating
hyperplane. Obviously, the linear kernel is just a special case of the polynomial kernel having

d = 1, γ = 1 and a = 0. “The downside of using [this kernel] is the overfitting that might
appear when the degree increases. As the degree of the polynomial increases, the

classification surface becomes more complex.” [19]

Fig. 4.9 Polynomial kernel's testing success rate for different polynomial degrees

93

94

95

96

97

98

99

100

-25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6

Success rate [%]

σ [2x]

Training set

Testing set

96.5

97

97.5

98

98.5

99

99.5

2 3 4 5 6 7

Success rate [%]

d

Testing success rate

36

 The increase in the value of the degree caused the model to grow in complexity, but

classifier’s outcome tends to yield rather worse error rates (Fig. 4.9) and longer training time

caused by the increase in the average number of iterations needed to find the fitting model

while optimizing. The polynomial of the second degree was considered for the further stages

of the polynomial kernel’s parameter grid-search.

Fig. 4.10 Polynomial kernel’s success rates for different γ values

 Prior to finding the suitable value of parameter a, scaling parameter γ needed to be fixed.

Grid-search was conducted testing the values of γ in range [2-25; 225] and a fixed value of . The γ value (2-10) with the highest success rate was submitted to the parameter a grid-

search to further improve its performance. As shown in Fig. 4.11 the polynomial kernel’s
performance can be boosted by adjusting parameter a.

Fig. 4.11 Polynomial kernel’s success rates for different a values

4.3.3 Sigmoidal kernel

The hyperbolic tangent (tanh) function, with a sigmoid shape, which is the most used

transfer function for artificial neural networks [19], can also be used as the kernel in SVM

models. However, not all sigmoidal kernels are valid. It was was proven by Lin et al. in [49],

that sigmoid kernel does not yield the inner product of two vectors under some parameters.

The parameters a and c as in (2.33), which have a similar purpose as the parameters γ and

a for polynomial kernel were searched for using parameter a grid-search [2-17; 2-6] and

parameter c grid-search [2-17; 25].

95

96

97

98

99

100

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

Success rate [%]

γ [2x]

Training set

Testing set

98.3

98.4

98.5

98.6

98.7

98.8

98.9

99

99.1

-25 -22 -19 -16 -13 -10 -7 -4 -1 2 5 8 11 14 17 20

Success rate [%]

a [2x]

Testing success rate

37

As shown in Fig. 4.12, the percentage of the output support vector (high number of

support vectors chosen for a model usually creates classifiers with weaker generalization

capacities) changes significantly over the searched range. The best success rate / SV count

ratio happens to be for the model having .

Fig. 4.12 Success rate and percentage of output SVs for different γ values

4.3.4 Conclusion

Even though many possible setups were compared, one may not be able to generalize a

particular’s kernel performance under all possible conditions. Any kernel’s performance is

highly domain- and data-dependent. The performance differences obtained while using the

best kernel parameter values for each kernel (see previous chapters) were rather small.

We decided to use the RBF kernel (γ = 2
-11) in the further stages of the LP character

classification method. The lowest error rate obtained by this model is only one of the

advantages when using RBF kernel. This kernel setup (together with SVM hyper-parameters

C = 16 and ε = 0.5) leaves promising opportunities in terms of input data preprocessing and

training dataset boosting – the number of support vectors, which is slightly worse (higher)

than in the rest of the kernels, could be reduced by the PCA analysis. Many researchers also

report the RBF as a very competitive alternative to the linear kernel, which, on the other hand,

usually outperforms the RBF kernel in high-scale problems [49].

4.4 INPUT DATA PREPROCESSING

The aim of the input data preprocessing prior to the SVM training is to reduce the number

of features. The total number of features for the images being used for the experiments we

conducted up to this point is 1536 (48 pixels height x 32 pixels width). Such a high number of

features can cause the SVM to classify new images in much longer time, which can be crucial

downfall when deploying SVM-based system in real-time demanding application.

15

35

55

75

95

-17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7

Success rate [%]

γ [2x]

Testing set

Number of SV

38

This chapter is focused on the possible solution to the model complexity issues such as

enormous classification time demands described. The aim is to find a viable way to decrease

the number of features (and classification time subsequently) and to maintain certain level of

success rate. We propose a new image description method, which utilizes the image histogram

projections; examine the possible benefit of image scaling and image thresholding and

experiment with the possible feature reduction via the Principal Component Analysis (PCA).

