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Abstract

In this thesis, the problem of robust estimation of a multiple view geometry in the
computer vision is studied. The main focus is put on random sampling techniques for
an estimation of two-view geometries, in particular homography and epipolar geometry,
in a presence of outliers. After a thorough analysis of LO-RANSAC, several improve-
ments are proposed to make it more robust to the selection of the inlier/outlier error
threshold and to the number of points. A new estimator, faster, more accurate and
more robust that the state-of-the-art is the result. The improvements were implemented
in the framework of CMP WBS-Demo and extensively tuned and experimentally tested
on diverse data, using a newly created testing framework. The LO-RANSAC imple-
mentation for homography and epipolar geometry estimation has been separated from
the rest of WBS-Demo and is now publicly available. The datasets were made available
as well, including new manually annotated ground truth point correspondences.

Abstrakt

V rámci této práce byl studován problém robustńıho odhadu v́ıcepohledových ge-
ometríı v poč́ıtačovém viděńı. Hlavńı pozornost byla věnována technikám náhodného
vzorkováńı pro odhad dvoupohledových geometríı, konkrétně homografie a epipolárńı
geometrie, za př́ıtomnosti extrémně vychýlených hodnot. Po zevrubné analýze LO-
RANSACu je navrženo několik vylepšeńı pro zvýšeńı robustnosti k volbě prahu chyby
a k počtu bod̊u. Výsledkem je nový estimátor, rychleǰśı, přesněǰśı a robustněǰśı než
současně použ́ıvané. Tato vylepšeńı byla implementována v rámci WBS-Dema CMP
a rozsáhle laděna a experimentálně testována na r̊uznorodých datech s použit́ım nově
vytvořeného testovaćıho systému. Implementace LO-RANSACu pro odhad homografie
a epipolárńı geometrie byla osamostatněna od zbytku WBS-Dema a je veřejně dostupná.
Použité datové sady byly také zvěřejněny, včetně vytvořených manuálně anotovaných
bodových korespondenćı.
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1. Introduction

“
In this thesis, the problem of robust estimation of a multiple view ge-
ometry is studied. We propose a new estimator, faster, more accurate
and more robust that the state-of-the-art.

”

1.1. Motivation

In the field of computer vision, images from multiple cameras are often used to get
some more advanced information about the scene than just a field of pixels. Alter-
natively, those can be multiple images obtained by the same camera. Typical repre-
sentatives of tasks requiring this are Stereo vision and Structure from motion and the
subsequent use of their results for a 3D reconstruction, Simultaneous localization and
mapping in robotics, or other techniques involving three-dimensional information. An-
other usages can be Image stitching (creating a panorama from overlapping images) or
Visual tracking, where the objective is to acquire a pose of an object in following frames
of a videosequence. All of these techniques basically need an estimate of geometric re-
lations between the cameras. The part of computer vision which tries to solve these is
called Multiple view geometry (in particular 2-view, 3-view, or N -view).

a) b) c) d)

e) f) g) h)

Figure 1.1. SFM for 3D reconstruction: From a set of images, a) and b) take a pair, and c)
compute tentative correspondences. Then robustly estimate d) the geometry (epipolar lines
shown) and divide correspondences into e) inliers and f) outliers. Figure g) then shows the
resulting dense cloud of points and h) the reconstructed surface.
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1. Introduction

a) b) c)

Figure 1.2. Estimating the geometry for tracking a) the object inside a bounding box. Edge-
point correspondences b) contain some portion of outliers (red), therefore the new pose c)
of the bounding box in a subsequent video frame should be estimated robustly. [17]

To estimate such a geometry, the first step is to extract geometric primitives, such as
points, lines or ellipses. These are then locally matched to obtain tentative correspon-
dences between a group – usually a pair or a triplet – of images (views). The geometry
imposes global constraints on the local correspondences, which, on the other hand,
yields equations constraining the geometry. The correspondences are always burdened
by some error w.r.t. the geometry model. The error of a correctly matched correspon-
dence is implied by inaccuracies in the primitives detection. Its impact in geometry
estimation can be lowered by using as much of these as possible and solving an overde-
termined set of equations in a least squares sense. However, a presence of mismatches
is the inherent property of local matching. For the case of mismatches, the error level
can be higher than the noise by orders of magnitude, and even one correspondence with
such a gross error, i.e. an outlier, can spoil the estimation. Therefore, a need arises for
estimators robust to the presence of the outliers.

“ The robust estimation of the two-view geometry in the presence of the
outliers constitutes an overall frame in which this thesis is situated.

”

In the field of robust statistics, a number of estimators has emerged in last decades.
The most important for the computer vision are random sampling algorithms and es-
timators based on voting.

Random sampling techniques are based on the idea that outlier-free subset of the
data yields a correct estimate of the geometry. Therefore small subsets are randomly
sampled from the full set of data and the best geometry found is returned. There exist
different approaches to what “best” means. In the family of RANSAC-like algorithms
[5, 12], the inlier/outlier threshold is supplied by user and the quality of a model is
measured as a number of inliers (or other gain function of this sort, see Chapter 6).
In the opposite case of Least Median of Squares [33], no assumptions are made about
the scale of the error. The percentage of inliers is nevertheless assumed to be higher
than 50% and the winner is a geometry with the least median of squared error. For
a different percentage this becomes Least Quantile of Squares.

Voting techniques make no such assumptions about the data. Every data point in-
stead votes for all the models it is compatible with. The typical representative is Hough
Transformation [16]. It works on a principle of dividing the model parameter space
into small bins, where every single bin accumulates votes of the compatible data. This

4



1.2. Contributions

a) b) c)

Figure 1.3. Image stitching. Correspondences in one of image pairs are shown in a) and b),
using which the homographies were estimated. The resulting panorama in c) is then made
by stitching the images together. Image courtesy of Jan Sláma (Alushta, Crimea, 2010).

algorithm can be used under the condition of low-dimensional parameter space. Fur-
thermore, it must be possible to enumerate all the sets of model parameters compatible
with the given datum. A combination of these techniques exists: Randomized Hough
Transformation [41], which combines RANSAC-like sampling with voting for a model
parameters.

1.2. Contributions

In a scope of this thesis, the following achievements were reached:

• different RANSAC-like algorithms were thoroughly tested using

• collected datasets with newly created ground truth points and

• a new RANSAC testing framework;

• numerous implementation issues were addressed;

• the claim that LO is not always an improvement at no cost was stated and

• several speed-ups were proposed, implemented and tested;

• the effect of error scale setting with different cost functions was studied and

• the superiority of a truncated quadratic one was claimed in the term of robustness
to the error threshold selection;

the contributions were published at the British Machine Vision Conference [18] in a pa-
per Fixing the Locally Optimized RANSAC.

The implementation and testing was focused on the point-based algorithms for es-
timation of homography and epipolar geometry. However, the LO procedure is not
restricted to these and it can be used for any general geometry estimation task. E.g.,
in our another paper Tracking the Untrackable: How to Track When Your Object Is
Featureless (ACCV DTCE 2012, [17]), LO-RANSAC based on the same principle is
used in a tracker to estimate frame-to-frame transformation from correspondences of
lines.

1.3. Thesis structure

The rest of this thesis is structured as follows: in Chapter 2 the principle of RANSAC
is explained. The state-of-the-art improvements to different aspects of RANSAC are
discussed in 3 with a special focus on the Local Optimization in 4. Then the speed
issues of LO are addressed in Chapter 5. Chapter 6 is aimed at measuring the quality
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1. Introduction

of a model hypothesis, including analysis of error scale settings, different cost functions
and computing and exploiting model uncertainty. Finally, Chapter 7 draws conclusions.
The appendices bring information about the data and test procedures used for ex-

perimental evaluation. The details about the published LO-RANSAC software library
are also given there. Furthermore, used symbols and constants can be found there.
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2. Random Sample Consensus

The task of geometry estimation can be seen as a regression or fitting of a model to
the data, burdened by inevitable errors. “Classical techniques for parameter estimation,
such as least squares, optimize the fit of a model to all of the presented data. These
techniques have no internal mechanisms for detecting and rejecting gross errors. They
are averaging techniques that rely on the assumption that the maximum expected
deviation of any datum from the assumed model is a direct function of the size of the
data set, and thus regardless of the size of the data set, there will always be enough
good values to smooth out any gross deviations” [12]. The assumption however hold
only for an error attributable to a noise (measurement inaccuracy). As in the process
of matching local features usually mismatches appear, there are points with gross error,
which cannot be explained by the noise distribution – the outliers (the data consistent
with the model we call inliers). An error of outlier can be arbitrarily high and with no
relation to the size of the data set.

“ We call a datum an outlier, if its error with respect to the correct
model is larger than a maximum allowed for a noise.

”

The least squares approach is to use as many data as possible to reduce an uncertainty
of model parameters estimation. In the presence of outliers, the heuristic which may
be used is to use all the data to estimate model parameters, remove the datum with
the largest error w.r.t. estimated model and iterate until all the errors are lower then
some predefined threshold. However, it can be shown (see Figure 2.1), that even one
inlier can spoil the estimation process totally. Therefore the breakdown point (the
least percentage of outliers to produce arbitrarily erroneous estimation [14]) of these
techniques is 0%.

“ Even one outlier can spoil the geometry estimation via least squares
to produce arbitrarily wrong results.

”

On the contrary, the RANSAC (RANdom SAmple Consensus) algorithm proceeds
in the opposite way. “Rather than using as much of the data as possible to obtain
an initial solution and then attempting to eliminate the invalid data points, RANSAC
uses as small an initial data set as feasible and enlarges this set with consistent data
when possible” [12]. Basically, it draws randomly minimal samples out of the data (two
points for line fitting, four point correspondences or two elliptical correspondences for
a homography, etc.) to construct candidate hypotheses. The best of these hypotheses
is returned. The smoothing then runs only on the consistent data.

Two questions remain unanswered to successfully use RANSAC. The first one is:
How many samples we need to draw, how many hypotheses we need to check? The
second is: How do we select the best hypothesis seen, how can we compare them? The
answers lie in the following sections.

7



2. Random Sample Consensus

0 1 2 3 4 5 6 7 8 9 10

0
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Figure 2.1. Given the set of seven points, we want to find a best fit line, assuming that no
valid datum deviates from this line by more than 0.8 units. The ideal line is the solid black
one, which would be selected by RANSAC. However, the least squares estimate is the dashed
red line. If we started discarding points with highest residues in the iterative way, the final
solution would be the dashed blue line, far away from the correct one. Adopted from [12].

2.1. Termination Criterion

To derive the necessary number of samples to be drawn in a probabilistic manner,
we need to use the following assumption:

“ A1: An all-inlier sample generates model consistent with all inliers.[6] ”

Therefore the probability of getting a good model from a random sample is equal to
the probability P (I) of drawing an all-inlier (i.e. outlier-free) sample of size m out of
N data points:

P (I) =

(

I
m

)

(

N
m

) =
m−1
∏

j=0

I − j

N − j
≤ εm , (2.1)

where I is (a priori unknown) number of inliers and ε = I/N is the inlier ratio. Note
that for I ≫ m holds

P (I) ≈ εm . (2.2)

The probability that at least one outlier-free sample was drawn in k samples is then

η = 1− (1− P (I))k ≥ η0 . (2.3)

We usually want η to be higher than some user-supplied minimal probability η0 of
returning the optimal solution, which can be seen as a confidence of success. To reach
this, RANSAC needs to draw K samples before termination:

K ≥ log (1− η0)

log (1− P (I))
. (2.4)
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2.2. Hypotheses Validation

As the number of inliers I is one of RANSAC outputs, it is unknown during its run.
Nevertheless, it can be conservatively approximated by I∗ = |I∗|, size of the largest
support found thus far. From the other point of view, we may want to assure the
probability we haven’t missed any model, better the our current so-far-the-best one.
Effectively this means to miss a sample from I∗ + 1 inliers. Therefore, we can use 2.4
with probability P (I∗ + 1).

However, experimental results show a disagreement with this theory – first good
sample is drawn after significantly longer time than expected. This issue was studied
in [10, 34] and is also addressed in 4.

2.2. Hypotheses Validation

To distinguish between correct an incorrect solution (and in general to decide which
one of two solutions is better) we need to accept the following assumption:

“ A2: A model consistent with a sample contaminated by at least one
outlier has small support. [6]

”

Using this assumption, we can measure the quality of a model by size of its support,
i.e. number of inliers. In later modifications of RANSAC, different cost functions have
been used. Whilst taking the inlier count (thresholding) can be seen as a top-hat cost
function, it is possible to use truncated (squared) error, log-likelihood cost function,
etc. The only condition is that the selected cost function has to be robust, insensitive
to gross error of the outliers. We will address the cost functions later in section 6.2.
We have defined an outlier as a datum, whose error is smaller than some threshold θ.

