
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

TRAFFIC ANALYSIS FROM VIDEO
ANALÝZA DOPRAVY Z VIDEA

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. JAKUB SOCHOR
AUTOR PRÁCE

SUPERVISOR Doc. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2014

Abstrakt
V rámci této práce byl navržen a implementován systém pro analýzu dopravy z videa.
Tento system umožňuje detekovat, sledovat a klasifikovat automobily. Systém je schopný
detekovat pruhy z pohybu projíždějících automobilů a také je možné určit, zdali daný
automobil jede v protisměru. Rychlost projíždějících automobilů je také měřena. Pro
funkčnost systému není vyžadován žadný manuální vstup nebo kalibrace kamery, jelikož
kamera je plně automacky zkalibrována pomocí úběžníků. Navržený systém pracuje s velkou
přesností detekce, sledování a klasifikace automobilů a také rychlost automobilů je měřena
s malou chybou. Systém je schopný pracovat v reálném čase a je aktuálně využíván pro
nepřetržité online sledování dopravy. Největším přínosem této práce je plně automatické
měření rychlostí projíždějích vozidel.

Abstract
A system for traffic analysis was designed and implemented during work on this thesis.
The system is able to detect, track and classify vehicles. Also, the system is able to detect
lanes or determine whether a vehicle is passing in wrong way. The speed of observed
vehicles is also measured. The system does not require any manual input or calibration
whatsoever as the video camera is fully automatically calibrated by detected vanishing
points. The accuracy of the detection, tracking and classification is high and the speed of
vehicles is measured with a low error. The system runs in real time and it is currently
used for a continuous monitoring of traffic. The main contribution of the thesis is the fully
automated speed measurement of passing vehicles.

Klíčová slova
analýza dopravy, detekce, sledování, klasifikace, měření rychlosti, detekce pruhu a směru
jízdy

Keywords
traffic analysis, detection, tracking, classification, speed measurement, direction and lane
detection

Citace
Jakub Sochor: Traffic Analysis from Video, diplomová práce, Brno, FIT VUT v Brně, 2014

Traffic Analysis from Video

Declaration
I hereby declare that this thesis is my own work that has been created under the supervision
of Ing. Adam Herout, Ph.D. Where other sources of information have been used, they have
been duly acknowledged.

. .
Jakub Sochor
May 19, 2014

Acknowledgment
I would like to thank to Adam Herout who suggested me to work on this thesis and provided
a great support during my work on the thesis. Also, I would like to thank to Markéta Dubská
and Roman Juránek for their advices and help with the thesis.

c© Jakub Sochor, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Existing Traffic Analysis Systems 4
2.1 Traffic Parameters Extraction by Beymer et al., 1997 4
2.2 Classification of Vehicles in Traffic Video Streams by Morris et al., 2006 . . 6
2.3 Traffic Surveillance System by Hsieh et al., 2006 8

3 Related Computer Vision Algorithms for Traffic Analysis 13
3.1 Detection . 13
3.2 Tracking . 17
3.3 Classification . 19

4 Proposed Traffic Analysis System 25
4.1 Initialization . 26
4.2 Detection and Tracking . 32
4.3 Three-Dimensional Bounding Boxes . 35
4.4 Classification . 39
4.5 Direction Estimation and Lane Detection 40
4.6 Speed Estimation . 43

5 Implementation 46
5.1 Traffic Analyser . 46
5.2 Vehicles Annotator . 47

6 Evaluation 48
6.1 Detection and Tracking . 48
6.2 Classification . 49
6.3 Vehicle Speed Estimation . 52
6.4 Direction Estimation and Lane Detection 55
6.5 Speed of Video Processing . 58
6.6 Concluding Remarks . 58

7 Conclusion 60

1

Chapter 1

Introduction

There are many challenging tasks for the traffic surveillance applications from video.
For example, systems for the traffic monitoring could determine age of vehicles, measure
their speed, detect their type and the brand of the manufacturer. Also, complex crossroads
and behaviour of drivers can be analyzed. However, all these tasks are rather advanced and
complex if the system should work without any manual input from a single uncalibrated
video camera. This thesis contributes to the state of the art mainly by the automatic speed
measurement of vehicles.
The goal of the thesis is to design and implement a system for fully automated real

time traffic analysis from a single uncalibrated video camera. The system should be able to
count vehicles and classify them. Also, the speed of vehicles and lane which they are taking
should be estimated. Vehicles passing in wrong way can also be detected. As the system
should be usable for any traffic surveillance scene, it has to run in real time and be fully
automated. Hence, the system does not use any manual input or calibration whatsoever.
This constraint is challenging mainly for the speed measurement because it is necessary to
automatically calibrate the video camera and to compute the correct scale. These types of

Figure 1.1: An example of a processed video by the proposed traffic analysis system. It
shows the amount of vehicles passing in two directions and the number of vehicles which
were passing in wrong way. Also, the identification number (black) and speed (red) is drawn
in a yellow rectangle for each vehicle.

2

analysis systems have a wide spectrum of usage. For example, it is possible to monitor the
traffic or try to predict characteristics of the future traffic flow.
The proposed system automatically calibrates the camera by detected vanishing points.

Vehicles are detected by a background subtraction and tracked with Kalman filter. His-
tograms of Oriented Gradients and Support Vector Machines are used for the classification
of vehicles. The lanes detection is based on the motion of observed vehicles. The automatic
calibration and scale computation is used for the measurement of distances on the road
plane in order to estimate speed of vehicles.
Other systems for the traffic analysis are studied in Chapter 2 and related computer

vision algorithms which are used for the traffic analysis are presented in Chapter 3. The
design of the proposed system is described in Chapter 4 and its implementation is discussed
in Chapter 5. Also, the system is thoroughly evaluated in Chapter 6.

3

Chapter 2

Existing Traffic Analysis Systems

This chapter presents three different systems for traffic analysis. Each system is de-
scribed into detail and the achieved results are discussed. Described systems represent
widely used approaches for detection, tracking and classification of vehicles.
A popular approach for the detection and tracking of vehicles is to use some form of

background subtraction and Kalman filter [20] to track the vehicles [16, 29, 18, 40, 1, 5, 9,
26, 23, 31]. Other approaches are based mainly on the detection of corner features, their
tracking and grouping [2, 17, 6]. Also, part-based detections are used in several papers [5, 38]
for the detection of vehicles.
Several types of features are used for the classification of vehicles. Forms of image

features are used in some publications [29, 28]. Other works on the topic use shape of
vehicles for the classification [27, 21, 14, 3, 28, 29] and some of these works [27, 21, 14, 3]
use a three-dimensional model of vehicles for matching the shape. Also, some papers [16, 29]
present artificial measurements in the image or contour of vehicles for obtaining the features
for the classification.

2.1 Traffic Parameters Extraction by Beymer et al., 1997

The first studied system [2] for the traffic analysis is focused on measuring of a traffic
parameters. The system is able to count cars, measure the velocity of the cars and other
dimensions of the cars in the frame. The system is based on corner-feature detection. The
detection step is followed by tracking and grouping of these features. Also, the user of the
system has to manually define four points of correspondence for homography [37] a priori.
The homography is used for parallelization of lane-dividing lines as it is shown in Figure 2.1.
The user also has to specify a region of entrance and exit of the cars before running the
system.
As it was mentioned, the image coordinates (x, y) are mapped into the transformed co-

ordinates (X,Y) by the homography. The transformation matrix of the homography H is
obtained in a manual way. The manually defined four points of correspondence unambigu-
ously define the matrix H if the scaling of the transformation matrix is 1. If homogenous
coordinates are used, the homography can be expressed as a linear transformation.




X
Y
1


 = H




x
y
1


 (2.1)

4

Figure 2.1: Mapping from image coordinates (x, y) into (X,Y) coordinates by homogra-
phy H.

The corner feature detection is based on the gradient of pixel ∇I. The pixel is con-
sidered to be the corner feature if matrix ∇I∇IT has the smallest eigenvalue bigger than
a predefined threshold. If the corner feature is found, 9 × 9 neighborhood is extracted for
matching of the features in the tracking module.
The Kalman filter [20] is used for the tracking of the features. The filter is explained in

detail in Section 3.2.1. The state of the Kalman filter contains position and speed in both
directions. The predicted position by the Kalman filter is used to find correlation peak
with the extracted 9 × 9 template of the corner feature. The localized correlation peak is
rejected if its distance from the predicted position is higher than a threshold.
The grouping of the corner features into one object is based on a common motion of these

features. The grouping uses an unoriented graph G = (V,E), while the corner features are
vertices of the graph, and an edge between vertices denotes the grouping relationship. Last
but not least, the connected components of the graph correspond to a vehicle hypothesis.
A new feature is initially connected with surrounding features in some predefined radius.
An edge (a, b) is kept in the graph until the difference of the motions of the features is
above a threshold.
The history of positions of a feature a is expressed as a function pa(t) and the same way

for the feature b. The grouping component computes relative displacement of the features
over time d(t) = pa(t) − pb(t). The edge (a, b) is removed if either (2.2) or (2.3) holds.
When the last vertex of a connected component enters the exit region, a new passed car is
detected.

max
t

dx(t)−min
t

dx(t) > tx (2.2)

max
t

dy(t)−min
t

dy(t) > ty (2.3)

The grouper can suffer from either oversegmentation or overgrouping. Oversegmentation
denotes that the thresholds tx and ty are below optimum and a vehicle is divided into
more than one object. On the other hand, if the grouping suffers from overgrouping, the
thresholds tx and ty are above optimum and more vehicles are grouped into a one. The
optimum thresholds were computed off-line by exhaustive search.

5

The true match rate of the system depends on the scene settings and it is between
73.9% and 94.9%. Unfortunately, the worst true match was measured for a highway. The
error of measured velocity was below 10% for all samples. The system runs in real-time on
thirteen C40 DSPs and one 150MHz Pentium joined into one computation unit.

2.2 Classification of Vehicles in Traffic Video Streams by

Morris et al., 2006

The second studied system [29] about traffic analysis from a video stream focuses mainly
on the classification. The cars are also tracked, however, it is only for better results of the
classification.
The authors examined two different types of feature vectors, also as Principal Compo-

nent Analysis (PCA) and Linear Discriminant Analysis (LDA) (both [37]) dimensionality
reduction. The weighted K nearest neighbor algorithm is used for the classification.
However, the tracking algorithm will be described first. The authors used an adaptive

background subtraction (Section 3.1.1) for the vehicle detection and the Kalman filter for
tracking (Section 3.2.1).
The two types of used features for the classification are the following. First, the raw

image pixels were used as the feature vector. However, the car was rescaled to size 64× 32
pixels a priori. The second used feature vector is based on measurements done in the image
of the vehicle. For example, the area, the width and height of the bounding box, the convex
area and other measurements are these features used for the classification.
The main goal of the PCA and LDA is to reduce the dimensionality of a vector x. Both

PCA and LDA accomplish this reduction by projection of the vector x intoM base vectors.
PCA uses as the base vectorsM eigenvectors ui with the highest corresponding eigenvalues
λi of the covariance matrix C of the training data with N samples. These eigenvectors are
the directions with the highest variance. It is possible to use the following equations and
eigenvalue decomposition for obtaining the eigenvalues and eigenvectors [37].

µ =
1

N

N∑

i=1

xi (2.4)

C =
1

N

N∑

i=1

(xi − µ)(xi − µ)T (2.5)

C = UΛUT =

N∑

i=1

λiuiu
T
i (2.6)

On the other hand, LDA selects the direction u that results in the largest ratio between
the projected between-class and within-class variance. This is achieved by maximizing
Equation (2.10). Matrices SW and SB are within-class and between-class scatter matrices.
Vector µk denotes the mean value within the class k and there is total K classes for the
classification.

6

Sk =
∑

i∈Ck

(xi − µk)(xi − µk)
T (2.7)

SW =

K∑

k=1

Sk (2.8)

SB =
K∑

k=1

Nk(µk − µ)(µk − µ)T (2.9)

u∗ = argmax
u

uTSBu

uTSWu
(2.10)

Solving Equation (2.10) and selecting M best solutions is equivalent to searching the
eigenvalues and eigenvectors (2.11) and taking the M eigenvectors u with the highest
eigenvalues λ.

SBu = λSWu (2.11)

The authors of the publication used the weighted K nearest neighbor algorithm for the
classification. Let χc be a set of vectors x which belongs to the same class c. The algorithm
assigns a label c to a vector x with maximal Wc. The weight Wc of the assignment is
calculated as the sum of multiplicative inverses of the distances to the nearest K vectors of
the class c.

Wc =

K∑

i=1,xi∈χc

1

‖xi − x‖
(2.12)

L(x) = argmax
c

Wc (2.13)

W (x) = max
c

Wc (2.14)

The possible combinations of the feature vectors and the dimensionality reductions
were evaluated and compared. The possible combinations are PCA+image, LDA+image,
PCA+measurements and LDA+measurements where the combinations differ in used fea-
ture vector and dimensionality reduction. The measurements feature vector is based on
artificial measurements done in the image of a vehicle and the image feature vector con-
tains raw pixels of the image of a vehicle. The results presented by authors show that the
PCA+image slightly outperforms the other combinations for one image classification. The
best achieved overall accuracy is 80.36%.
The results can be improved by classifying the car multiple times in different frames of

its track T . However, the weights Wc in frame t of the track has to be normalized (2.15).
The final class is obtained by Equation (2.16):

W t
c =

Wc∑
c′ Wc′

(2.15)

LT = argmax
c

∑

t∈T

W t
c (2.16)

The authors obtained overall accuracy 82.88% of the classification with the track refine-
ment of the classification. The classification accuracy was 87.43% for the videos from the
second day. The used dataset contained 1836 training samples and 611 evaluation samples.

7

2.3 Traffic Surveillance System by Hsieh et al., 2006

The last examined system [16] addresses both tracking and classification of the vehicles.
The authors present a novel approach to the shadow elimination and a new feature for
classification of the vehicles.

Figure 2.2: The schema of the traffic analysis system [16]

The system has a nontrivial initialization part where the lanes are detected. The scheme
of the whole system is in Figure 2.2. The authors used background subtraction for the
motion detection which is done according to Equation (2.17), while Ik are intensities of the
current frame and Bk is a model of the background in frame k. Kalman filter is used for
tracking of the vehicles. The innovative parts of the paper will be presented in the following
text.

Dk(x, y) =

{
0 ‖Ik(x, y)−Bk(x, y)‖ ≤ Td

1 otherwise
(2.17)

Lane Detection

Prior to running the system, lanes and lane-dividing lines have to be detected. Moving
objects are detected in the initialization part and a two-dimensional histogram of the centers
of the moving objects in the video stream is built.
The algorithm for detection of lane centers is executed after an appropriate amount of

cars was accumulated into the histogram. Let us assume that the size of the image and

8

the histogram is w×h pixels. The algorithm for the lane detection has the following steps.
The output of the algorithm are the lane-dividing lines and the widths of the lanes.

1. Smooth the histogram H for all i and j. As the following equation shows, the smooth-
ing is performed only in the horizontal direction.

H(i, j) =

2∑

k=−2

H(i+ k, j) (2.18)

2. The mean value T j
H is calculated for each row j.

T j
H =

1

w

w∑

i=1

H(i, j) (2.19)

3. Each pixel (i, j) is set to 1 if and only if the H(i, j) is a local maximum along the line
j and H(i, j) > T j

H . The pixel is set to 0 otherwise.

4. All isolated connected segments are found, small segments are eliminated and adjacent
segments are merged if they are close to each other. The detected segments are the
centers of the lanes. Let us denote the center of the lane Lk in the row j as Cj

Lk
.

5. The points of the lane-dividing lines DLj
k and width of the lanes w

j
Lk
is calculated for

each row j and lane Lk.

DLj
k =

1

2

(
Cj
Lk−1

+ Cj
Lk

)
(2.20)

wj
Lk

=
∣∣∣Cj

Lk
− Cj

Lk−1

∣∣∣ (2.21)

Shadow Elimination

The shadow detection is based on the fact that it is not possible that the car is in more
lanes at the same time if the vehicle is not changing its lane. Let us assume that there is
an occlusion of two cars caused by the shadow as it is shown in Figure 2.3.
Let us denote the points of the region with the detected motion as RO and the lane-

dividing line as Lk. The set of points Uk is the intersection of the set of points RO and Lk

(Uk = RO ∩ Lk). A new line Lk is fitted to the points Uk by least-squares approximation.

y = mkx+ bk (2.22)

It is possible to create new parallel lines to Lk by changing the parameter bk. Let us
denote as bmin

k and bmax
k the lowest and highest bk for which line L

b
k has an intersection

with region RO. Line Lk is divided into two lines L
p
k and Lq

k which are moved to the left
or right by decreasing or increasing the original bk. The expansion is stopped when any of
the pixels in the intersection RO ∩ Lp

k (RO ∩ Lq
k respectively) is not a shadow pixel. The

expansion process of lines Lp
k and Lq

k is presented in Figure 2.4.

bmin
k = min

p∈RO

(yp −mkxp) (2.23)

bmax
k = max

p∈RO

(yp −mkxp) (2.24)

9

Figure 2.3: An occlusion caused by a shadow. As the figure shows, the shadow which is
cast by the blue truck causes the occlusion with the other vehicle.

Figure 2.4: An example of the expansion of the lane-dividing line. The line Lq
k is moving

to the left, Lp
k is moving to the right.

Pixel p is considered to be a shadow, if the probability P (shadow|p) > 0.8. The param-
eters µshadow and σshadow are obtained by a training process. The precise algorithm for the
shadow elimination can be found in the original publication [16].

P (shadow|p) = exp

(
(I(p)− µshadow)

2

σ2
shadow

)
(2.25)

Classification

Two features are used for the classification of the vehicles. The first one is normalized
size of the detected vehicle sv. The normalization is based on the width of the lane which
the vehicle is using in the given frame. The normalization is done according to the following
equations, where cv is the center of the detected vehicle and XDLi

(yp) is the x coordinate

10

Figure 2.5: An example of the up-slanted edge for a van (red)

of the nearest lane-dividing line on the left from the point p and XDLi+1
(yp) denotes the

nearest line on the right.

Wi(p) =
∣∣XDLi

(yp)−XDLi+1
(yp)

∣∣ (2.26)

sv =
sv

W 2
i (cv)

(2.27)

The second feature used for the classification is linearity of the up-slanted edge of the
vehicle. The linearity feature is based on error of the least-square error approximation of
the up-slanted edge. The set of the up-slanted edge points Hi is detected, parametrized
as a line by the least-square approximation and the linearity feature is expressed by the
following equation. An example of the up-slanted edge is shown in Figure 2.5.

Lin(H) = exp


−

√√√√ 1

|H|

∑

(xi,yi)∈H

(yi −mxi − b)2


 (2.28)

The classification itself is done by assigning the class l to the feature vector Hi according
to equation (2.34). Let us assume that there is K classification classes, the class V Ck has
nk samples, V

k
j is a vehicle in the class V Ck and fr(V

k
j) is the r

th element of the feature

vector V k
j .

The µk
r denotes the mean value of the r

th feature in the class k and σr,k stands for the
standard deviation of the feature in the class. The similarity between two feature vectors is
expressed as Sk(Hi, V

k
j) and S(Hi|V Ck) denotes the similarity between the feature vector

Hi and the class V Ck. Finally, the probability that the feature vector Hi belongs to the
class V Ck is expressed as P (V Ck|Hi).

11

µk
r =

1

nk

nk∑

i=1

fr(V
k
i) (2.29)

σr,k =

√√√√ 1

nk

nk∑

j=1

(fr(V k
j)− µk

r)
2 (2.30)

Sk(Hi, V
k
j) = exp

(
−

2∑

r=1

(fr(Hi)− fr(V
k
j))

2

σ2
r,k

)
(2.31)

S(Hi|V Ck) =
1

nk

∑

V k
j ∈V Ck

Sk(Hi, V
k
j) (2.32)

P (V Ck|Hi) =
S(Hi|V Ck)∑K

k′=1 S(Hi|V Ck′)
(2.33)

l = argmax
k

P (V Ck|Hi) (2.34)

Three different videos were evaluated and the authors achieved 82.16% vehicle counting
accuracy with the shadow elimination enabled. The accuracy was lower more than 10%
without the shadow elimination. The accuracy of the classification was between 87.8% and
91.1% in different videos.

12

Chapter 3

Related Computer Vision
Algorithms for Traffic Analysis

This chapter presents used algorithms in the proposed traffic analysis system. The
algorithms are divided into three parts. The first part addresses the problem of detection
of the car, the second one describes tracking and the last part of the chapter deals with
classification of cars.

3.1 Detection

The algorithm dealing with the problem of detection of a moving car in a video is
described in this part of the chapter. Description of an algorithm dealing with moving
shadows is also included.

3.1.1 Motion Detection with Mixture of Gaussians

This section deals with the detection of moving objects based on adaptive background
modeling of the scene with Mixture of Gaussians. The key publications for this section is an
article written by Chriss Stauffer and W.E.L. Grimson [36] describing the idea of adaptive
background modeling with Mixture of Gaussians. Some improvements to this approach are
described in the Zoran Zivkovic’s publication [46].
The idea behind every background subtraction is to model the background of a scene

in some way and differentiate the foreground from the background with this model. The
background subtraction can be used for pedestrian detection, vehicle detection or in general
for any motion detection in a static scene. However, as the background subtraction models
the background, it is essential so that the video camera does not move and there are no
significant fast changes in the background so that the motion detection works properly.
The basic idea is to model the background color of each pixel in the scene with a Mixture

of Gaussians. This mixture is used to describe and differentiate the background colors of
the pixel from the foreground ones. For example, a semaphore, which periodically changes
the lights from green to orange and red, can be in the traffic surveillance scenes. Hence,
there will be pixels which will change periodically colors from black to green, and therefore
only one Gaussian for the background of the pixel does not suffice. On the other hand, it
is unlikely that some fast dynamic lightning change will occur in outdoor scenes. Such fast
change could happen for example in indoor environment when someone in the room turns
off the lights.

13

As it was mentioned above, the Mixture of Gaussians is used to model each pixel. It is
necessary to describe three colors (red, green, blue). Hence, three-dimensional Gaussians
are used. However, the Gaussians are not used directly in a form of three-dimensional
Gaussian probability density function N (x;µ,Σ), Equation (3.1). The algorithm rather
uses the covariance matrix Σ in the form of Σ = σ2I, where σ is the standard deviation in
all directions and I a is 3× 3 identity matrix.

N (x;µ,Σ) =
1

(2π)
3

2 |Σ|
1

2

exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
(3.1)

Only one pixel of the image will be taken into account as the others are processed in the
same way. Let us denote the value of the pixel at time t as x(t). Another important variable
is the learning rate α, which specifies how fast a new cluster will be adopted. The following
parameters will be held for each Gaussian. The weights, πm, which are non-negative and
sums up to one. The mean value µm and the variance σ

2
m is also kept for every Gaussian

and maximally M Gaussians will be held for the pixel.
The pixel is processed in the following way. First, the Gaussian with the biggest πm and

the squared Mahalanobis distance D2
m(x(t)) smaller than the threshold value Tg is found.

The reasonable value for the threshold is 9, which implies that the Gaussian is considered
to be close to the value if the value x(t) is less than 3σ far from the mean. For the close
Gaussian the ownership variable o

(t)
m is set to 1. The other Gaussians have the ownership

value equal to 0.
Second, parameters of the Gaussians are updated with respect to expressions (3.4), (3.5)

and (3.6), while the value α is the learning rate and complexity reduction parameter cT
will be discussed later.

δm = x(t) − µ(t)
m (3.2)

D2
m(x(t)) = δTmδm/σ2

m (3.3)

πm ← πm + α(o(t)m − πm)− αcT (3.4)

µm ← µm + o(t)m (α/πm)δm (3.5)

σ2
m ← σ2

m + o(t)m (α/πm)(δTmδm − σ2
m) (3.6)

If no close Gaussian is found, it is necessary to create a new one for the current value
of pixel x(t). The parameters of the newly created Gaussian are πm+1 = α, µm+1 = x(t),
σ2
m+1 = σ2

0. If there would be more Gaussians than the maximal amount M , the weakest
one is removed. The weights are normalized in order to sum up to one after the process.
For a given pixel, it is also determined if it should be considered as the background or

the foreground. The squared Mahalanobis distance is used for this task. If a Gaussian which
has the distance smaller than the predefined threshold cthr is found, the pixel is treated as
the background. If no such Gaussian is found, the pixel belongs to the foreground.
Zoran Zivkovic suggested an improvement [46] for the algorithm presented in the original

article [36]. The improvement is in the term αcT in Equation (3.4). The term is responsible
for decreasing the weight of the Gaussian if there was no pixel with the color corresponding
the Gaussian. If the weight of the Gaussian drops bellow zero after this subtraction, the
Gaussian is removed from the model for the pixel. This approach brings more dynamics to
the number of Gaussians used for modeling the background of the pixel and ability to select
the proper number of Gaussians for the pixel with the upper limitM . This pruning slightly
improves performance of the algorithm and more significantly it decreases the processing
time of one image.

14

(a) Shadow detection enabled (b) Shadow detection disabled

Figure 3.1: Difference in precision of the motion detection

In this section the algorithm for the motion detection with the Mixture of Gaussians
was presented. This detection can be successfully used for detection of people, cars and
other objects in the scene captured by a stationary video camera.