4.4.1 Proposed image feature descriptor

The motivation behind the proposed feature descriptor comes from the author’s positive

experience utilizing the histogram projection plot analysis in the license plate (LP) template

classification in [2]. In this thesis, a histogram projection plot analysis system was constructed

to decide on the possible object’s occurrence in specified region within the LP.
Classifying a character image can be, in a way, reformulated as searching for a set of

“objects” (or features) of certain shapes and sizes, which form a particular character in an

input image. If this set of features can be extracted for each character using a suiting feature

descriptor, the SVM model can be trained to predict the unseen image’s character

membership.

At first, the proposed feature descriptor splits the image’s area into 8 x 8 square regions.

The overlapping 8 x 8 regions are also created for vertical as well as for horizontal axis of the

image. The values of the feature descriptor vector are then obtained applying the vertical and

horizontal image histogram plot analysis within each small region to acquire the valuable,

local, information.

 In the next stage, the redundant histogram plot values, which are naturally created in each

region overlap, are removed. These redundancies arise in the vertical projections of a

horizontally overlapping cell pairs and in the horizontal projections of a vertically overlapping

cell pairs. A region intensity value is also calculated for each cell as a ratio of the sum of all

pixels’ intensities to the sum of the maximum possible pixels’ intensities in the particular

region.

 Given the image dimensions H x W and the desired region cell width r, we get cell

rows and cell columns in each row. After adding the overlapping regions, the total

number of cell rows almost doubles and is equal to , while the total number of cell

columns becomes . The number of features per region cell is , a

summation of a number of vertical and horizontal histogram plot values and the region

intensity number. Each histogram projection values is calculated as the sum of pixel

intensities in the particular column (or row) of the histogram. The output number of the image

projection plot and intensity value features can be calculated using via the following formula:

39

 (4.3)

 The term (4.3) must be subtracted by the number of the redundant features – the vertical

projection values of all horizontally overlapping cells and the horizontal projection values of

all vertically overlapping cells. After the subtraction, we get the total number of features for

the proposed feature descriptor as follows: (4.4)

Given an image’s dimensions (,) and a region cell edge length , we

get cell rows and cell columns per row. Using

formula (4.4) end up with the following number of features per image:

4.4.1.1 Feature descriptor variants

During the development, several variants of the proposed description method were tested.

The aim was to try to identify the features which may not have a significant affect on the

overall classification success rate and might be leaved out in order to further reduce the

descriptor’s size. These variants include:

 The basic descriptor as introduced above (variant A),

 An alternation of the basic descriptor – the number of the horizontal/vertical histogram

projection values were reduced to a half – instead of values per each projection

within one region, only were submitted to the descriptor by grouping every two

neighboring histogram projection values together (variant B),

 A variant omitting all region intensity values (variant C),

 A variant omitting all overlapping cells leaving only the regions of the “original image
grid” (variant D),

 A rather experimental model, which does not take all four corner cells into account,

assuming the lack of important character features in these marginal areas (variant E).

The results obtained while using the approaches A – E (shown in Tab. 4.1) prove the

proposed feature descriptor to be a viable alternative to the SVM models using the raw image

pixels. Even though the success rates are a bit worse, the computational time needed for

40

classification per image are highly in favor of the proposed method (less than a half of the

time needed compared to the best RBF kernel configuration using the raw image pixels as the

input features – see Section 4.3.4).

 A B C D E F

No. of features 765 421 688 408 697 344

No. of support vectors 1274 1419 1285 1465 1334 1479

Testing success rate 98.891% 98.851% 98.908% 98.828% 98.816% 98.816%

Testing time per image 1.383 ms 0.939 ms 1.286 ms 0.935 ms 1.346 ms 0.817 ms
Tab. 4.1 Performance of the proposed image descriptor variants

 One additional descriptor (variant F) model was tested, which combined the best variant

considering the classification success rate and the one with the best computation speed. The

feature descriptor omitting the region intensity value and reducing the number of histogram

projection values at the same time (variant C and variant B) resulted in only 344 features in

total. Although the promises arising from combination of a feature reduction and success rate

sustainability seemed to have a rather positive outlook, the results showed no improvements

in neither the success rate, nor the model complexity (the highest number of support vectors

generated by this model).

4.4.2 Image resizing

The image scaling (resizing) as the way of reducing an amount of the input features is

obviously the easiest approach that might come to one’s mind. When using a suitable
interpolation algorithm (which yields a somewhat accurate but scaled-down copy of the

original image), image resizing technique can be a powerful preprocessing tool. The

following interpolation algorithms were tested (OpenCV’s implementation):

 Nearest-neighbor interpolation (NEAR),

 Bilinear interpolation (LIN),

 Resampling method using pixel area relation (AREA),

 Bicubic interpolation over 4x4 pixel neighborhood (CUB),

 Lanczos interpolation over 8x8 pixel neighborhood (LANC).