This value (as well as the scale of other possible cost functions) is defined by the error
scale of the inliers. For now, we will take it as a constant, supplied by the user and we
will return to this topic in 6.1.

With a large number of data points, it can be time-consuming to validate all the
hypotheses on all the data. For this reason, several improvements to RANSAC have
been proposed, to reject bad hypotheses early, without testing all the data. These will
be noted in section 3.3.
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3. State of the Art – Members of RANSAC Family

The concept of RANSAC is widely used in the field of computer vision. However,
during the decades of its existence, the algorithm has undergone several significant
improvements in different aspects and the vanilla RANSAC is rarely used today. This
chapter focus on some of these improvements as well as on other algorithms similar to
RANSAC.

3.1. Cost Function

As mentioned, the thresholding in RANSAC can be seen as a top-hat cost function,
giving a constant penalty to the data whose error exceeds a given level. However,
this cost function suffers by scoring different model hypotheses as the same when the
error threshold is overestimated. Torr and Zisserman proposed to truncate the error
instead of thresholding in their MSAC [37] (M-estimator SAmple Consensus) algorithm
to gain additional sensitivity at no cost. Later they introduced an algorithm dubbed
MLESAC [38] (Maximum Likelihood Estimation SAmple Consensus), which models the
error as a mixture of a Gaussian (for inliers) and a uniform distribution (outliers) and
incorporates likelihood maximization into the sampling framework. Further description
of these algorithms is given in section 6.2. Torr extended this work further by following
fully Bayesian approach in MAPSAC [36] (Maximum A Posteriori SAmple Consensus).
However, since it assumes uniform prior distribution, its cost function is similar to the
previous ones.

3.2. Sampling

In standard RANSAC, the matching process is viewed as a black box that generates
tentative correspondences with a priori unknown (i.e. uniformly distributed) probability
of being inliers. However, there is usually available some real-valued measurement of
correspondence quality from the matching stage. Guided Sampling and Consensus by
Tordoff and Murray [34] exploits these measurements. They are used to estimate prior
probability of each correspondence being valid. The uniform sampling is then replaced
by a Monte-Carlo sampling with probabilities according to these priors.

Another approach, called PROSAC by Chum and Matas [8] (PROgressive SAmple
Consensus) uses this knowledge as it draws samples semi-randomly from progressively
larger sets of tentative correspondences. The basic assumption is that the ordering
defined by the similarity used during matching is not worse than a random ordering.
In practice there is often a strong correlation between the correspondence quality and
the probability of being an inlier, which leads to a better efficiency. PROSAC can be
viewed as an instance of a process that starts by deterministically testing the most
promising hypotheses and then converges to the uniform sampling of RANSAC.

NAPSAC by Myatt et al. [26] (N Adjacent Points SAmple Consensus) changes the
sampling strategy in a different way. It exploits the fact that the model to be estimated
defines a lower-dimensional manifold in the space of the input data. The data points
on this manifold (the inliers) tend to lie closer to each other than outliers, which are

11



3. State of the Art – Members of RANSAC Family

uniformly distributed over the high-dimensional space. Thus it draws the first point
randomly and the rest of m − 1 points inside a hypersphere centered at the selected
point. This significantly reduces the consumed time, especially for high-dimensional
problems.

3.3. Evaluation

As mentioned above, to validate all the candidate hypotheses with all the tentative
correspondences may be unnecessarily time-consuming. The following approaches have
emerged to address this issue.
The core idea of Randomized RANSAC by Chum and Matas [7, 9] is that a majority

of hypotheses tested are influenced by the outliers. These can be tested only on a small
number of data points and rejected early. The statistical test reduces the number of
verified correspondences, but on the other hand it brings a possibility of unwanted
rejection of a good sample. Lower number of the data points processed means higher
computation savings, but also higher this probability, which (linearly) increases the
necessary number of samples to be drawn. It is intended to find an optimum which
minimizes the total running time. Two kinds of tests can be performed. The Td,d

test is passed if all d data points out of d randomly selected are consistent with the
hypothesized model. The optimal value for a range of problems was found as d = 1.
The second is the Sequential Probability Ratio Test (SPRT), where the likelihood ratio
is updated with every datum checked and if it exceeds the decision threshold, the model
is early rejected. This threshold is set to minimize total running time. Models, which
are not rejected early, are tested again all the data points in a RANSAC manner.
The bail-out test by Capel [3] works in a similar way. It is based on checking a subset

of correspondences first. When the fraction of inliers in the subset is significantly lower
than the overall inlier ratio of so-far-the-best sample, the model is rejected.

Nistér proposed an absolutely different approach – Preemptive RANSAC [27]. This
is meant to be used in real-time applications, where it is necessary to find a solution in
a fixed time. Instead of trying one hypothesis at a time with all the data, a group of
hypotheses is generated in the first time. The data are randomly permuted and sequen-
tially checked – one datum at a time with all the hypotheses. The worst hypotheses
are being rejected during the test. The procedure terminates when there is only one
hypothesis remaining or when all the data have been checked.
Raguram et al. proposed a technique called CovRANSAC (Covariance RANSAC),

explicitly incorporating the model uncertainty to get the set of possible inliers. We will
take a closer look at this topic in section 6.4.

3.4. Degeneracy Handling

The assumption A2 states that an incorrect model has a small support. However,
this assumption can be violated by a degenerate configuration as seen in Figure 3.1. In
such a case a weaker assumption is needed:

“
A2’: A model consistent with a sample that is contaminated by at
least one outlier and does not contain a degenerate configuration as a
subset has small support. [6]

”

The first approach to detect and handle degeneracy in two-view geometry was PLUN-
DER by Torr et al. [39] (Pick Least UNDEgenerate Randomly). It tries to fit multiple
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3.4. Degeneracy Handling

Figure 3.1. Degenerate situation, when an incorrect model has large support disregarding as-
sumption A2. Adopted from [6].

models to the data (epipolar geometry, affine epipolar geometry, homography, etc.) and
the most general non-degenerate model is returned. Since noise and outliers can make
the degenerate data apparently non-degenerate, the decision whether to use a simpler
model or not is based on a cardinalities of consensus sets of the models. This idea was
later generalized in QDEGSAC by Frahm and Pollefeys [13] (Quasi-DEGenerate SAm-
ple Consensus) for estimation of any relation on any data. Furthermore, they proposed
a robust matrix rank computation by thresholding the singular numbers.
Chum et al. proposed DegenSAC [11] (Degenerate SAmple Consensus) algorithm

to estimate the epipolar geometry in the presence of a dominant plane (where cor-
respondences are degenerately related by a homography). When a sample (7-tuple)
containing 5 or more points lying on the plane is drawn, the degeneracy is detected.
Then a plane-and-parallax algorithm is incorporated, using outliers to the homography
as the out-of-plane points.

13





4. Locally Optimized RANSAC

4.1. Raison d’être

As mentioned earlier, RANSAC relies on the assumption A1 that an all-inlier sample
gives a good model, consistent with all the inliers. However, in the presence of noise (see
Figure 4.1), this is not always the case since a bad conditioning can make the sample
generate a poor hypothesis even if it is not contaminated by the outliers. Results of
such situations are an instability (different outputs in different runs) and an increased
execution time. A procedure dubbed Local Optimization is used to improve promising
model parameter hypotheses, based on a milder assumption:

“
A1’: All-inlier sample, even in the presence of noise, gives a model
that is close to the optimal one. A local optimization of the model pa-
rameters reaches the optimal model that is supported by all inliers.[6]

”

Figure 4.1. Noisy situation, when an all-inlier model is not consistent with all the inliers dis-
regarding assumption A1. Adopted from [6].

The core idea of LO-RANSAC by Chum et al. [10] (Locally Optimized RANSAC) is to
use promising samples as an initialization for an inlier count maximization. The obser-
vation is “that virtually all models estimated from an uncontaminated minimal sample
contain large fraction of inliers within their support. An optimization process starting
from the the-best-so-far hypothesized model is therefore inserted into RANSAC.”

One may argue that it does not worth the effort to perform such a procedure on every
so-far-the-best sample, that it is enough to employ some post-processing step on the
globally best sample. Furthermore, if there is some complex optimization procedure
appended (such as Bundle Adjustment), it would not worth to do even this. Neverthe-
less, we can say the following in a defense of LO. Firstly, as the optimization (increasing
inlier count) is done during the RANSAC run-time, it reduces the number of samples
needed and it often lowers the total running time, especially for problems with low inlier
ratios. There are even problems, which would be considered intractable by standard
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4. Locally Optimized RANSAC

RANSAC without LO [6]. Secondly, since the Local Optimization is run on multiple
promising samples (i.e. from multiple initializations), LO-RANSAC has a better chance
of reaching the optimum.

It should be noted that LO does not compete with optimizations such as Bundle
Adjustment. It rather tries to provide a better starting point in a shorter time, than
standard RANSAC or Gold Standard (MSAC followed by linear least squares on inliers)
advocated in Hartley and Zisserman’s book [15]. Since the Bundle Adjustment only
works with inliers, increase in the number of inliers leads to more equations to be
optimized and better results. The experiments can be found in the technical report [19].

4.2. The Algorithm

In the original paper, several methods of LO were proposed, with increasing power
(and also time consumption), ranging from a simple linear-least-squares solution, to
a complex iterative procedure:

1. Standard. The standard implementation of RANSAC without any local
optimization.
2. Simple. Take all data points with error smaller than θ and use a linear
algorithm to hypothesize new model parameters.
3. Iterative. Take all data points with error smaller that K · θ and use linear
algorithm to compute new model parameters. Reduce the threshold and iterate
until the threshold is θ.
4. Inner RANSAC. A new sampling procedure is executed. Samples are
selected only form Ik data points consistent with the hypothesized model of k-
th step of RANSAC. New models are verified against whole set of data points.
As the sampling is running on inlier data, there is no need for the size of sample
to be minimal. On the contrary, the size of the sample is selected to minimize
the error of the model parameter estimation. In our experiments the size of
samples are set to min(Ik/2, 14) for epipolar geometry and to min(Ik/2, 12) for
the case of homography estimation. The number of repetitions is set to ten in
the experiments presented.
5. Inner RANSAC with iteration. This method is similar to the previous
one, the difference being that each sample of the inner RANSAC is processed
by method 3. [10]

We have formalized the most powerful variant of LO-RANSAC (variant 5) in Algo-
rithms 1–3. The detailed description of used symbols and constants can be found in
Appendix D.

In the LO according to variant 5 (Algorithm 2), a model from the random sample is
at first refined by computing least squares fit to inliers on a wider threshold (mθ · θ).
Inliers to this refined model (Ibase) constitute a basic pool for inner sampling. From
this pool, a fixed number (reps) of non-minimal samples Sis is drawn and respective
models (geometry estimates) are computed. These are then refined by iterative least
squares with narrowing error threshold (see below). The best model seen during all the
procedure is returned.
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4.2. The Algorithm

Algorithm 1 LO-RANSAC.

1: for k = 1→ K(|I∗|, η0) do
2: Sk ← randomly drawn minimal sample
3: Mk ← model estimated from sample Sk
4: Ik ← find inliers(Mk, θ)
5: if |Ik| > |I∗s | then
6: M∗

s ←Mk; I∗s ← Ik
7: MLO, ILO ← run Local Optimization (Alg. 2)
8: if |ILO| > |I∗| then
9: M∗ ←MLO; I∗ ← ILO

10: update K
11: end if
12: end if
13: end for
14: return M∗

Algorithm 2 Local Optimization step.

Require: M∗
s ,mθ, reps

1: Mmθ
← model estimated by LSq on find inliers(M∗

s ,mθ · θ)
2: Ibase ← find inliers(Mmθ

, θ)
3: for r = 1→ reps do
4: Sis ← sample of size sis randomly drawn from Ibase
5: Mis ← model estimated from Sis by LSq
6: Mr ← Iterative Least Squares (Mis,mθ, iters) (Alg. 3)
7: end for
8: return the best of M∗

s , all Mis, all Mr, with its inliers

Algorithm 3 Iterative Least Squares.

