
 

ŽILINSKÁ UNIVERZITA V ŽILINE 
FAKULTA RIADENIA A INFORMATIKY 

DIPLOMOVÁ PRÁCA 

Študijný odbor: 
Informačné systémy 

Bc. Daniel Václavik 

Využitie SVM na klasifikáciu znakov  
získaných z evidenčných čísel vozidiel 
Vedúci práce: Ing. Peter Tarábek, PhD. 

Registračné číslo: 300/2013                 Apríl 2014 

ŽILINA, 2014 



 

 



 

DECLARATION OF ORIGINALITY 

 

 

I hereby declare that this thesis contains no material that has been accepted for any other 

degree in any university. To the best of my knowledge and belief this thesis contains no 

material previously published or written by any other person. The work submitted in this 

thesis is the product of my own original research, except where I have duly acknowledged the 

work of others. 

 

Žilina, 29.4. 2014          DANIEL VÁCLAVIK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  



 

ACKNOWLEDGEMENTS 

 

 

Foremost, I would like to express my sincere gratitude to my supervisor Ing. Peter 

Tarábek, PhD. for his continuous patience and guidance in all the time of research and writing 

of the thesis. Also, I thank my parents for supporting me throughout all my studies at 

University. 
    



 

ABSTRACT 

 

VÁCLAVIK, Daniel: Licence plate character classification using the SVM. Faculty of 

Management Science and Informatics – Supervisor: Ing. Peter Tarábek, PhD. – Žilina 2014 – 

53 pages. 

 

The thesis’ main aim was to perform an assessment of the support vector machine (SVM) 
and related methods, and develop a license plate character classification utilizing the SVM 

classification model. Such classifier is required to run under real-time conditions and perform 

the character recognition with a reasonable accuracy. The overview of object recognition and 

the SVM-related methods is also outlined. 

The novel image description method (utilizing image histogram projections) and 

enhanced Directed Acyclic Graph SVM multi-class method are proposed. The grid-search 

technique is utilized for the SVM and kernel parameter identification. The experimental 

results and analysis are presented for a range of the SVM models. 

 

Keywords: machine learning – optical character recognition – image classification – support 

vector machine – LIBSVM  

 

 

ABSTRAKT 

 

VÁCLAVIK, Daniel: Využitie SVM na klasifikáciu znakov získaných z evidenčných čísel 

vozidiel [diplomová práca] – Žilinská univerzita v Žiline. Fakulta riadenia a informatiky – 

Vedúci práce: Ing. Peter Tarábek, PhD. – Žilina 2014 – 53 strán.  
 

Hlavným cieľom práce je preskúmanie možností SVM pre klasikačné úlohy v oblasti 
inteligentného rozpoznávania obrazu. Navrhnutá metóda pre klasifikáciu znakov získaných 
z evidenčných čísel vozidiel je schopná pracovať v real-time podmienkach a vykazuje 

nadpriemerné výsledky. Práca obsahuje krátke zhrnutie teoretických poznatkov o SVM a 

rôznych metód rozpoznávania obrazu. 

V práci je predstavená metóda deskripcie obrazu, ktorá využíva vertikálne a horizontálne 
projekcie histogramu a nový spôsob klasikácie využívajúci rozhodovací orientovaný 
acyklický graf. Výsledky experimentov pre rôzne nastavenie parametrov SVM a jadra 

(kernel) sú predstavené spolu s vyhodnotením získaných výsledkov.  

 

Kľúčové slová: strojové učenie – optické rozpoznávanie znakov – klasifikácia obrazu – 

support vector machine – LIBSVM 
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1 INTRODUCTION 

 

 

The natural evolving in the traffic control management has led to the vivid development 

in the field of Automatic Number (License) Plate Recognition systems (ANPR, ALPR) in the 

past decades. A surveillance camera placed near the traffic is now capable of capturing a 

vehicle moving in high speed. The retrieved video frames can be processed, analyzed and the 

read LP identification number can be sent to the officer or traffic engineer in a blink of an eye. 

The part of an ANPR software system responsible for the correct LP characters’ 
recognition usually employs some Optical character recognition (OCR) technique. Some 

machine learning method can also be a part of such solution. Somewhere at the beginning of 

the modern LP issuing era, there was obviously a motivation to construct a set of LP 

characters which could be very easily distinguished from each other. The strict rules, which 

apply for the license plate formats employed in the member countries of the European Union, 

is very popular for the ANPR software system producers mainly because of the character 

normalization. 

The thesis’ main aim was to perform an assessment of the support vector machine (SVM) 
and related methods, and develop a LP character classification utilizing the SVM 

classification model. Such classifier is required to run under real-time conditions and perform 

the character recognition with a reasonable accuracy. The SVM, in its conventional form a 

binary classifier, must be adjusted in order to classify all 36 alphanumerical characters of the 

English alphabet. Since most of the ANPR systems are deployed outdoors, the image 

acquisition conditions can be very diverse and the SVM must be capable of learning to 

perform the classification even under some less or more complicated terms. 

The fundamentals of image processing, objects recognition methods and the Support 

vector machine in particular are the presented in Section 2. Upon reading this chapter, the 

reader shall be equipped with the general knowledge of the SVM fundamentals and the 

methods employed in the preprocessing phase of the LP classification method. 

Section 3 focuses on the set of available SVM libraries and frameworks. A comparison of 

the libraries’ features, shortcomings and overall performance is presented. The core 

functionalities of the application developed for the SVM training and LP classification 

method testing is outlined.  

In the experiment-filled Section 4, the important SVM hyperparameters and the kernel 

configurations are identified, tested and evaluated. The image descriptor method employing 

the horizontal/vertical image histogram projections on the overlapping regions within the 
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image grid is proposed. A novel approach to the Directed acyclic graph SVM formulation is 

outlined and evaluated.  

Section 5 features the final evaluation of the experimental results and the concluding 

assessment of the proposed method as well as the suggested ideas for the further research in 

the extensive Support vector machine field. 
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2 IMAGE PROCESSING AND OBJECT RECOGNITION 

 

This chapter aims to provide the reader with a fast and comprehensive overview of the 

image processing methods encompassed throughout the Thesis, and Support Vector Machine 

(SVM) background in particular. Upon reading this chapter, the reader shall be equipped with 

the basic ideas which stand behind the SVM and other learning algorithms. 

 

2.1 FUNDAMENTALS OF IMAGE PROCESSING 

 
In this section, we would like to outline the basic principles of some of the most 

important image processing techniques used in computer vision. The basic image 

manipulation techniques, which are used in early stages of computer vision applications, are 

called preprocessing methods. These methods manipulate the image’s pixels in order to 

enhance certain properties of the input image (color, sharpness, etc.). Feature extraction 

methods’ purpose is to transform the input image into the set of features (called feature 

vector). By extracting these features from the input images, the input data redundancy can be 

suppressed so that only the relevant information is used in the later stages. These features are 

usually used as the input for the object recognition algorithms such as Support Vector 

Machine (SVM) or Artificial Neural Network (ANN), which aim is to detect and/or classify 

the objects within the images. 

 

2.1.1 Preprocessing 

 
In this section, some of the image processing techniques which are used mainly in the 

early stages of the learning algorithms are introduced. At first, the input images are 

preprocessed using a combination of the preprocessing methods such as resizing, thresholding 

or smoothing. Preprocessing methods like smoothing or thresholding play also an important 

part in the overall performance of the learning algorithms such as the SVM or the ANN. 

 

2.1.1.1 Histogram 

 
A digital image is usually two-dimensional representation of a reality. It contains objects 

and the background. Through the process of digitization, the image is transformed from its 
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natural, continuous form to the discrete form comprising of the finite set of points. Such 

representation enables the computer to process images very naturally as a 2D matrix of values. 

Each pixel is not only a point representation in the image but rather a rectangular region, the 

elementary cell of the grid. The number at each pixel (basic picture element) position 

represents a value of the brightness function b(x,y), also known as luminance or intensity. 

The histogram is the graph which projects the distribution of the intensity levels (black 

or gray pixels) in an image. In a sense, it is also a plot of the discrete probability density 

function which defines the likelihood of a given pixel value occurring within the image [1]. 

The histogram can be formed by calculating the frequency of occurrence of each of the 

permitted pixel values (e.g. 256 possible pixel values for grey-scale 8-bit image). The plot of 

original (top left) and corresponding equalized (top right) histogram next to the Baboon 

images are shown in Fig. 2.1 from [2]. 

 

 

Fig. 2.1 Histogram equalization 

 

2.1.1.2 Discrete convolution 

 
Discrete convolution is a method that uses a window of a specific finite size (usually a 

square matrix of odd edge length) to scan across the image. The output pixel value is the 

weighted sum of the pixels from the input image within the window. The weights are the 

constants from a particular filter and are assigned to every pixel of the window itself. The 

window with its weights is called the convolution kernel[3].  

The convolution function formula is shown in (2.1). The indices i and j denote x and y 

coordinates of the input image, g(i,j) is the intensity value of the [i,j]-pixel in the output image. 

Kernel h (sometimes referred to as a filter) is the K x K (K is a positive odd value) matrix 

having the origin at the centre of the kernel h(0,0). 

                                
    

 
     

 
(2.1)  
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2.1.1.3 Noise reduction 

 
The level of noise present in the input images that are to be processed may have a severe 

impact on the overall success rate of the machine learning methods. The methods used to 

suppress the low image quality due to the high noise level are called smoothing (blurring) 

filters. These methods utilize the use of a discrete convolution, and apply kernels of different 

sizes and array values to get a filtered output image. 

The basic smoothing method is considered to be mean filtering. It assigns equal weight 

wK to all the pixels in the pixel’s neighborhood. A weight of wK = 1/(N∙M) is used for N x M 

neighborhood. This approach should be able to eliminate the significance of the 

unrepresentative pixels in the processed pixel’s surroundings. Often a 3 x 3 square kernel is 

used, as shown in Fig. 2.2, although larger kernels (e.g., a 5 x 5 square) can be used for more 

severe smoothing [4].  

 

        

 

 

 

 

 

    

Fig. 2.2 Filtering kernels 

Mean filtering kernel (left )and discrete approximation to Gaussian function (σ = 1) (right). 
  

