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endless patience and valuable feedback. I am thankful to my brother for

his thorough reviews. I am most grateful to my fiancée and family for their

never-ending encouragement and support. Without them this work would

not have been possible.

iii



Abstract

Traffic classification is an important part of network management with re-

spect to quality of service and security monitoring. We introduce a novel

framework for designing traffic classification algorithms based on statisti-

cal flow features. We build on the results achieved by SPID and use mul-

tilevel clustering with custom classifiers to avoid peaking effect. Further-

more, we introduce several novel flow features and optimize the structure

and parameters of the classifier with a genetic algorithm. The effectiveness

of the proposed solution is evaluated on traces of real traffic and compared

with SPID. Preliminary results show improved precision and recall with

substantial increase of speed of classification.
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Introduction

Network traffic classification has been one of the main research areas in

networking and security for at least a decade. During this time, several

main approaches to this problem have been established, yet none of them

proved superior. This is mainly due to the nature of traffic classification,

with inherent limitations imposed by protocols, environment, performance

requirements, technology, laws and policies etc. With such restrictions, suit-

able solution often depends heavily on the problem statement. Different ap-

proaches usually cover different use cases and therefore we can see concur-

rent research in several directions instead of one being dominant. Moreover,

we see strong influences between them that allow to mitigate weaknesses,

thus for example it is not uncommon to see methods of deep packet inspec-

tion applied in statistical protocol classification.

Motivation for network traffic classification is also at least twofold. Firstly,

we can view it as a core tool that enables efficient network management.

Network administrators and Internet service providers must rely on packet

classification in most aspects of their work. With growing implementation

of converged networks, quality of service and traffic engineering are key

aspects of network management. The inability to differentiate notoriously

performance consuming peer to peer file sharing protocols and VoIP traffic

would threaten even basic functionality of a converged network. The key

requirement in this use case is performance - classification must be done on

the fly with minimum latency and very low resource consumption.

The second motivation comes from network threats and increasing im-

portance of security. While we can view it as an integral part of network

management, it has substantially different requirements. In this use case,

the classification algorithm needs to be precise and robust against counter-

measures, since attackers usually actively use obfuscation. Most obvious

example of this is full packet encryption, since it completely disqualifies

methods based on deep packet inspection and pattern matching. Moreover,

we need the identification as early as possible - while classification at the

end of the flow is completely acceptable when billing a customer, it is cru-

cial in security applications. On the other hand, scalability and performance
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might not be of concern when securing a small LAN, whereas it is a priority

when implementing quality of service on high-throughput backbone link.

Since many requirements are naturally contradictory, algorithms usually ei-

ther focus only on a few of them or seek acceptable balance. In this thesis,

we will try to prove that there is still room for better algorithms that would

push the boundaries rather than balance the disadvantages.

The goal of this thesis is to introduce novel classification framework,

that would achieve high performance in both speed and memory consump-

tion while retaining high precision. To accommodate different requirements,

our framework is designed to be multilevel and modular - this will allow

using different metrics and features for different categories of protocols. It

should be easily extensible with new features, classification metrics, eval-

uation metrics and decision rules to be able to take advantage from other

approaches. To get optimal results, it is also self-optimizing - presented with

training data, evolutionary algorithm is used to select one solution from po-

tentially many configurations, which is then used for the classification. Last

but not least, it should be simple enough to be both robust and useful in

practice.

The first chapter of this thesis describes the past and the current ap-

proaches to traffic classification, methodologies, open problems and achieved

results. The second chapter is dedicated to SPID - Statistical Protocol Identi-

fication Algorithm designed by Erik Hjelmvik. It will serve as an inspiration

and also as a benchmark for performance evaluation. In the third chapter

we will describe general structure of the classification framework and rea-

son about its fundamental features. The fourth chapter includes description

of concrete design choices regarding metrics and features. Afterwards, the

fifth chapter will describe practical implementation and empirical findings.

Last chapter contains performance measurements and evaluation.
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Chapter 1

Related work

The approaches to traffic classification can be divided into four broad types.

Historically the oldest, and by far the most used is port-based classification

of IANA assigned well-known and registered ports. This approach is very

fast, because the port numbers act as labels and so the packets themselves

carry information about application they belong to. However, applications

that use non-registered ports cannot be classified and if two endpoints of

communication are in agreement, they can exchange any application traffic

even on a well-known or registered port. Indeed, research by Moore and

Papagiannaki [43] suggests, that port-based classification achieves around

70 % byte accuracy. Madhukar and Williamson [41] showed, that 30-70 %

of collected Internet traffic uses a non-registered port and later survey by

Maier et al. [42] confirms this result.

1.1 Deep Packet Inspection

The most natural and straightforward approach to solve this problem is

Deep Packet Inspection (DPI). Methods based on DPI usually inspect whole

packet payload and try to match it with known signatures (patterns). This

results in the best precision overall - in fact, DPI methods are often used to

establish ground truth about testing data and assign correct protocol labels,

later used to evaluate performance or for training of machine learning algo-

rithms [30][8][9][42][2][4][17][55]. As signature definition language, regular

expressions are the most prevalent solution - they are more expressive than

exact-match strings, but their implementations also use more memory.

The heart of pattern matching algorithm is usually a fast and optimized

version of Finite State Automaton. Two main broad categories of these algo-

rithms correspond to Deterministic Finite Automata (DFA) and Non-determi-

nistic Finite Automata (NFA) 1. DFA based pattern matching algorithms [60]

1. Note that in automata theory, DFA recognizes exactly set of regular languages, which
correspond to regular expressions.
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1. RELATED WORK

[36][37][7] have nice memory properties, since every processed character

corresponds to exactly one change of state and therefore predictable num-

ber of memory accesses. However, for complex regular expression explo-

sion of number of states of DFA is too large to remain practical. NFA based

algorithms [19][27] solve this problem - the number of states is in the or-

der of the number of characters in the regular expression. On the other

hand, many states can be active concurrently and one character can trig-

ger multiple state updates resulting in unpredictable number of memory

operations [6]. To mitigate these fundamental problems, parallel process-

ing [60][57], hybrid state automata [6] and other [26][33] algorithms are

studied.

DPI classification is widely used in practice and is implemented even

in network devices. Therefore, a lot of research is dedicated to optimiz-

ing DPI algorithms on dedicated hardware and for lower memory and CPU

usage [14][49][54][11][15]. Major hardware vendors such as Cisco, Juniper,

Alcatel-Lucent and Huawei offer DPI capabilities in their routers and fire-

walls.

