
Czech Technical University in Prague

Faculty of Information Technology

Department of theoretical computer science

Master’s thesis

Incremental Clustering-Based Compression

Bc. Luboš Krčál

Supervisor: doc. Ing. Jan Holub, Ph.D.

6th May 2014

Acknowledgements

I would hereby like to thank to my supervisor, doc. Ing. Jan Holub, Ph.D., for intro-
duction to this topic, relentless support and consultations during the entire time.

The biggest appreciation goes to my employers from Eccam, s.r.o., owners of the
company, Ing. Libor Buš, Ph.D., and Ing. Václav Opekar, who let me work on my
thesis entirely on the company premises, with endless coffee supplies.

My next thanks go to all the people who provided me with consultations or other
forms of support: doc. Ing. Marcel Jǐrina, Ph.D. for clustering consultations, Ing.
Milan Kř́ıž, Ing. Lukáš Cerman, Ph.D., many other colleagues from Eccam for general
consultations and support, and to my parents, grandparents and uncle.

Another huge expression of my gratitude goes to Katie Wirka, M.Sc, who reviewed
the entire thesis for language issues.

Last, I would like to mention Prof. Dr. Vu Duong, Joe Krachey, M.Sc., and Prof.
Dieter Van Melkebeek, Ph.D., for being the most inspirational professors I have met
during my master’s studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech
Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as school work under the provisions of Article 60(1) of the Act.

In Prague on 6th May 2014 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2014 Luboš Krčál. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology.
The thesis is protected by the Copyright Act and its usage without author’s permission
is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Krčál, Luboš. Incremental Clustering-Based Compression. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2014.

Abstract

Ever increasing data growth has given rise to many deduplication and compression sys-
tems. Most of these deduplication systems are based on several common techniques –
content defined chunking, deduplication using hashing, and compression of near identi-
cal data. Although most of these systems excel with their simplicity and speed, none of
those goes deeper in terms of larger scale redundancy removal. This thesis emphasizes
on a proposal of a novel compression and archival system called ICBCS. Our system goes
beyond standard measures for similarity detection, using extended similarity hash and
incremental clustering techniques – the clustering then provides groups of sufficiently
similar chunks designated for compression. Lot of effort was also put into a proof-
of-concept implementation with extensive parametrization and thorough performance
evaluation. ICBCS outperformed both conventional solid and separate files compression
on datasets consisting of at least mildly redundant files. It has also shown that selec-
tive application of weak compressor results in better compression ratio and speed than
conventional application of strong compressor.

Keywords Compression, Clustering, Deduplication, Data compression, Archival sys-
tem, Similairty hash, Simhash, ICBCS, Incremental Clustering-Based Compression Sys-
tem

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 1

1.3 The Hypothesis . 2

1.4 Contribution . 2

1.5 Organisation of the Thesis . 3

2 State of the Art 5

2.1 Current Solutions . 5

2.1.1 Single-File Compression . 6

2.1.2 Solid Compression . 6

2.1.3 Block-Based Deduplication . 6

2.2 Deduplication and Compression File Systems 8

2.3 Deduplication and Compression Systems 8

2.3.1 XRAY . 8

2.3.2 SILO . 9

2.3.3 Cluster-Based Delta Compression 9

2.3.4 REBL . 9

2.3.5 Pcompress . 10

2.3.6 Other Deduplication and Compression Systems 10

2.4 Optimization Criteria . 10

2.5 Data Compression . 11

2.5.1 Preliminaries . 11

2.5.2 Categorization . 12

2.5.3 Information Theory . 12

2.5.3.1 Algorithmic Information Theory 14

2.5.4 Compression Models . 14

2.5.4.1 Probability and Markov Models 15

2.5.4.2 Static, Semi-adaptive and Adaptive Models 15

2.5.5 Lossless Compression Algorithms 16

2.5.6 Delta-Encoding . 16

2.6 Distances and Similarities of Data . 17

2.6.1 Distance Function, Metric and Norms 17

xi

xii CONTENTS

2.6.2 String Edit Distances . 19

2.6.3 Delta Distances . 20

2.6.4 Algorithmic Information Distances 20

2.6.5 Compression-Dased Distances . 21

2.6.5.1 Normalized Compression Distance and Variations 22

2.6.5.2 Compression Dictionary Distances 23

2.6.6 Features Extraction and Similarity Hashes 23

2.6.6.1 Compression Features . 24

2.6.7 N-Grams . 25

2.6.8 Similarity Hashing . 26

2.6.9 Min-Wise Independent Hashing . 26

2.6.10 Locality Sensitive Hashing . 27

2.7 Clustering Analysis State of the Art . 27

2.7.1 Input Data . 28

2.7.2 Clustering Algorithms Disambiguation 29

2.7.3 Clustering High-Dimension Data 31

2.7.4 Clustering Large Data Sets . 31

2.7.5 Incremental Clustering . 32

2.7.6 Nearest Neighbors and Approximate Nearest Neighbors 33

2.7.7 Ordination Methods . 33

3 ICBCS – Incremental Clustering-Based Compression System 35

3.1 Objecting conventional approaches . 35

3.1.1 Objecting Solid and Single-file compression 35

3.1.2 Objecting Binary Simhash and Minhash 37

3.2 System Design . 37

3.3 Rabin Chunkizer and Deduplication . 38

3.3.1 Deduplication Storage . 40

3.3.2 Performance and Optimizations . 40

3.3.3 Boosting Average Chunk Size . 40

3.4 Extended Simhash . 41

3.4.1 Feature Sources . 42

3.4.2 Hashing Functions . 42

3.4.3 Merging Multiple Feature Sources 43

3.4.4 Integral vs Floating Point Representation 44

3.5 SLINK and NCD-SLINK Clustering . 45

3.6 Incremental Clustering and Balancing . 45

3.6.1 Top-down clustering (NCD or Simhash) 46

3.6.2 Bottom-up clustering (Simhash) 47

3.6.3 Balancing the Clustering . 48

3.6.4 Deep Distance (Simhash) . 50

3.6.5 Representative Distance (NCD and Simhash) 50

3.6.6 Deep Representative Distance (Simhash) 51

3.7 Grouping and Compression . 52

3.7.1 Compression Algorithms and Levels 52

3.7.2 Compression Groups Upmerging 53

3.8 Compressor Capabilities . 53

CONTENTS xiii

3.8.1 Metadata . 53

3.9 Archival Capabilities . 54

3.9.1 Archivedata . 54

3.9.2 Retrieving Documents . 55

3.9.3 Adding, Editing and Removing Documents 55

3.10 Implementation Notes . 55

3.11 Performance and Optimizations . 56

3.11.1 FNV Hash Vectorization . 56

3.11.2 Simhash Optimizations . 56

3.11.3 Randomized KD Trees . 57

4 Evaluation 59

4.1 Datasets . 60

4.1.1 Small single files . 60

4.1.2 Corpora . 61

4.1.3 Duplicate and Highly Redundant Data 61

4.1.4 Similar and Moderately Redundant Data 61

4.1.5 Random, Compressed and Image Data 61

4.2 Testing Environment and Hardware . 61

4.3 Simhash Distribution . 62

4.3.1 Simhash Distribution Tests . 62

4.3.2 Simhash Variance . 65

4.3.3 Simhash Source – N-Gram . 66

4.3.4 Simhash Width . 67

4.3.5 Performance Concerns . 68

4.3.6 Integral vs Floating Point Simhash Representation 68

4.4 Rabin Chunkizer and Deduplication . 69

4.4.1 Non-Explicit Deduplication . 71

4.5 Simhash vs. NCD . 72

4.6 Clustering Quality . 73

4.6.1 Balancing . 74

4.6.2 Deep Balancing and Representatives 76

4.7 Metadata and Archivedata Overhead . 76

4.8 Compression Parameters . 77

4.8.1 Compression Algorithms Comparison 79

4.8.1.1 Compression Levels (Comparison to Solid and Non-Solid
Compression) . 79

4.8.2 Compression Groups . 79

4.8.2.1 Group Sizes . 80

4.8.2.2 Compression Groups Upmerging 80

4.9 Memory Requirements . 80

4.10 Performance Summary . 81

5 Conclusion 85

5.1 Future Work . 86

Bibliography 87

xiv CONTENTS

A List of Abbreviations 97

B ICBCS Program Options 99
B.1 CLI Runtime Parameters . 99
B.2 Compile Options . 100

C Measured Variables 101

D Contents of the Attached DVD 103

List of Figures

2.1 The six dimensions of compression and deduplication systems design space. . 6

2.2 Fixed-size blocks deduplication scheme. 7

2.3 Variable-size blocks deduplication scheme . 7

2.4 Data compression and decompression scheme. 11

2.5 Demonstration of static and adaptive compression model on a sequence of
data values. 14

2.6 Weight for the 1000 most popular 1-4 word phrases from twitter.com 25

2.7 Learning problems: Labeled, Partially labeled, Partially constrained, Unla-
beled. 28

2.8 Three iterations of clustering by k-Means. 30

2.9 Dendrograms from agglomerative hierarchical clustering. 30

2.10 Example results of spectral clustering algorithm. 31

3.1 Example of a compression failure due to insufficient context. 36

3.2 Scheme of the entire ICBCS system. 37

3.3 Comparison of fixed size and variable size deduplication. 39

3.4 Chunk computation example. 40

3.5 Injective hash merging. 43

3.6 Modulus surjective hash merging used in ICBCS. 44

3.7 Example of bottom-up clustering. 49

3.8 Disbalanced clustering example due to inconvenient order of incoming chunks. 51

3.9 Example of representatives selection in 2D space. 52

3.10 Compression groups with and without upmerging. 53

4.1 Simhash distribution, prague corpus, FNV hash, 1-gram, fixed size of a chunk
– 32 bytes . 63

4.2 Simhash distribution, prague corpus, FNV hash, 5-gram, fixed size of a chunk
– 32 bytes . 64

4.3 Simhash distribution, prague corpus, FNV hash, 5-grams, variable size of
a chunk – 256 B to 1 KB . 64

4.4 Simhash distribution, random dataset, FNV hash, 5-grams, variable size of
a chunk – 256 B to 1 KB . 65

4.5 N-gram size (used as simhash generator) effect on final compression ratio and
total time. 67

xv

xvi List of Figures

4.6 Simhash width effect on final compression ratio and total time. 67
4.7 Deduplication histogram of the linux-kernels dataset 69
4.8 Deduplication histogram of the dual and random datasets 70
4.9 Deduplication ratio on em dataset . 70
4.10 Total execution time on em dataset. The x axis displays average chunk size

and the y axis displays chunk spread parameter as given to the ICBCS (left
and right shift on the average size by the given number of positions). Note the
increased time even for larger chunks – this is due to ineffective deduplication
in those ranges. 71

4.11 Explicite deduplication . 71
4.12 Compression ratio comparison among Simhash, NCD (4 representatives),

NCD (16 representatives) and NCD (full) clusterings. 72
4.13 Total time comparison among Simhash, NCD (4 representatives), NCD (16

representatives) and NCD (full) clusterings. 73
4.14 Effect of clustering balancing on the average depth of a chunk in the clustering. 75
4.15 Effect of clustering balancing on the overall compression ratio. 75
4.16 Effect of clustering balancing on the total execution time. 75
4.17 Deep simhash vs. shallow simhash distance and balancing. 77
4.18 Metadata and Archivedata . 78
4.19 Deflate and Bzip2 compression level effect on compression ratio. 79
4.20 Compression group size effect on final compression ratio. No umperging. . . . 80
4.21 Upmerging effect on compression ratio and number of compression group. . . 81
4.22 Memory usage of ICBCS. 81
4.23 Comparison of compression ratio among ICBCS, deflate and bzip2. 82
4.24 Comparison of total time among ICBCS, deflate and bzip2. 82

List of Tables

4.1 Summary of datasets . 60
4.2 Simhash min and max distances encountered and statistical mean, standard

deviation and variance. 66
4.3 Simhash width effect on prague corpus. 68
4.4 Comparison of Simhash clustering and NCD clustering with 4 representatives.

No deduplication. 73
4.5 Summary of balancing test on the prague dataset. 76
4.6 Impact of simhash width and chunk size on metadata, archivedata and the

respective compression ratios on the prague corpus. 78
4.7 Summary of ICBCS performance on all datasets. 83

List of Algorithms

3.1 Simhash computation, where size of the hash is the same as desired width
of the simhash . 41

3.2 Top-down clustering. 47
3.3 Bottom-up clustering. 48
3.4 Balancing a single cluster. 50

xvii

Chapter 1

Introduction

1.1 Motivation

An explosive data growth increases up both primary storage as well as backup and
recovery storage costs. Many copies or small variations of the same files are being saved
repeatedly to a storage device. This results in a very high redundancy, or in the worse
case, duplicity in the storage system.

Recent and ongoing advancement in technology leads to ever-increasing storage ca-
pacities and decreasing prices. However there are still significant benefits in optimizing
storage usage. These may be crucial in a case of any data transfer, especially for mobile
devices with limited bandwidth and storage capacity.

There are many applications and settings, where data is unnecessarily repeated. For
instance: e-mails often include large sections of quoted data, administrative documents
have the same templates, binary file archives storing all the versions separately, telescope
imagery, web pages, stock markets, etc. In many cases, most of the data is not accessed
frequently and can be subject of a substantial space savings at the cost of a minor access
delay.

Many deduplication schemes exist nowadays, mostly aimed at exactly these use cases.
However, deduplication systems excel in dealing with exact duplicates, but fail to deal
with redundancy of similar files or blocks. This is where standard data compression
comes in. It is obvious though that the extreme case of reckless use of the compression
on the whole dataset (solid compression) could result in a need of a long and tedious
decompression to retrieve a file, or in the other extreme case of high files granularity and
single-file compression in no inter-file redundancy removal.

By intelligent application of compression, we can achieve an optimal compromise:
removing most of the redundancies between files, while inducing minimal decompression
overhead during the file retrieval.

1.2 Problem Definition

Our goal is to design an incremental compression scheme for large collections of data –
an archiver. This scheme has to allow random access to the data within the collection, so
that any individual document or record can be presented to the user in its uncompressed
form. Lossless compression is thereby required.

1

1. Introduction

The system also has to allow new documents or records to be inserted, replaced or
removed from the system. This leads to an incremental problem, where all the compres-
sion withing the system has to be dealt with on the fly, using the available information
only. Extensive preprocessing of all the data is thus not possible.

Since the system operates in real-time, all the fore mentioned operations should
impose a minimal time overhead, similar to a real-time deduplication or speed-oriented
compression system.

1.3 The Hypothesis

The main idea is of such incremental compression system is based on a selective ap-
plication of solid compression. We determine a group of records that are effectively
compressible together and then compress the group. With a precise parametrization
of the group sizes, records size range, clustering and grouping algorithms and similarity
measures we intend to remove a significant portion of redundancy between these records.

The main problem can be divided into several subproblems. First, we have to find
an optimal similarity distance that approximates the resulting compression efficiency
as much as possible. Note this measure can be approximate. Second, being able to
tell the similarity between single records, we need to establish an incremental clustering
scheme that determines the compression groups. Third, we have to apply and setup
an appropriate and fast lossless compression algorithm which can cope with ever changing
set of objects to compress. Last, we must determine a scalable algorithm that ensures
the cooperation of all the mentioned aspects.

1.4 Contribution

In the beginning of the thesis, large analysis of current solutions to the problem is
presented. It is composed of deduplication and compression systems and compression file
systems. The analysis of these systems alongside with state of the art data compression
algorithms, clustering analysis algorithms and distance a similarity measures lays ground
for objecting the current solutions and coming up with brand new system.

Further in the work a deduplication, compression and archival system called ICBCS
is introduced. The system’s design tries to overcome the shortcomings of current dedu-
plication and compression systems by extending the redundancy removal scope to thor-
oughly selected clusters – sets of chunks of input files. The system assumes roles of both
a compressor and a file archiver. Modular architecture allows the systems to be further
adapted to various scenarios and extended easily, as well as parameterized with many
different compressors, distance measures, clustering algorithms, etc.

Last, it is demonstrated that ICBCS successfully overcomes the drawbacks of stan-
dard compressors and deduplication and compression systems, especially of wide-range
redundancy removal. Through extensive parametrization a reference setup of ICBCS was
established and subsequently tested. The overall time overhead induced by the system
was much smaller than that of high precision compressors, while providing much better
compression ratios.

2

1.5. Organisation of the Thesis

1.5 Organisation of the Thesis

The thesis is structured as follows: First, a state of the art of deduplication and compres-
sion systems is summarized in Chapter 2. This chapter is further divided to survey on
deduplication systems (2.3), data compression (2.5), distances and similarity measures
(2.6) and clustering analysis (2.7). The next Chapter 3 describes the compression and
archival system proposal called ICBCS and its proof of concept implementation, followed
by a its performance evaluations and extensive testing in Chapter 4. The results of the
thesis are concluded in Chapter 5.

3

Chapter 2

State of the Art

2.1 Current Solutions

There are many techniques to reduce the redundancy of data. The core method is called
data compression. Data compression only removes redundancy within a single object
(e.g. file, document, block) and generally has a significant effectiveness on textual files,
reducing the size by factors of two to six [57].

A specific case of a redundancy removal over a set of objects, where only exact dupli-
cates are removed, is called data deduplication. In the most usual case, data deduplication
operates over blocks (of fixed size) or chunks (blocks of dynamic size), meaning all files
in the system are first split into blocks. Sometimes the definition of data deduplication is
extended to include, for example, delta-compression between similar blocks [112]. Data
deduplication on a block level is the most employed kind of redundancy removal over
a set of objects.

Delta encoding is a method of redundancy removal of one object relatively to another
object. Delta encoding is very effective on files with only minor differences. The most
known application of delta encoding together with copy-on-write form of deduplication
is in version control systems, such as Subversion and GIT.

There is a vast variety of applications and environments where these techniques can
be used, which implies there is no universal solution that works across all the problems.
This is why many solutions aim to be scalable, since such are more likely to adapt to
more scenarios. Some of the measures of the techniques can be its effectivenessICBCSthe
ability to reduce the data redundancy, and efficiency – the amount of resources needed
to do so.

According to [65], the deduplication design space can be described by three dimen-
sions as seen in Figure 2.1. The first two dimensions are of less interest in this work. The
place dimension determines the location of the deduplication process, as well as whether
the process is run on a single node (client), on a special purpose dedicated system,
or on multiple nodes (e.g. disk arrays). The timing dimension distinguishes between
in-band (synchronous, executes before writing the data to the storage) or out-of-band
(asynchronous, executes after writing to the storage) deduplication schemes. Last, the
algorithm dimensions determines the granularity of the deduplication (whole-file hash-
ing, fixed size block hashing, variable size block hashing) and the presence of inter-object
compression.

5

2. State of the Art

Non-solid
(object by object)

Most similar
(simhash, minhash, LSH)

Selective
(clusters)

Local
(e.g. single-file)

Solid
(everything)

Fixed
size block

Variable
size block (chunk)

By file

Single file

Duplicate
detection only

LHS

Minhash

Simhash

Simhash
(extended)

Compression
features distance

Normalized
compression

distance

Kolmogorov
distance

LZ77

LZW

BWT

PPM

CWT

more...

User
space

File
system

Dedicated
hardware

Server

Storage
array

Synchronous

Pseudo-
synchronous

Asynchronous

Deduplication
and Compression

Systems

Compression
Algorithms

Placement

Timing

Inter Object
Compression

Object
Granularity

Similarity
Measures

Figure 2.1: The six dimensions of compression and deduplication systems design space.
Inspired by [65]. The placement of ICBCS, the system proposed in this thesis, is marked
with light green.

2.1.1 Single-File Compression

In single-file compression (also known as whole-file compression) every file is compressed
individually. This is the simplest form of granularity, but not the smallest. There
is no inter-file redundancy removal. Also, using single-file compression does not even
guarantee intra-file redundancy removal, e.g. in case of large files with a limited size
window compression.

Single-file compression scales well with a large number of files and is easily applicable
to transfers of individual files. It is also the most frequently used granularity in file system
compressions. See Section 2.2 for details on compression file systems. Windows’ zip
works this way. The combination gzip + tar (.gz.tar) is also a single-file compression,
although it is rarely used.

2.1.2 Solid Compression

The term solid compression refers to the process of compressing all the objects (files or
blocks) together. It has a significant potential to detect redundancy across multiple or
all the files, thus potentially minimizing the compression ratio, however in practice, that
is not the usual case. Due to resource limitations, it tends to remove redundancy only
in files that are close to each other, e.g. when compressed by stream algorithms.

Another major drawback of this approach is its poor scaling with large data sets. To
access a single file, it may be necessary to decompress the entire collection.

The most known example of solid compression is a Linux-originated combination of
tar + gzip (.tar.gz), PAQ compression algorithms, etc. One solution that signifi-
cantly increases the span for redundancy detection is the Long Range ZIP [53].

2.1.3 Block-Based Deduplication

Every file is divided into blocks starting at the beginning of every file. These blocks
cover the entire set of files, and the deduplication algorithm operates with these blocks
only.

6

2.1. Current Solutions

Block-based deduplication can operate either with fixed-size blocks or with variable-
size blocks. In the case of fixed-size blocks, a signature of these blocks is usually calcu-
lated using some strong hash function, such as SHA1 or MD5.

SHA-1 Hash SHA-1 Hash SHA-1 Hash

Match
Found?

Duplicate
Detected

Store
Hash Value

Yes

No

Compare to Stored
Hash Values

…files…

Figure 2.2: Fixed-size blocks deduplication scheme. Each fixed-size file block is hashed.
Resulting hash value is compared to prior values to find duplicate blocks. Figure taken
from [101].

More sophisticated approaches use sliding window (rolling checksum or hash) meth-
od [101, 10, 75]. Variable-length (content-defined) block sizes rely on fingerprinting
methods to determine the block boundaries which are resistant to shifts. One of the
basic methods to do it uses Rabin fingerprinting [84]. The sliding window computes
the Rabin fingerprint. If the fingerprint matches a certain predetermined value (reaches
a breakpoint), the current window position is marked as the block boundary. A hash
of this block is then used for the deduplication. This method is very successful in
identifying similar blocks irrespective of their offset within a file [112]. A simple scheme
of this deduplication method is depicted in Figure 2.3.

Fingerprint

…files…

FingerprintFingerprintFingerprintFingerprint

SHA-1 Hash

Chunk
Breakpoint?

Slide
Window

No

Match
Found?

Duplicate
Detected

Store
Hash Value

Yes

No

Compare to Stored
Hash Values

Yes

Figure 2.3: Variable-size blocks deduplication scheme. To determine the blocks, a sliding
window is used to produce fingerprints. When those fingerprints match a certain value,
that windows is marked as a breakpoint. Figure taken from [101].

There are further improvements of the fingerprints method. One improvement called
super-fingerprints coalesces multiple fingerprints (chunk fingerprints) into a super-fingerprint
(file fingerprint) indicating high similarity between files [11].

7

2. State of the Art

Note that block sizes often restrict the overall memory consumption in case of a com-
pression applied to these blocks, e.g. many phrase-based compressions’ dictionary sizes
are depended on the input data size. Here, the size has an upper bound – block size. In
case of a deduplication only, this is usually not a concern since the hash is computed in
constant memory, often at the same time the boundaries are determined.

2.2 Deduplication and Compression File Systems

Many compression file systems have been developed and deployed. A file system is only
a virtual wrapper for the compression system that potentially uses a physical device.

Several major proprietary file systems are integrated directly into operating systems,
some are implementing as a module (e.g. Linux kernel module), other, usually smaller
project, use the Filesystem in Userspace – FUSE [99] mechanism to implement a virtual
file system for Linux.

Widespread file system NTFS – New Technology File System supports a fixed-size
block compression using LZNT1 (variation of LZ77). The files are split into blocks of
64 kB. Another technique used in NTFS is that sparse files are reduced to only occupy
a physical space worth of non-empty data in that file.

Ext3 for example, does not include a native transparent compression support. How-
ever there is an unofficial patch e3compr [52].

ZFS by Sun Microsystems contains both deduplication system and compression using
implicitly LZJB (very fast but compression-ratio-wise ineffective variant of LZ), or alter-
natively gzip. ZFS is a granular file system, and as such, compression can be selectively
applied to different attachment points.

BTRFS – B-tree file system is a copy-on-write file system with native compression.
The compression is not applied in a block scope but rather in an extent scope, which is
a continuous run of data [78].

Some file systems are read-only. Cramfs, for example, compresses single pages using
zlib [61]. It is used in embedded devices or for initialization or installation images.

Fusecompress is a FUSE-based file system that supports LZO, gzip, bzip2, and
LZMA. Fusecompress also has an experimental port on Mac [98].

Lessfs is another example of FUSE-based file system [89]. Lessfs aims at data dedu-
plication but also supports compression using LZO, QuickLZ, Bzip and data encryption.

Opendedup is another open source deduplication filesystem that comes with a volume
manager and supports multiple storages. [9].

2.3 Deduplication and Compression Systems

Numerous deduplication and compression systems and techniques have been developed
so far. Each of them occupies a certain place in the design space.

Several schemes are compared in [83, 112, 65].

2.3.1 XRAY

XRAY is a compression scheme optimized for high compression ratio and fast decom-
pression. It uses several heuristics during both the modeling and compression process,

8

2.3. Deduplication and Compression Systems

rendering the compression times a little slower than many other solution. The compres-
sion scheme is capable of operating over a large collection of files.

XRAY consists of a three-phased approach. In the first phase, a RAY algorithm is
applied, that creates a dictionary based only on a small sample of the total input [16].
This so called training phase is repeated several times on different samples from the
whole data set.

The second phase, called testing phase, takes another set of training data and per-
forms the coding on this dataset. The phrase dictionary frequencies are adjusted ac-
cordingly to this pass, minimum-redundancy codes are generated and infrequently used
dictionary items are discarded.

Third phase, called coding phase, performs the assignment of the minimum-redun-
dancy codes in a stream. There are several different method of phrase matching based
on a windows approach that identifies overlapping phrases.

On textual files with the total training data size ranging from 0.1% to 4%, a com-
pression ratio of 3.0 to 2.3 bpc is achieved. XRAY shows that only a small part of the
total data is necessary to build a well-performing compression model. [17].

2.3.2 SILO

SILO – SImilarity-LOcality based deduplication scheme is a heavy duty system designed
for large datasets and distributed processing. It exploits both data similarity and locality.
Data similarity is exposed by splitting files into segments similarly to other schemes,
and by grouping set of small files into a larger segment. Locality is then exposed by
concatenating subsequent segments in the data stream into bigger blocks to preserve the
locality-layout on the disk. [110]

2.3.3 Cluster-Based Delta Compression

As mentioned in Section 2.5.6, finding an optimal model for delta-encoding for a collec-
tion of files or blocks is not a trivial task. By having a distance measure, for example
an edit distance or a delta distance, between all pairs of file in the collection, one can find
an optimal model by reducing the problem to maximum weight branching in a weighted
directed graph.