3.1.2 Shadow Detection

In this section an algorithm for the detection of the shadows in the video is described.
The algorithm was presented in the publication written by Thanarat Horprasert [15] and
also in the survey of shadow detection algorithms [30]. The main reason for using some
shadow detection is the precision of the motion detection. As Figure 3.1 shows, if the
shadow detection is enabled, the motion is detected much more precisely; and therefore,
the vehicle is detected with a higher accuracy.
The algorithm will be described with one pixel, as the other pixels are processed in the

same way. The shadow detection algorithm works also with the background modeled by the
Mixture of Gaussians. However, the algorithm will be explained with only one Gaussian
without loss of generality. It is sufficient if the shadow is detected by one Gaussian from
the Mixture of Gaussians in order to consider the pixel as the shadowed background.
The basic idea is to decompose the distortion of the mean value µ of the Gaussian

from the current pixel value x. The decomposition is done into two components, brightness
distortion β and chromaticity distortion CD. The decomposition is shown in Figure 3.2.
The brightness distortion is a scalar value β, which is computed by minimizing distance

of the point x from line which is defined by points (0, 0, 0) and µ, Equation (3.7). The
point in 3D space βµ is the orthogonal projection of x onto line defined by the coordinate
origin and µ.

β = argmin
β∈R
‖x− βµ‖ (3.7)

15

Figure 3.2: The decomposition of the distance between the mean value of the pixel color
µ and current pixel value x into the brightness distortion β and the chromaticity distor-
tion CD

The chromaticity distortion CD is also a scalar value and can be calculated by equa-
tion (3.8). All the three points, (x, µ and βµ) form a right triangle and the coordinate
origin is included in the line obtained by extending cathetus µ and βµ.

CD = ‖x− βµ‖ (3.8)

However, also the standard deviation of the Gaussian is taken into account in the original
publication [15] and the values β and CD are calculated by Equations (3.9) and (3.10). On
the other hand, the Mixture of Gaussians presented in the previous section uses σ = σR =
σG = σB, and therefore it is possible to simplify the equations.

β =

xRµR

σ2
R

+
xGµG

σ2
G

+
xBµB

σ2
B(

µR

σR

)2

+

(
µG

σG

)2

+

(
µB

σB

)2 (3.9)

CD =

√(
xR − βµR

σR

)2(xG − βµG

σG

)2(xB − βµB

σB

)2

(3.10)

In order to normalize the brightness distortion β and the chromaticity distortion CD,
the square root of mean is computed, Equations (3.11) and (3.12). These values are root
mean square values for the lengths of catheti of the right triangle in Figure 3.2. Values a
and b can be computed continuously and it is not necessary to keep all the history of the
β and CD. After all these values are obtained, the normalized brightness distortion β̂ and
chromaticity distortion ĈD are calculated.

16

a =

√∑N
i=0(β − 1)2

N
(3.11)

b =

√∑N
i=0CD2

N
(3.12)

β̂ =
β − 1

a
(3.13)

ĈD =
CD

b
(3.14)

Several thresholds are used for the final decision about the class of the pixel c. The
first threshold τCD specifies the maximal chromaticity distortion which one pixel can have
in order not to be considered as the foreground. If the normalized brightness distortion β̂
is smaller than τβlo, the pixel is also considered to be the foreground. If the normalized
brightness distortion and the chromaticity distortion is not within these limits, the pixel
is treated as some particular kind of the background (normal, shadowed, lighted). At
last, there is a pair of thresholds τβ1 and τβ2 specifying values of β̂ for which the pixel is
considered to be background. The whole decision procedure is presented in Equation (3.15).

c =





foreground ĈD > τCD ∨ β̂ < τβlo else

background β̂ < τβ1 ∧ β̂ > τβ2 else

shadowed β̂ < 0 else
lighted otherwise

(3.15)

However, if the procedure (3.15) processes only pixels of the image which were classi-
fied as the foreground by the Mixture of Gaussians, the rule for the background can be
eliminated. Only two thresholds (τCD and τβlo) are required after this reduction.

3.2 Tracking

This section describes the problem of tracking of a vehicle in a video stream. The goal
of the tracking is to find correspondences of the cars in two or more consenquent video
frames. An algorithm for this problem will be presented and described in detail.

3.2.1 Kalman Filter

This section addresses the Kalman filter [20] usable for tracking of objects in video
stream. The algorithm was already successfully used for tracking of cars. An example of
the usage of the algorithm was given by Jung and Ho [19] dealing with the traffic parameter
extraction. The following description is based on technical paper written by Welch and
Bishop [44].
However, Kalman filter can be used also for other applications, not just tracking (e.g

filtering of a signal or an efficient computation of the least-squares problem). Generally,
Kalman filter tries to approximate a discrete-time process defined by stochastic difference
equation (3.16). Variable xi ∈ R

n is the state variable and uk ∈ R
l is the control unit for

state xk. Matrices Ak and B are used to relate the state and the control at time k into
time k + 1.

xk+1 = Akxk +Buk +wk (3.16)

17

The estimation of the mentioned linear process is done with measurement zk ∈ R
m and

equation (3.17) holds for the variable zk.

zk = Hkxk + vk (3.17)

Random variables v and w add noise into the linear process defined by (3.16) and
measurement (3.17). It is assumed that the variables are mutually independent and have
normal probability distributions with zero mean value and covariance matrices Q and R.

p(w) ∼ N (0, Q) (3.18)

p(v) ∼ N (0, R) (3.19)

It is necessary to define an a priori state estimate x̂−

k and an a posteriori estimate x̂k.
The a priori estimate will be used before the measurement of the current state is done and
the a posteriori will be used after the measurement is done. Let us also define a priori and
a posteriori estimate errors as e−k and ek, Equations (3.20) and (3.21). Then, it is possible
to define a priori (3.22) and a posteriori (3.23) error covariance matrices.

e−k = xk − x̂−

k (3.20)

ek = xk − x̂k (3.21)

P−

k = E
[
e−k (e

−

k)
T
]

(3.22)

Pk = E
[
eke

T
k

]
(3.23)

The whole approximation process is divided into two steps, prediction and correction.
First, the prediction step will be discussed. The purpose of the step is to estimate new
value xk+1 from the previous state. The a priori state estimate x̂

−

k+1, Equation (3.24), and
the a priori error covariance matrix Pk+1, Equation (3.25), are calculated. The a posteriori
estimates from the previous step k are used for the computation of the a priori estimates.

x̂−

k+1 = Akx̂k +Buk (3.24)

P−

k+1 = AkPkA
T
k +Qk (3.25)

The current measurement zk is performed after the prediction step. For the measure-
ment, the a priori estimation of the state x̂−

k can be used and for example, the search space
can be reduced or objects which are too far from the a priori estimation can be eliminated.
It is necessary to perform the correction step after the measurement. First, the Kalman

gain Kk is calculated by (3.26). The Kalman gain is used to compute the a posteriori
estimate and the error covariance, Equations (3.27) and (3.28). The new a posteriori
estimate and covariance matrix will be used again to calculate the a priori values for the
estimate of the state and the error covariance matrix in the consequent time k + 1.

Kk = P−

k HT
k (HkP

−

k HT
k +Rk)

−1 (3.26)

x̂k = x̂−

k +K(zk −Hkx̂
−

k) (3.27)

Pk = (I −KkHk)P
−

k (3.28)

It is also important to mention the impact of the covariance matrix of the normal
probability distribution R and the a priori error covariance P−

k . If the covariance matrix
R of the measurement noise approaches zero, the measurement affects more the resulting
a posteriori estimate as the Kalman gain Kk approaches to H

−1
k . On the other hand, if the

18

a priori error covariance matrix approaches to zero, the Kalman gain Kk also approaches
to zero and the resulting a posteriori estimate x̂k will be equal to x̂

−

k .
The Kalman filter was presented in a general form without any values for different

matrices like Ak, Hk and others in this section. The used values for all these matrices
will be described in Section 4.2 where the proposed detection and tracking of vehicles is
presented.

3.3 Classification

The last part of this chapter focuses on algorithms for classification of vehicles. First,
the used descriptor will be presented and the classification algorithm follows.

3.3.1 Histograms of Oriented Gradients

This section describes an image descriptor called Histograms of Oriented Gradients [8].
The descriptor was originally used for human detection. However, it is possible to use the
descriptor also for other objects. The descriptor can be used both for the detection and the
classification of objects.
The basic idea of the descriptor computation is to calculate histograms of gradients

of the classified object. The histograms are then merged into one vector, which can have
many dimensions, and the vector is classified by a classification algorithm. The basic
principle is simple; however, there are several parameters of the computation which will be
discussed. The most important parts of the Histograms of Oriented Gradients computation
are in Figure 3.3. The figure presents the algorithm in a way which can be used for
the classification of an object when the location of the object is already known. If the
algorithm is used also for the localization of the object, the descriptor is computed over
different positions of the sliding window. The algorithm has the following steps.

Figure 3.3: A basic pipeline for the Histograms of Oriented Gradients computation

Color Normalization The processed object is divided into multiple cells, which can have
size 8×8 pixels. It is possible to normalize the colors in these cells; however, the authors of
the descriptor claim that the normalization has only a modest effect on the performance [8].
On the other hand, the used color space is important and RGB color space outperforms
greyscale.

Gradient Computation The best way of the gradient computation is to use simple
kernels [−1, 0, 1] to calculate derivates in x and y directions. The authors experimented

19

with other kernels and the mentioned kernel provided the best results. For example un-
centred kernel [−1, 1], 3 × 3 Sobel kernel, 2 × 2 diagonal ones and 1D cubic corrected
kernel [1,−8, 0, 8,−1] were also evaluated. For color images, the gradient is calculated in
all channels individually and the one with the largest norm is taken to the result.

Spatial/Orientation Binning The fundamental step is to create the histogram from
gradient values in the cell. One histogram is created for each cell. The histogram is evenly
spaced over 0 − π radians (unsigned gradient) or 0 − 2π radians (signed gradient). The
contribution of the pixel to the histogram is weighted with respect to the magnitude of the
gradient. The authors experimented with other weight functions, e.g. square or square root
of the magnitude, however the magnitude itself gives the best results. In order to achieve
the best results, the unsigned gradient with 9 bins should be used.

Descriptor Blocks The cells are grouped into the blocks for the normalization. The
blocks can be either rectangular or circular. The authors suggest to use rectangular ones
with size 2×2 cells. The final descriptor is the vector of all components from all the blocks.
However, the blocks should have some overlapping, and therefore one cell contributes more
times to the resulting descriptor. The overlapping can be for example one cell.

Normalization of the Descriptor Block The histograms are normalized in the blocks.
The best results are provided by normalization with L2-hys, which is L2-norm (3.29) fol-
lowed by limiting the maximum values of descriptor vector v to 0.2 and renormalizing after.
The other tested normalization schemes were for example simple L2-norm, L1-norm and
L1-sqrt (L1-norm followed by square root).

L2− norm(v) =
v√

‖v‖22 + ǫ2
(3.29)

The descriptor called Histograms of Oriented Gradients was presented in this section
of the chapter and steps of the algorithm for its computation were also described. The
descriptor can be used both for the detection and the classification of objects.

3.3.2 Support Vector Machine

The classifier Support Vector Machine will be described in this section. The classifier is
widely used among many applications, not just Computer Vision problems. The descrip-
tion is based on book The Nature of Statistical Learning Theory [41]. Other notes about
multi-class SVM are mentioned in technical report by Weston and Watkins [45] and other
implementation details are described in paper written by Crammer and Singer [7].
The Support Vector Machine can be used for several applications, not only classification.

For example, another possible is usage of the Support Vector Machine is regression. The
key idea for the classification is to divide a feature space by a hyperplane which maximizes
margin between the hyperplane and the closest vectors from all classes.
Let S = {(x1, y1), . . . , (xl, yl)} be a finite set of pairs, where xi ∈ R

n and yi ∈ Y for all
1 ≤ i ≤ l. Vectors xi are the classified objects and yi is the class of the objects. A classifier
is a function f : Rn → Y mapping an object to a class. Generally, the set Y can be any
finite set. However, it is convenient to suppose that Y is a proper finite subset of integers.
If it is not the case, it is always possible to create a mapping from Y to a subset of the
integers. Let us also denote the number of elements of set S as l in the following text.

20

Figure 3.4: Maximal margin hyperplane (green), support vectors (red)

First, the linear Support Vector Machine will be described. Second, the linear SVM will
be extended to the non-linear one. At last, multi-class SVM will be presented.

Linear SVM

Linear binary Support Vector Machines classify only objects from two classes. It is
useful for the notation that the classes are −1 and 1, and therefore Y = {−1, 1}. Let us
suppose that the objects are linearly separable. The non-separable case will be discussed
later.
The basic idea is to classify the objects by a hyperplane. The hyperplane can be used for

the classification in the form of vector w and scalar threshold b. Vector x is then classified
as the result of w · x− b where the dot product is defined by the following equation.

w · x = wTx (3.30)

A hyperplane is called as the optimal hyperplane (the maximal margin hyperplane)
if and only if, the vectors xi are separated without errors, Equations (3.31) and (3.32)
or (3.33), and the distance between the closest vector to the hyperplane is maximal. An
example of the optimal hyperplane is in Figure 3.4. The closest vectors to the hyperplane
are called support vectors (red in Figure 3.4). Let us denote the set of indices i of the
support vectors in the set S as SV .

w · xi − b ≥ +1 if yi = +1 (3.31)

w · xi − b ≤ −1 if yi = −1 (3.32)

yi · (w · xi − b) ≥ 1 (3.33)

In order to find the optimal hyperplane it is necessary to solve a quadratic programming
problem. The function to minimize is Φ(w), Equation (3.34). The inequality constraints
which a solution w has to satisfy are in Equation (3.35).

Φ(w) =
1

2
(w ·w) (3.34)

1 ≤ yi · (w · xi − b) i = 1, . . . , l (3.35)

21

The Lagrange functional can be used to solve the quadratic programming problem.
Using this approach, the Lagrange multipliers αi (i = 1, . . . , l) are searched instead of
the vector w. However, the vector of the optimal hyperplane can be obtained as a linear
combination of the vectors xi, Equation (3.36). Moreover, only the Lagrange multipliers for
the support vectors will be different from zero. Hence, it is possible to express the vector
w as their combination (3.37). The scalar threshold b is then computed by equation (3.38),
while x∗(−1) is a support vector for class −1 and x∗(1) is a support vector for class 1.

w =

l∑

i=1

yiαixi (3.36)

w =
∑

i∈SV

yiαixi (3.37)

b =
1

2
(w · x∗(1) +w · x∗(−1)) (3.38)

It is still necessary to solve the quadratic programming problem after the modifications.
However, different equations and constraints are used. Therefore, it is required to minimize
function W (α) (3.39) with non-negative αi (3.40). The solution also has to satisfy the
constraint (3.41).

W (α) =
l∑

i=1

αi −
1

2

l∑

i,j

αiαjyiyj(xi · xj) (3.39)

αi ≥ 0 i = 1, . . . , l (3.40)
l∑

i=1

αiyi = 0 (3.41)

The resulting classification function f with the optimal hyperplane is expressed by
Equation (3.42). As one can notice, it is necessary to keep the scalar threshold b, support
vectors and their Lagrange multipliers α and classes y.

f(x) = sgn

(∑

i∈SV

yiαi(xi · x)− b

)
(3.42)

If the vectors x are not separable by a hyperplane, the quadratic programming problem
is slightly changed. The only modification is in constraint (3.40). The other constraint and
the minimization function stays same also as the classification function (3.42).

Non-linear SVM

It is also possible to use the non-linear SVM for the classification. However, the non-
linearity is not achieved by changing the separation hyperplane to a different separation
element. Instead, the input vectors x are mapped into a higher dimensional space. On the
other hand, the mapping has to be chosen a priori. The description of the mapping and
the modifications in the training and classification follows.
As one can notice, input vectors x are used only in the form of dot product in the

process of the training and classification. Hence, it is possible to replace the dot product
by a kernel function K(xi,xj) in every equation. This substitution also does not change

22

the quadratic programming problem to a problem of a higher degree, as the variables of
the problem are the Lagrangian multipliers.
As it was mentioned, the only difference to the linear SVM is the usage of the Kernel

function instead of the dot product. Therefore, it is necessary to modify the equations
which were using the dot product of the vectors and use the kernel functions. Hence, the
minimized functions W (α) is changed, equation for computation the threshold b and the
classification functions f itself is also modified. The resulting forms of these functions are
the following:

W (α) =

l∑

i=1

αi −
1

2

l∑

i,j

αiαjyiyjK(xi,xj) (3.43)

b =
1

2

(
K(w,x∗(1)) +K(w,x∗(−1)

)
(3.44)

f(x) = sgn

(∑

i∈SV

yiαiK(xi,x)− b

)
(3.45)

There are several types of kernel functions which can be used. For example, the poly-
nomial kernel function with degree d, Eq. (3.46). There is also the radial basis function,
which is parametrized by a scalar γ. The RBF function is expressed in Equation (3.47).

K(xi,xj) = (xi · xj + 1)d (3.46)

Kγ(xi,xj) = exp
(
−γ|xi − xj |

2
)

(3.47)

Multi-class SVM

There are two ways how to classify an object into one of the multiple classes with SVM.
The first one is to create a binary SVM for each of the classes, which will classify the object
either as class m or not-class m. Hence, it is necessary to run the binary classifier up to k
times, if the classification is done into k classes. The second approach uses only one SVM
classifier which is able to classify the object into multiple classes. The first approach requires
only a binary SVM, which was already presented. The SVM for multi-class classification
will be described.
Let us suppose that there is l (|S| = l) training vectors and k classification classes

(|Y| = k). Let us also denote variables i, j as iteration variables over training pairs
(i, j ∈ {1, . . . , l}) and m as an iteration variable over classes (m ∈ {1, . . . , k}). The sum of
Lagrangian multipliers for a training pair i for all classes is labeled as Ai, Equation (3.49).
The membership variable cmi is equal to 1 if and only if the training vector xi belongs to
class m.

cmi =

{
1 yi = m
0 yi 6= m

(3.48)

Ai =
k∑

m=1

αm
i (3.49)

The solved quadratic programming problem is more complex than the problem for
binary SVM. For example, there is a Lagrangian multiplier αm

i for each training vector xi

and class m ∈ Y. The function to minimize is

W (α) = 2
∑

i,m

αm
i +

∑

i,j,m

(
−
1

2
cyij AiAj + αm

i αyi
j −

1

2
αm
i αj

i

)
K(xi,xj). (3.50)

23

And the constraints under which the function has to be minimized are the following.

l∑

i=1

αm
i =

l∑

i=1

cmi Ai m ∈ {1, . . . , k} (3.51)

0 ≤ αm
i ≤ C, αyi

i = 0
i ∈ {1, . . . , l} , m ∈ {1, . . . , k} \ {yi}

(3.52)

The final classification function is stated as follows.

f(x) = argmax
m

(
l∑

i=1

(cmi Ai − αm
i)K(xi,x)− bm

)
(3.53)

In this section the Support Vector Machine classifier was presented. The formulae for
finding the optimal hyperplane and the classification itself were described in several versions
of the classifier (namely linear, non-linear, multi-class).

24

Chapter 4

Proposed Traffic Analysis System

This chapter presents the proposed system for traffic analysis. The main goal of the
system is to be able to generate statistics about traffic flow on a monitored road. The
requirements on the proposed system are following.

• The system has to work fully automatically in a real time. No manual input can be
used.

• The system should be able to detect, track and count vehicles.

• Determine types of vehicles (personal, van, truck or others).

• Detect lanes, lane-dividing lines and segment vehicles by their membership to the
lanes. Also, the direction of vehicles should determined and vehicles passing in wrong
way can be detected.

• Measure speed of passing vehicles. This is the most challenging task as it has to be
done in a fully automated way without any manual calibration.

Figure 4.1: Pipeline of processing of the input video stream by the proposed system.

25

The overall design of the proposed system is shown in Figure 4.1. First, the initialization
of the system is performed. The main purpose of the initialization is to calibrate the camera
by detecting vanishing points of the scene. As the figure shows, vehicles are detected with
motion detection and tracked. Observed passing objects which are detected and tracked are
also filtered in order to detect vehicles more precisely. Then, the direction of each vehicle
can be computed, it can be assigned to a lane, and the situation when the vehicle is passing
in wrong way can be detected. Last but not least, the speed of the vehicle is measured and
the class is assigned to the vehicle.
Two papers describing the proposed system were published so far. One paper appeared

on the EEICT student conference [34] and the other one on CESCG seminar [35]. Also,
I participated on papers which describe the calibration of the camera for traffic surveil-
lance [11] and three-dimensional understanding of traffic scenes [12] which is used for the
measurement of vehicles’ speeds.

4.1 Initialization

The main goal of the initialization is to fully automatically calibrate the camera. The
calibration is obtained by detected vanishing points. The algorithm for the calibration is
based on paper by Dubská et al. [11], which I co-authored.
The vanishing point of the direction parallel to the vehicles’ movement is denoted as

the first vanishing point. The second vanishing point has the perpendicular direction to the
movement of vehicles and the third vanishing point is perpendicular to the ground plane.
Examples of detected vanishing points and their visualisation is shown in Figure 4.2. The
vanishing points are visualised by arrows which are directed towards the vanishing points
and are uniformly distributed in image as location of the arrows is irrelevant.
For visualisation of the first vanishing point, red arrows are used and green arrows

are used for the second vanishing point. The third vanishing point is denoted by blue
arrows. Horizon line, which connects the first and second vanishing point, is also drawn in
Figure 4.2.
For the detection of the vanishing points, several assumptions about parameters of video

camera are used. It is assumed that the camera has zero skew and square pixels. Also,
it is assumed that the principal point is in the center of the image. From our experiences
with video cameras, these assumptions are usually satisfied. For the detection of the first
vanishing point, it is also assumed that vehicles follow more or less straight trajectories.
The main task of the calibration is to compute the focal length f from the detected

vanishing points as other intrinsic parameters (skew, aspect ratio and position of principal
point) of the camera are constrained. Description of the detection of the first and second
vanishing point follows, together with the explanation of the computation of the third
vanishing point and the focal length from the first two vanishing points. However, the
accumulation of lines into so called diamond space will be described first, as it is used for
the detection of the vanishing points.
It should be noted that the processed video is downsampled to ∼ 12.5FPS in order for

all movement and motion measurements to be stable and detectable. Therefore, only every
sth frame is processed. The amount of skipped frames s is computed according to (4.1)
where fps is the real framerate of the video.

s =

⌊
fps

12.5

⌋
(4.1)

26

Figure 4.2: Detected vanishing points. Red arrows are directed toward the first vanishing
point and green ones to the second vanishing point. The third vanishing point is denoted
by blue arrows. Also, the horizon line which connects the first and second vanishing point
is drawn by yellow color.

4.1.1 Accumulation of Lines into Diamond Space

Algorithms for the detection of the first two vanishing points have in common that it is
necessary to localize an intersection of a high amount of lines. The diamond space described
by Dubská and Herout [10] is used for this task.
The diamond space is used for representation of lines in a finite space. The lines from

cartesian coordinates are mapped into the diamond space as a piece-wise linear polyline.
The transformation into diamond space is based on a transformation from cartesian coor-
dinates into parallel coordinates which is performed twice.
Each line (a, b, c) is transformed into a polyline in the diamond space. The polyline is

defined by four points which are obtained by Equation (4.2) where sgn denotes non-zero
signum. The parts of the polyline are defined by the consequent points in (4.2) and are one
by one rasterized into the diamond space. Examples of the diamond spaces are shown in
Figure 4.5.

α = sgn(ab), β = sgn(bc), γ = sgn(ac)

(a, b, c)→

[
αa

c+ γa
,
−αc

c+ γa

]
,

[
b

c+ βb
, 0

]
,

[
0,

b

a+ αb

]
,

[
−αa

c+ γa
,

αc

c+ γa

]
(4.2)

Each point in the diamond space in homogenous coordinates can be transformed back to
cartesian homogenous coordinates by (4.3). The distances of parallel axes which were used
during the transformation from the cartesian coordinates to the parallel ones are denoted
by d for the first transformation and D for the second one. Both theses distance can be
equal to 1.

[x, y, w]d → [Dy, sgn(x)dx+ sgn(y)Dy − dDw, x]o (4.3)

27

The point which belongs to the maximal amount of lines can be easily found in the
diamond space by localization of the global maximum in the diamond space. It is also
possible to detect the point with sub-pixel accuracy with usage of weighed mean and points
which are around the global maximum.

4.1.2 First Vanishing Point Detection

Corner-features tracking is used for the detection of the first vanishing point. Hence,
Good Features to Track [32] are detected in the video stream and KLT tracker [39] is used
for the tracking of the corner features. Detected motion of the tracked features is extended
into a line which is defined by image points (xt, yt) and (xt+1, yt+1) which are positions of
the feature in frame t and t+ 1. Examples of the tracked points are shown in Figure 4.3
All these lines are accumulated into diamond space until the initialization is terminated.

The initialization is terminated when the global maximum of the diamond space is bigger
then a predefined threshold and therefore, a sufficient number of lines was accumulated.
Afterwards, the coordinates of the global maximum in the diamond space are transformed
into coordinates of the vanishing point in the image plane.
Examples of diamond spaces for the detected first vanishing points from Figure 4.2 are

shown in the top row of Figure 4.5.

4.1.3 Second Vanishing Point Detection

The detection of the second vanishing point is performed after the first vanishing point
was successfully detected because the first vanishing point is used for constraining the
position of the second vanishing point.
The diamond space is also used for the detection of the second vanishing point. Back-

ground edge model is used to detect edges on moving objects – probable vehicles. The
background model is updated with each frame in order to eliminate slow lighting changes.
The edge background model stores for each pixel the confidence score of occurrence of an
oriented edge. Eight bins are used for each pixel to store likelihoods for different orienta-
tions. Gradient G(i, j) of edge in pixel (i, j) in image I is computed by convolution with
Sobel kernelsKy andKx. The edge background model for a pixel (i, j) is updated at correct
bin for edge orientation G(i, j).