Scaling an image (dimensions) by a given scale factor yields a new image of dimensions. The tests using the scale factors (for each interpolation algorithm)

up to (the resulting scaled-down image in such case has only a mere

pixels!) were conducted.

41

Fig. 4.13 The testing success rates obtained for different scale factors and interpolation algorithms

As shown in Fig. 4.13, both scale factor and scale factor yield very similar

results – around 99%. The real difference in the interpolation algorithms performance can be

observed in Fig. 4.14 which shows the amount of time needed for the image classification.

LANC dominated this criterion and comes out of our tests as the superior over other

mentioned methods. If one considers a certain amount of trade-off between the method’s
success rate and the computational cost, the resizing the image using (LANC,) seems to

be a reasonable choice. The classification speed is decreased to little less than a half of the

speed obtained by (LANC,), while maintaining a relatively good success rate figures –

98.971 % (LANC,) compared to 99.045% (LANC,).

Fig. 4.14 The classification time for different scale factors and interpolation algorithms

4.4.3 Image thresholding

Image thresholding (binarization) is another image preprocessing method which has the

potential for the input feature vector improvement. The binary image obtained after applying

a thresholding method might result in a more generalized “character template”, which would
leave out a not necessarily needed “gray” shades of a 8 bit input image. However, it might

have just the opposite influence resulting in the loss of the important local pixel neighborhood

features. The grid-search using the basic thresholding method and a local (adaptive)

95.5

96

96.5

97

97.5

98

98.5

99

NEAR LIN AREA CUB LANC

Testing success rate

[%]

Interpolation algorithm

scale factor = 2

scale factor = 3

scale factor = 4

scale factor = 5

scale factor = 6

scale factor = 7

scale factor = 8

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8

Time per image

[ms]

Scale factor

NEAR

LIN

AREA

CUB

LANC

42

thresholding method was conducted. Threshold value is a mean of neighborhood of using MEAN method and a weighted sum applying the

Gaussian filter of neighborhood.

Fig. 4.15 Testing success rate of global thresholding methods using different threshold values

As shown in Fig. 4.15, the global thresholding method’s success rates appear to be rather
inferior to a basic image’s raw pixel representation descriptor. Another problem could be
caused by the fact that a threshold value is determined during or prior to the SVM training,

which could cause discrepancy while classifying the images obtained from another source

having different illumination properties.

Fig. 4.16 Testing time per image [ms] of local thresholding methods using different filter sizes

On the other hand, the SVM models utilizing the adaptive thresholding, and especially in

the case of the middle sized filter blocks, yield competitive success rate figures. The

continuously decreasing computational speed while increasing the size of a filter, as shown in

Fig. 4.16, is caused by the decrease in the number of the support vectors generated for these

models, which should guarantee the model’s improved generalization capability. It does even
outweigh a somewhat higher computational demand for the thresholding method’s increased
filter size.

87

89

91

93

95

97

99

10 30 50 70 90 110 130 150 170 190 210 230 250

Success rate [%]

Threshold

Testing success rate [%]

0

1

2

3

4

5

6

7

8

9

10

3x3 5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19 21x21

Testing time per

image [ms]

Filter size

MEAN

GAUSSIAN

43

4.4.4 Principal Component Analysis method

 The PCA is used to find a special basis for a set of input feature vectors. It is comprised

of a set of the eigenvectors of the covariance matrix computed from the input set of vectors.

After PCA is performed, vectors can be transformed from the original high-dimensional space

to the subspace formed by a few most “important” eigenvectors (called the principal

components), corresponding to the largest eigenvalues of the covariation matrix. This causes

the dimensionality of an input vector and the correlation between the coordinates to shrink.

 Since the actual PCA is done during the training phase, the overall computational cost

required for the classification of the unseen samples was not heavily affected (only the input

feature vector’s projection to the eigenvector subspace needs to be performed). The grid-

search was conducted using the following principal component numbers obtained by the PCA

(the output number of principal components is the method’s input parameter): 10, 25, 100,

250, 500, 750, 1000, 1250 and 1500. Both original grayscale and resized images (scale factors

2, 3, and 4 using LANC interpolation algorithm) were tested.