Such problem however has a quadratic time complexity in the size of the collection.
This scales poorly in any real world scenario. A scheme called cluster-based delta com-
pression approximates the branching problem using approximate clustering. This is the
first approach that eliminates the drawbacks of both simple-file and solid compression.

The authors elaborate on multi-dimensional parametrization of the scheme, including
similarity measures, optimum branching, hash functions, sample sizes, edge pruning
rules, edge weight estimates, etc. [79].

2.3.4 REBL

REBL – Redundancy Elimination at the Block Level is a fine-tuned system that combines
all of duplicate block elimination, similar blocks delta-encoding and data compression.

The data stream is divided into chunks of variable length (similar to previous meth-
ods), Rabin fingerprints and SHA hash are generated for each chunk. The SHA hash is
used to find a duplicate chunk in the database.

9

2. State of the Art

Rabin fingerprints are then used to determine the similarity of the chunks by com-
puting super-fingerprints using the Rabin fingerprints. Chunks with a certain amount of
matching super-fingerprints are then compressed using delta-encoding. There are several
possible algorithm that can be used to determine the structure of the delta-encoding.

The remaining chunks that are not similar to any other chunk in the database are
then independently compressed. [55]

2.3.5 Pcompress

Pcompress is a high-performance, parallel deduplication tool with a modular design.
Pcompress features many improvements over current deduplication solutions, many com-
pression algorithms like LZMA, Bzip2, PPMD, LZ4, LZFX, delta compression, etc.,
many hashing algorithms for chunk checksums, and much more.

Pcompress even tries different deduplication schemes with less precision than stan-
dard complete hash comparison that allow for much larger scale of deduplication appli-
cation, such as segmented deduplication. Another interesting feature is a heuristic for
appropriate compression algorithm detection used to compress chunks.

The scale of similar chunks compression is standard among other systems – it is based
on minhash and delta compression.

Pcompress is one of the most accessible, feature-packed deduplication systems cur-
rently available.

2.3.6 Other Deduplication and Compression Systems

A framework called PRESIDIO – Progressive Redundancy Elimination of Similar and
Identical Data In Objects introduces several methods for efficient storage that are re-
placeable via a class-based polymorphic approach. These methods are able to predict
their effectiveness for the system to decide which one to use. Another technique called
harmonic super-fingerprinting is used to produce successively more accurate measures
of the chunks. [114].

Deep Store is a large-scale system architecture based on PRESIDIO. Deep Store is
a distributed system composed of storage nodes and clusters [113].

Amar Mudrankit presented in his master’s thesis an integration of a fixed-size block
deduplication into a Linux kernel and ext3 file system. The system consists of a virtual
block layer using additional context-implied hints for the deduplication itself. [71]

Another example of a deduplication system based on similarity matching schemes,
similarity signatures and hash based identities is described in [5].

Summaries of relatively new deduplication or compression schemes and solutions:
Extreme Binning [8], ChunkStash [29], Data Domain deduplication file system [117].

2.4 Optimization Criteria

Since there are many deduplication systems, a unified metrics had to be formalized in
order to compare these systems to each other.

One of such metrics is formalized by [65]. It consists of the following criteria:

Fold-factor – the reduction in data footprint size due to deduplication, Reconstruction
time, Rate of deduplication and Resource consumption.

10

2.5. Data Compression

2.5 Data Compression

In this chapter, we introduce the basics of data compression and information theory.
Categorization and description of data compression techniques and algorithms is pro-
vided in the following range: lossless vs lossy compression, symmetric vs asymmetric,
static vs semi-static vs adaptive, uniquely decodable codes, statistical coding, arithmetic
coding, dictionary-based compression and context-based compression.

A few compression algorithms will be explained more in detail, however most will
only be referenced to other sources, since this thesis is not focused solely on isolated data
compression techniques. Note: compression as such is a parameter in this work and so
it is studied in the context of this thesis only – for large scale redundancy removal, not
for perfecting compression ratio on a small dataset (corpus).

Unless otherwise specified, the definitions and other information in this chapter are
taken from the following data compression related sources: [64, 91].

abcbbadc
abbbdbabbab
bbacdcc

Original string X

abcbadcabd
bababacdc

Compressed string C(X)

abcbbadc
abbbdbabbab
bbacdcc

Decompressed string Y

Figure 2.4: Data compression and decompression scheme. The original string X is
compresses into XC and then decompressed into Y . In case of a lossless compression,
X = Y .

2.5.1 Preliminaries

For deeper understanding of compression and its effectiveness, we first have to define
several basic terms.

An alphabet A is a finite non-empty set of symbols – characters, letters or digits.
A string S = {s1, s2, . . . , sn} over an alphabet A is a finite sequence. The length of
|S| = n. Source is a generator of strings, source unit is then a string or a substring
generated by the corresponding source. A codeword or a code unit is a binary string
produced from a source unit using a code.

Definition 1 (Code). Code K is a triple K = (S,C, f) of a finite set of source units S,
finite set of codewords C and an injective function f : S → C+ (injective means that it
preserves distinctness).

Compression (translation) using the code K is the performed by f(s) = c, where
s ∈ S and c ∈ C. The inverse process is called decompression (inverse translation)
f−1(c) = s, where s ∈ S and c ∈ C. If separate source unit produce separate codewords,
we call this a homomorphic translation: ∀s1, s2 ∈ S : f(s1s2) = f(s1)f(s2).

A string c ∈ C+ is uniquely decodable with respect to f if there is at most one source
unit sequence s ∈ S+ that translates to c - f(s) = c and different codewords are decoded

11

2. State of the Art

to different source units

∀c1, c2 ∈ C, c1 6= c2 =⇒ f−1(c1) 6= f−1(c2)

A code is a prefix code if no codeword is a prefix of another codeword. A block code
is a code where all its codewords have the same length. Note that both prefix and block
codes are easily decodable.

Definition 2 (Compression ratio, factor). Compression ratio is a measure of a code’s
effectiveness on a given data. Compression factor is its inverse.

compression ratio =
compressed length

decompressed length

compression factor =
decompressed length

compressed length

The most frequent units of the compression ratio are bits per bit (bpb) and bits per
character (bpc). If bpc > 1, we call such compression a negative compression.

2.5.2 Categorization

If the source data can be completely reconstructed during the decompression phase, such
compression is called lossless. Lossless compression is in some cases the only applicable
compression, e.g. for text, documents, binary programs. If the overall information is
reduced during the compression phase, such compression is called lossy. It is the most
employed in scenarios, where human perception cannot effectively recognize the lost
information, such as images, video or music.

Based on the computational complexity of the compression and decompression pro-
cess, a compression can be divided into symmetric compression, where the complexity
of both compression and decompression process is the same, e.g. Huffman coding, and
asymmetric compression, where the complexities are different, e.g. LZ family compres-
sions.

Another classification of coding is according to its model, further described in Sec-
tion 2.5.4.

Based on the size of simultaneously processed data, compression can be divided into
block and stream compression. In case of block compression, fixed subsequence of the
source data is processed at a time. The redundancy is only removed within the single
block. In stream compression, the entire source data is processed in a sequential fashion.
The redundancy is removed from all over the source, however with uneven distribution.

Classification of compression methods can also be done by the main idea and prin-
ciple: elementary, statistical, dictionary, context and other methods. For overview of
lossless compression algorithms, see Section 2.5.5.

2.5.3 Information Theory

In 1948, Claude Shannon put together the idea of a quantitative measure of informa-
tion [94]. The information based on a probability P (A) of occurrence of an event A in
an experiment S is called self-information of A:

I(A) = log2
1

P (A)
= − log2 P (A)

12

2.5. Data Compression

Note that we will use log base of 2, since we always want to measure the information
in bits (also known as Shannon). In case we used e (base of the natural logarithm) as
the base, the information unit would be nats, and for base 10, the unit is hartleys.

For example, in the Shannon information theory, an uniformly random string contains
more information than a well though-out thesis of the same length.

Let A and B be statistically independent events, so that P (AB) = P (A)P (B),
here P (AB) denotes that both events occurred in the experiment. The self-information
contained in two independent is:

I(AB) = log2
1

P (A)P (B)
= log2

1

P (A)
+ log2

1

P (B)
= I(A) + I(B)

Definition 3 (Entropy). Let Ai be independent events from a set of all possible events
in experiment S = ∪Ai. Then the entropy of S is

H(S) = −
∑

P (Ai) · I(Ai) = −
∑

P (Ai) log2 P (Ai)

The entropy can be further extended to strings. For a source of strings S with
alphabet A that generates a string X = {X1, X2, X3, . . . Xn}, ∀i : Xi ∈ A, the entropy
of S for strings of length n

Hn(S) =

i1=|A|∑
i1=1

. . .

in=|A|∑
in=1

P (X1 = i1, . . . , Xn = in)log2P (X1 = i1, . . . Xn = in)

In case we are only interested in single characters – strings of length 1 (P (Xi = i1)),
we refer to such entropy as zero-order entropy H(·). In case we are interested in the k+1-
st character given a directly preceding sequence of k characters (P (Xk+1 = ik+1|X1 =
i1, X2 = i2, . . . , Xk−1 = ik−1, Xk = ik)), we refer to the entropy as k-th order entropy
Hk(·). Note that k-th order entropy and entropy of string of length k are two very
different information measures.

For length of a codeword |c(Xi)| = di, the length of encoded message X is

L(X) =
∑
i

di

and the average length is

LAV G(X) =
∑
i

P (Xi) · di

Definition 4 (Redundancy). The redundancy R(S) of a source S is the difference be-
tween the codeword length di and the self-information I(Xi) corresponding to its source
word Xi

R(S) = L(S)− I(S) =
∑
i

(di − I(Xi)) =
∑
i

(di + log2 P (Xi))

The average redundancy is then

RAV G(S) = LAV G(S)−H(S) =
∑
i

P (Xi)(di + log2 P (Xi))

Relative redundancy between two different sources S given (known) T can be de-
scribed by relative entropy

H(S|T) =
∑
i,j

P (Xi, Yi) log2
P (Yi)

P (Xi, Yi)

13

2. State of the Art

2.5.3.1 Algorithmic Information Theory

Algorithmic information theory does not require the existence of an abstract source. It
is another way of looking at information, that has unfortunately not been that useful
in practice. The theory is based on Kolmogorov complexity, which is an uncomputable
function expressing length of the shortest program that can generate a given string. In
this work, Kolmogorov complexity is used in as a theoretical notion for compression-
based data distances, please see Section 2.6.4 for details.

One of the practical implications of Kolmogorov complexity is a theory called MDL
– minimum description length. The theory incorporates the existence of a model, further
described in Section 2.5.4. In MDL, the goal is to minimize the length of descriptions of
both the model and the data encoded using the model. [87]

2.5.4 Compression Models

A mathematical model describing the source can be used to significantly reduce the total
length of the resulting code.

Example 1. Consider the following sequence of numbers X from Figure 2.5a:
Simple binary encoding of these numbers would take 5 bits per number. However

all the numbers lie approximately on a line. The linear function can be specified as
x̂ = n + 8, where n is the index. This function is depicted in Figure 2.5a by a green
dotted line. Let’s use a model dX = X − X̂ to encode the numbers instead. See the
following table for new values dX to encode.

1 2 3 4 5 6 7 8 9 10 11 12

X 9 11 11 11 14 13 15 17 16 17 20 21

dX 0 1 0 -1 1 -1 0 1 -1 -1 1 1

The values dX will fit in 2 bits each, which is significantly less than 5 bits if encoded
as they were. We would also need some bits to encode the model, which in this case is
a linear polynomial.

5

10

15

20

2 4 6 8 9 10

(a) Static linear model. [91]

5

10

15

20

2 4 6 8 9 10 12 14 16 18 20

(b) Adaptive linear model.

Figure 2.5: Demonstration of static and adaptive compression model on a sequence of
data values. The green lines determine the currently closest linear function. The red
line is a linear function minimizing the encoded values in case of a static model.

14

2.5. Data Compression

2.5.4.1 Probability and Markov Models

Assuming each character from alphabet A is independent from each other and has the
same probability in a source S, we call such model the ignorance model. Such model can
be useful in case we have absolutely no information about the source S.

Another step up in the complexity is to remove the equal probabilities. This is called
a probability model P = {P (a1), P (a2), . . . , P (an)}, where ai ∈ A. For a probability
model, we can calculate entropy. The probability model is exploited by very efficient
coding methods, such as the Huffman coding and arithmetic coding.

Removing the independence assumption results in the most interesting class of prob-
ability models – Markov models. Markov models are based on the knowledge of past k
symbols. The theory is very similar to k-order entropy. Markov models are represented
by a discrete time Markov chains, where the {X1, . . . , Xn} are the n characters already
read. If the probability estimations depend only on the last k characters, we refer to it
is k-th order Markov chain. For simplicity, let P (Xn) denote P (Xn = in).

P (Xn|Xn−1, . . . , Xn−k) = P (Xn|Xn−1, . . . , Xn−k, . . . , X2, X1)

This means that the probability estimates for the Xn character can be determined
from only the last k-characters and the rest can be ignored. The {Xn−1, . . . , Xn−k} is
the state of the process.

Markov models are suitable for standard text compression, where the following char-
acter is often determined by several preceding characters. Also it is the basis for PPM
compression algorithms.

2.5.4.2 Static, Semi-adaptive and Adaptive Models

Models used as they are described and used in the previous section are called static
models. Such models are predetermined once prior to any coding process and stay the
same regardless of any input data. The initial model is estimated using some overall
knowledge base, e.g. all the data in the world.

Semi-adaptive model determines the model prior to encoding. Once the encoding
takes place the model cannot be changed. Most often, semi-adaptive compressors require
two scans of the input data – the first determines the model, the second serves as an input
to the encoding itself. The model can also be sent with the data, as mentioned in the
minimum description length, see Section 2.5.3.1.

Adaptive models change the model during the encoding phase. Both compression
and decompression start with the same model every time (just like static methods), but
changes the model during the encoding phase. The model doesn’t have to be transfered
with the data, nor has the data be read twice.

Example 2. Extending the Example 1 to a semi-adaptive and an adaptive variant is
quite straightforward. See Figure 2.5b.

In the semi-adaptive variant, scan the input data and determine a minimal linear
error function. Such a minimizing error function can have several different forms. If
we want to use fixed length code, then the maximal difference (error) should be the
minimization criterion. In case we would rather use e.g. Huffman coding, then the
minimizing criterion should be the entropy of the differences.

15

2. State of the Art

For the adaptive variant, let’s assume we are able to scan the following k values prior
to encoding them. In such case, we can use the same optimization criteria in the scope of
the following k values only. Since the model is determined by looking ahead, we need to
encode the change of the model too, otherwise the decoder would follow wrong reference
function. If we are able to encode the reference function change effectively, the overall
encoded length of the values will be significantly lower than with the semi-static variant.

2.5.5 Lossless Compression Algorithms

This section further describes lossless compression algorithms. Most of them are ex-
plained broadly, since the detailed analysis of these algorithms is out of the scope of this
work, however principles, effectiveness and especially extraction of compression features
are of high interest in this work, see Section 2.6.6.1.

The current state of lossless compression can be described by several major branches:

Efficient coding schemes include: statistical methods – Huffman coding [46] and
Arithmetic coding [87], numeric codes (unary, rice, Golomb) and other codes.

The core duplicate string replacement algorithm LZ77 [118] gave rise to numerous
other algorithms such as LZSS (originally used in NTFS), Deflate (used in zip, gzip,
zlib, PNG images, PDF documents, JARs), LZMA (originally used in 7-zip), LZX,
ROLZ, Snappy (used by Google, optimized LZ77 for x86-64).

Dictionary compression algorithms are based on LZW dynamic dictionary compres-
sion algorithm [107] (used in compress and GIF). Dictionary encoding is especially
effective on text files.

Context sorting or block sorting algorithms are mostly based on the Burrows-Wheeler
Transform – BWT [14]. bzip2 is an example of a popular compressor.

Probability distribution (prediction) based models are for example bytewise, bitwise
encoding (fixed orders), Dynamic Markov Coding – DMC, Prediction by Partial Match
– PPM, Context Tree Weighting – CTW, PAQ and more.

A comprehensive summary of data compression techniques, algorithms, parametri-
zation is available at [64] and a large-scale text compression benchmark is at [63].

The top algorithms for text compression compete in challenges such as the Calgary
challenge [12] and the newer Hutter challenge [49]. These challenges are both won by
PAQ-based algorithms.

2.5.6 Delta-Encoding

For two similar files – a reference file and a new file, delta-encoding generates a delta
(a patch file) between these files. Delta encoding originally used so called string edit
operations: copy, insert and delete. More sophisticated delta encoding algorithms are
implemented by a stream matching algorithm that locates the offsets of matching chunks
in the reference and the new file, emitting a sequence of edit operations that transform
the reference file into the new file. A nice summary on delta compression and it’s
application to file synchronization is available in [97].

The most known such tools are the diff and bdiff tool for computing text file
differencies. Other frequently used tools are vcdiff, vdelta, xdelta and zdelta that
compute compressed representations of file differencies.

Delta encoding is only a tool to effectively encode one file based on the other. The
most important aspect is how to select the reference file against which to produce the

16

2.6. Distances and Similarities of Data

delta in a deduplication or compression scheme of multiple objects. One of such schemes
was recently described in [95]. The work also describes multi-layered delta encoding and
combination of delta encoding with other compression techniques.

2.6 Distances and Similarities of Data

All data are created equal, but some are more equal than others. In this section, we
describe many possible ways of expressing data equality and similarity in a more formal
manner. Just as data itself, distances can be categorized based on several criteria such
as input, application, online vs offline, approximation factor, availability of the origi-
nal input, etc. For offline clustering problems, the most distinguishing criteria is the
availability of features [23].

Feature-based similarities can be gathered from data of a specific type. Such methods
usually require specific and detailed knowledge of the problem area. A feature is a single
specific property of the data. For example in musical files, some of the numerical features
are rhythm, pitch, harmony, etc. Text features are computed using standard information
retrieval techniques like tokenization, case folding, stop-word removal, stemming and
phrase detection. Features assign a unique feature vector to every file, which can act as
an input to a clustering algorithm, see Section 2.7.1, or as a base of several linear space
based distances, see Section 2.6.1.

Non-feature similarities do not assume any knowledge about the dataset. Such meth-
ods have to be general enough to capture all possible kinds of similarities. In practice,
that is not the case. For example, changing an encoding of a book will result in a com-
pletely different binary image, rendering all but purely theoretical algorithms short-
handed. Currently the best non-feature similarity detection algorithms are based on
compression.

Availability of the original data is a crucial criterion for any subsequent processing,
especially in this work. If the original data is available for the distance function compu-
tation, we can simply compute the distance between the new item and the existing item.
However in many incremental clustering, deduplication, compression and distributed
system scenarios, this is not the case. To compute the distance, we must first fetch the
data, which may be a time consuming task. In these scenarios, similarity hashes can be
used, see Section 2.6.6.

Distance between data directly deployed in many areas, such as clustering documents
by categories [23], reduction of web-crawling document space, detection of similar doc-
uments, plagiarism detection, spam detection, data extraction [66]. It is also useful in
documents exchange. Several document exchange protocols were invented based on delta
distances [26].

2.6.1 Distance Function, Metric and Norms

Definition 5 (Distance function). A distance function is a function of a pair from a set
of objects Ω to nonnegative real numbers R+ D : Ω× Ω→ R+.

Definition 6 (Metric). A distance function that satisfies the following conditions
∀x, y, z ∈ Ω is a metric, the object space Ω is then a metric space:

• D(x, y) = 0 ⇐⇒ x = y

17

2. State of the Art

• D(x, y) = D(y, x) (symmetry)

• D(x, y) ≤ D(x, z) +D(z.y) (triangle inequality)

The most familiar example of such metric is the Euclidean distance or the distance
between geographical objects. Another example of a metric is a discrete metric – binary
distance between categories such as book authors or clusters. D(a, b) = 0 if the two
items a and b fall into the same category and D(a, b) = 1 otherwise. This is an example
of a single feature described by a simple metric.

Definition 7 (p-Norm). For a vector X ∈ Rn, p ∈ R, p ≥ 1, p-norm is a function
‖X‖p : Rn → R+:

‖X‖p =

(
n∑

i=1

|xi|p
) 1

p

Note: p-norm is usually defined in any vector space over a subfield of the complex
numbers.

For p = 1, the p-norm is a Manhattan norm (Taxicab norm), for p = 2 it is the
Euclidean norm and for p→∞ it is an Chebysev norm (uniform, infinity norm).

Definition 8 (Minkowski distance). For two vectors X,Y ∈ Rn, X = (x1, x2, ..., xn),
Y = (y1, y2, ..., yn), the Minkowski distance is a function Mp : Rn × Rn → R+:

Mp = ‖X − Y ‖p =

(
n∑

i=1

|xi − yi|p
) 1

p

For p ≥ 1 the Minkowski distance is a metric. For p < 1 it is not, since the tri-
angle inequality does not hold. For vectors (0, 0), (0, 1), (1, 1), and p < 1 the distance

Mp((0, 0), (0, 1)) = Mp((0.1), (1, 1) = 1, but Mp((0, 0), (1, 1)) = 2
1
p > 2.

For p = 1 the Minkowski distance is a Manhattan distance, for p = 2 it is Euclidean
distance and for p→∞ it is Chebysev distance.

For a distance functions or a metric, we want to exclude unrealistic degenerate dis-
tance measures like D(x, y) = 1

2∀x, y : x 6= y. One of these requirements is the density
condition. Intuitively, it means that for every object x and d ∈ R+, there is at most
a certain finite number of objects y at a distance d from x. The density conditions for
x and y: ∑

x:x 6=y

2−D(x,y) ≤ 1
∑
y:y 6=x

2−D(x,y) ≤ 1 (2.1)

Definition 9 (Admissible distance). Let Σ = 0, 1, Ω = Σ∗ be binary strings. A function
D : Ω×Ω→ R+ is an admissible distance if it satisfies the density condition, is symmetric
and is computable.

The density condition applied to length of a code instead of the distance is known as
the Kraft’s inequality.

18

2.6. Distances and Similarities of Data

2.6.2 String Edit Distances

Definition 10 (String edit distance). The string edit distance d(X,Y) between two
strings X and Y over an alphabet Σ is the minimal cost of edit operations required to
transform X to Y .

Definition 11 (Edit operation). The edit operation is a rule in the form δ(x, y) = c,
where x, y ∈ Σ∪ε are two characters from the alphabet of the two strings plus an empty
string ε, and c ∈ R+ is the cost of this δ transformation.

The four basic edit operations are: [106]

• Insertion: δ(ε, a) – inserting the character a at any position

• Deletion: δ(a, ε) – deleting the character a from any position

• Substitution: δ(a, b), a 6= b – replacing the character a with b

• Transposition: δ(ab, ba), a 6= b – swapping two adjacent characters

If for each rule δ(x, y) = δ(x, y), then we call the edit distance symmetric. If the
following are also true: δ(x, y) ≥ 0, δ(x, x) = 0, δ(x, y) ≤ δ(x, z) + δ(z, y), then the edit
distance is a metric.

All the following commonly used distances are metrics.

Definition 12 (Hamming distance). Hamming distance allows only substitution oper-
ations. It is only defined for strings of the same length. Alternatively the distance is
equal to ∞ for string of different lengths.

Definition 13 (Longest common subsequence distance). Longest common subsequence
is the longest pairing of characters between the two strings that preserves the order
of these characters in both strings. diff algorithm is based on the longest common
subsequence problem. Longest common subsequence distance represents the number of
unpaired characters between the two string. The distance allows only insert and delete
operations.

Definition 14 (Levenshtein distance). Levenshtein distance allows insert, delete and
substitute operations. It is the most commonly used edit distance in approximate string
matching problems. The problem is often referred to as string matching with k differ-
ences.

Definition 15 (Damerau distance). Damerau distance extends the Levenshtein distance
with the transpose operation. The original idea behind this distance was to correct
human misspelling errors.

Example 3. Assuming unary costs for all the edit operations, meaning all the edit costs
are exactly 1. For two string X = barborka and Y = brambora:

Hamming distance between X and Y is 6, since all the characters but the first and
last have been substituted.

Longest common subsequence distance is 4. Delete the first a, delete k, insert a after
the second character, insert m after the third character.

barborka -> brborka -> brbora -> brabora -> brambora

19

2. State of the Art

Levenshtein distance is 3. The edit operations can be as follows: delete k, insert r

after the first character, substitute the second r with m.
barborka -> barbora -> brarbora -> brambora

Damerau distance is also 3 in this case. Possible sequence of edit operations may be:
delete k, transpose ar to ra, insert m after the third character.

barborka -> barbora -> brabora -> brambora

Standard dynamic programming algorithm for the computation of Levenshtein dis-
tance was published in [106]. It was later extended to work with Damerau distance.

An overview of string edit distances and the associate string-to-string correction
problem is available in [76].

2.6.3 Delta Distances

Delta compression between two strings can be used to determine a distance function
between those files. A subsequent compression of a sequence of strings can result in
an effective way to encode such strings. A system for ideal delta compression among
multiple files was described in [79] using both optimal branching and hashing techniques,
see Section 2.3.3 for more details.

For an overview of delta compression methods, please see Section 2.5.6.
To use a delta compression method in the problem of string distance, we have to set

up a formal notion.

Definition 16 (Delta distance). For two strings X and Y , delta compression algorithm
AD, delta distance dA(x, y) represents the size of the difference produced by string Y
being compressed using the delta compression algorithm AD with a source X

d(X,Y) = |AD(X,Y)|

2.6.4 Algorithmic Information Distances

In this section, we’ll briefly describe a theoretical notion of the data distance. If we
had an oracle able to compute the ideal compression of a file, we would also be able
to compute an ideal compression of another file relative to the reference file. Such
a theoretical tool is called the Kolmogorov complexity [59].

Definition 17 (Kolmogorov complexity). The Kolmogorov complexity or algorithmic
entropy K(X) of an input string X is the length of the shortest binary program that
outputs X with no input.

Note that Kolmogorov complexity is not computable – there does not exist such
a compressor program. Kolmogorov complexity thus serves as the ultimate lower bound
of what a real-world compressor can possibly achieve. [58]

It is easy to compute the upper bounds of K(s) by compressing the string using
a program and concatenating the program to the compressed string. The total length of
the compressed string and the compression program.