Ky =




1 4 6 4 1
2 8 12 8 2
0 0 0 0 0
−2 −8 −12 −8 −2
−1 −4 −6 −4 −1




(4.4)

Kx = KT
y (4.5)

Gx = I ∗Kx (4.6)

Gy = I ∗Ky (4.7)

G(i, j) = atan2(Gy(i, j), Gx(i, j)) (4.8)

For each image point, several conditions are evaluated and if the conditions are satisfied,
pixel (i, j) and its orientation G(i, j) defines a line which contains the point (i, j) and is
perpendicular to the orientation G(i, j). The line is then accumulated into the diamond
space. If a line should be accumulated to the diamond space, the point which defines the
line has to meet the following conditions:

28

Figure 4.3: Detected and tracked corner features for the first vanishing point detection.

29

Figure 4.4: Examples of points which define lines which are accumulated into the diamond
space for the second vanishing point detection.

30

Figure 4.5: Top row presents diamond spaces for the first vanishing points in Figure 4.2.
Images in the bottom row represent masked diamond spaces for the second vanishing points.

1. It has to be detected as an edge by Canny edge detector [4].

2. The confidence that the point belongs to the background has to be lower than a pre-
defined threshold.

3. Magnitude of the gradient has to be higher than a predefined threshold.

4. The line which should be accumulated to the diamond space must not be directed
towards the first vanishing point or must not be vertical. Both conditions have some
level of tolerance.

The second vanishing point is detected if the global maximum in the diamond space is
higher than a predefined threshold. However, the global maximum is searched in a masked
diamond space as the location of the second vanishing point is constrained by the first
vanishing point. Line which contains the principal point and is perpendicular to line which is
defined by principal point and the first vanishing point has to separate the second vanishing
point from the first one. If the second vanishing point would be on the same side of the
line as the first one, the expression under square-root (4.9) would be negative.

4.1.4 Third Vanishing Point and Focal Length Computation

If the first two vanishing points are known and it is assumed that the principal point is
in the center of the image, it is possible to compute the focal length and the third vanishing
point. Also, the world coordinates of the vanishing points can be computed.
The focal length f is computed according to (4.9) where U = (ux, uy) denotes the

first vanishing point and V = (vx, vy) defines the second one. Also, the principal point
is denoted by P = (px, py). World coordinates of vanishing points are denoted by U ′, V ′

and W ′ for the third vanishing point. The world coordinates of the third vanishing point
are computed according to (4.13) and the coordinates can be transformed into the image
coordinates by (4.14).

31

f =
√
−(U − P) · (V − P) (4.9)

U ′ = (ux, uy, f) (4.10)

V ′ = (vx, vy, f) (4.11)

P ′ = (px, py, 0) (4.12)

W ′ = (U ′ − P ′)× (V ′ − P ′) (4.13)

W =

(
w′

x

w′
z

f + px,
w′

y

w′
z

f + py

)
(4.14)

After the focal length and the third vanishing point are computed, the camera is cali-
brated up to scale as it is not possible to determine how far the road plane is from the
camera. Examples of the detected vanishing points are shown in Figure 4.2.

4.2 Detection and Tracking

The vehicle detection is based on motion detection in the video scene. Mixture of
Gaussians background subtraction [36, 46] is used for the motion detection. Also, shadow
elimination [15] is used for higher accuracy of the motion detection. Noise in the detected
motion is removed by morphological opening followed by morphological closing. Detected
connected components are considered to be a potential vehicle. The process of the motion
detection is shown in Figure 4.6. The motion detection approach was selected mainly for
its speed as it can run without any problem in real time.
According to Newton’s Laws of Motion [13] position of a rigid object at time t with

acceleration a can be computed according to (4.15), where s0 and v0 is the initial position
and speed. Therefore, if Kalman filter is used [20] with state vector xk = (x, y, vx, vy)

T

Figure 4.6: Process of motion detection. The top left image represents the original, the
next one shows the detected motion with shadows which were removed in the third image.
The result after the morphology opening and closing is shown in the bottom right image.

32

which contains the current position of a car and its velocity in image coordinates, it is
possible to compute state vector in next step by (4.17).

s = s0 + v0t+
1

2
at2 (4.15)

A =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 (4.16)

xk+1 = Axk + a




∆t2

2
∆t2

2
∆t
∆t


 (4.17)

However, it is useful to consider the acceleration of vehicles as the noise of the linear
process. If it is assumed that the mean acceleration is equal to 0 and the acceleration
has standard deviation σa, it is possible to compute the covariance matrix [42] by (4.18).
Hence, the stochastic difference equation of Kalman filter is (4.19).

Q =


σa




∆t2

2
∆t2

2
∆t
∆t





 ·


σa




∆t2

2
∆t2

2
∆t
∆t







T

= σ2
a




∆t4

4
∆t4

4
∆t3

2
∆t3

2
∆t4

4
∆t4

4
∆t3

2
∆t3

2
∆t3

2
∆t3

2 ∆t2 ∆t2

∆t3

2
∆t3

2 ∆t2 ∆t2


 (4.18)

xk+1 = Axk +N (0, Q) (4.19)

The measurement used for the tracking of vehicles by the Kalman filter uses the current
positions of vehicles (x, y)T and the equation for the measurements is expressed by (4.22).

H =

[
1 0 0 0
0 1 0 0

]
(4.20)

R =

[
σ2
m σ2

m

σ2
m σ2

m

]
(4.21)

zk = Hxk +N (0, R) (4.22)

Several conditions are used for matching an object in the consequent frame to its pre-
dicted location. The first condition states that the matched object must have similar colors.
This condition is enforced by correlating histograms of objects in HSV color space. The
second and last condition is that the center of matched object must be inside of so called
matching rectangle. The predicted location of a car is the center of this matching rectangle
and the longer side of the rectangle is directed towards the first vanishing point, as it is
shown in Figure 4.7, and the matching rectangle has size 30× 15 pixels. This condition is
built on the assumption that the vehicle is going either in direction towards the vanishing
point or from the vanishing point, and therefore it is expected that in this direction can

33

Figure 4.7: Examples of matching rectangles (red) for predicted object location (blue).
The actual center of the detected connected component is drawn by green color. The figure
shows that the bigger side of the rectangle is directed to the first vanishing point.

be higher displacement from the predicted location. Lastly, the closest connected compo-
nent which meets the conditions presented above is found for each object and its predicted
location in the consequent frame.
When a match is not found in several consequent frames, the tracked object is removed

from the pool of tracked objects. Several filters are used for determining if the object should
be accounted in the statistics of passed cars. The trajectory of the object is approximated by
a line using least-squares approximation. After that, the distance of the first vanishing point
from the line is measured. Let us denote this distance as dvp. Also, the ratio r, Eq. (4.23),

Figure 4.8: Measured distances for a passed object. The distance between approximated
line (green) and the first vanishing point (yellow) is measured. Also, the distance between
the first and last (Ps, Pe) point of the track of a vehicle is measured. The maximal distance
which is possible to pass with a given trajectory is also measured (distance of Ls and Le).

34

between passed distance and maximal possible distance which an object can pass in the
given trajectory is measured, as it is shown in Figure 4.8. The object is accounted in the
statistics as a vehicle if the acc variable is equal to 1, Equation (4.24), where tvp and tr are
predefined thresholds.

r =
‖Pe − Ps‖

‖Le − Ls‖
(4.23)

acc =

{
1 dvp ≤ tvp and r ≥ tr
0 otherwise

(4.24)

4.3 Three-Dimensional Bounding Boxes

If all the three vanishing points are detected, the so called three-dimensional bound-
ing boxes can be computed for a vehicle or any other object. The computation of the
three-dimensional bounding box for a contour is far more advanced than two-dimensional.
Figure 4.9 shows the difference between these two bounding boxes. As the figure presents,
the two-dimensional one is just a tangent rectangle of the detected vehicle. On the other
hand, the three-dimensional bounding box is a cuboid which also surrounds the detected
vehicle; however, the cuboid defines the dimensions of the vehicle or the position of the
base of the cuboid can be used further for more precise detection of lanes.

4.3.1 Computation of Tangent Lines to a Vehicle Blob

In order to be able to compute the three-dimensional bounding boxes, it is necessary to
compute tangent lines to the contour of a vehicle from the vanishing points of the scene.
Also, the detection of the tangents has to be effective as the lines are computed for each
vehicle in every frame of the processed video. Furthermore, it is necessary to be able to
distinguish the left tangent line and right tangent line. The left tangent line is a tangent
line from a point P which is on the left side and the right tangent line is on the right side.
See Figure 4.10 for examples of tangent lines from the detected vanishing points.
The proposed algorithm for the detection of the left and right tangent lines is written

as Algorithm 4.1. The algorithm for the detection runs in O(n) with respect to the size
of the contour C. The algorithm iterates over all points I ∈ C and computes the angle

Figure 4.9: Difference between a two-dimensional bounding box (left) and a three-
dimensional one (right).

35

Figure 4.10: Examples of tangent lines for different scenes and vanishing points locations.
The left tangent line is always drawn by red color and the right one has blue color. The
images are in the following order: vanishing points location, tangent lines from the first
vanishing point, from the second one and lastly from the third one.

36

Algorithm 4.1 Computation of the left and right tangent line.

Input: Contour C = {I1, I2, . . . , IN}, point P = (px, py)
Output: leftTangetLine, rightTangentLine for contour C from point P
1: minAngle←∞
2: maxAngle← −∞
3: leftTangentLine, rightTangentLine← 0

4: rightMost← findRightMostPoint(C)
5: for all I ∈ C do
6: currentLine←

←→
PI

7: angle← atan2(Iy − Py, Ix − Px)
8: if angle < 0 ∧ rightMostx < px then
9: angle← angle+ 2π

10: if angle < minAngle then
11: minAngle← angle
12: leftTangentLine← currentLine

13: if angle > maxAngle then
14: maxAngle← angle
15: rightTangentLine← currentLine

between half-line
−→
PI and positive half of the axis x of the image. Afterwards, the point

Il with the minimal angle is the left tangent point and the right tangent point Ir has the
maximal angle.
However, as the function atan2 returns values in interval 〈−π, π〉, it is necessary to

perform some transformations of the computed angles if the point P from which the tangent
lines are casted, is on the right side of the contour C. As it is written on lines 8 and 9 of the
algorithm, if the point P has a higher x coordinate and the angle is below zero, value 2π is
added to the angle. Therefore, the angles are transformed into interval 〈0, 2π). Examples
of the detected lines for all three vanishing points are shown in Figure 4.10.

4.3.2 Computation of Three-Dimensional Bounding Boxes

The three-dimensional bounding box can be computed after the tangent lines are de-
tected. However some notation has to be introduced in order to be able to describe the
process of computation of the bounding box. Hence, let us denote the left and right tangent
line from vanishing point X as tXl and t

X
r . Also, points U , V andW denote the first, second

and the third vanishing point.
The process of computation of the bounding box follows and it is also shown in Fig-

ure 4.11. It should be noted that when the configuration of the vanishing points with respect
to the center of the vehicle blob is different from the one in Figure 4.11, the computation
of the three-dimensional bounding box slightly differs from the presented one.
The first step of the computation is to determine location of points A,B,C by following

equations. Points A,B and C are points of the base of the computed cuboid which are not
hidden behind the vehicle.

A = tUr ∩ tVl (4.25)

B = tVl ∩ tWr (4.26)

C = tUr ∩ tWl (4.27)

37

A
B

C

(I)

D

E
F

(II)

G

H

(III) (IV)

Figure 4.11: Construction of vehicle’s 3D bounding box. (I) Tangent lines and their relevant
intersections A,B,C. (II) Derived lines and their intersections E,D, F . (III) Derived lines
and intersection H. (IV) Constructed bounding box. The image is adopted from paper [12]
which I co-authored.

Afterwards, the points D,E, F are about to be located. Points D and F can be com-
puted unambiguously by (4.28) and (4.29). However, the position of point E can be derived
either from point D or F . Therefore, point E is selected by (4.32) so that the distance |AE|
is larger than the other one. This selection ensures that the whole contour of a vehicle will
be enclosed by the bounding box.

D = tVr ∩ tWl (4.28)

F = tUl ∩ tWr (4.29)

ED =
←→
DU ∩

←−→
AW (4.30)

EF =
←→
FV ∩

←−→
AW (4.31)

E =

{
ED |AED| ≥ |AEF |
EF |AED| < |AEF |

(4.32)

At the last step, the two remaining points G,H of the cuboid are computed by following
equations. When all these eight vertices of the bounding cuboid are computed, the cuboid

38

Figure 4.12: Examples of detected three-dimensional bounding boxes for different scenes.

can be drawn to an image, as it is shown in Figure 4.11.

G =
←→
DV ∩

←→
FU (4.33)

H =
←→
CV ∩

←→
BU (4.34)

Figure 4.12 shows examples of detected bounding boxes for several different scenes. For
further processing, it is important that the bounding boxes surround the vehicle very tightly.

4.4 Classification

The proposed system for the classification of vehicles uses the described Histograms of
Oriented Gradients (chapter 3.3.1) and the Support Vector Machine (chapter 3.3.2) with
the RBF kernel. The image of a vehicle is rescaled to size 64 × 64 pixels prior to the
computation of the Histograms of Oriented Gradients.
A vehicle can be classified in two following ways. The first one uses only one image of

the vehicle and the second one uses a whole track of the vehicle. Hence, if the whole track is
used, the final class c for a vehicle and its track T is computed according to Equation (4.35),
while cmi is equal to 1 if the image i ∈ T was classified by the SVM classifier to class m.

c = argmax
m∈Y

(∑

i∈T

cmi

)
(4.35)

The description of used dataset and evaluation of the accuracy of both these methods
can be found in chapter 6.2.

39

4.4.1 Fusion with Vehicle Dimensions

It is also possible to add to the classification of vehicles the dimensions of the vehicles
as features for the classification if the dimensions are known. The computation of the
dimensions in the image and the scaling of the dimension to the real world dimensions is
discussed in chapter 4.6.
There are several ways how to fuse these features together. One of them is so called

early fusion [33] and the second one is late fusion. The early fusion approach joins the two
different feature vectors into a longer one and classifies the longer feature vector. On the
other hand, the late fusion approach classifies the different features vectors separately and
the final decision is based on the output of the two classifiers.
The late fusion approach was selected for the classification mainly because the classifi-

cation of the vehicles with HOG features works without any error on the training dataset.
SVM with RBF kernel was also used for the classification of vehicles which is based just
on the dimensions of vehicles. The final class for the whole track T is computed according
to (4.36) where hmi is equal to 1 if the HOG feature vector of the image i ∈ T was classified
as class m. On the other hand, value dmi is equal to 1 if the feature vector which contains
the dimensions of a vehicle i ∈ T was classified as class m. The weight of the classifier
based on the HOG feature vector is denoted as w ∈ 〈0, 1〉.

c = argmax
m∈Y

(
w
∑

i∈T

hmi + (w − 1)
∑

i∈T

dmi

)
(4.36)

Evaluation for the fusion of the classifiers can be also found in chapter 6.2 where is the
best value for weight w discussed and evaluated.

4.5 Direction Estimation and Lane Detection

When an object left the scene and it was successfully evaluated as a vehicle, it is possible
to determine the direction of the vehicle and to detect the lane which the vehicle is passing.
The detection of lanes and lane-dividing lines is based on an actual motion of vehicles.
There are other approaches [17, 24] which are using lane-dividing lines drawn on the road.
However, using the motion of vehicles is more robust for roads where the lines are not drawn
properly or they are not drawn at all.

4.5.1 Direction Estimation

It is possible to determine the direction of a vehicle with respect to the first vanishing
point U . The direction can be either To VP or From VP and it is computed according
to (4.37) where Pe, respectively Ps, is the last, respectively the first, point of the track of
the vehicle.

dir =

{
To VP ‖U − Pe‖ < ‖U − Ps‖
From VP otherwise

(4.37)

4.5.2 Lanes and Lane-Dividing Lines Detection

The detection of lanes and lane-dividing lines uses the points of trajectories of vehicles.
First the algorithm for the detection of lanes will be described and after that the process
of assigning a lane to a vehicle will be discussed.

40

Prior to the running the algorithm for the detection of lanes or lane-dividing lines, the
three-dimensional bounding boxes has to be computed. Therefore, consider a set Si of
computed bounding boxes of a vehicle i. Each element of Si is an eight-tuple bbj of the
image coordinates of the three-dimensional bounding boxes’ vertices Aj , Bj , Cj , . . . , Hj .
The algorithm for the lanes detection uses the centers of gravity Xj of the bases of

the bounding boxes bbj for the accumulation. The center of gravity of the base can be
computed according to (4.38). On the other hand, the detection of lane-dividing lines
uses points on line segment AjBj . Hence, set Xj contains points coordinates of pixels on
line segment AjBj . It should be noted that it is possible to use also centers of gravity of
two-dimensional bounding boxes for the detection of lanes. However, the accuracy of the
detection is much lower and it will be discussed in chapter 6.4.

Xj =
←−−→
AjHj ∩

←−→
BjCj (4.38)

Both detections of lanes and lane-dividing lines uses function τ to project points to line
y = 0. The projection is expressed by Equation (4.39) where U denotes the first vanishing
point. All of the centers of gravity of bases Xj and points of the front lower edge Xj are
projected by this function.

τ(X) = b ∩
←→
UX b : y = 0 (4.39)

For each passed vehicle and its projected points, histograms of x coordinates of the
projected points are built. The histograms are created separately for lanes and lane-dividing
lines. Examples of the histograms are shown in Figure 4.13. As the figure shows, the values
of the histogram for the lanes detection are much lower then the values of the histogram
for the lane-dividing lines detection. This is caused by the fact that set Xj contains much
more points than just one.
The centers of lanes cm can be then detected as local maxima in histogram H in a pre-

defined surroundings. Also, the value of the local maximum H(cm) has to be higher than

400 500 600 700 800 900

Horizontal axis intersection [px]

0

50

100

150

200

250

300

350

C
ou

n
t

400 500 600 700 800 900

Horizontal axis intersection [px]

0

1000

2000

3000

4000

5000

6000

7000

C
ou

n
t

Figure 4.13: Top left: Histogram of projected centers of gravity of the base of vehicles.
Bottom left: Histogram of projected points of front edge of the base of vehicles. Right:
Detected lanes (green, red) and lane dividing lines (blue).

41

Algorithm 4.2 Merging of old and new lanes identification numbers.

Input: Previous mapping of ids and centers of lanes MN−200 = {(id1, c1), . . . , (idm, cm)}
Input: Currently detected centers of lanes CN = {c1, . . . , co}
Output: Current mapping of ids and centers of lanes MN = {(id1, c1), . . . , (ido, co)}
1: MN ← ∅
2: for all c ∈ CN do
3: bestMatchId← −1
4: bestMatchDiff ←∞
5: for all (id, c′) ∈MN−200 do
6: distance← ‖c− c′‖
7: if distance ≤ maxDistance ∧ distance < bestMatchDiff then
8: bestMatchId← id
9: bestMatchDiff ← distance

10: if bestMatchDiff 6=∞ then
11: MN ←MN ∪ {(bestMatchId, c)}
12: MN−200 ←MN−200 \ {(bestMatchId,MN−200(bestMatchId))}
13: else
14: MN ←MN ∪ {(nextFreeId, c)}
15: nextFreeId← nextFreeId+ 1

a predefined threshold which is relative the to global maximum of the histogram. On the
other hand, the centers of lane-dividing lines are detected as local minima in a prede-
fined surroundings higher than a predefined absolute threshold. All these lanes and lines
are drawn as lines defined by its center and the first vanishing point, as it is shown in
Figure 4.13.
A unique identification number is assigned to each detected lane as it is also shown in

the figure. However, as the detection algorithm runs after every 200 vehicles are observed,
it is necessary to search correspondences between lanes detected after N − 200 observed
vehicles and N observed vehicles in order to obtain temporal consistency of the detected
lanes and their identification numbers. The lanes’ identification numbers would change
after every 200 accumulated lines if the correspondences were not found; and therefore, it
would be impossible to create long-term statistics for vehicles passing in the detected lanes.
Therefore, Algorithm 4.2 is used for obtaining the identification numbers of lanes de-

tected after N vehicles were observed. The algorithm uses previous mapping of the identi-
fication numbers and detected lanes and tries to find for each previously detected lane the
closest newly detected lane with a predefined maximal displacement of the lanes’ centers.
When the lanes are successfully detected, it is possible to assign a line to each newly

passing vehicle. The assignment is not done for vehicles which were observed before the
lanes were detected because the system targets mainly on online processing. For each newly
observed vehicle i, the lane li is assigned according to following equation where CN is a set
of lanes’ centers, MN is the mapping of the identification numbers and the lanes’ centers.
Also value µi

x denotes the mean of x coordinates of projected bases’ centers of gravity X
i
j .

li = M−1
N

(
arg min

c∈CN

‖c− µi
x‖

)
(4.40)

The dominant direction of lanes is also computed for each lane l. The dominant direc-
tion dirl is computed according to (4.41), where lV P is the amount of points in the local

42

maximum of the cluster which have direction towards the first vanishing point and ltot is
the number of all points in the cluster. A reasonable value for threshold tdom is 0.1.

dirl =





To VP
lV P

ltot
≥ 1− tdom

From VP
lV P

ltot
≤ tdom

Mixed otherwise

(4.41)

When the dominant direction for a lane is known, it is possible to detect vehicles which
are traveling in wrong way. The detection is based on the detected direction dir of the
vehicle and the dominant direction dirl of the lane which the vehicle belongs to. The wrong
way variable ww is determined by (4.42).

ww =




True dir = To VP ∧ dirl = From VP
True dir = From VP ∧ dirl = To VP
False otherwise

(4.42)

4.6 Speed Estimation

The speed measurement relies on two crucial things. The first one is the measurement
of distances on the plane of the monitored road and the other one is time measurement.
The time measurement can be accomplished without any problem using frame numbers
and the framerate of the processed video. On the other hand, the distance measurement is
far more advanced. In order to be able to measure the distance, it is necessary to compute
real world positions of points on the ground plane. Therefore, the first step is to compute
the position for a given point in image on the ground plane.
However, as the camera is calibrated by the vanishing points only up to scale, these

distance measurements are done only in so called relative units which does not corresponds
to meters. Hence, the scale factor has to be also determined so that the relative units of
distances of points on the ground plane can be transformed to meters.

4.6.1 Distance Measurement on Ground Plane

As it was stated above, in order to be able to measure real distance |XY | where X,Y
are points in image coordinates, it is necessary to compute world coordinates of points X
and Y on the ground plane. Therefore, the points have to be projected on the ground
plane.
However, parameters of ground plane ℘ have to be computed first. Three dimensional

system, which is shown in Figure 4.14, is used with camera location O = [px, py, 0] where
[px, py] is position of the principal point in the image. Also, P = [px, py, f] are the world
coordinates of the principal point and f is the focal length. Normal vector n℘ of ground
plane ℘ can be computed asW ′−P whereW ′ are the world coordinate of the third vanishing
point. Nevertheless, the last parameter d of the ground plane is unknown as the distance
of the ground plane from the camera is not known. Therefore, an arbitrary value is chosen
to be this last parameter and the scale of the objects on the ground plane will be addressed
later.
When the parameters of the ground plane are known it is possible to project a point

X = [x, y] on the ground plane. The projection is done according to function ρ(X) which

43

o

Figure 4.14: Example of a scene with a camera which is observing a vehicle and its co-
ordintate system. Line o connects points O = [px, py, 0] and P = [px, py, f] where [px, py]
are coordinates of the principal point. The image is adopted from paper [12] which I co-
authored.

is defined by Equation (4.43), where X ′ = [x, y, f]. Hence, the relative distance of image
points X,Y can be computed by (4.44).

ρ(X) = ℘ ∩
←−→
OX ′ (4.43)

dr(X,Y) = |ρ(X)ρ(Y)| (4.44)

It should be noted that in this way only world coordinates of points on the ground
plane can be computed. One exception to this rule are points for which the position of the
orthogonal projection to the ground plane is known, as it will be shown.

4.6.2 Adaptation of Relative Distances to Real World

The distances estimated by the equation presented above are only relative and do not
have a direct correspondence to some units of measurement, for example meters. On the
other hand, it is sufficient to scale all of the distances measured anywhere on the ground
plane to meters by one scale factor λ which does not change with location of points in the
image.
The computation of scale λ is based on that the vehicles should have some reasonable

sizes. Therefore, median values for length, width and height were obtained and it is assumed
that the sizes of observed vehicles by the traffic analysis system will correspond to the
median values. So, relative length lr, width wr and height hr is computed for each observed
vehicle at each frame by following equations.

AW = ℘ ∩
←→
OA (4.45)

BW = ℘ ∩
←→
OB (4.46)

CW = ℘ ∩
←→
OC (4.47)

EW = pE ∩
←→
OE; pE ⊥ ℘ ∧Aw ∈ pE (4.48)

lr = |AWCW | (4.49)

wr = |AWBW | (4.50)

hr = |AWEW | (4.51)

44

For each dimension a histogram of values is accumulated. Hence, histograms of vehicles’
lengths, widths and heights are created. Global maxima lm, wm and hm of the histograms
are detected and anti-aliased as values lM , wM and hM

γ ∈ {l, w, h}

γm = argmax
i

Hγ(i) (4.52)

γM =

γm+5∑
i=γm−5

(i ·Hγ(i))

γm+5∑
i=γm−5

Hγ(i)

(4.53)

When these values are known, it is assumed that they correspond to the median size of
vehicles and therefore the scales λl, λw and λh can be computed. In an ideal case all these
scales would be equal. However, the scales are usually slightly different because of different
influence of perspective and rounded corners; hence, the minimum is selected as the final
scale λ.

λl =
4.27

lM
λw =

1.74

wM

λh =
1.51

hM
λ = min {λl, λw, λh}

(4.54)

Finally, the real distance of two image points X and Y in meters can be computed by
Equation (4.55) which scales the relative distance to meters.

d(X,Y) = λ · dr(Xw, Yw) = λ · |ρ(X)ρ(Y)| (4.55)

Therefore, the speed of a vehicle i can be computed at each frame t if the distance of
the centers of gravity of the vehicle base Li

t and L
i
t−1 are computed and time difference ∆t

is measured. Final speed v̂i of vehicle i is computed as median of vehicle’s speeds at each
frame.

vit =
d(Li

t, L
i
t−1)

∆t
(4.56)

45

Chapter 5

Implementation

This chapter describes some implementation details of the proposed system and de-
ployment of the system for real online traffic analysis. The system is being used for the
surveillance of traffic flow already.

