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Introduction

Machine learning is a sub�eld of arti�cial intelligence which aims to learn a hypothesis from
a big number of examples. There are many domains and many types of data which can
be explored with many di�erent techniques. Most approaches are based on learning from
data represented as vectors of numbers. However some data can not be represented in this
form and require to be encoded in a structured way because the vector representation does
not fully express their properties. Such problems arise very often for example in biology.
For such structured representation, for example graphs, �rst order logic clauses or relational
structures can be used. Relational machine learning is a part of machine learning concerned
with structured data.

One of the basic tasks of relational machine learning is to �nd a set of structures (for
example �rst order logic clauses) which can be used as rules. They should be contained in as
many positive examples as possible and as few negative examples as possible. The score of
one structure is then determined by the examples in which it is contained. For instance the
dataset can contain molecules with bacteria-killing ability as positive examples and molecules
without this property as negative examples. In this case we try to �nd substructures which
are typical for the bacteria-killing molecules.

Most of the previous approaches in this �eld related to our work are based on theo-
retical background from inductive logic programing (ILP) [8]. The decision whether a clause
is contained in another clause is then often formulated as decision whether there exists
so-called θ-subsumption between the clauses.

There are two basic approaches to induction of relational structures in relational
machine learning. First approach is represented by so-called top-down methods and the
second one by so-called bottom-up methods.

The top-down methods are based on specialization. They begin with a small structure
which is very general and try to specialize it by extending it. The main disadvantage of
this approach is the so-called plateau e�ect [1]. It means that the score of a structure
does not have to be changed when the clause is specialized. Some of the most popular
tools based on top-down methods are Aleph [25] and FOIL [12]. More recent systems nFoil
and kFOIL combine FOIL's structure search with naive Bayes, respectively SVM learning
algorithms [13].

As opposed to the top-down methods the bottom-up methods are based on general-
ization of examples. The score of a structure is then changed by every other new example
included in the generalization process. An example of such approach can be found in [15]. An
example of a state-of-the-art bottom-up learner is Progolem [16] which is based on theory
described in [26]. Another learner based on bottom-up methods is described in [2].
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A basic operation which can be used for generalization of learning examples is least
general generalization (LGG) de�ned by Plotkin [20]. An LGG of a set of structures com-
puted by Plotkin's method can be very large (exponential in the number of structures).
Therefore it is necessary to use a suitable reduction. From the theoretical point of view the
so-called θ-reduction is the best choice because it preserves all properties of LGG.

θ-subsumption, which is normally used to score candidate structures, is an NP-
complete problem and θ-reduction, which is used to reduce the size of LGGs, is a co-NP-
complete problem. Therefore the so-called bounded subsumption and bounded LGG were
introduced in [9] and in [10]. θ-subsumption can be straightforwardly formulated as a con-
straint satisfaction problem (CSP) [14]. Algorithms for solving CSP have exponential run-
time in general. The bounded approaches are based on polynomial local consistency methods
from CSP.

One of the goals of this thesis is to explore some of the possible bounded subsump-
tion and bounded LGG methods and compare their performance and also to evaluate their
performance compared to basic θ-subsumption and θ-reduction. For this purpose it was nec-
essary to implement our own CSP solver because the existing solvers are designated for a
straightforward use and do not allow to modify an existing formulation of CSP which is
crucial in our implementation of reduction algorithms.

Most techniques from ILP have their equivalent counterparts in the �eld of relational
structures. Another main goal of the thesis is to formulate the theory based on ILP into
relational structures. Such a formulation is equivalent to ILP and is more accessible for most
scienti�c audience.
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Chapter 1

Theory

In this chapter we provide de�nition of basic terms and some propositions important for
the presented work. Our learner deals with structured data. Such structures can be treated
as FOL clauses or relational structures. In future sections we describe both approaches and
provide correspondence between them since those two formulations are equivalent when we
restrict ourselves to non-recursive function-free clauses.

First we start with a section concerned with relational structures. In this case we
treat our learning data as a set of relational structures. We have a set of examples such
that every example is one relational structure. Every example has also a label indicating
whether the example is positive or negative. Positive examples can be for example molecules
with a speci�c function and negative examples molecules without this function. If we assume
that this speci�c function is determined by a speci�c substructure which is common in the
positive examples and not in the negative examples, we would like to �nd those substructures
and obtain in this way a universal rule which tells us how to distinguish the positive and
the negative examples. We assume that this speci�c function does not have to be caused by
only one characteristic substructure but that there might exist more substructures which
can cause this function.

Our learner is based on the following idea. We try to �nd a set of substructures
such that the set can be used as a classi�er. If an examples contains at least one of the
substructures from our learned set, we classify it as positive. If an example does not contain
any of the learned substructures we classify it as negative. The property "to be a substructure
of another structure" is understood in the sense of homomorphism of relational structures
de�ned in Section 1.1.1. Our set of learned structures is then used as follows: If at least one
of the learned relational structures is homomorphic to an example, we classify this example
as positive, otherwise we classify it as negative.

Our methods are based on the bottom-up approach as mentioned in Introduction. It
means that we generalize the positive examples to �nd their common property, i.e. a common
substructure. For this purpose we use least general generalization (LGG) de�ned in Section
1.1.3. The result of such generalization is a relational structure which is homomorphic to all
structures which were included in the generalization.

Deciding whether a relational structure is homomorphic to another structure can be
tested by solving a CSP. This is described in Section 1.1.2.

To avoid some exponential-time procedures like solving CSP or reduction of LGG
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without loosing its "least generality" so-called bounded operations are introduced in Sec-
tions 1.1.4 and 1.1.6. Theses bounded operations are based on local consistency techniques
from CSP. For this purpose terms like generalized arc consistency or treewidth of relational
structure are introduced in Section 1.1.

In Section 1.2 we provide equivalent theoretical formulation in terms of �rst order
logic. This time we treat learning examples as FOL Horn clauses and we use θ-subsumption
instead of homomorphism. Corresponding bounded operations are also introduced.

1.1 Relational structures

1.1.1 Introduction to relational structures

In this thesis we will describe almost all methods in terms of relational structures. Therefore
in this section we provide some basic de�nitions of these structures and introduce some useful
mathematical operations on them. The de�nitions were taken from [3]. The formulation
in terms of relational structures can be easily reduced to a formulation where relational
structures are replaced by �rst-order logic clauses and homomorphism is replaced by so-
called θ-subsumption. We will show this conversion in chapter 1.2.

De�nition 1.1. Vocabulary σ is a �nite set of relation symbols or predicates. Every relation
symbol in a vocabulary has an arity associated to it.

De�nition 1.2. Relational structure A of type σ is a pair consisting of a set UA, called the
universe of A, and a sequence of relations RA. There exists one relation RA ∈ RA for each
relation symbol R ∈ σ and this relation has the same arity as R.

De�nition 1.3. A structure B is called an induced substructure of a structure A of type σ,
if the universe UB ⊂ UA and for all R ∈ σ it holds RB = RA ∩ UmB , where m is the arity of
R.

De�nition 1.4. A structure B of type is called an substructure of a structure A of type σ,
if the universe UB ⊂ UA and for all R ∈ σ it holds RB ⊂ RA ∩ UmB , where m is the arity of
R.

In some future examples we will use a simpli�ed notation to work with the relational
structures. We will use the notation RAi (a1, . . . , ar) inspired by Prolog to emphasize that
the tuple (a1, . . . , ar) belongs to the set of the relation RAi .

De�nition 1.5. Gaifman graph of a relational structure A = (UA;R1, . . . , Rn) is the graph
with vertex set UA, where (a, b) is an edge if and only if a 6= b and there is a relation Ri ∈ RA
such that a and b belong to the same tuple of the relation Ri.

De�nition 1.6. A tree decomposition of a graph G = (V,E) is a labeled tree T such that:

1. Every node of T is labeled by a non-empty subset of V .

2. For every edge (v, w) ∈ E, there is a node of T whose label contains {v, w}.

3. For every v ∈ V , the set of nodes of T , whose labels contain v, is a subtree of T .
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The width of a tree decomposition T is the maximum cardinality of a label in T minus 1.
The treewidth of a graph G is the smallest number k such that G has a tree decomposition
of width k. The treewidth of a relational structure is the treewidth of its Gaifman graph.

Note that the treewidth of a tree (containing at least one edge) is one.

De�nition 1.7. A homomorphism from a structure A to a structure B of the same type is
a mapping f : UA → UB such that for every m− ary R ∈ σ and every (a1, . . . , am) ∈ RA we
have (f(a1), . . . , f(am)) ∈ RB. If this homomorphism exists, we say that A is homomorphic

to B and denote it by A→ B. If a homomorphism does not exist we write A 9 B. If A→ B
and B→ A we say that A and B are homomorphically equivalent (denoted by A ≈ B).

It is obvious, that if a structure A is an induced substructure of B, then A is homo-
morphic to B.

De�nition 1.8. An endomorphism h of a relational structure A is a homomorphism from
A to itself. An endomorphism h is said to be an automorphism if it is bijective.

De�nition 1.9. A structure is a core if every its endomorphism is an automorphism. A core

of a relational structure A is an induced substructure B such that A→ B and B is a core.

All cores of a structure are isomorphic (i.e. there exists bijective homomorphism
between them) and we will denote any of the cores of a relational structure A as core(A).
It holds that a structure A and its core are homomorphically equivalent. In many problems
it would be useful to work only with cores instead of structures. Unfortunately deciding
whether a structure is a core is co-NP-complete task.

Deciding homomorphism between two structures can be very easily formulated as
a task of constraint satisfaction programming (CSP). In the next section we provide basic
overview of CSP problems.

1.1.2 Constraint satisfaction problem

The constraint satisfaction problem is a well known task appearing in many applications.
The problem of deciding homomorphism between two relational structures can be easily
formulated as a constraint satisfaction problem. In later sections we also show that it can
be used for deciding about so called theta-subsumption between two logical clauses.

In this section we provide some basic de�nitions from the domain of the constraint
satisfaction programming and an overview of some �ltering techniques. These de�nitions
can be found in [22] or in short version in [4].

De�nition 1.10. A Constraint Satisfaction Problem (CSP) is a tuple (X,D,C) where
X = {x1, . . . , xn} is a set of n variables, D = {Dom(x1), . . . , Dom(xn)} is a set of ordered
�nite domains, and C = {c1, . . . , ce} is a set of e constraints. Each constraint ci is a pair
(var(ci), rel(ci)), where var(ci) = (xi1 , . . . , xik) is an ordered subset of X, and rel(ci) con-
tains the allowed combinations of values for the variables in var(ci). Each tuple τ ∈ Rci is
an ordered list of values (ai1 , . . . , aik). A tuple τ ∈ rel(ci) is valid i� all the values in the
tuple are present in the domain of the corresponding variables.

The assignment of a value a to a variable xi is denoted by (xi, a). Any tuple τ =
(a1, . . . , ak) can be viewed as a set of value to variable assignments {(x1, a1), . . . , (xn, ak)}.
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The ordered set of variables over which a tuple τ is de�ned is var(τ). For any Z ⊂ var(τ)
we denote τ [Z] the subtuple of τ that includes only assignments to the variables in Z.

Using CSP in relational structures

In case that we want to �nd out whether A→ B, we formulate the CSP task as follows:

• The elements of UA are variables.

• The elements of UB are values the variables can take.

• Every relation RA ∈ RA determines a constraint.

• The tuples contained in the relation RB determine the valid tuples for relation RA.

In this case of the CSP task we try to �nd a mapping f : UA → UB so that for every RA ∈ A

and for every tuples (x1, . . . , xr) ∈ RA it holds (f(x1), . . . , f(xr)) ∈ RB.
We will call this CSP formulation of the task as standard in future text.

Dual formulation of CSP

The above formulation of a CSP for deciding homomorphism is not the only possibility. In
some cases it can be useful to encode the task into CSP with only binary constraints. We
de�ne the problem of deciding whether A→ B as follows:

• There exists exactly one CSP variable for every element of UA.

• Domains of variables of this type are all elements of UB.

• There is exactly one CSP variable Vτ for every tuple τ ∈ RA for every relation in
RA ∈ RA.

• In the domain of such variable Vτ , there are all tuples from RB.

• For every r-ary relation RAk ∈ RA containing m tuples we create m× r constraints in
this way:

� Let RAk = {(a11, . . . , a1r), . . . , (am1, . . . , amr)}.
� Let us denote the variable created from the tuple τ = (ai1, . . . , air) ∈ RAk as Vτ .

� Let us denote the CSP variable corresponding to aij ∈ UA as Vaij .

� The new constraint c is: var(c) = (Vτ , Vaij ), (γ, b) ∈ rel(c) for every tuple γ ∈ RBk
such that b occurs at the j-th position in γ .

Example 1.11. Let us have two relational structures A = (UA, hasCar, hasLoad), B =
(UA, hasCar, hasLoad).

• UA = {a, b, c, d}, hasCarA = {(a), (b)}, hasLoadA = {(a, c), (b, d)}.

• UB = {k, l,m, n, o}, hasCarB = {(j), (k), (l)}, hasLoadB = {(k,m), (k, o), (l, n)}.

13



Here we have CSP variables

X = {Va, Vb, Vc, Vd, VhasCarA(a), VhasCarA(b), VhasLoadA(a,c), VhasLoadA(b,d)}

. The domains of the variables are:

• Dom(Va) = Dom(Vb) = Dom(Vc) = Dom(Vd) = {j, k, l,m, n, o},

• Dom(VhasCarA(a)) = Dom(VhasCarA)(b) = {hasCarB(j), hasCarB(k), hasCarB(l)},

• Dom(VhasLoadA(a,c)) = Dom(VhasLoadA(b,d))

= {hasLoadB(k,m), hasLoadB(k, o), hasLoadB(l, n)}

.

The constraints are de�ned this way:

• var(c1) = (Va, VhasCarA(a)), rel(c1) = {(j, hasCarB(j)), (k, hasCarB(k)), (l, hasCarB(l))},

• var(c2) = (Vb, VhasCarA(b)), rel(c2) = {(j, hasCarB(j)), (k, hasCarB(k)), (l, hasCarB(l))},

• var(c3) = (Va, VhasLoadA(a,c)), rel(c3) = {(k, hasLoadB(k,m)), (k, hasLoadB(k, o)),

(l, hasLoadB(l, n))},

• var(c4) = (Vc, VhasLoadA(a,c)), rel(c4) = {(m,hasLoadB(k,m)), (o, hasLoadB(k, o)),

(n, hasLoadB(l, n))},

• var(c5) = (Vb, VhasLoadA(b,d)), rel(c5) = {(k, hasLoadB(k,m)), (k, hasLoadB(k, o)),

(l, hasLoadB(l, n))},

• var(c6) = (Vd, VhasLoadA(b,d)), rel(c6) = {(m,hasLoadB(k,m)), (o, hasLoadB(k, o)),

(n, hasLoadB(l, n))}.

Filtering techniques in CSP

De�nition 1.12. An assignment τ is consistent i� for all constraints ci, where var(ci) ⊆
var(τ) it holds τ [var(ci)] ∈ rel(ci).

De�nition 1.13. A solution to a CSP is a consistent assignment to all variables.

For solving a CSP task a backtracking algorithm can be used. Its basic version can
be improved by some constraint propagation techniques. These techniques enable forbidding
values or combinations of values for some variables if a given subset of its constraints cannot
be satis�ed otherwise. A very wide class of techniques are the local consistencies. Local con-
sistencies are used prior to and during search to �lter domains and discover inconsistencies
early. In case of discovering inconsistency, the algorithm for local consistency returns false,
otherwise it returns true.

We now provide a basic backtracking algorithm for solving CSP according to [24]:
1: function Backtracking(level)
2: if notUsedV ars is empty then

14



3: return true
4: end if

5: choose some v ∈ notUsedV ars
6: for all a ∈ Dom(v) do
7: assign value a to variable v
8: if Local consistency then

9: if Backtracking(level + 1) then
10: return true
11: end if

12: restore(level)
13: end if

14: end for

15: return false
16: end function

The function Restore(level) means restoring all domains of variables to the state
before assigning value a to v.

De�nition 1.14. A value a ∈ Dom(xi) is GAC-supported in a constraint cj i� there exists
τ ∈ rel(cj) such that τ [xi] = a and τ is valid. In this case, we say that τ is a GAC-support
of a in cj .