Definition 18 (Conditional Kolmogorov complexity). The conditional Kolmogorov com-
plexity K(X|Y) of an input string X is the length of the shortest binary program that
outputs X with input Y . Kolmogorov complexity of a pair of strings is denoted by
K(X,Y), and of a concatenation of strings by K(XY).

20

2.6. Distances and Similarities of Data

Lemma 1. Within an additive precision, the Kolmogorov relative complexity of a string
X relative to string Y is equal to the Kolmogorov complexity of the pair of X and
Y without the complexity of X alone. The complexity of a pair of strings is with
a logarithmic precision equal to the Kolmogorov complexity of the concatenation of the
strings. [58]

K(X|Y) ≈ K(X,Y)−K(X) K(X,Y) ≈ K(XY) ≈ K(Y X) (2.2)

In practice, it is impossible to compute how far off the Kolmogorov complexity our
estimate is.

Example 4. If we take a string from a uniform distribution, then very likely the Kol-
mogorov complexity of that string is close to the original length of this string. These
may be encrypted data for example. Any standard compressor will provide a good
approximation of Kolmogorov complexity of such string.

However if our string is the first 1020 digits of Π, then there is a program of size
< 105 bits that generates the number Π. So the upper bound of Kolmogorov complexity
is size of the program. However, no standard compressor is able to compress the string
significantly.

Definition 19 (Information distance). The length of the shortest program that com-
putes string X with input of string Y and with input X computes the string Y is called
information distance

ID(X,Y) = max{K(X|Y),K(Y |X)}

To restrict the range of information distance, the normalized information distance is
used.

Definition 20 (Normalized Information Distance). Normalized information distance is
the length of the shortest program that computes string X with input of string Y and
vice versa relative to the sizes of Kolmogorov distances of the original input strings X
and Y

NID(X,Y) =
max{K(X|Y),K(Y |X)}

max{K(X),K(Y)}
Normalized information distance is universal, meaning that any admissible distance

expressing similarity according to some feature that can be computed from the input
data, is included in the NID.

A more in-depth analysis of Kolmogorov complexity is available in [59] and [102].

2.6.5 Compression-Dased Distances

In order to approximate the information distance, a real compressor has to be used. As
mentioned in the previous section, this may fail to approximate the real Kolmogorov
distance, however for the purpose of this thesis, where real compression is the goal, it
does not matter.

LZ distance and LZ metric distance are both LZ compression inspired distances [26].

21

2. State of the Art

Definition 21 (LZ distance). LZ distance LZD(X,Y) (produce X given Y) between
two string X and Y is equal to a number of characters or substrings of Y or the partially
built string that are needed to produce X. Note that LZD is not a metric, since it is not
symmetric.

Example 5. Let X = aabcdefgabc and Y = aaaaaaaaaaaaaaaa. String X given Y
can be constructed in the following way:

(aa) -> aa(b) -> aab(c) -> aabc(d) -> aabcd(e)

-> aabcde(f) -> aabcdef(g) -> aabcdefg(abc)

but Y given X can be reconstructed in the following way:

(aa) -> aa(aa) -> aaaa(aaaa) -> aaaaaaaa(aaaaaaaa)

Thus, LZD(X,Y) = 8 and LZD(X,Y) = 4.

Definition 22 (LZ metric distance). LZ metric distance LZMD(X,Y) extends standard
Levensthein distance with more operations to transform string X into Y : insertion,
deletion and substrituion of a single character, copy of a substring, deletion of a repeated
substring.

LZMD is a metric, when all the operations are reversible and have a unit cost.

2.6.5.1 Normalized Compression Distance and Variations

The information distance approximated by the real compressor C is called compression
distance ID(X,Y) ≈ CD(X,Y) [23]

max{K(X|Y),K(Y |X)} ≈ max{K(XY)−K(X),K(Y X)−K(Y)} ≈
≈ min{C(XY), C(Y X)} −min{C(X), C(Y)} = CD(X,Y)

(2.3)

Most real compressors are symmetric or almost symmetric. Block-coding based com-
pressors are very close to symmetry by definition and stream compressors usually only
have a little deviation from symmetry. The deviations from the rules of metric can be
cause by several factors. Because of string alignment issues and possible model flushing,
adaptive compression algorithms tend not to be perfectly symmetric. In the LZ family,
when there is no dictionary flushing and the string X uses up the full capacity, then the
string Y is compressed with a wrong dictionary, resulting in C(XY) ≥ C(X) + C(Y).

Assuming symmetry, the compression distance can be simplified to C(X,Y) = C(XY)−
min{C(X), C(Y)}.

Definition 23 (Normalized compression distance). An approximation of the normalized
information distance by a compressor C is a normalized compression distance

NCDC(X,Y) =
C(XY)−min{C(X), C(Y)}

max{C(X), C(Y)}

22

2.6. Distances and Similarities of Data

The NCD has proven as a very accurate approximation of the Kolmogorov distance.
This approximation is gradually improving with better compression algorithms. NCD is
a metric with a logarithmic tolerance. [23]

Several other less known compression distnaces were described in [92].

The other distance functions CLM: Chen-Li metric, CDM: Compression-based Dis-
similarity Measure, CosC: Compression-based Cosine are all variations of the NCD. The
major difference of these other methods is that they only have a different normalization
term. The experimental performance of these compression similarity methods is almost
the same.

Several feature extractions from the compression algorithms LZ77, LZW and PPM
are presented. The compression similarities are then computed from these extracted
feature vectors. However these feature vectors are of very high dimensions.

2.6.5.2 Compression Dictionary Distances

A compression dictionary can be seen as a specific case of a feature space generated by
a dictionary-based compression algorithm. The main idea is to omit the joint compres-
sion step that all NCD-based techniques possess. This provides a huge advantage, since
the generation of the dictionary may be online a once the dictionary is generated and
the original file no longer needs to be available.

For a dictionary D(X) extracted by a dictionary compressor such as LZW on a string
X, the D(X) represents the feature vector of X.

Definition 24 (Fast compression distance). For two strings X and Y and their dictio-
naries extracted by a dictionary compressor C, the fast compression distance

FCDC(X,Y) =
|D(X)| − |D(X) ∩D(Y)|

|D(X)|

By sorting the dictionaries alphabetically, the operation of set intersection is much
more time-effective than the joint compression step by NCD methods. [20]

Another compression method McDCSM – Model Conditioned Data Compression
based Similarity Measure uses dictionaries extracted from LZW to determine relative
compress ratio based on these extracted dictionaries [19].

Definition 25 (McDCSM). For two strings X and Y , the term |(X|D(Y)| represents
the length of a string X coded with the dictionary extracted from the string Y . The
McDCSM is defined as

McDCSM(X,Y) =
|(Y |(D(X) ∪D(Y))|

|(Y |D(Y)|

2.6.6 Features Extraction and Similarity Hashes

The compression dictionary comparison is an example of a feature extracted from string
data. In the case of compression dictionaries, the feature is represented by a set. Such
set can be transformed into distance measures, such as FCD and McDCSM described in
Section 2.6.5.2. Many other set-based measures can be developed using Jaccard index [86]
or Rand index and fuzzy variation of the Rand and Jaccard index [13].

23

2. State of the Art

2.6.6.1 Compression Features

Features in other forms may be extracted from general data using either dedicated pre-
processing or as a side effect of another process, e.g. compression. Detailed theoretical
description and examples of such feature vectors extracted from compressors are de-
scribed in [92]. There is a high dimensional vector space V describing the compression
process of a compression algorithm C. For every input string x, there is a unique non-
negative vector ~x ∈ V associated with this input string x using the compression algorithm
C. The length C(x) of the compressed string must correspond to a vector norm ‖~x‖.

From LZ77 [118], the feature vector is extracted using the substring in the context
window – offset and length. Start with a zero vector ~x of length equal to the length
of the context window p times the maximal substring length m (m can have an upper
bound). Then for every output symbol of length c (pair of offset and length) increment
the corresponding position in the vector by c. Note that C(x) = ‖~x‖1, because the vector
~x consists of the lengths of the output symbols only and ‖~x‖1 is then the total length of
all the output symbols.

In case of LZW [107], the feature vector ~x corresponds to all possible strings in the
dictionary. The length of a substring in the dictionary is only limited by the maximal
number of entries in the dictionary O(2c), where c is a fixed length of the output code.
The dimension of the feature vector for LZW compression is then O(22

c
), which is much

larger than in the previous case for LZ77. In this case, zero initialized vector with
increments of c similar to LZ77 is used, and C(x) = ‖~x‖1 as well.

The feature vector of PPM [24] can be extracted in the following way: For n-order
compressor, let the first n dimensions of the feature space V be determined by the n-
symbol context and the last dimension is determined by the currently processed symbol.
As well as for LZ77 and LZW extraction, zero initialized vector with increments of c is
used, and C(x) = ‖~x‖1.

The fact that compression of any string can be expressed using a vector in a vector
space allows us to analyze compression-based similarity measures in a vector space.
Assuming adaptive, reliable compressors, the compression lengths satisfy the triangle
inequality C(xy) ≤ C(x)+C(y) and so do norms of the corresponding vectors ‖~x+~y‖ ≤
‖~x‖+ ‖~y‖. The compressor needs to satisfy this property, otherwise the feature vectors
extracted will not satisfy it as well. The deviations from the metric are described in more
detail in Section 2.6.5.1. If the compressor satisfies the metric properties, then also:

max{‖~x‖, ‖~y‖} ≤ ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖

To measure the distance between ~x and ~y, we cannot use the Minkowski distance (see
Section 2.6.1), because there is no subtraction operation defined on these non-negative
vectors. However, this can be solved using a vector similarity measure

‖~x‖+ ‖~y‖ − ‖~x+ ~y‖

When x and y are very similar, this term approaches max{‖~x‖, ‖~y‖} and when they
are very dissimilar, the term approaches 0. This implies the normalization factor for
NCD. In terms of high-dimensional vectors, the NCD can be expressed as

NCD(x, y) = 1− ‖~x‖+ ‖~y‖ − ‖~x+ ~y‖
max{‖~x‖, ‖~y‖}

24

2.6. Distances and Similarities of Data

Figure 2.6: Weight for the 1000 most
popular 1-4 word phrases in 9 million
tweets from twitter.com. The weight
partially suppresses multiple posts by
single user. Without the suppres-
sion, the distribution would be even
steeper. Figure taken from [70].

2.6.7 N-Grams

N-grams is the simplest and the most frequently used form of feature extracted from
strings. N-grams have two major granularities: character and word. Character n-grams
are based of fixed-length characters, such as 1 byte, while word n-grams are based on
substrings separated with a delimiter.

N-grams are frequently used for classification of textual files. Examples of such
classification are a language recognition, author recognition, etc.

Definition 26 (n-gram). A character-based n-gram is a string X is a substring of X of
length n. In other words, it is a n-character consecutive sequence that occurs somewhere
in X. For n = 1, the set of 1-grams is the set of all the unique characters in X. The
n-grams are called bi-grams for n = 2, tri-grams for n = 3 and quad-grams for n = 4.

Definition 27 (Order, Weight and Rank of n-gram). Order of n-gram N is n. Weight
of n-grams N is the number of occurrences of N in X. Rank of n-gram is its position in
an ordered set (by weight) of all all n-grams of X.

From now on, we only assume character based n-grams.

Example 6. For a string SWISS MISS, the bi-grams, tri-grams and quad-grams are the
following sets:

bi-grams IS(2x), SS(2x), SW, WI, S , M, MI

tri-grams ISS(2x), SWI, WIS, SS , S M, MI, MIS

quad-grams SWIS, WISS, ISS , SS M, S MI, MIS, MISS

In the case of single order n-grams, the problem of the beginning and end of a string
is solved by adding a special character, so called padding. In that case, the number of
n-grams in a string X is always |X| + 1. In mixed order n-grams, this is usually not
needed.

One of the first n-gram distances has been introduced in [18] for word-based n-grams.
It is based on the Zipf’s law. Zipf’s law directly implies that a small amount of most
frequent words account for the highest overall coverage of the text, see Figure 2.6. By
extracting only the top T n-grams from both strings, we get an ordered list on n-grams.
The weight are then discarded, only the order is preserved, yielding a ranked list. Every
n-gram in either list is then assigned a mismatch value based on the difference of its
position in both the ranked lists. In the case the n-gram is not present in one of the lists,
it is given a mismatch value of T . The sum of these mismatch values is then the total

25

2. State of the Art

distance between the two strings. Many other methods to compare ordered or ranked
lists can be used to determine the overall distance.

N-grams are not always used as multisets (or weighted sets), but can be used as
a simple set. In that case we refer to the problem as binary bag of n-grams or binary bag
of words [92]. Such sets can then be used with the Jaccard or Rand index mentioned
in Section 2.6.6. Another measures of similarity called shingle intersection and shingle
containment were introduced in [79].

N-grams are frequently used for prediction of user input, as in the case for people with
disabilities. A nice large-scale analysis are available at the Google Ngram Viewer [36] or
at the Twitter talk analysis project [70].

2.6.8 Similarity Hashing

Traditional hash functions such as SHA-1 or MD5 map a long string, resp. vector into
a short one. If you change a single byte in the string, the resulting hash will differ
significantly, meaning its Hamming distance to the original hash will be high. The
similarity hash function acts in the opposite way. Similar strings have similar hashed –
the Hamming distance is small.

The core example of a similarity hash function is simhash [22]. The simhash has also
been applied to the hamming distance problem [66], which is similar to nearest neighbor
search described in Section 2.7.6. Main idea behind simhash is to add together hashes
of length f of all the single features from the string into a similarity hash that is then
transformed into a binary hash of the same length f .

Example 7. To get a simhash of size 64 bits from a string X = SWISS MISS: Have a zero-
initialized vector of size 64. We will compute hashed using a standard hashing algorithm
for all tri-grams of the string, which are ISS(2x), SWI, WIS, SS , S M, MI, MIS.

hash("ISS") = 1110100011011010000010111101110110000010001101110011110100011000

hash("SWI") = 1000010100011111100100110001011100100000100001010000101011100000

hash("WIS") = 1100001110100001110010010010111000110100001001101100011011101100

hash("SS ") = 1000010100011111100100110001011100100000110000100001001111100011

hash("S M") = 1000010100011111100100110001011100100011101011011100001011111011

hash(" MI") = 0000101111101110010011110100011101110011111011101110010100001101

hash("MIS") = 0101100010100011101111100000101101111001111000110101101110111010

The hashes are then added to the simhash vector. Zeroes on i-th positions decrement
the corresponding value on i-th position of the simhash, ones increment the value. The
simhash itself is then extracted from the simhash value. For positions, where the value
was positive, there is 1, otherwise there is 0.

simhash(X) = 1000000100011111100010110001011100100000101001110000000110101000

The simhash approach of [22] has been extensively compared to [10] in [44], where
the two were also combined together in a contenxt of finding near-duplicate web pages.

2.6.9 Min-Wise Independent Hashing

Min-wise independed hashing – minhash first introduced in [11] deals with dimension
reduction using multiple independent hashing functions. Let every object be represented
by a binary vector v, corresponding to a presence of a n-gram in the objects. Note that

26

2.7. Clustering Analysis State of the Art

v only represents a set, not a multiset or n-grams related to the object. Let there be n
simple hash functions (linear will do well) that are used to randomly permute the vector
v. The minhash h of length n is then constructed. The i-th element of the minhash h is
then the minimal index of the i-th hash (in the permuted vector) with value 1 (meaning
there is the corresponding n-gram present). Note that the minhash’s vector size is n, but
the binary size depends on the number of indices in the vector v (with possible cut-offs).

Minhash estimated the Jaccard similarity. A single hash function probes the Jaccard
similarity on a single pair from the sets. If the minhash exhausted all the permutations,
it would correspond exactly to Jaccard similarity. However the fixed set of hash functions
ensures that there is the same rule for choosing pairs to sample in all the set comparisons.

For nice examples, see [85].

Other approaches to similarity hashing are: Sdhash, that (as opposed to previously
described techniques) select statistically improbable features, that are unique for each
object [88]. Sketching is another method based on hashing object n-grams multiple times
to make a sketch of the object. Sketching is described in [67, Chapter 19].

2.6.10 Locality Sensitive Hashing

Many previously mentioned methods required computation of all the pairwise distances.
Even if the distance computation is performed very quickly (e.g. Hamming distance
between hashes), the quadratic complexity still scales the computation time too high. If
our goal is to compute the pairwise distance between all objects, there is no way around
the problem.

However, quite often, we are looking for either a set of nearest objects to a reference
object – this is called the nearest neighbors problem and its approximate variant. Both
of these have been well described in [35].

Another problem is so called near neighbor search solved by techniques called Locality
Sensitive Hashing originally introduced in [47]. The near-neighbor search tries to find
all objects within a certain distance from a reference object. LSH is a technique using
hashing for dimension reduction. It is a probabilistic approach of mapping input objects
into a much smaller number of buckets. The hashing is performed multiple times with
different similarity hashing functions or the hashes are divided into sub-hashes – these
elementary units are calledbands. Bands are then used for separate bucket assignments.
Similar items are mapped into the same buckets with a high probability. When looking
for similar objects, only objects in the same buckets as the reference object are consid-
ered. These objects are called candidate objects. Based on the total number of bands, the
change of a false negative (missed similar object) decreases significantly. Deeper analysis
with examples, application of minhash in LSH is described in [85].

Locality Sensitive Hashing has been successfully applied in many areas, such as the
nearest neighbors search, near-duplicate detection, image similarity identification. The
most interesting application for this thesis is its application to agglomerative hierarchical
clustering. [51]

2.7 Clustering Analysis State of the Art

Measurements in a wide range of fields are generated continuously and in very high
data rates. Examples of such are sensor networks, web logs, network data traffic. Data

27

2. State of the Art

analysis is a process to understand and summarize such data. Based on a goal, data
analysis can be divided into two groups: exploratory, where the investigator does not
have a pre-specified model, but wants to understand the general characteristics of the
data; second groups is confirmatory, where the investigator wants to confirm a hypothesis
given the available data.

Cluster analysis is a method to discover the natural grouping of a set of objects,
patterns, or points. Unlike classification that has class labels associated with the data
objects and is a supervised learning, clustering does not have any labels and is an unsuper-
vised learning. A mix between supervised and unsupervised is so called semi-supervised
learning, where the labels are only present with a subset of the data, however all of the
data is used in the learning process. In semi-supervised learning, constraints can be used
to create links between the data: must-link and cannot-link.

A recent situation in machine learning has shifted the concept of cluster analysis from
offline (batch) to online (incremental) processing due to large amount of data produced
every day. The concept of is further described in Section 2.7.5.

This section is a summary on modern cluster analysis problems, algorithms and
concepts. Detailed description of cluster analysis algorithms required in this work is
described in Section 2.7.2.

Excellent sources on data mining techniques are the following books: Data Mining:
Concepts and Techniques [40], Principles of Data Mining [41] and The Elements of
Statistical Learning [43]. Another resourceful summarization article aimed mostly at
partitional clustering algorithms is [48] and [111].

−2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

(a) Supervised

−2 0 2 4 6 8 10

−8

−6

−4

−2

0

2

(b) Partially labelled

−2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

(c) Partially constrained

−2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

(d) Unsupervised

Figure 2.7: Learning problems: (a) Labeled – classes are denoted by different symbols.
(b) Partially labeled – unlabeled data are denoted by dots. (c) Partially constrained –
lines represent must/cannot-links. (d) Unlabeled. Figure taken from [56].

2.7.1 Input Data

A typical offline clustering algorithm may have two different input types:

• Pattern matrix – n · d matrix for n objects, of which each is described in d-
dimensional space by d values. Such vectors of size d are called a feature vector
and the space is called feature space.

• Similarity matrix – n ·n matrix for n objects, where for each of them the similarity
to other objects in the set is described by a value in the matrix. The closer the
objects, the higher the corresponding value in the matrix. A dissimilarity matrix

28

2.7. Clustering Analysis State of the Art

or a distance matrix on the other hand describes how far apart the objects are.
On a normalized scale D = 1− S, where D is a distance and S is a similarity.

Transition between these types of data representations is possible. To get the dis-
tances from a pattern matrix, is is possible to simply apply an distance function. The
most known distance function on metric space is a norm, namely the second norm, the
euclidean distance.

Getting a pattern matrix from a distance matrix is a minimization problem of an error
(or a strain) called MDS – multidimensional scaling. More about MDS in Section 2.7.7.

There are other input types for clustering algorithms that are referred to as hetero-
geneous data:

• Rank data – cluster analysis is based on data from user questionnaires, ranking and
voting. Such empirically measured data are often incomplete and with a varying
number of available data fields. [15]

• Data stream – is a continuous flow of dynamic data, that has to be processed on the
fly in a single pass and cannot be stored on a disk to perform a batch processing
later. There is an usually high volume and potentially unbounded size of the
data, and a sequential access to the data only. Data stream requires the clustering
algorithm to adapt to changes in the data distribution, to be able to merge or split
clusters, and discard old clusters. Further details are in Section 2.7.5.

• Graph data – data represented in a graph is natural for many application. Graph
in this case refers to a single object, e.g. a chemical compound. It does not refer to
the whole data input, in which case a weighted graph would be easily transfered to
a similarity problem, and an unweighted graph would result in a link-constrained
setup. Graph clustering is mostly based on extraction of features of the graph,
such as frequent subgraphs, shortest paths, cycles etc. [103]

• Relational data – the problem is given as a large graph with links of diverse types.
The goal is to partition this large graph based on the links structure and node
attributes. The key issue is to define an appropriate clustering criterion. [100]

2.7.2 Clustering Algorithms Disambiguation

Clustering algorithms are usually divided at the principle level into two groups: par-
titional and hierarchical. Partitional algorithms find all the clusters simultaneously as
a partition of the input data. The oldest and most known example of a partitional
clustering algorithm is k-Means [62] and k-medoid. Partitional algorithms can easily
use vector data (pattern matrix). They can be seen as optimization problems over d-
dimensional space.

Hierarchical algorithms on the other hand create a hierarchical structure. In agglom-
erative more, hierarchical clustering starts with all the data objects as their own clusters
and merges consecutively the most similar clusters until there is just one cluster left – or
any other pre-determined amount of clusters. The opposite is divisive mode, where the
algorithms start with a single cluster composed of all the objects and recursively divides
the cluster.

29

2. State of the Art

+
+

+

+

+

+

+ + +

Figure 2.8: Three iterations of clustering by k-Means. The cluster centers are marked
by +. Figure taken from [40].

A measure of dissimilarity between clusters is required in agglomerative hierarchical
algorithms. The most known types are: single linkage – takes the minimal distance pair
between the two clusters, the best known implementation is called SLINK [96]; complete
linkage – takes the greatest distance pair; and average linkage – takes the average of all
the pairs. An visualization of the three in dendrograms is on Figure 2.9.

Average Linkage(a) (b) (c)Complete Linkage Single Linkage

Figure 2.9: Dendrograms from agglomerative hierarchical clustering. Figure taken
from [43].

The original k-Means algorithms has been extended numerous times. In k-Means, all
the objects are assigned to exactly one cluster. In fuzzy c-Means, objects are assigned to
multiple clusters with a variable weight of the assignment. Another extension is X-Means,
that dynamically finds k – the right amount of clusters by optimizing a criterion such as
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) [82]. The
most known alteration is the k-medoid, where the median value of the objects from the
cluster is used to represent the cluster [81].

Most clustering algorithms operate on a feature space (with an input of a pattern
matrix). A specific class of probabilistic clustering algorithms assumes the data are
generated from a mixture distribution [69].

For data represented as a weighted graph, there is a spectral clustering. The goals is
to divide the graph in two subgraphs so that the graph is split over the minimal sum of
the edge weights. The original solution to this problem used minimum cut algorithms.
Current spectral clustering algorithms also consider cluster size and many other criteria.
In-depth description and summary of spectral clustering algorithms is available in [105].

30

2.7. Clustering Analysis State of the Art

Figure 2.10: Example results of spectral clustering algorithm. Figure taken from [115].

Another approach for clustering similarity data is message passing [33]. All the
objects are equally considered to be the clusters. The magnitude of the messages sent to
other nodes varies based on a search of a minimum of an error function. The messages
are sent in iterations, looking for an exemplar neighbor, based on which a clustering can
be determined.

Correlation clustering was first proposed to solve a graph partitioning problem on
a weighted full graph with binary weights. [6] The approximate algorithms were then
extended to work on real-valued weights.

2.7.3 Clustering High-Dimension Data

Most clustering algorithms are not capable of effectively processing data of high dimen-
sions (10 or more, thousands, or even tens of thousands). Usually only a small subset of
the dimensions contains relevant data to certain clusters, but the remaining irrelevant
data may cause noise.

Two major approaches to altering the feature space are feature transformation and
feature selection.

Feature transformation techniques transform the data into less dimensions, while
preserving the original relative distances between objects. Example of such techniques
are the principal component analysis and singular value decomposition.

Feature subset selection determines a subset of features that are the most relevant
for the clustering and discards the rest.

Summary of high-dimension data clustering is available in [54].

2.7.4 Clustering Large Data Sets

Handling large data sets requires specialized kinds of clustering algorithms. These can
be classified into the following categories according to [48]:

• Approximate nearest neighbor search (ANN) – Many clustering algorithms need
to decide the cluster membership of each point based on nearest neighbor search.
An approximate search can yield a sublinear complexity for this task at a minimal
loss of accuracy. More on ANN in Section 2.7.6. [72, 2]

31

2. State of the Art

• Summarization – The idea is to summarize a large data set into a smaller subset
and then apply the clustering algorithm on this smaller subset. Example of such
algorithm include the BIRCH, see Section 2.7.5 for details, and coreset for k-means
and k-median. [42]

• Distributed computing – Each step of the data clustering is divided into a number
of independent procedures. These are then computed in parallel. A survey on
distributed data mining algorithms, including clustering was given in [80]. An ex-
ample solution is described in [30].

• Sampling-based – Partitioning the dataset into clusters can be based on a subset
of the whole data set. An example of such algorithm is CURE [39].

• Incremental clustering – See Section 2.7.5.

2.7.5 Incremental Clustering

Incremental clustering, sometimes called data stream clustering, is a specific case of
clustering problem, where the data to be clustered arrive continuously. Such streaming
model has derived from scenarios, where the entire data were too large to fit in memory.
In data stream clustering, the data is expected to be finite. The only difference to batch
clustering is in the stream availability of data. Conversely, in online clustering, the data
stream is considered to be infinite. So in online clustering, there must be a way to
periodically get the current clustering.