5.1 Traffic Analyser

For the sake of processing speed, the proposed traffic analysis system is implemented
in C++. The program is implemented as a command line utility and uses OpenCV1 and
Boost2 libraries. The architecture of the system is modular and some different data output
or a video output can be easily added to the system. Also, some parts of the system are
covered with unit tests implemented with library CppUnit3.
The system can be used either for an offline traffic analysis from a recorded video

on a disk or an online traffic analysis which cooperates with Click2Stream4. The offline
analysis processes a video and generates several files which include information about the
processed video with a traffic surveillance scene. For example, an image with detected lanes
is generated or a video file with observed vehicles can be created. Also, a file with data
about the observed vehicles is generated. The file contains speeds of vehicles, their class,
time of entrance and leaving of the scene. Lane identification number, direction and wrong
way flag is also generated for each observed vehicle.
On the other hand, the online traffic analysis processes a video stream which is gener-

ated by an IP camera. The data about the observed traffic scene can be sent to a server
which processes them and generates aggregated statistics about the traffic flow. Also, the
processed video can be sent to the server together with additional information. The same
types of information about the observed vehicles, as are written to the output file in the
offline analysis, are sent to the server.
One program is used for all these types of traffic analysis and the type of input and

other configuration data are provided by a configuration file which controls how the system
will work. The type of video and data output is also controlled by the the configuration
file.

1http://opencv.org
2http://www.boost.org
3http://cppunit.sourceforge.net
4http://www.click2stream.com

46

http://opencv.org
http://www.boost.org
http://cppunit.sourceforge.net
http://www.click2stream.com

Figure 5.1: Screenshot of the application for vehicles annotation.

5.2 Vehicles Annotator

A tool for annotation of vehicles was also designed and implemented for creating a dataset
for the vehicles classification. The tool uses a file which was generated by the traffic anal-
yser and therefore, it provides benefits such, as a class can be assigned to a whole track of
vehicles all at once, as it is shown in Figure 5.1.
The program for annotation of vehicles is based on QT5 GUI framework. When a video

and annotation is opened, the program loads all images which should be annotated into
memory. Hence, the annotation of vehicles can be faster and it does not have to load any
more information from the video. Therefore, the transition to a next track of a vehicle to
annotate is faster.

5http://qt-project.org

47

http://qt-project.org

Chapter 6

Evaluation

This chapter presents an evaluation of the proposed traffic analysis system. The accu-
racy of detection and tracking is discussed together with the evaluation of the classification
accuracy. Examples of detected lanes and lane dividing lines are also shown. The evalua-
tion of vehicles’ speed measurement is also presented. Last but not least, the speed of video
processing is discussed.

6.1 Detection and Tracking

Amanually annotated dataset was created for the evaluation of accuracy of the detection
and tracking of vehicles. Imaginary line, see Figure 6.1, which is crossing the center of image
and dividing frames into two equal parts was displayed and for each car the location and
time of crossing the line was annotated. Almost 30 minutes of video was annotated in this
way resulting in almost 800 vehicles in the dataset.
The comparison with the ground truth annotation was performed in the following way.

For each vehicle which was detected by the traffic analysis system, the trajectory is ap-
proximated by a line and the intersection of the approximation with the imaginary line
is computed. A match with the ground truth is a vehicle which has trajectory with close
intersection to the ground truth intersection and projected time of passing this intersection
does not differ too much. If there are more vehicles which satisfy this condition, the vehicle
with the smallest time and intersection difference is selected as the match with the ground
truth. This way of evaluation was selected because the system targets mainly on an overall
statistics of passed vehicles.
Nine various configurations which have different maximal distance to the first vanishing

point and minimal passed distance of a vehicle were created and evaluated. The ROC and
Precision-Recall curves are in Figure 6.1. Configuration providing the best results has F-
Measure [25] equal to 0.915 (Precision is 0.905 and Recall 0.925). The False Negative cases
are caused mainly by vehicle occlusions. The occlusions are caused either by a shadow
which connects vehicles into one connected component or by a situation when a vehicle
partially covers some other vehicle. The False Positives are caused primarily by the motion
detection incorrectly dividing a vehicle into two objects and both these objects are tracked
and treated as vehicles.

48

0 100 200 300 400 500 600 700

False Positives

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ru
e
P
os
it
iv
e
ra
te

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
on

Figure 6.1: Left: Examples of videos used for the evaluation of detection and tracking.
The virtual red line in the middle of the images was used for the ground truth annotation.
Right top: ROC curve Right bottom: Precision-Recall curve. The configuration providing
the best results has F-Measure equal to 0.915 (Precision is 0.905 and Recall 0.925) and is
marked by red color.

6.2 Classification

A manually annotated dataset was obtained for the training and evaluation of classi-
fication of vehicles. Program presented in Section 5.2 was used for this annotation. The
program provides significantly higher efficiency for annotation as a whole track of a vehicle
is annotated at the same time. Four classes were selected for the classification, namely
personal, van, bus and truck. Other classes like motorcycle or SUV are not so frequent on
roads in Czech Republic which were used for the obtaining of dataset. Also, as Table 6.2
shows, vehicles of the bus class are also rare on roads in Czech Republic. Therefore, this
class is not included in the evaluation as it is impossible to properly train and evaluate
the classification on so few samples of different vehicles from the bus class. Examples of
vehicles from the used classification classes are shown in Figure 6.2.
The whole manually annotated dataset was divided into training and evaluation dataset

in the following way. For evaluation was selected random 15% of vehicles from the whole
dataset which were removed from the training dataset. It is important to mention that
15% of unique vehicles was selected for the evaluation and not 15% of images of vehicles.
This approach was selected because it is important to evaluate how the classifier will work
with images of vehicles which were not used for training.

49

Figure 6.2: Examples of vehicles in the classification dataset. From top to bottom: personal,
van, bus, truck.

50

train evaluation

personal 1851 (23227) 324 (4166)
van 574 (9386) 72 (1333)
bus 43 (1879) 8 (329)
truck 369 (8433) 70 (1717)

Table 6.1: Dataset size. The total amount of all images from one class is in parentheses.

one image whole track

personal 98.1% 99.4%
van 92.2% 93.1%
bus 49.5% 50.0%
truck 93.4% 95.7%

total with buses 83.3% 84.6%
total without buses 94.6% 96.1%

Table 6.2: Accuracy of the classification of vehicles. As the table shows, if a whole track
is used for the classification, then the results are slightly higher. Buses are not included in
the total classification accuracy results because there is too few different instances of the
bus class in the dataset.

Cross-validation [43] technique was used for the training of the classifiers. The training
dataset was randomly divided into ten groups and one of these groups was used for the
cross-validation and the other groups were used for the training. The training process
was performed ten times and every time the trained classifier was evaluated with the cross-
validation dataset. After all, the classifier with the best cross-validation results was selected
as the result of the training process.
The accuracy results of the classification are shown in Table 6.2 and confusion matrices

for the classification are in Figure 6.3. As the table and figure show, if the whole track is
used for the classification, the accuracy is slightly higher. Therefore, it makes sense to use
the whole track of a vehicle for its classification. As it was mentioned, the bus class is not
included in the overall evaluation results because there is too few buses in the training and
evaluation dataset.
The table and figure with results also show that the highest accuracy was achieved for

the personal classification class. This situation is caused by the size of the training dataset
as there is much higher amount of personal vehicles in the dataset. It corresponds with
that there is much more personal vehicles on roads than vehicles of other classes.
Also, almost a half of buses are classified as truck as Figure 6.3 shows. These incorrect

classifications are caused by the small amount of unique buses in the training dataset and
the diversity of trucks on roads as there are many totally different trucks, for examples see
Figure 6.2. Therefore, there can be buses which are more similar to trucks in the training
dataset rather than buses.
The dependence of accuracy was also evaluated if only a portion of the training dataset

was used for the training process. This reduction of the training dataset was achieved by

51

pers. van bus truck

p
er
s.

va
n

b
u
s

tr
u
ck

4086 62 0 18

56 1229 2 46

9 10 163 147

28 86 0 1603

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) one image

pers. van bus truck

p
er
s.

va
n

b
u
s

tr
u
ck

322 2 0 0

4 67 0 1

1 0 4 3

0 3 0 67

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b) whole track

Figure 6.3: Classification confusion matrices.

0 20 40 60 80 100

Percent of used training dataset

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

personal

van

truck

mean

0.0 0.2 0.4 0.6 0.8 1.0

Weight

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

O
ve
ra
ll
ac
cu
ra
cy

Figure 6.4: Left: Dependence of classification accuracy on the training dataset size. Right:
Dependence of classification accuracy on weight of the classifier based on images.

removing every fourth image. This process generated dataset with 75% of images of the
original full dataset and then the process was performed again on the reduced dataset.
Therefore, sixteen datasets which have size 0.75i of the original full dataset, for 0 ≤ i ≤ 15,
were generated. For each of the dataset, a classifier was trained and the classifiers were
evaluated on the same evaluation dataset. The results of the evaluation are shown in
Figure 6.4. As the figure presents, the accuracy is almost totally stable for larger datasets.
Hence, increasing size of the dataset, with exception of the bus class, would probably not
increase the accuracy of the classification.
The fusion of classification by the HOG features and real dimensions of vehicles was

also evaluated. The evaluation is focused mainly on computing the optimal weight for the
final result of the fusion. The dependency of the final accuracy of the fusion on the weight
is in Figure 6.4. As the graph shows, the best results are for weight equal to 1, which
implies using only the classifier based on the HOG features. Therefore, the fusion with the
dimensions of vehicles does not improve the classification results.

6.3 Vehicle Speed Estimation

This section presents an evaluation of the accuracy of the speed measurement. First,
the accuracy of length measurements on a road are presented. Also, ground truth speed

52

Figure 6.5: Examples of measured distances used for the evaluation of the accuracy of the
distance measurement.

of a vehicle which was obtained with GPS sensor is compared with the speed estimated by
the proposed traffic analysis system.

6.3.1 Accuracy of Length Measurement

In order to be able to measure the speed of vehicles it is necessary to measure the distance
which vehicles passed and time. For the measurement of time, the number of frame and
framerate can be used without any problem for the time measurement. However, much
more complicated task is to measure distances of two points on the ground plane. If the
camera is calibrated by the vanishing points, see Section 4.1, it is possible measure distances
in relative units as the camera is calibrated up to scale. Hence, it is necessary to compute
the scale factor as it is discussed in Section 4.6.
The accuracy of the length measurement was evaluated on seven different videos with

854× 480 resolution. For each video, three different distances of easily recognizable points
on the ground plane were measured manually, as it is shown in Figure 6.5. A laser distance
meter was used for the ground truth measurements. Each of the distances was also measured
in the video and measurement error e was computed according to (6.1), where g is the
ground truth distance andm denotes the distance computed by the proposed traffic analysis
system.

e =
|g −m|

g
(6.1)

vehicles in video best worst mean

438 5.73% 10.74% 8.13%
1 274 5.36% 6.62% 5.81%
1 194 3.71% 4.71% 4.05%
1 865 0.51% 2.69% 1.39%
430 14.66% 15.62% 15.08%
397 2.14% 5.65% 4.27%
655 1.27% 8.99% 4.70%

Table 6.3: Errors for distance measurements in seven different video streams. The ground
truth was obtained by a manual way on the road and three different distances were measured
for each video. The errors are computed according to (6.1) and are in percents.

53

For each video was computed the best, mean and the worst error of the distance mea-
surement as Table 6.3 shows. As it is shown in the table, the error is for almost all videos
bellow 10%. Two crucial things influences the error of the measurement. The first one is
the accuracy of the camera calibration. Also, the amount of passed vehicles has effect on
the error because if a higher amount of vehicles is observed, the statistics about vehicles’
lengths, widths and heights are more representative. Therefore, the accuracy for the video
with the highest amount of passed vehicles is the best one and videos with just ∼ 400
observed vehicles is much worse.

6.3.2 Accuracy of Speed Estimation

In order to evaluate not only the distance measurement, but also the final accuracy of
the speed measurements, ground truth of the speed of a vehicle was obtained. The vehicle
with known ground truth speed was passing with cruise control enabled so that the speed
is stable and the ground truth speed was measured by a GPS sensor.
Table 6.4 presents the evaluation of the speed measurement with computed error for

each measurement and mean error for whole video. As the table shows, the error for the
video with the higher amount of passed vehicles is significantly lower. Again, the error
depends on the camera calibration and the amount of passed vehicles which were used for
the scale computation.
As the evaluation of the speed measurement shows, the errors of the speed measurements

are reasonably low. Therefore, it can be used for generation of statistics of passing vehicles’
speed.

vehicles ground truth [km/h] measured speed [km/h] error

397

51 58 13.73%
83 79 4.82%
65 69 6.15%
78 85 8.97%
73 75 2.74%

Mean: 6.73%

655

60 61 1.67%
51 50 1.96%
83 84 1.20%
65 69 6.15%
78 80 2.56%
73 76 4.11%

Mean: 2.94%

Table 6.4: Evaluation of speed measurement compared to ground truth. The presented
errors are reasonably low and usable for statistics of vehicles’ speed.

54

Figure 6.6: Detected lanes (green, red) and lane-dividing lines (blue). As it is shown, the
lanes and lane-dividing lines are detected with a high accuracy even for distant lanes and
lane-dividing lines.

6.4 Direction Estimation and Lane Detection

Several videos were processed in order to evaluate the lanes and lane-dividing lines
detection. The results of the processed videos are shown in Figure 6.6. The lane-dividing
lines are drawn by blue color and are detected with a high accuracy. Also as the figure
shows, the direction of the lanes was correctly detected. The lanes with direction toward
the first vanishing point are drawn by green color, and red color is used for the lanes which
have direction from the first vanishing point. As the figure shows, also the centers of the
lanes were precisely detected and they are almost exactly in the center of the lanes.
The difference between lanes detection with centers of two-dimensional and three-

dimensional bounding boxes was evaluated. Figure 6.7 shows the results. As one can no-
tice, the difference between left column (two-dimensional centers) and right column (three-
dimensional centers) is significant. The lanes in the right column are detected much more
precisely for more distant lanes from the video camera. Also, some lanes were not detected
at all with the two-dimensional centers approach as the left column shows.
Several video sequences with a sufficient number of cars were obtained and stability of

detected lanes was evaluated for these videos. The results of the evaluation are in Figure 6.8
and as the graphs show, the detected lanes are almost totally stable and do not change with
passing cars. It should be noted that the detected lanes are recomputed always after next
200 cars were observed.

55

Figure 6.7: Comparison of detection with three-dimensional and two-dimensional vehicles
centers. The left column uses two-dimensional centers and the right one three-dimensional
centers.

56

0 200 400 600 800 1000 1200 1400

Passed cars

300

350

400

450

500

550

600

H
or
iz
on

ax
is
in
te
rs
ec
ti
on

[p
x
]

1 2 3 4 5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Passed cars

-350

-300

-250

-200

-150

-100

-50

0

50

100

H
or
iz
on

ax
is
in
te
rs
ec
ti
on

[p
x
]

1 2 3 4 5

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

C
ar
s
C
ou

n
t

Statistics of Lanes

1 2 3 4 5
0

100

200

300

400

500

600

C
ar
s
C
ou

n
t

Statistics of Lanes

Figure 6.8: Stability of lanes detection for long video sequences. The top line of images
presents the detected lanes. Only lanes which were valid for the last frame of video are
drawn. The middle images show changes in detected lanes over time as new cars were
observed in video. Finally, the bottom line shows the statistics of observed cars in the
detected lanes.

57

resolution traffic intensity FPS

854× 480
high 70.40
low 118.09

1920× 1080
high 19.06
low 26.86

Table 6.5: Result of processing speed measurement. Videos with high traffic intensity
contain ∼ 40 vehicles per minute and video streams with low traffic intensity ∼ 3.5 vehicles
per minute. It should be noted, that the system uses video streams with ∼ 12.5FPS; and
therefore, it can run without any problem in real time even for full-HD video with the high
traffic intensity. The system was evaluated on 195 minutes of video.

6.5 Speed of Video Processing

If the traffic analysis system should be usable for real traffic surveillance applications, it
has to run in real time. Therefore, the processing speed of the system was also evaluated.
As Table 6.5 shows, the framerates are sufficient to run in real time. It should be noted
that the system usually works with video streams which are smaller than full-HD; however,
the system runs in real time even for full-HD videos as the system uses only ∼ 12.5FPS.
The downsampling of the framerate of video streams is used so that the motion and passed
distances of vehicles are stable and measurable.
The processing speed measurement was done on a computer with i3-4330 3.50GHz

processor and 8GB RAM. The measured framerates also include reading and decompression
of videos and therefore, it influences significantly the framerates for videos with full-HD
resolution.

6.6 Concluding Remarks

The proposed traffic analysis system was evaluated and the results are satisfactory for
a traffic surveillance application which targets on overall statistics about the traffic flow
on the monitored road. The detection and tracking of vehicles provides high accuracy and
the results of the classification of vehicles is also satisfactory. The speed of vehicles can be
measured with a high precision and the lanes can be detected even accurately as it is not
influenced by the video camera’s angle of view. Also, vehicles passing in a wrong way can
be detected.
The system is being used for an online traffic surveillance. The system can run con-

tinuously and generate statistics for a monitored traffic road. The system has been already
deployed and monitors a traffic scene which is shown in Figure 6.9. Also, the figure shows
mean week traffic flow density on the monitored road. The data about the traffic flow were
obtained by the proposed traffic analysis system. The system will be used for monitoring
of a larger amount of traffic surveillance scenes in the future.
The future development of the system can focus on several tasks. For example, two video

cameras monitoring a highway from different sides can be used for handling of occlusions.
Also, a more robust shadow detection technique could be used for the shadow elimination
of sharp shadows. Another interesting topic would be using a structure from motion [22]
for the shadow elimination or the classification of vehicles.

58

Mon Tue Wed Thu Fri Sat Sun
0

50

100

150

200

250

300

350

400

450

M
ea
n
ve
h
ic
le

co
u
n
t

Figure 6.9: Statistics from the monitored traffic scene which was observed over 90 days.
The top image shows the scene and the bottom image presents mean week traffic flow.

59

Chapter 7

Conclusion

The goal of the thesis was to design and implement a system for traffic analysis. The
system is able to detect, track and classify vehicles. Also, the system detects lanes and
vehicles passing in wrong way. The speed of vehicles is measured and the system works in
real time and in a fully automated way without any manual input whatsoever.
I studied existing system and algorithms for the traffic analysis and described them in

chapters 2 and 3. I proposed a system for the traffic analysis and the system was evaluated
thoroughly. Also, I created a functional program implementing the system which runs in
real time. The possibilities for future work were discussed and a poster and a video were
created for presentation of the thesis.
Two papers describing the proposed system were published so far. The first one was

published on EEICT conference [34] and I won the 1st place on the conference in category
Processing of signals, image and electric power systems. Also, the other paper was pub-
lished and accepted to oral presentation on CESCG seminar [35]. The system was already
successfully deployed and it is used for a monitoring of a traffic scene. Also, I cooperated
on papers [11, 12] which are focused on automatic calibration and speed measurement of
vehicles. My contribution to the research was implementation of the system which was used
for evaluation and testing of the proposed methods.
The system was thoroughly evaluated and the achieved results are satisfactory for traffic

surveillance systems which targets on overall statistics about the traffic flow. The vehicles
are counted and classified with a high accuracy. The lanes can be detected and the position
is not influenced by the video camera’s angle of view. Also, the speeds of vehicles are
estimated with a low error. The main contribution of the thesis is the full automation of
the system and the measurement of vehicles’ speed.

60

Bibliography

[1] Aydos, C., Hengst, B., and Uther, W. Kalman filter process models for urban
vehicle tracking. In Intelligent Transportation Systems, 2009. ITSC ’09. 12th
International IEEE Conference on (Oct 2009), pp. 1–8.

[2] Beymer, D., McLauchlan, P., Coifman, B., and Malik, J. A real-time
computer vision system for measuring traffic parameters. In Computer Vision and
Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference
on (1997), pp. 495–501.

[3] Buch, N., Orwell, J., and Velastin, S. Detection and classification of vehicles
for urban traffic scenes. In Visual Information Engineering, 2008. VIE 2008. 5th
International Conference on (July 2008), pp. 182–187.

[4] Canny, J. A computational approach to edge detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on PAMI-8, 6 (Nov 1986), 679–698.

[5] Cheng, H.-Y., and Hsu, S.-H. Intelligent highway traffic surveillance with
self-diagnosis abilities. Intelligent Transportation Systems, IEEE Transactions on 12,
4 (Dec 2011), 1462–1472.

[6] Coifman, B., Beymer, D., McLauchlan, P., and Malik, J. A real-time
computer vision system for vehicle tracking and traffic surveillance. Transportation
Research Part C: Emerging Technologies 6, 4 (1998), 271 – 288.

[7] Crammer, K., and Singer, Y. On the algorithmic implementation of multiclass
kernel-based vector machines. J. Mach. Learn. Res. 2 (Mar. 2002), 265–292.

[8] Dalal, N., and Triggs, B. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on (2005), vol. 1, pp. 886–893 vol. 1.

[9] Du, Y., and Yuan, F. Real-time vehicle tracking by kalman filtering and gabor
decomposition. In Information Science and Engineering (ICISE), 2009 1st
International Conference on (Dec 2009), pp. 1386–1390.

[10] Dubská, M., and Herout, A. Real projective plane mapping for detection of
orthogonal vanishing points. In British Machine Vision Conference, BMVC (2013).

[11] Dubská, M., Herout, A., Juránek, R., and Sochor, J. Fully automatic
roadside camera calibration for traffic surveillance. Submitted to: IEEE Transactions
on ITS (2014).

61

[12] Dubská, M., Sochor, J., and Herout, A. Automatic camera calibration for
traffic understanding. Submitted to: British Machine Vision Conference, BMVC
(2014).

[13] Fowles, G. R., and Cassiday, G. L. Analytical mechanics, 7th ed. ed. Thomson
Brooks/Cole, Belmont, CA, 2005.

[14] Hodlmoser, M., Micusik, B., Liu, M.-Y., Pollefeys, M., and Kampel, M.
Classification and pose estimation of vehicles in videos by 3d modeling within
discrete-continuous optimization. In 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT), 2012 Second International Conference on (Oct
2012), pp. 198–205.

[15] Horprasert, T., Harwood, D., and Davis, L. S. A statistical approach for
real-time robust background subtraction and shadow detection. In Proc. IEEE ICCV
(1999), vol. 99, pp. 1–19.

[16] Hsieh, J.-W., Yu, S.-H., Chen, Y.-S., and Hu, W.-F. Automatic traffic
surveillance system for vehicle tracking and classification. Intelligent Transportation
Systems, IEEE Transactions on 7, 2 (2006), 175–187.

[17] Huang, L. Real-time multi-vehicle detection and sub-feature based tracking for
traffic surveillance systems. In Informatics in Control, Automation and Robotics
(CAR), 2010 2nd International Asia Conference on (March 2010), vol. 2,
pp. 324–328.

[18] Jung, Y.-K., and Ho, Y.-S. Traffic parameter extraction using video-based vehicle
tracking. In Intelligent Transportation Systems, 1999. Proceedings. 1999
IEEE/IEEJ/JSAI International Conference on (1999), pp. 764–769.

[19] Jung, Y.-K., and Ho, Y.-S. Traffic parameter extraction using video-based vehicle
tracking. In Intelligent Transportation Systems, 1999. Proceedings. 1999
IEEE/IEEJ/JSAI International Conference on (1999), pp. 764–769.

[20] Kalman, R. E. A new approach to linear filtering and prediction problems.
Transactions of the ASME – Journal of Basic Engineering, 82 (Series D) (1960),
35–45.

[21] Khan, S., Cheng, H., Matthies, D., and Sawhney, H. 3d model based vehicle
classification in aerial imagery. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on (June 2010), pp. 1681–1687.

[22] Koenderink, J. J., and van Doorn, A. J. Affine structure from motion. J. Opt.
Soc. Am. A 8, 2 (Feb 1991), 377–385.

[23] Koller, D., Weber, J., and Malik, J. Robust multiple car tracking with
occlusion reasoning. Springer-Verlag, pp. 189–196.

[24] Lai, A. H. S., and Yung, N. H. C. Lane detection by orientation and length
discrimination. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 30, 4 (Aug 2000), 539–548.

62

[25] MANNING, C. D., RAGHAVAN, P., and SCHÜTZE, H. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[26] Melo, J., Naftel, A., Bernardino, A., and Santos-Victor, J. Detection and
classification of highway lanes using vehicle motion trajectories. Intelligent
Transportation Systems, IEEE Transactions on 7, 2 (June 2006), 188–200.

[27] Messelodi, S., Modena, C., and Zanin, M. A computer vision system for the
detection and classification of vehicles at urban road intersections. Pattern Analysis
and Applications 8, 1-2 (2005), 17–31.

[28] Mithun, N., Rashid, N., and Rahman, S. Detection and classification of vehicles
from video using multiple time-spatial images. Intelligent Transportation Systems,
IEEE Transactions on 13, 3 (Sept 2012), 1215–1225.

[29] Morris, B., and Trivedi, M. Robust classification and tracking of vehicles in
traffic video streams. In Intelligent Transportation Systems Conference, 2006. ITSC
’06. IEEE (2006), pp. 1078–1083.

[30] Prati, A., Mikic, I., Trivedi, M. M., and Cucchiara, R. Detecting moving
shadows: Algorithms and evaluation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 25, 7 (2003), 918–923.