Mean filter is a simple and easy way to implement smoothing method, but accompanies 

significant drawbacks. For example, a single pixel with a very unrepresentative value can 

severely affect the mean value of all the pixels in its neighborhood. The filtering does not 

preserve edges and may cause a problem if sharp edges are required in the output. Median 

filter usually yields better results compared to the mean filter as we can observe in Fig. 2.3, 

but it comes with the worse computational speed. Obviously, the computational complexity 

rises because of the need to order the array of values for each pixel’s neighborhood to find the 
median statistics of the set. 

 

 

 

 

 

 

Fig. 2.3 Smoothing operations 

From left to right: Original Baboon image, output image after 3 x 3 mean smoothing, output image after 3 x 3 

median smoothing and output image after 3 x 3 Gaussian smoothing (σ = 1). Source:[2]. 
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In some cases, Gaussian filtering might be more suitable solution because of its ability to 

preserve the neighborhood’s natural weights, which are more significant towards the “centre” 
of the matrix. Because of this, Gaussian filtering provides better smoothing and edge-

preservation results at the same time. “Gaussian smoothing commonly forms the first stage of 
an edge-detection algorithm, where it is used as a means of noise suppression.” [1]  

 

2.1.1.4 Thresholding 

 
Thresholding (sometimes referred to as binarization) is considered to be the simplest 

method of image segmentation. The actual image segmentation is done by comparing the 

intensity values of each pixel with the respect to the threshold and assigning new value – 

usually black (representing the object) and white (background) to the corresponding pixel in 

the output image. This corresponds to Black (0) and white (255) respresenting an object and a 

background in 8 bit grey-scale output image in (2.2).                                                       (2.2)  

Adaptive thresholding 

 
The extremely challenging task of selecting the optimal global threshold value can be 

overcome by applying a different threshold value for each pixel in the input image. The local 

threshold is determined by the values of the pixels in the neighborhood of given pixel. This 

approach assumes that illumination may differ significantly over the whole image but is 

usually uniform within a local neighborhood. The local threshold value t is determined by the 

thresholding function which takes the local N x N pixel neighborhood into consideration only.                                                                     (2.3)  

    Some of the well known local binarization methods include Niblack, Bernsen, Savakis 

and Savuola methods which prove to be more than competitive alternatives to the global 

binarization methods such as Mean, Median or Otsu [5]. The main disadvantage is the 

computational complexity of such methods, which sometimes makes them not suitable for 

real-time applications. 

 

2.1.2 Feature description (extraction) 

 
Feature extraction methods are used to decrease the size of the input vector required to 

describe the input data with a sufficient accuracy. Edge detection descriptors (Canny, Sobel, 

Prewitt), corner detection descriptors (Harris operator, Shi and Tomasi) or Histogram of 

gradients (HoG) are just some of the most widely used techniques.  
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2.1.2.1 Vertical/Horizontal image projection plot analysis 

 

Vertical projection plot analysis is the method which is widely used in object (character) 

segmentation. The potential occurrence of an object having certain shape or size can be 

detected processing a vertical or a horizontal projection histogram plot. “Obtaining a binary 

image, the idea is to add up image columns or rows and obtain a vector (or projection), 

whose minimum values allow us to segment characters.” [6] 

Generally the black pixels or gradient values of a plate are projected vertically. The local 

minimums called valleys are assumed to be the spaces between the characters. This approach 

does not work on such vertical projected histogram when there has been an overlap which 

could be because of bad thresholding or noise or even drop of rain [7]. 

 
 

 

 

2.1.2.2 Histogram of oriented gradients 

 
The basic idea behind the Histogram of oriented gradients (HoG) descriptor is that local 

object appearance and shape can often be characterized by the distribution of local intensity 

gradients or edge directions, even without precise knowledge of the corresponding gradient or 

edge positions [8]. First, the image is divided into small connected regions called cells. A 

histogram of gradient directions or edge orientations is calculated from the pixels within each 

cell. The most common method is to apply the one-dimensional filtering mask [–1,0,1] and [–
1,0,1]T in horizontal and/or vertical direction for all pixels within the cell. The combination of 

these histograms then represents the descriptor.  

 

 
Fig. 2.5 Histogram of oriented gradients example 

Fig. 2.4 Vertical and horizontal projection histogram plots 
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As for the vote weight, pixel contribution can either be the gradient magnitude itself, or 

some function of the magnitude. In the actual tests done by the researchers who first described 

the HoG descriptor in [8], the gradient magnitude itself generally produced the best results. 

We can see the original image, the image tilled into 8 x 8 pixel cells, the image with the 

dominant directions and their magnitude and the HOG descriptor in Fig. 2.5 from [9]. 

For improved accuracy, the local histograms can be contrast-normalized by calculating a 

measure of the intensity across a larger region of the image, called a block, and then using this 

value to normalize all cells within the block. This normalization results in better invariance to 

changes in illumination or shadowing. The HOG descriptor maintains a few key advantages 

over other descriptor methods. Since the HOG descriptor operates on localized cells, the 

method upholds invariance to geometric and photometric transformations, except for object 

orientation.  

 

2.1.2.3 Principal component analysis 

 
The Principal Component Analysis (PCA) is a method used in data analysis. Its goal is to 

transform the input variables (the term “correlated” in statistics theory) to a set of new 
independent variables (thus "uncorrelated"). These new variables are called principal 

components, or axes [10]. Decreasing the number of principal components causes the problem 

to shrink in size. “From a set of   images in a space of   descriptors, the goal of this method 

is to find a representation in a small space of   dimensions (  ≪  )” [10] which preserves the 

“best description” of an object. 

The method’s input are the variables structured in a matrix   with   rows and   

columns as shown in (2.4). 

                       (2.4)  

 

The output are then the variables   ,   ,…,   ,…,   , where     and               
are uncorrelated, of maximum variance and of decreasing importance. Each random variable                has a mean    and standard deviation    . The method’s aim is to 

determine the correlation matrix in order to measure the dependences among variables and 

subsequently create a variable list in a decreasing importance. 

      
                                                     

 
 (2.5)  
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2.1.3 Object recognition 

 
In image processing, object recognition (pattern recognition) methods are the algorithms 

devised to predict (classify) the class membership of an unknown patterns. These methods can 

be split into two main groups according to the nature of the specific task they intended to 

perform: 

 

 Detection methods are algorithms dealing with detecting instances of certain objects 

(such as vehicles, roads on the satellite images, or human faces) in the input images or 

video streams. They usually yield binary decision – the instance of an object is either in 

the image, or it is not present at all. 

 Classification methods perform various recognition routines in order to assign a certain 

class membership to the given object within the image. Obviously, any detection problem 

is a classification problem as well – only the number of possible class assignments is 

binary (an object is either present, or it is not in the image). The number of classes 

usually determines the complexity of the given classification task, and may vary from 

some tens (optical character recognition) to some hundreds (vehicle’s make and model 
recognition) to possibly thousands of different classes (protein classification). 

  

2.1.3.1 Machine learning 

 
 Machine learning (ML) is a field of study which is not limited not only to the object 

recognition. It is considered to be a branch of artificial intelligence, which focuses on the 

systems, which are capable of learning from the data. A machine learning system is usually 

trained on a dataset consisting of known and labeled patterns I order to learn to distinguish 

between the classes present. After successful learning, such system is capable of a new 

sample classification. There are three main approaches in ML training procedures [11]: 

 

 Supervised learning, in which a “teacher” provides output targets for each input pattern, 
and corrects the network’ s errors explicitly; 

 Semi-supervised (or reinforcement) learning, in which a teacher merely indicates whether 

the network’ s response to a training pattern is “good” or “bad”; 
 Unsupervised learning, in which there is no teacher, and the network must find 

regularities in the training data by itself. 

  

 A set of the ML methods include well known and widely used algorithms such Artificial 

neural networks (ANN), Support vector machine (SVM), Bayesian networks (BN) or 

Decision tree learning and many other novel approaches. We present an introduction to the 
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ANN and BN fundamentals in the following chapter. Section 2.2 focuses entirely on the 

fundamentals of the SVM as it is also the main study subject of the Thesis. 

 

Artificial neural network 

 
 An artificial neural network (ANN) is a system that is inspired by a system of 

interconnected neurons such as the human central nervous system, brain in particular. A 

system emulating this natural behavior is capable of completing tasks such as machine 

learning and pattern recognition. 

A neural network contains a large number of very simple processing units, analogous to 

neurons in the brain. At each moment in time, each unit simply computes a scalar function of 

its local inputs, and broadcasts the result (called the activation value) to its neighboring units. 

The units in a network are typically divided into input units, which receive data from the 

environment; hidden units, which may internally transform the data representation; and/or 

output units, which represent decisions. 

 

 

Fig. 2.6 Artificial neural network scheme 

 

The units in a network are organized into a given topology by a set of connections, or 

weights, shown as lines in a diagram in Fig. 2.6 from [12]. Each weight has a real value, 

typically ranging from –∞ to +∞, although sometimes the range is limited [11]. The value (or 

strength) of a weight describes how much influence a unit has on its neighbor; a positive 

weight causes one unit to excite another, while a negative weight causes one unit to inhibit 

another. Connectivity between two groups of units, such as two layers, is often complete 

(connecting all to all), but it may also be random (connecting only some to some), or local 

(connecting one neighborhood to another). 

Computation always begins by presenting an input pattern to the network, or clamping a 

pattern of activation on the input units. Then the activations of all of the remaining units are 

computed. In unstructured networks, this process is called spreading activation; in layered 

networks, it is called forward propagation, as it progresses from the input layer to the output 

layer. A given unit is typically updated in two stages: first we compute the unit’s net input (or 

internal activation), and then we compute its output activation as a function of the net input. 
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 Net input xj is usually computed as the weighted sum of its inputs,               
(2.6)  

where yi is the output activation of an incoming unit, and wij is the weight from unit i to unit j. 

In general, the net input is offset by a variable bias term θj, but, in practice, this bias is usually 

treated as another weight wj0 connected to an invisible unit with activation y0 = 1 [11].  

 

 

Once we have computed the unit’s net input xj, we compute the output activation yj as a 

function of xj. This activation function (also called a transfer function) usually takes one of 

three forms – linear, threshold, or sigmoidal – as shown in Fig. 2.7 from [11]. In the linear 

case, we have simply y = x. This is not used very often because it’s not very powerful: 
multiple layers of linear units can be collapsed into a single layer with the same functionality. 