One of the most famous examples is the COBWEB [32]. It keeps a classification tree
as its hierarchical clustering model. Then the algorithms places new points in a top-down
fashion using a category utility function.

Another incremental hierarchical clustering algorithm that works in a bottom-up
fashion is described in [108].

SLINK [96] is the most time-wise effective implementation of single linkage hierar-
chical clustering. It works incrementally, building several linear indexes.

BIRCH [116] also uses a hierarchical clustering, but the hierarchy is built on so called
clustering features. A clustering feature statistically summarizes the underlying data.

DBSCAN [31] searches for its nearest neighbors when placing a new point. If there
are sufficiently enough points under a minimal distance of the new point, such point is
then added into the respective cluster of the nearest nodes. A generalization of DBSCAN
called OPTICS [3] work with a varying density of clusters.

CURE [39] uses yet another approach to clustering. It lies between BIRCH and
SLINK, as it uses hierarchical clustering, but instead of representing the cluster with
once center as BIRCH, or considering all points as SLINK, it chooses only several rep-
resentatives of the cluster that are then moved closed to the center.

Algorithms (some of those described only in referred overviews) such as DBSCAN,
OPTICS and DENCLUE, STING, CLIQUE, Wave-Cluster and OPTIGRID do not op-
timize the k-means objective. An overview article of incremental data stream algo-
rithms [34, 38, 21].

32

2.7. Clustering Analysis State of the Art

2.7.6 Nearest Neighbors and Approximate Nearest Neighbors

The NN – nearest neighbors, sometimes referred to as nearest neighbors search, is a prob-
lem of finding the k nearest neighbors. NN search for K nearest neighbors is often ab-
breviated as KNN. A variation of NN is ANN – approximate nearest neighbors, or ε-NN,
which in an approximation algorithm.

An effective algorithm using randomized KD-trees is introduced in [72]. Another
solutions use for example Approximate Principal Direction Trees [68] or PCA trees [104].

A comparison of ANN algorithms is available for example in [60], however it is a little
older than the two previously mentioned approaches.

2.7.7 Ordination Methods

Ordination refers to a transformation of objects from high-dimensional space to a lower-
dimensional space (order), so that objects that are closer to each other in the original
space are also closer in the target space. For example in a full n-gram space, simhash-
ing 2.6.8 is used to transform the exponentially dimensional space of n-grams to an ar-
tificial space of fixed number of dimensions.

Some of the ordination methods are discussed in this work. While it is appropriate
to list the representatives of ordination methods, they are not directly applied to our
problem.

Multidimensional scaling (MDS) is the most common ordination method. In its
most typical form, it transforms a distance matrix into a low dimensional space, usually
for visualization. There are many more variations of MDS [27] such as an incremental
version of MDS [1, 109].

Principal Component Analysis (PCA) transforms the vector space into a new or-
thogonal space, where the data is linearly uncorrelated in the new dimensions (principal
components) [50]. A brother of PCA that applies to categorical instead of continuous
data is called Correspondence Analysis [37].

33

Chapter 3

ICBCS – Incremental
Clustering-Based Compression

System

The ICBCS – Clustering-Oriented COmpression System is completely described in this
chapter, together with a brief description of its implementation and several optimizations
used to speed up the whole system.

Combining properties of both a lossless compressor and an archiver, the ICBCS
creates an ultimate deduplication, compression and archival system. It was designed
with high extensibility in mind, and various parts of the system can be replaced or
altered.

ICBCS has evolved during the development process significantly. Various clustering
techniques were tested and replaced, as some of those failed to live up to the performance
expectations. The most notable difference was between distance based clusterings and
vector space based clusterings described previously in the survey, Section 2.7.1.

This chapter attempts to describe the system as thoroughly as possible, however not
all implementation details are provided. The description is sometimes rather theoretical
and omits certain amount of detail.

Complete description of the ICBCS is written in Section 3.2. Deduplication layer
is described in Section 3.3, the two major approaches to clustering: SLINK and incre-
mental clustering are described in Section 3.5, resp. 3.6. Compression and grouping into
compression groups is described in Section 3.7. Next Sections 3.8 and 3.9 describe the
compressor, resp. archiver capabilities of the system. Following are several implementa-
tion notes in Section 3.10 and optimization notes in 3.11.

3.1 Objecting conventional approaches

3.1.1 Objecting Solid and Single-file compression

See Section 2.1.2 for description of solid compression and Section 2.1.1 for description of
single file compression and their respective applications.

For the design of ICBCS, it is important to realize precisely where the drawbacks of
solid and single-file (non-solid) compression lie. Every currently wide-spread compression

35

3. ICBCS – Incremental Clustering-Based Compression System

algorithm only works with a limited scope, beyond which no or little redundancy is
removed.

Stream compression (e.g. LZ77):

Similar chunks are never present
in the same window

Input data

Sliding window

Block compression (e.g. BWT): Input data

BlockSimilar chunks are not
in the same block

Figure 3.1: Example of a compression failure due to insufficient context of conven-
tional stream and block compression methods. The input data resembles that of a
dual-calgary dataset, where there are two copies of variable data. These copies are far
apart enough for the compression algorithms to miss the redundancy.

In case of the solid compression, the whole dataset is compressed in a given order
(the order of files in a tar for example). This is very advantageous if many small files
are tared together as those are all compressed together and the redundancy is removed
even among those files. However if those similar files are far apart, the context of the
compressor has changed enough and the redundancy is not removed between these files.

The same applies for a single-file compression. If the file is long enough, and parts
far apart of it are similar, the compressor will fail to compress those effectively. It only
has two distinguishing scenarios compared to solid compression. The context of the com-
pressor is reset with every file, meaning a superior compression ratio compared to solid
compression can be achieved, just because there is no context overflow and suboptimal
compression of another file with the compression context created on the previous file, but
highly inefficient for the current file. The opposite case lies in the previously mentioned
fact that single-file compression will not remove redundancy between files at all, even if
there would be a good scenario of consequent similar files.

ICBCS tries to overcome the disadvantages of solid and single-file compression by
being smart about how to put files together to achieve the best compression rate possible.
It actually does not put whole files together, but only small chunks that are extracted
from input files. Doing this ensures similar files are always close to each other and that
the compression of those is as much effective as possible.

36

3.2. System Design

3.1.2 Objecting Binary Simhash and Minhash

Many systems for similar documents search use a set of techniques: Similarity hash-
ing (Section 2.6.8), min-wise independent hashing (Section 2.6.9) and locality sensitive
hashing (Section 2.6.10).

The same techniques are also used in extended deduplication systems, where files
detected as similar are then compressed together. This is mostly done with a delta
compression. See Section 2.3 for overview of such deduplication and compression systems.

All these systems suffer from a common drawback: simhash and minhash are not
precise enough. Both of those are binary vectors, and even if more of those are used to
describe a chunk, the overall span of distances is too small to create a sufficiently diverse
vector space for an effective clustering of all the data.

ICBCS tries to overcome this problem by extending the simhash into a larger vector
space and clustering the entire data. This makes all the chunks to contribute to the
redundancy removal, not only the most similar subsets.

3.2 System Design

The system consist of several layers and/or components. These layers should be re-
placeable to a certain extent, as the system was designed to be extensible and easily
modifiable.

Input files

Chunkizer

• granularity

Dedupliacation

Clustering

• distance

• balancing

Grouping

• size range

• upmerging

Compressor

• bzip2/deflate

• level

Archiver

Hashing

Simhash

NCD

KD-trees

Compressors

Chunks

Unique
chunks

Clustering
hierarchy

Compression
groups

Compressed
data

Archive

Chunkizer splits the
input file in variable

size content based chunks.

Duplicate chunks are
removed. A reference

is stored.

Unique chunks are
clustered together

Compression groups
are extracted from

the clustering

Chunks asoociated to compression groups
are compressed together. Metadata are
added to the compressed data, so those

can be decompressed afterwards.

Archiver captures the state of the whole system.
It adds together the archivedata (deduplication

hashes, simhahes, clustering, grouping information)
and compressed data, creating an archive

Figure 3.2: Scheme of the entire ICBCS system.

The first layer, deduplication layer, consists of the Rabin chunkizer that together with
the deduplication storage take care of the deduplication process. This layer is described
in Section 3.3 is a lite version of block based deduplication systems described previously

37

3. ICBCS – Incremental Clustering-Based Compression System

in Section 2.1.3. The deduplicating storage acts as an abstraction for the successive
layers.

Second layer is the similarity layer described in Section 3.4. It provides an interface
for distances between individual chunks. In case of simhash distances, it also imple-
ments a KNN – k nearest neighbors search algorithm mentioned and further referenced
in Section 2.7.4. KNN is used to search for the most similar chunks already in the sys-
tem, which are then used in the clustering layer for bottom-up clustering. NCD-based
similarity layer does not allow for effective KNN search.

Third layer is the clustering layer described in Section 3.6. The layer does the essen-
tial incremental clustering of all unique chunks that made it though the deduplication
layer. The layer itself takes care of all the balancing, distance and representatives up-
dates. This layer is also responsible for proper assignment of chunks (leaf clusters) to
compression groups. Lite version of the clustering layer that does batch clustering using
NCD is described in Section 3.5.

The last layers is the compression layer described in Section 3.7. The compression
layer uses a compressor to compress chunks within all compression groups. It also com-
presses the metadata and archivedata.

The whole system is responsible for coordination of these layers. It also keeps track
of metadata and archivedata, the former is necessary for successful decompression of the
entire dataset, and the latter promotes the compression system into an archival system
by keeping track of archivedata – different files in the system, the current clustering
and simhashes of all the chunks, etc. The archivedata is not necessary for the sys-
tem to operate as an archiver, however without the archivedata, such system would be
very ineffective, since complete decompression, recomputation of all the simahshes and
clusterings would be necessary.

Figure 3.2 shows all the components of the ICBCS system.

3.3 Rabin Chunkizer and Deduplication

The method of content-defined chunking for deduplication was first used in [75]. It relies
on Rabin fingerprinting by random polynomials [84] that uses a rolling hash similar
to one of the possible rolling hashes to be used in Rabin-Karp multiple pattern string
searching algorithm.

Since the technique is not new and well documented elsewhere, we will restrict the
description to a bare minimum with the specific modifications of ICBCS.

The Rabin fingerprinting works with a limited size rolling window, for which the hash
is computed. A rolling hash is capable of recalculating the window hash by hashing in
the new incoming value and hashing out the last outgoing value. Let’s call this hash a
window hash. The scheme is depicted in Figure 2.3.

When the window hash H(wi) matches a predefined value called the window pattern
P , a new chunk is delimited with its end in the point of windows hash match. The
minimal size of a chunk Wmin is then skipped – no chunk can be delimited here. If on
the other hand no match is found and the maximal size of a chunk Wmax is reached,
the chunk is delimited at the maximal size. If a chunk of size w < Wmin is encountered
at the end of the input, this one is appended to the previous chunks, regardless of the
Wmax constraint.

38

3.3. Rabin Chunkizer and Deduplication

rRLUtgBFzKS9MxUCy0V0jIISSu0bFbx0qY1J9cE

rRLUtgBFzKS9MxGCy0V0jIISSu0bFbx0q6669cE

XrRLUtgBFzKS9MxUCy0V0jIISSu0bFbx0qY1J9cE

Input data:

A:

B:

C:

Compared to A, stirng B
only has replaced characters...

..., while string C has a new
character inserted in the beginning.

Fixed size (blocks):

rRLUtg BFzKS9 MxUCy0 V0jIIS Su0bFb x0qY1J 9cE

rRLUtg BFzKS9 MxGCy0 V0jIIS Su0bFb x0q666 9cE

rRLUtg BFzKS9 MxUCy0 V0jIIS Su0bFb x0qY1J 9cE

XrRLUt gBFzKS 9MxUCy 0V0jII SSu0bF bx0qY1 J9cE

A:

A:

B:

C:

Variable size (chunks):

rRLUt gBFzKS9M xUCy0 V0jIISS u0bFbx 0qY1J9cE

rRLUt gBFzKS9M xGCy0 V0jIISS u0bFbx 0q66 69cE

rRLUt gBFzKS9M xUCy0 V0jIISS u0bFbx 0qY1J9cE

XrRLUt gBFzKS9M xUCy0 V0jIISS u0bFbx 0qY1J9cE

A:

A:

B:

C:

Figure 3.3: Comparison of fixed size (block) and variable size (chunks) deduplication.
The former is especially vulnerable to inserted and removed characters, since all the
block contents are shifter due to the change. The latter depends on a content of the
data, so these operations do not pose a problem.

Through the entire input, another hash is computed – so called chunk hash Hch. This
one does not skip though blocks of minimal size. The chunk hash is used as a chunk
identified in the deduplication storage.

The mask itself is constructed based on the desired chunk size. For uniform input and
ideally spreading hash function, the distribution of Hw is also uniform over all windows
wi of string S:

∀wi ∈ |S| : Pr[H(wi) = P] =
1

2|P |

that is, for any window wi over the string S, the probability that the windows
hash H(wi) matches the pattern P is inversely proportional to size of all the possible
patterns of that length. Using any single pattern only exponential sizes in the form 2x in
expectancy can be achieved. The pattern can however be used for for so called boosting
of average chunk size, further described in Section 3.3.3.

The pattern is then generated using the previous formula of matching probability.
For example, to match 4KB in expectation, the pattern must be matched for 12 bits.
Examples of such patterns for 32 bit hashing function are:

0100 0111 0010 **** **** **** **** ****

11 **10 **00 **11 **11 **10 ** ****

The don’t care symbols are achieved using AND masking of the window and a pattern
template.

Chunk spread parameter determines the minimal Wmin and maximal Wmax window
sizes. It is given to ICBCS as a left and right shift of the average chunk size. More
information on that topic in the measurements of chunkizer in Section 4.4.

39

3. ICBCS – Incremental Clustering-Based Compression System

3.3.1 Deduplication Storage

The deduplicating storage works in a manner of hash comparison and subsequent full
comparison. This is somewhat more complicated in archival manner, where the sub-
sequent comparison is delayed, see Section 3.9 for details about that. Note that a full
block/chunk hash is used in this case, not a window hash.

Both block and chunk deduplication follow the same duplicate detection algorithm,
however over a different blocks, resp. chunks. See Figure 2.2 for a scheme of block
deduplication and Figure 2.3 for variable size chunk deduplication.

Measurements and performance tests of both the Rabin chunkzier and deduplication
are given in Section 4.4.

3.3.2 Performance and Optimizations

There are two major performance concerns within the chunkizer. First is an effective
computation of the window hash by the vectorization of the hash computation over the
window further ahead than by a single byte. This can be easily achieved since most of
the operations are adding and multiplying.

Another optimization can be achieved by skipping the minimal chunk size. This is
always done for window hash, however block hash is not skipped due to its negative
impact on block hash and increased number of false-positives in duplicate detection.

Chunk 1 Ch.2 Chunk 3 Chunk 4 5

Maximal chunk size

Minimal chunk sizes The last chunk is
smaller than minimal size,

so it is appended to
the previous chunk.

Content breakpoint defined by rabin fingerprint

Rabin fingerprint computation range

Chunk hash computation range

Figure 3.4: Chunk computation example. Due to the minimal chunk size, the Rabin
fingerprint is only computed in the range starting with the minimal chunk size. Upon
reaching the maximal chunk size, the chunk is cut, regardless of whether content defined
breakpoint was reached.

3.3.3 Boosting Average Chunk Size

The chunk size distribution (ignoring the min and max size chunks) always converges to
geometric distribution – negative binomial distribution with number of failure r = 1 .
This can be mitigated and pushed closer to negative binomial distribution with r > 1 by
running several trials of the window hashing function H(). If say, we had two patterns
P1 and P2, then by union bound:

40

3.4. Extended Simhash

∀wi ∈ |S| : P [H(wi) = P1|H(wi) = P2] = 2 · 1

2|P |
=

1

2|P |−1

which implies if we use two different patterns, their length must be one bit shorter
to achieve the same match probability rates.

However, having two different patterns allows us to select the one closer to out desired
average chunk size. The same operation can be applied for any number 2x of patterns
of length |P | − x.

This optimization helps to reduce the disadvantages in the compression system cause
by a large number of max width chunks, such as lower deduplication ratio, worse compres-
sion ratio and a higher processing time (assuming multiple pattern matching is properly
vectorized and doesn’t add a significant overhead).

Multiple patterns can also be simulated via different AND masks applied to the
current window hash and a pattern template.

3.4 Extended Simhash

Previously used binary simhash is insufficient in terms of small vector space resulting in
small precision distance evaluation. The discussion on this is in Section 3.1.2.

The main idea of extended simhash (further refered to simply as simhash) is to add
more variability to the vector positions by extending those to real values instead of
binary. The hashed features then contribute to the simhash in a similar manner is they
do to the binary simhash. The contribution function of zero byte can be either noop
or decrement, both ways are plausible and the final computation only differs in the
normalization of the simhash. See Algorithm 3.1 on simhash computation over n-grams
of string.

Algorithm 3.1: Simhash computation, where sizeof hash is the same as desired
width of the simhash – bijective simhash construction, which is the simplest form
with no merging.

Data: chunk (string), n-gram-size (int), width (int) /*hash size*/
Result: simhash (int vector)
Function Simhash (chunk)

simhash ← vector(width, 0) ;
for sub ∈ substrings (of length n-gram-size) of chunk do

hash ← FNVhash(sub) // hash of single feature – sub ;
for i ∈ {0..width− 1} do

if hash[i] then // i-th bit of hash is set
simhash[i]++;

else
simhash[i]−−;

for i ∈ {0..width− 1} do // Normalization
simhash[i] ← simhash[i]\length(chunk);

return simhash

41

3. ICBCS – Incremental Clustering-Based Compression System

The overall value span of simhash is a subject to parameterization, although in the
reference ICBCS solution, a 20 bit integer range was used. For the reasoning, please see
Section 3.4.4.

The simhash can also be constructed from multiple sources, mutiple hashes or hashes
of non-matching width, see Section 3.4.3 for more information.

Since the simhash occupies a much larger memory than in its binary form, reductions
in width were implemented and tested. The simhash widths available in ICBCS are: 4,
8, 16, 32 and 64. The performance evaluation is in Section 4.3.4. The simhash width
also has a significant impact on the archival properties of ICBCS, causing increased size
of archivedata.

Simhash normalization is a process of transforming the values of simhash from
simhash buffers for every position into the desired range of values. The process can
vary a lot based on the destination number format, preprocessing time capacity, etc. In
the simplest form – linear fit, the normalization looks like this:

simhash[i] = simhashBuffer[i] · SIMHASH MAX VALUE

|chunk| · HASH WIDTH
SIMHASH WIDTH

where the SIMHASH MAX VALUE speficies the desired simhash value range, and
HASH WIDTH

SIMHASH WIDTH
is the overlay factor of the hash mapping, further specified in Section 3.4.3.

Unlike NCD, simhash is a vector in a vector space and thus allows for an effective
simhash combination using a weighted vector average operation. This simhash combi-
nation is the core of simhash-based clustering.

Measurements Section 4.3 summarized the overall performance and various attributes
of the simhash.

3.4.1 Feature Sources

Feature stands for a characteristic attribute of the input data. It is described in the
context of clustering in Section 2.7.1 and it is one of the subjects of discussion in 2.6.
The most typical features in data similarity scenarios are n-grams – see Section 2.6.7.
Another very specific feature sources are the data compressors themselves. So called
compression features are described in 2.6.6.1.

In ICBCS, only n-gram based features are used in simhash construction. Originally,
a variable amount of n-grams was merged into a single simhash. The simhash was
generated from these various n-grams with different weights for different n-gram size, for
example: bi-gram: 0.2, tri-gram: 0.3, quad-gram: 0.2, 5-gram: 0.2, 6-gram: 0.1, or with
different predefined position in the simhash vector, as described in Section 3.4.3.

Note that compressed strings cannot be effectively used for n-grams. Two slightly
different uncompressed string can end up being completely different when compressed,
especially whenever Huffman coding or other probability based codings are used.

Performance evaluation over different n-gram sizes was done in Section 4.3.3.

3.4.2 Hashing Functions

The hashing functions used to hash features should provide both fast speed and good
dispersion. Some features only consist of several bytes of data, and some of those are
not necessarily uniformly random.

42

3.4. Extended Simhash

The first hash function tested in ICBCS was the Rabin-Karp rolling hash (same hash
function is used in the Rabin chunkizer). Although such hashing would provide ultimate
speed performance, the dispersion was bad. Other rolling hash functions were used:
hashing by cyclic polynomials and hashing by irreducible polynomials.

Summary of hashing functions used for the purpose of hashing n-grams was done
in [25].

Rolling hashes, despite their superior speed, provided usually inferior results com-
pared to the Fowler–Noll–Vo hash function [77]. The FNV is not a rolling hash function,
meaning for n-grams, it has to restart the computation again for every n-gram posi-
tion. See Section 4.3.1 for details on FNV and corresponding tests on simhash statistical
qualities.

3.4.3 Merging Multiple Feature Sources

Poorly hashed (e.g. short) feature. Well hashed feature.

Generated simhash

Figure 3.5: Injective hash merging. Some features (usually short) generate simhashes
of poor statistical properties. Choosing the most variable hash positions allows for the
final simhash to be both statistically variable and equally composed of the two features.
Note that the positions cannot be change on the go, and have to be specified in the
archivedata.

If the width of a simhash is the same as the size of hash generated by the hashing
function used to hash features, no merging is needed. This is referred to as bijective
simhash construction.

In ICBCS’ reference setup, the default width on simhash is 32. However on 64 bit
system, the FNV generates a 64 bit hash. In addition, if we have 2 feature sources,
that is 128 bits of hashes we need to somehow map into the 32 positions of the simhash
vector.

Note that of those 128 bits of hashes, some of those may be statistically more sig-
nificant than others. If the hash function is not good enough, or the hashed feature is
too short, the resulting hashed feature will be far from uniform distribution even for
uniformly distributed data. This suggests that an injective merging needs to be utilized,
where only the statistically most valuable hashed bits make it into the simhash.

Another method called surjective merging uses all of the hashed bits in the produced
simhash. The form of the surjection further characterizes the merging.

Weighted surjective merging assigns each source with a weight attribute. Note that
for binary weight, it is in fact injective merging. The weights can be determined by the
statistical significance of the source hashed bits.

Modulus surjective merging assigns the hashed bit into the corresponding position of
the simhash modulo the simhash’s width. This is the merging used in ICBCS.

43

3. ICBCS – Incremental Clustering-Based Compression System

First hashed feature. Second hashed feature.

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Generated simhash

Figure 3.6: Modulus surjective hash merging used in ICBCS. All the individual hashes
contribute equally to the final simhash. The merging operator can either be + or ⊕,
where the former preserves more statistical variance, but requires larger simhash buffer
as in Algorithm 3.1.

This has to be, however, prespeficied in the system before simhashes are generated.
Since such solution is not adaptable, experimentation with the expected data and the
hashing function has to be conducted.

Measurements on simhash statistical attributes is conducted in Section 4.3.1.

3.4.4 Integral vs Floating Point Representation

Due to performance reasons, floating point simhash was dropped from ICBCS during
the optimizations further described in 3.11.2.

For floating point simhash, the distance computation is not limited by floating point
precision drawbacks, namely the rounding error. If such error occurs in some simhash
position, the distance is still well determined by the remaining positions. In case round-
ing error would have occurred in all positions, such simhashes would be then possibly
misplaced in a group of similar simhashes, but due to the overall vector space, this is
very unlikely to happen. Also, an impact of such imprecision is assumed to have mini-
mal impact on the final compression scenario, although this has not been verified neither
theoretically nor experimentally.

Integral simhashes on the other hand are much more likely to become victim of
the limited precision. Especially for long chunk lengths, the simhash tends to converge
to the mean, as was shown in Section 4.3.2. This can be mitigated by a logarithmic
interpolation, where the values closer to mean would be spread more than those fur-
ther away. However this would impose performance drag for both simhash generation,
distance computation and combination.

Combining integral hashes nonetheless creates a problem. This is due to an opti-
mization, where the division operation (of the weighted average) is not applied to the
entire vector. More about this optimization and the possible issue in Section 3.11.2.

Performance evaluation remarks on integral vs floating point can be read in Sec-
tion 4.3.6.

44

3.5. SLINK and NCD-SLINK Clustering

3.5 SLINK and NCD-SLINK Clustering

Of all the hierarchical clustering algorithms only the minimal linkage, often referred to
as single linkage, is of interest to us. For compression, we try to achieve the min-wise
pairing of the chunks, meaning the the most similar chunks are the closes to each other
in the clustering.

This was not obvious in the beginning, as max-wise (complete linkage) clustering
also provided reasonable results, but only in a small scale. In large scale, the system
always degenerated fast. The same was true for average-wise clustering (average linkage),
nonetheless with delayed degeneration.

Summary of hierarchical clustering algorithms is in Section 2.7.2.

The SLINK algorithm [96] is still the best algorithm for agglomerative hierarchi-
cal single linkage clustering, achieving a stable quadratic time complexity and a linear
memory complexity.

SLINK together with NCD resulted in the best clustering achieved. The problem
with SLINK its quadratic complexity, and the necessity to compute all pairwise NCDs.
NCD computation itself is very time consuming.

That is the reason we tried implementation of NCD-based incremental hierarchical
clustering based on a top-down approach (Section 3.6.1) and representatives (similar to
representatives balancing in Section 3.6.5).

While the first SLINK method provided the best compression ratio results, it was
unusable due to its time complexity. The representatives-based methods on the other
hand failed to compress the data properly, due to missing min-wise similarities. More
about the performance of NCD based clusterings, see Section 4.5.

The SLINK implementation successfully remains as an oracle of the capabilities of
clustering to effective compression.

Note: An idea that has never been implemented or tested is to do incremental multi-
dimensional scaling ([1, 109]) using NCD. The initial estimate for the multidimensional
scaling would be based on simhash.

3.6 Incremental Clustering and Balancing

The incremental clustering algorithm used in ICBCS is not exactly any of other currently
known algorithms. The clustering algorithm was tailored specifically for the purpose of
subsequent grouping and compression.

The bottom-up version is inspired by agglomerative hierarchical clustering [108, 90]
described before in 2.7.2. Conversely, the top-down version is inspired by divisive hier-
archical clustering.

BIRCH clustering algorithm [116] uses a concept of clustering features to describe
a clustering node withing a hierarchy. These clustering features are purely statistically
based. It has inspired the ICBCS’ combination of simhashes to represent the clustering
nodes with a simhash alternative. There are statistical attributes at the ICBCS clustering
nodes based on the extended simhash. Contrary to simhash, no clustering features can
be extracted for NCD based distances.