[31] Rad, R., and Jamzad, M. Real time classification and tracking of multiple vehicles
in highways. Pattern Recognition Letters 26, 10 (2005), 1597 – 1607.

[32] Shi, J., and Tomasi, C. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society
Conference on (Jun 1994), pp. 593–600.

[33] Snoek, C. G. M., Worring, M., van Gemert, J. C., Geusebroek, J.-M., and
Smeulders, A. W. M. The challenge problem for automated detection of 101
semantic concepts in multimedia. In Proceedings of the 14th Annual ACM
International Conference on Multimedia (New York, NY, USA, 2006),
MULTIMEDIA ’06, ACM, pp. 421–430.

[34] Sochor, J. Fully automated real-time traffic analysis from video. In Proceedings of
the 20th Conference STUDENT EEICT 2014 (2014), vol. 2, Brno University of
Technology, pp. 54–56.

[35] Sochor, J. Fully automated real-time vehicles detection and tracking with lanes
analysis (to appear). In Proceedings of The 18th Central European Seminar on
Computer Graphics (2014), Technical University Wien.

[36] Stauffer, C., and Grimson, W. E. L. Adaptive background mixture models for
real-time tracking. In Computer Vision and Pattern Recognition (1999), vol. 2,
pp. 246–252.

[37] Szeliski, R. Computer Vision: Algorithms and Applications, 1st ed. Springer-Verlag
New York, Inc., New York, NY, USA, 2010.

63

[38] Tian, B., Li, Y., Li, B., and Wen, D. Rear-view vehicle detection and tracking
by combining multiple parts for complex urban surveillance. Intelligent
Transportation Systems, IEEE Transactions on 15, 2 (April 2014), 597–606.

[39] Tomasi, C., and Kanade, T. Detection and tracking of point features. School of
Computer Science, CMU, 1991.

[40] Tseng, B., Lin, C.-Y., and Smith, J. Real-time video surveillance for traffic
monitoring using virtual line analysis. In Multimedia and Expo, 2002. ICME ’02.
Proceedings. 2002 IEEE International Conference on (2002), vol. 2, pp. 541–544
vol.2.

[41] Vapnik, V. N. The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA, 1995.

[42] Wasserman, L. All of statistics: a concise course in statistical inference. Springer,
New York, 2004.

[43] Webb, A. Statistical Pattern Recognition, 2nd ed. ed. Wiley, New Jersey, 2002.

[44] Welch, G., and Bishop, G. An introduction to the kalman filter. Tech. rep.,
Chapel Hill, NC, USA, 1995.

[45] Weston, J., and Watkins, C. Multi-class support vector machines, 1998.

[46] Zivkovic, Z. Improved adaptive gaussian mixture model for background
subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on (2004), vol. 2, pp. 28–31 Vol.2.

64

List of Appendices

A Papers Written with the Thesis 66

65

Appendix A

Papers Written with the Thesis

I wrote and cooperated on several papers during work on the thesis. Some of them were
already accepted and other are in review process. The papers are appended to this thesis.

• Fully Automated Real-Time Traffic Analysis from Video published on EEICT
student coference 2014. Also, I won the 1st place on the conference in category
Processing of signals, image and electric power systems with this paper.

• Fully Automated Real-Time Vehicles Detection and Tracking with Lanes
Analysis published on CESCG seminar 2014. The paper was accepted for oral pre-
sentation.

• Fully Automatic Roadside Camera Calibration for Traffic Surveillance sub-
mitted to IEEE Transactions on ITS. My contribution to the paper is implementation
of the system which was used for the evaluation of computational speed of vanishing
points accumulation.

• Automatic Camera Calibration for Traffic Understanding submitted to BMVC
2014. My contribution to the paper is implementation of the system which was used
for the evaluation of computational speed of the proposed method for speed measure-
ment of vehicles.

66

FULLY AUTOMATED REAL-TIME TRAFFIC ANALYSIS
FROM VIDEO

Jakub Sochor

Master Degree Programme (2), FIT BUT

E-mail: xsocho06@stud.fit.vutbr.cz

Supervised by: Adam Herout

E-mail: herout@fit.vutbr.cz

Abstract: This paper describes briefly a fully automated system for traffic surveillance which is able

to count passing cars, determine their direction and the lane which they are taking. The system works

without any manual input whatsoever and it is able to automatically calibrate the camera by detection

of vanishing points in the video sequence. The proposed system is able to work in real time and

therefore it is ready for deployment in real traffic surveillance applications. The system uses motion

detection and tracking with the Kalman filter. The lane detection is based on clustering of trajectories

of vehicles.

Keywords: motion detection, tracking, vehicles, traffic surveillance camera, direction detection, lanes

detection, real-time

1 INTRODUCTION

This paper presents a system for fully automated traffic analysis from a single uncalibrated camera.

The camera is initially automatically calibrated and then statistics for the monitored traffic are gener-

ated. It is possible to use these statistics for many applications, for example simple monitoring of the

traffic or more advanced predictions of the traffic flow. The system is currently able to count passing

cars, determine their direction and lane which they are using. The classification of vehicles and speed

measurement are going to be added in the near future.

2 PROPOSED METHODS FOR TRAFFIC ANALYSIS

This section describes the proposed methods for the traffic analysis which are used in order to achieve

the goals which were presented above.

2.1 INITIALIZATION

Prior to running the algorithm for traffic analysis, it is necessary to initialize the system. The ini-

tialization focuses on the calibration of the camera by detecting vanishing points in the scene. It is

assumed that the principal point is in the center of the image and the vehicles have approximately

straight trajectories. Two vanishing points are detected and the third vanishing point and the focal

length is computed during the initialization. The detection of the vanishing points is described in

detail in paper written by Dubská et al. [1], which is currently submitted to IEEE Transactions on

Intelligent Transportation Systems.

2.2 DETECTION AND TRACKING

The vehicle detection is based on motion detection in the video scene. Mixture of Gaussians back-

ground subtraction [4] is used for the motion detection. Also, shadow detection [2] is used for higher

Figure 1: Overall pipeline of processing of the input video stream. The parts of pipeline which will

be implemented in the future, namely Classification and Speed measurement, are shown in dashed

boxes.

Figure 2: Process of motion detection. The leftmost image represents the original, the next one

shows the detected motion with shadows which were removed in the third image. The result after the

morphology opening and closing is shown in the last image.

accuracy of the motion detection. Noise in the detected motion is removed by morphological opening

followed by morphological closing. Detected connected components are considered to be a potential

vehicle. The Kalman filter [3] is used for prediction of the new position of the potential car and as-

sociating cars in consequent frames. The state variable of the Kalman filter (x,y,vx,vy)
T contains the

current position of the car and its velocity in image coordinates. Several conditions are evaluated for

a tracked object and if the conditions are satisfied, the object is added to the statistics as a vehicle.

2.3 DIRECTION ESTIMATION AND LANE DETECTION

The estimation of the direction of a vehicle is based on distance of the first and last point of the

vehicle’s trajectory. If the last point of the trajectory is closer to the first vanishing point, the vehicle

is treated as it is going to the first vanishing point. On the other hand, if the first point is closer, the car

is going from the vanishing point. The detection of lanes is based on accumulating the trajectories to

one-dimensional histogram and searching for local maxima. The accumulation is based on the angle

of the trajectories with the horizontal axis of the image. Statistics of the directions of vehicles are

created for each lane and these statistics are used for the detection of vehicles which are travelling in

the wrong way.

3 ACHIEVED RESULTS

The following section presents the achieved results. The processing speed is 57.97 FPS for a video

in resolution 854×480 which contains traffic with high intensity. The processing speed is 28.59 FPS

for a Full-HD video sequence and therefore, the system works in real time. The system was evaluated

on a machine with Intel Dual-Core i5 1.8 GHz and 8GB DDR3 RAM.

3.1 DETECTION AND TRACKING

A manually annotated dataset was created for the evaluation of the accuracy of the detection and

tracking of vehicles. For each vehicle in the video sequence, the dataset contains time and position of

crossing the vehicle’s trajectory with a virtual line. The time and position of the crossings are used for

searching correspondences between the annotated vehicles and actually detected objects evaluated as

vehicles. The accuracy computation of the detection and tracking is based on these correspondences.

Figure 4: Detected lanes for long video sequences. Green color means that the majority of cars is

heading towards the first vanishing point and red color denotes the opposite case. It should be noted

that the centers of cars, which are used for lanes detection, are not in the middle of the lanes because

of the angle of view.

0 100 200 300 400 500 600 700

False Positives

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ru
e
P
os
it
iv
e
ra
te

Figure 3: ROC curve of detection and

tracking. Configuration with the best F-

Measure is marked by red color.

Configuration providing the best results has F-Measure

equal to 0.915 (Precision is 0.905 and Recall 0.925). The

False Negative cases are caused mainly by vehicle oc-

clusions. The occlusions are caused either by a shadow

which connects vehicles into one connected component or

by a situation when a vehicle partially covers some other

vehicle. The False Positives are caused primarily by the

motion detection incorrectly dividing a vehicle into two

objects and both these objects are tracked and treated as

vehicles.

3.2 DIRECTION ESTIMATION AND LANE DETECTION

Several video sequences with a sufficient number of cars were obtained and stability of detected lanes

was evaluated for these videos. The detected lanes in the video sequences are shown in Figure 4.

The position of the lanes is almost totally stable and does not change with a higher amount of passed

vehicles. Also the directions of the lanes were correctly estimated as shown in Figure 4.

4 CONCLUSION

This paper presents a system for fully automated traffic analysis from a single uncalibrated camera.

The camera is automatically calibrated, vehicles are detected, tracked and their direction is computed.

Also, the lanes are detected and therefore cars travelling in the wrong way can be detected. The system

is ready for deployment and it is currently used for online traffic analysis. Future development will

focus mainly on classification of the vehicles and speed measurement.

REFERENCES

[1] M. Dubská, A. Herout, R. Juránek, and J. Sochor. Fully automatic roadside camera calibration

for traffic surveillance. Submitted to: IEEE Transactions on ITS, 2014.

[2] T. Horprasert, D. Harwood, and L. S. Davis. A statistical approach for real-time robust back-

ground subtraction and shadow detection. In Proc. IEEE ICCV, volume 99, pages 1–19, 1999.

[3] R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the

ASME – Journal of Basic Engineering, (82 (Series D)):35–45, 1960.

[4] C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for real-time tracking.

In Computer Vision and Pattern Recognition, volume 2, pages 246–252, 1999.

Fully Automated Real-Time Vehicles Detection and Tracking

with Lanes Analysis

Jakub Sochor∗

Supervised by: Adam Herout†

Faculty of Information Technology

Brno University of Technology

Brno / Czech Republic

Abstract

This paper presents a fully automated system for traffic

surveillance which is able to count passing cars, deter-

mine their direction, and the lane which they are taking.

The system works without any manual input whatsoever

and it is able to automatically calibrate the camera by de-

tecting vanishing points in the video sequence. The pro-

posed system is able to work in real time and therefore it

is ready for deployment in real traffic surveillance applica-

tions. The system uses motion detection and tracking with

the Kalman filter. The lane detection is based on clustering

of trajectories of vehicles. The main contribution is a set

of filters which a track has to pass in order to be treated as

a vehicle and the full automation of the system.

Keywords: motion detection, tracking, vehicles, traffic

surveillance camera, direction detection, lanes detection,

real-time

1 Introduction

This paper presents a fully automated system for traffic

analysis. These types of analysis systems have a wide

spectrum of usage. For example, it is possible to moni-

tor the traffic or try to predict characteristics of the future

traffic flow. The presented system is able to count pass-

ing cars, determine their direction and lane which they are

taking. The goal is to run the system without any manual

calibration or input whatsoever. The full automatism of

the system is required if the system should be usable with

already mounted uncalibrated cameras which are spread

over highways. Therefore, the camera is automatically

calibrated prior to running the traffic surveillance system.

Real time processing is another requirement which needs

to be satisfied for usage in real traffic surveillance applica-

tions.

Some methods for calibration of the camera require user

input [29, 3] and therefore they can not be used in fully au-

tomated systems. Approaches for the calibration are usu-

∗xsocho06@stud.fit.vutbr.cz
†herout@fit.vutbr.cz

Figure 1: Example of video scene processed by the pro-

posed traffic analysis system. Information about passing

cars and their directions are displayed in output video.

ally focused on detection of vanishing point of the direc-

tion parallel to moving vehicles [6, 10, 23, 25]. There are

several ways how to detect the vanishing point. Detected

lines [25, 6] or lanes [25, 10] can be used for obtaining this

vanishing point. On the other hand, Schoepflin and Dai-

ley [23] use motion of vehicles and assume that they have

straight parallel trajectories. Kanhere et al. [16] detect ve-

hicles by a boosted detector and observe their movement,

and Zhang et al. [30] analyze edges present on the vehi-

cles.

A popular approach to detection and tracking of vehi-

cles is to use some form of background subtraction and

Kalman filter [15] to track the vehicles [12, 21, 14, 28,

1, 4, 7, 20, 17, 22]. Other approaches are based mainly

on detection of corner features, their tracking and group-

ing [2, 13, 5]. Also, Cheng and Hsu [4] use pairing of

headlights for the detection of vehicles at night.

Two main approaches are used for the detection of

lanes. The first one is based on detection of the lane di-

viding lines [13, 18]. The other approach is based on mo-

tion of vehicles and their trajectories. Tseng et al. [28]

use a virtual line perpendicular to vehicles’ motion and

compute intersections of the line with trajectories of ve-

hicles. Hsieh et al. [12] use a two-dimensional histogram

of accumulated centers of vehicles and Melo et al. [20]

approximate the trajectories with low-degree polynomials

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Pipeline of processing of the input video stream. Parts of the pipeline which will be implemented in the future,

namely Classification and Speed measurement, are shown in dashed boxes.

and cluster these approximations.

The system proposed in this paper uses detection of ve-

hicles by background subtraction [26, 31] and Kalman fil-

ter [15] for tracking. Prior to running the algorithm, the

camera is calibrated by the detected vanishing points and

the vanishing point of direction parallel to the motion of

vehicles is used for higher accuracy of tracking. The detec-

tion of lanes is based on trajectories of vehicles and their

approximation by a line.

2 Proposed Method for Traffic

Surveillance

This section of the paper presents methods used in the sys-

tem for detection and tracking of cars. The direction and

lane detection is also discussed in detail. The overall pro-

cessing pipeline is shown in Figure 2.

The main goal of the system is to create statistics of

traffic on a road which is monitored by a camera. These

statistics include the number of passed cars, their direction

and lane.

2.1 Initialization

It is required to initialize the system prior to processing

a video stream. The main purpose of the initialization is

to find vanishing points of the scene and use the vanishing

points to calibrate the camera. This is performed in a fully

automated way and no user input is used. Arrows directed

to the vanishing points are used for visualisation of the

vanishing points. An example of the visualisation of the

vanishing points is in Figure 3.

The vanishing point of the direction parallel to the vehi-

cle movement is denoted as the first vanishing point. The

second vanishing point has perpendicular direction to the

movement of vehicles and the third vanishing point is per-

pendicular to the ground plane. However, only the first

vanishing point is required for the tasks described in this

paper; therefore, only detection of this vanishing point will

be described. The detection of the other vanishing points is

described in a paper written by Dubská et al. [8], currently

submitted to IEEE Transactions on Intelligent Transporta-

tion Systems.

First Vanishing Point Detection

Corner feature tracking is used for the detection of the first

vanishing point. Hence, Good Features to Track [24] are

detected in the video stream and KLT tracker [27] is used

for the tracking of the corner features. Detected motion

of the tracked features is extended into a line which is de-

fined by image points (xt ,yt) and (xt+1,yt+1) which are

positions of the feature in frame t and t +1.

All these lines are accumulated into the diamond

space [9] until the initialization is terminated. The ini-

tialization is terminated when the global maximum of the

diamond space is bigger then a predefined threshold and

therefore a sufficient number of lines was accumulated.

Afterwards, the coordinates of the global maximum in

the diamond space are transformed into coordinates of the

vanishing point in the image plane.

The diamond space is based on Cascaded Hough trans-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Detected vanishing points. Red arrows are point-

ing to the first vanishing point, green to the second one,

and the third vanishing point is defined by the blue arrows.

Yellow horizon line connects the first and second vanish-

ing point.

form and parallel coordinates. Each line which is accu-

mulated into the diamond space has to be transformed into

coordinates in this space. The transformation divides the

line into three line segments which are accumulated into

the diamond space. Examples of the diamond space are

in Figure 4.

It should be noted that the system uses a video down-

sampled to a framerate close to 10 FPS, so that the move-

ment of corner features is detectable and measurable.

2.2 Vehicle Detection and Tracking

The vehicle detection is based on motion detection in

the video scene. Mixture of Gaussians background sub-

traction [26, 31] is used for the motion detection. Also,

shadow removal [11] is used for higher accuracy of the

motion detection. Noise in the detected motion is re-

moved by morphological opening followed by morpholog-

ical closing. Detected connected components are consid-

ered to be a potential vehicle. The motion detection ap-

proach was selected mainly for its speed.

Kalman filter [15] is used for prediction of the new posi-

tion of a car and for associating cars in consequent frames.

The state variable of the Kalman filter (x,y,vx,vy)
T con-

tains the current position of the car and its velocity in im-

age coordinates.

Several conditions are used for matching an object in the

Figure 4: Examples of diamond spaces for detection of the

first vanishing point with located global maximum

Figure 5: Examples of matching rectangles (red) for pre-

dicted object location (blue). The actual center of the de-

tected connected component is drawn by green color. The

figure shows that the longer side of the rectangle is di-

rected to the first vanishing point.

consequent frame to its predicted location. The first con-

dition states that the matched object must have similar col-

ors. This condition is enforced by correlating histograms

of objects in HSV color space. The second and last con-

dition is that the center of matched object must be inside

of so called matching rectangle. The predicted location of

a car is the center of this matching rectangle and the longer

side of the rectangle is directed towards the first vanishing

point, as it is shown in Figure 5, and the matching rectan-

gle has size 30× 15 pixels. This condition is built on the

assumption that the vehicle is going either in the direction

towards the vanishing point or from the vanishing point,

and therefore it is expected that in this direction can be

higher displacement from the predicted location. Lastly,

the closest connected component which meets the condi-

tions presented above is found for each object and its pre-

dicted location in the consequent frame.

When a match is not found in several consequent

frames, the tracked object is removed from the pool of

tracked objects. Several filters are used for determining

if the object should be accounted in the statistics of passed

cars. The trajectory of the object is approximated by a line

using least squares approximation. After that, the distance

of the first vanishing point from the line is measured. Let

us denote this distance as dvp. Also, the ratio r, Eq. (1),

between passed distance and maximal possible distance

which an object can pass in the given trajectory is mea-

sured, Figure 6 shows the positions of Pe, Ps, Le and Ls.

The object is accounted in the statistics as a vehicle if the

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

acc variable is equal to 1, Equation (2), where tvp and tr
are predefined thresholds.

r =
||Pe −Ps||

||Le −Ls||
(1)

acc =

{

1 dvp ≤ tvp and r ≥ tr
0 otherwise

(2)

2.3 Direction Estimation and Lane Detection

For a new vehicle which is about to be added to the statis-

tics, the direction of the vehicle and its lane is calculated.

Rule (3), which compares the relative positions of the first

vanishing point and the last and first position of the vehi-

cle, is used for computing the direction.

dir =

{

To VP ||V P1 −Pe||< ||V P1 −Ps||
From VP otherwise

(3)

The detection of lanes is based on clustering of the

trajectories of cars. Therefore, the trajectory is also ap-

proximated by a line with least squares approximation,

see green line in Figure 6. Each cluster of the lines cor-

responds to a lane in the monitored traffic surveillance

scene and the clustering is performed in a one-dimensional

space, where the values of the trajectory lines are their

angles with axis x in the image. The clusters itself are

searched as local maxima in the histogram of the angles.

Hence, the clusters have to be a local maximum in the his-

togram in a predefined surroundings and also the maxi-

mum has to have at least a predefined amount of accumu-

lated lines. The closest lane is assigned to a new passing

vehicle as the lane which the vehicle is using. The closest

lane computation is also based on the angles of the trajec-

tory line and the lane with axis x.

This clustering is always performed after every 200 tra-

jectory lines are accumulated and a unique identification

number is assigned to each cluster. Let us denote the set

of clusters as CN = {(c1,a1), . . . ,(cn,an)} where N is the

number of accumulated lines, and pair (ci,ai) denotes one

cluster, where ci is its identification number and ai the

angle corresponding to the found local maximum. Cor-

respondences for clusters CN and CN−200 are searched in

order to obtain the temporal consistency of detected lanes

in the scene. The clusters’ identification numbers would

change after every 200 accumulated lines if the correspon-

dences were not found; and therefore, it would be impos-

sible to create long-term statistics for cars passing in the

detected lanes.

The identification number of the found correspondence

is assigned to a cluster if the correspondence is found.

A new unique identification number is assigned to the clus-

ter otherwise. The correspondence for a cluster (ci,ai) ∈
CN is a cluster (c j,a j) ∈ CN−200 for which (4) and (5)

hold. The distance function is computed according to

Equation (6) which compensates that the angles 0 and 2π

have distance from each other 0.

a j =CN−200

(

argmin
c

|dist(CN−200 (c) ,ai)|
)

(4)

Figure 6: Measured distances for a passed object. The

distance between approximated line (green) and the first

vanishing point (yellow) is measured. Also, the distance

between the first and last (Ps, Pe) point of the track of a ve-

hicle is measured. The maximal distance which is possible

to pass with a given trajectory is also measured (distance

of Ls and Le).

dist(a j,ai)≤ td (5)

dist(x,y) = min(2π −|x− y|, |x− y|) (6)

The dominant direction is also computed for each clus-

ter c of the trajectory lines. The dominant direction dirc is

computed according to (7), where lV P is the amount of the

trajectories in the cluster which have direction towards the

first vanishing point and l is the number of all trajectories

in the cluster. Reasonable value for threshold tdom is 0.1.

dirc =







To VP
lV P

l
≥ 1− tdom

From VP
lV P

l
≤ tdom

Mixed otherwise

(7)

When the dominant direction for a lane is known, it is

possible to detect vehicles which are traveling in wrong

way. The detection is based on the detected direction dir

of the vehicle and the dominant direction dirc of the lane

which the vehicle belongs to. The wrong way variable ww

is determined by (8).

ww =







True dir = To VP∧dirc = From VP

True dir = From VP∧dirc = To VP

False otherwise

(8)

3 Results

This section presents the achieved results and methods of

evaluation of the algorithms, which were presented above.

The speed of video processing is also discussed.

The presented traffic analysis system was evaluated on

several video streams. The processed video streams have

resolution 854 × 480 and the video camera was located

several meters above the road. The angle of the video cam-

era varies as Figure 8 shows.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

0 100 200 300 400 500 600 700

False Positives

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ru
e
P
os
it
iv
e
ra
te

(a) ROC curve

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
on

(b) Precision-Recall curve

Figure 7: ROC and Precision-Recall curves for detection and tracking of vehicles in video. Configuration providing the

best results has F-Measure equal to 0.915 and is marked by red color.

Figure 8: Examples of videos for detection and tracking

evaluation. Virtual line which was used for manual ground

truth annotation is drawn by red color.

3.1 Detection and Tracking

A manually annotated dataset was created for the evalua-

tion of accuracy of the detection and tracking of vehicles.

Imaginary line, see Figure 8, which is crossing the center

of image and dividing frames into two equal parts was dis-

played and for each car, the location and time of crossing

the line was annotated. Almost 30 minutes of video was

annotated in this way resulting in almost 800 vehicles in

the dataset.

The comparison with the ground truth annotation was

performed in the following way. For each vehicle which

was detected by the traffic analysis system, the trajectory

is approximated by a line and the intersection of the ap-

proximation with the imaginary line is computed. A match

with the ground truth is a vehicle which has trajectory with

close intersection to the ground truth intersection and pro-

jected time of passing this intersection does not differ too

much. If there are more vehicles which satisfy this con-

dition, the vehicle with the smallest time and intersection

difference is selected as the match with the ground truth.

This way of evaluation was selected because the system

targets mainly on overall statistics of passed vehicles.

Nine various configurations which have different max-

imal distance to the first vanishing point and minimal

passed distance of a vehicle were created and evalu-

ated. The ROC and Precision-Recall curves are in Fig-

ure 7. Configuration providing the best results has F-

Measure [19] equal to 0.915 (Precision is 0.905 and Re-

call 0.925). The False Negative cases are caused mainly

by vehicle occlusions. The occlusions are caused either

by a shadow which connects vehicles into one connected

component or by a situation when a vehicle partially cov-

ers some other vehicle. The False Positives are caused pri-

marily by the motion detection incorrectly dividing a vehi-

cle into two objects and both these objects are tracked and

treated as vehicles.

3.2 Direction Estimation and Lane Detection

Several video sequences with a sufficient number of cars

were obtained and stability of detected lanes was evalu-

ated for these videos. The results of the evaluation are in

Figure 9 and as the graphs show, the detected lanes are al-

most totally stable and do not change with passing cars.

It should be noted that the detected lanes are recomputed

always after next 200 cars were observed. Also the di-

rections of the lanes were correctly detected as shown in

Figures 9 and 10.

3.3 Evaluation of Speed

Processing speed of the system was also evaluated and the

results are in Table 1. The measured framerates include

also reading and decoding the video. The system was eval-

uated on a machine with Intel Dual-Core i5 1.8 GHz and

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

resolution traffic intensity FPS

854×480
high 57.97

low 82.43

1920×1080
high 28.59

low 47.88

Table 1: Processing speed evaluation. Approximately 110

minutes of video were used for the evaluation. The videos

were divided into groups with respect to the traffic inten-

sity. It should be also noted that the system uses video

stream downsampled to ∼ 10 FPS, so that the movement

is detectable and measurable.