In order to construct nonlinear functions, a network requires nonlinear units. The simplest 

form of nonlinearity is provided by the threshold activation function illustrated in Fig. 2.7(b). 



 


otherwise

xif
y

1

00
 (2.7)  

The most common function, according to [13] is now the sigmoidal function illustrated in 

Fig. 2.7(c).                 or              (2.8)  

 

“Training a network, in the most general sense, means adapting its connections so that 
the network exhibits the desired computational behavior for all input patterns.” [11] In 

general, networks are nonlinear and multilayered, and their weights can be trained only by an 

iterative procedure, such as gradient descent on a global performance measure [14]. This 

requires multiple passes of training on the entire training set; each pass is called iteration or 

epoch. Moreover, since the accumulated knowledge is distributed over all of the weights, the 

weights must be modified very gently so as not to destroy all the previous learning. A small 

constant called the learning rate (ε) is thus used to control the magnitude of weight 

modifications [11].  

 

 

Fig. 2.7 Local, threshold and sigmoidal activation functions 
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Bayesian network 

 
Bayesian networks, also known as belief networks, belong to the family of probabilistic 

graphical models. These graphical structures are used to represent knowledge about an 

uncertain domain. [15] (In particular, each node in the graph represents a random variable, 

while the edges between the nodes represent probabilistic dependencies among the 

corresponding random variables). These conditional dependencies in the graph are often 

estimated by using known statistical and computational methods. 

Bayesian network is defined by: 

 A directed acyclic graph (DAG) G = (V, E), where V is a set of nodes of G, and E is a 

set of the edges of G;  

 A finite probabilistic space (Ω, Z, p); 

 A set of random variables associated with graph nodes and defined on (Ω, Z, p) as:                             
    (2.9)  

where C(Vi) is a set of causes (parents) of Vi in graph G. 

 
The BN learning problem is to, given training data and prior information (e.g., expert 

knowledge, casual relationships), estimate the graph topology (network structure) and the 

parameters of the joint probability distribution in the BN. Learning the BN structure is 

considered a harder problem than learning the BN parameters. “It has been proven that [BN 

structure learning] is an NP-Hard problem, and therefore any learning algorithm that would 

be appropriate for use on such a large dataset such as microarray data would require some 

form of modification for it to be feasible.” [10] Therefore, some heuristic method, such as the 

Maximum-likehood estimation, is usually introduced, according to [15].  

 

 

2.2 SUPPORT VECTOR MACHINE 

 
Consider a typical classification problem. Some input vectors (feature vectors) and some 

labels (classes of objects) are given. “The objective of the classification problem is to predict 

the labels of new input vectors so that the error rate of the classification is minimal.” [16] We 

have N training points, each input point xi is a vector consisting of D feature values 

(dimensionality of D) and a single binary value yi – so called label (+1 and -1 for example). 

The training data point can be expressed in the following form:                                (2.10)  
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2.2.1 Linear SVM 

 
Basic application of the Support Vector Machine (SVM) solves only a binary (two-class) 

classification problem. The aim of the classifier is to learn the similarities in the objects’ 
feature vectors within the same class and generalize these similarities sufficiently enough so 

that the unseen data point from the same class could be predicted. “Support Vector Machines 

can be thought of as a method for constructing a special kind of rule, called a linear classifier, 

in a way that produces classifiers with theoretical guarantees of good predictive performance 

(the quality of classification on unseen data)” [17]. 

We can simplify the task, which usually consists of several tens, hundreds or even 

thousands dimensions, and consider only a two-dimensional input space (feature vectors with 

D=2). An example (Fig. 2.8 from [16]) shows the case in which two-dimensional objects can 

be separated by a line and form class <green> and class <red> with no inter-class member 

swapping. We call such set of objects linearly separable. 

 

 

Fig. 2.8 Finding the optimal hyperplane for linearly separable data points 

 

As we can see, there are many possible “lines” (or hyperplanes if D > 2, which separate 

the space into two half spaces) separating the objects of the two classes which can be drawn 

(in Fig. 2.8). Any given hyperplane can be described by:         (2.11)  

where w is a norm to the hyperplane and 
     is a perpendicular distance from the hyperplane 

to the origin.  

“Among all hyperplanes separating the data, there exists a unique one, called the optimal 

hyperplane, distinguished by the maximum margin of separation between any training point 

and the hyperplane.” [18] We can see that such an optimal separating line is the one on the 

bottom right picture in Fig. 2.8. “A special characteristic of SVM is that the solution to a 

classification problem is represented by the support vectors that determine the maximum 

margin hyperplane.” [19] 
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Fig. 2.9 Separating hyperplane, maximum margin and support vectors 

 

2.2.1.1 Optimization problem behind the SVM 

 
“Support vectors are the examples closest to the separating hyperplane and the aim of 

the SVM is to orientate this hyperplane in such a way as to be as far as possible from the 

closest members of both classes.” [20] Once the separating hyperplane is chosen, only 

support vectors (data points lying on the margin – circled points in Fig. 2.9 from [16] and in 

Fig. 2.10 from [20]) are considered for the classification task and other data points become 

irrelevant and not needed anymore.  Support vectors can be geometrically described as:             for H1 (2.12)              for H2 (2.13)  

The distance between the origin and the hyperplane H1 is equal to |+1 – b| / ||w|| (d1 in Fig. 

2.10). Similarly, the distance between the origin and the hyperplane H2 is equal to |-1 – b| / 

||w|| (d2). “We can easily calculate that the margin of the linear classifier H (the distance 

between hyperplanes H1 and H2) equals 
      .” [19] 

 

 

Fig. 2.10 Defining a separating hyperplane in two-dimensional feature space 

 

Considering the above, the process of finding the optimal separating hyperplane can be 

formulated as solving a mathematical optimization problem, which can be expressed by the 

following model [9] p.13: 
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                       (2.14)                                                  (2.15)                                                            (2.16)  

Or equivalently:                           (2.17)                                           (2.18)  

 

This optimization problem represents the minimization of a quadratic function under the 

linear constraints, which can be solved via quadratic programming. 

   

2.2.1.2 Soft Margin SVM 

 
 In the previous text, we introduced linear SVM model, which works only if the training 

set is linearly separable, which causes the separating hyperplane to correctly classify all 

patterns. Such classifiers are also known as hard margin classifiers. However,  

“the linear separability of two classes of the patterns might not be a valid assumption for 

real-life applications.” [19] The non-separability of the input data might be caused by the 

noise in the input data, or there is simply a high degree of “similarity” between the training 

members of the two classes. We can see such example in Fig. 2.11 from [9]. Of course, no 

linear (hard margin) classifier can be computed for this learning set, but “several hyperplanes 

can be calculated in such a way as to minimize the number of classification errors.” [19] The 

majority of the data points lie on the correct “side” of the hyperplane, but there is a small 

number of misclassified objects. 

 

 
Fig. 2.11 Soft margin SVM 
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In order to adapt the SVM to handle the not fully linearly separable data, we can relax the 

constraints (2.18) by allowing for some misclassified points. Introducing a positive slack 

variable (ξ), we can add a penalty to the points lying on the “wrong” side of the hyperplane. 

The penalty for the patterns classified correctly will then equal to zero. We can add a penalty 

increasing with the point’s distance from the “correct” hyperplane in the case of misclassified 

data points. We have an example of a misclassified data point, margin violating point and the 

correctly classified points in the Fig. 2.11. Support vector machines which allow the linear 

constraint relaxations are commonly referred to as soft margin classifiers. 

As we are trying to minimize the number of misclassifications and the extent of the 

“impact” these points have on the overall classification error, we need to adapt the objective 

function (2.17) to minimize the new penalty term as well:                                       (2.19)                                              (2.20)                                                                            (2.21)  

 

Parameter C in (2.19) controls the trade-off between the slack variable penalty and the 

size of the margin [20]. C is also referred to as a regularization parameter. We can observe 

that every constraint can be satisfied if ξi is sufficiently large. It can be adjusted by the user, 

and can either increase or decrease the penalty for classification errors. “A large C assigns a 

higher penalty to classification errors, thus minimizing the number of misclassified patterns. 

A small C maximizes the margin so that the OSH (optimal separating hyperplane) is less 

sensitive to the errors from the learning set.” [19] 

2.2.2 Non-linear SVM 

 
“SVM models were originally defined for the classification of linearly separable classes 

of objects,” [19] but can be adapted to classify even the models where more complex 

relationships exist between input parameters and the pattern labels. To discriminate linearly 

non-separable data, we can fit the SVM model with nonlinear functions to provide an efficient 

classifier.  

 
Fig. 2.12 Input space and high dimensional feature space 
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The main idea is to map the data into a different space, called feature space, and to 

construct a linear classifier in this space. “It can also be seen as a way to construct non-linear 

classifiers in the original space.” [17] (See also Fig. 2.12 from [21].) This process is 

sometimes referred to as a kernel trick. 

The non-linear functions used to fit the non-linear models are all based on calculating the 

inner products of two vectors, “which can be a significant problem if the feature space is too 
large and it is often not possible at all.” [16] The aim of the kernel trick is to avoid the 

explicit inner product calculation.  