There are also many software applications for traffic classification which

make use of DPI. L7-filter is open-source Linux de-facto classifier based on

Netfilter subsystem, which allows QoS and resource redistribution based

on the priority of application. It is based on manually created patterns (cur-

rent number of classified protocols is around 100), which contain regular

expressions.Its clean integration into Linux kernel is an advantage, but it

also suffers from two problems common for many DPI implementations:

• manual creation and maintenance of pattern files is time consuming

and does not allow L7-filter to scale well with too many applications

• software implemented DPI is very resource heavy, even though re-

search shows performance can be further optimized [22][21]

Another type of applications which build on DPI are network intrusion

detection systems (NIDS). Two most popular are Bro [48] and Snort [50],

both of which are open source.

Despite many advantages of DPI and its widespread usage in practice, it

also comes with several fundamental shortcomings. The first is inherently

high resource usage, which comes with inspection and pattern matching of

all bytes in the packet payload. The second disadvantage is the complete

inability to classify encrypted or obfuscated traffic. If encryption is done

properly, DPI methods have no information about the content of packets

and fail to perform correctly. This gives an advantage to protocol designers
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1. RELATED WORK

and users, who might want to hide the traffic. Another issue is privacy law

and policies, which set strict boundaries for DPI deployment.

1.2 Host based classification

Host based classification is an innovative approach, which tries to over-

come the disadvantages of DPI. In a sense, it is the complete opposite to DPI

- instead of looking deep into the packets and looking for specific patterns,

it rather focuses on a high level view on interactions on network and be-

havior between the hosts. The base information that algorithm collects are

network-wide flow data and social profiles of hosts.

One of the first algorithms which pioneered this approach was BLINC [30].

It builds host profile at the social (e.g. popularity of host, membership in

node communities), functional (role of provider or consumer) and appli-

cation (transport layer interactions) level. The classification itself is done

by comparing the created profile with known signatures. Work on Traffic

Dispersion Graphs also has a potential to classify hosts based on their in-

teractions [31] [28].

The data for these algorithms may come from netflow collectors, which

are usually already deployed on networks. Another advantages of this ap-

proach are offline computation resulting in overall good performance, good

robustness and resistance against countermeasures. However, disadvan-

tage is inability to classify particular flows, and is therefore more suitable

for intrusion detection and finding anomalies.

1.3 Flow-features based classification and machine learning

Flow-features based classification is a middle ground between a very low

level view of DPI and a very high level view of host based methods. Net-

work flow is usually defined as a set of packets, that share common five

tuple 〈source IP address, destination IP address, source port, destination

port, protocol〉, but this definition holds for a time snapshot. In practice,

flows also have a time dimension. They have a start and an end - either

explicit, or forced by timeout - and two sets of packets with common five

tuple will be actually treated as different flows, when separated by some

time window.

The flow acts as a central object of interest - it carries attributes, which

are updated as new packets that belong to the flow arrive. The goal of the

classification is to assign a label to each flow. The choice of attributes is a
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1. RELATED WORK

decision that designer of such algorithm is bound to make. Values of at-

tributes for different protocols are usually not inherent, which requires one

preprocessing step to measure the values on a testing data. For example, if

our attribute of choice is packet size, we need to measure it for all protocols

we want to be able to classify, since the values are usually not a result of a

design choice of protocols and are not obvious. However, there may still be

a correlation between packet size and protocol, which can be used for the

classification. Indeed, it has been shown that flow features based on packet

sizes and inter-arrival times are capable of preserving a lot of information

about flow content. For example, a study by Bissias et al. [10] introduces

algorithm, that is able to identify destination of SSL encrypted traffic. It is

based on packet sizes and packet inter-arrival times and achieves 23 % ac-

curacy. However, subsequent study by Liberatore and Levine [38] shows

up to 90 % accuracy on larger dataset. This shows that flow features can

preserve a lot of information about content and are useful also outside of

protocol classification.

The correlation between multiple features and protocols is not known in

advance, and in order to solve this, the researchers usually rely on known

and tested machine learning algorithms and techniques. This process can

be split into three distinct phases:

1. obtaining representative data

2. selection of flow features

3. selection of machine learning algorithm

The first problem relates to a broader topic of methodology in traffic

classification discussed in greater detail in 1.4.

Two most used features have historically been packet size and packet

inter-arrival time. However, their implementation may vary in different al-

gorithms. Maximum packet size and average packet size are features with

most discriminative power [39], but whole flow needs to be captured before

they are determined. Apart from these, many other features can be used - a

list of 248 flow discriminators can be found in [45].

Design of classification algorithm in many research papers comes down

to selection of one of the many existing machine learning (ML) algorithms.

Researchers use off-the-shelf algorithm and focus on applying and tuning

specific technique rather than looking inside the classification process and

understanding where the descriptive power comes from (see Related Work

in [39]). This approach allows reuse of knowledge of machine learning and
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1. RELATED WORK

allows us to compare multiple algorithms and choose the best - for papers

comparing machine learning algorithms see [31] [58] [12] [46]. However, a

few problems arise with this. One of them is that existing ML algorithms

usually do not support early identification and all packets of flow are re-

quired to be captured and measured before the classification is possible or

precise enough.

Based on the output, we can divide algorithms into two distinct classes

- deterministic and probabilistic. The output of a deterministic algorithm

is usually exactly one label. On the other hand, the output of probabilistic

algorithm contains probabilities, with which the flow contains a certain pro-

tocol. Using these the flow is labeled with the protocol that was assigned the

highest probability following maximum likelihood strategy. This approach

is highly favored, because a confidence threshold can be set and the output

can be labeled Unknown, if the confidence is not high enough, which makes

for a more robust solution.

Machine learning algorithms used in traffic classification are examples

of either supervised learning or unsupervised learning. Supervised learn-

ing solves problem of classification 2, whereas clustering algorithms are ex-

amples of unsupervised learning.

1.3.1 Supervised learning techniques

Supervised learning algorithm builds a structure, that assigns predefined

labels to new observations. Input consists of labeled training data, which is

used to build this knowledge structure in a learning phase. Term supervised

is used due to the fact that training data is pre-classified. Most used super-

vised learning algorithms include Naı̈ve Bayes classifier, C4.5 Decision Tree

and Support Vector Machines (SVM).