Fig. 4.17 Testing PCA success rates using different scaling options and principal component numbers

Fig. 4.18 Testing times per image [ms] of PCA using different scaling options

As shown in Fig. 4.17 and Fig. 4.18, the model trained using 100 principal components

seem to be a turning point. While the computation time increases linearly with the number of

95.1

95.6

96.1

96.6

97.1

97.6

98.1

98.6

99.1

1 0 2 5 1 0 0 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0

Success rate [%]

No. of PC

LANC, 2

LANC, 3

LANC, 4

original

0

1

2

3

4

5

1 0 2 5 1 0 0 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0

Classification

time [ms]

No. of PC

LANC, 2

LANC, 3

LANC, 4

original

44

principal component features selected, the success rate stabilizes and maintains suitably high

level. The classification success rate using (LANC; 2) yields very similar figures to the

Conclusion

4.4.5 Conclusion

The aim of any image preprocessing routine prior to the SVM training and testing is to

reduce the number of the input features and thus decrease the computational time while

maintaining a certain level of success rate. Since there are usually as many as six or seven

characters on a standard license plate, the SVM character classification method should only

require as little time as possible.

The number and the “quality” of the input features directly determined the model’s

complexity. However, there is no “golden rule”; even a small number of feature (but of very
poor generalization properties) can guarantee a much higher output number of support vectors.

4.5 MULTI-CLASS ALGORITHM

 LIBSVM library utilized throughout the Thesis for testing purposes employs the pairwise

coupling multi-class. Thus, each of the pairwise binary SVMs must be evaluated

for each new sample in the classification process. The results are then put into vote and a class

with highest number of votes is assigned to the sample. However, there are some shortcoming

of such approach. Even the authors of LIBSVM themselves admit the method’s
incompleteness in [36]: “In case that two classes have identical votes, though it may not be a

good strategy, now we simply choose the class appearing first in the array of storing class

names.”

4.5.1 Proposed Enhanced DDAG character classification method

Basic fundamentals of Decision Directed Acyclic Graph SVM method (DDAG) together

with other commonly used multi-class algorithm can be found in Section 2.2.3. We propose

an enhanced DDAG multi-class algorithm which can further improve both the DDAG’s
reliability and decrease its error rate. The DDAGSVM’s unreliability arises from the nature of

the progressing through the binary SVMs in a directed graph. Once a particular binary SVM

(node in a graph) determines the preliminary datapoint’s class membership the wrong way (a
binary SVM (O-9) returns ‘9’ as the class membership for the ‘O’ character), there is just no
mechanism to bring back the possibility of the datapoint to be interpreted as ‘O’ again, going

forward down the “opposite” side of the “tree” (see Fig. 2.14).

45

In order to reduce the possibility of the datapoint’s incorrect classification, we introduce
an additional phase, which takes place after the path (a sequence of binary SVMs being

evaluated while finally reaching a leaf) in a graph is found. A preliminary result of a

classification is indicated by the class assigned to a sample upon entering a leaf node. This

result is usually a correct prediction of the datapoint’s class membership.
However, as we have discovered, after the some training and testing experiments we

conducted on various SVM models, the false result rate could be further decreased by adding

some additional binary SVM evaluations, which would either confirm or reject the assigned

prediction value. We identified the possible similar character groups as shown in Tab. 4.2.

Tab. 4.2 Similar character groups

The proposed method algorithm is outlined in Fig. 4.19. The training phase is the same as

in the standard one-vs-one multi-class approach. A directed acyclic graph is constructed using binary SVMs as the nodes (Fig. 2.14). The leaf nodes indicate the predicted

class. Once a preliminary result is assigned to a sample in a particular leaf node, it progresses

forward to either the specific character group test or directly to the general character test.

Each character group test consists of maximum of six binary SVMs (potential maximum

number of pairwise combinations of 4 different characters within the same group). These

SVMs are evaluated and votes are added to each character in the group. The preliminary

result is rejected if any of the binary SVMs assigns a negative vote to it. Additionally, it can

be rejected if any other character from this group outperforms the preliminary result

assignment (see the following chapter).

The general character test consists of ten additional SVM evaluations. Ten different

opponents are randomly chosen for the preliminary result. It has to win all ten “battles” in
order to be accepted.

4.5.1.1 Improving the SVM error rate

The conventional SVM models do not provide any confidence factor or output probability

estimate. Although some novel approaches designed to deal with probability estimation and

46

the SVM’s reject option were proposed in [50], [51] and [52], we decided to implement a

simple (thus adding almost no additional computational requirements) and yet powerful

method. It is based on evaluation of the distance between a datapoint and the separating

hyperplane. We must note that our approach is of a rather experimental nature and has not yet

been validated on other classification problems. However, it has proved to be a reliable

method, as the results obtained during our tests suggest.