If we have a function ϕ (called feature mapping function),         (2.22)          (2.23)  

which maps the input space into the high-dimensional feature space ω, we can define (under 

certain conditions), an inner product in feature space which has an equivalent kernel in input 

space:                      (2.24)  

 

To safely assume that the kernel K represents an inner product in a feature space, it has to, 

according to the Mercer’s theorem, which says that kernel K must be a symmetric positive 

definite function, satisfy the following conditions:                             
    (2.25)  

                                     (2.26)  

 

Using kernel to calculate the inner product of the feature vector in higher dimension the 

linear constraints (2.20) can be rewritten to (2.28). The following optimization problem is 

then solved.                                        (2.27)                                                 (2.28)                                                                                   (2.29)  

 

2.2.2.1 Kernels 

 
The following are some of the most popular kernels used in the Support vector machine 

according to [22]. The schematic plots of the kernel are in Fig. 2.13 from [19]. 
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Linear (Dot) kernel 

 The basic – linear kernel “should be used as a test of the nonlinearity in the training set, 
as well as a reference for the eventual classification improvement obtained with nonlinear 

kernels.” [19]                (2.30)  

 

Polynomial kernel 

 The polynomial kernel is a simple and efficient method for modeling nonlinear 

relationships but has the downside of possible overfitting that may appear when the degree 

(parameter d) increases.                     (2.31)  

 

Radial Basis Function (RBF) kernel 

 The Gaussian form of the RBF kernel is commonly used, with parameter σ controlling 

the shape of the separating hyperplane.                            (2.32)  

 

Sigmoid kernel 

 Also known as a neural kernel. The hyperbolic tangent (tanh) function, with a sigmoid 

shape, is the most used transfer function for artificial neural networks, but can be uses a 

kernel function for SVMs as well.                          (2.33)  

  

 

 

 

 

 

 

  

Fig. 2.13 Linear, polynomial (d = 2), polynomial (d = 10) and RBF kernel 
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2.2.3 Multi-class SVM 

 
Until now, only binary (two-class) classification has been discussed. “Many real-world 

problems, however, have more than two classes – an example being the widely studied optical 

character recognition (OCR) problem.” [18] Due to various problems evolving from the 

nature of the multi-class problems, a direct solution of multiclass problems using a single 

SVM formulation is usually avoided according to [23]. The usual approach is to train a 

combination of several binary SVMs to solve a given multiclass problem.  

 

2.2.3.1 One versus the rest 

 
One vs. Rest or one-against-all is probably the earliest multi-class method according to 

[22]. It constructs k SVM models considering the k-class classification problem. In the i-th 

SVM, one class represents the data points from the i-th class, the other class contains all 

example from the other classes (e.g. class <K> and class<A..J,L..Z,0..9> in OCR 

classification problem). 

The main disadvantage of this approach lies in so called winner-takes-all strategy. “The 
binary classifiers used are obtained by training on different binary classification problems, 

and thus it is unclear whether their real-valued outputs (before thresholding) are on 

comparable scales. This can be a problem, since situations often arise where several binary 

classifiers assign the pattern to their respective class (or where none does); in this case, one 

class must be chosen by comparing the real-valued outputs.” [18] On the other hand, the 

arguably important advantage is the small number of SVMs which is required for the 

classification, as opposed to the one-versus-one approach. 

 

2.2.3.2 Pairwise classification 

 
Pairwise or one-against-one method constructs one binary classifier for every pair of 

distinct classes. Therefore, together K(K−1)/2 binary classifiers are constructed. Each binary 

SVM is trained taking the examples from data points from class i as positive and the examples 

from j as negative. During the classification, so called max-vote strategy is applied. After 

each of the K(K−1)/2 binary classifiers makes its vote,  max-vote strategy assigns x to the 

class with the largest number of votes.  

For thirty six alphanumerical classes (letters A..Z,0..9), one-against-one approach results 

in total number of 36(36-1)/2 = 630 binary SVM classifiers, which is significantly higher than 

using one-against-all approach which needs only 36 classifiers. The difference of the 

computational cost of both methods is obvious. “Although this suggests larger training times, 
the individual problems that we need to train on are significantly smaller, and if the training 
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algorithm scales superlinearly with the training set size, it is actually possible to save time.” 

[18] Individual classifiers, however, tend to result in the fewer support vectors than they 

would be in the one-against-all approach, which may potentially save some computational 

cost, considering the overall model reduction. 

 

2.2.3.3 Directed acyclic graph SVM 

 
A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation and no 

cycles [24]. Multi-class SVM model utilizing some desired properties of a DAG is called 

(Decision) Directed acyclic graph (DAGSVM) and was first introduced in [24]. This method 

modifies one-against-one approach – the training phase of the both is the same – all K(K-1)/2 

binary SVMs need to be trained, although not all binary SVMs are used during a new 

pattern’s classification. A rooted binary directed acyclic graph is constructed with the internal 

nodes and the leaves representing the binary SVMs as shown in Fig. 2.14 from [24]. 

 

 

Fig. 2.14 Directed acyclic graph SVM 

 

Given a test sample, starting at the root node, the binary decision function is evaluated. 

Then it moves to either left or right depending on the output value. Therefore, we go through 

a path before reaching a leaf node which indicates the predicted class. An advantage of using 

a DAG is that some analysis of generalization can be established [25]. The advantage of 

DAGSVM is that classification is faster than by conventional pairwise support vector [26] 

which is given by the expected height of the binary DAG being    . 
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3 SVM LIBRARIES AND TESTING APPLICATION 

 
In this section, the review of the popular SVM solutions is presented. A comparison of 

the libraries’ features, shortcomings and overall performance is presented. The core 
functionalities of the application developed for the SVM training and testing purposes is 

outlined.  

 

3.1 SUPPORT VECTOR MACHINE LIBRARIES 

 
The quest to the labyrinth of the online SVM community was initially a search for the 

perfect SVM package that is around. Great expectations set for the tool’s complexity and the 
ease of use were soon terminated. We have not found any library or framework incorporating 

all the required tasks at the same time, although some of the examined libraries are very 

professional and powerful tools indeed. The initial requirements set for the library 

implementing SVM are as follows: 

 Certain level of complexity and robustness (and compactness at the same time), 

 Written preferably in C/C++, 

 Open Source code, 

 Capable of solving large-scale problem – possibly tens of thousands of input data and 

input features 

 Utilizing the SVM and kernel parameters and sparse model structure as described in 

Section 3.1.3 

 

There are multiple relevant SVM library listings available online – [27], [28], [29] and 

[30] for example. These lists were put together independently by the researches in the field of 

computer vision and SVM in particular which were mostly evaluated or studied themselves. 

Basically all top ranked libraries in these lists were written in C/C++ which proves that the 

family of the popular managed languages such Java or C# is not a competitive player in this 

field.  

The preferability of C/C++ to Java or C# is due to the computational complexity of the 

studied problem. In terms of computation speed, C/C++ can easily outperform these. All other 

libraries other than those written in C/C++ were taken out from the further search. As we can 

observe from the list of SVM software compiled from the Google search directory ranks in 
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[28], there are hardly any Java or C# libraries, and if, they are usually just a ported versions of 

some of the popular C/C++ libraries as the case of LIBSVM. 

 

3.1.1 Toolboxes and frameworks 

 
There is a number of possibilities in utilizing some of the existing solutions in the field of 

machine learning (ML). Some of the established machine learning frameworks also offer the 

SVM support. However, these frameworks (or toolboxes) tend to be of rather massive 

dimensions. It is simply a natural consequence of the ability to support the numerous 

algorithms and methods at the same time. Some of the most popular ML frameworks include: 

 SHOGUN – general purpose machine learning (C++) package with focus on large scale 

learning and kernel methods (SVM) in particular; provides generic SVM object 

interfacing to several different SVM implementations (LIBSVM, SVMLight, liblinear, 

etc.) [31], 

 Shark – a cross-platform feature-rich C++ machine learning library; provides methods for 

linear and non-linear optimization, kernel-based learning algorithms, artificial neural 

networks and other ML techniques [32], 

 dlib – another ISO C++ portable ML library, which provides, on top of the numerous 

learning algorithms implemented, a very detailed documentation and useful debugging 

modes [33]. 

 

Other very popular and highly regarded tools include some MATLAB toolboxes (Spider 

[34]) and python-based packages (scikit-learn [35]). 

  

3.1.2 Dedicated SVM libraries 

 
The user popularity and the citation figures for the relevant dedicated SVM libraries are 

presented by Martin Sewel in [28]. We reckon the top three libraries from this list to be 

probably the most widely used tools utilized by the researchers in the field of ML and SVM. 

The following five libraries were ranked highest in this listing:  

 

 LIBSVM – Definitely the most popular SVM dedicated library endorsed by both 

researchers and ordinary users, introduced by Chang and Lin in [36]; it provides different 

SVM formulations as well as efficient cross-validation model selection, multi-class 

classification support and other common SVM learning features; apart from its original 

C/C++ implementation, LIBSVM offers interface in other 15 different languages together 

with many extensions and domain-specialized plugins. It is open source and the source 

code and binaries can be downloaded from [37], 
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 SVMLight – C implementation of SVM classification method introduced by Joachims in 

[38] provides fast optimization algorithm as well as the ability to solve both classification 

and regression problems; other useful features include the error rate, the precision and the 

recall estimation calculations for the given SVM model, it is also capable of handling 

large-scale problem and many thousands of support vectors. This library is open source, 

however, the source code is reportedly compilable only on some of the Linux distribution 

operating systems. Linux, Windows and Mac OS binaries are available at [39], 

 SVMTorch – originally a C library completely rewritten in C++ in object style introduced 

by Collobert in [40] features the common SVM framework methods and introduces the 

sparse vector and binary file format for the SVM model persistency and is tailored 

especially for large-scale problems. It runs (and compiles) under Linux and Windows and 

can be downloaded from [41], 

 mySVM – a C++ library with a unique built-in support of the novel anova kernel; 

available for UNIX/Windows operating systems at [42], 

 TinySVM – another C++ implementation of the support vector classification and support 

vector regression method; it utilizes the fast optimization algorithm stemming from [38]; 

the authors report that the optimization for handling the binary features is two times faster 

than in the SVMLight’s implementation. It provides multi-platform source files and 

binaries [43] and ports to Perl, python and Java. 

 

3.1.3 Selecting a suitable library 

 
In order to select a relevant library, one might consider some dedicated SVM package to 

be a smarter solution compared to utilizing a bulky general machine learning framework. An 

undisputed advantage a compactness of such solution, which usually come in few source code 

files, is the fact that it can be easily recompiled without the need to deal with the possible 

build issues which tend to happen with more complex software. Another convenient offer of 

the dedicated SVM libraries is the fact that, in most cases, there is a university researcher with 

a certain level of expertise in the field of SVM, which guarantees the correctness of the 

particular SVM methods employed in the library. 

Prior to any testing or development, we identified certain parameters which needed to be 

met for the selected library, which would serve as a supporting package for the research in the 

Thesis (see Tab. 3.1). 