Moore and Zuev [44] use bayesian analysis techniques and show, that

even Naı̈ve Bayes classifier can achieve, with few modifications, very high

accuracy. First enhancement is use of kernel density estimation. Whereas

Naı̈ve Bayes classifier estimates each discriminator by fitting Gaussian dis-

tribution over the data, kernel estimation uses kernel methods to estimate

real density (section 4.3 in [44]) - see figure 1.1. The second enhancement

is the use of Fast Correlation-Based Filter described in [61]. With both en-

hancements, Naı̈ve Bayes classifier achieved over 96 % accuracy.

2. As defined in terminology of ML, i.e. problem of identification to which class a new
observation belongs, given the training set of labeled observations. This is stricter usage
of the term classification, since network traffic classification - as used throughout this thesis -
usually covers also clustering techniques.
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1. RELATED WORK

Figure 1.1: Different kernel estimations depending on smoothing parameter

(bandwidth) [44]

C4.5 algorithm is used for traffic classification in [40] together with cor-

relation feature selection (CFS) and genetic algorithm to select features, to

get 88.89% accuracy. In [58] C4.5 algorithm is compared with Bayes Net-

work, Naı̈ve Bayes and Naı̈ve Bayes Tree algorithms and is found faster in

classification speed . Rather surprisingly, feature reduction using Correlation-

based Feature Selection and Consistency-based Feature selection proved to

have little impact on precision, yet significant on speed of classification.

Kim et al. [31] compare nine machine learning and traffic classifica-

tion algorithms and conclude that SVM classifier consistently outperformed

others. To increase robustness and mitigate effect of what is in ML known

as problem of overfitting, they randomly sample flows from each dataset

for training. Indeed, overall accuracy doubled compared to the case when

only trace from one network was used for training. The achieved accuracy

of SVM tested on different trace than the trace it was trained on was 49.8%.

Using random sampling across traces, overall accuracy increased to 94.2%.

This also shows that powerful ML algorithms can be sensitive to which net-

work flow originates from and reminds us of robustness and care during

evaluation.

1.3.2 Unsupervised learning techniques

Unsupervised machine learning algorithms also work in two phases - train-

ing and classification. During the training phase, the data is split into groups

called clusters based on some similarity metric. Data does not need to be la-

beled for an algorithm to find clusters - hence unsupervised. However, to

use unsupervised ML algorithms on classification problem, additional step
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1. RELATED WORK

is necessary. After data is partitioned into clusters, the algorithm needs to

label each cluster (or add some other labeling algorithm), so that during

classification phase, the flow can be labeled with label of cluster it belongs

to. The simplest and commonly used solution is to label the cluster with

class of the majority of flows.

Bernaille et al. [9] compare three clustering algorithms: K-Means, Gaus-

sian Mixture Models (GMM) and spectral clustering. One of the problems of

clustering is the choice of number of clusters. Normalized Mutual Informa-

tion (NMI) metric was used to optimize this parameter. Clustering was done

with many values of parameter, and NMI was used to choose the optimal.

Using the same logic, NMI was used to choose optimal number of packets

to be used - it has been shown that too many packets actually bring more

noise than discriminative power. Multiple labeling heuristics are compared

and the most favored combination is GMM with TCP port numbers, which

naturally outperforms flow majority heuristic. However, the improvement

over classical port based classification is questionable, since ultimately la-

beling still depends on them.

Bacquet et al. [4] compare five clustering algorithms: Basic K-Means,

Semi-supervised K-Means, DBSCAN, EM and Multi-objective clustering ap-

proach using Genetic Algorithm (MOGA). Results show that MOGA out-

performs other clustering algorithms in both speed and precision. It uses

basic K-Means algorithm for clustering and genetic algorithm for selection

of features and number of clusters. Fitness function takes into account co-

hesiveness and separateness of clusters, number of cluster and features -

lower is better. The versatility of genetic algorithm for optimization is ap-

parent - the set of solutions converges to Pareto front and final solution may

be chosen as optimal combination of several criteria.

1.3.3 Hybrid algorithms and multiple classifier approach

Researchers quickly hit the limits of such approach despite using state-of-

the-art machine learning algorithms and techniques. To push the boundary

further, attention has shifted from simple ML algorithms to hybrid algo-

rithms and multi-classifiers in the last years.

Bar-Yanai et al. [5] proposed hybrid algorithm to combine advantages

of two ML algorithms. K-nearest neighbors is a very simple classification

algorithm, which achieves high accuracy - above 99 %, as claimed in the ar-

ticle - even for k = 1. However, complexity grows linearly with training set

size [31] and so this approach does not scale well. To overcome this issue,

K-Means clustering algorithm is used to segment data into several classes.

11



1. RELATED WORK

During training phase, flows are assigned to the clusters . During verifica-

tion, flow is first assigned to cluster and then K-nearest neighbors algorithm

labels it only using neighbors from within the cluster. This minimizes run-

ning time of algorithm and brings it close to the K-Means, yet preserves

accuracy of K-nearest neighbors. To prove the efficiency of such scheme,

this hybrid algorithm was implemented and deployed on realtime embed-

ded environment of Cisco‘s classification platform. Results were more than

promising - accuracy of hybrid algorithm was practically the same as K-

nearest neighbors, while running time was very close to faster K-means.

The importance of this paper lies in demonstrating that even though clus-

tering algorithms lack accuracy, they are robust and can be used to split

classification problem into several subproblems to decrease complexity of

the task.

A study by Szabó et al. [55] provides additional insight into classifica-

tion vs. clustering problem. Firstly, they evaluate robustness of clustering

algorithms by cross-checking their performance on samples from other net-

work. The performance drop was smaller in case of clustering algorithms

compared to other classification algorithms, so they are less sensitive to

network changes and other environmental noise. This result is consistent

with findings of Bar-Yanai et al. [5]. Next, combination of clustering with

classification methods is studied. There are two ways to combine them: (i)

classification with clustering information, where result of clustering are fed

as additional feature to classification algorithm, and (ii) model refinement

with per cluster based classification, where each cluster has its own clas-

sifier trained to classify the traffic, that falls within the cluster. Evaluation

shows that both methods show improvement over simple case, but out of

these two approaches, the per cluster based classification performed better.