Require: Mis,mθ, iters
1: M ′ ← model estimated by LSq on find inliers(Mis, θ)
2: θ′ ← mθ · θ
3: for i = 1→ iters do
4: I ′ ← find inliers(M ′, θ′)
5: w′ ← computed weights of I ′ (depend on model)
6: M ′ ← model estimated by LSq on I ′ weighted by w′

7: θ′ ← θ′ −∆θ

8: end for
9: return the best M ′

In the iterative least squares (Algorithm 3), the model from sample Mis is smoothed
by linear least squares on its inliers in the first time. Then the iterative procedure
begins: inliers I ′ of the last model M ′ on a widened threshold are found, new model
M ′ is estimated, and the error threshold is lowered by ∆θ. This is iterated several times
(iters) until θ′ drops back to the normal level. The least squares computation may be
weighted, this depends on a particular geometric model.
Every sample has to compete with all the k − 1 previous samples in being the best

thus far seen. Since we assume the samples to be i.i.d., the probability, that k-th sample
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Figure 4.2. Histograms of the number of inliers. The methods 1 to 5 (original Chum’s, 1 stands
for standard RANSAC) are stored in rows and different datasets are shown in columns. On
each graph, there is a number of inliers on the x-axis and how many times this number was
reached within one hundred repetitions on the y-axis. Adopted from [6].

will be so-far-the-best is 1/k. Then the average number of times so-far-the-best sample
is found within K samples can be bounded:

K
∑

k=1

1

k
≤

∫ K

1

1

x
dx+ 1 = log(K) + 1 . (4.1)

Thus LO is applied on average log(K) times, hence it is not expected to have a signifi-
cant impact on the overall execution time of the algorithm, linear in K [10] (K is the
number of samples drawn by RANSAC). Further insight into the issue of LO speed can
be found in Chapter 5.

4.3. Implementation Issues

Since for some of the image pairs each call of the LO has an impact on the overall
speed, it is efficient not to call the LO during first Kstart iterations (set to 50 in our
implementation; this number should correspond to the terminating K for an overopti-
mistic inlier ratio). In such a case it is necessary to ensure that LO is executed at least
once, after Kstart iterations, or at the end of RANSAC (as some scenes may require less
than Kstart samples). Then the LO is run for the best model found in the first Kstart

iterations.

We observed that the choice of numerical methods is critical for getting fast and
precise model estimates. While Singular Value Decomposition (SVD) is a convenient
and stable way to compute a least square solution of a system of linear equations, it
is significantly faster to use eigen-decomposition of the covariance matrix, especially
for large systems of equations. Similarly, for non-overdetermined sets of equations, the
usage of LU (Lower-Upper) decomposition instead of SVD can bring the same results in
a significantly lower execution times (nevertheless, we are losing the information about
conditioning, contained in singular values).

In our experiments, we have encountered a significant drop in performance for epipo-
lar geometry estimation caused by the instability of singular value decomposition when

18



4.3. Implementation Issues

using the CCMATH library [2]. This instability was observed during fundamental ma-
trix singularization, especially for the image pairs with epipoles (one or both) in the
image. The final implementation uses the LAPACK library [1] that does not suffer by
such an instability.
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Figure 4.3. Histograms of errors in different stages of Local Optimization. The graphs demon-
strate development of point errors (in absolute values) on the Brussels image pair and the
task of homography estimation. The blue bar graph in a) shows the errors of Mk. The errors
of Mmθ

, plotted in green, are shifted to lower values significantly. Subfigures b) to d) reveal
the development of the errors of Mis from three selected inner samples (red bars) and then
the iterations of M ′, from red to cyan. The red vertical lines denote the error threshold,
while the magenta lines stands for a range of a widened quadratic cost function (see further)
and its multiple by mθ. In this case, the Local Optimization converged to the same solution
in all ten cases, despite the different random inner samples drawn. This can be seen from
the same shapes of the cyan curves.
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Figure 4.4. Numbers of inliers and geometric errors of geometries estimated in different steps
of Local Optimizations run on all-inlier samples. Every point on a y-axis represents one run
of LO (sorted according to the number of inliers from the sample). The left-hand part shows
the fraction of inliers found and the right-hand part shows the RMS of Sampson’s error on
ground truth (GT) points. The assessed models are Mk,Mmθ

, the best Mis and the best Mr

(see Algorithms 1 and 2). The subfigure a) shows the results on the easy image pair kyoto,
where even only simple linear least squares give nearly perfect solution. The corr (b)) pair
is still rather easy, where simpler variant of LO would be sufficient. On the other hand, c)
castle pair is more difficult and d) kampa would have poor results without the full-power
Local Optimization.
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5. On the Speed of Local Optimization

The original paper [10] claimed that Local Optimization is an improvement at no
cost. Since it is run log(K)-times only, its affect on the total execution time seems to
be negligible. Furthermore, with an increased number of inliers during the run time,
it is even supposed to make RANSAC faster. This definitely holds for problems with
low inlier ratios and thus long runs. However, with a high number of inliers, standard
RANSAC itself is fast enough and LO may dominate the computation time. Therefore
we state the following.

“ For problems with a high fraction of inliers, there is a trade-off between
speed and precision, when a stronger LO implies higher time demands.

”

“
In an experimental evaluation of RANSAC-like algorithms, we should
never rely on the number of samples. The speed should be always mea-
sured by a wall clock time as well.

”

5.1. LO-RANSAC time consumption

Formally, the total execution time of LO-RANSAC is

ttot = CR ·K + CLO ·⌈log(K)⌉ , (5.1)

where CLO is the average time of the Local Optimization procedure and CR is the time
of standard RANSAC single hypothesis generation and verification round (including
multiple verifications for the cases of multiple models per one sample). For small K,
the significant difference of CLO and CR means that CLO ·⌈log(K)⌉ ≫ CR ·K. It happens
often that even single run of LO takes more time than the rest of RANSAC. This may
render LO-RANSAC considerably slower than standard RANSAC.
E.g. for a particular case of head pair with 77 inliers (out of 86; 90%) isK ≈ 13. The

standard RANSAC execution time CR ·K is only 0.3ms while a single local optimization
(CLO) takes 5.8ms on average. For the case of booksh pair (30 inliers out of 41; 70%)
is K ≈ 41, CR ·K = 0.6ms and CLO takes 4.6ms (see Figure 5.1).
The full local optimization step uses many repetitions of linear least squares to im-

prove the quality of the estimated model. For a large number of inliers (both relative
and absolute), this procedure can dominate the execution time. Basically, there are
two different approaches to reduce the complexity. The first one is to speed up every
repetition; the second approach is to reduce the number of repetitions. The following
sections describe possible methods of doing so.

5.2. Limiting the Number of Equations

In the linear least squares computation, the time complexity is at best linear in the
number of used data points (correspondences). This holds for computation by eigen-
decomposition of a covariance matrix of the data. However, it can be even worse when
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Figure 5.1. Dependence of the execution time on a fraction of inliers. The behavior of
RANSAC with and without Local Optimization on the booksh image pair (the percent-
age of inliers is controlled by the threshold of the second closest match during the matching
process; the vertical cyan line marks the default value). In the cases of low inlier ratios,
where the numbers of samples drawn by every RANSAC are high, LO-RANSAC is faster.
However, LO introduces an additional overhead, so for high inlier ratios the curves cross.

using techniques such as Singular Value Decomposition (SVD). On the other hand, the
uncertainty of model estimation is inversely proportional to a square root of the sample
size only. This means that after reaching some number of points, the rise of precision
is negligible and does not worth the effort of solving more and more equations.

Following this philosophy, we propose to introduce a limit on the number of inliers
used for an estimation of M ′ (Algorithm 3). When this limit is reached, a limit-sized
subset of inliers is randomly chosen and used for the estimation.

“ The approach of an inlier limit reduces the cost of the least squares
estimation almost to a constant independent of the number of inliers.

”

In our implementation, the limit was empirically set to 7×m (minimal sample size),
as this is the point, where the consumed time is already lower, but the precision is still
at the unlimited level for most of the image pairs (see Figure 5.2). This is a rather
conservative setting, for further speed-up it could be lowered to 6, or even 4×m.

With these settings, the precision of the estimation is not negatively affected. In
fact, it is sometimes even improved for a non-negligible number of epipolar geometry
estimation tasks. We explain such a behavior as avoiding stucking in a local minimum
by randomizing the set of points used in each iteration of the least squares.

5.3. Do Not Redo Done

During the least squares iterations, it can often happen that the same solution is found
multiple times. The possible causes are similar initialization of Local Optimization,
similar samples drawn in the inner sampling, or fast-enough convergence of the iteration.
In all these cases, the same set of inliers may appear, in which case we may want to
stop computation. To recognize such a situation, we store hashes of inlier sets and look
for duplicities. When a duplicity is found, the iteration is stopped as everything what
would happen in the future was probably already seen before.
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Figure 5.2. Dependence of LO-RANSAC performance on the inlier limit. The execution time
and root-mean-square error on GT points were recorded (the ratios to results of unlimited
LO are shown in the graphs). As conservative default values were selected limits denoted by
vertical cyan lines – 7×m, where speedup is already significant, but the geometric error is has
not yet risen much above the unlimited case for a majority of image pairs. The upper part
shows the effect on epipolar geometry estimation while the lower half illustrates the effect on
homography estimation.
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5. On the Speed of Local Optimization

Despite the intuitive insight that the hashing cuts off only exactly the same com-
putational branches, this is not necessarily always the case. During the iteration with
narrowing threshold, if the same set of inliers was seen at the different thresholds, the
iterations can end up in different solutions. Furthermore, since for some geometric mod-
els (e.g. epipolar geometry) we use weighted least squares, the same set of inliers (even
w.r.t. the same threshold) with different weights can give different solution. However,
the practical effect of these differences is negligible.

5.4. Simpler Variants of Local Optimization

It was shown that every stronger variant of Local Optimization yield better and more
stable results than simpler ones ([10] and Figure 4.2). However, for easier tasks, where
no challenging camera motion or illumination changes are expected (e.g. tracking or
Narrow Baseline Stereo, NBS) and where high inlier ratio can be expected, the results
of weaker variants are close.
For such tasks, we propose to use a lightweight version of Local Optimization – LO’,

based on Chum’s [10] variant 3 (Iterative). Instead of estimating models from non-
minimal samples followed by iterative least squares, only a single iterative least squares
are applied to each so-far-the-best model. The limit on the number of inliers used in
each step of the least squares is applied. The experimental evaluation shows significant
reduction in the execution time while sacrificing only little accuracy, especially for
“easy” image pairs.

Table 5.1. Comparison of speed and precision of different LO speed-ups for the epipolar geom-
etry estimation. Please note that the MSAC (truncated quadratic) cost function was used,
see section 6.2 for details. The use of an inlier limit is denoted as LO+ according to [18];
# means that hashing was used.
Algorithm MSAC LO LO’ LO+ LO# LO+#

b
o
o
k
sh

Inliers 28.8± 1.7 29.8± 1.2 29.1± 1.5 29.8± 1.2 29.3± 1.5 29.3± 1.5
Inliers (%) 70.2± 4.0 72.7± 2.8 71.0± 3.6 72.7± 2.8 71.4± 3.6 71.4± 3.6
Error (px) 3.13± 4.41 1.84± 3.10 2.75± 4.19 1.84± 3.10 2.31± 3.52 2.32± 3.53
Samples 43.6± 18.6 40.5± 14.4 41.3± 15.3 40.5± 14.4 41.4± 15.6 41.4± 15.6

Time (ms) 0.6± 5.2± 1.2± 5.3± 3.9± 3.8±

LO count 0.0± 0.0 1.0± 0.2 1.1± 0.3 1.0± 0.2 1.1± 0.3 1.1± 0.3

b
o
x

Inliers 195.8± 6.7 204.3± 12.1 207.9± 13.0 203.3± 12.2 203.8± 12.1 202.3± 12.3
Inliers (%) 84.8± 2.9 88.5± 5.2 90.0± 5.6 88.0± 5.3 88.2± 5.3 87.6± 5.3
Error (px) 38.67± 26.49 43.70± 32.69 35.03± 33.69 42.44± 29.64 45.20± 32.43 43.91± 28.45
Samples 8.8± 1.7 8.8± 1.7 8.8± 1.7 8.8± 1.7 8.8± 1.7 8.8± 1.7

Time (ms) 0.5± 8.5± 1.5± 6.9± 4.6± 4.0±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

ca
st
le

Inliers 110.0± 7.3 122.8± 2.0 119.6± 4.9 122.6± 1.9 122.3± 2.2 122.4± 1.9
Inliers (%) 71.4± 4.8 79.7± 1.3 77.7± 3.2 79.6± 1.2 79.4± 1.4 79.5± 1.2
Error (px) 4.41± 6.82 0.84± 1.68 2.10± 5.59 0.79± 1.22 0.84± 1.71 0.79± 1.19
Samples 41.2± 17.6 37.6± 12.3 37.9± 12.7 37.6± 12.3 37.6± 12.3 37.6± 12.3