Fig. 4.19 Proposed enhanced DDAGSVM multi-class method

 The character rejection denotes a possible classification output scenario, in which no

class was assigned to the testing sample. It is due to the uncertainty of the pattern’s possible
membership, which is determined during the character group test or the general character

test. The error rate of any conventional (multi-class) SVM can be computed as a complement

to its success rate. Thus, success rate figure is error rate de facto (sum of all

false positives). The aim of our method is to decrease the error rate of the SVM model while

maintaining certain level of success rate. The number of the rejected samples cannot be

disproportionately higher causing the decrease in the overall success rate.

47

97.3239

%

0.3717% 2.3044%

Correctly

classified
Missclassified

Rejected

 The undisputed advantage of the proposed method is in its ability to decrease the overall

error rate of the SVM while keeping the success rate fairly high (see Fig. 4.22 and Fig. 4.23).

The rejection rate shows a tradeoff between the number of misclassified and positively

classified images. Another advantage of the proposed method is the reduction of the binary

SVMs which are evaluated when compared to common one-vs-one algorithms. The maximum

number of binary SVM classifications for the proposed method is , where denotes

the highest possible number of additional tests (character group test or the general character

test). Maximum number of the binary SVM classifications for the dataset consisting of the 35

characters (10 digits and 25 letters) is then – . It is more than eleven-

fold decrease in the number of binary classifications needed compared to regular one-vs-one

approach, which is .

4.6 TRAINING AND TESTING DATASET

An additional test was conducted utilizing the proposed DDAGSVM method. A set

consisting of 500 non-character images was added to the testing dataset. It included some

trimmed characters, blobs of various shapes and sizes (retrieved from actual license plates), or

other non-character patterns (see Fig. 4.20).

 The proposed method was able to reject approximately 35 % of all non-character samples

(0.97 % of “non-characters rejected” as in Fig. 4.21). Thus, the success rate did not decrease

significantly even after a new (unseen prior to the actual classification) class was added to the

testing dataset. This leaves a rather positive outlook for the method’s proper (false positives)

rejection ability.

Fig. 4.20 Examples of non-character input images

Fig. 4.21 DDAGSVM’s performance prior to and after a non-character group was added

94.6186

%

1.2675%

2.1903% 0.9729%

Correctly

classified

Missclassified

Rejected

Non-characters

rejected

48

An additional test adjusting the training dataset size was also performed. The dataset

(used throughout the Thesis) was split into two separate groups once more. This time, the

training dataset’s size and testing dataset’s were switched. Thus, we ended up with a fixed

dataset consisting of the 200 images (testing) and 500 images (training) per class. Starting at

only 50 input images used for model training, additional images were attached up to the

whole set of 500 images was used.

Fig. 4.22 The comparison of the success rates: LIBSVM and proposed enhanced DDAGSVM

As we can observe in Fig. 4.22, the classification success rates alone are in favor of the

conventional LIBSVM’s one-vs-one multi-class method’s implementation. However, the

error rate figures (Fig. 4.23) proves the error rate minimization qualities of the proposed

DDAG multi-class method. The models trained in this experiment yielded up to a two-fold

decrease in the error rate.

Fig. 4.23 The comparison of the error rates: LIBSVM and proposed enhanced DDAGSVM

99.6

99.65

99.7

99.75

99.8

99.85

99.9

99.95

100

50 100 150 200 250 300 350 400 450 500

Testing success

rate [%]

No. of training samples per class LIBSVM Proposed DDAGSVM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 100 150 200 250 300 350 400 450 500

Testing error

rate [%]

No. of training samples per class

LIBSVM

Proposed DDAGSVM

49

5 CONCLUSION

The aim of the Thesis was to make an assessment of the Support vector machine method

and SVM-related algorithms for pattern classification problems. We propose the license plate

character classification method utilizing the SVM method and outline a novel multi-class

SVM approach. The classification method was tested using the dataset comprised of 17,500

LP character images.

The SVM hyperparameters and especially the regularization parameter C has got a

profound effect on the overall SVM method success rate, however, as outlined in Section 4.2,

both SVM and kernel parameters are highly domain-dependent as well. Four kernels (linear,

polynomial, sigmoidal, and radial basis function) were tested using grid-search technique for

suitable parameter value identification. The tests proved the viability of the both linear and

RBF kernel for large-scale classification problems (thousands of the input data with hundreds

of input feature vectors).