Another contribution is the introduction of granularity levels. At the low-

est level, there are features that can be measured on per-packet basis. More

coarse are features measured on flow-slices, e.g. intervals containing of cer-

tain number of packets.The most coarse-grained features are flow-level fea-

tures, that can be measured only after the flow is finished, e.g. number of

transmitted packets. The classification then runs on all three levels in paral-

lel and results from higher level are fed to lower level. Two possible imple-

mentations are compared: either the results of classification or the results of

clustering are passed from higher level, and latter is found preferable.

Another way to improve known algorithms is multiple classifier ap-

proach. Idea behind it is that optimal combination of results from multi-

ple classifiers can yield better results than any single one of them. This is

again a well studied problem in machine learning [32][59] applied to traffic
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1. RELATED WORK

classification. Ideal algorithm should compensate for weaknesses of each

of classifiers, but preserve their strengths. Centerpiece is called a combiner,

which collects results from each of the classifiers. Based on the input, com-

biners can be divided into three types:

Type 1 collects the most likely results from each classifier

Type 2 accepts results sorted by their likelihood from each classifier

Type 3 accepts vector of probabilities for each class from each classifier

Probably the simplest combiners are Random Selection, where output

of combiner is randomly selected from outputs of classifiers, and Majority

Voting, where each classifier has one “vote”. Other combiners are based on

bayesian probability theory, Dempster-Shafer theory of evidence etc. Good

comparison of combiners including Behavior-Knowledge space and Wer-

necke’s method can be found in [17] and in [13]. Both studies confirm that

resulting algorithm has better accuracy than the best classifier, however,

practical implementation and evaluation of performance are not consid-

ered. Even though combiners themselves do not require a lot of compu-

tational resources, multiple classifier running in parallel may ultimately

prove impractical.

1.4 Open problems in methodology of traffic classification

Unfortunately, methodology in area of traffic classification is one of the

main problems that researchers struggle with. Ideally, research should be

reproducible and results from different papers should be comparable. How-

ever, this is not the case. As Szabó et al. state in [56]: “This situation results

in such anarchy that papers can state nearly anything about their intro-

duced method as there is no chance to check it by others or verify with

a commonly known and accepted reference test.” and Salgarelli at el. also

urge research community to “find an objective and scientific way of com-

paring results coming out of different groups ” [51].

This situation is caused by two fundamental problems:

Lack of shareable datasets (with full payload) is mostly caused by laws

and policies, that prohibit such sharing. Analysis by Zhang et al. [62] shows

that in 64 research papers more than 80 different datasets were used. Note

that this is not the case for payload-stripped data - numerous anonymized

datasets without payload are available. A very innovative approach to lever-
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1. RELATED WORK

age this was proposed by Géza Szabó in cooperation with Ericsson Hun-

gary Ltd. and High Speed Networks Laboratory at the Budapest University

of Technology and Economics, when he developed User Behavior Based

Traffic Emulator. This emulator takes data with potentially anonymized

packets stripped from payload and generates pcap with full payload by

emulating input traffic. A link to the online version of this tool is provided

on http://www.crysys.hu/˜szabog/.

No set methodology in data pre-classification and lack of agreement on met-

rics to be used for performance evaluation [51]. Pre-classification is a chicken-

egg problem: if we want to train our classifiers and benchmark their perfor-

mance, we need to establish a ground truth about our data - we need to

classify it. Ideally, we would like to avoid using another specific classifier,

but this is usually the case and DPI methods are the most popular as already

mentioned in section 1.1. However, there is no guarantee that a benchmark

classifier will never make a mistake, and this may be a source of deterio-

rated precision or biased evaluation. One way to cut this problem is to mark

packets with an identifier of generating application [56], although this re-

quires access to the source of traffic. Generally, this restricts data gathering

to closed LANs with potentially specific traffic and this method can hardly

be used on backbone links with better sample of real-world traffic.

Several solutions to the mentioned problems with methodology were

proposed in [56]. First, we may try to compare classifiers on the same dataset.

However, this requires publicly available implementation of methods being

proposed by research groups and this is typically not the case. While several

studies present comparison of algorithms [3][55][31][39][58], these still have

little value, due to the fact that they are comparing machine learning algo-

rithms applied on network traffic, rather than proposed traffic classification

algorithms proposed by others. Therefore, the performance of SVM algo-

rithm differs in published papers depending on used features, preprocess-

ing steps etc., and this is not taken into account due to lacking implemen-

tation of proposed methods. A problem with lack of available implementa-

tions is acknowledged by Dainotti et al. in [18] who implement community

classification platform traffic Identification Engine (TIE) to allow easier im-

plementation and fair evaluation and comparison of proposed classification

algorithms. TIE is written C, targeted to UNIX operating systems and sup-

ports multi-classification systems and online classification.

Another proposed solution is an introduction of new traffic capture li-

brary, which would provide interface to recorded traces and control which
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features of traffic are made available to users [51]. This would potentially

mean that service providers might be able to provide researchers with data

measured from real-world traffic while retaining control over them. Lastly,

better anonymization methods of traffic traces could be developed, that

would preserve application protocol specifics but scramble user data - a

soft-anonymization.
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Chapter 2

SPID - Statistical Protocol Identification Algorithm

Statistical Protocol Identification Algorithm (SPID) is a novel traffic classifica-

tion algorithm developed by independent network security researcher Erik

Hjelmvik and introduced in [25]. It is built to use statistical attributes on

both packet and flow level. Attributes range from traditional flow features

based on packet sizes to attributes inspired by DPI methods. During classi-

fication attributes of flow are measured and build protocol models. These are

compared to the protocol models from database using Kullback-Leibler diver-

gence - see figure 2.1. Proof-of-concept implementation written in C# with

UI in .Net can be found on Sourceforge [24]. Both binary and source code

is available, though source code proved difficult to compile due to missing

assemblies. However alternative implementation is available in C++ [1].

Sniffed TCP
Session Data Protocol Models

of
Known Protocols

Protocol
Model

Generation

Protocol Model
of

Unknown Protocol

Protocol
Model

Comparison

Best Protocol

Match

Figure 2.1: Overview of SPID classification [25]

Design of SPID is somewhat different from other algorithms based on

statistical flow features. Instead of application of known ML algorithm, it

has been designed from ground up with following goals:

1. Small protocol database size

2. Low time complexity

3. Early identification of the protocol in a session
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4. Reliable and accurate protocol identification

This shows that unlike majority of research it has been designed with

practicality in mind. It addresses major deficiencies of other algorithms:

motivation for small database and small time complexity is ability to run

SPID even on embedded network devices with limited hardware resources.