De�nition 1.15. A CSP is Generalized Arc Consistent (GAC) i� for all xi ∈ X, Dom(xi)
is non-empty and for all a ∈ Dom(xi), a is GAC-supported in each constraint cj , s.t.
xi ∈ var(cj).

When we talk about just arc consistency (AC) we usually assume, that our constraint
problem contains only binary constraints. The term GAC is used for general CSPs.

Here we provide one of the versions of algorithm for testing generalized arc consis-
tency. It is called Generalized arc consistency 3 or just GAC3. This algorithm was described
in [22]. We provide the algorithm according to [24].
1: function GAC3(stack)
2: while stack is not empty do
3: choose a variable v from stack
4: for all constraints c such that v ∈ var(c) do
5: for all uninstantiated variables u ∈ var(c) do
6: if not Revise(v, c) then return false
7: end if

8: end for

9: end for

10: end while

11: return true
12: end function

In fact in the original algorithm the step 5. looks this way:
for all uninstantiated variable u ∈ var(c)\v do.
We use the modi�ed version because in the original version domains would not be pruned
according to unary constraints. Another option is to prune the domains according to unary
constraint prior to the �rst call of GAC3. A CSP where for all unary constraints ci =
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({x}, rel(ci)) it holds Dom(x) ⊂ rel(ci) is called node consistent. So generalized arc consis-
tency is for us a combination of node consistency and generalized arc consistency.
1: function Revise(v, c)
2: changed := false
3: for all j ∈ Dom(v) do

4: if not Exists(v, c, j) then
5: remove j from Dom(v)
6: changed := true
7: end if

8: end for

9: if changed then
10: push v into stack
11: end if

12: if Dom(v) then is empty then
13: return false
14: else

15: return true
16: end if

17: end function

1: function Exists(v, c, j)
2: for all τ = (x1, . . . , xk) ∈ rel(c) such that τ [v] = j do
3: valid = true
4: for all i := 1 : k do
5: y := τ [xi]
6: if y /∈ Dom(xi) then
7: valid := false
8: break
9: end if

10: end for

11: if valid then
12: return true
13: end if

14: end for

15: return false
16: end function

De�nition 1.16. We say that a relational structure A is generalized arc consistent with
respect to a structure B of the same type (denoted by ACGACB) if and only if the generalized
arc consistency algorithm executed on the CSP representation of problem A → B returns
true.

De�nition 1.17. A hypergraph corresponding to a relational structure A is a hypergraph
GA constructed as follows:

• For every element in a ∈ UA there is one vertex va in GA.

• For every RA ∈ RA and every tuple (a1, . . . , ar) ∈ RA there is a hyperedge containing
the vertices va1 , . . . , var .

16



De�nition 1.18. A hypergraph G is acyclic if the iteration of the following rules on G
produces the empty hypergraph:

• Remove a hyperedge contained in another hyperedge.

• Remove a vertex which is contained in at most one hyperedge.

A relational structure is said to be acyclic if its corresponding hypergraph is acyclic.

Proposition 1.19. If A is acyclic and ACGAC B then A→ B.

Many other kinds of local consistencies are described in details in [22] and [4]. The
problem is that many types of local consistencies require binary constraints.

Next, we introduce so called singleton consistencies. The details can be found for
example in [21].

De�nition 1.20. A problem is singleton arc consistent (SAC) i� it has non-empty domains
and for any instantiation of a variable, the resulting subproblem can be made arc consistent.

De�nition 1.21. A problem is singleton generalized arc consistent (SGAC) i� it has non-
empty domains and for any instantiation of a variable, the resulting problem can be made
generalized arc consistent.

The notion of a singleton consistency is general, and can be applied to other levels
and types of local consistency than arc consistency. Here we provide the algorithm as stated
in [5]
1: function SAC(X)
2: repeat

3: changed := false
4: for all v ∈ X do

5: for all a ∈ Dom(v) do
6: remove all values except a from Dom(v)
7: if not Arc consistency({v}) then
8: return all oter values into Dom(v)
9: return all values into domains removed during Arc consistency({v})
10: Dom(v) := Dom(v)\a
11: Arc consistency({v})
12: changed := true
13: end if

14: end for

15: end for

16: until changed = false
17: end function

De�nition 1.22. We say that a relational structure A is singleton arc consistent with
respect to a structure B of the same type (denoted by ACSAC B) if and only if the singleton
arc consistency algorithm executed on the CSP representation of problem A → B returns
true.
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The k-Consistency Test

The k-consistency test is another �ltering technique for CSP belonging to the class of local
consistency techniques. First we provide some helpful de�nitions and later we will discuss
its role in homomorphism testing in more details.

De�nition 1.23. Given the two relational structures A and B a partial homomorphism is
a mapping f : UA′ → UB, where A′ = (UA′ ,RA′) is a substructure of A. That is f de�nes
a homomorphism from A′ to B.

It means that for every r-ary relational symbolRA ∈ RA and every tuple (a1, . . . , ar) ∈
RA such that a1, . . . , ar ∈ UA′ it holds (f(a1), . . . , f(ar)) ∈ RB.

De�nition 1.24. If f and g are partial solutions we say that g extends f , denoted by f ⊆ g,
if Dom(f) ⊆ Dom(g) and f(a) = g(a) for every a ∈ Dom(f). In this case we also say that
f is a projection of g to Dom(f).

We now describe the k-consistency algorithm. We provide the version for relational
structures because it is more convenient.

1. Given structures A and B

2. Let H be the collection of all partial solutions f with |Dom(f)| ≤ k + 1

3. For every f in H with |Dom(f)| ≤ k and every a ∈ UA, if there is no g in H such that
f ⊆ g and a ∈ Dom(g), remove f and all its extensions from H

4. Repeat step 3 until H is unchanged

5. If H is empty then reject, else accept

Let A and B be two classes of relational structures of the same type. We denote by
hom(A,B) the class of problems of deciding homomorphism from A ∈ A to B ∈ B. If A
is a class of all �nite structures of the same type, we write hom(∗,B). Similarly if B is the
class of all �nite structures of a certain type, we write hom(A, ∗).

In the work [3] the authors state two basic problems:

• The �rst is called k-width problem. This problem means to characterize all struc-
tures A for which k consistency solves hom(A, ∗). These structures are called k-width
structures.

• The second is to characterize all structures B for which the k consistency algorithm
solves hom(∗,B). These are so called width-k structures.

There it was proved that A has k-width i� core(A) has treewidth at most k. So if the core
of A has the treewidth at most k, the k consistency algorithm gives us correct answer to
homomorphism between A → B. There, it is also stated that for every �xed k ≥ 1 it is
an NP-complete problem to decide if a given structure has a core of treewidth at most k.
Therefore it is an NP-complete problem to decide if a given structure has k-width.
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In the terms of k consistency, we can think about the arc consistency algorithm as
1 consistency algorithm. 1

De�nition 1.25. We say that a structure A is k-consistent w.r.t. a structure B of the same
type (denoted by A Ck B) if and only of the k consistency algorithm run on structures A
and B returns true.

Proposition 1.26. If A has treewidth at most k and ACk B then A→ B.

1.1.3 Least general generalization

The key idea of our learning algorithm is based on the so called least general generalization
of two or more relational structures. We adopted this term from the �rst order logic as it was
de�ned by Plotkin [20]. The original de�nition is based on the θ-subsumption for clauses.
We instead of that use this term in the sense of homomorphism for relational structures.

De�nition 1.27. A relational structure C is said to be a least general generalization of the
relational structures A and B (denoted by LGG(A,B)) if and only if C → A and C → B
and for every other relational structure D such that D→ A and D→ B it holds D→ C.

The LGG for two given structures does not have to be unique. The basic algorithm
for �nding an LGG of two �rst order logic clauses can be found for example in [19]. The
algorithm for two relational structures we provide here is similar to the de�nition of the
graph product [6].

Let us have two relational structures A and B of the same type σ. We construct
a relational structure C such that:

• We start with an empty UC and empty sets for all relational symbols. Then we go
over all relational symbols Rk ∈ σ to create elements of the universe and tuples in
relational sets.

• For every pair of tuples τ = (a1, . . . , ar) ∈ RAk and γ = (b1, . . . , br) ∈ RBk (tuples with
the same relational symbol) we create a new tuple ρ = (c1, . . . , cr) as follows and insert
it into the set RCk .

• If there is no element in UC corresponding to the pair of elements ai and bi, we create in
UC a new element corresponding to this pair. The element ci in ρ is this new element.

• If there already exists an element d corresponding to the pair ai and bi in UC , we use
this element as ci in ρ.

• If we have already processed all suitable pairs of relational tuples and we have empty
UC , we just add one element into UC . This could happen if we have some empty
relations in the structures.

The structure C obtained by the previous algorithm is the LGG of A and B. We now
provide a key idea why it should hold. First we construct a homomorphism C → A. Every
element cab ∈ UC corresponding to the pair of elements a ∈ UA and b ∈ UB is mapped into

1The algorithm we call k consistency is often called strong (k+1) consistency in the CSP literature. Our
notation corresponds to the notation of Atserias et al.
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the element a. If there is a tuple ρ ∈ RCk it was based on some tuple τ ∈ RAk containing the
respective elements from UA. Analogically for C→ B.

Let us consider a relational structure D such that D→ A and D→ B. Let us denote
the homomorphism between D and A by f and the homomorphism between D and B by g.
We now can easily de�ne a mapping h : UD → UC in the following way:

• If there is a relation δ = (d1, . . . , dr) ∈ RDk , there have to exist relations τ =
(f(d1), . . . , f(dr)) ∈ RAk and γ = (g(d1), . . . , g(dr)) ∈ RBk .

• We de�ne h for d1, . . . , dr such that h(di) = c where c is an element corresponding to
the pair of f(di) and g(di).

• The elements of UD which are not involved in any relation can be mapped into an
arbitrary element of UC .

It is obvious that a structure found by this algorithm can be very large. If we denote
by |RA| the number of tuples in relation RA and by |RA| =

∑m
i=1 |RAi |. We can see, that

the |RC | =
∑m

i=1(|RAi | · |RBi |) = O(|RA| · |RB|). And the universe |UC | = O(|UA| · |UB|).
After applying the above procedure it would be useful to make the resulting structure

C smaller. It is clear that the core(C) satis�es the conditions of LGG but can be signi�cantly
smaller than C. The conditions for LGG are also satis�ed by any structure D homomorphi-
cally equivalent to C. Unfortunately �nding such a structure is co-NP-complete. We now
provide the basic idea of �nding a structure covering a set of relational structures. For now
we let alone the problem with size of structures and with �nding a suitable reduction.

De�nition 1.28. Let A1, . . . ,Am be relational structures. A structure C is said to be a least
general generalization of the structures A1, . . . ,Am (denoted by LGG(A1, . . . ,Am)) if and
only if ∀i ∈ {1, . . . ,m} : C→ Ai and for every other structure D such that ∀i ∈ {1, . . . ,m} :
D→ Ai it holds D→ C.

Let us denote the relational structure which is least general generalization of two
relational structures A and B as LGG(A,B). We can �nd a structure covering some set of
relational structures by applying this procedure iteratively to the examples. Let us imagine,
that we want to �nd a relational structure homomorphic to all structures in a set S =
{A1, . . . ,Am}. We will proceed this way:

1. L = A1, i = 1

2. for i = 2 to m do: L := LGG(L,Ai)

3. return L

It is obvious that L is homomorphic to every structure Ai ∈ S. It can be also shown that L
is LGG(A1, . . . ,Am).

1.1.4 X-homomorphism

The general homomorphism problem is NP-complete. In this section we introduce other
techniques useful to solve our basic problem of �nding a structure covering given set of
examples. Some of the stated propositions are proved in [9] and [10] for FOL formulation.

20



De�nition 1.29. Let X be a possibly in�nite set of relational structures. Let A, B be rela-
tional structures of the same type not necessarily from X. We say, that A is x-homomorphic

to B w.r.t X (denoted by A →X B) if and only if for every structure C ∈ X, it holds
(C → A) ⇒ (C → B). If A →X B and B →X A then A and B are called x-equivalent
w.r.t. X (denoted by A ≈X B). We will call the relation →X x-homomorphism (or bounded
homomorphism) w.r.t. X and the relation ≈X x-equivalence w.r.t. X.

When it is clear from the context, we can omit the phrase "w.r.t. X" or use just the
term bounded homomorphism.

Proposition 1.30. Homomorphism is x-homomorphism w.r.t the set X of all relational
structures.

The x-homomorphism is a weaker alternative to the homomorphism. If we properly
choose the set X, we can use a polynomial time algorithm to check the x-homomorphism.

Proposition 1.31. Let X be a set of relational structures. Then x-homomorphism w.r.t.
X is a transitive and re�exive relation on relational structures and x-equivalence w.r.t. X
is an equivalence relation on relational structures.

De�nition 1.32. Let X be a set of relational structures. Let CX be a relation such that
for any two relational structures A and B it holds: (A → B) ⇒ (ACX B) and (ACX B) ⇒
(A→X B). Then CX is called x-prehomomorphism w.r.t. the set X.

1.1.5 Indroducing variables and constants

In our datasets some important information is often contained not only in the relational
symbols and in the relations between elements but also in the names of the elements. For
instance if we explore a dataset describing chemical bonds between atoms, it can contain a re-
lation with relational symbol bond of arity 5 with a structure: (atom1, atom2, C,H, single).
This structure asserts that there is a single bond between two atoms with identi�ers atom1
and atom2, the atom1 is carbon and atom2 is hydrogen. If we want to �nd a discriminative
pattern in such chemical structures, we need to keep the information about the type of bond
and types of atoms. We do not want to allow the tuple bond(atom3, atom4, C,O, double)
to be mapped into the tuple bond(atom1, atom2, C,H, single). From the view of relational
structures this mapping would be correct but from the chemical point of view this makes no
sense.

For this purpose we introduce in our relational structures special unary relational
symbols indicating "names" of the elements. So if the original structure from the previ-
ous paragraph is of type σ = {bond}, looks this way: A = (UA, bondA), where bondA =
{(atom1, atom2, C,O, double), (atom1, atom3, C,O, double)} we create new structure by ex-
tending the vocabulary by unary relations. The new vocabulary is

σ′ = {σb, σn}, where σb = σ and

σn = {nameatom1, nameatom2, nameatom3, nameC , nameO, namedouble}.

These unary relations contain only the elements with corresponding names, for example
nameatom1 = {atom1}, nameO = {O} etc. The following example presents the result of our
extension on LGG:
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Example 1.33. Let us have the two relational structures A and B:

• UA = {atom1, atom2, atom3, H,O, single}, RA = {bondA},

• bondA = {(atom1, atom2, O,H, single), (atom1, atom3, O,H, single)},

• UB = {atom4, atom5, atom6, H,O,K, single}, RB = {bondB},

• bondB = {(atom4, atom5, O,K, single), (atom4, atom6, O,H, single)}

The LGG of the two structures is then structure C with only one relation in RC :

bondC = {(atom14, atom25, oo, hk, s), (atom14, atom26, oo, hh, s),

(atom14, atom35, o, hk, s), (atom14, atom36, oo, hh, s)}

If we want to introduce our special unary relations indicating names, the vocabulary
of structures will contain not only the relation symbol bond but also the symbols for those
unary relations. It is also necessary to extend the universe of both structures by elements
which will be contained in the name relations. Now the two structures are as follows:

• UA = UB = {atom1, atom2, atom3, atom4, atom5, atom6, H,O,K, single}

• The relations bondA and bondB remain unchanged

• Both of them contain new relations nameO = {(O)}, nameH = {(H)}, nameK =
{(K)}, namesingle = {(single)}, nameatom1 = {(atom1)}, nameatom2 = {(atom2)},
nameatom3 = {(atom3)}, nameatom4 = {(atom4)}, nameatom5 = {(atom5)},
nameatom6 = {(atom6)}.