All of the “top five” SVM packages offer the same kernel selection and the sparse vector 

file format seems to be a common standard. The availability of an SVM multiclass algorithm 

played an important role in the decision making. Both LIBSVM and SVMTorch use well 

known and researched multiclass algorithms (see Section 0 for details). The main deciding 

point, however, turned out to be the date of the most recent update of a particular package. All 
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libraries except LIBSVM were are a bit outdated versions mostly from a decade ago. The 

user’s community for these libraries is either non-existent or one must cope with a rather 

austere “readme.txt” kind of documentation. All of the specified parameters were met by the 
LIBSVM package only. 

 

 

LIBSVM SVMLight SVMTorch mySVM TinySVM 

Language C/C++ C C++ C++ C++ 

Multiclass algorithm 1-vs-1 proprietary 1-vs-rest  

Cross-validation     

Sparse data format     

Kernel - linear     

Kernel - polynomial     

Kernel - RBF     

Kernel - Sigmoidal     

Kernel - User defined     

Recent update IV/2014 VIII/2008 XI/2001 VI/2004 VIII/2002 

Tab. 3.1 Dedicated SVM libraries overview 

 

The authors of the LIBSVM have created a vivid community around the library, 

therefore its development is progressing. “From 2000 to 2010, there were more than 250,000 
downloads of the package. In this period, we answered more than 10,000 emails from users”, 

the LIBSVM authors remark in [36]. The library is also successfully used in the fields of 

computer vision (LIBPMK), natural language processing (Maltparser), neuroimaging 

(PyMVPA), or Bioinformatics (BDVal). 

The library’s regular updates include both functionality improvements (employing a 

novel approach, supporting new SVM model formulations and so on) and bug fixes, which 

are usually submitted by its loyal users. The library features easy-to-understand source code 

and usable API. The library’s complex FAQ list is also available online [37]. 

The LIBSVM consists of the four modules – the core module (now completely rewritten 

in OO style C++), training, testing and scaling modules, which usually serve as the user API. 

The SVM optimization method employs the Sequential Minimal Optimization (SMO) method 

introduced by Platt in [44] and offer additional functionalities such as shrinking (shortens the 

time needed for a SVM model training, kernel caching (the values of kernel calculations are 

retained in RAM for fast retrieval), or posterior prediction probability estimation. 

 

3.2 SUPPORTING APPLICATION 

 

From early on, there was a obvious need for a tool capable of performing automated 

SVM tests. The time and energy dedicated to the application development were rewarded 

later on in the final stages of the research, while conducting numerous experiments. We 
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reckon that such complex tasks would have not been accomplished in such a timely manner 

with this level of ease. 

 

3.2.1 Libraries and tools  

 

As discussed in the previous section, LIBSVM package was utilized for the testing 

purposes during the course of the thesis’ research. However, not only its API functions alone 

were used. Some of the core LIBSVM functions were altered or completely rewritten (eg. in 

the case of the proposed Enhanced DDAGSVM multi-class method – see Section 4.5.1). For 

the image manipulation routines, computer vision and image/video processing library 

OpenCV, was employed.  

 

3.2.1.1 OpenCV 

 

OpenCV (Open Source Computer Vision) is a library consisting of the functions aimed 

mainly at performing real time computer vision tasks. OpenCV’s application areas include 
motion tracking, segmentation, gesture recognition, object identification, human-computer 

interaction and many others.  

This popular library offers a cross-platform solution (on-demand support for Windows, 

UNIX, Mac OS, Android and iOS). It was originally written in C, but completely rewritten in 

OO C++. This interface is the most widely used version nowadays, a variety of customized 

wrappers for other languages such as C# (EmguCV), Python, Java and Ruby is available. 

OpenCV incorporates Intel's Integrated Performance Primitives (IPP), a multi-threaded 

library optimized for data processing applications. Once the IPP library is detected on the OS 

environment, the IPP’s set of optimized routines is employed to accelerate the performance of 

the OpenCV-dependent application. The general OpenCV package comes with the support of 

Intel Threading Building Blocks (TBB), library for easier multithread image processing 

handling. 

 
Fig. 3.1 OpenCV modules 

Dependencies within OpenCV’s modules which are grouped into four main components. Source: [45] 
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The SVM supporting application features OpenCV’s core, imgproc and highgui modules. 

The OpenCV’s functions employed for our purposes are not directly dealing with any 
machine learning methods. The main usage is during the preprocessing phase of the SVM 

classifier training and prior to the actual character classification procedure, however the ease 

of use and the familiar interface made OpenCV a great supporting utility for the main – 

classification task. 

 

3.2.2 Application overview 

 
At first, we must note that the application is not intended to serve as a general SVM 

testing tool. Some assertions are given, thus the image file format, image bit depth or a 

possible number of classes currently supported are limited. This tool performs three main 

tasks, which evolved in our research to be almost a regular indispensable routine: 

 SVM training and testing wizard – this functionality enables the user to choose from 

the range of the supported parameters, kernels, preprocessing functions or multi-class 

algorithms to put together a suiting SVM model configuration, which is subsequently trained 

and tested on the given datasets, 

 Batch SVM configuration generator – this tool makes the routine of batch SVM 

configuration generation an easy task – a user can select the parameters and a range of values, 

which are to be generated. These options are then combined and configuration files are 

generated in XML format ready to be processed by the engine. This “batch” approach saves 
both time and effort which would be otherwise needed to perform the task manually. 

 

Fig. 3.2 Batch SVM configuration generator 
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 Batch SVM classification launcher – when using this mode, the input SVM 

configuration files are read and the SVM models are trained (if needed) and tested on the 

given datasets. The SVM training and testing can be a time consuming routine, which may 

require hours to complete. While using the batch launcher, all the procedures are done 

automatically, and after training & testing for a single SVM model is finished, the preliminary 

results are exported in a CSV file. A user can pause or stop a single SVM run task or terminate 

the whole batch.  

 

 

The application utilizes a rather functional approach to the user interface and focuses on 

the application compactness and ease of use. The outputs are generated in user-friendly 

formats (XML, CSV). The optional settings also allow a user to generate the misclassified 

images, a list of most frequently misclassified class pairs with the total figures for each pair, 

or the list of the misclassified (or rejected) images per class. User is continuously given the 

latest updates from the SVM engine (current number of misclassified/rejected/positive images, 

average computational speed, etc.). 

 The core engine (SVM functionalities) is available as C++ DLL. The application logic 

and the user interface are implemented in C#. The application engine runs in a worker thread, 

which keeps the application responsive. C++/C# Interop (Marshalling) services are used when 

converting the C++ structures to its C# counterparts (and vice versa). A simple API exposing 

Fig. 3.3 Batch SVM classification launcher 



28 
 

the common SVM methods (train an SVM classifier with the given configuration, classify 

given sample) was created for the DLL. 
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4 SVM CLASSIFICATION METHOD 

 
In this section, we present the experimental results of various SVM related techniques 

employed during the time of our research. The image descriptor method employing the 

horizontal/vertical image histogram projections on the overlapping regions within the image 

grid is proposed. A novel approach to the Directed acyclic graph SVM formulation is outlined 

and its ability to reduce an SVM model’s error rate is evaluated. 
 

 
Fig. 4.1 Building up the SVM classification method 

 

4.1 INPUT DATA AND METRICS 

 

A dataset comprised of some hundreds of license plate character images was used while 

developing the character classification method. It consists of 10 digits and 25 letter of the 

English alphabet (letter ‘Q’ is omitted due to the lack of samples for this particular class). The 

set of images within each class was split into two subsets – 200 images, which were processed 

during the training phase, and 500 images used for testing purposes. Such a high number of 

samples in the training set than may yield better generalization performance indicator for the 

particular SVM classification model. 

The input images were already normalized to 8-bit grayscale with the size of         

pixels. The fairly large input image dimensions and the level of similarities within images 

from a particular class resulted in the very promising classification success rates early on. 

Somewhere at the beginning of the modern LP issuing era, there was obviously a motivation 

to construct a set of LP characters which could be very easily distinguished from each other. 

The strict rules, which apply for the license plate formats employed in the member countries 

of the European Union, is very popular for the ALPR software system producers mainly 

because of the character normalization. 

 The feature vector values (0 – 255 using the 8-bit images) were scaled to the [-1; +1] 

range. The process of the input feature scaling has an important influence on the overall SVM 

classifier performance according the LIBSVM author Lin as remarked in [22]: “The main 
advantage of scaling is to avoid attributes in greater numeric ranges dominating those in 

smaller numeric ranges. Another advantage is to avoid numerical difficulties during the 
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calculation. Because kernel values usually depend on the inner products of feature vectors, 

e.g. the linear kernel and the polynomial kernel, large attribute values might cause numerical 

problems.” The authors of [22] recommend linearly scaling each attribute to the range [1; +1] 

or [0; 1]. The same scaling technique than applies to both training and testing data.  

We employ the metrics called success rate, which is used to express the particular’s 
model generalization performance on the testing data. Given the size of the testing dataset  , 

and the number of successfully classified images using an SVM classifier   , the classifier’s 
success rate   can be calculated as the following ratio:       (4.1)  

 The tests described throughout the Thesis were conducted on a regular Windows PC with 

3.4 GHz Intel i7 processor and 16 GB of RAM. 

 

4.1.1 Suitable parameter value identification 

 
The authors in [22] identify so called “grid-search” as the viable way in the process of 

finding the optimal parameter values for the given classification problem: “There are two 

motivations why we prefer the simple grid-search approach. One is that, psychologically, we 

may not feel safe to use methods which avoid doing an exhaustive parameter search by 

approximations or heuristics. The other reason is that the computational time required to find 

good parameters by grid-search is not much more than that by advanced methods since there 

are only [small number of] parameters.” The process of grid-searching can be easily 

parallelized because the coupled parameters in the grid are independent. “Many of advanced 

methods are iterative processes, e.g. walking along a path, which can be hard to parallelize.” 

Since conducting a complete grid-search may be time-consuming the authors in [22] 

recommend using a coarse grid first. A possible way is to construct the grid of exponentially 

growing parameter values, and conduct the initial search. We use the powers of two (2n) 

throughout all the tests while searching for the optimal parameter values. This approach has 

proven to be both feasible (not very time consuming) and sufficient in terms of the results 

obtained while using this technique. After the coarse grid-search is done and a possible 

“optimal” value range is set, one can conduct a finer grid-search within this range to identify 

the “optimal” parameter value. 

