Algorithmic Analysis of Code-Breaking Games
Mgr. Miroslav Klimos, prof. RNDr. Antonin Kucera Ph.D.

Code-Breaking Games

2 players: codemaker and codebreaker
Codemaker selects a secret code
Codebreaker strives to reveal the code through a series of experiments whose
outcomes give partial information about the code
Example: Mastermind
Secret code: combination of n coloured pegs

> Codebreaker makes guesses (experiments)

> Guesses are evaluated with black and white markers

> Black marker = correct both colour and position

> White marker = the colour is present at a different position

Example: Counterfeit Coin
> Problem of finding an odd-weight coin using balance scale
> Secret code: identity of the unique counterfeit coin
> Codebreaker puts coins on the balance scale and observes the outcome

WIS 1y,
oM,

2
S

w0 FAcy,

N
&
4 &
Ay . FoIS™

Faculty of Informatics, Masaryk University, Brno

&
RETIC

Questions and Problems

How should the codebreaker play in order to minimize the number
of experiments needed to undoubtedly determine the code?

Is there a strategy for experiment selection that guarantees revealing the code
after at most k experiments?

What strategy is optimal with respect to the average-case number
of experiments, given that the code is selected from the given set with uniform
distribution?

We created a computer program to automatically answer these questions

optimal strategy

value of a given strategy

bounds on number

computer of experiments

program

specification of
a code-breaking game

Our Steps Towards Automatic Analysis

1. Creating a general, formal model of code-breaking games

> Model based on propositional logic @, = {(f2($1) A-y) v (£2(32) A),
> Secret code = valuation of variables (fo(81) Ay) v (£o(52) A -g),
> Partial information = logical formula ~fo(81) A= 1(82) })-

2. Proposing general strategies for experiment selection

> “Select an experiment that minimizes the maximal
number of possibilities for the code in the next round”

> Several strategies of this kind formalized within the model

Ypeu(#0)?
E.;;c@' #(:‘;

£(®) -

3. Developing algorithms for strategy evaluation and synthesis o
> Based on intelligent backtracking
> Symmetry detection reduces the size of the state-space

4. Designing a computer language for game specification
> Corresponds to the formal model LD S RO, L © 18

EXPERIMENT{ "weighing”" + stri{m), 2sm)
5 5 . DUTCOME("lighter", "{(%s) & 1y} ...
> Built on top of Python for easier generation aviern, (%) & y)

DUTCAME("heavier", "{(%s) & y} ...

5. Implementing proposed algorithms in a computer program
> Command-line tool written in C++
> Use of modern SAT solvers for satisfiability queries needed by the algorithms

6. Using the program to create new and reproduce existing results

> Easy reproduction of some of the existing
results for Mastermind

> Automatic analysis of generalizations and
other code-breaking games