The choice of the image preprocessing method can improve the classification time

consumption to a great extent. Since the LP character classification method is required to run

under real-time conditions, employing a suiting preprocessing method is extremely important.

We outline a novel approach in the image feature description. The proposed image feature

descriptor utilizes the vertical/horizontal image histogram projections on the overlapping

regions within the image grid. Our approach together with the image scaling and Principal

component analysis proved to be competitive image preprocessing (description) techniques.

By using one these techniques, a trained SVM is capable of classifying the LP images in less

than one sixth of time needed while utilizing the basic approach (input image’s pixel
intensities as the feature vector values).

The overall SVM model’s complexity can be reduced by selecting a proper training set of

images. After a proper image preprocessing and a feature description method is performed

and the SVM is trained, one must choose a somewhat optimal model from a set of the output

SVM models. As suggested multiple times in Section 4, the “optimal” SVM models are
highly domain- and data-dependent. The models with less output support vectors proved to

yield better results both in terms of testing success rates and classification time consumption.

Since the original Support vector machine algorithm is a binary (two-class) classification

method in its nature, one must solve an additional multi-class problem. Throughout the thesis,

we employed a conventional one-vs-one SVM multiclass approach. In Section 4.5.1, we

proposed the Enhanced Directed acyclic graph SVM multi-class method. The main

advantages of our approach are the rejection ability of the SVM and the classification time

50

reduction. The SVM commonly does not support a reject option, making the decision making

based on the SVM output very unreliable (95 % success rate is 5 % error rate de facto). We

propose algorithm which utilizes the character similarities analysis. One can assign a certain

confidence factor to the given character by evaluating the performance of the pairwise binary

SVMs within the similar character group. The rejection option caused the classification error

rate to decrease up to one half (for some models) compared to the conventional one-vs-one

approach (see Section 4.6).

5.1 OUTLOOK FOR THE FUTURE

The author’s future work in the field of the Support vector machine will be certainly

focused on the SVM multi-class method improvements. Since most of the classification

problems require the multi-class approach, the SVM multi-class method’s should not only be

“present” as another extra post-processing phase, but rather shall be treated as an integral part

of the SVM method. Decreasing the SVM’s classification error rate is another important task
worth studying. It becomes a major issue especially when deploying the SVM in a real-world

software system.

51

REFERENCES

1. SOLOMON C., BRECKON, T. Fundamentals of Digital Image Processing: A Practical

Approach with Examples in Matlab. Oxford : John Wiley & Sons, 2011. 978-0-470-84472-4.

2. VÁCLAVIK, D. United Arab Emirate license type classification, Bachelor thesis. Žilina :

University of Žilina, 2012. .
3. YOUNG, I. T., GERBRANDS, J. J., VLIET VAN, L. J. Fundamentals of Image

Processing, Delft University of Technology. Delft : Delft University of Technology, 1998.

907-5-691-0-17.

4. SHIH, F. Y. Image processing and pattern recognition: fundamentals and techniques.

Hoboken : IEEE, 2010. 978-0-470-40461-4.

5. SŇAHNIČAN, O. Segmentation and classification of moving objects in scenes with a fixed

camera, Diploma thesis. Žilina : University of Žilina, 2011. [Slovak only].
6. ANAGNOSTOPOULOS, C. E., ANAGNOSTOPOULOS, I. E.,

ANAGNOSTOPOULOS, I. D., LOUMOS, V., KAYAFAS, E. License plate recognition

from still images and video sequences: A survey. IEEE Transactions on Intelligent

Transportation System : vol. 9, no. 3, pp. 377-391, 2008.

7. DASHTBAN, M. H., DASHTBAN, Z., BEVRANI, H. A Novel Approach for Vehicle

License Plate Localization and Recognition. International Journal of Computer Applications :

vol. 26, no. 11, pp. 22-30, 2011.

8. DALAL, N., TRIGGS, B. Histograms of Oriented Gradients for Human Detection.

French National Institute for Research in Computer Science and Control : Montbonnot, 2005.

9. ZISSERMANN, A. The SVM classifier. University of Oxford : The course on machine

learning, 2014.

10. MAHJOUB, A. M., GHANMY, N., JAYECH, K., MILED, I. Multiple models of

Bayesian networks applied to offline recognition of Arabic handwritten city names. Sousse :

Research Unit SAGE.