The resulting structure C is then:

UC ={atom11, atom22, atom33, atom44, atom55, atom66, hh, oo, kk, ss, atom14,

atom25, atom26, atom35, atom36, hk}
RC ={bondC , nameCatom1, name

C
atom2, name

C
atom3, name

C
atom4, name

C
atom5, name

C
atom6

nameCO, name
C
Hname

C
K , name

C
single}

bondC ={(atom14, atom25, oo, hk, s), (atom14, atom26, oo, hh, s), (atom14, atom35, o, hk, s),

(atom14, atom36, oo, hh, s)}
nameO ={(oo)},
nameH ={hh)},
nameK ={(kk)},

namesingle ={(ss)},
nameatom1 ={(atom11)},
nameatom2 ={(atom22)},
nameatom3 ={(atom33)},
nameatom4 ={(atom44)},
nameatom5 ={(atom55)},
nameatom6 ={(atom66)}.
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Note that for example the element atom11 is involved only in its name relation. Some
elements like atom14 or hk are not involved in any name relation but are involved in bond
relation and some elements like ss are involved both in name relation and in bond relation.

We have to add the name relations into set of relations of every relational structure
we currently work with. For every name relation we add exactly one element into the universe
and involve this element in the corresponding name relation. In every structure originating
as LGG of two such structures there will be always exactly one element in every name
relation.

In the subsequent text we will sometimes denote the set of relational symbols result-
ing from original relations by σb and the set of the unary relational symbols resulting from
the names of elements by σn. If necessary we will denote the set of relations of a structure
A corresponding to symbols from σn by RnA and those corresponding to symbols from σb by
RbA.

In one of the following sections we will concern with a restriction on relational struc-
tures regarding the relations from σn. We will use these restrictions to distinguish some
elements of universe in the equivalent way which is used in the �rst order logic to distinguish
variables and constants. We will treat the elements involved in relations from σn as constants
and other elements as variables. For simplicity we will use the conditions isV ariable(a) and
isConstant(a) to distinguish them. Sometimes we just say that a satis�es the condition
isV ariable.

Let us have two structures A and B and element elements a ∈ UA and b ∈ UB
such that nameA1 = {(a)}, nameB1 = {(b)} and those elements are not involved in any
relation from σb. Such elements are not interesting for homomorphism testing A→ B because
mapping of a is trivial. We can therefore a�ord to omit such elements during formulation of
CSP. In Section 2.1.7 we also explain how to omit all elements satisfying isConstant (i.e.
involved in a name relation) during formulation of CSP. Some modi�cations in constraints
based on relations from σb have to be done in that case.

1.1.6 Bounded LGG

In Section 1.1.3 we mentioned that we need to somehow reduce the structure resulting from
the basic version of the algorithm for �nding LGG. Instead of �nding a smaller structure ho-
momorphically equivalent to the resulting structure we �nd a smaller structure x-equivalent
to the resulting structure. Some of the stated propositions are proved in [9] and [10] for FOL
formulation.

For this purpose we use a special algorithm called Element-elimination algorithm.
We provide its pseudo code:
1: function Element-elimination(A)
2: Set B := A.
3: Select an element a ∈ UB such that isV ariable(a) and BCXB′. Where B′ =Reduce(B,a)
4: if no such element a exists then
5: return B and �nish.
6: else

7: Set B := B′.
8: Go to step 3.
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9: end if

10: end function

1: function Reduce(B,a)
2: B′ := B
3: remove all tuples τ such that a ∈ τ ∈ RB′

i from RB
′

i

4: remove a from UB′

5: return B′
6: end function

The resulting structure B is a substructure of the input A. Therefore it holds B→ A.
The x-prehomomorphism implies the x-homomorphism and x-homomorphism is a transitive
relation. Therefore it holds that A →X B. There also does not exist an element a ∈ UB
such that isV ariable(a) which could be removed from B so that the structure B would
be homomorphic to the resulting structure. Because if such an element exists, it would be
removed in the step 3 of the algorithm (thank to the implication B→ B′ then BCX B′).

Note that the input structure of the algorithm has exactly one element in every
relation from RnA as we have discussed in Section 1.1.5.

The output structure B of the Element-elimination algorithm is a core. We justi�ed
that there is no element satisfying isV ariable which can be removed. We can consider
that neither an element satisfying isConstant can be removed. Let us consider an element
a ∈ UB satisfying the condition isConstant, which means that a is involved in a relation
with a relational symbol RB ∈ RnB. We know that there is exactly one element in every such
relation. Therefore RB = {(a)}. Let B′ be a structure obtained from B by removing a from
UB and all tuples containing a from RB. It holds that RB

′
= ∅. Therefore B 9 B′ because

the element a can not be mapped into any element from U ′B such that the mapping would
be involved in a tuple from RB

′
.

We will further denote the output of Element elimination algorithm with an
input structure A and with using some x-prehomomorphism El-ElimX(A).

Proposition 1.34. Let X be a set of relational structures, core(A) ∈ X be a core of
relational structure A. Then El-ElimX(A) ≈ core(A) and |El-ElimX(A)| = |core(A)|.
Proposition 1.35. Let X and Y be sets of relational structures. Then
B = El-ElimX(El-ElimY (A)) satis�es:

1. B→ A, A→X∩Y B, where →X∩Y is x-homomorphism w.r.t the set X ∩ Y .

2. B is a core (not necessarily the core of A).

We already described the construction of least general generalization and the algo-
rithm for reduction of its result. Now we will concern ourselves with the bounded version of
LGG.

De�nition 1.36. Let X be a set of relational structures. A relational structure B is said to
be a bounded least general generalization of structures A1, . . . ,Am w.r.t the set X (denoted
by LGGX(A1, . . . ,Am)) if and only if ∀i ∈ {1, . . . ,m} : B → Ai and for every structure
C ∈ X it holds (∀i ∈ {1, . . . ,m} : C→ Ai)⇒ (C→ B).

Note that the the set X serves only as a reference set to test the validity of the
statement (∀i ∈ {1, . . . ,m} : C → Ai) ⇒ (C → B) for all C ∈ X. However neither the
structures A1, . . . ,Am nor the structure B have to be from the set X.
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Let us denote the set of all bounded least general generalizations of structures
A1, . . . ,Am as SLGGX

, the set of their all conventional LGGs as SLGG and �nally the set of
all structures homomorphic to all A1, . . . ,Am as S→. Then following relations hold:

• SLGG ⊆ SLGGX
,

• SLGGX
⊆ S→.

The bounded LGG of two relational structures can be computed in polynomial time for many
practically interesting sets X. The next advantage of this operation is that the resulting
structure can be smaller than the core of conventional LGG. Here we provide an algorithm
for computing bounded LGG of a set of relational structures.

Proposition 1.37. LetX be a set of relational structures and letCX be an x-prehomomorphism
w.r.t the set X then the structure B obtained by

B = El-ElimX(LGG(An, El-ElimX(LGG(An−1, El-ElimX(LGG(An−2, . . . ))))) .

is a bounded least general generalization of clauses A1, . . . ,An w.r.t. the set X.

1.1.7 Connected components

We often need to work with connected components of our structures in our algorithms. For
this purpose we use following de�nition:

De�nition 1.38. We say that a relational structure A which satis�es ∃R ∈ RbA : R 6= ∅ is
connected if there does not exist a decomposition B1, . . . ,Bn, where n > 1 such that:

1. ∀i ∈ {1, . . . , n} : Bi is a substructure of A and UBi 6= ∅,

2. ∀i ∈ {1, . . . , n} : ∃R ∈ RbBi
: R 6= ∅

3. ∀R ∈ σb,∀i, j ∈ {1, . . . , n}, i 6= j : RBi ∩RBj = ∅,

4. ∀R ∈ σb :
⋃
i∈{1,...,n}R

Bi = RA,

5.
⋃
i∈{1,...,n} UBi = UA,

6. ∀a ∈ UA : (a ∈
⋂
i∈{1,...,n} UBi)⇔ (∃R ∈ σn such that RA = {(a)}),

7. ∀a ∈ UA : (∃R ∈ σn, such that RA = {(a)})⇒ (∀i ∈ {1, . . . , n} : RBi = {(a)}).

If such decomposition exists and every Bi is connected, we call B1, . . . ,Bn connected compo-

nents of A.

Let us explain the de�nition in an informal way. We basically want to decompose
the structure in terms of relational tuples. We try to group together those of tuples (from
relations from σb) which have common elements satisfying isV ariable. We require the groups
to do not overlap and to cover all tuples from all relations from RbA (points 3. and 4.). If
such groups can be created, we compose new relational structures from them. It is necessary
to keep the information about name relations in the smaller structures too, but they are
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not considered during grouping, they are added into the substructures automatically with
elements involved in them (point 6. a 7.).

According to this de�nition a structure containing in universe some elements satis-
fying isV ariable which are not involved in any relation would be classi�ed as connected. It
does not matter. We do not care about such elements, because they neither are contained
in our original examples not are created during LGG or during any operation we use. In
addition would not have an in�uence on homomorphism. The condition ∃R ∈ Rb : R 6= ∅
is important. Without this condition every structure could be decomposed into arbitrary
number of structures with empty relations from from σb.

1.1.8 Local consistencies and x-homomorphism

So far we have not mentioned any concrete setX practically useful for testing x-homomorphism
and for �nding bounded LGG. In this section we describe a few such sets. Speci�cally we
will concern with acyclic relational structures and structures with bounded treewidth. We
will also provide their relations to some �ltering procedures from CSP, because some of these
procedures can be used as x-prehomomorphism. For this purpose the following proposition
will be important.

Proposition 1.39. LetX be a set of relational structures. A relationCX is an x-prehomomorphism
w.r.t. X if and only if it satis�es the following conditions:

1. If A→ B then ACX B.

2. If A ∈ X and ACX B then A→ B.

3. If A ∈ X, ACX B and BCX C then ACX C.

From this proposition it follows that if we have an algorithm which checks the
homomorphism of the type A → B for all A ∈ X and satis�es the conditions 1 and
3 from the proposition, then this algorithm can be used as a procedure which checks x-
prehomomorphism with respect to the set X.

For instance, from the proposition 1.19 it follows that for an acyclic structure A it
holds (A CGAC B) ⇒ (A → B). In [10] the following property is proved: If A is acyclic,
A CGAC B and B CGAC C then A CGAC C. From this knowledge and from the proposition
1.39 it follows:

Proposition 1.40. The relationCGAC between relational structures is an x-prehomomorphism
w.r.t. the set of all acyclic relational structures. Therefore the GAC algorithm can be used
to check x-subsumption w.r.t the set of acyclic relational structures.

In Section 1.1.2 we stated the k-Consistency algorithm and de�ned the relation
between relational structures A Ck B which means that A is k consistent w.r.t B. We also
stated that this algorithm decides homomorphism A→ B for the structures A with treewidth
at most k. Similarly as for CGAC it can be proved:

Proposition 1.41. The relation Ck between relational structures is an x-prehomomorphism
w.r.t the set Xk of all relational structures with treewidth at most k.

26



There exist some other CSP �ltering techniques which can be candidates for be-
ing x-prehomomorphism, for instance path consistency, singleton arc consistency or sin-
gleton path consistency. It can be shown that these procedures can be used to obtain x-
prehomomorphism w.r.t. some sets although these sets may be given only implicitly by the
particular local consistency techniques.

1.1.9 Structures Constrained by Language Bias

In Section 1.1.4 we mentioned that we can introduce some restrictions on relational struc-
tures regarding the relations from σn. Sometimes we have an apriori knowledge about prob-
lem domain. In Example 1.33 the positions in tuples contained in the relation bond have
speci�c meaning. In this example it would be meaningful to keep information about the
types of atoms and about the type of bond. This information is preserved in those tuples
bond(a, b, c, d, e) where all the elements c, d, e satisfy the condition isConstant, i.e. every of
these elements is involved in some relation from σn. We therefore do not want to keep the
tuples in which this information is missing. For this purpose we introduce a special language
bias.

De�nition 1.42. Constant language bias is a set LB = {(Ri/arityi, {i1, . . . , ik})} where
Ri are relational symbols from σb, ai ∈ N and {i1, . . . , ik} ⊆ {1, . . . , arityi}. A tuple
(b1, . . . , bk) ∈ Ri is said to comply with language bias LB if all its elements on positions
{i1, . . . , ik} satisfy the constraint isConstant. A relational structure A is said to comply
with LB if all its tuples comply with it.

For simplicity we will sometimes use the notation inspired by mode declarations
known from Progol. We will write R1(x,#, x), , R2(#, x) to determine the constant language
bias {(R1/3, {2}), (R2/2, {1})}. So the structures complying with this language bias would
have to have at the position 2 in the relation R1 and at the position 1 in the relation R2

only elements involved in relations from σn.

So the relational structure A = (UA, RA1 , RA2 , namea, nameb) where RA1 = {(X,Y, Z),
(W,Y,U)}, RA2 = {(X,V )}, namea = {Y }, nameb = {X} complies with the above lan-
guage bias. However the structure B = (UB, RB1 , RB2 , namea, nameb) where RB1 = {(X,Y, Z),
(W,Y,U)}, RB2 = {(X,V )}, namea = {Y }, nameb = {} does not comply to it.

Proposition 1.43. Let LB be a language bias and let XLB be the set of all relational
structures complying with LB. Let A be a relational structure. If ALB is a relational structure
obtained from A by removing all tuples that do not comply with LB then ALB → A and
A→X ALB w.r.t. the set XLB.

In case that we remove some tuples, it can happen that there will be some elements
in UALB which are not involved in any relation. Such elements can be also removed when
constructing the structure ALB and the above proposition will still hold. The above propo-
sition gives us an idea how to construct bounded LGG with respect to a set of relational
structures complying with certain language bias XLB.

Proposition 1.44. Let LB be a language bias and letXLB be a set of all relational structures
complying with it. Let B = LGG(A1, . . . ,An) be a least general generalization of structures
A1, . . . ,An. If BLB is a structure obtained from B by removing all tuples not complaining
with LB then BLB is a bounded LGG w.r.t. the set XLB of structures A1, . . . ,An. Let X
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be a set of relational structures and C a structure obtained by El-ElimX(BLB), then C is
LGGX∩XLB(A1, . . . ,An).

1.2 Formulation in �rst order logic form

In this section we show that it is possible to formulate our problem equivalently in the
terms of �rst order logic. We can deal with clauses instead of relational structures. We can
test θ-subsumption between clauses instead of homomorphism between relational structures.
The original design of used algorithms introduced in [10] and [9] was based on this logical
formulation. The equivalent formulation in terms of relational structures provided in this
work should be more accessible for most computer science community. The translation of
homomorphism decision into a CSP is also more natural for relational structures.

If we treat our input data as a set of relational structures and try to �nd a structure
homomorphic to some of them, we basically look for a common substructure. If we work
with the logical formulation we treat our examples as Horn clauses. We try to �nd a set of
rules where every rule is also a Horn clause. The rules and examples have then the form:

l1 ∧ l2 ∧ · · · ∧ lk ⇒ isPositive . (1.1)

This rule 1.1 can be equivalent rewritten in the form:

¬l1 ∨ ¬l2 ∨ · · · ∨ ¬lk ∨ isPositive . (1.2)

Here the symbols li denote literals, the literal isPositive means that example is
classi�ed as positive. The important thing is that even the negative examples have this
form, i.e. they have the literal isPositive in their heads. This can be a little bit confusing
but it makes sense when we create our theory as a conjuncion of such Horn clauses.

When we explore our datasets, we look for a common substructure in the sense of
1.1. However the equivalent expressions stated in 1.2 allows us us to use a theory based on
clauses. In the following example we illustrate in more detail the correspondence between
the two notations.

Example 1.45. Let an example in our dataset be written this way:

bond(x1, x2, H,C, single), bond(x2, x3, C,H, double), bond(x4, x5, C,O, double),

bond(x4, x6, C,O, double).

We can either treat it as relational structure A:

UA = {x1, x2, x3, x4, x5, x6, H,C,O, single, double},
RA = (bond, namex1, . . . , namex6, nameO, nameH , nameC , namesingle, namedouble),

bond = {(x1, x2, H,C, single), (x2, x3, C,H, double), (x4, x5, C,O, double), (x4, x6, C,O, double)},
namex1 = {(x1)}, namex2 = {(x2)}, . . . , namex6 = {(x6)}, nameH = {(H)} . . .

Or we can treat it as a Horn clause. For instance if the example is positive it will have the
form:

bond(x1, x2, H,C, single) ∧ bond(x2, x3, C,H, double) ∧ bond(x4, x5, C,O, double)∧
bond(x4, x6, C,O, double)⇒ isPositive,
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which is equivalent to:

¬bond(x1, x2, H,C, single) ∨ ¬bond(x2, x3, C,H, double) ∨ ¬bond(x4, x5, C,O, double)∨
¬bond(x4, x6, C,O, double) ∨ isPositive.