 

4.2 SVM MODEL HYPERPARAMETERS 

 
Finding the fitting SVM model hyperparameters (meta-parameters) – regularization 

constant and stopping criterion – which contribute enormously to the overall classification 

success rate are reasonably considered to be the first step in any SVM model creation. 
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Although the optimal selection of these parameters is highly data-dependent, a certain 

generality can be deduced. 

The authors in [22] consider the RBF kernel with SVM hyperparameter values C = 1 a γ 

= 1/N (N is the number of classes in the classification problem) a reasonable starting point. 

The default value for a stopping criterion ε is usually to 0.001 (adopted by LIBSVM as well). 

This parameter is also tuned, after the initial “sufficiently good” value of C, which has a grave 

influence on the overall result, is found. 

 

4.2.1 Regularization parameter 

 
Regularization parameter introduced in the objective function term (2.20) is the penalty 

assigned to the classification points laying on the “wrong” side of the separating hyperplane. 
“The penalty for classification errors increases when the capacity C increases, with the 

consequence that the number of erroneously classified patterns decreases when C increases. 

On the other hand, the margin decreases when C increases, making the classifier more 

sensitive to noise or errors in the training set.” [19]  

In order to fulfill both of these requirements – reasonably small C for a large margin 

classifier and a large C for a small number of classification errors at same time, one must 

accept a certain tradeoff. Setting the appropriate C can balance the tradeoff between margin 

maximization and error minimization [46]. The grid-search for parameter C was done within 

the range of [2-15
; 2

15].  

 

 
Fig. 4.2 Percentage of support vector selected for different C parameter values 

 

As we can observe in Fig. 4.2, the increase in the value of C caused the classifier to 

continuously create larger margin, ie. the output number of model’s support vectors was 
decreasing. There is also a continuous increase in the number of support vectors (up to the 

point when all training data points are treated as the support vectors) defining the model while 

the value of C decreases. This increase caused the SVM training process to take up more than 
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ten times more compared to the lower values of C, with the significantly worsened testing 

time per image.  

The danger of model overfitting is clearly visible and can be avoided by choosing the 

value of parameter C near the peak in the curve of the success rate figures on the testing 

dataset as shown in Fig. 4.3. C value was set to 16, as this value lies within the curve’s peak 
range and yields both reasonable classification and testing speed rates. 

 

 
Fig. 4.3 Success rates for different C parameter values 

 

4.2.2 Stopping criterion 

 
The tolerance of stopping, or termination criterion, while optimizing (ie. minimizing a 

loss function) the SVM model during the training phase is set by parameter ε. This value can 

affect the number of output support vectors – the bigger ε, the fewer support vectors are 

selected [47]. “An increase in ε means a reduction in requirements for the accuracy of 

approximation. It also decreases the number of SVs, leading to data compression.” [48]  

We have assumed that any ε value from the relevant range of ε values can be chosen 

without losing the level of optimality of the output SVM model, because of the high 

dependency on the input data volume. Initially, a grid-search in the reasonable range [2-14;20] 

was conducted for C = 16. 

 

 
Fig. 4.4 Percentage of support vector selected for different ε parameter values 
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 As shown in Fig. 4.4, the model complexity increases with the decreasing value of 

parameter ε. It is clearly a result of a more thorough optimization, as we can observe in the 

increasing number of iterations done to achieve approximately the same results as with the 

model with higher ε. Another negative product of the decrease in ε is the higher number of 

support vectors generated by the SVM, which causes an increase in the testing speed while 

maintaining the testing success rates. 

 Another, finer, grid-search was conducted using the full range (near the curve’s peak as 

shown in Fig. 4.3) of the C values. As presumed, the results (as shown in Fig. 4.5) confirmed 

the suitability of both values, C = 16 and ε = 2-1 = 0.5. 

  

 
Fig. 4.5 Testing success rate for different C and ε parameter values 

 

4.3 KERNELS AND KERNEL PARAMETERS 

 
 When trying to find the appropriate kernel and its parameter’s values, one could consider 
the number of features and the number of instances (training and testing dataset). Hsu et al. in 

[22] suggest the three possible cases: 

 Number of instances ≪ number of features 

 Both numbers of instances and features are large 

 Number of instances ≫ number of features 

 The authors in [22] suggest using linear kernel in the first case – “Apparently, when the 
number of features is very large, one may not need to map the data [to the higher dimensional 

feature space].” When both numbers of instances and features are sufficiently large, the linear 

and non-linear usually yield similar results. The last case should be treated the opposite way 

as the first one – one often maps data to higher dimensional spaces according to [22].  

 Our training dataset consisting of 7000 instances and around 1500 features would lay 

among the first category, but we decided to find the most suitable kernel setup by conducting 

grid-search. According to [47], “selecting a particular kernel type and kernel function 

parameters is usually based on application-domain knowledge and also should reflect 

distribution of input (x) values of the training data.”  
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 The linear kernel’s undisputed advantage is the fact that one may not need to map the 

data to the higher-dimensional feature space and only the dot product is calculated for each 

point while conducting the model optimization. This kernel does not have any additional 

parameters, therefore it can be used right “out of box”.  
The negative effect of dataset’s linear non-separability can be further improved by 

adjusting the value of a regularization parameter C. The peak in the success rate curve, as 

plotted in Fig. 4.6, is achieved while fixing parameter C value to the range of [2-7; 2-4].  

 

 

Fig. 4.6 Linear kernel performance using different regularization parameter values 

 

4.3.1 RBF kernel 

 
 The Radial Basis Function’s parameter σ controls the shape of the separating hyperplane. 

This parameter plays an important role in the proper model fitting for a particular 

classification problem. The RBF kernel’s performance is highly dependent on this parameter, 
which can cause the output number of support vector to increase rapidly while choosing the 

value from an inappropriate range of values. It results in the overfitted model with poor 

generalization properties (low error rates for training dataset and high error rates for the 

testing set) and an increased computation time of the classification. 

 In order to find suitable value of this parameter, we conducted a grid-search for σ value 

from range [2-25; 20]. The results seem to be a demonstration of Gaussian roots of this kernel 

as can be observed from the shape of the curve in Fig. 4.7.  

 

Fig. 4.7 Number of chosen support vectors for different σ values 
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 An obvious model overfitting can be seen with σ value approaching 20. The training 

dataset’ perfect error rate is in big contrast with its testing error rate. The SVM models 

treating whole training dataset (7000) as the support vectors are also trained with the 

decreasing σ values resulting in the rapidly increasing classification times, but the testing 

dataset classification remains stable below 4%. The best value for σ was proved to be value 

near the curve’s saddle point 2-11 in Fig. 4.7. 

 

 
Fig. 4.8 Model’s success rates for different σ values 

 

4.3.2 Polynomial kernel 

 
 There is usually a new parameter γ introduced (4.2) to the basic polynomial kernel 

formula (2.31) in the popular SVM libraries polynomial kernel’s formulations such as 

LIBSVM or SVMLight. This parameter can provide further improvement by scaling the inner 

product first prior to applying the kernel function.                      (4.2)  

 The degree in the polynomial kernel formula determines the “shape” of the separating 
hyperplane. Obviously, the linear kernel is just a special case of the polynomial kernel having 

d = 1, γ = 1 and a = 0. “The downside of using [this kernel] is the overfitting that might 
appear when the degree increases. As the degree of the polynomial increases, the 

classification surface becomes more complex.” [19] 

 

 
Fig. 4.9 Polynomial kernel's testing success rate for different polynomial degrees 
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 The increase in the value of the degree caused the model to grow in complexity, but 

classifier’s outcome tends to yield rather worse error rates (Fig. 4.9) and longer training time 

caused by the increase in the average number of iterations needed to find the fitting model 

while optimizing. The polynomial of the second degree was considered for the further stages 

of the polynomial kernel’s parameter grid-search. 

 

 
Fig. 4.10 Polynomial kernel’s success rates for different γ values 

 
 Prior to finding the suitable value of parameter a, scaling parameter γ needed to be fixed. 

Grid-search was conducted testing the values of γ in range [2-25; 225] and a fixed value of    . The γ value (2-10) with the highest success rate was submitted to the parameter a grid-

search to further improve its performance. As shown in Fig. 4.11 the polynomial kernel’s 
performance can be boosted by adjusting parameter a. 

 

 
Fig. 4.11 Polynomial kernel’s success rates for different a values 

 

4.3.3 Sigmoidal kernel 

 
The hyperbolic tangent (tanh) function, with a sigmoid shape, which is the most used 

transfer function for artificial neural networks [19], can also be used as the kernel in SVM 

models. However, not all sigmoidal kernels are valid. It was was proven by Lin et al. in [49], 

that sigmoid kernel does not yield the inner product of two vectors under some parameters. 

The parameters a and c as in (2.33), which have a similar purpose as the parameters γ and 

a for polynomial kernel were searched for using parameter a grid-search [2-17; 2-6] and 

parameter c grid-search [2-17; 25]. 

95 

96 

97 

98 

99 

100 

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 

Success rate [%] 

γ [2x] 

Training set 

Testing set 

98.3 

98.4 

98.5 

98.6 

98.7 

98.8 

98.9 

99 

99.1 

-25 -22 -19 -16 -13 -10 -7 -4 -1 2 5 8 11 14 17 20 

Success rate [%] 

a [2x] 

Testing success rate 



37 
 

As shown in Fig. 4.12, the percentage of the output support vector (high number of 

support vectors chosen for a model usually creates classifiers with weaker generalization 

capacities) changes significantly over the searched range. The best success rate / SV count 

ratio happens to be for the model having       . 

 

 

Fig. 4.12 Success rate and percentage of output SVs for different γ values 

 

4.3.4 Conclusion 

 
Even though many possible setups were compared, one may not be able to generalize a 

particular’s kernel performance under all possible conditions. Any kernel’s performance is 

highly domain- and data-dependent. The performance differences obtained while using the 

best kernel parameter values for each kernel (see previous chapters) were rather small. 

We decided to use the RBF kernel (γ = 2
-11) in the further stages of the LP character 

classification method. The lowest error rate obtained by this model is only one of the 

advantages when using RBF kernel. This kernel setup (together with SVM hyper-parameters 

C = 16 and ε = 0.5) leaves promising opportunities in terms of input data preprocessing and 

training dataset boosting – the number of support vectors, which is slightly worse (higher) 

than in the rest of the kernels, could be reduced by the PCA analysis. Many researchers also 

report the RBF as a very competitive alternative to the linear kernel, which, on the other hand, 

usually outperforms the RBF kernel in high-scale problems [49]. 