Time (ms) 1.0± 7.5± 1.9± 6.8± 5.4± 6.1±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.1 1.0± 0.0 1.0± 0.0 1.0± 0.0

co
rr

Inliers 73.3± 3.9 80.5± 0.7 77.8± 2.1 81.2± 0.8 80.5± 0.7 80.9± 0.9
Inliers (%) 78.8± 4.2 86.5± 0.7 83.7± 2.3 87.3± 0.9 86.5± 0.8 87.0± 1.0
Error (px) 0.55± 0.34 0.33± 0.06 0.28± 0.20 0.38± 0.07 0.34± 0.07 0.36± 0.08
Samples 18.0± 7.2 18.0± 7.2 18.0± 7.2 18.0± 7.2 18.0± 7.2 18.0± 7.2

Time (ms) 0.5± 6.2± 1.3± 6.0± 4.5± 5.0±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

g
ra
ff

Inliers 94.6± 3.5 104.7± 1.1 102.8± 2.2 102.7± 1.9 104.6± 1.3 102.7± 1.9
Inliers (%) 78.8± 2.9 87.2± 0.9 85.7± 1.9 85.6± 1.6 87.2± 1.0 85.6± 1.6
Error (px) 2.34± 1.50 0.53± 0.45 0.68± 0.48 0.59± 0.44 0.55± 0.50 0.59± 0.44
Samples 16.0± 4.5 16.0± 4.5 16.0± 4.5 16.0± 4.5 16.0± 4.5 16.0± 4.5

Time (ms) 0.5± 6.8± 1.3± 6.2± 5.6± 6.1±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
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h
ea

d

Inliers 72.2± 4.1 77.0± 0.2 77.0± 0.2 77.0± 0.0 77.0± 0.1 77.0± 0.1
Inliers (%) 84.0± 4.7 89.5± 0.2 89.5± 0.3 89.5± 0.0 89.5± 0.2 89.5± 0.1
Error (px) 0.89± 0.62 0.32± 0.05 0.31± 0.04 0.30± 0.02 0.31± 0.04 0.31± 0.03
Samples 13.1± 7.0 13.1± 7.0 13.1± 7.0 13.1± 7.0 13.1± 7.0 13.1± 7.0

Time (ms) 0.3± 6.1± 1.1± 6.0± 2.8± 2.7±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

k
a
m
p
a

Inliers 54.0± 3.7 59.2± 2.1 57.9± 3.2 60.3± 2.7 59.0± 2.1 60.0± 2.6
Inliers (%) 64.2± 4.4 70.5± 2.5 68.9± 3.8 71.7± 3.2 70.2± 2.5 71.5± 3.1
Error (px) 12.11± 10.10 4.69± 5.53 7.89± 10.06 4.29± 5.38 4.93± 5.45 4.41± 5.27
Samples 82.7± 31.4 53.6± 15.7 61.2± 21.7 53.3± 15.5 53.8± 15.7 53.3± 15.4

Time (ms) 1.4± 6.5± 1.9± 6.5± 5.9± 6.0±

LO count 0.0± 0.0 1.0± 0.2 1.2± 0.5 1.0± 0.2 1.0± 0.2 1.0± 0.2

K
y
o
to

Inliers 322.4± 15.0 346.2± 1.4 337.3± 10.1 346.7± 1.6 346.1± 1.5 346.8± 1.6
Inliers (%) 72.5± 3.4 77.8± 0.3 75.8± 2.3 77.9± 0.4 77.8± 0.3 77.9± 0.4
Error (px) 2.68± 1.54 0.76± 0.23 1.87± 1.21 0.80± 0.20 0.80± 0.25 0.80± 0.20
Samples 32.7± 11.6 32.1± 10.1 32.1± 10.1 32.1± 10.1 32.1± 10.1 32.1± 10.1

Time (ms) 1.4± 13.0± 3.0± 9.5± 11.0± 9.7±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

le
a
fs

Inliers 52.8± 3.2 59.0± 0.3 58.8± 0.8 59.0± 0.3 58.9± 0.4 58.9± 0.4
Inliers (%) 66.9± 4.1 74.6± 0.3 74.5± 0.9 74.6± 0.3 74.6± 0.4 74.5± 0.6
Error (px) 7.71± 6.06 2.38± 0.19 2.53± 0.92 2.34± 0.26 2.39± 0.27 2.43± 0.43
Samples 69.3± 34.0 47.7± 11.8 48.1± 12.4 47.7± 11.8 47.7± 11.8 47.7± 11.8

Time (ms) 0.9± 6.0± 1.4± 6.1± 3.7± 3.9±

LO count 0.0± 0.0 1.0± 0.1 1.0± 0.2 1.0± 0.1 1.0± 0.1 1.0± 0.1

p
la
n
t

Inliers 19.5± 1.6 21.2± 2.0 20.6± 1.7 21.2± 2.0 21.1± 2.0 21.1± 2.0
Inliers (%) 65.0± 5.2 70.7± 6.8 68.8± 5.6 70.7± 6.8 70.5± 6.7 70.5± 6.7
Error (px) 16.96± 14.08 12.23± 14.38 15.77± 13.69 12.22± 14.38 12.37± 14.36 12.38± 14.36
Samples 82.5± 35.4 69.6± 30.6 68.0± 28.9 69.6± 30.6 69.7± 30.6 69.7± 30.6

Time (ms) 1.0± 4.0± 1.6± 3.9± 3.9± 3.9±

LO count 0.0± 0.0 1.4± 0.7 1.3± 0.6 1.4± 0.7 1.4± 0.7 1.4± 0.7

ro
tu

n
d
a

Inliers 72.0± 3.1 75.0± 0.2 74.2± 2.0 75.0± 0.0 74.9± 0.4 75.0± 0.3
Inliers (%) 83.7± 3.6 87.2± 0.2 86.3± 2.4 87.2± 0.0 87.1± 0.5 87.2± 0.4
Error (px) 1.28± 0.85 0.48± 0.14 0.58± 0.44 0.38± 0.09 0.47± 0.14 0.46± 0.15
Samples 11.9± 5.7 11.9± 5.7 11.9± 5.7 11.9± 5.7 11.9± 5.7 11.9± 5.7

Time (ms) 0.3± 6.0± 1.1± 5.9± 3.1± 3.0±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

sh
o
u
t

Inliers 41.0± 1.5 42.4± 0.8 41.5± 1.2 42.4± 0.8 42.1± 0.9 42.1± 0.9
Inliers (%) 76.0± 2.7 78.6± 1.5 76.8± 2.3 78.6± 1.4 77.9± 1.7 77.9± 1.7
Error (px) 1.66± 0.94 0.86± 0.51 1.48± 0.95 0.86± 0.51 0.85± 0.62 0.85± 0.62
Samples 20.8± 6.4 20.8± 6.4 20.8± 6.4 20.8± 6.4 20.8± 6.4 20.8± 6.4

Time (ms) 0.4± 5.3± 1.0± 5.4± 3.9± 4.0±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

v
a
lb
o
n
n
e

Inliers 24.8± 1.7 26.4± 0.9 25.3± 1.3 26.4± 0.9 25.9± 1.0 25.9± 1.0
Inliers (%) 77.6± 5.2 82.6± 2.8 79.1± 4.1 82.6± 2.8 80.9± 3.2 80.9± 3.3
Error (px) 30.25± 17.38 26.29± 8.97 28.40± 14.96 26.29± 8.99 27.71± 9.95 27.71± 9.96
Samples 22.4± 11.2 22.3± 10.9 22.3± 10.9 22.3± 10.9 22.3± 10.9 22.3± 10.9

Time (ms) 0.4± 4.0± 1.0± 4.0± 3.1± 2.9±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

w
a
ll

Inliers 83.6± 4.8 91.0± 0.0 91.0± 0.0 91.0± 0.0 91.0± 0.0 91.0± 0.2
Inliers (%) 85.4± 4.9 92.9± 0.0 92.9± 0.0 92.9± 0.0 92.9± 0.0 92.8± 0.2
Error (px) 2.42± 2.02 0.40± 0.03 0.39± 0.01 0.54± 0.06 0.39± 0.02 0.51± 0.12
Samples 11.0± 5.5 11.0± 5.5 11.0± 5.5 11.0± 5.5 11.0± 5.5 11.0± 5.5

Time (ms) 0.3± 6.1± 1.0± 5.8± 3.2± 3.4±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

w
a
sh

Inliers 49.3± 2.6 52.0± 0.0 52.0± 0.0 52.0± 0.0 52.0± 0.0 52.0± 0.0
Inliers (%) 89.6± 4.8 94.5± 0.0 94.5± 0.0 94.5± 0.0 94.5± 0.0 94.5± 0.0
Error (px) 1.15± 0.71 0.30± 0.05 0.29± 0.02 0.28± 0.02 0.30± 0.03 0.29± 0.03
Samples 7.3± 3.9 7.3± 3.9 7.3± 3.9 7.3± 3.9 7.3± 3.9 7.3± 3.9

Time (ms) 0.2± 5.5± 0.9± 5.7± 2.3± 2.6±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

zo
o
m

Inliers 41.5± 2.7 44.9± 0.7 43.7± 2.0 44.9± 0.7 44.8± 0.8 44.8± 0.8
Inliers (%) 59.2± 3.9 64.1± 1.0 62.4± 2.8 64.1± 1.0 64.0± 1.1 64.0± 1.1
Error (px) 2.14± 1.98 0.71± 0.70 1.62± 1.87 0.71± 0.70 0.83± 0.72 0.83± 0.72
Samples 168.7± 79.9 80.5± 34.9 110.6± 54.0 80.4± 34.9 81.5± 35.3 81.5± 35.3

Time (ms) 2.1± 8.1± 2.6± 8.2± 6.0± 5.7±

LO count 0.0± 0.0 1.4± 0.7 1.8± 1.0 1.4± 0.7 1.4± 0.7 1.4± 0.7
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5. On the Speed of Local Optimization

Table 5.2. Comparison of speed and precision of different LO speed-ups for the homography
estimation. Please note that the MSAC (truncated quadratic) cost function was used, see
section 6.2 for details. The use of an inlier limit is denoted as LO+ according to [18]; # means
that hashing was used. For further description how to read these tables and how they were
generated, please refer to Appendix B.
Algorithm MSAC LO LO’ LO+ LO# LO+#

a
d
a
m

Inliers 11.9± 1.2 17.0± 0.1 16.4± 0.5 17.0± 0.1 16.5± 0.5 16.5± 0.5
Inliers (%) 59.6± 5.8 84.9± 0.6 82.1± 2.5 84.9± 0.6 82.6± 2.5 82.6± 2.5
Error (px) 2.19± 1.61 0.94± 0.03 0.92± 0.07 0.94± 0.03 0.93± 0.07 0.93± 0.07
Samples 23.1± 8.3 23.1± 8.2 23.1± 8.2 23.1± 8.2 23.1± 8.2 23.1± 8.2

Time (ms) 0.4± 3.9± 0.7± 3.8± 2.1± 2.1±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

b
o
a
t

Inliers 66.6± 6.5 82.0± 0.0 82.0± 0.0 80.9± 1.8 82.0± 0.0 80.9± 1.8
Inliers (%) 52.8± 5.1 65.1± 0.0 65.1± 0.0 64.2± 1.4 65.1± 0.0 64.2± 1.4
Error (px) 2.29± 0.76 1.59± 0.00 1.59± 0.00 1.63± 0.11 1.59± 0.00 1.64± 0.11
Samples 47.7± 20.5 41.1± 10.2 41.1± 10.2 41.1± 10.2 41.1± 10.2 41.1± 10.2

Time (ms) 1.1± 7.2± 1.5± 6.4± 3.9± 5.9±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

B
o
st
o
n

Inliers 291.1± 18.1 305.0± 0.0 305.0± 0.0 305.0± 0.0 305.0± 0.0 305.0± 0.0
Inliers (%) 76.2± 4.7 79.8± 0.0 79.8± 0.0 79.8± 0.0 79.8± 0.0 79.8± 0.0
Error (px) 2.17± 1.43 0.66± 0.00 0.66± 0.00 0.67± 0.05 0.66± 0.00 0.69± 0.08
Samples 9.7± 4.3 9.7± 4.3 9.7± 4.3 9.7± 4.3 9.7± 4.3 9.7± 4.3

Time (ms) 0.7± 15.7± 2.1± 9.6± 6.1± 4.4±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