During the learning we learn just the left part of the implication because we assume
that the head is always the same. We try to �nd a theory H in this form:

(¬l11 ∨ ¬l12 ∨ . . .¬l1i1 ∨ isPositive)∧
(¬l21 ∨ ¬l22 ∨ . . .¬l2i2 ∨ isPositive)∧
...

(¬ln1 ∨ ¬ln2 ∨ . . .¬lnin ∨ isPositive) ∧ .

We require H to ful�ll H � E for as many positive examples E as possible and to
ful�ll H 2 E for almost all negative examples. Now we can see why we used the same literal
in heads of the positive and the negative examples. Let us supppose that we want to classify
a general example E = ¬l1 ∨ ¬l2 ∨ · · · ∨ ¬ln ∨ isPositive. Let H = (ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕm),
where ϕi are Horn clauses. We classify the example as possitive if and only if H � E. This
happens if and only if there is at least one ϕi ∈ H such that ϕi �θ E.

It can be seen from the example 1.45 that predicate symbols in �rst order logic
have here the same meaning as the relational symbols in relational structures. The elements
of universe of relational structures have the similar function as constants and variables in
FOL. We do not work with functional symbols of arity more than 0. In the above example we
consider all terms to be constants. However during LGG, we usually obtain some variables
too. In the formulation by terms of relational structures we needed to introduce the special
unary name relations to preserve information contained in names of the input elements. In
the �rst order logic the respective terms are constants. We explain this correspondence in
more details later.

1.2.1 Theta Subsumption and Least General Generalization

De�nition 1.46. Let A and B be clauses. The clause A θ-subsumes B (denoted by A �θ B),
if and only if there is a substitution θ such that Aθ ⊆ B. If A �θ B and B �θ A, we call A
and B be θ-equivalent and write A ≈θ B.

As we mentioned above the relation θ-subsumption between clauses is equivalent to
homomorphism between relational structures.

De�nition 1.47. The least general generalization of clauses A1, . . . , An (denoted by
LGG(A1, . . . , An)) is a clause B such that B �θ Ai for all i ∈ (1, . . . , n) and if there exists
another clause C such that for all i ∈ {1, . . . , n}: C �θ Ai then C �θ B.

The least general generalization algorithm for two clauses was proposed in [20]. An
algorithm for �nding it can be found in [19] or in [17]. This algorithm is similar to that one
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we provided for relational structures. We provide this algorithm in a simpli�ed form because
we do not have to deal with functional symbols of arity ≥ 1 and with negated predicates.

Least general generalization of two literals with same predicate symbol and same
sign l1 = p(u1, . . . , un) and l2 = p(v1, . . . , vn) is a literal l3 = p(t1, . . . , tn) obtained in the
following way:

1. For i = 1 . . . n :

2. If the terms vi and ui are the same, then set the term ti := ui.

3. If ui and vi di�er and there is 1 ≤ j < i such that ui = uj and vi = vj then ti := tj .

4. If ui and vi di�er and there is no such j satisfying the above condition then create
a new variable not contained in l1 and l2 and set tj to this variable.

Note that if two literals contain the same constant at the same position, the LGG of such
literals will have the same constant at this position. This property holds for variables too,
but does not in�uence θ-subsumption testing, because any variable can be substitued by
any other term. For variables it is just important to replace the same pairs of terms with
the same new variable as stated in the step 3.

Least general generalization of two clauses A and B is obtained in this way:

1. Begin with an empty clause C.

2. For all pairs of literals l1 ∈ A and l2 ∈ B such that l1 and l2 have the same predicate
symbols (and same signs) create literal l as their LGG and extend the clause C by it:
C := C ∨ l.

The algorithm is similar to the one for relational structures. Let us denote the number
of literals of a clause A by |A|. The size of least general generalization of two clauses A and
B obtained by the above algorithm can be up to |A| · |B|. The resulting clause can be
reduced so that the reduction is θ-equivalent to the original clause. Such a reduction is also
LGG(A,B). For this purpose we provide a de�nition of θ-reduction.

De�nition 1.48. Let A be a clause. If there is another clause Ã such that A ≈θ Ã and
|Ã| ≤ |A| then A is said to be θ-reducible. Minimal Ã such that A ≈θ Ã is called θ-reduction.

The θ-reduction has the equivalent function for clauses as the core has for relational
structures.

1.2.2 Formulation as CSP

The problem of θ-subsumption can be formulated as a CSP similarly as homomorphism. If
we want to decide whether A �θ B, we need to �nd a substitution for variables of A such
that Aθ ⊆ B. The transformation into CSP is as follows:

• For every variable of A there exists exactly one CSP variable.

• In every domain of every variable there are all terms of B.
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• There is exactly one constraint cl = (var(cl), rel(cl)) corresponding to every literal
l = predl(t1, . . . , tk) ∈ A. Let us denote (i1, . . . , im) ⊆ (1, . . . , k) the positions in l such
that the terms tij are variables. Then var(cl) = (ti1 , . . . , tim) and rel(cl) is constructed
as follows:

1. Let Ll be the set of all literals l′ in B such that l′ �θ l.
2. We now construct the set of tuples in rel(cl) in this way: For all l′ ∈ Ll, where
l′ = pl(t

′
1, . . . , t

′
k) it holds (t

′
i1
, . . . , t′im) ∈ rel(cl).

The construction is analogical to the one for the relational structures. The condition stated
in point 1 is a little big stronger then the corresponding condition for relational structures.
Similarly we have to choose only those literals from B which have the same predicate symbol
as l. In addition point 1 tells us that if there is a constant at the i-th position in l, there
has to be the same constant at the i-th position in all l′ ∈ Ll. In the section concerned with
relational structures we had to introduce special name relations to ensure mapping satisfying
these properties. In the basic formulation for relational structures these unary relations are
involved as ordinary unary conditions. However in the case of relational structures we can
use the same formulation as we use for clauses without changing any previously stated
properties because such a formulation is equivalent to the original one. This is described in
more details in Section 2.1.7.

Of course theta subsumption between clauses can be also formulated as CSP in the
alternative dual way. We do not provide the full description of this, because it is quite the
same as for relational structures and can be also found in [9].

1.2.3 X-subsumption and bounded LGG

Analogically as we de�ned bounded operations for relational structures, we now provide
de�nitions of x-subsumption and x-presubsumption for clauses.

De�nition 1.49. Let X be a possibly in�nite set of clauses. Let A, B be clauses not
necessarily from X. We say that A x-subsumes B w.r.t. X (denoted by A �X B) if and only
if for every clause C ∈ X (C �θ A) ⇒ (C �θ B). If A �X B and B �X A then A and B
are called x-equivalent w.r.t. X (denoted by A ≈X B). For a given set X, the relation �X
is called x-subsumption w.r.t. X and the relation ≈X x-equivalence w.r.t. X.

Similar propositions which hold for relational structures hold also for clauses. θ-
subsumption is x-subsumption w.r.t. the set of all clauses. The operation x-subsumption
w.r.t. set of clauses X is transitive and re�exive relation on clauses, x-equivalence w.r.t. X
is an equivalence relation on clauses.

De�nition 1.50. Let X be set a set of clauses. Let CX be a relation such that for any two
clauses A and B: (A �θ B) ⇒ (A CX B) and (A CX B) ⇒ (A �X B). Then CX is called
x-presubsumption w.r.t. the set X.

The operation x-subsumption for clauses is equivalent to the relation x-homomorphism
for relational structures and x-presubsumption is equivalent to x-prehomomorphism. The
equivalent proposition for clauses as Proposition 1.39 holds therefore for clauses. Therefore
we can use it for �nding a reduction of a clause x-equivalent to the clause. For this purpose
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we can use so called Literal-elimination algorithm analogical to the Element-elimination
algorithm.

Literal-elimination algorithm:

1. Given a clause A which should be reduced.

2. Set A′ := A.

3. Select a variable y such that A′CXA′\L, where L is a set of all literals of A′ containing
variable y. If there is no such variable, return A′ and �nish.

4. Set A′ := A′\L.

5. Go to step 3.

If A is an input clause of this algorithm and the operation CX is an x-presubsumption
w.r.t. the set X, then the output clause A′ satis�es the following conditions:

• A′ �θ A and A �X A′ w.r.t. the set X.

• |A′| ≤ |Aθ| where Aθ is θ-reduction of a subset of literals of A with maximum length.

• If Aθ ∈ X then A′ ≈X Aθ and |A′| = |Aθ| regardless the set X.

All proofs of the above propositions can be found in the work [9].

The x-presubsumption with respect to some useful sets of clauses can be again tested
by using CSP techniques. We just de�ne the problem of θ-subsumption between two clauses
as a CSP and then run one of the �ltering techniques. If we want to test x-presubsumption
w.r.t. the set of all clauses of treewidth at most k, we can use k-consistency algorithm.
For testing x-presubsumption w.r.t. the set of all acyclic clauses we use generalized arc
consistency algorithm etc.

The de�nition of treewidth of a clause A is provided according to its Gaifman graph.
In this graph there is exactly one vertex for each variable from A and one edge for each pair
of variables u and v such that u 6= v and u and v both appear in a common literal l ∈ A.

De�nition 1.51. A clause C is said to be acyclic if the iteration of the following rules on
C produces the empty clause:

1. Remove a literal such that all its variables are contained in another literal.

2. Remove a variable which is contained in at most one literal.

De�nition 1.52. Let X be set of clauses. A clause B is said to be a bounded least general
generalization of clauses A1, . . . , An w.r.t. the set X (denoted by B = LGGX(An, . . . , An))
if and only if and only if B �θ Ai for all i ∈ {1, . . . , n} and if for every other clause C ∈ X
such that C �θ Ai for all i ∈ {1, . . . , n} it holds C �θ B.

Again the bounded LGG w.r.t. the set of clauses X can be obtained by applying
literal elimination algorithm (with bounded presubsumption w.r.t. X) on the result of least
general generalization algorithm.

The language bias introduced in Section 1.1.9 has much simpler form for clauses. We
choose some predicate and restrict certain positions in corresponding literals to contain only
constants.
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De�nition 1.53. Constant language bias is a set LB = {(pi/arityi, {i1, . . . , ik})} where pi
are predicate symbols and {i1, . . . , ik} ⊆ {1, . . . , arityi}. A literal l = pi(t1, . . . , tk) is said
to comply with language bias LB if it contains constants in all positions i1, . . . , ik. A clause
C is said to comply with language bias LB if all its literals comply with it.

For simplicity we will again write for example p1(x, x,#), p2(#,#, x, x) to choose
important predicate symbols and denote by # positions in corresponding literals, which are
required to contain only constants. The set of clauses complying with some language bias
can be again used as a reference set of clauses for bounded operations. Bounded LGG with
respect to the set of all clauses complying with a language bias LB can be computed from
original LGG by removing from given clause all literals not complying with it.
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Chapter 2

Algorithms

2.1 Learning algorithm

Our learning procedure is based on homomorphism between relational structures. The input
is a set of examples in the form of relational structures. Every example has a label indicating
whether this is a positive or a negative example. For instance we can have a dataset con-
taining protein structures with or without a speci�c function. Every structure has a label
indicating whether this protein has this speci�c function or not. Our goal is then to �nd
a discriminative set of structures which will cover preferably all positive examples and if pos-
sible no negative examples. So the result of our learning procedure is a set of structures. If
some example is covered by at least one of the resulting structures, we classify it as positive,
otherwise we classify it as negative.

If we say that an example E is covered by another structure H (or H covers example
E), we mean that it holds H→ E (or H �θ E for clauses). Sometimes we will use the word
cover also for bounded homomorphism and bounded subsumption. By describing general
principles of the used procedures it is not always needed to specify exactly which kind of
coverage we have in mind because both operations are tightly related and often both hold. If
necessary, we will always specify which operation we mean. We will denote as a hypothesis
some relational structure created during learning, which can be further re�ned and improved
or which can be also returned as the output of the learning procedure.

Our learning algorithm uses all algorithms described in previous sections. The ba-
sic idea is to apply (bounded) LGG iteratively on positive examples. If we apply bounded
LGG on two structures, it often happens that as a side e�ect a lot of other examples not yet
involved in LGG will be covered too. This side e�ect is desirable if positive examples are cov-
ered but unwanted if negative examples are covered. In addition if an example not involved
in LGG algorithm is covered only by bounded homomorphism, we do not know whether
it is covered by homomorphism. However if an example is not covered by a bounded ho-
momorphism, we are sure that it is also not covered by homomorphism, because it holds
(A → B) ⇒ (A →X B). If we want to ensure that an example E not involved in LGG
and covered by bounded homomorphism will be covered by a hypothesis H̃ by means of
homomorphism, we have to modify the hypothesis in this way: H̃ := LGGX(H̃, E). In the
following algorithm we have to use this approach for examples in the set newPosCovered.
This complication disappears if we directly use homomorphism instead of bounded homo-
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morphism to test which examples are covered as this side e�ect.

2.1.1 Basic Procedure

1: function Learning algorithm(positive examples E+, negative examples E−, seed
example S)

2: Open := ()
3: Closed := {}
4: PositiveCovBySeed := {S}
5: NegativeCovBySeed := {E ∈ E−|S CX E}
6: BestScore := |NegativeCovBySeed| − |PositiveCovBySeed|
7: BestTriple := (S, PositiveCovBySeed,NegativeCovBySeed)
8: Add the triple (S, PositiveCovBySeed,NegativeCovBySeed) to Open
9: Add the pair (PositiveCovBySeed,NegativeCovBySeed) in the set Closed
10: while Open 6= ∅ do

11: (H, {E+
i1
, . . . , E+

in
}, {E−j1 , . . . , E

−
jm
}):=remove best element from Open

12: for all E∗ ∈ CandidateExamples(E+\{E+
i1
, . . . , E+

in
}) do

13: H∗ := LGGX(H,E
∗)

14: PosCovered := {E+
i1
, . . . , E+

in
} ∪ {E∗}

15: NegCovered := {E−j1 , . . . , E
−
jm
}

16: H̃ := H∗

17: repeat

18: NewPosCovered := {E ∈ (E+\PosCovered)|H∗ CX E}
19: H̃ := LGGX(H̃, C1, . . . , Ck) where Ci ∈ NewPosCovered
20: NewNegCovered := {E ∈ (E−\NegCovered)|H∗ CX E}
21: if |NewNegCovered|+ |NegCovered| > maxNegCovered then
22: hypothesisUseful := false
23: break

24: else

25: H∗ := H̃
26: NegCovered := NegCovered ∪NewNegCovered
27: PosCovered := PosCovered ∪NewPosCovered
28: end if

29: until NewPosCovered 6= ∅
30: if hypothesisUseful and (PosCovered,NegCovered) /∈ Closed then
31: Add the triple (H∗, PosCovered,NegCovered) to Open
32: Add the pair (PosCovered,NegCovered) to Closed
33: Score := |NegCovered| − |PosCovered|
34: if Score < BestScore then
35: BestScore := Score
36: BestTriple := (H∗, PosCovered,NegCovered)
37: end if

38: else

39: H̃ := H∗

40: for all Ci ∈ NewPosCovered do
41: H̃ := LGGX(H

∗, Ci)
42: NewNegCovered := {E ∈ (E−\NegCovered)|H̃ CX E}
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43: if |NewNegCovered|+ |NegCovered| > maxNegCovered then
44: break

45: else

46: H∗ := H̃
47: NegCovered := NegCovered ∪NewNegCovered
48: PosCovered := PosCovered ∪ {Ci}
49: end if

50: end for

51: Score := |NegCovered| − |PosCovered|
52: if Score < BestScore then
53: BestScore := Score
54: BestTriple := (S, PosCovered,NegCovered)
55: end if

56: end if

57: end for

58: end while

59: run post-processing procedures
60: return bestTriple
61: end function

The algorithm contains some user de�nable parameters, for examplemaxNegCovered.
This number speci�es how many negative example we allow to be covered by one hypoth-
esis. In the datasets we explored by our methods so far this parameter can be set to zero.
The number of repetitions of the cycle "while Open 6= ∅" can be unreasonably high. There-
fore we usually reduce the number by introducing a parameter called maxHypotheses de-
termining the maximum number of this cycle repetitions. Another similar parameter is
called maxCandidateExamples. This parameter determine how many examples from the
set (E+\{E+

i1
, . . . , E+

in
}) we will use for extension of one hypothesis obtained from the set

Open as its best element. The examples are selected from this set by random.