Early identification is also necessary requirement for an algorithm to be de-

ployed in real network and not all ML-inspired techniques allow this. For

these reasons will SPID be an inspiration and benchmark for our algorithm

and we will therefore dedicate to it the rest of this chapter.

2.1 Overview of SPID

Identification of flow in SPID is done by comparing flow model with proto-

col models built in training phase. Model of flow or protocol is a collection

of several attribute fingerprints, which store values of attributes in a prede-

fined format. Because SPID is a statistical algorithm, so are the fingerprints -

each fingerprint stores a probability distribution of an attribute, rather than

a single value. Measured data for each attribute is stored in fingerprint in a

counter vector, from which the probability distribution is calculated after-

wards. Fingerprints are created by so called attribute meters by frequency

analysis of various features of payload and flow - see figure 2.2.

Figure 2.2: Generation of protocol models [25]

An example of attribute meter is ByteFrequencyMeter, which simply

counts occurrences of bytes in payload, that are stored in fingerprint counter

vector afterwards - see figure 2.3. This vector stores count for all 256 bytes

that could occur in payload of flow or protocol. Probability distribution of

bytes should be evenly spread out for encrypted traffic, while plaintext pro-

tocols will show different patterns.
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Index 0 . . . 80 (’P’) 81 (’Q’) 82 (’R’) . . . 255

Counter vector 7689 . . . 1422 502 1001 . . . 3276

Probability vector 0.026 . . . 0.004 0.002 0.003 . . . 0.011

Figure 2.3: Example of attribute fingerprint: ByteFrequencyMeter [25]

Counter vector is normalized to a probability distribution after mea-

surement and used for a comparison. Values of counter vector store the

number of times that packet of flow has caused corresponding attribute

meter to return that particular index of vector. Probability distribution is a

normalized counter vector with values that sum up to 1.0. Length of fin-

gerprints was chosen to be 256 for all attributes, and even though this is

the most natural choice considering output of some attributes, some other

length could be used, perhaps even different lengths for different attributes.

Figure 2.4: Byte frequency histogram for HTTP

A proof-of-concept application contains 33 different attributes, that mea-

sure both statistical properties of flow and payload. A comprehensive list

can be found on project‘s wiki [23]. Some of them are simple, others cap-
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ture more advanced properties that include direction and request-response

behavior of protocols. Few additional attributes proposed for SPID can be

found in [34].

2.1.1 Generation of models in training phase

Given the nature of SPID, there is no difference in implementation between

models representing trained protocol, eg. HTTP, and model representing

currently observed flow. Due to this, original paper uses term protocol model

for both of them, even though first aggregates measurements from all pack-

ets from all Flows that contain given protocol, and second just stores mea-

surements of to-be-classified flow.

In training phase, SPID expects pre-classified data, that is used to create

protocol models for each application layer protocol. During learning, algo-

rithm needs to know in advance to which protocol each packet belongs, so it

can aggregate results from all of them regardless of source and destination

of packets. We can say that during training phase, packets are aggregated

on per protocol basis. For example fingerprint corresponding to ByteFre-

quencyMeter in protocol model of HTTP would store counts of all bytes of

all HTTP sessions in training data.

Each packet is an observation. When a new observation is received, it

is measured by all attribute meters and each of them update its fingerprint

in protocol model by incrementing values of counter vector. In original im-

plementation each attribute meter returns only set of indices which values

should be incremented after each observation.

2.1.2 Classification

In classification phase, packets are grouped together into flows and each

flow has its own protocol model. When new packet arrives, its correspond-

ing flow is determined and attribute meters update fingerprints in flow‘s

protocol model. Actual classification is performed by comparing probabil-

ity distributions of measured attributes of observed flow with attributes of

known protocol models. Metric used to compared them is Kullback-Leibler

divergence - also known as relative entropy - introduced by S. Kullback

and R.A.Leibler in [35]. KL divergence is a metric defined on probability

distributions of the same length and its output ranges from 0 (identical dis-

tributions) to ∞. Also note, that it is not symmetric and hence not a proper

metric.

Value of KL divergence specifies how much information is needed to
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DKL(P ||Q) =
∑

i

P (i)log2
P (i)
Q(i)

describe probability distribution P given probability distribution Q - or in

other words, how much information is lost if P is approximated by Q. In

case of SPID, using KL divergence as a metric on fingerprints will tell us

how much information is lost if currently observed flow is approximated

by a model of known protocol.

During classification, fingerprints of corresponding attributes of both

protocol models (one of the current flow and the other of a known protocol)

are compared with KL divergence metric and the average value across all

attributes is used to determine results. Matching protocol is the one with

lowest average KL divergence, unless it does not pass a threshold, in which

case the result is Unknown. This prevents incorrect classification of flows

that cannot be classified due to missing information from training phase.

Threshold is set empirically, original study mentions that value 2.25 was

found to be a good compromise. Lowering this value will force algorithm

to insist on better match, while more flows will be classified as Unknown

(and the opposite for higher values). However, we believe SPID should not

be optimized with regard to this parameter, since different users may have

different goals with regard to false positives and classification ratio.

2.2 Analysis of SPID

Preliminary results published in the original paper [25] suggest that SPID

is a very powerful classification algorithm, meaning it has a tendency to fit

training data very precisely. Evaluation of performance was done on five

protocols: BitTorrent, eDonkey, HTTP, SSL and SSH. In all cases, precision

was 100 %. Time complexity of SPID has not been evaluated or compared to

other machine learning algorithms.

High precision is a result of careful choice of over 30 attributes - each at-

tribute was chosen to capture a different aspect of protocols. Using so many

attributes allows SPID to fit data very closely and achieve high precision.

However, this has also several drawbacks. Even though classification met-

ric and structure of algorithm is simple, sheer number of attributes means

performance overhead for both memory and CPU usage. Each attribute

has a counter vector with 256 integers - if each integer allocates 4 bytes

of memory, 33 attribute fingerprints for a single flow will take more than

33 kilobytes. For classification, another vector with 256 floats representing
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probability distribution is needed - if this is also stored in fingerprint (as is

the case for reference implementation), it increases allocated memory size

for one flow at least twice. This probability vector can be calculated from

counter vector each time algorithms needs it, but this would stress CPU. In

our implementation, normalization of counter vector to probability distri-

bution was the biggest bottleneck.