B
o
st
o
n
L
ib

Inliers 47.3± 3.0 51.0± 0.0 51.0± 0.3 51.0± 0.1 51.0± 0.0 51.0± 0.1
Inliers (%) 23.6± 1.5 25.5± 0.0 25.5± 0.1 25.5± 0.0 25.5± 0.0 25.5± 0.0
Error (px) 2.31± 1.41 0.48± 0.01 0.49± 0.35 0.49± 0.04 0.48± 0.01 0.51± 0.05
Samples 1142.1± 422.9 728.0± 78.4 744.3± 134.6 727.9± 77.9 728.0± 78.4 728.0± 78.2

Time (ms) 8.5± 16.9± 7.1± 16.6± 10.6± 10.3±

LO count 0.0± 0.0 2.9± 1.2 3.0± 1.2 2.9± 1.2 2.9± 1.2 2.9± 1.2

B
ru

g
g
eS

q
u
a
re Inliers 18.3± 1.3 20.9± 0.7 20.8± 1.0 20.9± 0.7 20.9± 0.8 20.9± 0.8

Inliers (%) 39.9± 2.9 45.5± 1.4 45.1± 2.1 45.4± 1.4 45.5± 1.6 45.5± 1.6
Error (px) 6.38± 2.64 4.37± 2.43 4.90± 2.39 4.43± 2.48 4.59± 2.52 4.63± 2.54
Samples 127.4± 34.9 68.5± 9.7 73.5± 16.4 68.7± 9.8 68.7± 11.0 68.8± 11.1

Time (ms) 1.3± 5.5± 1.2± 5.6± 3.2± 3.1±

LO count 0.0± 0.0 1.2± 0.5 1.3± 0.6 1.2± 0.5 1.2± 0.5 1.2± 0.5

B
ru

g
g
eT

o
w
er Inliers 38.0± 2.8 45.9± 1.2 44.4± 1.5 46.3± 1.4 45.7± 1.5 46.3± 1.5

Inliers (%) 49.4± 3.6 59.6± 1.6 57.6± 1.9 60.2± 1.8 59.3± 1.9 60.2± 1.9
Error (px) 5.33± 2.59 4.24± 0.71 3.68± 0.93 4.64± 0.20 4.13± 0.62 4.63± 0.27
Samples 56.0± 18.8 47.2± 6.8 47.2± 6.8 47.2± 6.8 47.2± 6.8 47.2± 6.8

Time (ms) 0.8± 5.6± 1.1± 5.2± 3.4± 4.2±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

B
ru

ss
el
s

Inliers 378.9± 33.4 441.7± 2.5 444.3± 3.5 439.9± 5.6 444.0± 4.7 439.9± 5.7
Inliers (%) 75.3± 6.6 87.8± 0.5 88.3± 0.7 87.5± 1.1 88.3± 0.9 87.5± 1.1
Error (px) 3.70± 1.10 2.31± 0.02 2.26± 0.05 2.33± 0.08 2.26± 0.06 2.33± 0.08
Samples 11.1± 5.2 11.1± 5.2 11.1± 5.2 11.1± 5.2 11.1± 5.2 11.1± 5.2

Time (ms) 1.1± 20.9± 3.0± 11.8± 11.3± 11.4±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

C
a
p
it
a
lR

eg
io
n Inliers 64.4± 6.0 75.7± 1.3 74.9± 1.1 75.9± 1.9 75.0± 1.2 75.9± 2.0

Inliers (%) 49.6± 4.6 58.2± 1.0 57.6± 0.8 58.4± 1.5 57.7± 1.0 58.4± 1.5
Error (px) 5.40± 0.60 4.63± 0.04 4.56± 0.03 4.66± 0.08 4.60± 0.07 4.66± 0.08
Samples 59.4± 23.1 46.3± 7.8 46.3± 7.8 46.3± 7.8 46.3± 7.8 46.3± 7.8

Time (ms) 1.2± 7.4± 1.5± 6.3± 4.3± 6.2±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

ci
ty

Inliers 11.6± 1.1 14.0± 0.1 14.0± 0.1 14.0± 0.1 14.0± 0.1 14.0± 0.1
Inliers (%) 68.3± 6.6 82.3± 0.5 82.3± 0.4 82.3± 0.5 82.3± 0.5 82.3± 0.5
Error (px) 1.73± 1.08 0.79± 0.63 0.79± 0.63 0.79± 0.63 0.79± 0.63 0.79± 0.63
Samples 14.6± 7.1 14.6± 7.1 14.6± 7.1 14.6± 7.1 14.6± 7.1 14.6± 7.1

Time (ms) 0.3± 3.7± 0.6± 3.7± 1.7± 1.7±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

E
iff
el

Inliers 68.2± 4.8 76.0± 0.3 75.7± 1.8 76.0± 0.4 76.0± 0.3 75.8± 0.9
Inliers (%) 34.1± 2.4 38.0± 0.2 37.9± 0.9 38.0± 0.2 38.0± 0.2 37.9± 0.5
Error (px) 1.47± 0.67 1.05± 0.08 1.18± 0.39 1.07± 0.09 1.10± 0.08 1.10± 0.14
Samples 265.7± 102.4 142.3± 5.2 149.2± 26.5 142.0± 4.2 142.3± 5.4 143.4± 7.7

Time (ms) 3.1± 14.8± 3.0± 13.2± 7.8± 8.8±

LO count 0.0± 0.0 1.9± 0.9 2.0± 1.0 1.9± 0.9 1.9± 0.9 1.9± 0.9
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5.4. Simpler Variants of Local Optimization

E
x
tr
em

eZ
o
o
m Inliers 12.5± 1.2 13.4± 0.9 13.2± 1.0 13.4± 0.9 13.4± 0.9 13.4± 0.9

Inliers (%) 22.4± 2.1 24.0± 1.5 23.6± 1.8 24.0± 1.5 23.9± 1.6 23.9± 1.5
Error (px) 13.16± 26.92 6.73± 20.48 9.68± 21.14 6.73± 20.48 6.78± 20.33 6.77± 20.33
Samples 1789.9± 887.1 1264.4± 654.1 1367.8± 709.6 1264.4± 654.1 1268.8± 653.7 1268.8± 653.8

Time (ms) 11.4± 13.7± 9.9± 13.7± 11.7± 11.7±

LO count 0.0± 0.0 3.6± 1.5 3.7± 1.5 3.6± 1.5 3.6± 1.5 3.6± 1.5

g
ra
f

Inliers 177.8± 16.1 201.3± 0.7 201.6± 5.2 201.5± 1.5 202.4± 0.9 201.2± 1.6
Inliers (%) 72.6± 6.6 82.1± 0.3 82.3± 2.1 82.2± 0.6 82.6± 0.4 82.1± 0.7
Error (px) 1.69± 0.71 1.27± 0.01 1.30± 0.08 1.27± 0.10 1.28± 0.02 1.27± 0.13
Samples 12.8± 5.6 12.8± 5.6 12.8± 5.6 12.8± 5.6 12.8± 5.6 12.8± 5.6

Time (ms) 0.8± 11.0± 1.8± 7.8± 4.9± 6.1±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

L
eP

o
in
t1

Inliers 72.7± 6.7 85.0± 2.6 82.9± 3.5 85.2± 2.2 84.1± 3.2 85.1± 2.3
Inliers (%) 49.1± 4.5 57.5± 1.8 56.0± 2.3 57.5± 1.5 56.9± 2.1 57.5± 1.5
Error (px) 3.06± 0.49 2.51± 0.17 2.46± 0.32 2.55± 0.16 2.49± 0.25 2.55± 0.16
Samples 60.6± 22.3 46.4± 7.0 46.5± 7.0 46.4± 7.0 46.4± 7.0 46.4± 7.0

Time (ms) 1.6± 8.3± 1.9± 6.9± 6.1± 7.0±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

L
eP

o
in
t2

Inliers 46.5± 3.7 56.3± 1.1 56.7± 1.2 55.7± 1.7 56.6± 0.9 55.7± 1.8
Inliers (%) 52.3± 4.1 63.2± 1.2 63.7± 1.3 62.6± 2.0 63.6± 1.0 62.6± 2.0
Error (px) 2.31± 1.08 1.59± 0.07 1.64± 0.21 1.59± 0.10 1.64± 0.05 1.59± 0.10
Samples 42.7± 12.7 40.4± 8.9 40.4± 8.9 40.4± 8.9 40.4± 8.9 40.4± 8.9

Time (ms) 1.0± 6.4± 1.4± 5.7± 4.2± 5.8±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

L
eP

o
in
t3

Inliers 29.3± 3.1 35.9± 0.5 35.9± 0.4 36.5± 0.6 35.8± 0.4 36.0± 0.8
Inliers (%) 60.9± 6.6 74.8± 1.1 74.8± 0.9 75.9± 1.3 74.6± 0.9 75.0± 1.7
Error (px) 4.37± 1.71 2.44± 0.09 2.33± 0.13 2.45± 0.09 2.35± 0.12 2.45± 0.12
Samples 26.2± 11.4 26.0± 10.8 26.0± 10.8 26.0± 10.8 26.0± 10.8 26.0± 10.8

Time (ms) 0.5± 4.6± 0.8± 4.6± 2.3± 2.5±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

W
h
it
eB

o
a
rd

Inliers 170.8± 10.9 177.0± 0.0 177.0± 0.0 177.3± 0.4 177.0± 0.0 177.3± 0.5
Inliers (%) 79.8± 5.1 82.7± 0.0 82.7± 0.0 82.8± 0.2 82.7± 0.0 82.8± 0.2
Error (px) 1.69± 0.65 1.10± 0.00 1.10± 0.00 1.10± 0.04 1.10± 0.00 1.11± 0.07
Samples 8.3± 4.2 8.3± 4.2 8.3± 4.2 8.3± 4.2 8.3± 4.2 8.3± 4.2

Time (ms) 0.4± 9.6± 1.3± 7.0± 4.0± 3.2±

LO count 0.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
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6. Cost Function – Measurement of Model Quality

“
In this chapter as well as in the rest of this text, the word “error”
is used in the meaning Sampson’s linear approximation of correspon-
dence reprojection error, unless explicitly noted.

”

6.1. Error scale

In this section, the attention will be paid to the scale of correspondence error. As
the error of an outlying correspondence can be arbitrary, those will not concern us at
all now. The error of inliers depends mostly on a quality of the used detector of feature
points. It could be estimated using a variance of inliers and then an error threshold
can be calculated. However, to decide, which points are inliers, we need to know the
error threshold beforehand. This leads to a typical case of chicken-and-egg problem. In
RANSAC, this is solved by assuming that the inlier/outlier threshold is supplied by the
user and the inlier set is detected.
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Figure 6.1. Error histograms. The upper row shows the histograms of errors of castle image
pair, where the error threshold is computed nearly optimal. The lower row shows distribution
of error of shout pair, where the measurement noise has been overestimated. Whilst the left
close-ups show the distribution of inliers, the right images demonstrate the dichotomy in the
data. There are inliers and nearly-inliers with low error (attributable to the noise), far outliers
with error orders of magnitude higher and only little close outliers. Two scoring functions
are superimposed – top-hat and truncated quadratic; these are discussed in section 6.2.
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6. Cost Function – Measurement of Model Quality

Figure 6.2. Different error threshold means a different problem to be solved. Data points and
fitted lines with error bounds. In the case illustrated in this figure, three different models
can be a global optima, each w.r.t. an another error scale, which is a part of a problem
definition here.

This is sometimes referred to as a flaw, as the error threshold may vary widely in
different tasks [24, 28]. However, the error threshold can be also seen as a part of
problem definition, as illustrated in Figure 6.2. In this case, any automatic threshold
selection would lead to the selection of some model, disregarding user preference. In
the worst case, different models can be returned in different runs if the automatically
selected threshold would be between the proper ones.

There are many ways how we can select the right threshold. E.g. we can just manually
examine the distribution of errors of inliers and use some rule of thumb. As the other
extreme, it is possible to use the Chebyshev inequality when we know only a variance of
the error distribution (and not the distribution itself). Somewhere in between lies the
approach of assuming for the error some known distribution with known variance. If
the assumption is, for example, that image measurements are burdened by an isotropic
Gaussian noise, then the distribution of error is χ2 with two degrees of freedom (DoF)
in the case of homography estimation and with one DoF for epipolar geometry (as
a homography defines a 2D manifold in 4D joint-image-coordinates space while the
manifold of epipolar geometry is three-dimensional). We can then set the error threshold
to some (e.g. 95th) percentile of this distribution to capture the respective fraction of
inliers:

θ2(σ) = χ2
d,95% · σ2 , (6.1)

where d is the number of DoF and σ2 is expected variance of error of inliers.

