Traffic Analysis From Video

Jakub Sochor

supervised by: doc. Ing. Adam Herout, PhD.

We propose a complex and fully automated system for traffic analysis. It is possible to count vehicles, classify them, detect lanes and accurately measure speed of vehicles and it requires no manual calibration.

Proposed Solution

- ☐ Fully automatic camera calibration
- ☐ Runs in real time
- ☐ Published in top journal and conference

- $lue{}$ 3D bounding boxes are constructed
- Enable to measure dimensions of vehicles
- Scale is calibrated by statistics of dimensions

- Accurately detects lanes
- ☐ Estimate direction of vehicles
- ☐ Generate overall statistics

- ☐ Final system monitoring a road
- ☐ Red numbers denote speed of vehicles
- ☐ Deployed for real traffic surveillance

Results

- Detect and track vehicles accuracy: 0.915
- Precise speed measurement mean error: 4.5%
- Classification of vehicles with accuracy: 96.1%
- Precise lanes detection
- Fully automated no manual input required
- Runs in real time 70 FPS

3rd best paper award winner of EEICT

Publications Based on This Work

- SOCHOR Jakub. Fully Automated Real-Time Vehicles Detection and Tracking with Lanes Analysis. Im Proceedings of CESCG 2014. TU Vienna.
- SOCHOR Jakub. Fully automated real-time traffic analysis from video. In Proceedings of the 20th Conference TUDENT EEICT 2014, vol. 2, Brno University of Technology, pp. 54–56.
- DUBSKÁ Markéta, **SOCHOR Jakub** and HEROUT Adam. **Automatic Camera Calibration for Traffic Understanding**. In: Proceedings of British Machine Vision Conference 2014, Nottingham
- DUBSKÁ Markéta, HEROUT Adam, JURÁNEK Roman and SOCHOR Jakub.

 Fully Automatic Roadside Camera Calibration for Traffic Surveillance. IEEE

 Transactions on Intelligent Transportation Systems. 2014 (IF: 2,47)