With the number of attributes CPU usage increases, too - KL divergence

has to be calculated as many times as there are attributes. This is not a prob-

lem, if we first capture packets of the observed flow and classify them only

after we have enough data. However, if we demand on-the-fly classification

and result for each flow as early as possible, we may want to calculate KL

divergence after every packet (or after n packets for small n to get better

performance).

2.2.1 Peaking effect

There is a more fundamental problem with high number of features, in ma-

chine learning known as a peaking effect. If we plot a graph of classifica-

tion accuracy with respect to the number of features, we will observe that

as the number of features increases, accuracy increases too - but only un-

til it reaches a peak and starts decreasing, as shown on figure 2.5. Key to

this counter-intuitive phenomenon is a lack of error monotonicity of clas-

sifier trained on multiple samples. Given the feature set and knowledge of

feature‘s distributions, Bayes error (error of optimal classifier for a given

feature set) is monotone for a single sample: if A and B are feature sets

and A ⊂ B, then εB ≤ εA, where εA and εB are error rates for A and B.

However, if εA,n and εB,n are error rates for classifier trained on n samples,

εB ≤ εA may no longer be true. In fact, if E[εA,n] and E[εB,n] are expected

error rates, it may be the case that E[εB,n] > E[εA,n] [53]. Intuition behind

this is simple: when first features are added, we give more information to

the classifier and thus increase its accuracy. However, with more features,

not all of them are useful and some may not even add any additional in-

formation - in such case they act as sources of noise, which decrease the

accuracy of the classifier.

Due to this effect designer of classification algorithm may want to search

for a subset of features which results in optimal accuracy. However, this is a

hard problem, where the best algorithms only try to improve the exhaustive

search. Specifically, greedy search cannot be used to find optimal subset of

features. If F = {F1, . . . , Fk} is s set of features and {S1, . . . , Sn}, Si ⊆ F

are all possible subsets of F , there exists an ordering on S1, . . . , Sn (with
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Figure 2.5: Peaking effect of k-NN classifier and SFFS feature selection al-

gorithm for finding optimal subsets of k features [29]

respect to classification accuracy), on which algorithms searching for the

best k-element subset by successively enlarging the best j-element subset

for j = 1, 2 . . . k − 1 will not find the optimal solution [16].

Given the high number of features in SPID, all of which are manually

picked by the author, we may suspect that few of them are actually spoiling

accuracy. Indeed Köhnen et al. conclude that “some attribute meters are not

very accurate and adultered results” [34].
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Chapter 3

Self-optimizing traffic classification framework

We introduce a novel approach to traffic classification in this chapter. We

propose a classification framework, that represents a whole class of classi-

fication algorithms. We let the framework generate optimal algorithm for

a given training data, instead of having algorithm with fixed parameters.

We aim to propose a simple solution which could be easily extended, while

generating simple and efficient algorithms.

The framework represents a different approach in design of classifica-

tion algorithms. Classification procedure is always considered in context of

chosen features, pre-classification steps and other implicit parameters, and

algorithm is trained and optimized as a whole. This is in contrast with usual

approach, where algorithm is designed to be fixed and does not change dur-

ing the training phase.

3.1 Requirements for classification framework

We devised several requirements for classification framework prior to the

design phase. These requirements should guarantee practicality and usabil-

ity of developed solution. Following these we hope to avoid a common sit-

uation, when usability of algorithm is negatively influenced by decisions

made in the design phase. Requirements are as follows:

High precision. Classification algorithm should achieve at least the same

precision as SPID while improving other parameters.

Low memory footprint. A goal is to decrease the amount of information

that is stored for each flow during classification. This is one of SPID‘s disad-

vantages as mentioned in chapter 2. As stated in the original paper, one of

the key design requirements was a small database size. However, each flow

has to maintain the same amount of information as the whole database due
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to the nature of SPID. Memory consumption will therefore get prohibitively

high in high-speed networks with this setup.

On-the-fly classification. The algorithm should classify the flow as early

as possible, rather than at the end of the flow. This requirement is also

highly motivated by real-world usage of classification algorithms. In order

to provide Quality of Service, shape traffic and build security mechanisms

on top of flow classification, early identification of flow is crucial.

Simple design and modularity. We should design the framework the be

simple to understand and modular to promote extensibility and customiz-

ability. This should help administrators, who often have a legitimate re-

quirements that are specific to their network and usage. A good example of

such effort is TIE - community oriented traffic classification platform [18],

that allows and promotes extensibility of algorithm with plugins.

Automated parameter tuning. The framework should expose all param-

eters to optimization engine, which would choose the optimal values of

parameters in the training phase. Resulting algorithm would be one in-

stance of all algorithms that our framework represents. This is the opposite

of usual method of parameter tuning. Each algorithm has many hidden pa-

rameters, that are almost always manually chosen. The designer usually

picks empirically tested and proved values of parameters, that leverage

some internal knowledge about the traffic. These can include minimum and

maximum number of packets read for each flow, choice of metric, prepro-

cessing steps, thresholds etc. Interactions between these parameters may

become complex and the choices may become time consuming. Therefore

our requirement is to make this process automatic and more efficient.

3.2 Proposed solution

The framework consists of two main components: Optimizer and Classifier.

Classifier represents the classification algorithm - its internal structure is

configurable and its interface provides methods for training and classifica-

tion. Role of the Optimizer is to find the optimal structure of the Classi-

fier using methods for configuration and classification - see figure 3.1. To

achieve this it repeatedly reconfigures Classifier and computes fitness of

such configuration. Fitness is computed by training the Classifier on train-

ing data and classifying validation data. Multiple outputs from classifica-
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tion can be included in fitness, such as precision, memory consumption and

overall time.

Internal structure of the Classifier consists of tree hierarchy, that splits

the problem of classification into several subproblems. Internal nodes of hi-

erarchy make decisions based on clustering and forward flows to a differ-

ent subtrees. Leaf nodes perform actual classification based on given metric

and features. Each leaf node is able to classify a certain set of protocols and

can use different metric and features than others. Each internal node - a

clusterer - uses a different feature to split the traffic.