In this approach, the error is treated solely as a noise on the correspondence coordi-
nates while model is assumed to be exact. However, any model is constructed from the
very data points, which means it has inherently some non-zero imprecision (even mag-
nified in the ill-conditioned cases, e.g. from points lying close to each other). Thus even
a good point may have large error, when it lies far from the model-generating sample
where the constraints, imposed by the model, are rather extrapolated than interpolated.
Raguram et al. have taken the uncertainty of the model directly into account in their
CovRANSAC [32]; this will be seen in further detail in 6.4.
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6.2. Thresholding or Truncating

The original RANSAC of Fischler and Bolles maximizes the number of inliers.

“
The thresholding of correspondences to divide inliers and outliers can
be seen as applying a top-hat cost function on the correspondence
error.

”

The correspondences with an error under the threshold (the inliers) have zero cost, the
outliers have constant cost; or alternatively, in the manner of inlier-count gain function
to be maximized, inliers score one while outliers zero. The minimized cost function is
defined as [38]:

C =
N
∑

i=1

ρ(e2i ) , (6.2)

ρR(e
2) =

{

0 e2 ≤ θ2

const. e2 > θ2 .
(6.3)

The top-hat cost function works reasonably well, when the error threshold is correctly
set. However, it is rather sensitive to the selection of the error scale. When the threshold
is set too high, different models may have the same score, resulting in output instability.
Torr and Zisserman proposed slightly different error term ρM for their MSAC [37], which
simply truncates the squared error:

ρM(e2) =

{

e2 e2 ≤ θ2

θ2 e2 > θ2 .
(6.4)

This leads to a better precision at no additional cost. Furthermore, it was shown [18]
that it is much more robust to the error threshold selection. In our experiments (unless
noted otherwise) we use the truncated quadratic function widened by a factor 3/2,
to have the same area as the top-hat cost function (so it would have the same score
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6. Cost Function – Measurement of Model Quality

on uniformly distributed data). In this case, it is also possible to follow the principle
“the data optimized act in computation”, widening the error threshold by the same
factor when marking the inliers for a least squares computation. The effect on results
is positive, but not ver significant.

6.3. Towards Maximum Likelihood Estimation

Torr and Zisserman later proposed an algorithm dubbed MLESAC [38]. They model
the correspondence error as a mixture of Gaussian noise and uniformly distributed gross
error of outliers:

P (e) = ε · 1√
2πσ2

exp

(

− e2

2σ2

)

+ (1− ε) · 1
v
, (6.5)

where ε is the mixing parameter (equal to the fraction of inliers) and v is a constant,
given by geometric properties of the matching process (we expect error of outliers to
fall within a range of [−v

2 ,+
v
2 ]). The error minimized is the negative log likelihood.

The original paper suggested estimation of parameters, e.g. by the EM algorithm.
However, Tordoff and Murray have shown [34] that monotonicity is preserved under
changes of the mixing parameter – better hypotheses still score better, independent of
the selection. Therefore the log likelihood may be fixed, becoming a function of the
error only. Thus it can be seen as another cost function, as illustrated in Figure 6.3,
while hypotheses are generated the same way as in standard RANSAC.
In the figure can be also observed the similarity between this cost function and trun-

cated quadratic one of MSAC. In fact, MSAC can be perceived as a fast approximation
to the maximum likelihood solution. Authors of algorithms indeed stated the perfor-
mance of both as very close to each other, when MLESAC slightly more accurate and
MSAC slightly faster.

6.4. Uncertainty of Model

The deviation of a datum from a model is a function of the error associated with the
datum and the error associated with the model [12]. In standard RANSAC, the error
is treated solely as a noise on the correspondence coordinates while model is assumed
to be exact, as mentioned at the beginning of this chapter. This approximation has its
role in the definition of inliers and in the derivation of RANSAC properties. However,
since it does not hold exactly, the behavior of RANSAC differs from the theoretical
predictions. E.g. [34] show that the first occurrence of all-inlier sample happens on
average much later than predicted. This is caused by calculation of model from the
noisy data, i.e. even the model is not exact. This issue was addressed also in [10], where
the effect of imperfect model estimation is dealt with.

Raguram et al. in their CovRANSAC [32] have instead taken into account the un-
certainty of the model explicitly. Using this, the covariance matrix of a transformed
point (a point again in the case of homography or a line for epipolar geometry) can
be established. Then a probability of a correspondence being correct may be observed
and used to compute a set of “possible inliers”. In the CovRANSAC, when a high
enough support is found, the loop is interrupted and a new RANSAC is run on this
set, which has obviously a higher inlier ratio (hence it terminates after a small number
of iterations). It is nevertheless possible to employ the detection of possible inliers in
different ways, e.g. for the Ibase computation.
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Figure 6.4. Effect of the used cost function on the robustness against changes of error scale.
The upper image shows results on selected image pairs for epipolar geometry estimation, the
lower one shows results for homography estimation. On the x-axis is the expected standard
deviation of inlier noise (giving the error threshold according to Equation 6.1) and the re-
sulting RMS error on the ground truth points is on the y-axis. The vertical cyan line marks
the default setting. The compared cost functions are top-hat, truncated quadratic (dotted)
and top-hat with quadratic one used as a tie-breaker in a case of two models with equal
numbers of inliers. As can be seen, in the vicinity of optimal error threshold (computed from
error scale σ) both cost functions output similar results (MSAC is slightly more accurate).
For larger thresholds this difference becomes more significant – the truncated quadratic cost
function is more robust to the selection of the error scale. It provides a range of one order
of magnitude of usable thresholds for most of the image pairs, making it easier to select a
suitable one for a diverse set of data.
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7. Conclusion

7.1. Summary

In this thesis, Locally Optimized RANSAC is revisited. It has been extensively tested,
using the developed mass testing framework and datasets with newly created GT points.
Several unexpected aspects have been discovered. Besides numerous implementation
issues, the following fundamental two were addressed. Firstly, the behavior of RANSAC
with different cost functions under the changing error threshold was examined. Sec-
ondly, it was observed that (contrarily to the theoretical predictions) under some cir-
cumstances the execution time of LO-RANSAC significantly exceeds the execution time
of standard RANSAC.

To robustify the RANSAC to the error scale selection, we proposed to use the trun-
cated quadratic cost function. This offers similar estimation performance near the op-
timal error threshold, but it keeps it for a substantially wider range, while the perfor-
mance of the top-hat scoring drops quickly. To make the run-time performance of the
Local Optimization less sensitive to the number of inliers (and subsequently the number
of equations to be solved), we introduce a limit on this number. When the inlier count
exceeds the limit, a limit-sized subset is randomly drawn and used. This procedure
lowers the execution time of LO-RANSAC by up to 30% with negligible effect on the
accuracy of the estimation. Furthermore we have suggested a different speed-up by
remembering already-seen sets of inliers and then stopping the iteration on these. In
our paper on the LO-RANSAC [18], we combined the improvements into a procedure
dubbed LO+-RANSAC, using MSAC-like truncated quadratic cost function and the
inlier limit. This gives a very stable robust estimation, despite its randomized nature.
We have also shown, that the Locally Optimized RANSAC offers a significantly better
starting point for a Bundle Adjustment than the Gold Standard.

For fast applications, where no challenging camera motion or illumination changes
are expected, a lightweight version of Local Optimization (LO’) is proposed. Instead of
estimating models from non-minimal samples followed by iterative least squares, only
a single iterative least squares are applied on each so-far-the-best model (the limit on
the number of inliers used in each step of the least squares is applied). The experimental
evaluation shows significant reduction in the execution time while sacrificing only little
accuracy, especially for “easy” image pairs.

7.2. Outputs of the Work

The main contributions of this thesis were published at the British Machine Vi-
sion Conference 2012 in the paper Fixing the Locally Optimized RANSAC [18]. The
speed-related issues are explained there as well as the question of the cost functions,
and solutions (the LO+ and LO’) are suggested. Additionally, a supplementary tech-
nical report with full experimental evaluation has been published as a CMP Research
Report [19].

The implementation of LO-RANSAC in the CMP WBS-Demo was extensively tuned
and all the improvements were incorporated. The LO-RANSAC for estimation of ho-

35



7. Conclusion

mography and epipolar geometry was separated and made publicly available under the
GNU GPL license. The source codes can be found on the enclosed CD. Also, these are
accessible from the home page at http://cmp.felk.cvut.cz/software/LO-RANSAC/.
The datasets, used for the experimental evaluation are made available as well. They

are divided on account of the particular geometry by which the image pairs are related
– there are datasets for homography estimation and datasets for epipolar geometry
estimation. About ten ground truth point correspondences were manually annotated
in each of the image pairs, which can be used as an external measurement of the
estimation accuracy. The datasets (including GT) are available on the enclosed CD
and at the web page http://cmp.felk.cvut.cz/data/geometry2view/.
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A. Datasets

The performance of different RANSAC variants was evaluated on a collection of 16
image pairs for epipolar geometry and 16 pairs for homography estimation. These image
pairs were previously used for evaluation in a number of publications [4, 8, 11, 21, 22,
25, 29, 31, 40, 42]). The datasets are available (including manually annotated ground
truth points) at http://cmp.felk.cvut.cz/data/geometry2view/.

Tentative correspondences of image pairs were obtained by matching SIFT descrip-
tors [20] of MSERs [22]. In the technical report [19], experiments using Hessian Affine
detector [23] are presented as well. The results on Hessian Affine features are even more
favorable for the LO methods because of lower inlier ratios.

A.1. Test Images for Epipolar Geometry Estimation

Filenames: booksh[AB].png box[AB].png castle[AB].png corr[AB].png

Image A:

Dimensions: 768× 576 1024× 768 768× 576 512× 512

Image B:

Dimensions: 768× 576 1024× 768 768× 576 512× 512
Err. scale θ: 0.6 0.8 0.6 0.4
TC: 41 231 154 93
Source: (i) (b) (h) (c)

Filenames: graff[AB].png head[AB].jpg kampa[AB].png Kyoto[AB].jpg

Image A:

Dimensions: 800× 640 1408× 1056 800× 543 2592× 1944

Image B:

Dimensions: 800× 640 1408× 1056 800× 543 2592× 1944
Err. scale θ: 0.6 1.1 0.6 2.0
TC: 120 86 84 445
Source: (c) (a) (i) (a)
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A. Datasets

Filenames: leafs[AB].jpg plant[AB].png rotunda[AB].png shout[AB].png

Image A:

Dimensions: 1600× 1200 576× 768 1024× 683 768× 576

Image B:

Dimensions: 1600× 1200 576× 768 1024× 683 768× 576
Err. scale θ: 1.2 0.6 0.8 0.6
TC: 79 30 86 54
Source: (l) (g) (j) (g)

Filenames: valbonne[AB].png wall[AB].jpg wash[AB].png zoom[AB].png

Image A:

Dimensions: 768× 512 2272× 1704 768× 576 1024× 768

Image B:

Dimensions: 768× 512 2272× 1704 768× 576 1024× 768
Err. scale θ: 0.6 1.7 0.6 0.8
TC: 32 98 55 70
Source: (c) (l) (g) (k)

A.2. Test Images for Homography Estimation

Filenames: adam[AB].png boat[AB].png Boston[AB].jpg BostonLib[AB].png

Image A:

Dimensions: 600× 450 850× 680 1712× 1368 1504× 1000

Image B:

Dimensions: 600× 450 850× 680 1712× 1368 1504× 1000
Err. scale θ: 0.6 0.8 1.6 1.4
TC: 20 126 382 200
Source: (f) (c) (d) (d)
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A.2. Test Images for Homography Estimation

Filenames:
BruggeSquare BruggeTower[AB].png Brussels[AB].jpg CapitalRegion

[AB].jpg [AB].jpg

Image A:

Dimensions: 1712× 1368 856× 684 1712× 1368 1368× 1712

Image B:

Dimensions: 1712× 1368 856× 684 1712× 1368 1368× 1712
Err. scale θ: 1.6 0.8 1.6 1.6
TC: 46 77 503 130
Source: (d) (d) (d) (d)

Filenames: city[AB].png Eiffel[AB].png ExtremeZoom[AB].png graf[AB].png

Image A:

Dimensions: 329× 278 1198× 958 1519× 1006 800× 640

Image B:

Dimensions: 329× 278 1198× 958 1519× 1006 800× 640
Err. scale θ: 0.3 1.1 1.5 0.8
TC: 17 200 56 245
Source: (e) (d) (d) (c)

Filenames: LePoint1[AB].png LePoint2[AB].png LePoint3[AB].png WhiteBoard[AB].jpg

Image A:

Dimensions: 600× 450 600× 450 600× 450 1504× 1000

Image B:

Dimensions: 600× 450 600× 450 600× 450 1000× 1504
Err. scale θ: 0.6 0.6 0.6 1.4
TC: 148 89 48 214
Source: (f) (f) (f) (d)
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A. Datasets

A.3. Sources

(a) [4] Cech et al.: Sequential Correspondence Verification,
http://cmp.felk.cvut.cz/~cechj/SCV/

(b) [11] Chum et al.: DegenSAC (Two-view Geometry Estimation
Unaffected by a Dominant Plane)

(c) various Visual Geometry Group (University of Oxford),
http://www.robots.ox.ac.uk/~vgg/data.html

(d) [42] Stewart et al.: Testsuite of 22 challenging pairs of images,
http://www.vision.cs.rpi.edu/gdbicp/dataset/

(e) – Centre for Remote Imaging, Sensing and Processing,
http://www.crisp.nus.edu.sg/

~research/tutorial/opt_int.htm.