8GB DDR3 RAM. As the table shows, the system can be

used for real-time analysis of Full-HD traffic surveillance

video. The framerates are higher in videos with lower traf-

fic intensity. The video sequences with higher traffic in-

tensity contain more motion and vehicles which need to

be tracked; therefore, more computational resources are

used.

4 Conclusions

This paper presents a system for fully automated traffic

analysis from a single uncalibrated camera. The camera

is automatically calibrated, vehicles are detected, tracked

and their direction is computed. Also, the lanes are de-

tected and therefore cars travelling in the wrong way can

be detected. The system works in real time and in a fully

automated way and therefore it can be used for online traf-

fic analysis with any camera which is monitoring a high-

way or a street. The system is ready for deployment and it

is currently used for online traffic analysis.

The system is able to work under bad lightning and

weather conditions. However, for example at night or

during rainy weather, the accuracy of detection and track-

ing decreases slightly because of light reflections from the

road. On the other hand, the initialization process can be

performed at night without any problem, it will just take

longer time because there is a lower amount of vehicles on

streets at night.

The main contribution and advantage of the proposed

traffic analysis system is that the system works without any

manual input whatsoever and the set of conditions which

a trajectory of a moving object in video is considered to be

a vehicle. Future development of the system will focus

mainly on complex crossroads and shadow elimination.

Also, elimination of pedestrians from statistics should be

addressed.

References

[1] C. Aydos, B. Hengst, and W. Uther. Kalman filter

process models for urban vehicle tracking. In Intel-

ligent Transportation Systems, 2009. ITSC ’09. 12th

International IEEE Conference on, pages 1–8, Oct

2009.

[2] D. Beymer, P. McLauchlan, B. Coifman, and J. Ma-

lik. A real-time computer vision system for mea-

suring traffic parameters. In Computer Vision and

Pattern Recognition, 1997. Proceedings., 1997 IEEE

Computer Society Conference on, pages 495–501,

1997.

[3] F.W. Cathey and D.J. Dailey. A novel technique

to dynamically measure vehicle speed using uncali-

brated roadway cameras. In Intelligent Vehicles Sym-

posium, pages 777–782, 2005.

[4] Hsu-Yung Cheng and Shih-Han Hsu. Intelligent

highway traffic surveillance with self-diagnosis abili-

ties. Intelligent Transportation Systems, IEEE Trans-

actions on, 12(4):1462–1472, Dec 2011.

[5] Benjamin Coifman, David Beymer, Philip McLauch-

lan, and Jitendra Malik. A real-time computer vi-

sion system for vehicle tracking and traffic surveil-

lance. Transportation Research Part C: Emerging

Technologies, 6(4):271 – 288, 1998.

[6] Rong Dong, Bo Li, and Qi-mei Chen. An automatic

calibration method for PTZ camera in expressway

monitoring system. In World Congress on Computer

Science and Information Engineering, pages 636–

640, 2009.

[7] Yuren Du and Feng Yuan. Real-time vehicle track-

ing by kalman filtering and gabor decomposition. In

Information Science and Engineering (ICISE), 2009

1st International Conference on, pages 1386–1390,

Dec 2009.

[8] M. Dubská, A. Herout, R. Juránek, and J. Sochor.

Fully automatic roadside camera calibration for traf-

fic surveillance. Submitted to: IEEE Transactions on

ITS, 2014.

[9] Markéta Dubská and Adam Herout. Real projective

plane mapping for detection of orthogonal vanish-

ing points. In British Machine Vision Conference,

BMVC, 2013.

[10] George S. K. Fung, Nelson H. C. Yung, and

Grantham K. H. Pang. Camera calibration from road

lane markings. Optical Engineering, 42(10):2967–

2977, 2003.

[11] T. Horprasert, D. Harwood, and L. S. Davis. A statis-

tical approach for real-time robust background sub-

traction and shadow detection. In Proc. IEEE ICCV,

volume 99, pages 1–19, 1999.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

0 200 400 600 800 1000 1200

Passed cars

-90

-70

-50

-30

-10

10

30

50

70

90

A
n
gl
e
of

la
n
es

[◦
]

1

2

3

4

5

6

0 200 400 600 800 1000

Passed cars

-90

-70

-50

-30

-10

10

30

50

70

90

A
n
gl
e
of

la
n
es

[◦
]

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600 1800

Passed cars

-90

-70

-50

-30

-10

10

30

50

70

90

A
n
gl
e
of

la
n
es

[◦
]

1

2

3

4

5

1 2 3 4 5 6
0

50

100

150

200

250

300

350

C
ar
s
C
ou

n
t

Statistics of Lanes

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

C
ar
s
C
ou

n
t

Statistics of Lanes

C
ar
s
C
ou

n
t

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

C
ar
s
C
ou

n
t

Statistics of Lanes

Figure 9: Stability of lanes detection for long video sequences. The top line of images presents the detected lanes. Only

lanes which were valid for the last frame of video are drawn. The middle images show changes in detected lanes over time

as new cars were observed in video. Finally, the bottom line shows the statistics of observed cars in the detected lanes.

[12] Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen, and

Wen-Fong Hu. Automatic traffic surveillance sys-

tem for vehicle tracking and classification. Intelli-

gent Transportation Systems, IEEE Transactions on,

7(2):175–187, 2006.

[13] Lili Huang. Real-time multi-vehicle detection and

sub-feature based tracking for traffic surveillance

systems. In Informatics in Control, Automation and

Robotics (CAR), 2010 2nd International Asia Con-

ference on, volume 2, pages 324–328, March 2010.

[14] Young-Kee Jung and Yo-Sung Ho. Traffic parameter

extraction using video-based vehicle tracking. In In-

telligent Transportation Systems, 1999. Proceedings.

1999 IEEE/IEEJ/JSAI International Conference on,

pages 764–769, 1999.

[15] R. E. Kalman. A new approach to linear filtering

and prediction problems. Transactions of the ASME

– Journal of Basic Engineering, (82 (Series D)):35–

45, 1960.

[16] Neeraj K Kanhere, Stanley T Birchfield, and

Wayne A Sarasua. Automatic camera calibration

using pattern detection for vision-based speed sens-

ing. Journal of the Transportation Research Board,

2086(1):30–39, 2008.

[17] Dieter Koller, Joseph Weber, and Jitendra Malik. Ro-

bust multiple car tracking with occlusion reasoning.

pages 189–196. Springer-Verlag, 1993.

[18] A. H S Lai and N. H C Yung. Lane detection by

orientation and length discrimination. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Trans-

actions on, 30(4):539–548, Aug 2000.

[19] Christopher D MANNING, Prabhakar RAGHAVAN,

and Hinrich SCHÜTZE. Introduction to Information

Retrieval. Cambridge University Press, 2008.

[20] J. Melo, A. Naftel, A. Bernardino, and J. Santos-

Victor. Detection and classification of highway lanes

using vehicle motion trajectories. Intelligent Trans-

portation Systems, IEEE Transactions on, 7(2):188–

200, June 2006.

[21] B. Morris and M. Trivedi. Robust classification and

tracking of vehicles in traffic video streams. In In-

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 10: Example of detected lanes and dominant direction of cars in the lanes. Green color means that the majority

of cars is heading towards the first vanishing point and red the opposite. Yellow color means that there is no dominant

direction for the given lane. Example of this situation is shown in bottom right image. It should be noted, that the centers

of cars, which are used for lanes detection, are not in the middle of the lanes because of the angle of view.

telligent Transportation Systems Conference, 2006.

ITSC ’06. IEEE, pages 1078–1083, 2006.

[22] Roya Rad and Mansour Jamzad. Real time classi-

fication and tracking of multiple vehicles in high-

ways. Pattern Recognition Letters, 26(10):1597 –

1607, 2005.

[23] T.N. Schoepflin and D.J. Dailey. Dynamic camera

calibration of roadside traffic management cameras

for vehicle speed estimation. IEEE Transactions

on Intelligent Transportation Systems, 4(2):90–98,

2003.

[24] J. Shi and C. Tomasi. Good features to track. In Com-

puter Vision and Pattern Recognition, 1994. Pro-

ceedings CVPR ’94., 1994 IEEE Computer Society

Conference on, pages 593–600, Jun 1994.

[25] Kai-Tai Song and Jen-Chao Tai. Dynamic calibra-

tion of Pan–Tilt–Zoom cameras for traffic monitor-

ing. IEEE Transactions on Systems, Man, and Cyber-

netics, Part B: Cybernetics, 36(5):1091–1103, 2006.

[26] C. Stauffer and W. E. L. Grimson. Adaptive back-

ground mixture models for real-time tracking. In

Computer Vision and Pattern Recognition, volume 2,

pages 246–252, 1999.

[27] Carlo Tomasi and Takeo Kanade. Detection and

tracking of point features. School of Computer Sci-

ence, CMU, 1991.

[28] B.L. Tseng, Ching-Yung Lin, and J.R. Smith. Real-

time video surveillance for traffic monitoring us-

ing virtual line analysis. In Multimedia and Expo,

2002. ICME ’02. Proceedings. 2002 IEEE Inter-

national Conference on, volume 2, pages 541–544

vol.2, 2002.

[29] Kunfeng Wang, Hua Huang, Yuantao Li, and Fei-Yue

Wang. Research on lane-marking line based camera

calibration. In International Conference on Vehicu-

lar Electronics and Safety, ICVES, 2007.

[30] Zhaoxiang Zhang, Tieniu Tan, Kaiqi Huang, and

Yunhong Wang. Practical camera calibration from

moving objects for traffic scene surveillance. IEEE

Transactions on Circuits and Systems for Video Tech-

nology, 23(3):518–533, 2013.

[31] Z. Zivkovic. Improved adaptive gaussian mixture

model for background subtraction. In Pattern Recog-

nition, 2004. ICPR 2004. Proceedings of the 17th In-

ternational Conference on, volume 2, pages 28–31

Vol.2, 2004.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORATION SYSTEMS 1

Fully Automatic Roadside Camera Calibration

for Traffic Surveillance

Markéta Dubská1, Adam Herout1,2, Roman Juránek1, Jakub Sochor1

1Graph@FIT, Brno University of Technology, CZ
2click2stream, Inc.

CONFIDENTIAL UNPUBLISHED MANUSCRIPT.
This paper deals with automatic calibration of roadside surveillance cameras. We focus on parameters necessary for measurements

in traffic surveillance applications. Contrary to the existing solutions, our approach requires no a priori knowledge and it works
with a very wide variety of road settings (number of lanes, occlusion, quality of ground marking), and with practically unlimited
viewing angles. The main contribution is that our solution works fully automatically – without any per-camera or per-video manual
settings or input whatsoever – and it is computationally cheap.

Our approach uses tracking of local feature points and analyzes the trajectories in a manner based on Cascaded Hough Transform
and parallel coordinates. An important assumption for the vehicle movement is that at least a part of the vehicle motion is
approximately straight – we discuss the impact of this assumption on the applicability of our approach and show experimentally,
that this assumption does not limit the usability of our approach severely.

We efficiently and robustly detect vanishing points which define the ground plane and vehicle movement. Our algorithm
also computes parameters for radial distortion compensation. Experiments show that the obtained camera parameters allow for
measurements of length (and potentially speed) with ∼ 2% mean accuracy. The processing is performed easily in real time and
typically, a two minutes long video is sufficient for stable calibration.

Index Terms—Camera Calibration, Vanishing Points, Hough Transform, Diamond Space, PClines, Speed Estimation, Orthogonal
Vanishing Points, Ground Plane Estimation, Camera Surveillance, Camera Distortion Correction

I. INTRODUCTION

THE number of internet-connected cameras is quickly

increasing and a notable amount of them are used in

traffic monitoring. At the moment, many of these are used

primarily for simply transferring the image to a human opera-

tor and they lack automatic processing. This is mainly because

machine vision-based data mining algorithms require manual

configuration and maintenance, involving a considerable effort

of skilled personnel and in many cases also measurements and

actions taken in the actual real life scene [1]–[5]. The goal of

our research is to provide fully automatic (no manual input

whatsoever) traffic processing algorithms – leading towards

vehicle classification and counting, speed measurement, con-

gestion detection, etc. Different applications can be fostered

by compensation of local projection [6].

In this paper, we are dealing with the problem of fully

automatic camera calibration in a common traffic monitoring

scenario. We automatically determine radial distortion com-

pensation parameters and solve the calibration of internal

camera parameters as well as external parameters (camera ori-

entation and position up to scale with respect to the dominant

motion of the vehicles). The solution is fully automatic in

the sense that there are no inputs or configuration parameters

specific to a particular traffic setting, camera type, etc. Also,

we are not assuming any appearance model of the vehicles

which would differ for different countries, time periods and

Manuscript received ??, 2014; revised ??, 2014. Corresponding author:
Adam Herout (http://www.fit.vutbr.cz/∼herout)

Fig. 1. We propose a fully automatic approach to camera calibration
by recognizing the three dominant vanishing points which characterize the
vehicles and their motion. top: Three recognized vanishing points. bottom:
Various scenes where the algorithm automatically calibrates the camera.

the kind of traffic on the particular road. Moreover, we assume

no a priori knowledge about the road itself (number of lanes,

appearance of the marking, presence of specific features, etc.).

The only assumption is approximately straight movement

of the vehicles. Experiments show that normal curves on

highways are still “straight-enough” to meet our assumption.

Sharp corners cannot be directly handled by our approach and

will be subject of further study.

2 SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORATION SYSTEMS

Because of the lack of information which can be obtained

from road data, the majority of methods assume the principal

point to be in the center of the image [7], [8]. A popular

assumption also is a horizontal horizon line, i.e. zero roll of

the camera [7], [9], [10] – which turns out to be severely

limiting – because it is difficult to find an actual roadside

camera meeting this assumption accurately enough.

Some works require user input in the form of annotation

of the lane marking with known lane width [2] or marking

dimensions [3], camera position [2], [11], average vehicle

size [12] or average vehicle speed [7]. A common feature

of virtually all methods is detection of the vanishing point

corresponding to the direction of moving vehicles. A popular

approach to obtaining this VP is to use road lines [5], [8] or

lanes [8], [10], more or less automatically extracted from the

image. These approaches typically require a high number of

traffic lanes and a consistent and well visible lane marking.

Another class of methods disregard the line marking on

the road (because of its instability and impossible automatic

detection) and observe the motion of the vehicles, assuming

straight and parallel trajectories in a dominant part of the view.

Schoepflin and Dailey [7] construct an activity map of the road

with multiple lanes and segment out individual lanes. Again,

this approach relies on observing a high number of traffic

lanes – high-capacity motorways and similar settings. Other

researchers detect vehicles by a boosted detector and observe

their movement [13], or analyze edges present on the vehicles

[14]. Beymer et al. [4] accumulate tracked feature points,

but also require the user to provide defined lines by manual

input. Kanhere and Birchfield [15] took a specific approach for

cameras placed low above the street level. Once the calibration

and scene scale is available, the road plane can be rectified and

various applications such as speed measurement can be done

in a straightforward manner [3], [9], [11], [16].

We assume that the majority of vehicles move in straight,

mutually parallel trajectories. Our experiments verify that

our approach is tolerant to a high rate of outliers from this

assumption and it is easily and reliably applicable on a vast

majority of real traffic surveillance videos. The calibration of

internal and external parameters of the camera is achieved by

first computing three orthogonal vanishing points [17]–[19]

which define the vehicle motion.

The calibration is provided up to scale which is generally

impossible to determine (from just an image, one can never

tell a matchbox models from real vehicles). The scale can be

provided manually [2], [11] or recognized by detecting known

objects [12].

We harness a finite and linear parameterization of the

real projective plane recently published by Dubská and Her-

out [20]. They streamlined the Cascaded Hough Transform by

stacking two stages and skipping one intermediate accumu-

lation step. This approach allows for detection of vanishing

points (and triplets of orthogonal vanishing points) from noisy

linelet data. This input data can be coming online and be

accumulated to a fixed-size accumulation space – which is

suitable in online video processing. Instead of using road

marking or lane border edges [3], [5], [7] we accumulate

fractions of trajectories of detected feature points on moving

objects and relevant edges.

Contrary to previous works, our approach provides the cam-

era calibration fully automatically for very versatile camera

views and road contexts (coming and going vehicles, from the

side, from the top, small roads and highways, close-up and

fisheye lenses, . . .). The method can be applied on virtually

any roadside camera without any user input whatsoever – the

experiments presented in the paper were done without any

per-camera or per-video settings.

We collected a set of video recordings of traffic on roads

of different scales, with various cameras, in different weather

conditions. The MATLAB source codes and the video dataset

are publicly available for comparison and future work1.

II. AUTOMATIC ROADSIDE CAMERA CALIBRATION

Let us consider a road scene with a single principal direction

of the vehicle movement. The position of the ground plane and

the direction of the vehicle movement relative to the camera

can be defined and described by three vanishing points [17],

[18].

Figure 1 shows the vanishing points and the color notation

and VP visualization to be used throughout this paper: red:

First vanishing point – in the direction of the car motion;

green: Second vanishing point – in the ground plane, perpen-

dicular to the vehicle motion; blue: Third vanishing point –

perpendicular to the ground plane. We find it intuitive to use

dense markers pointing towards the three vanishing points. The

positions of the markers are irrelevant – they are distributed

in a regular grid.

We assume cameras without skew and with equal scale in

horizontal and vertical directions (aspect ratio = 1, square

pixels). From our experience, these assumptions are perfectly

met for all practically used surveillance cameras. Also, fol-

lowing most previous works in this field [7]–[10], we assume

the camera’s principal point to be at the image center. This

assumption is met approximately, not exactly (contrary to

the previous ones). However, for the target applications of

our algorithms – distance/speed measurement, re-projection of

observed objects into the 3D space, etc. – the error caused by

this assumption is tolerable (see measurements in Section III).

Although we can afford to consider this much simplified

camera model, radial distortion – usually perceived as a more

advanced camera parameter – cannot be omitted for some

cameras. Practically used cameras, even the expensive and

sophisticated ones, tend to exhibit a high degree of radial

distortion – see Figure 9 for sample images from state-of-

the-art GoPro mobile and Axis surveillance cameras. Radial

distortion compensation is therefore dealt with in Section II-D.

A. First Vanishing Point Extraction

The vanishing point of direction parallel to the movement

of the vehicles is considered to be the first vanishing point.

For its detection, a Hough transform based on the parallel

coordinates is used [20]. This method maps the whole 2D

projective plane into a finite space referred to as the diamond

space by a piecewise linear mapping of lines.

1http://medusa.fit.vutbr.cz/pclines

DUBSKÁ, HEROUT, JURÁNEK, SOCHOR: FULLY AUTOMATIC ROADSIDE CAMERA CALIBRATION FOR TRAFFIC SURVEILLANCE 3

Fig. 2. Illustration of the tracked points. Points marked by green exhibit a significant movement and they are accumulated. Points marked by yellow are
stable points and do not vote. The accumulated diamond space is in the top left corner.

Fig. 3. Tracked points and their classification based on the first VP position. Points marked by red/green move towards/from the first VP. Points marked by
yellow are moving elsewhere.

In each video frame, feature points are detected (minimum

eigenvalue algorithm [21] is used in the experiments) and

tracked by KLT tracker [22] in the subsequent frame. Suc-

cessfully detected and tracked points exhibiting a significant

movement are treated as fragments of vehicle trajectories.

These fragments of trajectories are extended to infinite lines,

assuming that they pass through the first vanishing point. All

these lines vote in the diamond space accumulator. The most

voted point is considered to be the first vanishing point.

The diamond space turns out to be robust to noise and it

provides reliable estimates of the most distinctive vanishing

point in the frame. Experiments show that in most cases,

observing only two or three vehicles suffices to find a good

estimate of the first VP. Later, with more observation and

accumulation, the first vanishing point is very stable and

accurate – we have not seen a single video where the first

vanishing point was not established correctly or was unstable.

Figure 2 shows the tracked points accumulated to the

diamond space. Once the first VP is determined, moving points

can be discerned whether they move towards the VP or from it,

or whether they are moving in a completely different direction,

see Fig. 3.

B. Second Vanishing Point

The second vanishing point is the direction parallel to the

road (or the ground plane) and perpendicular to the first direc-

tion. Again, the diamond space [20] is used for its detection.

Many edges on the vehicles coincide with the second vanishing

point and thus we let them vote in the accumulation space.

We use an edge background model in order to select only

edges on moving objects – probable vehicles. The model is

updated by each frame to deal with shadows and other slow

4 SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORATION SYSTEMS

Fig. 4. Accumulation of the 2
nd vanishing point. Blue edges belong to the background (Fig. 5). Yellow edges are omitted from voting because of their

vertical direction or direction towards the first VP. Red edges are accumulated to the diamond space (in the corner; green circle marks the maximum).

..
.

Fig. 5. Model of background edges. Significant edges are further processed
(Fig. 4) only if recognized as foreground (yellow). Background (cyan) and
insignificant (magenta) edges are omitted.

changes. The edge background model stores for each pixel

the confidence score of occurrence of an oriented edge. We

use eight bins to store likelihoods for different orientations,

Fig. 5. Note, that the background model is computationally

inexpensive because only strong edges are used, Fig. 4.

The edges passing the background test are further processed

and filtered. The first vanishing point is known from previous

processing and edges supporting this VP are excluded from

accumulation. Also the edges with approximately vertical

direction are omitted from voting, based on the assumption

of scene horizon being approximately horizontal (with a high

tolerance ±45◦). This condition can be disregarded when

the first VP is detected to be close to infinity. In such a

case, the edges supporting the second VP are allowed to

have vertical direction. However, these cases are not frequent,

because traffic surveillance cameras are rarely observing the

road exactly from profile. Figure 4 shows the edge background

model, omitted and accumulated edges together with the

diamond space.

C. Third Vanishing Point, Principal Point and Focal Length

The third vanishing point corresponds to the direction

perpendicular to the ground plane. Unfortunately, in majority

of the roadside views, there seems to be minimal amount of

edges supporting the third VP. Instead of finding the third VP,

we calculate its position by using the first two VPs (U and V)

and the assumption that the principal point P is in the middle

of the image. Two VPs and position of the principal point are

sufficient for computing focal length f :

U = (ux, uy) V = (vx, vy) P = (px, py)

f =
√

−(U − P) · (V − P).
(1)

With a known f , the third VP, denoted as W , can be calculated

as
U ′ = (ux, uy, f) V ′ = (ux, uy, f)

P ′ = (px, py, 0)

W ′ = (U ′ − P ′)× (V ′ − P ′),

(2)

where U ′, V ′,W ′, P ′ stand for the world coordinates of the

points and U, V, P for the coordinates in the image plane.

When one of the first two vanishing points is in infinity,

the focal length f and also the third vanishing point can-

not be calculated. However, for some applications, e.g. the

distance/speed measurement, knowing just first two VPs is

enough. In these cases, the vanishing points in infinity are

handled gracefully thanks to use of homogeneous coordinates

and because the diamond space used for their detection rep-

resents the whole projective plane, including the ideal points

(points in infinity).

D. Radial Distortion

The previous sections discussed the core contribution of our

article – calibration of the road scene. This section extends

the contribution by one more step, which is optional. In

practice, some real-life cameras exhibit a large degree of

radial distortion; however, some cameras are practically free

from it – depending on the used optics. Depending on the

particular camera, application of radial distortion compen-

sation might not be necessary. That is why we have not

discussed this issue until now; although this phase of radial

distortion compensation precedes the calibration in a practical

DUBSKÁ, HEROUT, JURÁNEK, SOCHOR: FULLY AUTOMATIC ROADSIDE CAMERA CALIBRATION FOR TRAFFIC SURVEILLANCE 5

k
2

k
1

0.04

0.02

0

-0.02

-0.04

0.04

0.02

0

-0.02

-0.04

-0.04 -0.02 0 0.02 0.04

Fig. 6. Radial distortion compensation. Even though for the calibration itself just a part of the road has to be approximately straight, for radial distortion
compensation, the road has to be straight along a major part of the vehicle movement. In this example, trajectories end before the turn because motion of the
cars is small there and the tracker got naturally lost. left top: Original image with trajectories. right: Parameter space with value calculated from trajectories
using (4). Green cross stands for the optimal parameter combination found by the evolution algorithm. The color gradient shows the error for each combination
of the parameters k1, k2. left bottom: Undistorted image using the optimal coefficients.

implementation. It should be noted that apart from radial

distortion, practically observed cameras are equipped with

reasonable optics. Therefore, the assumption of principal point

being in the image center (or close to it), absence of skew and

equal scale in x and y directions (“square pixels”) are kept

and the presented algorithm is general.

Provided the assumption of the road being straight, the

tracked trajectories can be used to compensate for the camera’s

radial distortion [23]. It should be noted that the requirement

for straight road is much less strict in the case of the calibration

itself (refer to Figure 8). The corrected position (x, y) of input

point (x, y) can be modeled by the polynomial radial distortion

model [24] defined by:

x = (x− xc)(1 + k1r
2 + k2r

4 + . . .)

y = (y − yc)(1 + k1r
2 + k2r

4 + . . .)

r =
√

(x− xc)2 + (y − yc)2

, (3)

where (xc, yc) define the position of the distortion center and

coefficients ki are unknown distortion parameters.

In order to find K = {k1, k2,}, the extracted tra-

jectories T are used. Each point is tracked until the tracker

is lost. Each trajectory represented by a sequence of points

τ = {a1, a2, . . .} ∈ T , are projected by (3) to their trans-

formed versions τK . Optimal parameters K∗ are found by

minimization of the sum of square differences of all points in

all trajectories to their best fitting lines ℓτK
:

K∗ = argmin
K

∑

τ∈T

∑

a∈τ

(ℓτK
· a)2. (4)

We use (1+ λ)-ES evolutionary strategy (with λ = 8) [25] to

search for the first two coefficients. The optimization was done

on-line. When new trajectories were tracked, one iteration of

the optimization was executed. The whole radial distortion

compensation process is shown in Figure 6.