2.1.2 Dealing with large structures

In our experiments we always use a suitable language bias. This language bias can be in-
cluded in the basic version of the LGG algorithm. We do not have to create tuples (literals)
not complying with it and remove them later. We just do not create them at all. This
approach reduces the size of a structure resulting from the algorithm, but this structure
can be too large to perform element elimination without any preprocessing in reasonable
time. So in our implementation we incorporated a special algorithm for dealing with large
structures originating from LGG algorithm. The procedure is based on the idea that the
whole structure contains only a few connected components important for distinguishing the
positive examples. We also prefer small components to be preserved. For this purpose we
use the following algorithm. We will denote by variables the elements of universe satisfying
the condition isV ariable.
1: function LGG reduction algorithm(relational structure H,maxV ariables)
2: Decompose the input structure to connected components
3: Sort the components from the smallest (in the sense of count of tuples) to the largest
4: Create an empty list selectedComponents
5: while |usedV ariables| < maxV ariables do
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6: A := remove the smallest component from their list
7: if ACX C does not hold for any C ∈ selectedComponents then
8: add A to selectedComponents
9: add all variables in A into usedV ariables
10: end if

11: end while

12: if |usedV ariables|>maxV ariables then
13: A := remove last from selectedComponents
14: create empty structure Ã
15: while |usedV ariables| < maxV ariables do
16: pick a random variable v from A
17: add v to Ã
18: add to Ã all tuples involving v including elements in those tuples
19: add to Ã name relational tuples for added elements
20: add all new variables in Ã into usedV ariables
21: end while

22: add Ã to selectedComponents
23: end if

24: S := compose a structure from all structures in selectedComponents
25: return S
26: end function

Let us denote the input structure of the above algorithm by A and the output
structure by B. B is a substructure of A. So that B→ A. Now we provide an idea why this
heuristic approach can be useful.

We can consider that in the case of homomorphism mapping the elements contained
in a single connected component in the source structure will be mapped into elements from
a single connected component in the other structure. This fact allows us to use the CX
testing only for single components and not for the whole structure composed from them. In
addition we know that every element from selectedComponents can be homomorphically
mapped to itself therefore it is enough to test bounded homomorphism only for the "new"
component instead of for all components in the list selectedComponents.

2.1.3 Post-processing of a learned hypothesis

The learning algorithm gives us a relational structure, which can be further processed. In this
section we provide some possible procedures for doing this. This procedures can be optionally
performed in the step denoted by post-processing procedures in the learning algorithm.

Component elimination and Variable elimination

We iteratively try to remove one component after another and test whether the reduced
structure is x-homomorphic to some not yet covered negative example. If not, we remove
the component from the structure, otherwise we preserve it. This procedure could help us
to �nd a better hypothesis because the original structure can be too large and therefore
too speci�c, which can lead to worse generalization on unseen examples. We provide two
algorithms which can be optionally performed in the post-processing step of the learning
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algorithm to further reduce the learned structure. In our implementation either one of them
or both or none of them can be performed.

The following algorithm shows the reduction procedure based on components. The
input is a set of negative examples and a triple (H,PosCovered,NegCovered), which is an
output of learning algorithm.
1: function Component elimination(negative examples E−,hypothesis with covered ex-

amples (H, posCovered, negCovered))
2: components := decompose H into connected components
3: Sort the components from the smallest (in the sense of number of tuples) to the

largest
4: H∗ := H
5: while components 6= ∅ do
6: C := remove largest from components
7: H̃ := H∗\C
8: newNegCovered := {E ∈ (E−\negCovered)|H̃ CX E}
9: if newNegCovered = ∅ then
10: H∗ := H̃
11: end if

12: end while

13: return (H∗, posCovered, negCovered)
14: end function

Another possibility how to reduce an obtained hypothesis is the Variable elimi-

nation algorithm. This algorithm proceeds similarly as Component elimination but re-
moves only variables and their corresponding tuples instead of components. This approach
is slower than Component elimination but allows stronger reduction. It is reasonable
to use �rst Component elimination to fast rough reduction and after that Variable
elimination to slower �rm reduction.
1: function Variable elimination(negative examples E−,hypothesis with covered ex-

amples (H, posCovered, negCovered))
2: variables := elements from H satisfying isV ariable
3: H∗ := H
4: for all v ∈ variables do
5: T := all tuples from H∗ containing v
6: set H̃ to H∗

7: from H̃ remove a and tuples from T
8: newNegCovered := {E ∈ (E−\negCovered)|H̃ CX E}
9: if newNegCovered = ∅ then
10: H∗ := H̃
11: end if

12: end for

13: return (H∗, posCovered, negCovered)
14: end function

In those two above algorithms we do not update the information about new covered
positive examples. We basically do not need to do so because our main motivation in this
algorithms is to simplify a learned hypothesis but such a score update can provide us more
accurate information about the quality of a hypothesis. As it was seen in the learning exam-
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ple, this is not easy when we want to store examples covered by means of homomorphism
but do not want to test it explicitly. In this case we have to perform LGG.

Now we provide an algorithm, which we perform to update the score of a hypothesis.
We call this algorithm LGG score update. We perform this update of score in the end
of the learning algorithm in case of using at least one of the algorithms for reduction. In
this phase the input of the LGG score update algorithm is the triple resulting from the
reduction algorithms and the same sets of positive and negative examples as are in the input
of the learning algorithm.

We will describe in the following section that we perform the learning algorithm
repeatedly and remove covered positive examples after every run. If we obtain a new hy-
pothesis from the learning algorithm, the set posCovered in the resulting triple contains only
those positive examples, which were given in the input of the learning algorithm. Therefore
we need to perform a score update to obtain an information about covering those positive
examples, which were not contained in the input of the learning algorithm. For this purpose
we again use LGG score update, but this time we provide it all positive examples in the
input.
1: function LGG score update(E+, E−, (H, posCovered, negCovered))
2: variables := elements from H satisfying isV ariable
3: H∗ := H
4: newPosCovered := {E ∈ (E+\posCovered)|H CX E}
5: for all E ∈ newPosCovered do
6: H̃ := LGGX(H

∗, E)
7: newNegCovered := {E ∈ (E−\negCovered)|H̃ CX E}
8: if newNegCovered = ∅ then
9: H∗ := H̃
10: posCovered := posCovered ∪ {E}
11: end if

12: end for

13: return (H∗, posCovered, negCovered)
14: end function

2.1.4 Learning a set of hypotheses

In this section we describe how to obtain a complete set of hypotheses. The algorithm is based
on repetition of Learning algorithm, optionally including post-processing algorithms.
1: function Classifier learning(E+, E−,minPositiveCovered)
2: allClasifiers := {}
3: for i = 1 : outerRep do
4: setHypotheses := {}
5: notUsedPositive := E+
6: j := 0
7: listHypotheses := {}
8: while j < innerRep and |notUsedPositive| > minPositiveCovered/2 do
9: j := j + 1
10: S := choose a random example from E+
11: (H, posCovered, negCovered) :=Learning algorithm(notUsedPositive, E−, S)
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12: (H, posCovered, negCovered) :=
13: LGG score update(E+, E−, (H, posCovered, negCovered))
14: if |posCovered| > minPositiveCovered then
15: add H to listHypotheses
16: j := 0
17: remove posCovered from notUsedPositive
18: end if

19: end while

20: listHypotheses to allClasifiers
21: end for

22: select �nal classi�er from allClasifiers
23: return �nal classi�er
24: end function

An important task before this algorithm is the �nding of a thresholdminPositiveCovered.
This part is described in details in the next section. An important part of this algorithm is
the selection of a �nal classi�er from a set of lists. In our experiments we usually set the
parameter maxNegCovered to zero. Therefore the score of a hypothesis is fully determined
by the size of the set posCovered of the respective hypothesis. In our implementation we
allow two possibilities how to select the �nal classi�er from the set allClasifiers. The �rst
is to select the best list from allClasifiers in the sense of count of all positive examples
covered together by all hypotheses of the list minus all negative examples covered by all
hypotheses. The second one is to use all hypotheses in allClasifiers as a �nal classi�er.
However in case that we allow the threshold maxNegCovered to be greater than zero the
second approach is not good enough. A possible choice can be for example using pseudo
boolean optimization.

2.1.5 How to set the minPositiveCovered parameter

In this section we describe how to set the threshold minPositiveCovered. The threshold
can be set by user. We allow it to be set to certain percentage of positive examples. Another
option is to use our heuristic approach based on randomized labels of examples described
in this section. First we randomize labels of input examples so that we preserve the ratio
of positive and negative examples described in this section. After that we run the learning
algorithm with randomized labels and test how many fake positive examples are covered by
the obtained hypothesis. This we perform repeatedly to obtain a more reliable estimation.
The idea behind this approach is that we can �nd out how many examples can be covered
randomly regardless their positivity or negativity.
1: function Set minimum covered(E+, E−)
2: p := |E+|
3: n := |E−|
4: setSizes := {}
5: for i = 1 : countRepetition do

6: E := {E+} ∪ {E−}
7: R+ := randomly select p examples from E
8: R− := E\R+

9: S := random example from R+

10: (H, posCovered, negCovered) := Learning algorithm(R+,R−, S)
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11: s := |posCovered|
12: add s to setSizes
13: end for

14: t := guess a threshold from setSizes
15: return t
16: end function

How to exactly obtain the threshold from setSizes can be set up by user. We sort
the elements in setSizes from the largest to the smallest and choose m-th number in the
row as the threshold t. So we allow the user to choose the number m to determine which
number to take as the threshold. We usually set the parameter countRepetition to 10 and
the parameter m to 3. This setting seems to be quite appropriate in our experiments.

2.1.6 Variants of Element elimination

The element elimination algorithm described in Section 1.1.6 exploits x-prehomomorphism
to test whether the current relational structure is x-homomorphic to the reduced structure.
We can also use homomorphism instead of x-prehomomorphism in this step of the algorithm.
In this way the algorithm outputs a core of the input relational structure. Whereas by the
original element elimination we obtain a structure which is just x-equivalent to the input
structure and which is a core but not necessarily a core of the input structure.

In fact, we always use a language bias in our experiments so basically this algorithm
also outputs bounded LGG but this procedure is able to �nd a core of the input structure
if no language bias is used.

A disadvantage of this approach is that homomorphism testing is NP-complete task.
We can reduce the impact of using such operation by an additional improvement, which at
least reduces the number of homomorphism tests.

Let us imagine that we �nd out that it holds A→ B. We solved this problem using
CSP. Therefore we obtained not only the information that A → B but also the concrete
mapping f : UA → UB. Now we denote the range of f as Range(f). We can consider an
induced substructure C of the structure B such that UC = Range(f). It is obvious that
A→ C because the mapping f is also the required homomorphism from A to C.

We can use the above fact in our element elimination algorithm where we use ho-
momorphism testing. In every reduction step we reduce our current structure in the way
described in the previous paragraph. Our enhanced element elimination is then as follows:
1: function Element elimination complete(relational structure A)
2: Set B := A.
3: Select an element a ∈ UB such that isV ariable(a), B′ =Reduce(B,a), f : UB → UB′

and f is a homomorphism
4: if no such element a exists then
5: return B and �nish.
6: else

7: C := induced substructure of B′ such that UC = Range(f)
8: Set B := C.
9: Go to step 3.
10: end if

11: end function
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We can see that in the step 7. we can equivalently use an induced substructure of
B and we would obtain the same result. The result of this algorithm is a core of the input
structure A. It is obvious that A ≈ B. And B has no induced substructure B′ such that
B→ B′.

We can also remove more elements from the structure B in case of standard element
elimination. Let us imagine that we found out that A CGAC B. We tested it so that we
formulated the homomorphism decision from A to B as a CSP and then used the GAC3
algorithm. Let us consider the case of the standard CSP formulation, which means that the
elements from UA are CSP variables and elements from UB are in their domains. The GAC3
algorithm pruned the domains of CSP variables. It can now happen that some elements from
UB do not occur in any domain. In this case we are sure that we can remove them from the
structure B and the relation CGAC will still hold. So we create a set D :=

⋃
a∈UB Dom(a).

We now create a relational structure C such that C is an induced substructure of B and
UC = D. Now we can easily consider that ACGAC C.

The most important improvement which speeds up our implementation is as follows.
We create a formulation of a CSP at the beginning of our elimination algorithm. If we �nd
out that a structure can be reduced, we only remove redundant variables from the CSP
domain. It is not necessary to create a completely new formulation, which is extremely time
consuming. This is one of the main reasons why we had to implement our own CSP solver.

A similar approach can be used if we use other local consistency technique. In the
case of dual CSP formulation we proceed similarly.

2.1.7 Remarks to CSP implementation

We implemented our own CSP solver and algorithms for local consistency GAC3 and SAC.
The new implementation of CSP solver was necessary because existing solvers like Choco are
too complicated and are rather designated for a straightforward use. However our algorithms
often require to use only speci�c techniques like concrete local consistency technique or to
modify a created CSP formulation by for example removing some variables as described in
the previous section. In our implementation we use some enhancements in the CSP formu-
lation and in the solver which can contribute to speed-up of the algorithms. Some of them
we describe in this section.

In this section we will concern with techniques used for solving CSP formulated for
homomorphism decision A→ B.

Let us consider that we have structures containing hundreds of elements but most of
them are involved in just a few tuples and let us consider the case of standard CSP formu-
lation as described in Section 1.1.2. If we create the same domains containing all elements
from UB for all CSP variables, the �rst run of GAC3 would take a lot of time. Because the
algorithm has to iterate over all variables, for every variable over all its constraints and for
all the constraints over all values contained in the domain of the variable and check whether
this value can satisfy the constraint. In this case many values in the domains are redundant
and we can discard them prior to the �rst arc consistency checking. During composition of
the task we in fact do not add all elements from UB to all variable domains. We add into
Dom(a) the value v if and only if ∃τ∃ci such that τ ∈ rel(ci) and τ [a] = v. After the basic
construction we can perform the following algorithm to prune the domains:
1: function Preprocess domains(constraint satisfaction problem (X,D,C))
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2: for all ci = ((xi1 , . . . , xin), rel(ci)) ∈ C do

3: for all k := 1 : arity(ci) do
4: D̃ := {v|∃τ ∈ rel(ci), τ [xik ] = v}
5: Dom(xik) := Dom(xik) ∩ D̃
6: end for

7: end for

8: end function

We can see that during this procedure we made the problem node consistent and
pruned the domains also according to constraints of a higher arity. In the case of dual
formulation we do not use the algorithm Preprocess domains but we still do not create
domains exactly as described in Section 1.1.2. We describe the construction in more details
after explaining how to simplify both constructions of CSP according to name relations.

Another remark to CSP formulation is related to the name relations. We �rst describe
the case of the standard formulation. We mentioned in Section 1.2.2 that the unary name
relations would appear as unary constraints in the original formulation. As we mentioned
before our arc consistencies always ensure node consistency too. We ensure this by Prepro-
cess domains and by slightly modi�ed version of GAC3 algorithm. Our implementation of
SAC uses GAC3 so that the node consistency also holds after one run of SAC. These unary
constraints ensure that every element a ∈ UA satisfying isConstant can be mapped into at
most one element b ∈ UB. After �rst run of any arc consistency algorithm every tuple τ ∈ ci
such that a ∈ var(ci) and τ [a] 6= b can not be evaluated as valid in the algorithm Exists.
Therefore we can discard those tuples during creating our CSP and we do not create CSP
variables for elements from UA satisfying isConstant. Therefore the construction of a CSP
for relational structures is now the same as for FOL clauses. For example: We can map the
tuple τ = (x, y, z) ∈ RAi where nameA1 = {(x)} into a tuple γ = (k, l,m) ∈ RBi only if
nameB1 = {(k)}.

A similar approach can be used for the dual formulation. Let us imagine two ele-
ments x ∈ UA and y ∈ UB such that name1(x) and name1(y). Originally we should create
a constraint c such that vars(c) = (vx, vname1(x)), rel(c) = (y, name1(y)). After �rst run
of arc consistency algorithm the domains of vx and vname1(x) would be Dom(vx) = {y},
Dom(vname1(x)) = name1(y). It can be seen that the values for such CSP variables are
always unique and we do not have to involve them in CSP variables. However we have to
slightly modify the formulation. Let us have a CSP variable vτ corresponding to a tuple
τ = (x, y, z) ∈ RAi where again nameA1 = {(x)}. We put in the domain of vτ only those
tuples γ = (k, l,m) ∈ RBi where nameB1 = {(k)}.