(f) [25] Morel and Yu: ASIFT,
http://www.cmap.polytechnique.fr/

~yu/research/ASIFT/demo.html

(g) [40] Tuytelaars, http://homes.esat.kuleuven.be/~tuytelaa/

(h) [31] Pollefeys, Leuven castle image sequence,
http://www.cs.unc.edu/~marc/

(i) [22] Matas: Robust Wide Baseline Stereo from Maximally
Stable Extremal Regions

(j) [21] Martinec: St. George rotunda,
http://cmp.felk.cvut.cz/projects/is3d/

(k) [29] Perdoch: Epipolar Geometry from Two Correspondences,
http://cmp.felk.cvut.cz/~perdom1/

(l) [8] Chum and Matas: Matching with PROSAC
– progressive sample consensus
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B. RANSAC Testing Framework

LO-RANSAC has a number of variations and parameters. Thus it is not sufficient to
say that it works correctly; furthermore we need to compare different variants against
each other. As it is from definition a randomized algorithm, such a comparison should
be carried out on extensive datasets with results averaged over a number of iterations.

This condition is necessary, but not sufficient to achieve the best repeatability pos-
sible. Unless we are willing to perform a huge numbers of runs, we should assure that
all the samples drawn by different variants of RANSAC are the same. The intuitive
solution to this requirement is to fix the random seed before start of every RANSAC
run. Moreover, since there can be further usage of the pseudorandom generator during
RANSAC (e.g. inner sampling in LO), its state should be stored after and restored
before each draw of a minimal sample, to fix the samples disregarding any further
processing.

B.1. What Is Measured

In standard RANSAC, the number of data points consistent with the estimated model
(inliers) is optimized. Such a measure is a good indicator how well the image pair is
matching [30]. Thus the number of inliers (both absolute and relative, for a fast insight)
is the first information reported.

For some applications such as 3D reconstruction, the precision of the estimated model
is of high importance. To compare the precision, we record the RMS error of the
estimated model on manually annotated ground truth correspondences (available at
the page with datasets). These correspondences are not included in the estimation
process. Note that such a measure includes the error in the manual selection as well as
error induced by deviation of the imaging process from a pin-hole camera model (such
as radial distortion). Statistically, smaller error indicates better precision, however,
small differences in small values are insignificant.

The time complexity is indicated by the number of samples drawn by RANSAC.
However, Local Optimization and other techniques beyond sample-and-consensus can
constitute a significant portion of the total running time. Thus it is appropriate to
measure the wall clock time as well, according to Chapter 5. Naturally, all the ex-
periments have to be carried out on the same computer, whose parameters should be
reported along. The time measurement is the only one, which is not absolutely repeat-
able. Its variation decreases with the number of repetitions, but it never falls to zero.
To make the variation as low as possible, the running time is measured only once over
all the runs. Thus no statistics such a minimum, maximum or standard deviation are
available. For a better insight into the running time, the number of performed Local
Optimizations is tabulated as well.

As a fast visual indicator of algorithm stability, graphs are included in the tables
(in the case of PDF reports, see below). These graphs show the observed probability
of every point of being an inlier in repeated runs and a histogram of such probability.
Figures B.1 and B.2 show the details. Since the graphs are supposed to provide a quick
and intuitive overview of the stability of the results over repeated executions, there is
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Figure B.1. The probability of a TC being an inlier, collected over 1000 executions. Correspon-
dences on the horizontal axis are ordered so that the values on the vertical axis – the fraction
of executions the correspondence has been labeled as an inlier – are non-increasing. The
left plot shows an ideal case when the inlier and outlier dichotomy is identical for all execu-
tions. The plot on the right side depicts an example of less stable estimation, some tentative
correspondences alternate between being an inlier and outlier in different executions.
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Figure B.2. The histogram of the probability of a TC being an inlier, collected over 1000
executions. Vertical axis: the number of tentative correspondences that have been output as
inliers in a fraction of executions (horizontal axis). This plot summarizes the plot in Figure
B.1. The left plot shows an ideal case: two bars, one stands for outliers labeled as outliers
in all executions, the other stands for inliers consistently labeled in all executions. Plot on
right-hand side demonstrates results of a less stable estimation process: for example about
40 tentative correspondences were output as inliers in 80% of executions.

no scale or axis labels in the tables with experimental results. Rather than the exact
values in the plots, the shape is important.

B.2. Test Course

Each experiment consists of a number of RANSAC runs on multiple images with the
same settings. The testing framework goes through all the image pairs in a dataset.
For each pair, features are extracted and matched. Then RANSAC is run multiple
times with the same settings. Since we want to start with the same state of pseudoran-
dom generator over different experiments, but with the different states in runs of one
experiment, we seed the generator by an index of the run (increasing series of natural
numbers). With this manner of seeding, we obtain exactly the same results in two inde-
pendent experiments, started with the same settings. Of course, except the wall clock
time1, as mentioned above. During the test course, necessary statistics are collected.

1To keep this as stable and repeatable as possible, the experiments were carried out on a dual-core

machine with no other resources-demanding process running. Thus RANSAC had always one core

solely for its use.

46



B.3. Output examples

There are different ways the results can be output (a user can select one or more).
The basic one is to print the statistics into Command Window of Matlab directly at
the end of every experiment (see Figure B.4 for an example). This is useful e.g. when
it is desired to just quickly see the results on new data, or to check an effect of a minor
change without storing the results permanently.

The next possibilities are to print the results into a file, containing a group of columns
in either CSV format, or with marks for LATEX tabular environment. One or multiple
of these files are then loaded by a Bash script and merged together. In the case of
the CSV output, headers are added and the final CSV file is stored. The CSV file
may become useful as it is essentially plain text and thus readable for humans, but
it can be also passed to any other software as easily processed but still compact for-
mat. E.g. all the major table/spreadsheet processors (MS Excel, OpenOffice.org Calc,
Gnumeric, KSpread,. . . ) can read it and allow customizable views, such as sorting,
filtering, displaying/hiding/rearranging particular columns or rows, etc., any high-level
processing or a creation of graphs. See Figure B.5 for an example of the raw CSV file
and its view in Calc spreadsheet processor.

The files containing exported columns for LATEX are processed in a similar way. More-
over, the script adds row headers and footers, table header and footer and then uses
the table to create a report, adding image thumbnails and additional information. This
output is meant for a human inspection, when columns can be easily compared against
each other and the small graphs give quick and intuitive overview of algorithm stability.
The table with image information is similar to those in Appendix A, for an example of
the tabulated results see Figure B.3.

B.3. Output examples

In this section, several examples of the experimental results are shown on a model
situation of comparing MSAC and LO-MSAC.

Solver→ M M.LO

Detectors→ MSER+ MSER- MSER+ MSER-

Descriptors→ SIFT SIFT

Image Qty↓ 10000 runs, σ = 0.5, conf = 95% 10000 runs, σ = 0.5, conf = 95%

b
o
ok

sh

I 28.8 ±1.7 (22-33) 29.8 ±1.2 (23-33)

In
ls
s

I (%) 70.2 ±4.0 (54-80) 72.7 ±2.8 (56-80)

Samp 43.6 ±18.6 (11-139) 40.5 ±14.4 (11-125)

Time(ms) 0.6 (NA) 5.2 (NA)

H
In
ls
s

Error 3.13 ±4.41 (0.4-26.2) 1.84 ±3.10 (0.4-25.8)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.2 (1-4)

b
ox

I 195.8 ±6.7 (177-222) 204.3 ±12.1 (194-223)

In
ls
s

I (%) 84.8 ±2.9 (77-96) 88.5 ±5.2 (84-97)

Samp 8.8 ±1.7 (2-18) 8.8 ±1.7 (2-18)

Time(ms) 0.5 (NA) 8.5 (NA)

H
In
ls
s

Error 38.67±26.49(0.7-111.6) 43.70±32.69(1.2-72.2)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1)

ca
st
le

I 110.0 ±7.3 (90-124) 122.8 ±2.0 (105-124)

In
ls
s

I (%) 71.4 ±4.8 (58-81) 79.7 ±1.3 (68-81)

Samp 41.2 ±17.6 (12-130) 37.6 ±12.3 (12-130)

Time(ms) 1.0 (NA) 7.5 (NA)

H
In
ls
s

Error 4.41 ±6.82 (0.3-59.9) 0.84 ±1.68 (0.4-16.4)

LO count 0.0 ±0.0 (0-0) 1.0 ±0.0 (1-1)

Figure B.3. Example of LATEXoutput. Each column represents one experiment. Image thumb-
nails are included in the row headers. Column headers contain the used settings. The
tabulated results are arranged as follows: mean value ±standard deviation (minimum–
maximum). After these, the stability of each experiment is visualized in the graphs, see
Figures B.1 and B.2 for details.
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B. RANSAC Testing Framework

M has finished its 1000 runs on files "bookshX.png" with statistics (min/avg/max/+-std):

Inliers found: 24/ 28.9/ 33/+- 1.6

Inliers found: 58.5%/ 70.4%/ 80.5%/+- 3.9%

Samples drawn: 13/ 42.7/ 131/+- 18.4

Time elapsed: 0.7

Ei: 0.4/ 3.07/ 24.8/+- 4.32

LO count: 0/ 0.0/ 0/+- 0.0

M has finished its 1000 runs on files "boxX.png" with statistics (min/avg/max/+-std):

Inliers found: 180/ 196.1/ 222/+- 6.9

Inliers found: 77.9%/ 84.9%/ 96.1%/+- 3.0%

Samples drawn: 3/ 8.8/ 16/+- 1.7

Time elapsed: 0.4

Ei: 0.9/ 38.37/ 107.6/+- 26.71

LO count: 0/ 0.0/ 0/+- 0.0

M has finished its 1000 runs on files "castleX.png" with statistics (min/avg/max/+-std):

Inliers found: 90/ 110.3/ 124/+- 7.4

Inliers found: 58.4%/ 71.6%/ 80.5%/+- 4.8%

Samples drawn: 13/ 41.2/ 130/+- 18.0

Time elapsed: 1.0

Ei: 0.4/ 4.49/ 59.4/+- 7.65

LO count: 0/ 0.0/ 0/+- 0.0

.

.

.

M.LO has finished its 1000 runs on files "bookshX.png" with statistics (min/avg/max/+-std):

Inliers found: 26/ 30.0/ 33/+- 0.8

Inliers found: 63.4%/ 73.2%/ 80.5%/+- 2.0%

Samples drawn: 11/ 25.9/ 75/+- 7.6

Time elapsed: 12.8

Ei: 0.5/ 1.37/ 22.4/+- 1.67

LO count: 1/ 3.3/ 9/+- 1.3

M.LO has finished its 1000 runs on files "boxX.png" with statistics (min/avg/max/+-std):

Inliers found: 195/ 213.0/ 223/+- 11.9

Inliers found: 84.4%/ 92.2%/ 96.5%/+- 5.2%

Samples drawn: 2/ 5.1/ 9/+- 2.8

Time elapsed: 16.9

Ei: 1.5/ 22.00/ 71.9/+- 30.27

LO count: 1/ 2.0/ 5/+- 0.8

M.LO has finished its 1000 runs on files "castleX.png" with statistics (min/avg/max/+-std):

Inliers found: 120/ 123.0/ 124/+- 0.8

Inliers found: 77.9%/ 79.9%/ 80.5%/+- 0.5%

Samples drawn: 12/ 12.8/ 16/+- 0.8

Time elapsed: 19.7

Ei: 0.4/ 0.65/ 1.2/+- 0.07

LO count: 1/ 3.0/ 7/+- 1.2

.