 

 

4.4 INPUT DATA PREPROCESSING 

 
The aim of the input data preprocessing prior to the SVM training is to reduce the number 

of features. The total number of features for the images being used for the experiments we 

conducted up to this point is 1536 (48 pixels height x 32 pixels width). Such a high number of 

features can cause the SVM to classify new images in much longer time, which can be crucial 

downfall when deploying SVM-based system in real-time demanding application. 
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This chapter is focused on the possible solution to the model complexity issues such as 

enormous classification time demands described. The aim is to find a viable way to decrease 

the number of features (and classification time subsequently) and to maintain certain level of 

success rate. We propose a new image description method, which utilizes the image histogram 

projections; examine the possible benefit of image scaling and image thresholding and 

experiment with the possible feature reduction via the Principal Component Analysis (PCA). 

  

4.4.1 Proposed image feature descriptor 

 
The motivation behind the proposed feature descriptor comes from the author’s positive 

experience utilizing the histogram projection plot analysis in the license plate (LP) template 

classification in [2]. In this thesis, a histogram projection plot analysis system was constructed 

to decide on the possible object’s occurrence in specified region within the LP.  
Classifying a character image can be, in a way, reformulated as searching for a set of 

“objects” (or features) of certain shapes and sizes, which form a particular character in an 

input image. If this set of features can be extracted for each character using a suiting feature 

descriptor, the SVM model can be trained to predict the unseen image’s character 

membership.  

At first, the proposed feature descriptor splits the image’s area into 8 x 8 square regions. 

The overlapping 8 x 8 regions are also created for vertical as well as for horizontal axis of the 

image. The values of the feature descriptor vector are then obtained applying the vertical and 

horizontal image histogram plot analysis within each small region to acquire the valuable, 

local, information. 

 In the next stage, the redundant histogram plot values, which are naturally created in each 

region overlap, are removed. These redundancies arise in the vertical projections of a 

horizontally overlapping cell pairs and in the horizontal projections of a vertically overlapping 

cell pairs. A region intensity value is also calculated for each cell as a ratio of the sum of all 

pixels’ intensities to the sum of the maximum possible pixels’ intensities in the particular 

region. 

 Given the image dimensions H x W and the desired region cell width r, we get       cell 

rows and      cell columns in each row. After adding the overlapping regions, the total 

number of cell rows almost doubles and is equal to      , while the total number of cell 

columns becomes      . The number of features per region cell is      , a 

summation of a number of vertical and horizontal histogram plot values and the region 

intensity number. Each   histogram projection values is calculated as the sum of pixel 

intensities in the particular column (or row) of the histogram. The output number of the image 

projection plot and intensity value features can be calculated using via the following formula: 
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                                             (4.3)  

 The term (4.3) must be subtracted by the number of the redundant features – the vertical 

projection values of all horizontally overlapping cells and the horizontal projection values of 

all vertically overlapping cells. After the subtraction, we get the total number of features for 

the proposed feature descriptor as follows:                                 (4.4)  

 

Given an image’s dimensions (    ,     ) and a region cell edge length    , we 

get              cell rows and              cell columns per row. Using 

formula (4.4) end up with the following number of features per image:                                                                                         

 

  

4.4.1.1 Feature descriptor variants 

 
During the development, several variants of the proposed description method were tested. 

The aim was to try to identify the features which may not have a significant affect on the 

overall classification success rate and might be leaved out in order to further reduce the 

descriptor’s size. These variants include: 

 

 The basic descriptor as introduced above (variant A), 

 An alternation of the basic descriptor – the number of the horizontal/vertical histogram 

projection values were reduced to a half – instead of   values per each projection 

within one region, only   were submitted to the descriptor by grouping every two 

neighboring histogram projection values together (variant B), 

 A variant omitting all region intensity values (variant C), 

 A variant omitting all overlapping cells leaving only the regions of the “original image 
grid” (variant D), 

 A rather experimental model, which does not take all four corner cells into account, 

assuming the lack of important character features in these marginal areas (variant E). 

 
The results obtained while using the approaches A – E (shown in Tab. 4.1) prove the 

proposed feature descriptor to be a viable alternative to the SVM models using the raw image 

pixels. Even though the success rates are a bit worse, the computational time needed for 
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classification per image are highly in favor of the proposed method (less than a half of the 

time needed compared to the best RBF kernel configuration using the raw image pixels as the 

input features – see Section 4.3.4). 

 

  A B C D E F 

No. of features 765 421 688 408 697 344 

No. of support vectors 1274 1419 1285 1465 1334 1479 

Testing success rate 98.891% 98.851% 98.908% 98.828% 98.816% 98.816% 

Testing time per image 1.383 ms 0.939 ms 1.286 ms 0.935 ms 1.346 ms 0.817 ms 
Tab. 4.1 Performance of the proposed image descriptor variants 

  

 One additional descriptor (variant F) model was tested, which combined the best variant 

considering the classification success rate and the one with the best computation speed. The 

feature descriptor omitting the region intensity value and reducing the number of histogram 

projection values at the same time (variant C and variant B) resulted in only 344 features in 

total. Although the promises arising from combination of a feature reduction and success rate 

sustainability seemed to have a rather positive outlook, the results showed no improvements 

in neither the success rate, nor the model complexity (the highest number of support vectors 

generated by this model). 

 

4.4.2 Image resizing 

 
The image scaling (resizing) as the way of reducing an amount of the input features is 

obviously the easiest approach that might come to one’s mind. When using a suitable 
interpolation algorithm (which yields a somewhat accurate but scaled-down copy of the 

original image), image resizing technique can be a powerful preprocessing tool. The 

following interpolation algorithms were tested (OpenCV’s implementation): 

 

 Nearest-neighbor interpolation (NEAR), 

 Bilinear interpolation (LIN), 

 Resampling method using pixel area relation (AREA), 

 Bicubic interpolation over 4x4 pixel neighborhood (CUB), 

 Lanczos interpolation over 8x8 pixel neighborhood (LANC). 

  

Scaling an image (      dimensions) by a given scale factor   yields a new image of          dimensions. The tests using the scale factors (for each interpolation algorithm) 

up to     (the resulting scaled-down image in such case has only a mere          

pixels!) were conducted. 
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Fig. 4.13 The testing success rates obtained for different scale factors and interpolation algorithms 

  

As shown in Fig. 4.13, both scale factor     and scale factor     yield very similar 

results – around 99%. The real difference in the interpolation algorithms performance can be 

observed in Fig. 4.14 which shows the amount of time needed for the image classification. 

LANC dominated this criterion and comes out of our tests as the superior over other 

mentioned methods. If one considers a certain amount of trade-off between the method’s 
success rate and the computational cost, the resizing the image using (LANC,    ) seems to 

be a reasonable choice. The classification speed is decreased to little less than a half of the 

speed obtained by (LANC,    ), while maintaining a relatively good success rate figures – 

98.971 % (LANC,    ) compared to 99.045% (LANC,    ). 

 

 
Fig. 4.14 The classification time for different scale factors and interpolation algorithms 

 

4.4.3 Image thresholding 

 
Image thresholding (binarization) is another image preprocessing method which has the 

potential for the input feature vector improvement. The binary image obtained after applying 

a thresholding method might result in a more generalized “character template”, which would 
leave out a not necessarily needed “gray” shades of a 8 bit input image. However, it might 

have just the opposite influence resulting in the loss of the important local pixel neighborhood 

features. The grid-search using the basic thresholding method and a local (adaptive) 
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thresholding method was conducted. Threshold value        is a mean of                           neighborhood of       using MEAN method and a weighted sum applying the 

Gaussian filter of                           neighborhood. 

 

 
Fig. 4.15 Testing success rate of global thresholding methods using different threshold values 

 

As shown in Fig. 4.15, the global thresholding method’s success rates appear to be rather 
inferior to a basic image’s raw pixel representation descriptor. Another problem could be 
caused by the fact that a threshold value is determined during or prior to the SVM training, 

which could cause discrepancy while classifying the images obtained from another source 

having different illumination properties. 

 

 
Fig. 4.16 Testing time per image [ms] of local thresholding methods using different filter sizes 

 

On the other hand, the SVM models utilizing the adaptive thresholding, and especially in 

the case of the middle sized filter blocks, yield competitive success rate figures. The 

continuously decreasing computational speed while increasing the size of a filter, as shown in 

Fig. 4.16, is caused by the decrease in the number of the support vectors generated for these 

models, which should guarantee the model’s improved generalization capability. It does even 
outweigh a somewhat higher computational demand for the thresholding method’s increased 
filter size. 
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4.4.4 Principal Component Analysis method 

 
 The PCA is used to find a special basis for a set of input feature vectors. It is comprised 

of a set of the eigenvectors of the covariance matrix computed from the input set of vectors. 

After PCA is performed, vectors can be transformed from the original high-dimensional space 

to the subspace formed by a few most “important” eigenvectors (called the principal 

components), corresponding to the largest eigenvalues of the covariation matrix. This causes 

the dimensionality of an input vector and the correlation between the coordinates to shrink.  

 Since the actual PCA is done during the training phase, the overall computational cost 

required for the classification of the unseen samples was not heavily affected (only the input 

feature vector’s projection to the eigenvector subspace needs to be performed). The grid-

search was conducted using the following principal component numbers obtained by the PCA 

(the output number of principal components is the method’s input parameter): 10, 25, 100, 

250, 500, 750, 1000, 1250 and 1500. Both original grayscale and resized images (scale factors 

2, 3, and 4 using LANC interpolation algorithm) were tested. 

 

 
Fig. 4.17 Testing PCA success rates using different scaling options and principal component numbers 

 

 
Fig. 4.18 Testing times per image [ms] of PCA using different scaling options 

  

As shown in Fig. 4.17 and Fig. 4.18, the model trained using 100 principal components 

seem to be a turning point. While the computation time increases linearly with the number of 
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principal component features selected, the success rate stabilizes and maintains suitably high 

level. The classification success rate using (LANC; 2) yields very similar figures to the 

Conclusion 

 

4.4.5 Conclusion 

 
The aim of any image preprocessing routine prior to the SVM training and testing is to 

reduce the number of the input features and thus decrease the computational time while 

maintaining a certain level of success rate. Since there are usually as many as six or seven 

characters on a standard license plate, the SVM character classification method should only 

require as little time as possible.  