Now we describe how to construct domains for CSP variables corresponding to ele-
ments from UA satisfying isV ariable. We add into Dom(a) the value v if and only if ∃τ∃Ri
such that a ∈ τ ∈ RAi and ∃γ ∈ RBi such that τ can be mapped into γ and v is in γ at the
same position as a is in τ .

Constraint testing

Let us again assume that we solve a problem A → B formulated as a CSP. The algorithms
Revise and GAC3 do not di�er according to standard and dual formulation. The algorithm
GAC3 is designed for general problems with constraints of various arity but it can be also
used as arc consistency algorithm for the dual formulation, which contains only binary
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constraints. However for example the algorithm Exists di�ers for the standard and for the
dual formulation. In both cases we use one table for every tuple τ ∈ RAi in every RAi ∈ RA.
Such a table has one row for each tuple γ ∈ RBi such that τ can be mapped into γ. There
is one column in the table for every element from τ satisfying isV ariable.

In the case of dual formulation we have one constraint c for every pair τ ∈ RAi and
a ∈ UA where a ∈ τ and a satis�es isV ariable. We now describe the principle of the function
Exists(v, c, j) where v is a CSP variable, c is a constraint and j is a possible value for v.
Let us assume that vars(c) = (vτ , va). There are two possible scenarios of the function:

1. Exists(vτ , c, γ): We look into the table of τ at the row corresponding to γ and at the
column corresponding to the variable a. Let us assume that the there is a value y. If
y ∈ Dom(a) we return true otherwise we return false.

2. Exists(va, c, y): We look into the table of τ . For all γ ∈ Dom(vτ ) we look into the row
corresponding to γ. If at least one of this rows contains y at the position corresponding
to a, we return true otherwise we return false.

Next di�erence lists

In case of standard formulation we use the tables straightforwardly. The algorithm Exists

works exactly as it is described in Section 1.1.2. The iteration over tuples is implemented as
iteration over rows of the table. To speed up the search we enhanced the tables by using next
di�erence lists [7]. We can encode every element from UB as a positive integer. Let us assume
that the relation τ = (x, y, z) ∈ Ri contains only elements satisfying isV ariable. We sort its
table lexicographically and assign to every element in the i-th row and in the j-th column
a pointer to the row index higher than i containing next di�erent value in the column j or
a null pointer. The table 2.1.7 presents an example of such a table for tuple τ . The columns
correspond to variables x, y, z. The �rs row (1∗4, 3∗2, 7∗2) means that x = 1, y = 3, z = 7.
The numbers in the superscripts marked with ∗ are pointers to rows.
The pointers in �rst row (1∗4, 3∗2, 7∗2) mean that:

1. The closest row with a value of x di�erent from 1 is the row number 4.
2. The closest row with a value of y di�erent from 3 is the row number 2.
3. The closest row with a value of z di�erent from 7 is the row number 2.

row number x y z

1. 1∗4 3∗2 7∗2

2. 1∗4 4∗4 8∗3

3. 1∗4 4∗4 9∗4

4. 2∗0 3∗0 7∗5

5. 2∗0 3∗0 9∗0

Table 2.1: Example of next di�erence lists

The pointers point always to higher rows. The pointers ∗0 means that there is no
higher number row containing di�erent value for the variable.

Let us assume that in the algorithm Exists we �nd out that 1 /∈ Dom(x). We can
now continue directly to the row number 4 because it is the �rst row containing di�erent
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value for x. If we also �nd out that 2 /∈ Dom(x), we will be sure there is no valid tuple in
the table. If the input parameters of the function are Exists(v, c, j), the lists also help us
to e�ectively test whether τ [v] = j.

Storing domains for backtracking

An important problem which needs to be concerned is to �nd an e�ective way to keep correct
data during backtracking. In our case we need to store correct domains of our variables. In
every run of the backtracking algorithm we assign a value to a uninstantiated variable or
return a solution if there is no variable left. An assignment of a value is performed by
removing all other values from the domain of variable. After the assignment we perform arc
consistency algorithm which further prunes domains of other variables. Finally if no variable
has an empty domain, we run again the backtracking algorithm, otherwise we return false.

If an embedded run of the backtracking algorithm returns false, we need to restore the
domains. For this purpose we store for every CSP variable a special linked list containing
values deleted from its domain. The lists contain breakpoints to separate out particulars
levels of backtracking.

• At the beginning every domain list is empty.

• Before every assignment of a value, we add a breakpoint in the end of all domain lists.

• If the function Restore is called, we refresh domains of all variables using convenient
values from the domain lists.

The function Restore is a part of Backtracking algorithm stated in Section
1.1.2. To refresh the domain of a variable x we iteratively remove the last element from its
domain list and add this element into Dom(x). We terminate after removing a breakpoint.
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Chapter 3

Experiments and results

3.1 Experiments and results

In this section we provide description of experiments and their results. The main contri-
bution of this work should be to explore the in�uence of usage of di�erent versions of x-
homomorphism or homomorphism and compare them in terms of runtime and accuracy. We
provide comparisons of these di�erent approaches and after that we provide a comparison
of our implementation with state of the art algorithms for exploring structured data.

3.1.1 Description of datasets

The explored datasets come from various problem domains like toxicity prediction of small
molecules, estimation of therapeutic potential of antimicrobial peptides and estimation of
their adverse e�ects or searching for characterization of CAD documents. Their detailed
description of most of them can be found in [9]. The description of Hexose is for example
in [6].

• CAD

� Class-labeled CAD documents describing product structures.

• CAMEL

� Peptides labeled according to their antimicrobial activity.

• MUTA

� Organic molecules marked according to their mutagenicity.

• RANDOM

� Peptides labeled according to their antimicrobial activity

• PTC FM, PTC FR, PTC MM, PTC MR

� Organic molecules marked according to their carcinogenicity for male and female
mice and rats
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• Hexose

� Hexose-binding protein domains and non-Hexose-binding protein domains.

3.1.2 Optional parameters

Our implementation contains many parameters that can more or less determine the re-
sults. The Learning algorithm contains for example the parameters maxHypotheses,
maxCandidateExamples and maxNegCovered. Their in�uence is described in Section
2.1.1. It seems to be reasonable to set maxHypotheses to about tens of repetitions. The
parameter maxCandidateExamples can be for example set to

√
2× |PositiveExamples|.

But there is no strict recommendation for proper setting. We should only keep in mind that
too high values ofmaxHypotheses andmaxCandidateExamples can lead to over�tting and
too low values to obtaining only poor and improper hypotheses. As we mentioned before,
we always set maxNegCovered to zero in the experiments reported here..

Other options determining the behavior of the Learning algorithm are whether
to turn on or o� the algorithms Component elimination and Variable elimination.
We can also choose whether we use homomorphism or bounded homomorphism to test which
examples are covered. We can also choose which kind of Element elimination to use. Our
implementation enables to choose whether to use the variants of Element elimination

and Element elimination complete with additional reduction as described in 2.1.6. We
always use the variants with the additional reduction.

Other important options are which formulation of CSP and which local consistency
technique shall be used. We can also set how to obtain the threshold minPositiveCovered.
We can either choose a percentage of positive examples or use the procedure Set minimum

covered to select the threshold automatically. In case of Set minimum covered we
choose number of repetitions of learning with fake labels and the number m, which means
that we choose them-th largest number of positive examples covered by a learned hypothesis
with fake labels as our threshold. Other important parameters in the algorithm Classifier

learning are innerRep and outerRep and the choice of �nal selection of hypotheses from
the learned set.

The concrete way how to set the parameters is described in Appendix.

In following sections we provide comparisons of usage of di�erent CSP formulations:
bounded homomorphism using GAC, bounded homomorphism using SAC and complete
homomorphism. We test these approaches mainly on eight di�erent datasets. Some of the
runs were also tested on one additional dataset Hexose. The dataset Hexose is much more
di�cult than the other datasets because it contains larger structures. Therefore we did not
perform on it all runs with various settings that we performed for the other datasets. We
describe most of the results on this dataset separately in Section 3.1.6.

3.1.3 Cross-validation results

In this section we provide results for 10-fold cross-validation. We used the following common
setting for all experiments in this section:

• maxNegCovered = 0
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• maxHypotheses = 30

• Component elimination and Variable elimination are both performed

• maxCandidateExamples =
√
2× |PositiveExamples|

• innerRep = 10

• outerRep = 3

• Used Set minimum covered with 10 repetitions and 3rd highest value chosen as
threshold

We changed other parameters to test their in�uence on accuracy and runtime. We
run experiments with following combination of parameters:

1. Standard formulation, GAC consistency, bounded homomorphism, bounded version of
Element elimination, in tables denoted as std GAC

2. Dual formulation, GAC consistency, bounded homomorphism, bounded version of El-
ement elimination, in tables denoted as dual GAC

3. Standard formulation, SAC consistency, bounded homomorphism, bounded version of
Element elimination, in tables denoted as std SAC

4. Dual formulation, SAC consistency, bounded homomorphism, bounded version of El-
ement elimination, in tables denoted as dual SAC

5. Standard formulation, GAC consistency, complete homomorphism, element elimi-

nation complete, in tables denoted as complete

We test in experiments the in�uence of the above combinations with di�erent maxi-
mum number of variables in one structure. This is determined by the parametermaxV ariables
in algorithm LGG reduction algorithm. All experiments with one dataset were per-
formed with an identical seed. A very important note is that we used a language bias in all
our experiments. Therefore all experiments use at least bounded LGG w.r.t. the set of all
structures complying with a language bias and not the standard LGG. So technically we use
bounded LGG even if we use Element elimination complete.

At most 100 variables per structure

First we set the parameter maxV ariables to 100. The table 3.2 shows average runtime
of complete learning and the table 3.1 accuracy of these experiments. The entry "> 48h"
means that at least one of the folds did not �nish in 48 hours. As we can see from the
table 3.1, there is no di�erence in accuracy by using standard or dual formulation of CSP.
The di�erence between accuracy by using SAC or GAC as x-prehomomorphism is usually
approximately one percent. The usage of homomorphism and complete element elimina-
tion gives us slightly di�erent accuracies then the bounded versions but the di�erences are
still very small. Sometimes the complete version gives better results than the bounded but
sometimes also worse.
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If we look at the table 3.2, we can see that there is a di�erence in runtime of the
di�erent �ve scenarios. In all datasets except CAD and Hexose the version using complete
homomorphism and element elimination complete is the fastest. This result is really
surprising since the homomorphism testing is an exponential-time procedure whereas the
bounded homomorphism testing with GAC or SAC as x-prehomomorphism is a polynomial-
time procedure. However these tests used structures reduced to contain at most 100 variables.
It was therefore necessary to perform the same set of tests on structures containing more
variables.

Dataset std GAC std SAC dual GAC dual SAC complete

mean stdev mean stdev mean stdev mean stdev mean stdev

cad 0.8896 0.1273 0.8896 0.1273 0.8896 0.1273 0.8896 0.1273 0.9096 0.1085

camel 0.8609 0.1268 0.8609 0.1268 0.8609 0.1268 0.8609 0.1268 0.8400 0.1174

muta 0.7671 0.0866 0.7779 0.0858 0.7671 0.0866 0.7779 0.0858 0.7843 682.6488

ptc fm 0.6050 0.0659 0.6050 0.0581 0.6050 0.0659 >48h 0.5938 0.0553

ptc fr 0.6640 0.0514 0.6583 0.0482 0.6640 0.0514 >48h 0.6410 0.0456

ptc mm 0.6045 0.0428 0.5924 0,04447 0.6045 0.0428 >48h 0.6165 0.0630

ptc mr 0.5585 0.0748 0.5585 0.0748 0.5585 0.0748 >48h 0.5582 0.0763

random 0.8400 0.1101 0.8450 0.0832 0.8400 0.1101 0.8450 0.0832 0.8500 0.1054

hexose 0.6563 0.0896 � � 0.6563 0.0896 � � 0.6938 0.1299

Table 3.1: Results of 10-fold cross-validation, 100 variables, accuracy

Dataset std GAC std SAC dual GAC dual SAC complete

mean stdev mean stdev mean stdev mean stdev mean stdev

cad 14.80 6.95 650.66 649.14 37.79 21.43 941.70 1427.91 18.65 7.87

camel 179.51 43.17 4261.72 2165.88 151.13 112.67 6530.36 1413.77 101.39 56.94

muta 174.83 66.73 6306.08 1711.65 465.85 802.06 47467.87 22441.76 115.68 55.78

ptc fm 190.82 93.83 14133.44 6848.70 158.27 70.88 >48h 86.42 53.08

ptc fr 82.59 31.60 27520.04 19378.72 152.63 74.66 >48h 72.39 18.18

ptc mm 104.60 45.41 37166.81 34612.86 206.50 96.02 >48h 93.70 51.02

ptc mr 147.48 52.81 139.05 75.66 303.64 132.39 >48h 132.42 66.25

random 90.27 33.92 2159.16 2466.38 104.21 50.85 4522.39 3543.01 25.37 8.89

hexose 7515.82 1378.46 � � 9588.09 2296.01 � � 10093.15 4101.18

Table 3.2: Results of 10-fold cross-validation, 100 variables, runtime in seconds

At most 400 variables per structure

We performed the same experiments with higher number of variables in one structure. This
time the limit was set to 400. Table 3.3 contains the accuracy obtained by the experiments.
Unfortunately the time limit 48 hours was exceeded for all experiments using SAC as x-
prehomomorphism. We can see that there is again no big di�erence in accuracy regarding
complete homomorphism testing or bounded homomorphism using GAC. Sometimes the
accuracy is slightly better for complete version sometimes for bounded. The results for
standard and dual formulation of the problem using bounded homomorphism with GAC
give again exactly the same results.

The results in Table 3.4 show the runtime for the experiments with 400 variables.
Except Hexose and CAMEL datasets, the dual formulation performs much better than stan-
dard formulation in experiments using bounded homomorphism. In most cases the version
using homomorphism testing and complete element elimination seems to be the best choice
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regarding the average runtime. However we should notice that for datasets PTC FM and
PTC MM there is a very large standard deviation, which indicates that the average runtime
is not a reliable estimate of the real runtime. A better information about the runtime behav-
ior can be provided by Figure 3.1 which represents runtime of all folds in cross-validation.
The �gure shows the median, the 25th and 75th percentiles and outliers. Note that the
runtime is plotted in the logarithmic scale. For comparison Figure 3.2 provides the same
results for the version with bounded homomorphism using GAC and standard formulation.
Note that as opposed to the other datasets the runtime of the dataset Hexose was the best
for bounded version using GAC and that the complete version exceeded the time limit 48
hours.