For both top-down clustering using NCD and balancing of the clustering tree in any
clustering mode, a method using representatives is used. These representatives are either
leaf clusters or cluster nodes deeper in the hierarchy that describe a certain clustering

45

3. ICBCS – Incremental Clustering-Based Compression System

node. Clustering using representatives (per cluster) was first introduced in CURE [39].
This technique is further described in Section 3.6.5.

The bottom-up version is also inspired by DBSCAN [31], where KNN – k nearest
neighbors are used to assign an incoming point to a cluster. In ICBCS, only 1NN is
used. This is to comply with the SLINK property that goes well with the compression
results of the system.

Unlike in DBSCAN, the sizes on final clusters seed to be rescaled, joined, split and
altered. The hierarchical clustering allows us to do all this scaling easily with minimal
overhead. The grouping into clustering groups is described later in Section 3.7.

We need single linkage properties in our clustering, but simhashes implicitly generate
average link when combined together into clustering features similar to BIRCH. Deep
and balancing and balancing with representatives partially overcome this.

Unlike in BIRCH, we also do not need a height-balanced tree. If the clustering actu-
ally ignores the depth balancing, the compression properties are hindered only minimally.
However, it is shown in the measurements chapter (Section 4.6.1), that balancing the
clustering tree to some degree is profitable especially for faster execution speed. More-
over, to a certain extent, balancing the tree can also guarantee a logarithmic complexity
of a new chunk addition.

The hierarchical clustering of ICBCS works as a binary tree. There is no reason
not to use higher order trees, however for implementation ease (especially balancing
and representatives), the binary version was chosen. The tree’s leaf nodes represent
individual chunks from the Rabin chunkizer, sometimes these are referred to as chunk
clusters. Every cluster remembers its total size (the number of chunk clusters in the
subtree) and the distance between the left and right subclusters. Optionally, the cluster
also has a set of representatives assigned to it.

The distance is a function of two clustering nodes. Ideal distance gives the true
single-linkage (minimal) distance between these two clusters. However, this is only true
for full depth or full representatives simhash or full representatives NCD.

dist(C1, C2) = min{dist(`1, `2) : `1 ∈ leaves(C1), `2 ∈ leaves(C2)}

where the dist(`1, `2) is a distance between corresponding chunks of the leaves (chunk
clusters). This can either be a pre-specified Minkovski norm of the simhashes (see
Section 2.6.1) or the NCD 2.6.5.1.

Note that for simhash dist(C1, C2) can be evaluated directly, because every inner node
has a simhash assigned as a weighted combination. Such distance however represents
the average-linkage (average distance) between the clusters. This is the default distance
for ICBCS.

Several improvements of the distance measures exploit the clustering structure to
achieve better clustering that is closer to a single linkage. These are described in Sec-
tions 3.6.4, 3.6.5 and 3.6.6.

3.6.1 Top-down clustering (NCD or Simhash)

To place a new chunk cluster, the top down clustering algorithm starts in the root and
recursively searches for the closest subcluster to place the new chunk.

The position of placement is determined by the relative distance of the newly placed
chunk cluster and the distance between clusters currently examined – the left and the

46

3.6. Incremental Clustering and Balancing

Algorithm 3.2: Top-down clustering. Single chunk cluster is placed into the
clustering, starting from the top, recursively descending to the nearest subclusters.

Data: newCluster (chunk cluster to be placed), currCluster (defaults to root)
Result: newCluster is placed into the clustering
Function PlaceClusterTopDown (newCluster, currCluster)

if currCluster.size = 1 then // Single node clustering
return CreateParent (newCluster, currCluster);

distBetween ← Distance (currCluster.left, currCluster.right);
distToLeft ← Distance (newCluster, currCluster.left);
distToRight ← Distance (newCluster, currCluster.right);
if distToLeft < distBetween then // descend left

currCluster.left ← PlaceClusterTopDown (newCluster, currCluster.left);
currCluster ← UpdateCluster (currCluster);
return BalanceTowardsRoot (currCluster);

else if distToRight < distBetween then // descend right
currCluster.right ← PlaceClusterTopDown (newCluster,
currCluster.right);
currCluster ← UpdateCluster (currCluster);
return BalanceTowardsRoot (currCluster);

else // current cluster has better integrity, place next to it
if distToLeft < distToRight then

parent ← CreateParent (newCluster, currCluster);
else

parent ← CreateParent (currCluster, newCluster);

// Go back to top, balancing the clustering
return BalanceTowardsRoot (parent);

right cluster. One of the four scenarios can happen: If the new chunk cluster is further
to both the left and the right examined cluster, the placement recursively descends to
the closer one. Else the chunk is closer to one of the clusters, so a new inner node is
created and the closer of the left and the right cluster and the new chunk clusters are
attached as children of that new inner node. The new inner node then replaces the closer
left or right in the hierarchy.

This is better described in the Algorithm 3.2.

Once the new chunk cluster is placed, the algorithm proceeds back to the top, updat-
ing the clusters on the way with new size, distance between their children and optionally
the list of representatives and the simhash as a weighted combination of its children.

3.6.2 Bottom-up clustering (Simhash)

Bottom-up clustering first finds the closest chunk clusters from the current hierarchy.
This is achieved using a KD-tree (K-Dimensional tree). Simhashes of all chunk clusters
are indexed in this KD tree. (Actually, multiple KD trees are used, more on this in
Section 3.11.3.) Starting at the closest chunk’s parent, the distance between the new
chunk cluster we are placing and the distance between the nearest cluster and it’s sibling

47

3. ICBCS – Incremental Clustering-Based Compression System

Algorithm 3.3: Bottom-up clustering. Single chunk cluster is placed into the
clustering. Using randomized KD trees, the nearest chunk cluster already in the
clustering is found. The new chunk cluster is then placed starting the the nearest
cluster, ascending towards the root.

Data: newCluster (chunk cluster to be placed)
Result: newCluster is placed into the clustering
Function PlaceClusterBottomUp (newCluster)

currCluster = FindNearestLeafCluster (newCluster);
distToNearest = Distance (newCluster, currCluster);
while do // Go up the clustering

if currCluster is root then
return CreateParent (currCluster, newCluster);

parent = currCluster.parent;
distBetweenParent = Distance (parent.left, parent.right);
if distToNearest < distBetweenParent then // Place the new cluster

if currNearest is left child of parent then
parent.left = CreateParent (currCluster, newCluster);

else
parent.right = CreateParent (currCluster, newCluster);

currCluster = parent;
break;

// Go back to top, balancing the clustering
return BalanceTowardsRoot (currCluster);

is compared. The same operation of insertion as in top-down clustering is performed
if the distance of the new chunk is closer than the distance between the closest chunk
cluster and it’s sibling, otherwise the algorithm proceeds to the parent node.

Once the new chunk cluster is in place, the algorithm proceeds towards the root,
same as with top-down clustering described in Algorithm 3.2.

The entire bottom-up clustering process is shown in the Algorithm 3.3. An example
is also depicted in Figure 3.7

3.6.3 Balancing the Clustering

In the described hierarchical clustering system, a disbalance may occur, where the dis-
tance between children of a certain node is smaller than the distance between one or
both children of the children. This is best described by the Figure 3.8. The disbalance
of cluster c can be described by the following formula:

disbalance(c) = max(0, dist(cLL
, cLR

)− dist(cL, cR))

+max(0, dist(cRL
, cRR

)− dist(cL, cR))

where the dist() is a distance function between clusters, CLR
refers to the right child of

a left child of C, etc.
When a disbalanced pair of cluster and its parent is found, a balancing operation is

performed. This operation is similar to heap balancing, or a rotate operation in Red-

48

3.6. Incremental Clustering and Balancing

cR

c1

c2

4 c3

8 c4

3 7

c5

2 c6

6 5

1

9
dist. to nearest

new chunk

these clusters are
more integral – the new
cluster doesn’t fit

these clusters are
updated and balanced only

the new cluster is
inserted between c1 and c2
as a sibling of c2

cR

c1

c7

c2

4 c3

8 c4

3 7

9

c5

2 c6

6 5

1

Figure 3.7: Example of bottom-up clustering. The purple bars denote intra-cluster dis-
tance, i.e. the distance between left and right subcluster. For details, see Algorithm 3.3.

Black trees. The disbalanced child is swapped with it’s parent and gives to it’s parent one
of its child nodes – one that is closer to the former parent’s other child. See Figure 3.8
for an example of the rotation.

The balancing algorithm can have several precision levels. The simplest, most shallow
balancing is called single balancing. On the way from the newly placed chunk to the root,
balancing is performed at most once in every node. This can of course leave disbalanced
nodes behind, just as shown in Figure 3.8.

A parameter called tolerance delta can also be given to ICBCS. According to this
parameter, the balancing operation is called recursively on both the currently balanced
node (in case both left and right children are disbalanced) and on the rotated parent
(that is now a child of a new parent). Overall tolerance t is accumulated for these
recursive calls. The tolerance t is added to the distance disbalance formula, causing the
disbalance to become ignored based of the recursive depth and disbalance of the node:

disbalance(c, t) = max(0, dist(cLL
, cLR

)− dist(cL, cR)− t)
+max(0, dist(cRL

, cRR
)− dist(cL, cR)− t)

For full description of the balancing algorithm, please see Algorithm 3.4.

The recursive (tolerance based) balancing may also run into an infinite loop, because
when the subtrees are swapped and the distance invariant may swap with it. This does
not occur for single-linkage and strict distance comparison. However note that combined
simhash (unless of full depth or full representatives are used) is in fact an average-linkage
and runs into the same problem. It is advisable not to use tolerance = 0 in any case.

The measurements in Section 4.6.1 show there is no reason to use excessive balancing
anyway.

Balancing the hierarchical clustering by adding the size of the subtree to the distance
function can result in implicitly more balanced clustering, however at the possible cost of
separation of similar clusters due to being outweighted by small-size cluster. Primarily
applicable in top-down clustering. This is just an idea that has not been implemented
nor tested.

49

3. ICBCS – Incremental Clustering-Based Compression System

Algorithm 3.4: Balancing a single cluster. Variation of this function called
BalanceToRoot simply traverses the clustering towards the root, balancing nodes
on the way.

Data: newCluster (chunk cluster to be placed), deepBalancing (bool), tolerance
(float), ∆tolerance (float)

Result: curr is balanced, possibly its descendants too
Function BalanceCluster (curr, tolerance)

distBetween ← Distance(curr.left, curr.left);
distLeftBetween ← Distance(curr.left.left, curr.left.right);
distRightBetween ← Distance(curr.right.left, curr.right.right);
while distBetween < (distLeftBetween - tolerance)

or distBetween < (distRightBetween - tolerance) do // disbalanced
if distLeftBetween < distRightBetween then

// curr.left and curr are disbalanced
distLLtoR ← Distance (curr.left.left, curr.right);
distLRtoR ← Distance (curr.left.right, curr.right);
if distLLtoR < distLRtoR then // curr.left.left moves under curr

curr ← RotateRight (curr.left, curr, curr.left.left /* curr.left.left
swapped under curr */);

else // curr.left.right moves under curr
curr ← RotateRight (curr.left, curr, curr.left.right /*
curr.left.right swapped under curr */);

if deep then BalanceCluster (current, tolerance);

else
// curr.right and curr are disbalanced
rotate left is analogical...;

if not deep then break;

tolerance ← tolerance ·(1 + ∆tolerance) + ∆tolerance;

3.6.4 Deep Distance (Simhash)

For simhash distance, it is possible to evaluate the distance between clusters using their
children instead on the clusters themselves. By specifying the depth, the deep distance
is then the minimal distance between all child nodes of the specified depth h (or of lesser
depth for chunk nodes).

deep dist(C1, C2, h) = min{dist(c1, c2) : c1 ∈ desc(C1, h), c2 ∈ desc(C2, h)}

where desc(C1, h) are descendants of C1 of depth up to h. The deep distance is evaluated
in Section 4.6.2.

3.6.5 Representative Distance (NCD and Simhash)

Both NCD and simhash can also use representatives. The main idea is the same as
with deep distance, representatives are used instead though. The set of representatives
however has to be calculated. This can only be done from the representatives of it’s

50

3.6. Incremental Clustering and Balancing

1
3

3
1

5
2

6
1

4
3

2

Input chunks:
(linear distances – additive)

Incremental clustering
causes suboptimal
hierarchy

Batch clustering
produces optimal
hierarchy

cR

1 c4

c3

c1

3 5

c2

6 4

2

1 1

2

3

3

Optimal clusutering:
(all chunk were available)

No misbalanced clusters

cR

c1

1 c3

3 5

c2

c4

6 4

2

11

2

3 3

Disbalanced clusutering:
(chunks given in order: 1,3,5,6,4,2)

Two misbalanced clusters

balance
right

Balance clusters c1 and cR

Closer of (1) and c3
goes next to c2

c1

1 cR

c3

3 5

c2

c4

6 4

2

1

1

2

3

3
balance
left

Figure 3.8: Disbalanced clustering example due to inconvenient order of incoming
chunks. Two balancing operations take care of the misbalanced clusters.

children (or any depth). Note that the complexity of selecting the representatives grows
exponentially with the number of desired representatives and the depth of candidates.
In ICBCS, only direct descendants were used, i.e. depth = 1.

Determining representatives from the children of the cluster leads to so called facility
location problem, where k-centers (representatives, facilities) are searched. There are
several ways of doing so. For each cluster from the candidates, an average distance to
all clusters is computed. The representatives are then selected from the candidates via
a criterion. This is open for experimentation, solution in used in ICBCS is called 1min-
max, where one cluster with minimal distance to others is selected (this is a center),
and then the rest of representatives is selected from candidates with maximal average
distance to others (the border).

The representative distance is then similar to the deep distance, using minimal dis-
tance between representatives instead of the descendants.

For an example of representatives selection, look in Figure 3.9.

The representatives were tested for top-down NCD clustering in Section 4.5.

3.6.6 Deep Representative Distance (Simhash)

The deep representative distance refers to a combination of both deep and representative
distance. It uses the representatives of descendant at a specified level.

51

3. ICBCS – Incremental Clustering-Based Compression System

Cluster C1

repr.

Cluster C2

repr.

Representatives of C1 and C2

Min
repr.

Min representatives of C1,2

Min-Max
repr.

Min-Max representatives of C1,2

Figure 3.9: Example of representatives selection in 2D space. Representatives of cluster
C1 and C2 (left) are merged using Min-wise representatives selection (center) and Min-
Max-wise selection (right).

This distance has been implemented, tested briefly, but is not present in the evalua-
tion.

3.7 Grouping and Compression

At any point of the clustering process, it is possible to determine compression groups
from the current clustering hierarchy. This is usually done in the end of the clustering
process in the compressor mode, or in the end of adding, editing or removing documents
in the archiver mode.

A minimal compression group size parameter CG SIZEmax is specified by the user.
The hierarchical tree is traversed using DFS and subtrees of size

size(C) < CG SIZEmax = 2 · CG SIZEmin

are assigned to a compression group. This traversal ensures that all compression groups
CGn are of size

∀n : size(CGn) ∈ [1,CG SIZEmax]

The compression groups assignment is depicted in Figure 3.10.
The subtrees’ chunk clusters (leaves) are the chunks to be compressed within the

compression group. Note that the order of chunk withing a compression group matters,
as similar chunks need to be closer to each other for better compression results. This is
easily achieved using preorder or postorder traversal. The order of compression groups
does not matter.

See Section 4.8.2 for evaluation of different performance groups sizes.

3.7.1 Compression Algorithms and Levels

The set of compression groups is then compressed using a user specified compressor and
compression leven. The only two compressors implemented are the Bzip2 and Deflate,
as representatives of a block based and stream based compression.

The compression algorithms and levels are evaluated in Section 4.8.

52

3.8. Compressor Capabilities

(4)

(3)

(2) (1)

1 1 1 1

(6) (5)

5 5

5

(2)

2

2

2 (1)

1 1 1 1

(3)

3

3 3

3

Groups 5,6 could
be merged

Groups 2,3,4 could
be merged

Groups 1 is
already full

Figure 3.10: Compression groups with and without upmerging. On the left, no upmerg-
ing was used, total of 6 groups were created. On the right, with upmerging, only 3
compression groups were created.

3.7.2 Compression Groups Upmerging

Since the naive DFS compression groups assignment can result in compression groups
of very small size, these groups can be merged together to achieve better compression
results.

With compression group upmerging, the DFS traversal does not create a compres-
sion group unless a minimal group size ·CG SIZEmin requirement is met or the root is
reached. The parameter for minimal group size is deduced from the maximal size as:
CG SIZEmax = 2 · CG SIZEmin. This upmerging ensures that all compression groups
CGn are of size

∀n : size(CGn) ∈ [CG SIZEmin,CG SIZEmax]

The relation between minimal and maximal size as a multiple of two works well for
binary trees.

The comparison of upmerging vs normal compression group assignment is written in
Section 4.8.2.2.

3.8 Compressor Capabilities

The ICBCS can act as a compressor. Given a file as in input, it performs the chunking,
deduplication, clustering, grouping and compression. The set of compressed groups is
forms the compressed data.

For a decompression to be possible, there has to be additional information called the
metadata, that is used to fully decompress the file.

Metadata not only allows a decompression, but also preserved the information about
chunks and duplicates. Although a complete reconstruction of the whole deduplication
state, clustering and grouping is possible, it would take a lot of unnecessary computation.
Archivedata described in Section 3.9.1 serves that purpose.

3.8.1 Metadata

The metadata is a lite preamble to the actual compressed data. It contains the following
information: file signature (magic number), number of compression groups and number
of chunks, total size of original data, offsets of compression groups to compressed data
block and offsets of chunks in the original data.

53

3. ICBCS – Incremental Clustering-Based Compression System

An example of 32 bit implementation of metadata used for measurements in Sec-
tion 4.7:

0000: 0000 0123 // magic number

0004: 0000 1C28 002D 40AC // number of compression groups

and chunks

0014: 0000 0000 06C1 229F // original data size

001C: 0003 DBB2 0013 6002 // offests of 1. group

to comp. and orig. data

....

1C3C: 00E3 2421 // offset of 1. chunk

....

The magic numbers tells the decompressor that the file is in ICBCS format. Note
that since Bzip2 or Deflate magic numbers are not stripped from the compressed groups,
so there doesn’t have to be any information about the compressor.

Number of compression groups and number of chunks are used to delimit the following
lists of compression group offests and chunk offsets.

The compression group offsets to compressed data are designated to delimit the
compression groups in the compressed data block. These can be effectively replaced
by explicit ordering and size of the chunk, however implicit ordering requires only one
information to be stored – the offset. Ordering the list by these offsets then create the
full index of clustering groups.

The compression group offsets to original data don’t have to be used for full decom-
pression, however they provide the information in which compression group a chunk is
placed, allowing for more effective decompression, where the compression groups can be
decompressed selectively based on the chunks they contain. Without this information,
chunk assignment to compression groups would only be possible after full decompression
of all the groups.

Offsets of chunks are also given in the implicit order of chunks, so the same method
or ordering by offets can be used to create the index of chunks by the original data
position. Duplicate chunks share the same offset.

3.9 Archival Capabilities

The ICBCS also has archival abilities. It can retrieve particular files, update files, add
new file and remove existing files from the archive. These are called the CRUD operations
(Create, Read, Update, Delete).

This is achieved using and extended metadata called archivedata.

None of the archival capabilities were implemented in ICBCS.

3.9.1 Archivedata

Archivedata serializes information about the clustering and grouping, namely the clus-
tering hierarchy, compression groups, simhashes of chunks and deduplication hashes of
chunks. The archivedata also contains a set of files in the archive and for each such file,
an ordered list of chunks it consists of.

54

3.10. Implementation Notes

The format and scale of information in archivedata has to been finalized for the
ICBCS. It still a partially open problem, especially to find the right balance between
information saved in archivedata and the cost of archive CRUD oeprations.

The forementioned archivedata format was used for preliminary measurements in
Section 4.7:

3.9.2 Retrieving Documents

Retrieving a document is a process of finding all the compression groups of chunks the
file consists of. These compression groups are then decompressed and the original file is
reconstructed. Note that the order of the retrieval of the parts does not matter, however
it is advisable the follow the order of chunks to be more likely to achieve a sequential
output of the file.

3.9.3 Adding, Editing and Removing Documents

In case of altering operations, the clustering gets possibly updated. Let’s also consider
the edit operation to be a sequence of deletion and addition.

The clustering update operation all follow the same patterns or adding or removing
a chunk cluster and then updating the structure on ascending to the root. The major
concern here is to recompute the compression groups. This is also dependent on whether
compression group upmerging is enabled. In any case these operations either edit, split
or merge two compression groups, while scheduling these groups for recompression.

Delayed recompression refers to a method of recompressing the changed group only
after a completion of all scheduled operations, e.g. after adding all the files to the archive.

Delayed duplicate verification refers to the same method, however for duplicate ver-
ification. In case hashes match, we need to compare the uncompressed chunks. To get
the archived chunk, it would have to be decompressed, compared and compressed again.
Instead, save the incoming chunk as it is and add it to the list of duplicate verifica-
tion files. The first time the cluster containing the potential duplicate is reclustered
(decompressed), we do the verification.

3.10 Implementation Notes

ICBCS was implemented in C++11, using mostly STL for a lot of internal data structures
and basic algorithms. The std c++ library used was that of GCC 4.8.2.

CLI interface was implemented using boost::program options. The complete CLI
is listed in Appendix B.

Compressors that were implemented in ICBCS both used the newest version of their
libraries: Deflate [61] and BZip2 [93]. For randomized KD-tree the FLANN [74] library
was used. And for rolling hashes a small implementation called rollinghashcpp [28]
was used.

Several other libraries were used for intermediate implementations, however these
were dropped in the final version. These libraries include: Eigen (linear algebra), Com-
pLearn (compression based data mining from [23]) and ANN: A Library for Approximate
Nearest Neighbor Searching.

The build system CMake 2.8. Several useful options for dependent library setup and
profling option using gprof are documented in the CMakeList file.

55

3. ICBCS – Incremental Clustering-Based Compression System

A source code snapshot of the version that was used for measurements and writing
this thesis is provides on the attached disk. The ICBCS source repository has not been
made public by the time of writing the thesis.

3.11 Performance and Optimizations

Major performance-wise optimization were conducted on ICBCS. The drawback of this
system (any basically any deduplication system) is the need for complete, or almost
complete scan of the input data and excessive computation of hashes. Thereby the
most effort was targeted at the optimizations of computation and manipulation with
hashes. The best performance gain were due to vectorization via SSE (Streaming SIMD
Extensions) available to our hardware configuration (Section 4.2).

Many optimization directly implied by GCC’s -04 are not described, except for cases
where the user made code optimization leads to more effective compiler optimizations.

Profiling output can be easily generated by specifying PROFILING=ON in CMake and
running the ./generate-calltree.sh. A png image of a call tree will be generated.

3.11.1 FNV Hash Vectorization

The first performance drag was caused by the FNV hash, described in Section 3.4.2.
Since rolling hashes have generally failed to create good simhash vector space.

The idea is to compute n FNV hashes at the same time. The n is based on the size
of n-gram, e.g. for 4-gram, 4 hashes are computed. The implementation is based on
a cyclic array and vectorized XOR and multiply operations. This is also the reason why
there was no significant decrease of computational speed for higher sizes of n-grams in
Section 4.3.3.

The FVN computation could of course be extended to a wider vectorization. As of
the current implementation, FNV computation is still the performance bottle neck.

3.11.2 Simhash Optimizations

Another computation heavy part of ICBCS is its simhash vector system, described in
Setion 3.4. These vectors not only have to be computed (once per each chunk), need to
be combined during clustering updating, but mostly need to be compared all the time.

Simhash data structure is implemented using std::valarray<uin32 t>. Valarray
was chosen due to its minimal overhead and ease of vectorization.

The computation of a simhash uses relies on a maximal vectorization. For this to
take effect a width of a simhash has to be known. However this is an input parameter
of ICBCS. Therefore a maximal loop unrolling withing a switch for all simhash widths
was used. A switch is generally smaller than that of a virtual method call (on a tested
platform). There are also no multiplication operations in simhash creation.

Just as the computation of a simhash, the distance evaluation between two simhashes
was optimized in a similar manner. The distance evaluation is the most often function
called in ICBCS. Full vectorization of the Minkovskinorm1 distance is used, with a sub-
sequent sum over all the positions.

Simhash combination optimization was a little more difficult task. If simhash imple-
mentation used floats and its datatype, such combination would be a simple weighted
vector average:

56

3.11. Performance and Optimizations

float lweight = weigthLhs/(weigthLhs+weigthRhs),

rweight = weigthRhs/(weigthLhs+weigthRhs);

*out = (lhs*lweight + rhs*rweight);

however simhash intepretation uses integers, as floating point multiplications are too
slow. Using the weights (lweight and rweight) as integers would however yield zeroed
results after the cast to integers.

For this reason, a weight offset is used, to promote weights into a higher order, where
cast to integers results in only a little biased values.

int lweight = (int)((weigthLhs*(1<<woffset))

/(weigthLhs+weigthRhs)),

rweight = (int)((weigthRhs*(1<<woffset))

/(weigthLhs+weigthRhs));

*out = (lhs*lweight + rhs*rweight) >> woffset;

On 32 bit platforms, the multiplication of the simhash with a desired weight can
cause an easy overflow. The woffset thus has to be regulated based on the weight. On
64 bit platforms, this is not a problem. In ICBCS run on 64 bit platform, 20 bits are
used to store the value, 8 bits for weight offset, the rest easily accommodates high weigh
values.

With integer-based simhash, vectorization and no division, all simhash operations
are extremely fast and no longer pose a performance bottleneck.

3.11.3 Randomized KD Trees

The KNN problem or its approximate variation ANN is easily solved using KD-trees for
lower dimensions. See survey in Section 2.7.4, 2.7.6.

This was however mitigated using several randomized KD-trees and a limited number
of leaf searches. The parameters could be a subject to further parametrization, nonethe-
less for ICBCS testing, these were fixed to 4 KD-trees and 32 leaf searches as defined by
the FLANN library used: [73].

57

Chapter 4

Evaluation

This chapter covers all of the parameterization and measurements done on ICBSC. There
are many parameters in the system, but some of those play more significant roles in the
resulting performance of the system. For a complete list of input parameters, please
see the ICBCS usage in Appendix B and for a complete overview and explanation of
measured attributes, please see Appendix C.

The process of many experiments resulted in a reference setup. This setup was then
used for further parameterization and measurements presented in this chapter. Note
that due to a very high number of parameters of ICBCS, it would have been extremely
difficult to find an optimal solution using exhaustive parameterization.