11. TEBELSKIS, J. Speech Recognition using Neural Networks, Diploma thesis. Pittsburgh :

Carnegie Mellon University, 1995.

12. SIBI, P., ALLWYN JONES, S., SIDDARTH, P. Analysis of Different Activation

Functions Using Back Propagation Neural Networks. Journal of Theoretical and Applied

Information Technology : vol. 47, no. 3, pp. 1264-1268, 2013. ISSN: 1992-8645.

13. GERSHENSON, C. Artificial Neural Networks for Beginners. Brighton : University of

Sussex, 2003.

14. HINTON, G. E. Connectionist Learning Procedures. Toronto : Elsevier Science

Publishers, 1989.

15. BEN-GAL, I. Encyclopedia of Statistics in Quality & Reliability. : Wiley & Sons, 2007.

52

16. GUGGENBERGER, A. Another Introduction to Support Vector Machines.

17. FRADKIN, D, MUCHNIK, I. Support Vector Machines for Classification. : DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, .

18. SCHOLKOPF, B., SMOLA, A. J. Learning with Kernels. Cambridge, Mass. : MIT

Press, 2000. 978-0262194754.

19. IVANCIUC, O. Applications of Support Vector Machines in Chemistry. Galveston, Tex. :

University of Texas, 2007.

20. FLETCHER, T. Support Vector Machines Explained. London : London's Global

University, 2009.

21. BHARADWAJ, A. Support Vector Machines. New Delhi : Indian Agricultural Statistics

Research Institute.

22. HSU, C-W., CHANG, C.-C., LIN, C.-J. A Practical Guide to Support Vector

Classification. Taipei : National Taiwan University, 2010.

23. DUAN, K.-B., KEERTHI, S. S. Which Is the Best Empirical Multiclass SVM Method?

An Empirical Study. Berlin : Springer-Verlag, 2005.

24. PLATT, J. C., CHRISTIANINI N., SHAWE-TAYLOR, J. Large Margin DAGs for

Multiclass Classification. : MIT Press, 2000.

25. HSU, C.-W., LIN, C.-J. A Comparison of Methods for Multi-class Support Vector

Machines. Taipei : National Taiwan University.

26. ABE, S. Support Vector Machines for Pattern Recognition. London : Springer, 2010. 978-

1-84996-097-7.

27. IVANCIUC, O. SVM - Support Vector Machines. [Online] [Cited: 04 28, 2014.]

http://www.support-vector-machines.org/SVM_soft.html.

28. SEWELL, M. SVM Software. [Online] [Cited: 04 28, 2014.]

http://www.svms.org/software.html.

29. CHRISTIANINI, N., SHAWE-TAYLOR, J. Pointers to Support Vector Machine and

Gaussian Processes Software. [Online] [Cited: 04 28, 2014.] http://www.support-

vector.net/software.html.

30. SCHOLKOPF, B. Kernel Machines Software. [Online] [Cited: 04 28, 2014.]

http://www.kernel-machines.org/software.

31. The Shogun Machine Learning Toolbox. [Online] [Cited: 04 28, 2014.]

http://www.shogun-toolbox.org/page/features/.

32. Shark machine learning library. [Online] [Cited: 04 28, 2014.]

http://image.diku.dk/shark/sphinx_pages/build/html/index.html.

33. dlib C++ Library. [Online] [Cited: 04 28, 2014.] http://dlib.net/.

34. Spider. [Online] [Cited: 04 28, 2014.] http://people.kyb.tuebingen.mpg.de/spider/.

35. scikit-learn Homepage. [Online] [Cited: 04 28, 2014.] http://scikit-learn.org/stable/.

36. CHANG, C.-C., LIN C.-J. LIBSVM: A Library for Support Vector Machines. Taipei :

National Taiwan University, 2013.

53

37. CHANG, C.-C., LIN, C.-J. LIBSVM -- A Library for Support Vector Machines.

[Online] [Cited: 04 28, 2014.] http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

38. JOACHIMS, T. Making Large-Scale SVM Learning Practical. Advances in Kernel

Methods - Support Vector Learning : MIT Press, 1999.

39. —. SVM-Light Support Vector Machines. [Online] [Cited: 04 28, 2014.]

http://svmlight.joachims.org/.

40. COLLOBERT, R., BENGIO, S. SVMTorch: Support vector Machines for Large-Scale

Regression Problems. vol 1, pp. 143-160 : 2001, Journal of Machine Learning Research.

41. —. A Support Vector Machine for Large-Scale Regression and Classification Problems.