ClassifierOptimizer

clusterer

clustererclassifier

classifier classifier

configure

score

of configuration

training

data

validation

data

optimal

configuration

of Classifier

Figure 3.1: Overall structure during training phase

Note the ambiguity of term classifier - we use it to describe the whole

algorithm as well as to refer to leaf nodes, that compute the actual output.

To mitigate this we will use word Classifier with capital C for overall algo-

rithm and lowercase variant shall refer to a leaf node in the tree hierarchy.

3.2.1 Training phase

The framework runs in two phases - training and classification. In the train-

ing phase Optimizer controls the execution flow, as it is searching for the

optimal configuration. It repeats following steps:
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:Optimization engine :Classifier

getScore(configuration)

configure(configuration)

measure(validation data)

optimize(self)

score

loop

configure(optimal solution)

train(training data)

Figure 3.2: Interaction between Optimizer and Classifier

1. Generate a possible configuration of Classifier

2. Reconfigure Classifier with generated configuration

3. Train Classifier on training traffic

4. Classify validation traffic

5. Use results of classification to compute the fitness of configuration

Both training and validation traffic need to be pre-classified to provide a

ground truth for the algorithm. Using this information Optimizer finds an

optimal solution.

3.2.2 Classifier optimization

Optimization engine is introduced into the classification framework to ad-

dress the issue of parameter tuning. Following modular design it is a stan-

dalone component that interacts with Classifier trough defined interface.

Classifier provides Optimizer with methods for its reconfiguration and clas-

sification.

Interaction between Classifier and optimization engine is described in

figure 3.2. Classifier calls optimization engine on itself after it gathers in-
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formation from training data. The engine may then repeatedly try different

configurations of classifier and query it for the score of each configuration.

Classifier measures the score by configuring itself according to the configu-

ration passed from the Optimizer and classifying validation data. Score can

be based on several aspects including precision, speed, memory efficiency,

weighted scores of used features etc.

Advantage of this approach is that the scope of optimization depends

only on our representation of classifier configuration. This allows us to op-

timize the classifier with respect to its structure.

Optimization engine is based on genetic algorithm in our proof-of-concept

implementation. Different implementations of framework may have more

sophisticated optimization engines based on different optimization algo-

rithms and heuristics and with tuned parameters. Further investigation of

the efficiency of genetic algorithm as optimizer, comparison of different so-

lutions or design of problem-specific optimization heuristics is left for fu-

ture work.

3.2.3 Design of classifiers

Each classifier is essentially a SPID-like algorithm with its own features,

metrics and protocols it is able to classify. Each feature is represented as

a probability distribution. Metric computes similarity score between two

probability distributions and final decision is the protocol most similar to

the classified flow.

We decided to build on results achieved by SPID, since its core principles

proved to be both simple and effective. Representation of features as vectors

with probability distributions is what we believe to be the primary reason

of its precision. Reason for this is twofold:

• it is based on discretization. In their study [39] Lim et al. investigated

effects of discretization of features on precision of classification algo-

rithms. They state that even unsupervised equal-interval-width dis-

cretization is essential for traffic classification.

• representation as probability distribution exhibits high degree of ro-

bustness. Specifically, it is likely that measured values for similar traf-

fic will be close together. Probability of this happening is given by the

probability distribution of a given feature.

However, in contrast with SPID we do not enforce that the length of

vectors of all features must be the same.
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Choice of Kullback-Leibler divergence as similarity metric between the

probability distributions is not further discussed in the original paper. For

this reason, the framework should not depend on Kullback-Leibler diver-

gence, but allow other metrics to be used.

3.2.4 Feature reduction and memory efficiency

In order to use fewer features, we divide problem of classification into sev-

eral smaller subproblems using clustering. Each subset of protocols has its

own classifier trained to distinguish between them.

When a new packet arrives, only feature which we use for clustering

is measured. Packet can go through multiple clusterers depending on the

depth and structure of the tree hierarchy. At the end it is classified by a

classifier specific to the final cluster.

As example, consider a set of protocols that contains both encrypted and

plaintext protocols. Features, that are most useful in classification of plain-

text traffic are usually useless in case of encrypted traffic, and vice versa.

However, we can measure entropy of packet payload and assign packets

into two clusters - one for encrypted traffic and the other for plaintext. Each

cluster has its own optimized classifier. The one for plaintext traffic could

use first few bytes of the first packet to classify a flow, since application pro-

tocols usually have some header. On the other hand, classifier for encrypted

traffic would use different attributes that do not rely on information about

the payload, such as byte frequencies or packet inter-arrival timings. No-

tice, that if we measured payload of encrypted packet, we would be just

adding unnecessary noise to the classifier. When classifier is trained specif-

ically on plaintext traffic, it can be more efficient and not depend on heuris-

tics useful for encrypted traffic.

Partitioning of protocols into groups allows us to change the objectives

of classifier. Its original goal is to evaluate similarity of flow with known

protocols. Resulting label is then the protocol most similar to the flow with

respect to some metric. This favors such a choice of set of features, that

best describe given protocol. In case of many protocols this results in many

features, some of which may not be relevant.

However, when we partition classification into several smaller subprob-

lems, objective of a classifier starts to change. Given a small set of protocols,

it does not have to evaluate similarity of flow with each of them. Rather, it

should decide which one is most probably the correct one. This simplifies

the problem for classifier, because it can now focus more on differences be-

tween the protocols. Given two protocols, designer can come up with dozen

28



3. SELF-OPTIMIZING TRAFFIC CLASSIFICATION FRAMEWORK

measure clustered 

feature of flow

assign flow

to correct cluster

[clusterer ?] [classifier ?]
measure features

required by metric

compute score

for protocol #1

compute score

for protocol #2

compute score

for protocol #N

choose protocol

with the best score

. . .

Figure 3.3: Activity diagram of classification

of features that best describe them. But if we only need to distinguish be-

tween the two of them, one feature in which they differ most suffices. To

generalize, a combination of optimal features for each protocol is not opti-

mal combination of features for classification of these protocols.

Choice of clustering in favor of other method to partition traffic is moti-

vated by the need for robustness. Assigning a packet to a group of protocols

is a discrete classification, that has a very high impact on resulting decision

of overall classifier. If the packet is assigned to the group of protocols it does

not belong to, the best that the classifier for a given subproblem can do is to

label it as unknown. It is therefore more useful to use less precise, but more

robust clustering.