.

.

Figure B.4. Example of text output in the Matlab Command Window. As the experiments
are not piled close to each other, this manner is not suitable for a comparison of methods.
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"Filenames","Qty","M MEAN","M MIN","M MAX","M STD","M.LO MEAN","M.LO MIN","M.LO MAX","M.LO STD"

"bookshA.png","I",28.9,24,33,1.6,30.0,26,33,0.8

"bookshB.png","I (%)",70.4,58.5,80.5,3.9,73.2,63.4,80.5,2.0

,"Samp",42.7,13,131,18.4,25.9,11,75,7.6

,"Time",0.7,0,0,0,12.8,0,0,0

,"Error",3.07,0.4,24.8,4.32,1.37,0.5,22.4,1.67

,"LO Count",0.0,0,0,0.0,3.3,1,9,1.3

"boxA.png","I",196.1,180,222,6.9,213.0,195,223,11.9

"boxB.png","I (%)",84.9,77.9,96.1,3.0,92.2,84.4,96.5,5.2

,"Samp",8.8,3,16,1.7,5.1,2,9,2.8

,"Time",0.4,0,0,0,16.9,0,0,0

,"Error",38.37,0.9,107.6,26.71,22.00,1.5,71.9,30.27

,"LO Count",0.0,0,0,0.0,2.0,1,5,0.8

"castleA.png","I",110.3,90,124,7.4,123.0,120,124,0.8

"castleB.png","I (%)",71.6,58.4,80.5,4.8,79.9,77.9,80.5,0.5

,"Samp",41.2,13,130,18.0,12.8,12,16,0.8

,"Time",1.0,0,0,0,19.7,0,0,0

,"Error",4.49,0.4,59.4,7.65,0.65,0.4,1.2,0.07

,"LO Count",0.0,0,0,0.0,3.0,1,7,1.2

.

.

.

Figure B.5. Example of CSV output. The upper part shows a raw CSV file with results
of sample experiment “MSAC vs. LO-MSAC”. In the lower part, this file is open in the
OpenOffice.org Calc spreadsheet processor, allowing further operations with the data.
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C. LO-RANSAC software library

In the scope of this work, LO-RANSAC implementation in CMP WBS-Demo was
improved and tuned. The LO-RANSAC source code has been separated and published
as a C library. It is now publicly available under the GNU GPL license. The home
page can be found at http://cmp.felk.cvut.cz/software/LO-RANSAC/.

C.1. Dependencies

The library has only one dependency – LAPACK: Linear Algebra Package [1]. In
Linux distributions, this is often available via package management system (e.g. package
liblapack). We were informed that on Windows it is possible to replace LAPACK by
Intel MKL library. Then, besides changing the path in a Makefile (see below), it is
necessary to replace LAPACK #includes by <mkl.h>. This was reported as working
with MS Visual Studio 2008 on Windows 7 x64. However, we were not able to check
the reliability of this information.

The LO-RANSAC library also uses several procedures from CCMATH library [2].
Nevertheless, since this is included in the distribution archive, it is not necessary to be
concerned about those at all.

C.2. Building the library

The unpacked LO-RANSAC directory contains a license file, information about au-
thors with contact information, README file with content similar to this chapter and
src subdirectory, containing the source files. In the src directory, the Makefile is pre-
pared for an easy build. The debug/release build can be switched there by simply
(un)commenting lines (turning on/off optimization or debugging information).
As the LAPACK installation usually does not include the header files, it is necessary

to obtain those elsewhere. E.g., Matlab carries a set of headers along. The path to the
headers should be specified in the Makefile as well.
Running the Makefile compiles all the source files into C objects and then link these

together with LAPACK library. A file libransac.a is the result. Then it is possible to
link this file to other software using -lransac -L. E.g. for the use in Matlab, MEX-
sources are prepared. These should be compiled as follows:
mex loransacH.mex.c -o loransacH.mexglx -lransac -L. -llapack.
This example is for 32-bit Linux. The proper MEX-file extension should be used,
according to the particular platform (use the mexext command in Matlab).

C.3. Application Programming Interface

The main gateway to the library consists of two functions for geometry estimation:
ransacH and ransacF for homography and epipolar geometry estimation (respectively).
Their arguments are summarized in Table C.3. Since the library is often called from
Matlab MEX-files, the matrices are stored column-wise (in a column-major order). In
these arguments, all the essential RANSAC parameters are possible to set. Also, the
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C. LO-RANSAC software library

Table C.1. Application Programming Interface. A user can choose between a more detailed
parameter settings and the simple variant where as many as possible parameters are set to
their respective default values. See table C.3 for a description of the arguments.

Score ransacH (double *u, int len, double th, double conf,

int max sam, double *H, unsigned char * inl,

int do lo, int inlLimit);

Score ransacF (double *u, int len, double th, double conf,

int max sam, double *F, unsigned char * inl,

int do lo, int inlLimit);

void ransacHsimple (double *u, int len, double th, double *H);

void ransacFsimple (double *u, int len, double th, double *F);

Table C.2. Matlab MEX-files Application Programming Interface. Again, the only mandatory
inputs are the tentatively corresponding pairs of points (here called TC PAIRS instead of
u) and the inlier/outlier error threshold. A matrix, representing the geometry, is always
returned; optionally also with the inliers/outliers separation. One additional parameter is
present here – the seed for pseudorandom generator (srand in C).

[H] = loransacH(TC PAIRS, THRESHOLD)

[H, INL] = loransacH(TC PAIRS, THRESHOLD

[, LO ON, CONF, INL LIMIT, MAX SAM, RAND SEED])

[F] = loransacF(TC PAIRS, THRESHOLD)

[F, INL] = loransacF(TC PAIRS, THRESHOLD

[, LO ON, CONF, INL LIMIT, MAX SAM, RAND SEED])

ransac* functions return inliers/outliers bipartitioning of the data points by filling the
inl array by ones and zeroes. The score of the best geometry hypothesis found is
returned in a special structure, containing the number of inliers I and the widened
truncated quadratic score J (note that this is implemented as a gain function to be
maximized, to be consistent with the inlier count). Its definition is:
typedef struct { unsigned I; double J; } Score;

If it is necessary to change some of the inner LO-RANSAC constants or parameters
(e.g. the number of inner samples in LO, or cost function), this can be done in the file
rtools.h. On the other hand, for the cases when an “as simple as possible” interface
is needed, we have prepared wrapping functions ransacHsimple and ransacFsimple.
In these, all the parameters are set to their default values wherever it makes any sense.
Furthermore, nothing but the geometry matrix is returned. The default values can be
found in the Table C.3 as well.

For an example of a typical LO-RANSAC usage see the files testH.c and testF.c.
Furthermore, these indicate a proper function of the LO-RANSAC library. The Makefile
compiles them with the library, thus they can be easily run from the system terminal
(e.g. ./testH for homography).
The input matrix u is of size 6×N . It consists of the homogeneous coordinates of both

tentatively corresponding points – ith column can be expressed as [xi, yi, wi, x
′
i, y

′
i, w

′
i]
⊤

or [x⊤
i , x′⊤

i ]⊤. On the output, a model of the desired geometry is returned, satisfying

rankH = 3 (C.1)

and

xi ×Hx′

i = 0 ∀i : inl(i) = 1 (C.2)
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C.3. Application Programming Interface

Table C.3. The list of LO-RANSAC arguments. This table applies to C interface, all the
properties nevertheless hold even for the MEX interface. For the interface of the MEX-files
please refer to the Table C.2.

Name Direction Type Size Default value (F/H)

F/H output double 3×3 NA
fundamental matrix / homography matrix (M∗)

inl output binary 1×len NULL (not returned)
inliers/outliers separation (I∗)

u input double 6×len NA
input data – tentative correspondences

len input int scalar NA
length of input tentative correspondences (N)

th input double scalar NA
squared inlier-outlier error threshold (θ2, px2)

conf input double scalar 0.95
user-required probability of obtaining the best solution (η0)

max sam input int scalar 1,000,000
maximal number of samples drawn

do lo input binary scalar 1
turning LO on/off

inlLimit input int scalar 49/28
maximal number of inliers for iterative lest squares, 0 = no limit

for the homography estimation, and

rankF = 2 (C.3)

and
x⊤

i Fx
′

i = 0 ∀i : inl(i) = 1 (C.4)

for the epipolar geometry estimation, with the tolerance θ of the correspondence Samp-
son’s error (e2i ≤ θ2). Please note that the notation used in the CMP WBS-Demo is

used here, instead of the more common x′
i ×Hxi = 0 and x′⊤

i Fxi = 0.
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D. Abbreviations, Symbols, Constants

2D, 3D, 4D Two-, Three-, Four-Dimensional

BA Bundle Adjustment

Bash Bourne again shell

CMP Center for Machine Perception (Centrum Strojového vńımańı ČVUT)

CovRANSAC Covariance RANdom SAmple Consensus (using uncertainty estimation)

CSV Comma Separated Values

DegenSAC Degenerate SAmple Consensus

DoF Degree of Freedom

EG Epipolar Geometry

GNU GNU’s Not Unix

GPL General Public License

GT Ground Truth

HG HomoGraphy

i.i.d. Independent and Identically Distributed

ILSq Iterative Least Squares

InRS Inner Random Sample

LAF Local Affine Frame

LAPACK Linear Algebra PACKage

LMS Least Median of Squares

LO Local Optimization

LO-RANSAC Locally Optimized RANdom SAmple Consensus

LSq Least Squares solution, normalized and possibly weighted

MAPSAC Maximum A Posteriori Estimation SAmple Consensus

MEX Matlab EXecutable

MLESAC Maximum Likelihood Estimation SAmple Consensus

MSAC M-estimator SAmple Consensus

MSER Maximally Stable Extremal Region

NAPSAC N Adjacent Points SAmple Consensus

NBS Narrow Baseline Stereo

PLUNDER Pick Least UNDEgenerate Randomly

PROSAC PROgressive SAmple Consensus

QDEGSAC Quasi-DEGenerate SAmple Consensus

RANSAC RANdom SAmple Consensus

RS Random Sample

SFM Structure From Motion

SIFT Scale-Invariant Feature Transform

SPRT Sequential Probability Ratio Test

TC Tentative Correspondence(s)

WBS Wide Baseline Stereo

C cost function.

d number of DoF of model error.

e correspondence error.
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find inliers find points with error smaller than θ w.r.t. model M .
I number of inliers.
I (I∗, I∗s ) inlier set (the largest found, the largest from minimal sample).
K number of samples drawn by RANSAC.
m size of minimal sample (e.g. 2 for fitting 2D line to points, 4 for homography from
point correspondences, etc.)

M (M∗,M∗
s ) model (the best found, the best from minimal sample).

N number of data points.
P (I) probability of a random sample being outlier-free.
S random sample.
ε inlier ratio, i.e. I/N .
η probability of drawing at least one outlier-free sample.
η0 user-supplied probability η to terminate, confidence in returned solution.
θ inlier/outlier error threshold.
ρ error term of the minimized cost function (some robust function of the correspondence

error).
σ standard deviation of error of inliers.

iters iterations of LSq (4).
iters′ iterations of LSq – LO’ (10 for EG, 4 for HG).
Kstart number of samples, when LO is suppressed (50).
mθ threshold multiplier (2).
m′

θ threshold multiplier – LO’ (4 ·mθ for EG, mθ for HG).
reps inner sampling repetitions (10).
sis size of inner sample (min(14, |Ibase|/2) for EG, min(12, |Ibase|/2) for HG).
∆θ threshold decrement (mθ·θ−θ

iters−1 ).
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E. Content of Enclosed CD

CD root

README.txt – Content info, similar to this section.

index.html – Homepage of CD.

resources – Data of HTML pages on CD.

text – Text of the thesis (this file).

lebedkar thesis.pdf – Resulting PDF document.

lebedkar thesis.zip – LATEX source codes.

loransac dist – Distribution package of LO-RANSAC library.

src – Source codes.

manual.pdf – Manual for building and usage.

LICENSE, AUTHORS – Authors and legal information.

README – Basic information about the package.

BMVC2012paper – The published paper and related materials.

Lebeda-2012-Fixing LORANSAC-BMVC.pdf – The paper.

...LORANSAC-BMVC abstract.pdf – Extended abstract.

...LORANSAC-BMVC poster.pdf – Conference poster.

...LORANSAC-tr.pdf – Tech. report with full exp. evaluation.

data – Datasets used for experimental evaluation.

homogr.tar.gz – Homography dataset.

kusvod2.tar.gz – Epipolar geometry dataset.

The source of the icons used on this page is Gnome.org.
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