In practice, the radial distortion compensation is computed

first. Then, accumulation of the vanishing points is performed

on the undistorted tracked features, i.e. the tracked features

and edges are transformed by eq. (3) and algorithms in

Sections II-A and II-B are working on (x̄, ȳ) pairs. Once the

radial distortion is compensated for, accumulation of the two

VPs can happen simultaneously.

E. Camera Calibration from the Vanishing Points

The problem of obtaining camera projection matrix P from

detected vanishing points has already been discussed several

time. Therefore, in this section we provide only a brief

overview; more information can be found elsewhere [10], [14].

Projection matrix P transforms a world point [xw, yw, zw, 1]
′

into point [xp, yp, 1]
′ in the image plane:

λp[xp, yp, 1]
′ = P[xw, yw, zw, 1]

′. (5)

6 SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORATION SYSTEMS

Projection matrix P can be decomposed into three matrices –

one with intrinsic parameters of the camera K and two with

extrinsic parameters: rotation matrix R and translation vector

T:

P = K [R T]. (6)

With the assumption of zero skew, location of the principal

point in the center of image plane and unit aspect ratio, the

only parameter to be found in matrix K is the focal length f

derived before (1). The rotation matrix R is fully defined by

the positions of the three orthogonal VPs. For the translation

vector T, additional information have to be known; it can be

derived from the height of the camera from the ground – as

discussed by Zhang et al. [14] – or a known distance of two

projected points.

III. EXPERIMENTAL RESULTS

We evaluated our approach on 5 groups of videos, each

containing 5–8 videos. Videos in a common group share

the same camera intrinsic parameters (no changes of camera

settings were done between shots) but have different extrinsic

parameters and capture different scenes or scenes from a

different view.

First, we logically intended to evaluate the calibration accu-

racy by comparing the obtained camera parameters with cali-

bration parameters obtained by checkerboard-based calibration

[26]. In many cases, the focal length of the cameras was

high (cameras zoomed in) and the checkerboard calibration

was inaccurate itself (different individual calibrations ended

in dramatically different results). In cases of some cameras,

it could have been caused by the camera automatically re-

focusing to the calibration pattern (close to the cameras) and

back to the traffic scene. That is why we had to select a

different approach to evaluation – based on the intended appli-

cation tasks: distance/speed measurement. The same approach

has already been used in literature [14], which allows for fair

comparison.

In order to evaluate the accuracy of the vanishing points

detection, we compute the precision of length measurements

in videos similarly to Zhang et al. [14]. From each video, 15–

25 pairs of feature points are tracked in 21 subsequent frames.

These points are projected with the matrix obtained from the

vanishing points and we evaluate the stability of their distance

d. Error of ith pair in jth sequence is calculated as

eji =

∣

∣

∣

∣

1−
dij

dj

∣

∣

∣

∣

, (7)

where dj is the mean distance in the jth sequence. For each

video, two errors are computed from eji – the worst error

(evw) and the mean error (evm). The same is computed for each

group of videos (egw, egm).

Table I shows the worst and mean error for the groups

and the computed focal lengths. The focal length f is taken

from the video with the lowest evm in the group. We mention

it here in order to illustrate the differences in the camera

settings. Larger f leads to smaller length-measurement error

due to smaller perspective distortion and consequent smaller

dependence on the point tracker accuracy.

group g1 g2 g3 g4 g5

e
g

w (%) 6.5 1.8 10.1 5.3 4.0
e
g

m (%) 1.2 0.2 1.3 0.8 0.7
f 705.7 7163.7 674.6 769.6 2465.1

TABLE I
MEAN AND WORST LENGTH-MEASUREMENT ERROR FOR GROUPS OF

VIDEOS IN % AND THE COMPUTED FOCAL LENGTHS.

video v1 v2 v3 v4 v5 v6
ev
w

(%) 5.5 6.0 5.2 4.7 5.3 6.4
ev
m

(%) 1.0 1.3 1.1 0.8 1.3 1.6
f 742.0 688.2 685.0 705.7 803.8 830.0

TABLE II
MEAN AND WORST LENGTH-MEASUREMENT ERROR FOR INDIVIDUAL

VIDEOS WITHIN GROUP G1 AND COMPUTED FOCAL LENGTHS.

As a particular example, Table II shows the mean and worst

errors and the computed focal lengths for all videos from group

g1 (one video from the group is shown in Fig. 2).

The extracted focal length in Table II differs. Its error can be

caused by some videos having the second VP near infinity and

by camera refocusing automatically (because the viewpoint

changed). However, an error in estimation of camera f does

not prevent the measurement (the desired traffic surveillance

application) to be precise enough in all cases. This is because

the VP near infinity does not increase the measurement error

(although it spoils f). Zhang et al. [14] report similar measure-

ments (single scene, 28 point pairs, 6 sequences), their mean

error appears to be 6%, the worst 19%, the second worst

13%.

A. Evaluation of Speed

Our algorithm is fairly efficient – capable of processing

the video stream in real time. In order to demonstrate and

evaluate this, we created an efficient implementation in C++

and processed the input videos used in the evaluation above.

Table III shows the speed measurement results. The measure-

resolution traffic intensity
VP1 VP2

(ms)

854× 480
high 19 14

medium 19 11

1920× 1080
high 98 69

medium 97 57

TABLE III
SPEED EVALUATION. VP1 – FIRST VP ACCUMULATION (SEC. II-A), VP2 –

SECOND VP ACCUMULATION (SEC. II-B). THE TIMES ARE AVERAGED

FROM ALL MEASURED VIDEOS (APPROXIMATELY 3 MINUTES EACH) IN

TWO GROUPS (traffic intensity) WHICH DIFFER SLIGHTLY IN THEIR

QUANTITY OF OBSERVED CARS. IT SHOULD BE NOTED THAT OUR

ALGORITHM PROCESSES ONLY ∼ 5 FRAMES PER SECOND SO THAT THE

MOVEMENT OF TRACKED POINTS IS MEASURABLE AND STABLE.
THEREFORE, THE MEASURED TIMES IN ALL CASES (INCLUDING THE

FULL-HD VIDEO PROCESSING) ALLOW FOR COMFORTABLE REAL-TIME

PROCESSING.

ments were done on a machine with Intel Dual-Core i5 1.8

GHz and 8GB DDR3 RAM and the framerates are reported

for pure computation (video decompression etc. are omitted).

Our C++ implementation of first VP detection uses only

a limited number of tracked feature points therefore the

framerates are invariant to the traffic intensity. However, the

DUBSKÁ, HEROUT, JURÁNEK, SOCHOR: FULLY AUTOMATIC ROADSIDE CAMERA CALIBRATION FOR TRAFFIC SURVEILLANCE 7

Fig. 7. Examples of real-life videos: Automatic detection of three vanishing points. Here is a small selection of traffic scenes, more samples can be found
in the supplementary video. Three vanishing points are robustly found regardless of camera f (zoom), shadows, lighting conditions, camera position with
respect to the road (for reasonable traffic surveillance scenarios).

framerate of the second VP detection differs with respect to

the traffic intensity. The variance is caused especially by the

necessity to handle edge points of passing cars and therefore

accumulate more lines corresponding to the edge points into

the diamond space [20]. The second VP detection framerate

also depends on motion of other objects (people, moving trees

etc.) in the video stream.

B. Accumulation Convergence

The convergence of the accumulation of first and second VP

is shown in Figure 11. For the vast majority of the videos, the

first vanishing point remains totally stable since 160 seconds

of 50 FPS video and the second VP is stable after processing

250 seconds of video (Zhang et al. [14] mention processing

of 2 hours of recording).

IV. CONCLUSIONS

We present a method for fully automatic calibration of

roadside cameras. It requires no user input and assumes very

little about the scene itself. We experimented with videos taken

at roads of different classes (from small streets with little traffic

to busy highways) by various cameras (handycam, GoPro, IP

cameras, high-end and cheap ones) and lenses (from close-up

views to nearly fisheye). The results are stable, reliable and

usable by various applications without any per-video or per-

camera settings. The efficient implementation is fast and the

concept is thus ready for real-time implementation on low-end

hardware, even on full-HD video sources.

The solution consists of a method for compensation of

radial distortion and a way of obtaining three orthogonal

vanishing points related to the motion of the vehicles. These

three orthogonal VPs define intrinsic and extrinsic camera

8 SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORATION SYSTEMS

Fig. 8. Examples of real-life videos: Successful camera calibration/orientation in scenes with bent roads. These are to illustrate that the assumption of straight

vehicle motion is not very strict. However, radial distortion would be more difficult to compensate in these scenes.

0 80 160 240 320 400
0

0.2

0.4

0.6

0.8

1

Seconds

S
ta

b
le

 V
a

n
is

h
in

g
 P

o
in

ts

1
st

VP, t = 1

1
st

VP, t = 10

1
st

VP, t = 20

2
nd

VP, t = 1

2
nd

VP, t = 10

2
nd

VP, t = 20

Fig. 11. Convergence of VP1 and VP2 computation. We computed the pixel
distance between the vanishing point detected at the given time and the final
detection. For a threshold t, the time after which the distance is lower then
t is evaluated. The graph shows the fraction of videos reaching the threshold
condition withing the given number of seconds. It should be noted that only
every 4

th frame in a 50fps video was processed for the same reason as in
Table III.

parameters. Virtually any roadside scene captured by a static

camera can be fully automatically calibrated up to scale. Our

method assumes approximately straight motion of the vehicles

at least along a large portion of their motion. Bent roads and

sharp corners followed/preceded by a straight stretch of the

road are easily dealt with.

The main contribution and advantage is that we strictly

avoid any real-life measurement in the scene and/or any

manual input. Our algorithms open space for fully automatic

processing of almost any traffic surveillance video footage.

We collected a set of evaluation videos (see supplementary

video for examples) accompanied by ground truth calibration

parameters. This dataset, together with the MATLAB sources

is made available for comparison and future work2.

REFERENCES

[1] N. Kanhere and S. Birchfield, “A taxonomy and analysis of camera cali-
bration methods for traffic monitoring applications,” IEEE Transactions

on Intelligent Transportation Systems, vol. 11, no. 2, pp. 441–452, 2010.

2http://medusa.fit.vutbr.cz/pclines

[2] K. Wang, H. Huang, Y. Li, and F.-Y. Wang, “Research on lane-marking
line based camera calibration,” in International Conference on Vehicular

Electronics and Safety, ICVES, 2007.

[3] F. Cathey and D. Dailey, “A novel technique to dynamically measure ve-
hicle speed using uncalibrated roadway cameras,” in Intelligent Vehicles

Symposium, 2005, pp. 777–782.

[4] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, “A real-time
computer vision system for measuring traffic parameters,” in IEEE

Conference on Computer Vision and Pattern Recognition, CVPR, 1997.

[5] R. Dong, B. Li, and Q.-m. Chen, “An automatic calibration method for
PTZ camera in expressway monitoring system,” in World Congress on

Computer Science and Information Engineering, 2009, pp. 636–640.
[Online]. Available: http://dx.doi.org/10.1109/CSIE.2009.763

[6] L. Liu, J. Xing, G. Duan, and H. Ai, “Scene transformation for detector
adaptation,” Pattern Recognition Letters, 2013.

[7] T. Schoepflin and D. Dailey, “Dynamic camera calibration of roadside
traffic management cameras for vehicle speed estimation,” IEEE Trans-

actions on Intelligent Transportation Systems, vol. 4, no. 2, pp. 90–98,
2003.

[8] K.-T. Song and J.-C. Tai, “Dynamic calibration of Pan–
Tilt–Zoom cameras for traffic monitoring,” IEEE Transactions

on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 36, no. 5, pp. 1091–1103, 2006. [Online]. Available:
http://dx.doi.org/10.1109/TSMCB.2006.872271

[9] X. C. He and N. H. C. Yung, “A novel algorithm for estimating vehicle
speed from two consecutive images,” in IEEE Workshop on Applications

of Computer Vision, WACV, 2007.

[10] G. S. K. Fung, N. H. C. Yung, and G. K. H. Pang,
“Camera calibration from road lane markings,” Optical Engineering,
vol. 42, no. 10, pp. 2967–2977, 2003. [Online]. Available:
http://dx.doi.org/10.1117/1.1606458

[11] T.-W. Pai, W.-J. Juang, and L.-J. Wang, “An adaptive windowing
prediction algorithm for vehicle speed estimation,” in IEEE Intelligent

Transportation Systems, 2001.

[12] D. Dailey, F. Cathey, and S. Pumrin, “An algorithm to estimate mean
traffic speed using uncalibrated cameras,” IEEE Transactions on Intel-

ligent Transportation Systems, vol. 1, no. 2, pp. 98–107, 2000.

[13] N. K. Kanhere, S. T. Birchfield, and W. A. Sarasua, “Automatic camera
calibration using pattern detection for vision-based speed sensing,”
Journal of the Transportation Research Board, vol. 2086, no. 1, pp.
30–39, 2008.

[14] Z. Zhang, T. Tan, K. Huang, and Y. Wang, “Practical camera calibration
from moving objects for traffic scene surveillance,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 23, no. 3, pp. 518–
533, 2013.

[15] N. K. Kanhere and S. T. Birchfield, “Real-time incremental
segmentation and tracking of vehicles at low camera angles using
stable features,” IEEE Transactions on Intelligent Transportation

Systems, vol. 9, no. 1, pp. 148–160, 2008. [Online]. Available:
http://dx.doi.org/10.1109/TITS.2007.911357

[16] F. Cathey and D. Dailey, “Mathematical theory of image straightening
with applications to camera calibration,” in Intelligent Transportation

Systems Conference, 2006.

[17] R. Cipolla, T. Drummond, and D. P. Robertson, “Camera calibration

DUBSKÁ, HEROUT, JURÁNEK, SOCHOR: FULLY AUTOMATIC ROADSIDE CAMERA CALIBRATION FOR TRAFFIC SURVEILLANCE 9

Fig. 9. Examples of real-life videos: Radial distortion estimation and compensation. left: Original video (converted to grayscale). right: Processed video with
radial distortion compensated. red polylines: Tracks of features used in the computation.

from vanishing points in image of architectural scenes.” in British

Machine Vision Conference, BMVC, 1999.

[18] B. Caprile and V. Torre, “Using vanishing points for camera calibration,”
International Journal of Computer Vision, vol. 4, no. 2, pp. 127–139,
1990.

[19] J. Deutscher, M. Isard, and J. MacCormick, “Automatic camera
calibration from a single manhattan image,” in European Conference

on Computer Vision, ECCV, 2002, pp. 175–188. [Online]. Available:
http://dx.doi.org/10.1007/3-540-47979-1-12

[20] M. Dubská and A. Herout, “Real projective plane mapping for detection
of orthogonal vanishing points,” in British Machine Vision Conference,

BMVC, 2013.

[21] J. Shi and C. Tomasi, “Good features to track,” in IEEE Conference on

Computer Vision and Pattern Recognition, CVPR, 1994, pp. 593–600.

[22] C. Tomasi and T. Kanade, Detection and tracking of point features.
School of Computer Science, CMU, 1991.

[23] F. Devernay and O. Faugeras, “Straight lines have to be straight,”
Machine Vision and Applications, vol. 13, no. 1, pp. 14–24, 2001.

[24] D. C. Brown, “Close-range camera calibration,” Photogrammetric En-

gineering, vol. 37, no. 8, pp. 855–866, 1971.

[25] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies –a com-
prehensive introduction,” vol. 1, no. 1, pp. 3–52, May 2002.

[26] Z. Zhang, “A flexible new technique for camera calibration,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI,
vol. 22, no. 11, pp. 1330–1334, 2000.

10 SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORATION SYSTEMS

Fig. 10. Examples of real-life videos: Ghost images (composition of two images of different moments in time by blending) and measured equal distances.
These lines are observations of identical object measures at different times (consecutive frames). These distances are used in the evaluation (Tables I, II).

Markéta Dubská received the MS degree at Fac-
ulty of Information Technology, Brno University of
Technology, Czech Republic. She is currently a PhD
student at Department of Computer Graphics and
Multimedia at FIT Brno University of Technology.
Her research interests include computer vision, ge-
ometry and computation using parallel coordinates.

Adam Herout received his PhD from Faculty of
Information Technology, Brno University of Tech-
nology, Czech Republic, where he works as associate
professor and leads the Graph@FIT research group.
His research interests include fast algorithms and
hardware acceleration in computer vision. Adam
Herout is a co-founder of click2stream.com, which
provides web streaming from network cameras and
real-time computer vision in the cloud.

Jakub Sochor received the Bachelor degree at Fac-
ulty of Information Technology, Brno University of
Technology, Czech Republic. He is currently in the
last year of the master’s degree at FIT BUT. Jakub
Sochor focuses on research in computer vision,
especially in traffic surveillance.

Roman Juránek received MS degree from the Brno
University of Technology, CZ, in 2007. In 2012
he defended his PhD at the Faculty of Information
Technology, Brno University of Technology, CZ. He
is member of Graph@FIT research group at Depart-
ment of Computer Graphics and Multimedia on FIT
BUT. His professional interests include Computer
Vision, Machine Learnin and Pattern Recognition.

DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING 1

Automatic Camera Calibration

for Traffic Understanding

Markéta Dubská1

idubska@fit.vutbr.cz

Jakub Sochor1

xsocho06@stud.fit.vutbr.cz

Adam Herout12

herout@fit.vutbr.cz

1 Graph@FIT

Brno University of Technology, CZ

2 click2stream, Inc.

CONFIDENTIAL UNPUBLISHED MANUSCRIPT.

Abstract

We propose a method for fully automatic calibration of traffic surveillance cameras.

This method allows for calibration of the camera – including scale – without any user

input, only from several minutes of input surveillance video. The targeted applications

include speed measurement, measurement of vehicle dimensions, vehicle classification,

etc. The first step of our approach is camera calibration by determining three vanishing

points defining the stream of vehicles. The second step is construction of 3D bounding

boxes of individual vehicles and their measurement up to scale. We propose to first

construct the projection of the bounding boxes and then, by using the camera calibration

obtained earlier, create their 3D representation. In the third step, we propose a method to

using the dimensions of the 3D bounding boxes for calibration of the scene scale. This

facilitates new automatic applications based on measurement of speed and real-world

dimensions. We collected a dataset with ground truth speed and distance measurements

and evaluate our approach on it. The achieved mean accuracy of speed and distance

measurement is below 2%. Our efficient C++ implementation runs in real time on a

low-end processor (Core i3) with a safe margin even for full-HD videos.

1 Introduction

Automatic visual surveillance is useful in organization of traffic – for collecting statistical

data [22], for immediate controlling of traffic signals [21], for law enforcement [17, 30], etc.

Existing systems typically require manual setup, often involving physical measurements in

the scene of interest [13]. Our goal is to process traffic data fully automatically, without any

user input. This includes assessment of camera intrinsic parameters, extrinsic parameters in

relation to the stream of traffic, and scale of the ground plane which allows for measurement

in the real world units – Fig. 1.

Some existing works in automatic traffic surveillance require user input in the form of

annotation of the lane marking with known lane width [32] or marking dimensions [4], cam-

era position [24, 32], average vehicle size [7, 29] or average vehicle speed [25]. A common

c© 2012. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

2 DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING

Figure 1: We automatically determine 3 orthogonal vanishing points, construct vehicle

bounding boxes (left), and automatically determine the camera scale by knowing the statis-

tics of vehicle dimensions. This allows us to measure dimensions and speed (middle) and

analyze the traffic scene (right).

feature of virtually all methods is detection of the vanishing point corresponding to the direc-

tion of moving vehicles (full camera calibration requires three orthogonal vanishing points

[3, 6, 9]). A popular approach to obtaining this VP is to use road lines [10, 26, 35] or lanes

[8, 12, 26], more or less automatically extracted from the image. These approaches typically

require a high number of traffic lanes and a consistent and well visible lane marking. An-

other class of methods disregard the line marking on the road (because of its instability and

impossible automatic detection) and observe the motion of the vehicles, assuming straight

and parallel trajectories in a dominant part of the view. Schoepflin and Dailey [25] construct

an activity map of the road with multiple lanes and segment out individual lanes. Again, this

approach relies on observing a high number of traffic lanes – high-capacity motorways and

similar settings. Other researchers detect vehicles by a boosted detector and observe their

movement [19], or analyze edges present on the vehicles [34]. Beymer et al. [2] accumu-

late tracked feature points, but also require the user to provide defined lines by manual input.

Kanhere and Birchfield [18] took a specific approach for cameras placed low above the street

level. Once the calibration and scene scale is available, the road plane can be rectified and

various applications such as speed measurement can be done [4, 5, 14, 24, 36].

In our approach, we assume that the majority of vehicles move in approximately straight,

mutually parallel trajectories.1 Also, the trajectories do not have to be approximately straight

across their whole span – only a significant straight part is sufficient. This makes our ap-

proach easily and reliably applicable on a vast majority of real traffic surveillance videos.

The calibration of internal and external parameters of the camera is achieved by first com-

puting three orthogonal vanishing points which define the vehicle motion [1].

Similarly to others [25, 26], we assume a pinhole camera with principal point in the

image center. The principal point would be difficult (or impossible) to obtain otherwise,

because the camera cannot move and no calibration pattern can be used. At the same time,

this assumption does not harm the targeted applications (speed/distance measurement, traffic

lane identification, . . .). Unlike previous works, we do not assume exactly horizontal scene

horizon [12, 14, 25]. We find this assumption too limiting and we deal with it by properly

finding the second vanishing point defining the scene (Sec. 2.1). We assume zero radial

distortion of the camera, but our previous work [1] offers a solution for automatic radial

distortion compensation.

Once the camera intrinsic and extrinsic calibration (up to scale) defined by three or-

thogonal vanishing points is determined, we propose to construct 3D bounding boxes of the

vehicles based on the assumption of flat ground plane. The dimensions of the 3D bounding

boxes of a number of observed cars (experiments show that after processing approximately

1Experiments verify that our method is tolerant to a high number of outliers from this assumption.

DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING 3

50 cars, the scale is within 2% from the final value) can be used for adaptation of the scale

to a known distribution of car dimensions. The proposed 3D bounding boxes are easily con-

structed and their construction is computationally cheap. At the same time, they provide

some 3D insight into the scene observed by a stationary camera, unavailable to existing ap-

proaches mentioned earlier. We are showing that once the camera calibration including scale

is computed, our method allows for reasonably accurate measurement of vehicle speed and

various dimensions in the scene, including 3D dimensions of passing vehicles. The bound-

ing boxes can be used for other tasks as well – we are showing improved analysis of traffic

lanes directly obtained from the geometry of the bounding boxes.

2 Traffic Analysis from Uncalibrated Cameras

Section 2.1 reviews our camera calibration algorithm [1]. Based on it, we propose to con-

struct 3D bounding boxes of observed vehicles (Sec. 2.2). The dimensions of bounding boxes

are statistically domain-adapted to known distribution of vehicle dimensions (Sec. 2.3) in or-

der to obtain the scene-specific scale.

2.1 Camera Calibration from Vehicle Motion

In order to make this paper self-contained, we briefly summarize our calibration method [1]

(currently in the publication process). This method enables recovering of the focal length of

the camera and its orientation with respect to the stream of traffic. It detects two originally

orthogonal directions – 1st in the direction of the traffic and 2nd which is perpendicular to

the 1st direction and parallel to the road. Assuming that the camera’s principal point is in

the center of the projection plane, the 3rd orthogonal direction and the focal length can be

calculated. The first two directions are detected using their vanishing points on the projection

plane. The detection method uses Hough transform based on the parallel coordinates [11].

This method maps the whole 2D projective plane into a finite space referred to as the diamond

space by a piecewise linear mapping of lines.

For the detection of the 1st vanishing point, feature points are detected and tracked by

KLT tracker in the subsequent frame. Successfully detected and tracked points exhibiting

a significant movement are treated as fragments of vehicle trajectories. These fragments of

trajectories are extended to infinite lines, assuming that they pass through the first vanishing

point. All these lines vote in the diamond space accumulator. The most voted point is con-

sidered to be the first vanishing point. Figure 2 (left) shows the tracked points accumulated

to the diamond space.

The second vanishing point corresponds to the direction parallel to the road (or the

ground plane) and is perpendicular to the first direction. Again, the diamond space [11] is

used for its detection. Many edges on the vehicles coincide with the second vanishing point

and thus we let them vote in the accumulation space. An edge background model is used

in order to select only edges on moving objects – probable vehicles. The model is updated

by each frame to deal with shadows and other slow changes. The edge background model

stores for each pixel the confidence score of occurrence of an oriented edge (eight bins are

used to store likelihoods for different orientations). The edges passing the background test

are further processed and filtered. The first vanishing point is known from the previous pro-

cessing and edges supporting this VP are excluded from accumulation. Also the edges with

approximately vertical direction are omitted from voting, based on the assumption of scene

4 DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING

Figure 2: (left) Illustration of the tracked points used for estimation of the 1st VP. Points

marked by green exhibit a significant movement and they are accumulated. Points marked

by yellow are stable points and do not vote. The accumulated diamond space is in the

top left corner. (right) Accumulation of the 2nd vanishing point. Blue edges belong to

the background. Red edges are omitted from voting because of their vertical direction or

direction towards the first VP. Green edges are accumulated to the diamond space (in the top

left corner; green circle marks the maximum).

horizon being approximately horizontal (with a high tolerance, e.g. ±45◦). This condition

can be disregarded when the first VP is detected to be close to infinity. In such a case, edges

supporting the second VP are allowed to have vertical direction. Figure 2 (right) shows the

edge background model, omitted and accumulated edges together with the diamond space.