[Online] [Cited: 04 28, 2014.] http://bengio.abracadoudou.com/SVMTorch.html.

42. RUPING, S. mySVM - a support vector machine. [Online] [Cited: 04 28, 2014.]

http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html.

43. TinySVM: Support Vector Machines. [Online] [Cited: 04 28, 2014.]

http://chasen.org/~taku/software/TinySVM/.

44. PLATT, J. C. Sequential Minimal Optimization: A Fast Algorithm for Training Support

Vector Machines. : Microsoft Research, 1998.

45. OpenCV 2.4.0 Documentation. [Online] [Cited: 04 28, 2014.]

http://opencv.itseez.com/index.html.

46. CHAPELLE. O., VAPNIK, V., BOUSQUETS, O., MUKHERJEE, S. Choosing

Multiple Parameters for Support Vector Machines. Machine Learning : is. 46, pp 131-159,

2002.

47. CHERKASSKY, V., MA, Y. Practical Selection of SVM Parameters and Noise

Estimation for SVM Regression. Minneapolis : University of Minnesota.

48. KECMAN, V. Learning and Soft Computing. Cambridge, Mass. : MIT Press, 2001.

49. LIN, H.-T. , LIN, C.-J. A Study on Sigmoid Kernels for SVM and the Training of non-

PSD Kernels by SMO-type Methods. Taipei : National Taiwan University.

50. WEGKAMP, M., YUAN, M. Support Vector Machines with a Reject Option. Ithaca :

Cornell University, 2012.

51. LI, M., SETHI, I. K. SVM-Based Classifier Design with Controlled Confidence.

Rochester : oakland University.

52. MA, C., RANDOPLH, M. A., DRISH, J. A Support Vector Machines-based Rejection

Technique For Speech Recognition. Schaumburg : Human Interface Laboratory Motorola

Labs.

	1 INTRODUCTION
	2 IMAGE PROCESSING AND OBJECT RECOGNITION
	2.1 FUNDAMENTALS OF IMAGE PROCESSING
	2.1.1 Preprocessing
	2.1.1.1 Histogram
	2.1.1.2 Discrete convolution
	2.1.1.3 Noise reduction
	2.1.1.4 Thresholding
	Adaptive thresholding

	2.1.2 Feature description (extraction)
	2.1.2.1 Vertical/Horizontal image projection plot analysis
	2.1.2.2 Histogram of oriented gradients
	2.1.2.3 Principal component analysis

	2.1.3 Object recognition
	2.1.3.1 Machine learning
	Artificial neural network
	Bayesian network

	2.2 SUPPORT VECTOR MACHINE
	2.2.1 Linear SVM
	2.2.1.1 Optimization problem behind the SVM
	2.2.1.2 Soft Margin SVM

	2.2.2 Non-linear SVM
	2.2.2.1 Kernels

	2.2.3 Multi-class SVM
	2.2.3.1 One versus the rest
	2.2.3.2 Pairwise classification
	2.2.3.3 Directed acyclic graph SVM

	3 SVM LIBRARIES AND TESTING APPLICATION
	3.1 SUPPORT VECTOR MACHINE LIBRARIES
	3.1.1 Toolboxes and frameworks
	3.1.2 Dedicated SVM libraries
	3.1.3 Selecting a suitable library

	3.2 SUPPORTING APPLICATION
	3.2.1 Libraries and tools
	3.2.1.1 OpenCV

	3.2.2 Application overview

	4 SVM CLASSIFICATION METHOD
	4.1 INPUT DATA AND METRICS
	4.1.1 Suitable parameter value identification

	4.2 SVM MODEL HYPERPARAMETERS
	4.2.1 Regularization parameter
	4.2.2 Stopping criterion

	4.3 KERNELS AND KERNEL PARAMETERS
	4.3.1 RBF kernel
	4.3.2 Polynomial kernel
	4.3.3 Sigmoidal kernel
	4.3.4 Conclusion

	4.4 INPUT DATA PREPROCESSING
	4.4.1 Proposed image feature descriptor
	4.4.1.1 Feature descriptor variants

	4.4.2 Image resizing
	4.4.3 Image thresholding
	4.4.4 Principal Component Analysis method
	4.4.5 Conclusion

	4.5 MULTI-CLASS ALGORITHM
	4.5.1 Proposed Enhanced DDAG character classification method
	4.5.1.1 Improving the SVM error rate

	4.6 TRAINING AND TESTING DATASET

	5 CONCLUSION
	5.1 OUTLOOK FOR THE FUTURE

	REFERENCES