The number and the “quality” of the input features directly determined the model’s 

complexity. However, there is no “golden rule”; even a small number of feature (but of very 
poor generalization properties) can guarantee a much higher output number of support vectors. 

 

 

4.5 MULTI-CLASS ALGORITHM 

 
 LIBSVM library utilized throughout the Thesis for testing purposes employs the pairwise 

coupling multi-class. Thus, each of the          pairwise binary SVMs must be evaluated 

for each new sample in the classification process. The results are then put into vote and a class 

with highest number of votes is assigned to the sample. However, there are some shortcoming 

of such approach. Even the authors of LIBSVM themselves admit the method’s 
incompleteness in [36]: “In case that two classes have identical votes, though it may not be a 

good strategy, now we simply choose the class appearing first in the array of storing class 

names.” 

 

4.5.1 Proposed Enhanced DDAG character classification method 

 
Basic fundamentals of Decision Directed Acyclic Graph SVM method (DDAG) together 

with other commonly used multi-class algorithm can be found in Section 2.2.3. We propose 

an enhanced DDAG multi-class algorithm which can further improve both the DDAG’s 
reliability and decrease its error rate. The DDAGSVM’s unreliability arises from the nature of 

the progressing through the binary SVMs in a directed graph. Once a particular binary SVM 

(node in a graph) determines the preliminary datapoint’s class membership the wrong way (a 
binary SVM (O-9) returns ‘9’ as the class membership for the ‘O’ character), there is just no 
mechanism to bring back the possibility of the datapoint to be interpreted as ‘O’ again, going 

forward down the “opposite” side of the “tree” (see Fig. 2.14). 
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In order to reduce the possibility of the datapoint’s incorrect classification, we introduce 
an additional phase, which takes place after the path (a sequence of     binary SVMs being 

evaluated while finally reaching a leaf) in a graph is found. A preliminary result of a 

classification is indicated by the class assigned to a sample upon entering a leaf node. This 

result is usually a correct prediction of the datapoint’s class membership.  
However, as we have discovered, after the some training and testing experiments we 

conducted on various SVM models, the false result rate could be further decreased by adding 

some additional binary SVM evaluations, which would either confirm or reject the assigned 

prediction value. We identified the possible similar character groups as shown in Tab. 4.2. 

 

   

   

   

  

  

Tab. 4.2 Similar character groups 

 

The proposed method algorithm is outlined in Fig. 4.19. The training phase is the same as 

in the standard one-vs-one multi-class approach. A directed acyclic graph is constructed using          binary SVMs as the nodes (Fig. 2.14). The leaf nodes indicate the predicted 

class. Once a preliminary result is assigned to a sample in a particular leaf node, it progresses 

forward to either the specific character group test or directly to the general character test.  

Each character group test consists of maximum of six binary SVMs (potential maximum 

number of pairwise combinations of 4 different characters within the same group). These 

SVMs are evaluated and votes are added to each character in the group. The preliminary 

result is rejected if any of the binary SVMs assigns a negative vote to it. Additionally, it can 

be rejected if any other character from this group outperforms the preliminary result 

assignment (see the following chapter). 

The general character test consists of ten additional SVM evaluations. Ten different 

opponents are randomly chosen for the preliminary result. It has to win all ten “battles” in 
order to be accepted. 

 

4.5.1.1 Improving the SVM error rate 

 
The conventional SVM models do not provide any confidence factor or output probability 

estimate. Although some novel approaches designed to deal with probability estimation and 
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the SVM’s reject option were proposed in [50], [51] and [52], we decided to implement a 

simple (thus adding almost no additional computational requirements) and yet powerful 

method. It is based on evaluation of the distance between a datapoint and the separating 

hyperplane. We must note that our approach is of a rather experimental nature and has not yet 

been validated on other classification problems. However, it has proved to be a reliable 

method, as the results obtained during our tests suggest. 

 
Fig. 4.19 Proposed enhanced DDAGSVM multi-class method 

 

 The character rejection denotes a possible classification output scenario, in which no 

class was assigned to the testing sample. It is due to the uncertainty of the pattern’s possible 
membership, which is determined during the character group test or the general character 

test. The error rate of any conventional (multi-class) SVM can be computed as a complement 

to its success rate. Thus,       success rate figure is      error rate de facto (sum of all 

false positives). The aim of our method is to decrease the error rate of the SVM model while 

maintaining certain level of success rate. The number of the rejected samples cannot be 

disproportionately higher causing the decrease in the overall success rate. 
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 The undisputed advantage of the proposed method is in its ability to decrease the overall 

error rate of the SVM while keeping the success rate fairly high (see Fig. 4.22 and Fig. 4.23). 

The rejection rate shows a tradeoff between the number of misclassified and positively 

classified images. Another advantage of the proposed method is the reduction of the binary 

SVMs which are evaluated when compared to common one-vs-one algorithms. The maximum 

number of binary SVM classifications for the proposed method is      , where   denotes 

the highest possible number of additional tests (character group test or the general character 

test). Maximum number of the binary SVM classifications for the dataset consisting of the 35 

characters (10 digits and 25 letters) is then   –            . It is more than eleven-

fold decrease in the number of binary classifications needed compared to regular one-vs-one 

approach, which is                        . 

 
 

4.6 TRAINING AND TESTING DATASET 

 
An additional test was conducted utilizing the proposed DDAGSVM method. A set 

consisting of 500 non-character images was added to the testing dataset. It included some 

trimmed characters, blobs of various shapes and sizes (retrieved from actual license plates), or 

other non-character patterns (see Fig. 4.20).  

 
 

 

 

 The proposed method was able to reject approximately 35 % of all non-character samples 

(0.97 % of “non-characters rejected” as in Fig. 4.21). Thus, the success rate did not decrease 

significantly even after a new (unseen prior to the actual classification) class was added to the 

testing dataset. This leaves a rather positive outlook for the method’s proper (false positives) 

rejection ability. 

  

Fig. 4.20 Examples of non-character input images 

Fig. 4.21 DDAGSVM’s performance prior to and after a non-character group was added 
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An additional test adjusting the training dataset size was also performed. The dataset 

(used throughout the Thesis) was split into two separate groups once more. This time, the 

training dataset’s size and testing dataset’s were switched. Thus, we ended up with a fixed 

dataset consisting of the 200 images (testing) and 500 images (training) per class. Starting at 

only 50 input images used for model training, additional images were attached up to the 

whole set of 500 images was used. 

 

 
Fig. 4.22 The comparison of the success rates: LIBSVM and proposed enhanced DDAGSVM 

 

As we can observe in Fig. 4.22, the classification success rates alone are in favor of the 

conventional LIBSVM’s one-vs-one multi-class method’s implementation. However, the 

error rate figures (Fig. 4.23) proves the error rate minimization qualities of the proposed 

DDAG multi-class method. The models trained in this experiment yielded up to a two-fold 

decrease in the error rate. 

 

 
Fig. 4.23 The comparison of the error rates: LIBSVM and proposed enhanced DDAGSVM 
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5 CONCLUSION 

 

The aim of the Thesis was to make an assessment of the Support vector machine method 

and SVM-related algorithms for pattern classification problems. We propose the license plate 

character classification method utilizing the SVM method and outline a novel multi-class 

SVM approach. The classification method was tested using the dataset comprised of 17,500 

LP character images. 

The SVM hyperparameters and especially the regularization parameter C has got a 

profound effect on the overall SVM method success rate, however, as outlined in Section 4.2, 

both SVM and kernel parameters are highly domain-dependent as well. Four kernels (linear, 

polynomial, sigmoidal, and radial basis function) were tested using grid-search technique for 

suitable parameter value identification. The tests proved the viability of the both linear and 

RBF kernel for large-scale classification problems (thousands of the input data with hundreds 

of input feature vectors). 

The choice of the image preprocessing method can improve the classification time 

consumption to a great extent. Since the LP character classification method is required to run 

under real-time conditions, employing a suiting preprocessing method is extremely important. 

We outline a novel approach in the image feature description. The proposed image feature 

descriptor utilizes the vertical/horizontal image histogram projections on the overlapping 

regions within the image grid. Our approach together with the image scaling and Principal 

component analysis proved to be competitive image preprocessing (description) techniques. 

By using one these techniques, a trained SVM is capable of classifying the LP images in less 

than one sixth of time needed while utilizing the basic approach (input image’s pixel 
intensities as the feature vector values). 

The overall SVM model’s complexity can be reduced by selecting a proper training set of 

images. After a proper image preprocessing and a feature description method is performed 

and the SVM is trained, one must choose a somewhat optimal model from a set of the output 

SVM models. As suggested multiple times in Section 4, the “optimal” SVM models are 
highly domain- and data-dependent. The models with less output support vectors proved to 

yield better results both in terms of testing success rates and classification time consumption. 

Since the original Support vector machine algorithm is a binary (two-class) classification 

method in its nature, one must solve an additional multi-class problem. Throughout the thesis, 

we employed a conventional one-vs-one SVM multiclass approach. In Section 4.5.1, we 

proposed the Enhanced Directed acyclic graph SVM multi-class method. The main 

advantages of our approach are the rejection ability of the SVM and the classification time 
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reduction. The SVM commonly does not support a reject option, making the decision making 

based on the SVM output very unreliable (95 % success rate is 5 % error rate de facto). We 

propose algorithm which utilizes the character similarities analysis. One can assign a certain 

confidence factor to the given character by evaluating the performance of the pairwise binary 

SVMs within the similar character group. The rejection option caused the classification error 

rate to decrease up to one half (for some models) compared to the conventional one-vs-one 

approach (see Section 4.6). 

 

5.1  OUTLOOK FOR THE FUTURE 

 
The author’s future work in the field of the Support vector machine will be certainly 

focused on the SVM multi-class method improvements. Since most of the classification 

problems require the multi-class approach, the SVM multi-class method’s should not only be 

“present” as another extra post-processing phase, but rather shall be treated as an integral part 

of the SVM method. Decreasing the SVM’s classification error rate is another important task 
worth studying. It becomes a major issue especially when deploying the SVM in a real-world 

software system. 
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