Dataset std GAC std SAC dual GAC dual SAC complete

mean st. dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev.

cad 0.8774 0.1274 >48h 0.8774 0.1274 >48h 0.8773 0.0895

camel 0.8600 0.1265 >48h 0.8600 0.1265 >48h 0.8300 0.1252

muta 0.7479 0.14445 >48h 0.7479 0.1445 >48h 0.7638 0.1378

ptc fm 0.5701 0.0564 >48h 0.5701 0.0564 >48h 0.6018 0.0318

ptc fr 0.6725 0.0389 >48h 0.6725 0.0389 >48h 0.6611 0.0461

ptc mm 0.6399 0.0486 >48h 0.6399 0.0486 >48h 0.6308 0.0620

ptc mr 0.5788 0.0617 >48h 0.5788 0.0617 >48h 0.5989 0.0420

random 0.835 0.0784 >48h 0.835 0.1001 >48h 0.8350 0.1107

hexose 0.6500 0.0894 0.6500 0.0894 >48h

Table 3.3: Results of 10-fold cross-validation, 400 variables, accuracy

Dataset std GAC std SAC dual GAC dual SAC complete

mean st. dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev.

cad 926.64 365.20 >48h 533.37 144.92 >48h 472.57 75.98

camel 232.24 112.71 >48h 287.87 187.23 >48h 99.02 69.98

muta 5441.64 2302.10 >48h 3589.22 688.38 >48h 784.34 202.74

ptc fm 3525.02 1826.70 >48h 1751.26 659.55 >48h 2929.82 6711.55

ptc fr 3228.60 1475.40 >48h 2480.85 1222.40 >48h 1644.61 637.05

ptc mm 3031.51 1684.99 >48h 1716.96 582.79 >48h 558.13 361.84

ptc mr 4962.59 2917.32 >48h 3725.07 1529.02 >48h 4532.04 10075.75

random 83.53 97.91 >48h 46.08 18.81 >48h 35.76 19.37

hexose 18391.64 6208.34 24790.33 9336.32 >48h

Table 3.4: Results of 10-fold cross-validation, 400 variables, runtime in seconds

No limit on variables per structure

For a complete overview about the performance of the used settings we performed a set
of the same experiments this time with no limit on size of the explored structures. It was
not meaningful to run those experiments for the versions using SAC since they exceeded
the time limit already in experiments with limited size. From this set of experiments we
did not gain many results because most of them exceeded either time limit or memory
limit (denoted by OOM) which was usually 16 GB. Sometimes the runtime was exceeded
by only one fold so maybe higher threshold can ensure that also versions with bounded
homomorphism �nish. Except the dataset CAMEL we obtained only results for the version
using complete homomorphism. The results of accuracy are provided in Table 3.5. We can
see that there is no improvement in accuracy compared to the experiments with the size
restriction. Regarding the runtime we can look into Table 3.6. We can again note that the
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Figure 3.1: Runtime in seconds, 10 fold cross-validation, structure with 400 variables, ho-
momorphism

Figure 3.2: Runtime in seconds, 10 fold cross-validation, structure with 400 variables,
bounded homomorphism using GAC, standard formulation
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standard deviation is quite large. For this reason we again provide the box plot (Figure 3.3)
of runtime of every fold which should show the runtime behavior better than mean and
standard deviation.

Dataset std GAC dual GAC complete

mean st. dev. mean st. dev. mean st. dev.

cad >48h >48h OOM

camel >48h 0.84 0.1075 0.85 0.1179

muta >48h >48h 0.7660 0.1574

ptc fm >48h OOM 0.5762 0.0578

ptc fr >48h >48h 0.6583 0.0560

ptc mm >48h >48h >48h

ptc mr >48h OOM 0.5843 0.0439

random >48h OOM 0.84 0.1022

Table 3.5: Results of 10-fold cross-validation. no variable limit. accuracy

Dataset std GAC dual GAC complete

mean st. dev. mean st. dev. mean st. dev.

cad >48h >48h OOM

camel >48h 4370.96 11259.59 251.43 183.39

muta >48h >48h 6014.79 3094.77

ptc fm >48h OOM 4629.88 3114.78

ptc fr >48h >48h 11699.10 23772.89

ptc mm >48h >48h >48h

ptc mr >48h OOM 6056.39 5141.49

random >48h OOM 271.89 554.71

Table 3.6: Results of 10-fold cross-validation, no variable limit, time

3.1.4 Runtime analysis for random experiments

In this section we describe experiments more concerned with runtime of some procedures
to compare the in�uence of bounded operations and di�erent arc consistency techniques.
Again we used a bounded LGG with respect to a set of structures complying with certain
language bias. All experiments were performed with no limit on size of the structures.

In these experiments we always picked a random positive example from a dataset
and computed its LGG with another positive example in combination with either Element
elimination or Element elimination complete. We measured the runtime of the elim-
ination algorithm. After reduction of the obtained structure we measured the runtime for
homomorphism and bounded homomorphism between the obtained structure and all exam-
ples in the dataset. After that we performed LGG of this random structure with another
positive example and again measured the runtime of reduction procedure and homomor-
phism decisions for all examples. After ten runs of LGG (LGG of ten examples) we always
started with a new couple of positive examples and used their LGG for new measurements.
In this way we obtained a large amount of samples on which we could measure average
runtime of the operations.

The output of our measurements are two basic dependencies. The �rst is the de-
pendence of runtime of an elimination algorithm on the size of a structure before and after
performing it. And the second is the dependence of runtime of homomorphism (or bounded
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Figure 3.3: Runtime in seconds, 10 fold cross-validation, structure with 400 variables, ho-
momorphism

homomorphism) on number of positive and negative examples covered by the explored hy-
pothesis. We performed all experiments on one dataset with the same seed. Sometimes the
experiments ran too long and therefore we did not always obtain the same number of ran-
dom samples in all experiments. We usually removed a proper amount of samples in case
of comparison of results of two experiments where one of them contained signi�cantly more
samples than the other to obtain exactly the same amount of samples in both sets.

Homomorphism vs. bounded homomorphism

The most important question seems to be the runtime of homomorphism compared to
bounded homomorphism. We expected the bounded homomorphism to be much faster than
the complete homomorphism decision. However in cross-validation experiments it turns out
that the scenario using complete homomorphism can perform better than the version using
only bounded homomorphism. In the terms of CSP we basically measured the average time
of GAC compared to complete solution of CSP using also GAC as its part. We always used
the standard formulation in these experiments. Figures 3.4, 3.5 and 3.6 show the comparison
of average runtime of homomorphism and bounded homomorphism testing between a ran-
dom hypothesis and all examples in a dataset. Especially from the ratios of runtime we can
see that the complete solution of a CSP is not much slower than only GAC. It means that
the most of the time of CSP is taken by the GAC.

The other �gures show the comparisons of runtime of Element elimination and
Element elimination complete (Figures 3.7 and 3.8). Again GAC and standard formu-
lation were used in the experiments. Note that the runtime is provided in logarithmic scale.
Here we can see an interesting fact. The runtime is often much better for the complete ver-
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(a) Bounded homomorphism runtime (b) Homomorphism runtime

(c) Ratio of runtime: homomorphism/bounded homomor-
phism

Figure 3.4: Runtime in seconds dependence on number of positive and negative covered
examples, CAMEL dataset, standard formulation, GAC in both prehomomorphism and
homomorphism

sion than for the bounded version. We could expect such a result since the cross-validation
measurements were also faster in case of Element elimination complete. Such a re-
sult is surprising since the complete version performs repeatedly an exponencial-time CSP
solution whereas the basic Element elimination performs repeatedly a polynomial-time
procedure. However as we have seen in �gures with homomorphism and bounded homo-
morphism comparison, the runtime is not much higher for homomorphism. In addition the
reduction of CSP domains described in Section 2.1.6 is much more stronger for Element
elimination complete.
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(a) Bounded homomorphism runtime (b) Homomorphism runtime

(c) Ratio of runtime: homomorphism/bounded homomor-
phism

Figure 3.5: Runtime in seconds dependence on number of positive and negative covered
examples, MUTA dataset, standard formulation, GAC in both prehomomorphism and ho-
momorphism

My CSP solver vs. Choco solver

In our experiments with random hypotheses we also tested the speed of homomorphism
decision using our implementation and the homomorphism decision using Choco solver,
which is a widely used CSP solver. The results are shown in Figures 3.9, 3.10 and 3.11. As
we can see in the �gures our implementation is at least four times faster for CAMEL and
PTC FM datasets and at least 2.5 times faster for MUTA dataset. These results show that
our implementation of CSP solver is very e�ective. However our solver is designed only for
CSP with table constraints as opposed to Choco which is able to solve much more general
tasks.
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(a) Bounded homomorphism runtime (b) Homomorphism runtime

(c) Ratio of runtime: homomorphism/bounded homomor-
phism

Figure 3.6: Runtime in seconds dependence on number of positive and negative covered
examples, PTC FM dataset, standard formulation, GAC in both prehomomorphism and
homomorphism
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(a) Element elimination (b) Element elimination complete

(c) Ratio of runtime: Element elimination com-
plete/Element elimination

Figure 3.7: Runtime in seconds Element elimination complete, Element elimination, CAMEL
dataset, standard formulation, GAC
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(a) Element elimination (b) Element elimination complete

(c) Ratio of runtime: Element elimination com-
plete/Element elimination

Figure 3.8: Runtime in seconds Element elimination complete, Element elimination, MUTA
dataset, standard formulation, GAC

58



(a) Homomorphism using Choco solver (b) Homomorphism using our CSP solver

(c) Ratio of runtime: homomorphism using
choco/homomorphism using our implementation

Figure 3.9: Runtime in seconds dependence on number of positive and negative covered
examples, comparison with Choco solver, CAMEL dataset, standard formulation, GAC in
our solver
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(a) Homomorphism using Choco solver (b) Homomorphism using our solver

(c) Ratio of runtime: homomorphism using
choco/homomorphism using our implementation

Figure 3.10: Runtime in seconds dependence on number of positive and negative covered
examples, comparison with Choco solver, PTC FM dataset, standard formulation, GAC in
our solver
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(a) Homomorphism using Choco solver (b) Homomorphism using our solver

(c) Ratio of runtime: homomorphism using
choco/homomorphism using our implementation

Figure 3.11: Runtime in seconds dependence on number of positive and negative covered
examples, MUTA dataset, standard formulation, GAC in our solver
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Standard vs. dual formulation for GAC as x-prehomomorphism

In this part we describe similar experiments for comparison of dual and standard CSP formu-
lation in case of using GAC as x-prehomomorphism. The results for bounded homomorphism
testing are in Figures 3.12 and 3.13. We can see that the dual formulation is a little bit slower
for CAMEL dataset and usually equally fast or slower for PTC FM dataset.

The results for Element elimination are in Figures 3.14 and 3.15. We can see that
the dual formulation is slightly slower for the CAMEL dataset, where the ratio of runtime
is approximately between 1.2 and 2.2. For PTC FM dataset the results are similar with one
exception where the ratio of runtime is about 30.

(a) Standard formulation (b) Dual formulation

(c) dual formulation/standard formulation

Figure 3.12: Runtime in seconds, dependence on number of positive and negative covered
examples, bouned homomorphism using GAC, in�uence of standard and dual formulation,
CAMEL dataset
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(a) Standard formulation (b) Dual formulation

(c) Runtime ratio dual formulation/standard formulation

Figure 3.13: Runtime in seconds, dependence on number of positive and negative covered
examples, bouned homomorphism using GAC, in�uence of standard and dual formulation,
PTC FM dataset
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(a) Standard formulation (b) Dual formulation

(c) Runtime ratio dual formulation/standard formulation

Figure 3.14: Runtime in seconds of Element elimination using GAC, dependence on number
of variables before and after elimination, in�uence of standard and dual formulation, CAMEL
dataset
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(a) Standard formulation (b) Dual formulation

(c) Runtime ratio dual formulation/standard formulation

Figure 3.15: Runtime in seconds of Element elimination using GAC, dependence on number
of variables before and after elimination, in�uence of standard and dual formulation, PTC
FM dataset
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GAC prehomomorphism vs. SAC as prehomomorphism, standard formulation

In this part we provide results of experiments for comparison of bounded homomorphism
using GAC with bounded homomorphism using SAC. An example of results for CAMEL
dataset is in Figure 3.16. We can see that the version with SAC is at leas two times slower
than the one with GAC. The results are not surprising since SAC is based on repetitive
calling of GAC.

The results for Element elimination are in Figure 3.17. We can see that in an extreme
case the ratio of SAC and GAC can be up to 8000. However values approaching 2000 or
4000 are also quite often. These results can explain why we usually did not obtain results
from cross-validation in reasonable time by using SAC as x-prehomomorphism.

(a) Bounded homomorphism using GAC (b) Bounded homomorphism using SAC

(c) Runtime ratio SAC/GAC

Figure 3.16: Bounded homomorphism runtime in seconds, dependence on number of positive
and negative covered examples, standard formulation, in�uence of GAC and SAC, CAMEL
dataset
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(a) Elimination using GAC (b) Elimination using SAC

(c) Runtime ratio SAC/GAC

Figure 3.17: Runtime in seconds of Element elimination, dependence on number of variables
before and after elimination, in�uence of GAC and SAC, standard formulation, CAMEL
dataset

GAC prehomomorphism vs. SAC prehomomorphism, dual formulation

Finally we provide an example of experiment for comparison of bounded homomorphism
using GAC and SAC in combination with dual CSP formulation. The results are in Figure
3.18. We can see similarly as in case of standard formulation that SAC is signi�cantly slower
than GAC.

67



(a) Bounded homomorphism using SAC (b) Bounded homomorphism using GAC

(c) Bounded homomorphism using SAC/ bouned homo-
morphism using GAC

Figure 3.18: Runtime in seconds, dependence on number of positive and negative covered
examples, dual formulation, in�uence of GAC and SAC, PTC FM dataset

3.1.5 Comparison with other learners

In this section we provide a comparison of accuracy of our classi�er and the state-of-the-art
tools for relational learning. The used learners were Aleph [25], nFOIL [12] and ProGolem
[16]. We compare performance of our learner with the results from [9]. The parameters of all
four systems were set so that their runtime would be about tens minutes per fold at most.

There are two columns in Table 3.7 for the learner ProGolem. In each column dif-
ferent value of maximum number of covered negative examples was set. In ProGolem1 the
parameter was set to the default value and in ProGolem2 the parameter was set to 0.

Table 3.7 presents the results of 10-fold cross-validation. The values for our classi�er
are in the column denoted as My. The parameter setting was: standard formulation, bounded
homomorphism using GAC and at most 100 variables in structure. These values can be also
found in Table 3.1. A pairwise comparison of performance can be found in Table 3.8. The
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values here mean number of wins/looses/ties of the classi�er in row compared to the one
in column. It can be seen from the two tables that our implementation reaches comparable
accuracy to the other tools. In Table 3.2 average learning runtime per fold for every dataset
for our learner can be found. We can see that the average runtime per fold is less than 200
seconds.

Dataset My Aleph ProGolem1 ProGolem2 nFOIL

mean st. dev. mean st. dev. mean st. dev. mean st. dev. mean st. dev.

CAD 0.890 0.127 0.857 0.107 0.863 0.072 0.875 0.084 0.969 0.052
CAMEL 0.861 0.127 0.724 0.145 0.805 0.131 0.783 0.101 0.833 0.113
MUTA 0.767 0.087 0.608 0.089 0.665 0.045 0.832 0.070 0.766 0.096
PTC FM 0.605 0.066 0.620 0.033 0.591 0.071 0.619 0.069 0.602 0.087
PTC FR 0.664 0.051 0.687 0.039 0.650 0.083 0.658 0.047 0.670 0.065
PTC MM 0.604 0.043 0.598 0.050 0.607 0.082 0.595 0.036 0.631 0.088
PTC MR 0.558 0.075 0.593 0.045 0.549 0.054 0.567 0.074 0.573 0.071
RANDOM 0.840 0.110 0.860 0.061 0.880 0.063 0.810 0.094 0.830 0.059

Table 3.7: Results of 10-fold cross-validation, accuracy

My Aleph progolem1 progolem2 nfoil
My � 4/4/0 6/2/0 5/3/0 4/4/0

Aleph 4/4/0 � 3/5/0 5/3/0 4/4/0
progolem1 2/6/0 5/3/0 � 3/5/0 1/7/0
progolem2 3/5/0 3/5/0 5/3/0 � 2/6/0

nfoil 4/4/0 4/4/0 7/1/0 6/2/0 �

Table 3.8: Table of wins/looses/ties for 10-fold cross-validation

3.1.6 Hexose dataset

This dataset contains spatial structures of 80 Hexose-binding protein domains and 80 non-
Hexose-binding protein domains. Positive and negative labels indicate which protein do-
mains are capable of binding hexoses or not. For this dataset we used the language bias
d(x,#, x,#,#). Here, the relation d has the form d(V 1, type1, V 2, type2, distance). The
�rst position contains an identi�er of an atom, the second contains the type of the atom
(re�ecting also its position in the amino acid), the third position contains an identi�er of
another atom, the fourth its type and �nally the �fth position contains the distance between
the two atoms if it is less than 4 Angstroms. There are no tuples for pairs of atoms with
a distance higher than 4 Angstroms in the dataset. Thank to this language bias we can
easily transform the relational structures in this dataset into labelled graphs. Instead of one
relational structure for every example, we obtain one labelled graph for every example. The
approach is simple:

• There is one graph vertex for every atom.

• A vertex corresponding to an atom has a label with the type of the atom.

• There is an edge between two vertices if and only if the corresponding atoms belong to
the same relational tuple. The edge is labelled by the distance between the two atoms.
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It can be proven that the formulation using labelled graphs is equivalent to the
formulation in terms of relational structures with language bias and of course also to the
formulation in FOL. The exact form of the used operations can be found in [6]. Graph
homomorphism is used instead of relational-structure homomorphism and graph product
instead of LGG.