The ICBCS reference setup

Compressor deflate
Compression level 5

Average chunk size 4 KB
Chunk size spread 1–16 KB

Deduplication ON
Distance simhash

Simhash width 32
Simhash n-gram 4

Compression group size 64
Balancing no balancing

Upmerging ON

For visual aids, many plots are available to the reader. These usually fall into several
categories based on their purpose. Line plots are used in numerical type single variable
plotting – e.g. simhash width, compression group size, compression level, etc. Bar plots
are used for categorical variable, e.g. balancing method, or type of distance measure. To
display multidimensional numerical variables, 2D color plots are used, e.g. for simhash
histograms and chunk size and spread plotting. Tables are used to display multiple
variables of interest where desired, but usually on a smaller scope (e.g. just one dataset).
Overall, the visualization should be always be explained either in the text or in the
caption.

59

4. Evaluation

dataset description redundancy size habitat

small Small text file ≈ 90% 55 KB artificial

calgary Calgary corpus ≈ 70% 3.2 MB corpus

canterbury Conterbury corpus ≈ 70% 2.7 MB corpus

dual Two compressed PDFs ≈ 50% 1.9 MB real

dual-cal Two Calgary corpora ≈ 85% 6.3 MB corpus

random2 Random 2 MB data ≈ 0% 2 MB artificial

prague Prague corpus ≈ 50% 56 MB corpus

em
Confidential documents

of FIT CTU
≈ 98% 21 MB real

reqview Reqview documents ≈ 60% 19 MB real

athens ATHENS reports ≈ 5% 132 MB real

random Random 64 MB data ≈ 0% 64 MB artificial

linux-kernels
Linux kernel sources

(3.0, 3.1, 3.2)
≈ 90% 1.3 GB real

Table 4.1: Summary of datasets

The chapter first goes through the datasets used in most of the measurements (Sec-
tion 4.1), then briefly describes the testing platform (Section 4.2). Next, the simhash is
thoroughly analyzed (Section 4.3), followed by the deduplication layer (Section 3.3), a
comparison of simhash and NCD (Section 4.5), clustering quality (Section 4.6), metadata
and archivedata overhead (Section 4.7), as well as underlying compression algorithms
(Section 4.8). Finally, memory requirements are briefly mentioned (Section 4.9) followed
by overall performance summary of ICBCS (Section 4.10).

4.1 Datasets

The selection of datasets is quite different from a selection of datasets in most compres-
sion algorithm papers. The major difference lies in the fact that conventional corpora
consist of files of different types. The variability of these files and low similarity between
these files make them bad candidates for an effective large-scale compression system such
as ICBCS. Although the power of ICBCS cannot be effectively demonstrated on variable
file sets, several of those were selected, since corpora stand for reference platforms.

Other than that, other interesting datasets were selected that demonstrate various
properties of ICBCS. An overview of datasets is in Table 4.1.

4.1.1 Small single files

The small dataset is only a small text file with few repeating characters and words.
Its main purpose is to demonstrate the degeneration of ICBCS to simple compression
algorithms in case of small files. Additionally, this dataset demonstrates that reordering

60

4.2. Testing Environment and Hardware

of chunks within a single compression group can have a positive effect on compression
ratio – when using Deflate.

4.1.2 Corpora

Three corpora were selected for the tests, the calgary [4], canterbury [7] and prague [45]
corpus. Since these are extremely variable data with only a little explicit duplicates, the
compression effectiveness of ICBCS is not well-demonstrated on those. The usage of
these corpora is also not conventional, because the whole single corpus is used as an
input itself, not the files it contains.

4.1.3 Duplicate and Highly Redundant Data

The opposite of corpora is duplicate data. The dual datasets consist of exactly two
identical compressed PDF files. The dual-calgary dataset consists of two calgary cor-
pora. The major difference between these two is that there are no intra-file redundancies
in the dual dataset. The PDF files do not allow for any further compression, however
appropriate mapping of these files on top of each other results in perfect deduplication.
The dual-calgary ,on the other hand, still contains a lot of intra-file redundancies and
thus allows for further compression within the compression clusters.

The dataset em consists of 9 unzipped docx documents. The documents are all version
of application forms from the Faculty of Information Technology at the Czech Technical
University (CTU). Please note that this dataset is confidential (also top redundant) and
so it is not attached to the thesis.

4.1.4 Similar and Moderately Redundant Data

The dataset reqview consists of about 50 documents generated using the requirement
managing software – ReqView. The documents are similar to each other though parts
are encrypted and effective compression is not viable there.

Three complete Linux kernel sources (version 3.0.101, 3.1.10, 3.2.56) were packed
into the linux-kernels dataset. This dataset not only exhibits a very high amount of
duplicates, but lots of the files are merely different version of each other.

4.1.5 Random, Compressed and Image Data

This last category of datasets consists of uncompressible files. The datasets random2

and random are randomly generated files of size 2 MB, resp. 64 MB. These were pro-
duced using dd if=/dev/urandom of=random bs=1M count=64. random2 is used few
scenarios, where random would result in too long execution time.

The last dataset athens consists of all ATHENS student reports from November
2013.

4.2 Testing Environment and Hardware

All tests were run on a laptop, however, we have created an environment, where the
interference to ICBCS caused by other processes is minimized using several techniques
described further in this section.

61

4. Evaluation

The hardware used had the following configuration: Intel Core i5-2520M CPU @
2.50GHz x 4 (2 physical cores, Hyper-threading), SSE4.1 instruction set, 8 GB of physical
memory. The operating system is 64b Linux – Fedora 19 (3.10.10-200.fc19.x86 64). As
a compiler, we used GCC 4.8.2.

To ensure maximal CPU-wise performance and constant efficiency, the kernel was
started with isolcpu=1,3 (1,3 are virtual cores that correspond to physical core 1) –
this disables two cores, so that the kernel task scheduler will not utilize them. Then,
every ICBCS test was run with assigned affinity using taskset 0xA on this physical
core.

Due to the frequency scaling of this CPU, a performance governor was set for this
CPU. This requires a cpufreq kernel module. A performance governor was then set for
CPUs 1 and 3. This governor setup is very likely also available via a GUI application.

Since CPU exclusivity is not enough for our process, for time-oriented tests, several
runs (8x) are made and the minimal time value is then selected. For time measurement,
C++11s std::chrono and boost::chrono libraries were used to measure wall time, user
time, system time and thread time. For all plots and tables used, the sum of system and
user time is used.

4.3 Simhash Distribution

The simhash creates a vector space in for the compression system. In order for the
distance measures not to degenerate and fall victim to limited floating point or integral
precision, we want the vectors to occupy as much of the space as possible. This is closely
relevant to hash diffusion, that describes high hamming distance between hashes of two
similar inputs.

The hashes produced by the used FNV hashing function have a width of 64 bits, it
is necessary to provide enough input to the hash for it to uniformly spread the input
values into these 64 bits as much as possible. If the desired simhash vector size is less
than 64, uniformity can be achieved by hash injecting methods described in Section 3.5,
where lesser amount of input is sufficient.

Extensive comparison of n-gram hashing function is out of the scope of this work.
This section’s main purpose is to introduce an insight into how the hashes affect the
simhash vector space and subsequently the whole compression system.

4.3.1 Simhash Distribution Tests

To represent data without any induced bias, the following tests were run on random

dataset. To represent real world data, the prague corpus is used. Both dataset are of
similar size.

The former symbolizes random data, where the randomness is diluted with increasing
chunk size, because computation of simhash for a chunk uses a sum (or an average, based
on normalization factor) of all n-gram hashes within a chunk. For high chunk sizes, the
resulting simhash distributions will always converge to the geometric distribution. This
makes sense because random data cause the chunks to have the same set of n-grams with
increasing size, and we only have a single hash to describe the data.

The latter dataset symbolizes real-world data that are sufficiently diverse but also
exhibit high locality. It is very likely that data in a single chunk will be similar within

62

4.3. Simhash Distribution

the chunk, but not within the whole dataset. This results in higher diversity of the
simhashes than in case of the random data.

Note: The 2D histogram plots represent the distribution of simhash values (over the
entire dataset). Single column of the plot represents single simhash vector position. If
we are concerned about the 32 byte long chunks, this means that the simhash can have
32 − (ngram − 1) different values. Each column has 16 buckets, so in the case of 128
byte chunks and 6-grams, each bucket represents value span of 7.7.

The first measurement was done with only a single input byte (1-gram) for a desired
vector size of 32 bits. It is obvious that one random byte cannot generate 32 independent
bits of information and the expected result is for the simhash distribution to be extremely
biased. The form of this bias is determined by the hash function used, e.g. the FNV’s
offset basis and prime. Figure 4.1 shows the resulting histograms for 32 bit hash. Several
of the hash values have zero variance – the corresponding bit is always the same.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

0.2

0.4

0.6

0.8

1

Figure 4.1: Simhash distribution over all simhashes generated from the prague corpus.
N’th column indicates the distribution of values (histogram) in the n’th simhash vector
positions. The values in single cells correspond to the amount of simhash values in that
range. Simhash vector positions with uneven distribution are degenerate and provide
poor distance properties within the vector space. FNV hash, 1-gram, fixed size of a chunk
– 32 bytes, histograms not zoomed – show the entire values range.

Second example illustrates that to fully use the span of 32 bit hash, at least 5-grams
have to be used. See Figure 4.2. Simhash histograms for ngram values of 2 to 4 are
omitted – they represent a transition from Figure 4.1 to Figure 4.2 where the amount
of misbehaving simhash positions is decreasing. For the sole purpose of hashing, n-gram
of 5 is then sufficient, however it doesn’t say anything about it’s appropriateness for
compression purpose. Since much more than simple n-grams may be used for simhash
computation, it is necessary that these features provide at least 5 bytes of information
in order to be effectively hashed into 32 bit hash using FNV. See Section 3.5 for details
of how to combine hashes from individual sources.

For the previous two examples, fixed size of 32 bytes per chunk was used. This is
very high granularity that is never used in the final setup. It was chosen merely to
demonstrate the behavior of the hash function on different input sizes. Also, fixed chunk
size does not allow for extensive locality. Similar data that would otherwise be placed
in the same chunk are separated, resulting in artificially higher variance.

Next example illustrates a real world setup on the prague corpus. The data are
quite variable and so are the resulting simhashes. Figure 4.3 demonstrates the simhash
distribution with a size span of 256 B to 1 KB and 5-grams. Note that even though every

63

4. Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

0.2

0.4

0.6

0.8

1

Figure 4.2: Simhash distribution over all simhashes generated from the prague corpus.
5-grams were used to compute a single hash in all the simshashes. This is sufficient to
generate well distributed values over all positions of the simhash. The obvious shift into
lower values is caused by the 5-gram requiring 5 consecutive bytes – only 32−5 +1 = 28
possible values could be generated on every position, but the normalization factor ignores
this. FNV hash, 5-gram, fixed size of a chunk – 32 bytes, histograms not zoomed – show
the entire values range.

simhash is summed (or averaged) over single 5-gram hashes, the resulting distribution is
still very variable. FNV hash has proven to be very successful in the simhash computation
on variable data.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

0.2

0.4

0.6

0.8

1

Figure 4.3: Simhash distribution over all simhashes generated from the prague corpus.
For these simhash computations, a larger chunk size was used – span of 256 B to 1 KB.
The Rabin chunkizer split the data according to content and these were then hashed.
The variance of the simhashes is very high, since the prague corpus has variable data
and these were chunked based on their content. This figure demonstrates the typical
simhash distribution in the ICBCS system. FNV hash, 5-grams, variable size of a chunk
– 256 B to 1 KB, histograms zoomed into the middle 50% values – overflow is part of
the edge buckets.

The fourth example illustrates the same setup, however with random data, see Fig-
ure 4.4. All the simhash positions are very similar and massed around the center with
their respective geometric distributions.

The FNV hashing function did not fail in this case. Average size of 512 bytes of
uniform and independent data resulted in very similar chunks, that were subsequently
hashed into very similar hashes. Simhash cannot deal with random data. Unfortunately

64

4.3. Simhash Distribution

it cannot deal effectively even with partially random data, because the hash computation
itself uses randomness to describe the chunk and so a little amount of information is likely
to be lost.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

0.2

0.4

0.6

0.8

1

Figure 4.4: Simhash distribution over all simhashes generated from the random dataset.
In this case, with a size span of 256 B to 1 KB again, the data in every chunk is 512
random bytes long on average. With only 32 byte simhash and random data, all the
simhashes are very similar. FNV hash, 5-grams, variable size of a chunk – 256 B to 1 KB,
histograms zoomed into the middle 25% values – overflow is part of the edge buckets.

Other fast hash functions than FNV do not work as well for the hashing. Not all
hash function are applicable due to performance reasons, see Section 4.3.5 for more
information. Other tested hash functions were Karp-Rabin, Cyclic Polynomials and
Irreducible Polynomials from [28]. Calculating hashes directly from bit representation
of 4-grams was also tested. None of these did as well as FNV in terms of simhash
distribution and resulting chunk matching.

4.3.2 Simhash Variance

To measure the quality of similarity hashing, we can use standard statistical measures
such as mean, standard deviation and variance.

As mentioned in the previous section, the chunk size plays the major role in degen-
eration of the simhash. The biggest concern with the degeneration is of course the loss
of precision in distance computations, because the system does not use floating point to
represent the dimension of a simhash. See Section 4.3.6 for detailed discussion.

We have measured these statistical variables for the prague and random2 dataset
and various chunk sizes. The results are present in Table 4.2. Even for large chunk
sizes and the (very variable) prague dataset, the minimal distance between simhashes
encountered was still more than sufficient for precise computations.

The standard deviation and variance, however, exhibit a steady decline for larger
chunk sizes. This could potentially result in imprecisions. These could be encountered
by either increasing the simhash size (the experiment was done with simhash value range
of only 1 – ()220 − 1) – that is mere 20 bits), or by logarithmically scaling the simhash
values. Unfortunately, both of these fixes would result in performance impairment. And
performance was the reason we use integers instead of floats.

65

4. Evaluation

dataset Simhash distances Average over all positions

Size Min Max µ(mean) σ(std.dev.) σ2(variance)

random2.dat

64 B 163 746 6 122 980 483 293 44 486 1.97e+09

256 B 61 575 4 528 186 513 999 22 928 5.25e+08

1 KB 53 498 16 459 776 521 432 16 300 2.65e+08

512 B – 2 KB 29 607 5 690 710 521 666 12 395 1.54e+08

4 KB 39 876 1 607 291 523 614 5 785 3.35e+07

2 KB-8 KB 68 582 2 663 550 523 636 5 691 3.24e+07

16 KB 51 200 1 436 115 524 093 2 839 8.08e+07

8 KB – 32 KB 26 674 868 198 524 084 2 748 7.59e+07

4 KB – 64 KB 27 615 1 085 114 524 072 3 160 1.00e+07

prague.tar

64 B 8 160 11 948 191 482 803 63 160 4.08e+09

256 B 2 048 11 269 422 513 445 53 284 3.08e+09

1 KB 6 656 8 778 744 521 211 47 368 2.55e+09

512 B – 2 KB 1 024 10 634 866 521 004 45 596 2.33e+09

4 KB 2 176 10 076 414 523 296 46 673 2.53e+09

2 KB – 8 KB 2 364 10 622 315 523 148 44 219 2.24e+09

16 KB 768 7 215 461 523 850 46 021 2.49e+09

8 KB – 32 KB 3 337 8 168 472 524 210 45 558 2.44e+09

4 KB – 64 KB 1 699 10 812 962 524 436 47 234 2.66e+09

Table 4.2: Simhash min and max distances encountered and statistical mean, standard
deviation and variance. Simhash range span: 0–(220 − 1) (20 bits).

4.3.3 Simhash Source – N-Gram

The n-grams are the only generator of the simhashes. The careful selection of appropriate
n-gram is essential. Note that it is also possible to combine several of the n-gram sources
(see Section 3.4.3), however due to performance reasons, we will restrict ourselves to
a single source.

Note that n-gram = 4 is highly optimized, but this optimization was not used during
the measurement process.

The Figure 4.5 shows the compression ratio relation to the size of the n-gram. The
left plots on the left diagram are shifted so all the individual plots depict their compres-
sion ratio relatively to that of a 4-gram. From there, it is obvious that if we change the
size of the n-gram in any direction, the overall compression ratio will be higher (thus
worse configuration). The only exceptions are the athens dataset, which already has
an extremely bad compression ratio, and the prague corpus, where the loss in com-
pression ratio is negligible. The reason why low n-gram sizes fail is obvious – there is
minimal multibyte redundancy information depicted in the simhash, plus the simhash is
degenerate, as explained in Section 4.3.1 and 4.3.2.

The same figure shows that the increase in total time is very small with increasing

66

4.3. Simhash Distribution

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

0

0.5

1

1.5
·10−2

4

N-gram

C
o
m

p
re

ss
io

n
ra

ti
o

re
la

ti
ve

to
th

a
t

o
f

4
-g

ra
m

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

10−2

10−1

100

101

102

N-gram
T

o
ta

l
ti

m
e

[s
]

small

calgary

canterbury

dual

calgary

random2
prague
em

reqview

athens

random

linux

Figure 4.5: N-gram size (used as simhash generator) effect on final compression ratio
and total time.

n-gram size. This is probably due to a high level of optimizations and full vectorization
of the FNV hash used in simhash computation. The implementation of FNV module
was transformed to horizontal computation over the string for better vectorization.

4.3.4 Simhash Width

The simhash width is another of the core parameters of ICBCS. It represents the size of
every single simhash vector stored either in the system or in the archivedata.

22 23 24 25 26

0

0.5

1
·10−2

Simhash width

C
o
m

p
re

ss
io

n
ra

ti
o

re
la

ti
ve

to
th

a
t

o
f

w
id

th
6
4

22 23 24 25 26
10−1

100

101

102

Simhash width

T
o
ta

l
ti

m
e

[s
]

small

calgary

canterbury

dual

calgary

random2
prague
em

reqview

athens

random

linux

Figure 4.6: Simhash width effect on final compression ratio and total time.

The simhash width also has a very significant impact on the overall effectiveness of
the compression system. Higher width negatively impacts the execution time – especially
all distance calculations, since the simhash generator only merges 64b FNV hash. Width
higher simhash width, the clustering is much more precise, resulting in deeper clustering
tree and more granular final compression grouping. Also, since the simhashes are always
stored in memory, this impacts the memory requirements directly. All these relations
can be seen in Table 4.3 for the prague corpus.

67

4. Evaluation

Simhash
width

Compression
ratio

compression
groups

Average
depth

Total
time

Memory

4 0.6639 135 29.16 5.15 1.64 · 107

8 0.6563 136 44.81 5.37 1.7 · 107

16 0.6493 142 66.86 5.34 1.79 · 107

32 0.6455 140 148.41 5.96 2.02 · 107

64 0.6426 148 225.34 7.97 2.68 · 107

Table 4.3: Simhash width effect on prague corpus.

Figure 4.6 shows clearly that the best compression ratio is achieved with the simhash
width 64. This is not surprising because such causes the least effect on overall degenera-
tion of the simhash vector system. The only exceptions are the linux-kernels dataset
and small dataset (which is not important). Note that this figure depicts compression
ratios relative to those of simhash width 64.

However, from the same figure, it is also apparent that the execution time increases
drastically from width 32 to with 64. This is due to numerous distance calculations.
The gain in compression ratio is too small, which is why the reference setup uses only
simhashes of width 32.

Simhash width also has an effect on archivedata size. This comes directly from the
archivedata design, for details, see Section 3.9.1 or Section 4.7 for experimental results
based on simhash width on metadata and archivedata.

4.3.5 Performance Concerns

The FNV hashing algorithm has one disadvantage: it is not effectively utilized as a rolling
hash. For string S rolling hash has to be able to produce hash of S[i− 1..k] from S[i..k],
however FNV doesn’t have an operation that would remove a single byte from the hash
and provide the hash of S[i − 1..k]. The major advantage of the FNV is its speed and
good spread over the entire width of the hash even with small number of bytes read.

Also note that complicates cryptographic or sophisticated hashes were not used.
These are on the opposite performance spectrum of rolling hash functions. The security
requirement for cryptographic hashes dictates time consuming computation. This is
a contradictory requirement for this compression system.

4.3.6 Integral vs Floating Point Simhash Representation

As was shown in previous sections, the variance of simhashes decreases with increasing
chunk size and increasing randomness in the data. This poses another possible problem.

Floating point operations provided very good precision as the variance of simhashes
was getting smaller. However on the testing platform, floating point operations were 2
times slower than their integer equivalents.

Integer types are fast, but tend to degenerate in precision. This is problematic
especially concerning very similar data. Also, nodes in the clustering tree also suffer from
representing very similar data, especially in the lower levels, or in case the balancing is

68

4.4. Rabin Chunkizer and Deduplication

disabled, entirely throughout the tree. Also, combining the hashes between subtrees
of low sizes does not allow for precise weighted averaging. This can be solved by an
artificial shift of the hashes into higher values, performing the weighted averaging and
then shifting back to the original order.

The solution used in ICBCS relies on integers to represent a simhash. The simhash
spread is set within the first 20 bits of the 32 bit integer. The other 12 bits can be used
for the shift operations on weights of the combined vectors. Less than 12 bits are used
if there is a possible overflow. On 64 bit platforms, the whole averaging operation is
performed in 64 bit integers without any significant performance impact.

4.4 Rabin Chunkizer and Deduplication

The Rabin chunkizer represents the deduplication layer of ICBCS. It’s effectiveness is
highly dependent on the input data. However the superior speed and simplicity make it
into and an ideal tool to remove the most explicit redundancies.

For better visualization, several histograms of unique and duplicate chunks are avail-
able. The histograms of real-world large scale example linux-kernels are depicted in
Figure 4.7. Note that the size range 512 B – 32 KB was used. This is quite a reasonable
range, as most of the chunks are of size 1 – 4 KB, which still results in acceptable execu-
tion times. (See Figure 4.10 for more details on the size and spread effects on execution
time.)

5
1
2

1
0
1
6

1
5
2
0

2
0
2
4

2
5
2
8

3
0
3
2

3
5
3
6

4
0
4
0

4
5
4
4

5
0
4
8

5
5
5
2

6
0
5
6

6
5
6
0

7
0
6
4

7
5
6
8

8
0
7
2

8
5
7
6

9
0
8
0

9
5
8
4

1
0
0
8
8

1
0
5
9
2

1
1
0
9
6

1
1
6
0
0

1
2
1
0
4

1
2
6
0
8

1
3
1
1
2

1
3
6
1
6

1
4
1
2
0

1
4
6
2
4

1
5
1
2
8

1
5
6
3
2

1
6
1
3
6

1
6
6
4
0

1
7
1
4
4

1
7
6
4
8

1
8
1
5
2

1
8
6
5
6

1
9
1
6
0

1
9
6
6
4

2
0
1
6
8

2
0
6
7
2

2
1
1
7
6

2
1
6
8
0

2
2
1
8
4

2
2
6
8
8

2
3
1
9
2

2
3
6
9
6

2
4
2
0
0

2
4
7
0
4

2
5
2
0
8

2
5
7
1
2

2
6
2
1
6

2
6
7
2
0

2
7
2
2
4

2
7
7
2
8

2
8
2
3
2

2
8
7
3
6

2
9
2
4
0

2
9
7
4
4

3
0
2
4
8

3
0
7
5
2

3
1
2
5
6

3
1
7
6
0

3
2
2
6
4

3
2
7
6
8

2,000

4,000

6,000

8,000

Chunk size [bytes]

N
u

m
be

r
o
f

ch
u

n
ks Unique chunks

Duplicate chunks

Figure 4.7: Deduplication histogram of the linux-kernels dataset, chunks sizes 512 B
– 32 KB.

Histograms for aritifical dataset dual and random are depicted in Figure 4.8. In case
of the dual dataset, the deduplication layer completely removes all but three duplicate
chunks – chunks on the borderline of the two files, since the dataset was fed to ICBCS
in a single tar file. In case the of random dataset, no duplicate chunks were found.

Examples of the distribution of chunk sizes can be seen from both Figures 4.7 and 4.8.
The overall deduplication ratio scales mainly with two parameters: average chunks

size and chunk size spread.
With increasing average chunk size, less exact duplicates are found. This does not

necessarily have to have a negative impact on the overall compression ratio. Dedu-
plication, however is, faster than compression, so maximal deduplication is desirable.

69

4. Evaluation

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

5
7
6

6
4
0

7
0
4

7
6
8

8
3
2

8
9
6

9
6
0

1
0
2
4

100

200

300

dual, Chunk size [bytes]

N
u

m
be

r
o
f

ch
u

n
ks

Uniq.
Dup.

1
0
2
4

2
0
4
8

3
0
7
2

4
0
9
6

5
1
2
0

6
1
4
4

7
1
6
8

8
1
9
2

9
2
1
6

1
0
2
4
0

1
1
2
6
4

1
2
2
8
8

1
3
3
1
2

1
4
3
3
6

1
5
3
6
0

1
6
3
8
4

200

400

600

random, Chunk size [bytes]

Uniq.
Dup.

Figure 4.8: Deduplication histogram of the dual and random datasets. Chunk size range
for the former one is 64 B – 1 kB, for the latter one 1 KB – 16 KB.

Figure 4.9 shows the decreasing deduplication ratio with increasing chunk size. The
effect of chunk spread is rather insignificant, as long as there is at least any. No size
spread means all the blocks are of the same size and the deduplication layer suffers from
the same problems as standard fixed block deduplication. See Section 3.3 for details.

Dedup.

ratio

3
2
B

6
4
B

1
2
8
B

2
5
6
B

5
1
2
B

1
K
B

2
K
B

4
K
B

8
K
B

1
6
K
B

3
2
K
B

6
4
K
B

1
2
8
K
B

2
5
6
K
B

5
1
2
K
B

1
M

B

� 0 �
� 1 �
� 2 �
� 3 �
� 4 �
� 5 �

Average chunk size

C
h
u

n
k

sp
re

a
d

0

0.2

0.4

0.6

Figure 4.9: Deduplication ratio on em dataset. The x axis displays the average chunk
size and the y axis displays the chunk spread parameter as given to the ICBCS (left and
right shift on the average size by the given number of positions)

The chunk size also significantly impacts the overall execution time. Unfortunately
the trend is opposite to that of a good deduplication ratio. Figure 4.10 depicts this
relation. The optimal execution time values are achieved in the range of 2 KB – 8 KB
average chunk size and chunk spread of 1 – 2. This is thereby used as a reference setup
for ICBCS. Also note that the execution time increases with higher chunks sizes. This
is due to the reduced effectiveness of explicit deduplication further described in the next
Section 4.4.1.

