
Incremental

Clustering-Based

Compression

Chunking Similarity
Hashing

binary
data vector

space

unique
chunks

clusters of
similar
chunks

compression
groups

compressed
data

archival
data

content
defined
chunks Deduplication

Clustering

Grouping &
Reordering

Compression

Archiver

Czech Technical University in Prague
Faculty of Information Technology
Department of Theoretical Computer Science

Student: Luboš Krčál
Supervisor: Jan Holub

Problem

rRLUtgBFzKS9MxUCy0V0j I I SSu0bFbx0qY1J 9cE

rRLUtgBFzKS9MxGCy0V0j I I SSu0bFbx0q6669cE

XrRLUtgBFzKS9MxUCy0V0j I I SSu0bFbx0qY1J 9cE

Input data:

A:

B:

C:

Fixed size (blocks):

rRLUtg BFzKS9 MxUCy0 V0j I I S Su0bFb x0qY1J 9cE

rRLUtg BFzKS9 MxGCy0 V0j I I S Su0bFb x0q666 9cE

rRLUtg BFzKS9 MxUCy0 V0j I I S Su0bFb x0qY1J 9cE

XrRLUt gBFzKS 9MxUCy 0V0j I I SSu0bF bx0qY1 J 9cE

A:

A:

B:

C:

Variablesize (chunks):

rRLUt gBFzKS9M xUCy0 V0j I I SS u0bFbx 0qY1J 9cE

rRLUt gBFzKS9M xGCy0 V0j I I SS u0bFbx 0q66 69cE

rRLUt gBFzKS9M xUCy0 V0j I I SS u0bFbx 0qY1J 9cE

XrRLUt gBFzKS9M xUCy0 V0j I I SS u0bFbx 0qY1J 9cE

A:

A:

B:

C:

• Binary data is split into
content-defined chunks

• Resistant to character
inserts or shifts
• Uses partial pattern

matches to mark delimiters

Inserting single character shifts all
the blocks

Content-defined delimiters are
resistant to this hash("ISS") = 11101000110110100000101111011101

hash("SWI") = 10000101000111111001001100010111

hash("WIS") = 11000011101000011100100100101110

hash("SS ") = 10000101000111111001001100010111

hash("S M") = 10000101000111111001001100010111

hash(" MI") = 00001011111011100100111101000111

hash("MIS") = 01011000101000111011111000001011

simhash("SWISS MISS) = 10000001000111111000101100010111

Example of binary simhash for
the string "SWISS MISS".

Note that the length of the
simhash determines the
dimension of the vector space
and the width determines the
cardinality of the space.

Individual 3-gram hashes are
computed. These are then
combined into a vector.

• Features: n-gram, compression features, etc. Every feature is hashed
• Standard simhash: merges feature hashes based on majority value per hash
position (vector over Z2 , same length as feature hashes)
• Extended simhash: feature hashes are combined together into a vector and
normalized (vector over ZN of arbitrary length)
• Vector norms are used as distance measures

• Uses standard hashes to find duplicate chunks
 • Removing duplicate chunks is more
 effective than compressing then together
 • Most effective for small chunks

• Hierarchical clustering – binary tree, leaves represent chunks
• Bottom-up – new node inserted from the bottom
• Randomized KD-trees used to find the nearest neighbor
• Simhash calculated for parent nodes – as linear combination of children
• Preserves heap property on inter-cluster distances (with simhash distances)

• Optional extra balancing
 (in scenarios where heap property
 is not inherent)
• Optional deep distance
 (use multiple levels of descendants)
• Optional representatives
 (use only selected descendants)

• Clustering is gradually
processed and compression

groups are determined

• Compression groups are
represented with a single
cluster

// magic number

0000: 0000 0123

// number of compression

// groups and chunks

0004: 0000 1C28 002D 40AC

// original data size

0014: 0000 0000 06C1 229F

// offests of the 1. group to

// compressed and orig data

001C: 0003 DBB2 0013 6002

// offset of the 1. chunk

1C3C: 00E3 2421

Example of metadata implementation:

• Compression groups are compressed

using standard compressors, such
as Deflate, BZip2, etc.

• Metadata is then added,
representing all the chunks and
compression groups

• It is possible to store more information
about the deduplication, simhashing,
clustering and grouping - the archivedata

• This allows for conveniet CRUD operations
over files in the archive

What if the following

solutions are not good enough?

• Solid-compression (tar.*)

How do you decompress a single file from
the archive?

• File-by-file compression (zip)

What happens if you compress similar files?
• Deduplication

Only finds exact duplicates
Several near-deduplication systems exist

(only very similar blocks are then compressed)
• Compression file systems

Combination of deduplication and file-by-file
compression

And, the standard compression techniques fail on data

with distant similarities?

We want to achieve an excellent and

efficient compression over a large dataset.

With the possibility to read, add, modify

and remove data conveniently.

Results

• New approach to compression
• Extends current near-deduplication systems
• Overcomes locality-based redundancy removal
 failures of standard compression algorithms
• Has the potential of being an ultimate archiver

One of the major contributions

was to design a compression and

archival system based on clustering.

This was successfully completed with

the following results:

• Compression ratio significantly improved for very redundant datasets
• For non-redundant dataset, the ratio was almost the same. This is a success,
since the files were now compressed in very small batches
• Using weaker compression on appropriately
preprocessed data results in both faster and better compression than using a
strong compressor as it is

Redundant datasets