Previously, accuracy 67.5± 10.5% was reported in the original work concerned with
this dataset [18]. Some results of our experiments were provided in section 3.1.3. The
obtained accuracy was 65.6 ± 90.0% and 69.4 ± 13%. Some of our experiments were al-
ready described in [6], where the accuracy of 10-fold cross-validation was 71.9 ± 5.3%.
In this experiment we used an older version of the algorithm, which was not able to set
minPositiveCovered automatically, and slightly di�erent settings than in Section 3.1.3.
The main di�erences are:

• maxHypotheses = 180

• maxV ariables = 1500

• maxCandidateExamples = 4

• minPositiveCovered set to 20% of positive examples

• outerRep = 1

There were also some little di�erences for example in using innerRep and we used
homomorphism to updating score of a hypothesis. The examples in Hexose dataset are more
complex (approximately 1000 edges per graph) than the examples in the other explored
datasets and probably the higher values of some parameters can provide better results.
However the better accuracy can be also in�uenced by randomness.

Figures 3.19 and 3.20 show examples of two learned graphs. Both of the two graphs
covers 39 positive examples and no negative example.
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Figure 3.19: A graph structure which covers 39 positive examples and no negative example
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Figure 3.20: Another graph structure which covers 39 positive examples and no negative
example
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Conclusion

One of the goals of this thesis was to formulate methods of relational machine learning based
on theoretical background from FOL into relational structures. Such formulation should be
more appropriate for most scienti�c audience. We provided correspondence between opera-
tions and terminology of FOL and operations and terminology from the domain of relational
structures. We formulated least general generalization de�ned by Plotkin for FOL clauses
for relational structures and provided other useful equivalent transformations for example
for FOL variables and constants. We also reformulated theoretical outcomes for bounded
operations presented in [10] and [9] for relational structures.

The other goal of this thesis was to explore application of various techniques from
constraint satisfaction problem in relational machine learning. We investigated the in�uence
of using algorithms based on di�erent local consistency techniques and compared them with
algorithms based on complete CSP solution.

For this purpose we implemented a complex tool which can be used for relational
learning. An important part of the tool is a CSP solver including two local consistency algo-
rithms. Its implementation enables us to set many parameters of the learning process. The
implementation also enables to change many parameters determining some basic principles
of learning, like di�erent local consistency techniques, di�erent CSP formulations, turning on
or o� some enhancements which can contribute to better performance (Variable elimina-
tion, Component elimination, Set minimum covered, di�erent settings of Element
elimination). The implementation contains many algorithmic tricks and sophisticated data
structures which contribute to its speed.

We performed several experiments to test the in�uence of di�erent CSP techniques
in our algorithms.

First we performed a set of cross-validation experiments. We found out that thank
to e�ective implementation of our CSP solver the version of learning using in general
exponential-time complete CSP solution is for almost all studied datasets faster that versions
using only polynomial-time local consistency techniques, which is a very surprising result.
However for example for the Hexose dataset, which contains more complex structures, the
version using complete solver was slower than the versions using only local consistencies.

Our experiments also shown that di�erent CSP formulations of our tasks have no
in�uence on accuracy. The runtime can be better or worse for standard or dual formulation
depending on the size of the problem and the studied dataset. We also found out that there
is no signi�cant di�erence in accuracy using algorithms based on GAC or SAC. However
the runtime is much worse for the SAC versions. The versions using SAC usually had not
�nished within 48 hours even for small instances.
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We also performed some experiments with randomly generated hypotheses to test
the runtime of our procedures more precisely. We tested the dependence of runtime of various
versions of homomorphism and bounded homomorphism, on number of covered positive and
negative examples. We found out that the homomorphism testing based on CSP solution is
only about approximately 1.1 to 1.4 times slower than bounded homomorphism testing based
on arc consistency. We also showed that our CSP solver performs on these tasks about four
time better than the widely used Choco solver. It turned out that bounded homomorphism
is at least two times (but frequently more) slower using SAC than GAC.

In our experiments with random hypotheses we also tested the dependence of runtime
of various version of Element elimination on the size of the processed structure before
and after running it. It turned out that thanks to e�ective implementation the version using
homomorphism testing (complete CSP solution) is very often much faster than the version
using bounded homomorphism (arc consistency). The version with bounded homomorphism
using dual formulation is usually slightly slower than the one using standard formulation.

The best choice for learning seems to be using version with homomorphism and El-
ement elimination complete together with standard formulation and GAC. For some
more complicated datasets like Hexose maybe bounded homomorphism and Element elim-
ination is a better choice.

The �ndings presented in this thesis open many new research questions. It would be
interesting to see whether the bounded operations are more suitable for datasets containing
more complex examples as the experiments with the Hexose dataset suggest. It should be
investigated if there exist further implementation improvements which can increase the speed
of the algorithms with bounded operations. For example the actual structure of learning
examples (e.g. whether they are acyclic) could be exploited. Another interesting question is
how to select the hypotheses which should be used in the �nal classi�er from all hypotheses
obtained during learning. It would be also useful to �nd out whether higher settings of
the parameters like maxHypothesis contribute to better accuracy or whether it is enough
to use only relatively low values, which also means faster learning. It could be also useful
to investigate the best obtained hypotheses and �nd out whether they can be used in the
scienti�c domain from which the data originate.
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Contributions

In this work we bring several contributions. We reformulated the problems of relational
learning widely studied in inductive logic programming into terminology of relational struc-
tures. Especially the de�nition of least general generalization for relational structures and
a proposition how to deal with variables and constants from FOL in relational structures
can be useful. This formulation should be more accessible for most of the scienti�c audience.
Therefore it can contribute to use of these very useful methods in more domains.

The second contribution is the investigation of advantages and disadvantages of
using bounded operations based on local consistency techniques from CSP in relational
machine learning. We found out that an e�ective implementation of CSP solver used for
homomorphism (θ-subsumption) decision, which is in general an exponential-time proce-
dure, in a combination with an e�ective implementation of �nding a core of a relational
structure (θ-reduction) provides more e�ective learning than another theoretically expo-
nentially faster approach using bounded operations. Our experiments indicate that there
is no signi�cant in�uence on accuracy when using di�erent local consistency techniques as
x-prehomomorphism.

Our learner is comparable in accuracy with state-of-the-art learners. Our experiments
showed that the learner is able to produce good results quite fast.

We implemented an e�cient CSP solver which can be used for solving tasks with
general arity of constraints. This solver is even faster than the widely used Choco solver, as
we showed in our experiments. However, as opposed to Choco our solver is designed only
for table constraints. Thank to many enhancements our implementation performs well also
in �nding a core of a relational structure (θ-reduction) which is in general co-NP-complete
task.
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Appendix

3.2 How to use the learner

Format of the input data

The input data have to be stored in a text�le. Every row contains an example. The row
starts with a label identifying whether the example is positive or negative. The labels can be
for example + and −, but any strings without spaces can be also used. The label is followed
by a space and the space is followed by the structure of the example. The syntax is the same
as we used in some of our examples, i.e. the syntax inspired by Prolog. So one example can
be written for instance in this way:

+ atom(d59_28), atom(d59_34), bond(d59_23, d59_5, h_3, c_22, 1)

Parameters for learning

Various parameter settings have the general form set(parameter_name,parameter_value),
where every such item should be written on a unique row. The notation
set(parameter_name,'parameter_value') is also possible. The use of the apostrophes is
necessary when setting a parameter value containing commas otherwise the value will not
be set properly. Comments are marked with %. Therefore any sequence on a row written
after the character % is ignored.

Now we provide a description of concrete parameters:

1. set(algorithm,'learning_one') - Sets the type of algorithm which should be per-
formed. Possibilities are:

• learning_one - Performs one run of Learning algorithm to obtain one hy-
pothesis from examples of given dataset.

• learning_all - Performs one complete learning procedure Classifier learn-

ing to obtain a set of hypotheses.

• crossvalidation_one - Part of crossvalidation, only one fold is processed. Use-
ful for running folds separately on multiple computation sources. Script can be
created automatically by using the option create_files.

• crossvalidation - Performs a complete crossvalidation.

• create_files - Creates new �les where every �le contains parameters for pro-
cessing one crossvalidation fold. Every created �le then contains
set(algorithm,learning_one).
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2. set(input_file,'file_name') - Name (including path) of �le with input examples.
This is a compulsory parameter.

3. set(seed_for_random,'105') - Sets seed for random generator used in many ran-
domized procedures.

4. set(output_path,'name_of_output_directory') - Sets complete path or name of a
folder where outputs should be stored. Inside this directory a new directory
"bull_output_number" is created. One script can contain multiple running instruc-
tions. The value of number indicates the order of run.

5. set(filter,'dist(x,#,x,#,#), residue(x,#)') - This �lter determines the lan-
guage bias. This is a due parameter in almost all running scenarios. The only excep-
tion is when set(algorithm,'create_files') is used. The marks # denote positions
requiring elements satisfying isConstant. Here the apostrophes are necessary because
�lters always contain commas.

6. set(positive_marker,'+') - Indicates the label which is in the input �le used for
denoting positive examples. Default setting is +.

7. set(positive_marker,'-') - Indicates the label which is in the input �le used for
denoting negative examples. Default setting is −.

8. set(consistency_type,'gac3') - Indicates which type of consistency algorithm is
used. Options are:

• gac3 - Default option.

• SAC

9. set(min_positive_rate,'0.01') - Determines the parameter minPositiveCovered
which is chosen as a rate of number of positive examples. For instance if we have 100
positive examples and set this parameter to 0.2, minPositiveCovered = 20. Default
value is 0.1.

10. set(parameter_learning,'random_labels') - Indicates whether the algorithm Set

minimum covered is used for setting the parameter minPositiveCovered automat-
ically. Options are:

• none - Default setting. No algorithm is used for �nding minPositiveCovered.
The value for the parameter is obtained from min_positive_rate.

• random_labels - The algorithm Set minimum covered is used. This option
turns o� automatically the option set(min_positive_rate,'0.01').

11. set(max_hypotheses,30) - Maximum hypotheses popped from the priority queue
Open and explored in the algorithm Learning algorithm. In text the parameter is
denoted as maxHypotheses. Default value 150.

12. set(max_variables_in_structure,'400') - Maximum number of elements satisfying
isV ariable in one structure. This parameter is the input maxV ariables of algorithm
LGG Reduction algorithm. Options:

• An integer value.
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• no_limit - No limit to the size, default parameter.

13. set(max_negative_covered,'0') - Maximum number of covered negative examples.
Determines the parameter maxNegCovered in Learning algorithm. Default value
is 0.

14. set(creator_type,dual) - Determines which kind of CSP formulation is used for
creating a CSP. Option:

• standard - Standard formulation.

• dual - Dual formulation, i.e. with only binary constraints, default value.

15. set(elimination_type,bounded_WR) - Determines which kind of element elimination
is used. Options:

• bounded - The version using only x-prehomomorphism is performed. The algo-
rithm is used as stated in Section 2.1.6, in the basic form without additional
removing of elements.

• bounded_WR - This version uses x-prehomomorphism including removing more
elements as described in section 2.1.6.

• complete - This version uses homomorphism instead of x-prehomomorphism but
without additional removing element.

• complete_WR - This version uses Element-elimination complete, i.e. homo-
morphism testing and removing elements not present in solution of CSP.

16. set(max_candidate_examples,'10') - Maximum number of positive examples used
for generalization of one hypothesis obtained from priority queue Open in Learning
algorithm. This parameter is called maxCandidateExamples in the text. Options:

• An integer value.

• auto - Sets the value to
√

2× |PositiveExamples|. Default value.

17. set(component_elimination,true) - Turns on or o� the Component elimination
algorithm. Can be set to true or false. Default value is true.

18. set(variable_elimination,true) - Turns on or o� the Variable elimination al-
gorithm. Can be set to true or false. Default value is true.

19. set(outer_repetition,'3') - Count of repetitions of the algorithm Classifier

learning. Default value is 1.

20. set(inner_repetition,'10') - Count of repetitions of Learning algorithm inside
Classifier learning and inside one outer repetition before termination if no good
hypothesis is found. It is denoted as innerRep in Classifier learning. Default value
is 10.

21. set(fold_number,10) - Number of folds for cross-validation. This parameter has no
meaning for running with learning_one and learning_all. Default value is 10.

22. set(parameter_learning_repetition,'10') - If parameter_learning is set to
random_labels this parameter determines the number of repetitions of Learning
algorithm with fake labels. Default 10.
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23. set(learning_subsumption,bounded) - Which type of homomorphism testing is used
in Learning algorithm. Options:

• bounded - Bounded homomorphism is used. Default value.

• complete - Complete homomorphism is used.

24. set(complete_check,false) - If this parameter is set to true, the homomorphism
testing is used instead of LGG score update even if learning_subsumption is set
to bounded.

25. set(final_selection,all_lists) - Determines how to select �nal hypotheses from
whole learned set. Options:

• all_lists - All lists learned in every outer repetition in Classifier learning

are selected.

• best_list - Only the best list learned in one of outer repetitions is selected.
Default value.

26. set(order_pl_random_labels,'3') - This parameter is relevant only if parameter_learning
is set to random_labels. In this case for example the third highest value of covered
positive examples is used as the guess of minPositiveCovered. Default 1.

If we set one parameter multiple times in one �le with di�erent values, the most
bottom value is used. At the end of our settings the expression work(yes) has to be writ-
ten. It indicates that now the algorithm should start with current parameter values. This
expression can be written in one �le multiple times. For one run started with this expression
only the settings written above it are used. If other settings are written under work(yes)
they are used in the next run started with the next expression work(yes). Not changed
parameter values from the previous run are preserved.

If the option create_files is used, the parameters which should occur in the newly
created �les are set by using the word copy instead of set. So the input �le can look for
example this way:

set(algorithm,create_files)

set(seed_for_random,1202)

set(input_file,'../datasets/cad.txt')

set(output_path,'cad_source_files')

copy(outer_repetition,3)

copy(inner_repetition,10)

copy(filter,'cadFile(x), hasCADEntity(x,x), hasBody(x,x)')

copy(input_file,'../directory/datasets/cad.txt')

copy(output_path,'cad_output')

copy(elimination_type,bounded_WR)

copy(max_hypotheses,30)

copy(folds_number,10)

copy(learning_subsumption,bounded)

work(yes)
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The parameters stated in the copy expressions occur in newly created �les with key-
word set. Some necessary parameters are written into the new �les automatically. These
parameters are:

set(folds_number,'10')

set(algorithm,'crossvalidation_one')

set(fold_id,4)

set(seed_for_random,922)

work(yes)

The �le used for run of the algorithm can be found in the directory target in the
directory bull. The algorithm can be run using the following command:
java -cp bull-0.2-standalone.jar ida.bull.Main -source run_bull.txt

3.3 Supplement

The directory bull contains the source codes which I implemented for purposes of this
thesis (except the package graphviz used for drawing pictures of structures, which was pro-
vided by my colleague). Other directories: src_treeliker, treeliker-cli, treeliker-gui,
treeliker-lib contain source codes of the software available at http://ida.felk.cvut.
cz/treeliker/index.html. My implementation uses some classes from treeliker implemen-
tation. Therefore they are also a part of the supplement. The directory diploma_thesis

contains Latex source codes of this thesis. The �le thesis_fuksova.pdf is the basic pdf
version of the thesis.

The source codes and their outputs are based on FOL terminology.

List of directories in bull:

• src - Contains source codes of the implementation.
• target - Contains the run �le bull-0.2-standalone.jar.
• examples_for_run

� bull_datasets - Directory with datasets.

� Source scripts for run: create_files_random.txt, learn_one_camel.txt,
learn_one_hexose.txt, muta_crossvalidation.txt, random_crossvalidation.txt.
All paths in the scripts are set for the case that the run is performed from target

directory.

� list of filters.txt - List of �lters which should be used for concrete datasets.

How to run from the command line:

1. Change the working directory to bull/target

2. Type for example: java -cp bull-0.2-standalone.jar ida.bull.Main -source

../examples_for_run/learn_one_camel.txt

Any of the source scripts provided can be used for run. The script create_files_random.txt
creates source scripts for separate run of cross-validation folds.
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