2.2 Construction of 3D Bounding Boxes

The next step of our approach is construction of 3D bounding boxes of the observed vehicles

(see Fig. 3 (IV) for an example). We assume that vehicle silhouettes can be extracted by

background modeling and foreground detection [27, 37]. Detection of foreground blobs for

vehicles can be done reliably, including removal of shadows [15]. Further we assume that

the vehicles of interest are moving from/towards the first vanishing point (Sec. 2.1). In fact,

all detected foreground blobs in the input video are filtered by this criterion, which leads to

disposal of invalid blobs.

A
B

C

(I)

D

E
F

(II)

G

H

(III) (IV)

Figure 3: Construction of vehicle’s 3D bounding box. (I) Tangent lines and their relevant

intersections A,B,C. (II) Derived lines and their intersections E,D,F . (III) Derived lines

and intersection H. (IV) Constructed bounding box.

Our approach is based on an observation, that vehicle blobs tend to have some edges very

stable and reliable. Refer to Fig. 3 for an illustration where the detected blob of the car is

colored and rest of the image is desaturated. In the given situation, red lines pass through the

1st VP and they are tangent to the vehicle’s blob. Green lines are blob’s tangents coinciding

with the 2nd VP; blue tangents pass through the 3rd VP. The two tangents corresponding to

the VP are lines with minimal and maximal orientation passing thought the VP and the points

DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING 5

from convex hull of the blob.

Because the blobs are not accurate and the cars are not exactly boxes, the fitting of the

bounding box is ambiguous, i.e. the order in which the tangents and their intersections are

extracted matters. We propose the following order, which appears to be the most stable one.

Firstly, point A is constructed as the intersection of the lower red and green tangent. Then,

points B and C are defined by intersections of the lower green tangent with right blue and the

lower red with left blue, respectively, Fig. 3 (I). Constructed line segments AB and AC define

the shorter and the longer side of the box base. Point D lies on the intersection of the upper

green tangent and the left blue tangent. Together with the line passing through point A and

the 3rd VP it uniquely defines point E, Fig. 3 (II). Point E can be also constructed using point

F – leading to an alternative position of point E. We choose point E with the larger distance

|AE|, which ensures that the whole blob will be enclosed in the bounding box. With known

F and D, the point G is the intersection of the line through D and 2nd VP with line through

F and 1st VP, Fig. 3 (III).

When the configuration of the vanishing points with respect to the center of the fore-

ground blob is different from the one discussed in the previous paragraphs, the set and order

of used tangent lines and points slightly changes. The change is self-evident and follows the

principles sketched above. Figure 4 shows other possible orientations of the bounding box

with respect to different configurations of VPs.

Figure 4: Different bounding boxes depending on positions of the vanishing points with

respect to the camera. Because of rounded corners of the car, the edges of the bounding box

would not fit tight to the car. However, in most cases, at least one dimension fits tight and

this is enough to find the scale.

Because the roof and sides of the car are typically somewhat bent, the detected bounding

box can be slightly smaller that in reality. However, we count with this inaccuracy in the

domain adaptation procedure and prefer the best matching pair of bounding box sides for

further computation. The experiments show that the final accuracy is not harmed by the

slightly diminished detected bounding boxes (Sec. 3).

In order to be able to determine the vehicles dimensions accurately, shadows need to be

removed from the detected foreground objects. Elaborate shadow removal exceeds the scope

of our work, but it has been addressed by other researchers [31, 33]. In our work, we assume

only the presence of soft shadows and we use the method of Horprasert et al. [15] for their

removal.

2.3 Statistical Domain Adaptation of Vehicle Dimensions

Having the bounding box projection, it is directly possible to calculate the 3D bounding box

dimensions (and position in the scene) up to precise scale. The construction is shown in

Figure 5. We consider a three-dimensional coordinate system with camera coordinates O =
[px, py,0], center of the projection plane P = [px, py, f] (where [px, py] is the principal point)

and three orthogonal directions derived from the detected vanishing points in the image.

Firstly, plane ℘ parallel to the road ground plane is constructed – its orientation is known

6 DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING

}

Aw

Cw

Ew

Figure 5: Calculation of the world coordinates. Plane℘ is parallel to the road and it is derived

from the detected VPs. Its distance is selected arbitrarily and precise scale is found later,

Fig. 6. The camera is placed in O = [px, py,0] and world points of the base of the bounding

box are intersections of plane ℘ with rays from O through points A,C (constructed earlier in

the projection plane). Other points are intersections of rays from O through projected points

and rays perpendicular to ℘ passing through points Aw,Bw,Cw,Hw.

since the direction of the 3rd VP is perpendicular to this plane; its distance from the camera

is chosen arbitrarily. Figure 5 shows two possible placements of the plane and the influence

of such placement – the closer the plane is to the camera, the smaller the objects appear. The

detected corners of the bounding box (points A,B,C,E) are projected to the plane:

Aw =℘∩
←→
OA, Bw =℘∩

←→
OB, Cw =℘∩

←→
OC,

Ew = pE ∩
←→
OE; pE ⊥℘∧Aw ∈ pE .

(1)

When the world coordinates of the bounding box corners are known, it is possible to

determine the (somehow scaled) dimensions of the box: (l,w,h) = (|AwCw|, |AwBw|, |AwEw|).
Scale factor λ must be found so that the actual metric dimensions are defined as (l,w,h) =
λ (l,w,h). For this purpose, we collect statistical data about sold cars and their dimensions

and form a histogram of their bounding box dimensions. Relative sizes of the cars (l,w,h)
are accumulated into a histogram as well. Histograms confirm the intuitive assumption that

vehicles have very similar width and height (peaks in histograms are more significant) but

they differ in their length. By fitting the statistics of known dimensions and the measured

data from the traffic, for each dimension we obtain a scale (Fig. 6). In an ideal case, all these

scales are equal. However, because different influences of perspective and rounded corners

of the cars (Fig. 4), they are not absolutely the same. For the final scale λ , we choose the

smallest of the scales. The motivation here is that the detected bounding boxes tend to be

smaller (and therefore the scale λ is greater) because cars are not perfectly boxed and from

specific views, some edges of the bounding box did not fit tightly to the car (see Fig. 4).

3 Experimental Evaluation

Our method presented here allows for automatic obtaining camera intrinsic and extrinsic

parameters, including the scene scale on the ground plane. This allows for multiple ap-

plications, previously unavailable without entering human calibration input. This section

evaluates the accuracy relevant to the most straightforward applications: Distance measure-

ments, speed measurements (Sec. 3.1), and analysis of traffic lanes (Sec. 3.2). Section 3.3

shows that the algorithm is capable of running in real time on a low-end processor. Figure 9

shows example images of achievable results.

DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING 7

0 50 100 150 200 250

l = 129.83
(lc = 4.27 m)

λl = 0.033

λh = 0.034

λw = 0.030

λ = 0.030

min

w = 50.63
(wc = 1.51 m)

h = 50.83
(hc = 1.74 m)

0 50 100 150 200 250

0 50 100 150 200 250

Figure 6: Calculation of scene scale λ . For simplicity, we use only the median of each

dimension. (left) Median (green bar) for each dimension is found (l,w,h) in the measured

data. (middle) Scales are derived separately based on known median car size (lc,wc,hc) as

λl = lc/l;λw = wc/w;λh = hc/h. The final scale is the minimum from these three scales.

(right) Examples of relative size of the vehicles (yellow) and real dimensions in meters after

scaling by factor λ (red).
6 m

5.3 m

3.5 m

3 m

1.5 m

Figure 7: (left) Scene with measured ground truth distances used for accuracy evaluation.

(middle) Grid projected to the road (i.e. ground plane). The size of the squares is 3m×3m.

(right) Different view of a scene with detected ground plane with 3m×3m squares and some

of the measured ground truth distances.

3.1 Distance & Speed Measurement

When the scene scale λ is known, measurements can be carried out in the image. Fig-

ure 7 (middle) shows a uniform grid with square 3m×3m placed over the ground plane. We

measured several distances on the road plane, Fig. 7 (left), and evaluated error in distance

measurements by our approach. This evaluation is similar to the work of Zhang et al. [34];

however, we evaluate the absolute dimension in meters, while Zhang et al. evaluate rela-

tive distances supposed to be equal. They report average error of measurement “less then

10%”. Our average error is 1.9% with worst case 5.6%. Table 1 shows results on five videos

observing the same scene.

1.5 m 3 m 3.5 m 5.3 m 6 m all

v1 2.0/3.3 (29) 2.1/3.9 (7) 4.5/5.5 (3) 3.1/5.6 (5) 2.1/2.4 (3) 2.3 /5.6 (47)

v2 1.6/2.3 (15) 1.3/2.4 (7) 1.3/2.3 (3) 3.3/3.3 (2) 0.7/.17 (3) 1.5/ 3.3 (30)

v3 1.9/3.5 (13) 2.5/3.2 (6) 1.0/1.6 (3) 2.7/3.0 (3) 2.7/3.3 (3) 2.1/ 3.3 (28)

v4 1.0/1.9 (13) 1.8/3.5 (6) 2.3/3.1 (3) 3.7/5.3 (3) 0.9/2.0 (3) 1.6/ 5.3 (28)

v5 2.4/3.6 (15) 1.0/2.5 (6) 0.9/1.7 (3) 1.5/2.5 (3) 1.1/1.7 (3) 1.7/ 3.6 (30)

all 1.8/3.6 (85) 1.7/3.9 (32) 2.0/5.5 (15) 2.8/5.6 (16) 1.5/3.3 (15) 1.9/5.6(163)

Table 1: Percentage error of absolute distance measurements (5 videos). The error is evalu-

ated as |lm− lgt |/lgt ∗ 100%, where lgt is ground truth value and lm is distance measured by

presented algorithm. For each video and each distance we evaluate the average and worst

error. The number in parentheses stands for the number of measurements of the given length.

The bold numbers are average and worst error over all videos and all measurements.

8 DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING

When measuring the vehicle speed (Tab. 2), we take into account corner A of the bound-

ing box, which lies directly on the road (this is an arbitrary choice – any point from the box

base can be used). Vehicles in the video are tracked and their velocity is evaluated over the

whole straight part of the track. It is also possible to calculate instant speed of the vehicle

as the distance vehicle passes between subsequent video frames, but it is not perfectly stable

because of inaccuracies in detection of the bounding box and image discretization. It should

be noted that once the camera is calibrated including the scale, for computing the average

speed of a vehicle, its blob segmentation does not need to be very precise, because even

though a part of the vehicle is missing, the speed measurements are still accurate.

v1 (5) v2 (3) v3 (5) v4 (5) v5 (4) v6 (5) all (23)

mean 2.39 2.90 1.49 1.65 1.31 2.58 1.99

worst 3.47 3.63 3.18 3.77 2.40 4.26 4.26

Table 2: Percentage error in speed measurement (6 videos). For obtaining the ground truth

values, we drove cars with cruise control and get the speed from GPS. The error is evaluated

as |sm−sgt |/sgt ∗100%, where sgt is speed from GPS and sm is speed calculated by presented

algorithm. The number in parentheses stands for the number of evaluated measurements.

The average speed of the vehicle was 75 km
h

and therefore 2% error causes±1.5 km
h

devia-

tion. A similar evaluation was provided by Dailey [7] who used distribution of cars length for

scale calculation and reached average deviation 6.4 km
h

or by Grammatikopoulos [13] whose

algorithm has accuracy ±3 km
h

but requires manual distance measurements to determine the

scale.

3.2 Detection of Traffic Lanes

Having the 3D vehicle bounding boxes, it is also possible to obtain accurate segmentation

of traffic lanes, even from views where cars from one lane overlap ones from another. Ex-

isting methods accumulate trajectories of the blobs [16], the whole blobs, pixels different to

background model [25, 28] or lines on the road [20]. All these methods tend to fail when

the camera views the road from side. In our approach, for each vehicle’s trajectory we ac-

cumulate a filled quad strip with quad vertices Ai,Bi,Ai+1,Bi+1, where i denotes points in

i-th video frame. After accumulation, minima are found on the line perpendicular to road

direction (i.e. line passing through the 2nd VP) and these are set to be lanes’ borders. Accu-

mulation of the above mentioned quad is suitable for finding the borders between the lanes.

In some cases, centers of lanes (locations with dominant vehicle movement) are of interest

– in that case, only trajectories of a center point in the vehicle base (e.g. (Ai +Bi)/2) are

accumulated. Figure 8 shows a comparison of different lane segmentation methods with our

approach based on projection of “correct” bounding boxes.

3.3 Computational Speed

We created an efficient C++ implementation of the proposed algorithm and evaluated the

computational speed on 195 minutes of video. This measurement was done on a computer

with an i3-4330 3.50 GHz processor and 8 GB DDR3 RAM. The measured framerates also

include reading and decompression of videos (considerable load for full-HD videos). It

should be noted that optimal framerate for running the detection/tracking algorithm is around

12.5 FPS, because the cars must move measurably from one frame to the next one. Therefore,

DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING 9

Figure 8: Traffic lane segmentation. (left) Our approach based on 3D bounding boxes. Lanes

are correctly segmented even for side views. (middle) Method using trajectories of the cen-

ters of blobs [16]. (right) Method based on activity map [28].

resolution low traffic intensity high traffic intensity

854×480 116.93 FPS 93.79 FPS

1920×1080 24.98 FPS 19.64 FPS

Table 3: Results of processing speed measurement. High traffic: ∼ 40 vehicles per minute;

low traffic: ∼ 3.5 vehicles per minute. It should be noted that the system uses video streams

with∼ 12.5 FPS; and therefore, it can run safely in real time even for full-HD video with the

high traffic intensity.

“real-time processing” in this case means running faster than 12.5 FPS. The results in Tab. 3

show that the system can work in real time with a safe margin.

4 Conclusions and Future Work

We presented a method for understanding traffic scenes observed by stable roadside cam-

eras. The calibration is done by first computing three orthogonal vanishing points and thus

calibrating the camera. Then, we propose to extract 3D bounding boxes of passing vehicles

by first constructing their 2D projections. We propose methodology for using the statistics

of these 3D bounding boxes, so that scene scale can be automatically determined.

Our method is fully automatic – no user input is required during the whole process. Ex-

perimental results show that the mean error of speed and distance measurement is below

2% (worst 5.6% for distance and 4.3% for speed). This outperforms existing approaches

and provides sufficient accuracy for statistical traffic analysis. Besides measurement, our

approach can facilitate other traffic analysis task, as shown on the case of traffic lane seg-

mentation. The algorithm works in real time with a safe margin. Our measurements show

that the system is able to process 93 FPS of normal video input. The extracted bounding

boxes can be used for various traffic analyses – on the example of traffic lane segmentation

we are showing its benefits for traffic scene understanding.

We are exploring ways how to use the bounding boxes for facilitating various computer

vision tasks. Their knowledge can improve and/or speed up scanning window-based detec-

tion and recognition algorithms. Our bounding boxes can serve as a starting point for fitting

of detailed 3D models to the visual data [23]. We are also working on a multi-camera sys-

tem resistant to mutual occlusions of vehicles – the bounding boxes constructed by multiple

cameras can be cheaply fused into one stream of results.

10 DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING

Figure 9: Examples of achieved results (see supplementary video for further illustration).

(1st row) Different scenes with measured vehicle speed. (2nd row) Cropped out vehicles with

estimated dimensions. (3rd row) Road lanes detected using 3D bounding boxes.

References

[1] authors. Fully automatic roadside camera calibration for traffic surveillance. Submitted

to IEEE Transactions on Itelligent Transportation Systems.

[2] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik. A real-time computer vision

system for measuring traffic parameters. In IEEE Conference on Computer Vision and

Pattern Recognition, CVPR, 1997. doi: 10.1109/CVPR.1997.609371.

[3] Bruno Caprile and Vincent Torre. Using vanishing points for camera calibration. In-

ternational Journal of Computer Vision, 4(2):127–139, 1990.

[4] F.W. Cathey and D.J. Dailey. A novel technique to dynamically measure vehicle speed

using uncalibrated roadway cameras. In Intelligent Vehicles Symposium, pages 777–

782, 2005. doi: 10.1109/IVS.2005.1505199.

[5] F.W. Cathey and D.J. Dailey. Mathematical theory of image straightening with appli-

cations to camera calibration. In Intelligent Transportation Systems Conference, 2006.

doi: 10.1109/ITSC.2006.1707413.

[6] Roberto Cipolla, Tom Drummond, and Duncan P Robertson. Camera calibration from

vanishing points in image of architectural scenes. In British Machine Vision Confer-

ence, BMVC, 1999.

[7] D.J. Dailey, F.W. Cathey, and S. Pumrin. An algorithm to estimate mean traffic speed

using uncalibrated cameras. IEEE Transactions on Intelligent Transportation Systems,

1(2):98–107, 2000. ISSN 1524-9050. doi: 10.1109/6979.880967.

[8] Bart De Schutter and Bart De Moor. Optimal traffic light control for a single intersec-

tion. European Journal of Control, 4(3):260–276, 1998.

DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING 11

[9] J. Deutscher, M. Isard, and J. MacCormick. Automatic camera calibration from a

single manhattan image. In European Conference on Computer Vision, ECCV, pages

175–188. 2002. ISBN 978-3-540-43748-2. doi: 10.1007/3-540-47979-1-12. URL

http://dx.doi.org/10.1007/3-540-47979-1-12.

[10] Rong Dong, Bo Li, and Qi-mei Chen. An automatic calibration method for PTZ camera

in expressway monitoring system. In World Congress on Computer Science and Infor-

mation Engineering, pages 636–640, 2009. ISBN 978-0-7695-3507-4. doi: 10.1109/

CSIE.2009.763. URL http://dx.doi.org/10.1109/CSIE.2009.763.

[11] Markéta Dubská and Adam Herout. Real projective plane mapping for detection of

orthogonal vanishing points. In British Machine Vision Conference, BMVC, 2013.

[12] George S. K. Fung, Nelson H. C. Yung, and Grantham K. H. Pang. Camera calibration

from road lane markings. Optical Engineering, 42(10):2967–2977, 2003. doi: 10.

1117/1.1606458. URL http://dx.doi.org/10.1117/1.1606458.

[13] Lazaros Grammatikopoulos, George Karras, and Elli Petsa. Automatic estimation of

vehicle speed from uncalibrated video sequences. In Proceedings of International Sym-

posium on Modern Technologies, Education and Profeesional Practice in Geodesy and

Related Fields, pages 332–338, 2005.

[14] Xiao Chen He and N. H C Yung. A novel algorithm for estimating vehicle speed

from two consecutive images. In IEEE Workshop on Applications of Computer Vision,

WACV, 2007. doi: 10.1109/WACV.2007.7.

[15] T. Horprasert, D. Harwood, and L. S. Davis. A statistical approach for real-time robust

background subtraction and shadow detection. In Proc. IEEE ICCV, volume 99, pages

1–19, 1999.

[16] Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen, and Wen-Fong Hu. Automatic traffic

surveillance system for vehicle tracking and classification. Intelligent Transportation

Systems, IEEE Transactions on, 7(2):175–187, 2006.

[17] Shunsuke Kamijo, Yasuyuki Matsushita, Katsushi Ikeuchi, and Masao Sakauchi. Traf-

fic monitoring and accident detection at intersections. Intelligent Transportation Sys-

tems, IEEE Transactions on, 1(2):108–118, 2000.

[18] N. K. Kanhere and S. T. Birchfield. Real-time incremental segmentation and tracking of

vehicles at low camera angles using stable features. IEEE Transactions on Intelligent

Transportation Systems, 9(1):148–160, 2008. ISSN 1524-9050. doi: 10.1109/TITS.

2007.911357. URL http://dx.doi.org/10.1109/TITS.2007.911357.

[19] Neeraj K Kanhere, Stanley T Birchfield, and Wayne A Sarasua. Automatic camera cal-

ibration using pattern detection for vision-based speed sensing. Journal of the Trans-

portation Research Board, 2086(1):30–39, 2008.

[20] Andrew HS Lai and Nelson HC Yung. Lane detection by orientation and length dis-

crimination. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, 30(4):539–548, 2000.

http://dx.doi.org/10.1007/3-540-47979-1-12
http://dx.doi.org/10.1109/CSIE.2009.763
http://dx.doi.org/10.1117/1.1606458
http://dx.doi.org/10.1109/TITS.2007.911357

12 DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING

[21] Stefan Lämmer and Dirk Helbing. Self-control of traffic lights and vehicle flows in

urban road networks. Journal of Statistical Mechanics: Theory and Experiment, 2008

(04), 2008. doi: 10.1088/1742-5468/2008/04/P04019.

[22] J de Ortuzar and Luis G Willumsen. Modelling transport. 2011.

[23] A. Ottlik and H.-H. Nagel. Initialization of model-based vehicle tracking in video

sequences of inner-city intersections. International Journal of Computer Vision, 80(2):

211–225, 2008. ISSN 0920-5691. doi: 10.1007/s11263-007-0112-6. URL http:

//dx.doi.org/10.1007/s11263-007-0112-6.

[24] Tun-Wen Pai, Wen-Jung Juang, and Lee-Jyi Wang. An adaptive windowing prediction

algorithm for vehicle speed estimation. In IEEE Intelligent Transportation Systems,

2001. doi: 10.1109/ITSC.2001.948780.

[25] T.N. Schoepflin and D.J. Dailey. Dynamic camera calibration of roadside traffic man-

agement cameras for vehicle speed estimation. IEEE Transactions on Intelligent Trans-

portation Systems, 4(2):90–98, 2003. ISSN 1524-9050. doi: 10.1109/TITS.2003.

821213.

[26] Kai-Tai Song and Jen-Chao Tai. Dynamic calibration of Pan–Tilt–Zoom cameras for

traffic monitoring. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 36(5):1091–1103, 2006. ISSN 1083-4419. doi: 10.1109/TSMCB.2006.

872271. URL http://dx.doi.org/10.1109/TSMCB.2006.872271.

[27] C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for real-time

tracking. In Computer Vision and Pattern Recognition, volume 2, pages 246–252, 1999.

[28] BD Stewart, I Reading, MS Thomson, TD Binnie, KW Dickinson, and CL Wan. Adap-

tive lane finding in road traffic image analysis. 1994.

[29] Tuan Hue Thi, Sijun Lu, and Jian Zhang. Self-calibration of traffic surveillance camera

using motion tracking. In Proceedings of the 11th International IEEE Conference on

Intelligent Transportation Systems, 2008.

[30] David Vallejo, Javier Albusac, Luis Jimenez, Carlos Gonzalez, and Juan Moreno. A

cognitive surveillance system for detecting incorrect traffic behaviors. Expert Systems

with Applications, 36(7):10503–10511, 2009.

[31] J. M. Wang, Y. C. Chung, C. L. Chang, and S.W. Chen. Shadow detection and

removal for traffic images. In Networking, Sensing and Control, 2004 IEEE In-

ternational Conference on, volume 1, pages 649–654 Vol.1, March 2004. doi:

10.1109/ICNSC.2004.1297516.

[32] Kunfeng Wang, Hua Huang, Yuantao Li, and Fei-Yue Wang. Research on lane-marking

line based camera calibration. In International Conference on Vehicular Electronics

and Safety, ICVES, 2007. doi: 10.1109/ICVES.2007.4456361.

[33] Mei Xiao, Chong-Zhao Han, and Lei Zhang. Moving shadow detection and removal

for traffic sequences. International Journal of Automation and Computing, 4(1):38–46,

2007. ISSN 1476-8186. doi: 10.1007/s11633-007-0038-z. URL http://dx.doi.

org/10.1007/s11633-007-0038-z.

http://dx.doi.org/10.1007/s11263-007-0112-6
http://dx.doi.org/10.1007/s11263-007-0112-6
http://dx.doi.org/10.1109/TSMCB.2006.872271
http://dx.doi.org/10.1007/s11633-007-0038-z
http://dx.doi.org/10.1007/s11633-007-0038-z

DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING 13

[34] Zhaoxiang Zhang, Tieniu Tan, Kaiqi Huang, and Yunhong Wang. Practical camera

calibration from moving objects for traffic scene surveillance. IEEE Transactions on

Circuits and Systems for Video Technology, 23(3):518–533, 2013. ISSN 1051-8215.

doi: 10.1109/TCSVT.2012.2210670.

[35] Yuan Zheng and Silong Peng. A practical roadside camera calibration method based

on least squares optimization. Intelligent Transportation Systems, IEEE Transactions

on, 15(2):831–843, April 2014. ISSN 1524-9050. doi: 10.1109/TITS.2013.2288353.

[36] Zhigang Zhu, Bo Yang, Guangyou Xu, and Dingji Shi. A real-time vision system for

automatic traffic monitoring based on 2D spatio-temporal images. In Proceedings of

WACV, 1996.

[37] Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction.

In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Con-

ference on, volume 2, pages 28–31 Vol.2, 2004. doi: 10.1109/ICPR.2004.1333992.

	Introduction
	Existing Traffic Analysis Systems
	Traffic Parameters Extraction by Beymer et al., 1997
	Classification of Vehicles in Traffic Video Streams by Morris et al., 2006
	Traffic Surveillance System by Hsieh et al., 2006

	Related Computer Vision Algorithms for Traffic Analysis
	Detection
	Tracking
	Classification

	Proposed Traffic Analysis System
	Initialization
	Detection and Tracking
	Three-Dimensional Bounding Boxes
	Classification
	Direction Estimation and Lane Detection
	Speed Estimation

	Implementation
	Traffic Analyser
	Vehicles Annotator

	Evaluation
	Detection and Tracking
	Classification
	Vehicle Speed Estimation
	Direction Estimation and Lane Detection
	Speed of Video Processing
	Concluding Remarks

	Conclusion
	Papers Written with the Thesis
	Introduction
	Proposed Method for Traffic Surveillance
	Initialization
	Vehicle Detection and Tracking
	Direction Estimation and Lane Detection

	Results
	Detection and Tracking
	Direction Estimation and Lane Detection
	Evaluation of Speed

	Conclusions