70

4.4. Rabin Chunkizer and Deduplication

Total

time

3
2
B

6
4
B

1
2
8
B

2
5
6
B

5
1
2
B

1
K
B

2
K
B

4
K
B

8
K
B

1
6
K
B

3
2
K
B

6
4
K
B

1
2
8
K
B

2
5
6
K
B

5
1
2
K
B

1
M

B

� 0 �
� 1 �
� 2 �
� 3 �
� 4 �
� 5 �

Average chunk size

C
h
u

n
k

sp
re

a
d

2

3

4

5

Figure 4.10: Total execution time on em dataset. The x axis displays average chunk size
and the y axis displays chunk spread parameter as given to the ICBCS (left and right
shift on the average size by the given number of positions). Note the increased time even
for larger chunks – this is due to ineffective deduplication in those ranges.

4.4.1 Non-Explicit Deduplication

The term of explicit deduplication refers to deduplication performed by the deduplica-
tion layer (Section 3.3) and the term implicit deduplication refers to the fact that two
matching chunks will be with assigned into the same compression group and compressed
together resulting in almost-deduplication within the abilities of the compressor.

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

0

0.2

0.4

0.6

0.8

1

C
o
m

p
re

ss
io

n
ra

ti
o

Deduplication No dedup.

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns
10−1

100

101

102

T
o
ta

l
ti

m
e

[s
]

Deduplication No dedup.

Figure 4.11: Explicite deduplication

Figure 4.11 shows the comparison of explicit and implicit deduplication on all the
datasets. Implicit deduplication results in only a slightly better compression ratio. The
absorption of the duplicate by the compressor is almost negligible compared to explicit
deduplication. The major difference is the execution time. Chunks that would otherwise
be removed during the early process of deduplication instead proceed further to the
clustering process, which is costly compared to deduplication.

71

4. Evaluation

When using NCD, the implicit duplicates all have 0 distance among each other. This
effectively paralyzes the clustering process, since it converges to an optimal clustering,
although if some of the 0 distance pairs compress together better than others.

Another drawback of the implicit clustering is a possible cluster group overflow,
resulting in another compression group with the same data.

4.5 Simhash vs. NCD

This section briefly compares the simhash distance based clustering with the NCD dis-
tance based based clustering. The NCD is forced to use the top-down clustering technique
described in Section 3.6.1 for its represenative variants.

Full NCD clustering is considered the oracle for compression by clustering. It achieves
better compression ratio than Simhash in almost any scenario. There is no better cur-
rently known distance than the NCD that describes the inter-compression efficiency of
two strings. This comes at the price of non-existent distance to space transition for NCD
and thus renders the need for excessive distance calculations (up to quadratic).

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

0

0.2

0.4

0.6

0.8

1

C
o
m

p
re

ss
io

n
ra

ti
o Simhash

NCD
(16 repr.)

NCD
(4 repr.)

NCD

Figure 4.12: Compression ratio comparison among Simhash, NCD (4 representatives),
NCD (16 representatives) and NCD (full) clusterings. No explicit deduplication. Some
measurements with high total time were omitted. See Figure 4.13 for execution time.

Figures 4.12 and 4.13 show the 2 different clustering approaches – using simhash
distance and NCD. The latter is displayed in 3 variants – using top-down clustering
with 4 representatives or 16 representatives as a distance reference points, and the full
NCD (top-down and bottom-up approach is irrelevant in this case in regards of the
compression ratio).

The first Figure 4.12 clearly shows that full NCD is always the same or better than any
other approach, which is an expected result. However, the representative alternatives of
NCD tend to fail to compress very redundant data, especially those with many duplicates.
The best clustering is achieved by min-wise pairing of similar clusters together. But
because of its top down approach, representative NCD fails to recognize such pairs and
without explicit deduplication falls terribly short compared to its competitors.

The execution time comparison is depicted in Figure 4.13. All of the NCD algorithms
take much longer to cluster the dataset. Note that even for NCD clusterings with limited
number of representatives, the time is almost 10 times higher. For complete NCD, the
overall complexity is quadratic. NCD was not optimized as thoroughly as simhash,

72

4.6. Clustering Quality

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

10−1

101

T
o
ta

l
ti

m
e

[s
]

Simhash

NCD
(16 repr.)

NCD
(4 repr.)

NCD

Figure 4.13: Total time comparison among Simhash, NCD (4 representatives), NCD (16
representatives) and NCD (full) clusterings. Some measurements with high total time
were omitted. See Figure 4.12 for compression ratio.

Simhash

dataset Comp. ratio Total time

small.tar 0.1157 0

calgary.tar 0.3463 0.33

canterbury.tar 0.2717 0.26

dual.tar 0.485 0.15

dual-calgary.tar 0.1854 0.54

random2.dat 1.0003 0.19

prague.tar 0.6451 6.36

em.tar 0.0328 1.37

reqview.tar 0.4665 1.7

athens.tar 0.9738 13.92

random.dat 1.0003 6.52

linux-kernels.tar 0.1076 121.51

NCD (4 representatives)

Comp. ratio Total time

0.1153 1 · 10−2

0.3352 2.84

0.2668 1.5

0.9549 1.13

0.3347 4.68

1.0003 1.22

0.6308 37.66

0.0722 5.27

0.7023 11.26

0.9741 97.17

1.0003 42.87

NaN NaN

Table 4.4: Comparison of Simhash clustering and NCD clustering with 4 representatives.
No deduplication.

however the theoretical time complexity would have been the sole denying factor for
successful incremental and real-time environment.

A comparison of simhash and NCD with 4 representatives is summarized in Table 4.4.
NCD with more representatives or with full scanning are much slower. The NCD with
4 representatives achieves only a slightly better compression ratio for datasets with very
variable data, but as was previously mentioned, fails to cluster similar pairs in dual data
– this is due to top-down clustering.

4.6 Clustering Quality

The overall quality of the clustering can be characterized with several properties. Some
of these properties reflect directly into the final compression ratio, some of those may

73

4. Evaluation

affect the execution time, and some are profitable in the archiver scenario. Following is
the list of variables we are concerned about:

Compression ratio is the obvious choice. Perfect clustering always has the minimal
distance sets of chunks clustered together, resulting in an optimal compression
ratio given a compression group size.

Total time is the time needed for data deduplication, clustering and compression. The
time for clustering also affects the compression time, this is why these are not
distinguished. Deduplication is turned off in these tests.

Clustering disbalance measures how many clusters do not satisfy the distance-between
inequality, see Section 3.6.3. Higher rate results in gradual degeneration of the
clustering, however only minor such relation was detected in any of the tests.

Average chunk depth affects both the speed of clustering and the final compression
ratio, because the chunks are likely to be clustered into groups of more balanced
sizes and distances. Note that this is somewhat mitigated by the compression
group upmerging described in Section 3.7.2

compression groups directly affects the compression ratio. It also has an effect on
archival capabilities.

All the tests in this section were run with disabled upmerging and small compression
group sizes of 4-8 chunks. Note that this also successfully demonstrates how small groups
are actually necessary for an efficient compression.

4.6.1 Balancing

The balancing refers to a technique of gradual improvement of the clustering during new
chunk insertion. It is described in Section 3.6.3

The total time is affected by the depth of the clustering, since it has to go through
the entire tree and update the nodes along the path to the root. However, it take much
longer to balance the clustering tree properly than to add a little bit of computation
during every chunk addition.

The clustering disbalance is increasing with more balancing operations, however the
system does not degenerate at all. This is caused by the naive metric of the clustering
disbalance, which only counts the number of disbalanced nodes, but not the scale of such
disbalance. This means that the overall scaled (weighted) disbalance of the clustering is
much lover, but the amount of disbalanced clusters is higher when balancing is used.

All these attributes together with number of compression groups for the prague

dataset are summarized in Table 4.5.

The average depth of all chunks in the clustering is significantly decreased by clus-
tering balancing. Even a single pass of of the balancing algorithm is sufficient for a large
reduction in the average depth. This is displayed in Figure 4.14.

The most desired attribute – compression ratio, however, does not increase signifi-
cantly with better balancing. It does never get worse for better and deeper balancing
used (except for random data). This relation is shown in Figure 4.15.

74

4.6. Clustering Quality

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em
0

20

40

60

80

100

A
ve

ra
ge

d
ep

th
o
f

a
ch

u
n

k

No balancing

Single

Tolerance 100

Tolerance 10

Tolerance 1

Tolerance 0.1

Figure 4.14: Effect of clustering balancing on the average depth of a chunk in the clus-
tering. No upmerging, compression group span 4–8.

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em
0

0.2

0.4

0.6

0.8

1

C
o
m

p
re

ss
io

n
ra

ti
o No balancing

Single

Tolerance 100

Tolerance 10

Tolerance 1

Tolerance 0.1

Figure 4.15: Effect of clustering balancing on the overall compression ratio. No upmerg-
ing, compression group span 4–8.

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em
10−1

100

101

102

T
o
ta

l
ti

m
e

[s
]

No balancing

Single

Tolerance 100

Tolerance 10

Tolerance 1

Tolerance 0.1

Figure 4.16: Effect of clustering balancing on the total execution time. No upmerging,
compression group span 4–8.

75

4. Evaluation

Balancing C.Ratio #C.Groups Disbalance Avg.Depth Total Time

No balancing 0.6157 3 864 2 750 148.41 13.67

Single 0.6119 2 594 2 453 74.21 12.81

Tolerance 100 0.6064 2 186 2 667 64.29 14.92

Tolerance 10 0.6044 1 779 2 906 49.41 20.33

Tolerance 1 0.6015 1 687 3 124 44.48 108.9

Table 4.5: Summary of balancing test on the prague dataset. No upmerging, compres-
sion group span 4–8.

Figure 4.16 shows the time consumption of different balancing levels. There is an
overall increasing tendency for better balancing levels (lower tolerance of cluster dis-
balance). There are, however several exceptions. The time of clustering for the single
balancing version is a little faster the one for single balancing. This is caused by a sim-
ple fact that even a single balancing decreases the average depth of the clustering tree
significantly. Subsequent additions of new chunks then have to go shorter way to the top
of the tree and perform less distance comparisons and balancing operations. The same
effect can be seen in a tiny scale between balancing with tolerance of 100 vs. 10.

The oscillating compression ratio between no balancing, single balancing and bal-
ancing with a tolerance of 100 are causes by the fixed tolerance value. Sometimes the
balancing does not trigger at all.

The overall conclusion in the balancing problem is to use single balancing that results
in both better compression rate and execution times for most of the datasets.

4.6.2 Deep Balancing and Representatives

Another extended distance measure was tested – the deep distance and deep represen-
tative distance for simhashes. For description of these, please see Section 3.6.6.

Since extensive balancing described in the previous Section 4.6.1 had only a limited
success, it is unlikely its extensions will perform significantly better.

The standard shallow simhash was tested against the deep simhash. The deep
simhash can be parameterized by the maximal depth in which it will search for child
clusters. This of course degenerates to full SLINK in case of an inifite depth. The
improvement to compression ratio with deep simhash and single balancing was almost
negligible; it was less than 1% in every case. However the computation time was sig-
nificantly higher (up to two times) for all the measured datasets. See Figure 4.17 for
details.

Another variant of simhash distance called the deep-repr was also tested, but with
even lesser gains in the compression ratio and higher costs in the computational time.

4.7 Metadata and Archivedata Overhead

This section attempts to show the relationship between input size to size of produced
metadata and archivedata. For more information about those, please see Sections 3.8

76

4.8. Compression Parameters

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

0

0.2

0.4

0.6

0.8

1
C

o
m

p
re

ss
io

n
ra

ti
o

Simhash Deep simhash (2)

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

100

101

102

T
o
ta

l
ti

m
e

[s
]

Simhash Deep simhash (2)

Figure 4.17: Deep simhash vs. shallow simhash distance and balancing. Deep simhash
goes up to the depth of 2, meaning it compares at most 4 to 4 child simhashes. Single
balancing, no upmerging, compression group span 4–8.

and 3.9.

In short, metadata contains all the information needed for successfull retrieval or
decompression of a single file. If the ICBCS is used as a compressor, metadata is all
that needs to be saved with the compressed data. The size of metada is strictly linear
with the size of the input and number of chunks. All the possible optimizations of the
metadata format are out of the scope of this thesis. A higher deduplication ratio may
only have better constant in the memory complexity, based on the format used.

Archivedata saves the entire model including all chunk simhashes and the clustering.
A basic implementation of the archivedata was used for the measurements to get a general
idea about the size of the archivedata.

Metadata format used for these measurements was a simple ordered list of offsets
(position in the original data) of chunks and duplicates, compressed with the same
compressor as the data itself. In case of the reference setup, the amount of metadata
accounts for less than 0.1% of the original size. For detailed comparison of several
simhash widths and average chunk sizes, see Table 4.6.

Archivedata is linear with total size of unique chunks × simhash width. Explicit
deduplication thus has an effect on archivedata size. The reference solution uses simple
linearization of the clustering with simhashes attached in an ordered list. The represen-
tation of archivedata should be subject to further optimizations.

A detailed comparison of metadata and archivedata sizes for all the datasets can be
seen in Figure 4.18.

4.8 Compression Parameters

A compressor is specific and one of the most characterizing parameters of ICBCS. It
is used to compress all the compression groups of chunks. The main concerns of com-
pression parametrization are the algorithms used (Section 4.8.1), compression level of

77

4. Evaluation

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

26
28

210
212
214
216
218
220
222

Simhash width: 32
Avg. chunk size: 4 KB

Metadata Archivedata

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

22
24
26
28

210
212
214
216
218
220
222
224

S
iz

e
[B

]

Simhash width: 64
Avg. chunk size: 1 KB

Metadata Archivedata

Figure 4.18: Metadata and Archivedata

Simhash
width

Avg.
chunk
size

Metadata
[B]

Archivedata
[B]

Comp.
ratio w\o
any data

Comp.
ratio w\
metadata

Comp.
ratio w\

metarchive
data

4 12 50 852 3 · 105 0.6639 0.6647 0.6675

8 12 50 860 3 · 105 0.6563 0.6571 0.6607

16 12 50 908 4 · 105 0.6493 0.6501 0.6553

32 8 8 · 105 9 · 106 0.6737 0.6851 0.8098

32 10 2 · 105 3 · 106 0.6586 0.6617 0.6963

32 12 50 892 6 · 105 0.6455 0.6462 0.6548

32 12 50 892 6 · 105 0.6455 0.6462 0.6548

32 14 11 428 1 · 105 0.6326 0.6328 0.6347

32 16 2 972 37 588 0.6287 0.6287 0.6292

64 12 50 956 1 · 106 0.6426 0.6434 0.6586

Table 4.6: Impact of simhash width and chunk size on metadata, archivedata and the
respective compression ratios on the prague corpus.

78

4.8. Compression Parameters

the corresponding level, where applicable (Section 4.8.1.1) and compression group size
(Section 4.8.2). There is a technique described in Section 3.7.2 called compression group
upmerging, that further optimizes the grouping into compression groups (Section 3.7.2).

4.8.1 Compression Algorithms Comparison

Two algorithms implemented in ICBCS are the bzip2 and deflate. Deflate made it into
the reference setup due to its much faster speed and small loss in compression ratio.

ExCom [45] integration is one of the possible solutions to significantly increase the
amount of available compressors.

Most of the tests especially in the following section split the measurement into bzip2
and deflate categories. See Figures 4.19, 4.23, 4.24 and Table 4.7 for respective details.

4.8.1.1 Compression Levels (Comparison to Solid and Non-Solid
Compression)

1 2 3 4 5 6 7 8 9

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1

2.41
2.71

·10−2

Deflate compression level

C
o
m

p
re

ss
io

n
ra

ti
o

re
la

ti
ve

to
th

a
t

o
f

co
m

p
.

le
ve

l
9

1 2 3 4 5 6 7 8 9

0
0.15
0.3

0.45
0.6

0.75
0.9

1.05
1.2

1.35
1.5
·10−2

Bzip2 compression level

small

calgary

canterbury

dual

calgary

random2
prague
em

reqview

athens

random

linux

Figure 4.19: Deflate and Bzip2 compression level effect on compression ratio.

The compression level parameter is passed directly to the underlying compressor. The
compression ratio gain above compression level 5 for bzip2 and 6 for deflate increases
by only a small amount. The problem of compression level plays only a significant
role for smaller compression group sizes, where it may cause the added advantage of a
higher compression level of the compressor to be wasted due to small data amount in
the compression group. Figure 4.19 shows the relative compression levels compared to
compression level 9.

4.8.2 Compression Groups

The compression group is a subset of chunks that are compressed together. The similarity
among all the chunks in the compression group has to be as low as possible. What is often
overlooked is the fact that ordering the the compression group plays a very significant
role. It is necessary to keep very similar chunks as close to each other in the group as
possible. This is especially important for deflate compressor.

79

4. Evaluation

4.8.2.1 Group Sizes

The size of a compression group plays one of the most significant roles in the final
compression output.

On the other hand, the group size also plays a huge role in the archival properties.
Larger groups may cause a significant need for decompression and subsequent recom-
pression of too large data (the entire group). In case of variable data, this may affect
number of chunks proportional to the number of chunks in newly added data, but in
case of uniform data, single large compression group may be created for those – this is
however not important, since the overhead here is the number of unnecessarily uncom-
pressed chunks, and that can only be mitigated by large number of small compression
groups.

21 22 23 24 25 26 27 28 29 210 211

0
0.1
0.2
0.3
0.4
0.5
0.6

0.71
0.81
0.91

·10−2

Compression group size [B]

C
o
m

p
re

ss
io

n
ra

ti
o

re
la

ti
ve

to
th

a
t

o
f

21
2

small calgary
canterbury dual
calgary random2
prague em
reqview athens
random linux

Figure 4.20: Compression group size effect on final compression ratio. No umperging.

Figure 4.20 shows the effect of compression group size to compression ratio. Starting
with the size of 64 (this actually refers to the range 64 – 128 chunks) per compression
group, the compression ratio gain starts to fade. That is why 64 was chosen as reference
setup for ICBCS.

Proper balancing also has an effect on reducing the number of compression groups.
See Section 4.6.1 for details.

4.8.2.2 Compression Groups Upmerging

The compression group upmerging (see Section 3.7.2) artificially adds chunks or small
compression groups to the nearest larger compression groups until the capacity is filled.
This results in higher compression ratios for no significant additional computational time
expense, however the archival properties are reduced with this technique. See Figure 4.21
for details.

4.9 Memory Requirements

The preliminary testing implementation of ICBCS was only optimized for time in many
aspects. Memory requirements were not optimized in any way. A large, constant portion
of data was held in memory during the entire run. Also all the simhash data were
redundantly saved in both the clustering and KD trees.

80

4.10. Performance Summary

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

0

0.2

0.4

0.6

0.8

1
C

o
m

p
re

ss
io

n
ra

ti
o

No upmerging Upmerging

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

100

101

102

103

104

#
co

m
p
re

ss
io

n
gr

o
u

p
s

No upmerging Upmerging

Figure 4.21: Upmerging effect on compression ratio and number of compression group.
Bzip2 compressor, size of compression group: 8.

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

21
22
23
24
25
26
27
28

M
em

o
ry

u
sa

ge
[M

B
]

Simhash
width: 8

Simhash
width: 16

Simhash
width: 32

Simhash
width: 64

Figure 4.22: Memory usage of ICBCS.

The sole purpose of this section is to show the impact on memory consumption for
different simhash widths and different input sizes. See Figure 4.22 for details. The
memory consumption indeed is linear with the size of the input with a small amount
of constant memory. The constant of the linear factor could be significantly minimized
with memory usage optimizations.

4.10 Performance Summary

The overall performance of ICBCS is compared to standard Bzip2 and Deflate compres-
sors, since ICBCS can be seen as an improvement of the previously mentioned compres-
sors with additional archival properties.

ICBCS was not compared to deduplication systems, because the idea of ICBCS is
not just to deduplicate, but the ICBCS merely uses deduplication to make the process of
redundancy removal faster and more effective (Section 3.3. Other deduplication systems

81

4. Evaluation

only use compression on single blocks or on sets of very similar blocks (standard binary
simhash, see survey in Section 2.6.6).

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

0

0.2

0.4

0.6

0.8

1

C
o
m

p
re

ss
io

ra
ti

o Deflate
(solid)

Bzip2
(solid)

ICBCS
(deflate)

ICBCS
(bzip2)

Figure 4.23: Comparison of compression ratio among ICBCS, deflate and bzip2.

The compression ratio of ICBCS is much better in every case of duplicate or re-
dundant data. The datasets dual, dual-calgary, em, reqview and linux-kernels all
exhibit much better compression than if Bzip2 or Delfate were used for a solid compres-
sion.

On the other hand, variable datasets as calgary, canterbury and prague all exhibit
only slightly worse compression ratio. This is due to the split of the compression into
multiple compression groups. This of course allows the ICBCS to work as an archival
system. It is actually interesting to see that even by splitting the data into tens or
hundreds of separate compression groups, the compression ratio can be almost entirely
preserved.

Artificial datasets as random2, random and an image heavy dataset athens all show
no to minimal improvements.

The small dataset successfully demonstrates that smart reordering of the contents
can also achieve better compression ratios.

The compression ratio over all these datasets is depicted in Figure 4.23. More at-
tributes such as compression ratio with metadata and archivedata, number of compres-
sion groups and total time are summarized in Table 4.7 for all the datasets and the
reference setup.

sm
al
l

ca
lg
ar

y

ca
nt

er
bu

ry
du

al

du
al
-c
al
ga

ry

ra
nd

om
2

pr
ag

ue em

re
qv

ie
w

at
he

ns

ra
nd

om

lin
ux

-k
er

ne
ls

10−1

100

101

102

T
o
ta

l
ti

m
e

[s
]

Deflate
(solid)

Bzip2
(solid)

ICBCS
(deflate)

ICBCS
(bzip2)

Figure 4.24: Comparison of total time among ICBCS, deflate and bzip2.

82

4.10. Performance Summary

Dataset

Compression
ratio

(metadata)

Compression
ratio

(metarchive)

compression
groups

Total
time

small 0.1084 0.1132 1.00 0.00

calgary 0.3428 0.3512 7.00 0.30

canterbury 0.2717 0.2796 7.00 0.23

dual 0.4768 0.4813 3.00 0.09

dual-calgary 0.1714 0.1756 7.00 0.34

random2 1.0011 1.0094 6.00 0.17

prague 0.6422 0.6507 143.00 5.56

em 0.0286 0.0322 23.00 1.11

reqview 0.4575 0.4629 28.00 1.29

athens 0.9746 0.9829 318.00 12.65

random 1.0011 1.0090 151.00 5.87

linux-kernels 0.1009 0.1073 2 535.00 78.65

Table 4.7: Summary of ICBCS performance on all datasets.

The overall CPU time of ICBCS is always higher by a multiplicative constant of 3–4
× log of the input size. In every case, the deduplication and clustering processes are the
only parts ∈ O(n · log(n)), the chunking and compression process is ∈ O(n) with the size
of the input.

Note that the comparison was done against solid compressions. A significant part of
current archivers and systems using compression relies on so called non-solid compression,
where the files are compressed separately and then put into an archive. Our experiments
show that for sufficiently large individual files, non-solid compression achieves the same
compression characteristics as solid compression. Conversely, in cases where the file con-
tents vary a lot, non-solid compression achieves better characteristics, due to separation
of compression contexts that are likely to collide in solid compression. For small individ-
ual files or similar files, solid compression achieves better characteristics due to effective
redundancy removal among separate files.

For the purpose of demonstrating ICBCS qualities, non-solid compression was deemed
unnecessary and redundant.

83

Chapter 5

Conclusion

In the thesis, we went through a process of designing a novel system using a combination
of techniques that have never been used together in our problem area. The overall
abundance of resources especially on unsupervised learning algorithms, e.g. clustering,
would have forked the design into too many branches, of which we could not theoretically
evaluate efficiency for our problem. Chosen techniques are thus are not in the cutting
edge in their respective areas. Instead, well understandable and scalable techniques were
used, giving out system a proof-of-concept status.

Extensive research on state of the art of current deduplication and compression sys-
tems was made in order to understand the core ideas these systems are built on. The
major technique present in all quality deduplication systems is the Rabin fingerprinting,
where files are split into chunks of variable size based on the content, instead of fixed
size blocks. Other important techniques were related to near identical or very similar
chunk recognition. These techniques include the similarity hash, minhash and locality
sensitive hashing. The similarity hash was extended in this work to increase the scope
of similarity recognition.

Further in the work a deduplication, compression and archival system called ICBCS
is introduced. The system’s design tries to overcome the shortcomings of current dedu-
plication and compression systems by extending the redundancy removal scope to thor-
oughly selected clusters – sets of chunks of input files. The system assumes roles of both
a compressor and a file archiver. Modular architecture allows the systems to be further
adapted to various scenarios and extended easily, as well as parameterized with many
different compressors, distance measures, clustering algorithms, etc.

Through extensive parameterization a reference setup of ICBCS was established and
subsequently tested. This reference setup is based solely on a proof-of-concept implemen-
tation. With tens of proposed improvements that didn’t make it into the implementation,
it is safe to say the system can be improved in multiple areas.

Last, it was demonstrated through experiments that ICBCS has little problems over-
coming the drawbacks of standard compressors and deduplication and compression sys-
tems, especially of wide-range redundancy removal, however at a slight increase of com-
putation resources. For some extreme parameter values, this increase of resources shifts
from slight to significant.

The overall time overhead induced by the system was much smaller than that of high
precision compressors, while providing much better compression ratios. Typical examples
of this is the 1.5 GB Linux kernels dataset, where there are three Linux kernel sources

85

5. Conclusion

of different version, yielding moderately redundant data. On this (and similar dataset),
using our system ICBCS with a fast and weak compressor such as Deflate (LZ77), will
result in both more than twice faster compression and almost half the compression ratio
than a simply applied strong compressor Bzip2 (BWT). On very variable datasets with
minimal interfile redundancy, the compression is split into artificial groups, only slightly
increasing the overall compression ratio.

Apart from these positive properties, where ICBCS was used as a straightforward
compressor, the system can also be used as an archival system, where files are added,
edited or deleted from the archive. ICBCS’ design lays down a basis for the extension
to an archival system, but the proof-of-concept implementation doesn’t include such
functionality. Combining properties of both a compressor and an archiver, the ICBCS
creates an original deduplication, compression and archival system.

The system can be deployed in real world scenarios alongside other compression
systems, either simple compressors, archival or deduplication systems. For this, more
effort has to be invested into bringing the system up to the tier of its competitors.

5.1 Future Work

Most of the effort for future improvements of ICBCS should be invested into improving
the systems functionality, completing and fine-tuning the current ideas, etc. reaching
the tier of other similar systems available nowadays.

One of such extensions lies in file type recognition. Such recognition could either
be explicit or implicit implied by the clustering and predetermined prototypes of image
data, text data, audio, video, etc. Different file types would then be handled differently
in terms of clustering, grouping and compression.

The functionality could be further extended to more space in the deduplication and
compression space described in Section 2.1, e.g. as an online service, adding more com-
pressors, or using a hardware acceleration.

The extension by additional compressors could be easily achieved with integration of
the ExCom [45].

Effective parallelization of ICBCS is another broad topic. Multiple chunks could
be processed at the same time, but it risks missing the similarities between files in the
current batch.

86

Bibliography

[1] Arvind Agarwal, Jeff M Phillips, Hal Daumé III, and Suresh Venkatasubramanian.
Incremental multi-dimensional scaling.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, January
2008.

[3] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics:
Ordering points to identify the clustering structure. In ACM SIGMOD Record,
volume 28, pages 49–60. ACM, 1999.

[4] Ross Arnold and Tim Bell. A corpus for the evaluation of lossless compression
algorithms. In Data Compression Conference, 1997. DCC’97. Proceedings, pages
201–210. IEEE, 1997.

[5] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bitner, Michael Hirsch, and
Shmuel T. Klein. The design of a similarity based deduplication system. In Proceed-
ings of SYSTOR 2009: The Israeli Experimental Systems Conference, SYSTOR
’09, pages 6:1–6:14, New York, NY, USA, 2009. ACM.

[6] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine
Learning, 56(1-3):89–113, 2004.

[7] Tim Bell. Canterbury corpus. http://corpus.canterbury.ac.nz/descriptions/
#calgary, 1990.

[8] D. Bhagwat, K. Eshghi, D. D E Long, and M. Lillibridge. Extreme binning:
Scalable, parallel deduplication for chunk-based file backup. In Modeling, Analysis
Simulation of Computer and Telecommunication Systems, 2009. MASCOTS ’09.
IEEE International Symposium on, pages 1–9, Sept 2009.

[9] Jeramiah Bowling. Opendedup: open-source deduplication put to the test. Linux
Journal, 2013(228):2, 2013.

[10] AndreiZ. Broder. Identifying and filtering near-duplicate documents. In Combina-
torial Pattern Matching, volume 1848 of Lecture Notes in Computer Science, pages
1–10. Springer Berlin Heidelberg, 2000.

87

http://corpus.canterbury.ac.nz/descriptions/#calgary
http://corpus.canterbury.ac.nz/descriptions/#calgary

Bibliography

[11] A.Z. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences 1997. Proceedings, pages 21–29, Jun 1997.

[12] Leonid A. Broukhis. The calgary corpus compression & sha-1 crack challenge.
http://mailcom.com/challenge/, May 1996.

[13] Roelof K Brouwer. Extending the rand, adjusted rand and jaccard indices to fuzzy
partitions. Journal of Intelligent Information Systems, 32(3):213–235, 2009.

[14] Michael Burrows and David J Wheeler. A block-sorting lossless data compression
algorithm. 1994.

[15] Ludwig M. Busse, Peter Orbanz, and Joachim M. Buhmann. Cluster analysis of
heterogeneous rank data. In Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, pages 113–120, New York, NY, USA, 2007. ACM.

[16] Adam Cannane and Hugh E. Williams. General-purpose compression for efficient
retrieval. J. Am. Soc. Inf. Sci. Technol., 52(5):430–437, March 2001.

[17] Adam Cannane and Hugh E. Williams. A general-purpose compression scheme for
large collections. ACM Trans. Inf. Syst., 20(3):329–355, July 2002.

[18] William B Cavnar, John M Trenkle, et al. N-gram-based text categorization. Ann
Arbor MI, 48113(2):161–175, 1994.

[19] Daniele Cerra and Mihai Datcu. A model conditioned data compression based
similarity measure. In Data Compression Conference, 2008. DCC 2008, pages
509–509. IEEE, 2008.

[20] Daniele Cerra and Mihai Datcu. A fast compression-based similarity measure with
applications to content-based image retrieval. Journal of Visual Communication
and Image Representation, 23(2):293–302, 2012.

[21] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremen-
tal clustering and dynamic information retrieval. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 626–635. ACM, 1997.

[22] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 380–388. ACM, 2002.

[23] Rudi Cilibrasi and Paul MB Vitányi. Clustering by compression. Information
Theory, IEEE Transactions on, 51(4):1523–1545, 2005.

[24] John G Cleary and Ian Witten. Data compression using adaptive coding and
partial string matching. Communications, IEEE Transactions on, 32(4):396–402,
1984.

[25] Jonathan D. Cohen. Recursive hashing functions for n-grams. ACM Trans. Inf.
Syst., 15(3):291–320, July 1997.

88

http://mailcom.com/challenge/

Bibliography

[26] Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin.
Communication complexity of document exchange. In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, pages 197–206. Society for
Industrial and Applied Mathematics, 2000.

[27] Trevor F Cox and Michael AA Cox. Multidimensional scaling. CRC Press, 2000.

[28] Owen Kaser Daniel Lemire. Rolling hash c++ library. http://code.google.com/
p/ngramhashing/, Oct 2010.

[29] Biplob Debnath, Sudipta Sengupta, and Jin Li. Chunkstash: Speeding up inline
storage deduplication using flash memory. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, USENIXATC’10, pages 16–
16, Berkeley, CA, USA, 2010. USENIX Association.

[30] Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm on
distributed memory multiprocessors. In Revised Papers from Large-Scale Parallel
Data Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD, pages
245–260, London, UK, UK, 2000. Springer-Verlag.

[31] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In KDD,
volume 96, pages 226–231, 1996.

[32] Douglas H Fisher. Knowledge acquisition via incremental conceptual clustering.
Machine learning, 2(2):139–172, 1987.

[33] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data
points. science, 315(5814):972–976, 2007.

[34] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining
data streams: A review. SIGMOD Rec., 34(2):18–26, June 2005.

[35] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[36] Google. Google ngram viewer. http://books.google.com/ngrams/datasets,
2012.

[37] Michael J Greenacre. Theory and applications of correspondence analysis. 1984.

[38] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering
data streams. In Foundations of computer science, 2000. proceedings. 41st annual
symposium on, pages 359–366. IEEE, 2000.

[39] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient clustering
algorithm for large databases. SIGMOD Rec., 27(2):73–84, June 1998.

[40] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[41] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of Data Mining.
MIT Press, Cambridge, MA, USA, 2001.

89

http://code.google.com/p/ngramhashing/
http://code.google.com/p/ngramhashing/
http://books.google.com/ngrams/datasets

Bibliography

[42] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory
of Computing, STOC ’04, pages 291–300, New York, NY, USA, 2004. ACM.

[43] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning. Springer Series in Statistics. Springer New York Inc., New York,
NY, USA, 2001.

[44] Monika Henzinger. Finding near-duplicate web pages: a large-scale evaluation of
algorithms. In Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 284–291. ACM, 2006.

[45] Jan Holub, Jakub Řezńıcek, and Filip Šimek. Lossless data compression testbed:
Excom and prague corpus. In Data Compression Conference (DCC), 2011, pages
457–457. IEEE, 2011.

[46] David A Huffman et al. A method for the construction of minimum redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[47] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards re-
moving the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613. ACM, 1998.

[48] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett.,
31(8):651–666, June 2010.

[49] Matt Mahoney Jim Bowery and Marcus Hutter. Hutter challenge. http:

//prize.hutter1.net/, March 2006.

[50] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[51] Hisashi Koga, Tetsuo Ishibashi, and Toshinori Watanabe. Fast agglomerative hi-
erarchical clustering algorithm using locality-sensitive hashing. Knowledge and
Information Systems, 12(1):25–53, 2007.

[52] Con Kolivas. e3compr - ext3 compression. http://e3compr.sourceforge.net/,
March 2008.

[53] Con Kolivas. Long range zip algorithm. http://ck.kolivas.org/apps/lrzip/,
March 2011.

[54] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-dimensional
data: A survey on subspace clustering, pattern-based clustering, and correlation
clustering. ACM Transactions on Knowledge Discovery from Data (TKDD), 3(1):1,
2009.

[55] Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M. Tracey. Re-
dundancy elimination within large collections of files. In Proceedings of the An-
nual Conference on USENIX Annual Technical Conference, ATEC ’04, pages 5–5,
Berkeley, CA, USA, 2004. USENIX Association.

90

http://prize.hutter1.net/
http://prize.hutter1.net/
http://e3compr.sourceforge.net/
http://ck.kolivas.org/apps/lrzip/

Bibliography

[56] Tilman Lange, Martin H. C. Law, Anil K. Jain, and Joachim M. Buhmann. Learn-
ing with constrained and unlabelled data. In Proceedings of the 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition - Volume
01, CVPR ’05, pages 731–738, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[57] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACM Comput.
Surv., 19(3):261–296, September 1987.

[58] Ming Li, Xin Chen, Xin Li, Bin Ma, and P.M.B. Vitanyi. The similarity metric.
Information Theory, IEEE Transactions on, 50(12):3250–3264, Dec 2004.

[59] Ming Li and Paul M.B. Vitnyi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer Publishing Company, Incorporated, 3 edition, 2008.

[60] Ting Liu, Andrew W Moore, Alexander G Gray, and Ke Yang. An investigation
of practical approximate nearest neighbor algorithms. In NIPS, volume 5, pages
32–33, 2004.

[61] Jean loup Gailly and Mark Adler. zlib 1.28. http://www.zlib.net/, 2013.

[62] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proc. of the fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. University of California Press, 1967.

[63] Matt Mahoney. Large text compression benchmark. URL: http://www. mattma-
honey. net/text/text. html, 2009.

[64] Matt Mahoney. Data Compression Explained. 2013.

[65] Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttamchan-
dani. Demystifying data deduplication. In Proceedings of the ACM/IFIP/USENIX
Middleware ’08 Conference Companion, pages 12–17, New York, NY, USA, 2008.
ACM.

[66] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-
duplicates for web crawling. In Proceedings of the 16th international conference on
World Wide Web, pages 141–150. ACM, 2007.

[67] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to information retrieval, volume 1. Cambridge university press Cambridge, 2008.

[68] Mark McCartin-Lim, Andrew McGregor, and Rui Wang. Approximate principal
direction trees. 2012.

[69] Geoffrey J McLachlan and Kaye E Basford. Mixture models. inference and appli-
cations to clustering. Statistics: Textbooks and Monographs, New York: Dekker,
1988, 1, 1988.

[70] Chirag Mehta. Analyzing how people talk on twitter. http://ktype.net/wiki/
research:articles:progress 20110209, 2 2011.

91

http://www.zlib.net/
http://ktype.net/wiki/research:articles:progress_20110209
http://ktype.net/wiki/research:articles:progress_20110209

Bibliography

[71] Amar Mudrankit. A context aware block layer: The case for block layer dedupli-
cation. Master’s thesis, Stony Brook University.

[72] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with auto-
matic algorithm configuration. In In VISAPP International Conference on Com-
puter Vision Theory and Applications, pages 331–340, 2009.

[73] Marius Muja and David G Lowe. Fast approximate nearest neighbors with auto-
matic algorithm configuration. In VISAPP (1), pages 331–340, 2009.

[74] Marius Muja and David G Lowe. Flann, fast library for approximate nearest
neighbors. http://www.cs.ubc.ca/research/flann/, 2009.

[75] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth
network file system. SIGOPS Oper. Syst. Rev., 35(5):174–187, October 2001.

[76] Gonzalo Navarro. A guided tour to approximate string matching. ACM computing
surveys (CSUR), 33(1):31–88, 2001.

[77] Landon Curt Noll. Fowler/noll/vo (fnv) hash. Accessed Jan, 2012.

[78] Fujitsu Intel SUSE STRATO Oracle, Red Hat. Btrfs (b-tree file system). https:

//btrfs.wiki.kernel.org/index.php/Compression, 2007.

[79] Zan Ouyang, Nasir D. Memon, Torsten Suel, and Dimitre Trendafilov. Cluster-
based delta compression of a collection of files. In Proceedings of the 3rd Inter-
national Conference on Web Information Systems Engineering, WISE ’02, pages
257–268, Washington, DC, USA, 2002. IEEE Computer Society.

[80] Byung-Hoon Park and Hillol Kargupta. Distributed data mining: Algorithms,
systems, and applications. pages 341–358, 2002.

[81] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids
clustering. Expert Systems with Applications, 36(2):3336–3341, 2009.

[82] Dan Pelleg, Andrew W Moore, et al. X-means: Extending k-means with efficient
estimation of the number of clusters. In ICML, pages 727–734, 2000.

[83] Calicrates Policroniades and Ian Pratt. Alternatives for detecting redundancy in
storage systems data. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’04, pages 6–6, Berkeley, CA, USA, 2004. USENIX
Association.

[84] M. O. Rabin. Fingerprinting by random polynomials. IBM Research Report, 2003.

[85] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cam-
bridge University Press, 2012.

[86] Raimundo Real and Juan M Vargas. The probabilistic basis of jaccard’s index of
similarity. Systematic biology, pages 380–385, 1996.

[87] Jorma Rissanen and Glen G Langdon Jr. Arithmetic coding. IBM Journal of
research and development, 23(2):149–162, 1979.

92

http://www.cs.ubc.ca/research/flann/
https://btrfs.wiki.kernel.org/index.php/Compression
https://btrfs.wiki.kernel.org/index.php/Compression

Bibliography

[88] Vassil Roussev. Data fingerprinting with similarity digests. In Advances in Digital
Forensics VI, pages 207–226. Springer, 2010.

[89] Mark Ruijter. Lessfs. http://www.cs.ubc.ca/research/flann/, 2009.

[90] Nachiketa Sahoo, Jamie Callan, Ramayya Krishnan, George Duncan, and Rema
Padman. Incremental hierarchical clustering of text documents. In Proceedings
of the 15th ACM international conference on Information and knowledge manage-
ment, pages 357–366. ACM, 2006.

[91] Khalid Sayood. Introduction to data compression. Newnes, 2012.

[92] D Sculley and Carla E Brodley. Compression and machine learning: A new per-
spective on feature space vectors. In Data Compression Conference, 2006. DCC
2006. Proceedings, pages 332–341. IEEE, 2006.

[93] Julian Seward. bzip2 1.06. http://www.bzip.org/, 2010.

[94] Claude Elwood Shannon. A mathematical theory of communication. ACM SIG-
MOBILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[95] Philip Shilane, Grant Wallace, Mark Huang, and Windsor Hsu. Delta compressed
and deduplicated storage using stream-informed locality. In Proceedings of the 4th
USENIX Conference on Hot Topics in Storage and File Systems, HotStorage’12,
pages 10–10, Berkeley, CA, USA, 2012. USENIX Association.

[96] Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster
method. The Computer Journal, 16(1):30–34, 1973.

[97] Torsten Suel and Nasir Memon. Algorithms for delta compression and remote
file synchronization. In In Khalid Sayood, editor, Lossless Compression Handbook.
Academic Press, 2002.

[98] Milan Svoboda. Fusecompress. https://code.google.com/p/fusecompress/,
July 2008.

[99] Miklos Szeredi. Filesystem in userspace (fuse). http://fuse.sourceforge.net/,
July 2013.

[100] Ben Taskar. Probabilistic classification and clustering in relational data. In In
Proceedings of the Seventeenth International Joint Conference on Artificial Intel-
ligence, pages 870–878, 2001.

[101] Windsor W. Hsu Timothy E. Denehy. Duplicate management for reference data.
IBM Research Report, 2003.

[102] Mark R Titchener, Radu Nicolescu, Ludwig Staiger, Aaron Gulliver, and Ul-
rich Speidel. Deterministic complexity and entropy. Fundamenta Informaticae,
64(1):443–461, 2005.

[103] Koji Tsuda and Taku Kudo. Clustering graphs by weighted substructure mining.
In Proceedings of the 23rd International Conference on Machine Learning, ICML
’06, pages 953–960, New York, NY, USA, 2006. ACM.

93

http://www.cs.ubc.ca/research/flann/
http://www.bzip.org/
https://code.google.com/p/fusecompress/
http://fuse.sourceforge.net/

Bibliography

[104] Nakul Verma, Samory Kpotufe, and Sanjoy Dasgupta. Which spatial partition
trees are adaptive to intrinsic dimension? In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages 565–574. AUAI Press,
2009.

[105] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[106] Robert A Wagner and Michael J Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.

[107] Terry A. Welch. A technique for high-performance data compression. Computer,
17(6):8–19, 1984.

[108] Dwi H Widyantoro, Thomas R Ioerger, and John Yen. An incremental approach
to building a cluster hierarchy. In Data Mining, 2002. ICDM 2003. Proceedings.
2002 IEEE International Conference on, pages 705–708. IEEE, 2002.

[109] Matt Williams and Tamara Munzner. Steerable, progressive multidimensional
scaling. In Information Visualization, 2004. INFOVIS 2004. IEEE Symposium
on, pages 57–64. IEEE, 2004.

[110] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Silo: A similarity-locality based
near-exact deduplication scheme with low ram overhead and high throughput.
In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical
Conference, USENIXATC’11, pages 26–28, Berkeley, CA, USA, 2011. USENIX
Association.

[111] Rui Xu and D. Wunsch, II. Survey of clustering algorithms. Trans. Neur. Netw.,
16(3):645–678, May 2005.

[112] Lawrence You and Christos Karamanolis. Evaluation of efficient archival storage
techniques. In Proceedings of the 21st IEEE / 12th NASA Goddard Conference on
Mass Storage Systems and Technologies, April 2004.

[113] Lawrence L. You, Kristal T. Pollack, and Darrell D. E. Long. Deep store: An
archival storage system architecture. In Proceedings of the 21st International Con-
ference on Data Engineering, ICDE ’05, pages 804–8015, Washington, DC, USA,
2005. IEEE Computer Society.

[114] Lawrence L. You, Kristal T. Pollack, Darrell D. E. Long, and K. Gopinath. Pre-
sidio: A framework for efficient archival data storage. Trans. Storage, 7(2):6:1–6:60,
July 2011.

[115] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In NIPS,
volume 17, page 16, 2004.

[116] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data
clustering method for very large databases. In ACM SIGMOD Record, volume 25,
pages 103–114. ACM, 1996.

94

Bibliography

[117] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in
the data domain deduplication file system. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies, FAST’08, pages 18:1–18:14, Berkeley,
CA, USA, 2008. USENIX Association.

[118] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on information theory, 23(3):337–343, 1977.

95

Appendix A

List of Abbreviations

FNV Fowler–Noll–Vo hash [77]

ICBCS
Incremental Clustering-Based Compression System
The system presented in this thesis (3)

n-gram Substring of length n (2.6.7)
simhash Similarity hash (3.4)

NCD Normalized Compression Distance (2.6.5.1)
KD-tree K-Dimensional tree (2.7.6)

block Fixed size part of a file (3.3)
chunk Variable (content-defined) part of a file (3.3)

chunk spread Range of chunk sizes (4.9)
SLINK Single linkage algorithm [96]

KNN K-Nearest Neighbors (2.7.6)
ANN Approximate K-Nearest Neighbors (2.7.6)

archivedata Extended metadata to provide archival functionality (3.9.1)

97

Appendix B

ICBCS Program Options

B.1 CLI Runtime Parameters

Usage:

icbcs [options] filename

icbcs [options] --file=filename

Options:

-h [--help] Print help messages

-c [--compressor] arg (=deflate) Compression algorithm: bzip2, deflate.

-l [--comprlevel] arg (=5) Compression level: 1-9.

-p [--type] arg (=clustering) Compression type: solid, non-solid,

clustering.

-s [--chsize] arg (=12) Average size of a chunk in bytes. Given as

binary exponent: 3-20 (8 = 256B, 12 = 4kB,

20 = 1MB).

--chspread arg (=2) Chunk size spread. Given as binary

exponent delta. 0 means all chunks are of

average size. Range: 0..5

-n [--nodeduplication] Disable deduplication. (default: false)

-d [--distance] arg (=simhash) Distance function used. One of: ncd,

ncd-repr, simhash, simhash-deep,

simhash-deep-repr

--ncd-repr arg (=4) Number of representative chunks for NCD

computation. Only valid for

--distance=ncd-repr.

99

B. ICBCS Program Options

-w [--sh-width] arg (=32) Simhash width. One of: 4, 8, 16, 32, 64.

Only valid for --distance=simhash*.

--sh-ngram arg (=4) N-gram to use for simhash generating.Int:

1-128. Only valid for --distance=simhash*.

Note that 4-gram is highly optimized.

--sh-kd-checks arg (=32) Number of KD tree leaf checks. Only valid

for --distance=simhash*.

--sh-depth arg (=2) Depth of descent for inter-cluster

distance evaluation. Only valid for

--distance=simhash-deep or

--distance=simhash-deep-repr.

--sh-repr arg (=2) Number of representatives for each

clusters. Only valid for

--distance=simhash-deep-repr.

--sh-repr-depth arg (=2) Depth of search for representative

candidates used to determine

representatives. Only valid for

--distance=simhash-deep-repr.

-u [--noupmerging] Disable upmerging. (default: false)

-g [--groupsize] arg (=64) Size of a compression group in chunks.

-t [--tolerance] arg (=-2) Balancing tolerance - accumulates to

prevent excessive balancing. Bigger number

> 0 means faster, but less precise

balancing, -1 for single step balancing,

-2 for no balancing at all.

B.2 Compile Options

As defines to CMake:

Profiling using gprof:

-DProfiling=ON

Additional debug/measurement outputs:

-DSimhashDistance_MINMAX

-DSimhashDistance_VARIANCE

-DSimpleSystem_VARIANCE

-DStorage_VARIANCE

100

Appendix C

Measured Variables

This is a complete list of all measured variables that were used in the Chapter 4. All
data from the measurements are attached to this thesis.

Chunkizer:

Total unique chunks size

Total duplicate chunks size

Average unique chunk size

Deduplication:

Unique chunks

Duplicate chunks

Deduplication ratio

Clustering:

HC Disbalance

HC Average depth

Grouping:

Compressed chunks

Compression groups

Metadata:

Metadata size

Compressed metadata size

Relative metadata size

Relative compressed metadata size

Archivedata:

Archivedata size

Compressed archivedata size

Relative archivedata size

Relative compressed archivedata size

101

C. Measured Variables

Compression ratio:

Original size

Compressed size

Compression ratio

Compression with metadata ratio

Compression with metarchivedata ratio

Running times:

Chunking Time

Chunking User+Sys time

Clustering Time

Clustering User+Sys time

Compression Time

Compression User+Sys time

Total Time

Total User+Sys time

Memory:

Peak memory usage

Peak memory without src file

Peak memory stripped

102

Appendix D

Contents of the Attached DVD

/

datasets.....................................datasets used for measurements
src

icbcs.. ICBCS source
. . .
CMakeList.txt

generate-calltree.sh.........................calltree graph generator
data...measured data
thesis .. thesis source

text

krcallub-mt2014.pdf..this thesis

103

	Introduction
	Motivation
	Problem Definition
	The Hypothesis
	Contribution
	Organisation of the Thesis

	State of the Art
	Current Solutions
	Single-File Compression
	Solid Compression
	Block-Based Deduplication

	Deduplication and Compression File Systems
	Deduplication and Compression Systems
	XRAY
	SILO
	Cluster-Based Delta Compression
	REBL
	Pcompress
	Other Deduplication and Compression Systems

	Optimization Criteria
	Data Compression
	Preliminaries
	Categorization
	Information Theory
	Algorithmic Information Theory

	Compression Models
	Probability and Markov Models
	Static, Semi-adaptive and Adaptive Models

	Lossless Compression Algorithms
	Delta-Encoding

	Distances and Similarities of Data
	Distance Function, Metric and Norms
	String Edit Distances
	Delta Distances
	Algorithmic Information Distances
	Compression-Dased Distances
	Normalized Compression Distance and Variations
	Compression Dictionary Distances

	Features Extraction and Similarity Hashes
	Compression Features

	N-Grams
	Similarity Hashing
	Min-Wise Independent Hashing
	Locality Sensitive Hashing

	Clustering Analysis State of the Art
	Input Data
	Clustering Algorithms Disambiguation
	Clustering High-Dimension Data
	Clustering Large Data Sets
	Incremental Clustering
	Nearest Neighbors and Approximate Nearest Neighbors
	Ordination Methods

	ICBCS – Incremental Clustering-Based Compression System
	Objecting conventional approaches
	Objecting Solid and Single-file compression
	Objecting Binary Simhash and Minhash

	System Design
	Rabin Chunkizer and Deduplication
	Deduplication Storage
	Performance and Optimizations
	Boosting Average Chunk Size

	Extended Simhash
	Feature Sources
	Hashing Functions
	Merging Multiple Feature Sources
	Integral vs Floating Point Representation

	SLINK and NCD-SLINK Clustering
	Incremental Clustering and Balancing
	Top-down clustering (NCD or Simhash)
	Bottom-up clustering (Simhash)
	Balancing the Clustering
	Deep Distance (Simhash)
	Representative Distance (NCD and Simhash)
	Deep Representative Distance (Simhash)

	Grouping and Compression
	Compression Algorithms and Levels
	Compression Groups Upmerging

	Compressor Capabilities
	Metadata

	Archival Capabilities
	Archivedata
	Retrieving Documents
	Adding, Editing and Removing Documents

	Implementation Notes
	Performance and Optimizations
	FNV Hash Vectorization
	Simhash Optimizations
	Randomized KD Trees

	Evaluation
	Datasets
	Small single files
	Corpora
	Duplicate and Highly Redundant Data
	Similar and Moderately Redundant Data
	Random, Compressed and Image Data

	Testing Environment and Hardware
	Simhash Distribution
	Simhash Distribution Tests
	Simhash Variance
	Simhash Source – N-Gram
	Simhash Width
	Performance Concerns
	Integral vs Floating Point Simhash Representation

	Rabin Chunkizer and Deduplication
	Non-Explicit Deduplication

	Simhash vs. NCD
	Clustering Quality
	Balancing
	Deep Balancing and Representatives

	Metadata and Archivedata Overhead
	Compression Parameters
	Compression Algorithms Comparison
	Compression Levels (Comparison to Solid and Non-Solid Compression)

	Compression Groups
	Group Sizes
	Compression Groups Upmerging

	Memory Requirements
	Performance Summary

	Conclusion
	Future Work

	Bibliography
	List of Abbreviations
	ICBCS Program Options
	CLI Runtime Parameters
	Compile Options

	Measured Variables
	Contents of the Attached DVD