This approach has advantage over multi-classifier approach with re-

spect to both memory consumption and CPU usage. Parallel evaluation of

multiple classifiers is more resource intensive than choice of one of them

29



3. SELF-OPTIMIZING TRAFFIC CLASSIFICATION FRAMEWORK

based on clustering. Compared to the multilevel approach, we do not feed

the results of clustering into classification algorithm, since the decision is

implicit.

From implementation standpoint, there are two ways to divide data into

multiple clusters. Our proposed framework uses a hierarchy of clusterers,

each of which uses only one feature. However, we could cluster the data

in a single step by merging multiple features into multidimensional data.

Although this reduces the number of clustering steps to one, it has an im-

pact on the precision and the speed of clustering. Difficulty of clustering for

high-dimensional data rapidly increases due to large amount of outliers,

different densities in different dimensions and lack of defined shape [52].

For these reasons our framework is built on the concept of hierarchy of

clusterers.

3.2.5 On-the-fly classification with feature extractors

Each feature has a specific procedure for updating the value, computing

the final value, different requirements on the amount of captured data for

feature to be valid etc. We introduce feature extractors to our framework to

encapsulate all the parameters and procedures for each feature.

Features used for classification must support continuous updates of mea-

sured values as new packets arrive to allow on-the-fly classification. Re-

quirements for features used for clustering are different - they must not

be high-dimensional and the final value must be calculated using the least

amount of packets possible. Each cluster defines a set of required classifica-

tion features, which is unknown before the flow is assigned to the cluster.

If a clustering feature required N packets before assigning the flow to the

correct cluster for classification, Classifier would have to buffer the first N

packets before making a decision. After the cluster is known, only the clas-

sification features are measured and continuously updated without caching

any data. Feasibility of splitting the traffic using only the first packet was

studied by Dorfinger et al. in [20], where the traffic is split to encrypted and

unencrypted based on entropy with 99 % precision.
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Chapter 4

Framework realization

The framework proposed in the previous chapter represents a general ap-

proach towards classification algorithm design. We use the framework to

propose a concrete algorithm, which we implement and evaluate. We also

take liberty to use the implemented algorithm to investigate some aspects of

classification and to get a better understanding. Therefore we make design

choices that can be either omitted or optimized in other implementations.

This chapter describes parts of algorithm not specified by the framework -

choice of features and classification metrics.

4.1 Classification metrics

Our implementation contains two metrics: Kullback-Leibler divergence and

cosine similarity. As mentioned in 3.2.3, our framework should not depend

on KL divergence only. To test the optimization engine and investigate ef-

fects of using multiple metric, we also add cosine similarity metric defined

as

cos(θ) =
A · B

‖A‖‖B‖
=

n
∑

i=1
Ai × Bi

√

n
∑

i=1
(Ai)2 ×

√

n
∑

i=1
(Bi)2

Value is a cosine of angle of two vectors of an inner product space and

is independent of their magnitude. This does not affect our classifier, since

vectors representing probability distributions of features are normalized.

Both metrics can be used for classification, which allows Optimizer to

choose the one that yields better results. Goal of our implementation is to

show that the sOptimizer can choose and favor one, more optimal, metric.

Investigation of other metrics and their optimality is left for future work.
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4.2 Clustering features

Choice of features used for clustering directly affects how protocols are di-

vided into groups. We implement entropy and N-truncated-entropy fea-

tures to divide the traffic to encrypted and unencrypted. Newline-equality

feature has been designed to distinguish between plaintext and binary pro-

tocols. None of them are represented as probability distributions, but rather

as a float number, since data with high dimensionality is not suitable for

clustering.

4.2.1 Entropy

We calculate sample entropy of payload of length N defined over alphabet

{0x00,..., 0xFF} of size 256 with ni being the number of occurrences

of byte i in the payload. Frequency fi of i-th byte is defined as fi = ni/N .

Sample entropy of a payload is given by formula

HMLE
N = −

256
∑

i=0

filog2(fi)

where MLE stands for maximum likelihood estimator. Note the differ-

ence between sample entropy and entropy

H(p) = −
m
∑

i=1

pilog2(pi)

of random variable X with probability distribution p. Due to asymptotic

equipartition property , HMLE
N converges to H(p) when N tends to infinity

and elements of sample are drawn independently according to p [47]. This

means that HMLE
N is a good estimator for H(p) especially when N >> m.

However, it may be far from H(p) when N ∼ m or N < m.

Our motivation for implementation of this feature is to compare it with

N-truncated entropy.

4.2.2 N-truncated entropy

This feature is used in [20] to divide the traffic to encrypted and unen-

crypted. As stated in the paper, it is hard to estimate the entropy on a sam-

ple, especially when number of observed values N is lower than number of

possible values m. N-truncated entropy is defined as follows:

1. Generate all words of length N according to p
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4. FRAMEWORK REALIZATION

2. Estimate the entropy for all words based on maximum likelihood

3. Calculate N-truncated entropy as the average of estimates

This construction solves the problem of sample entropy in case when

N < m. Recall that a sample entropy could be arbitrarily far from H(p).

By construction of HN , sample entropy HMLE
N is an unbiased estimator for

HN , i.e. value of HMLE
N is close to HN up to a small tolerance ǫ.

For a uniform distribution U , when pi = 1/m for all i, value of N-

truncated entropy is

Hn(U) =
1

mN

∑

n1+...+nm=N

[(

N

n1 + . . . + nm

)

×

(

−
m
∑

i=1

ni

N
log

ni

N

)]

However, computation using this formula is not feasible for high N and

m. Instead, we approximate the value using first method from [47]. For each

constant c, when N and m tend to infinity and N/m tends to c, N-truncated

entropy can be estimated as

Hn(U) = log(m) + log(c) − e−c
∞
∑

j=1

cj−1

(j − 1)!
log(j) + o(1)

where o(1) is error term that quickly decreases as N increases. The series

converges quickly and to avoid infinite loop, we stop calculating the sum

when cj−1

(j−1)! log(j) < 10−12 for current value j, i.e. when the next term in

sum is negligible.

In our implementation we calculate HMLE
N for packet payload and cal-

culate the difference from HN (U). If the difference is small, frequencies

of bytes in packet payload are close to the uniform distribution (U). This

would mean that the payload is encrypted.

4.2.3 Newline equality

This is a novel feature designed for the framework. The output is boolean

equal to 1 if and only if the number of occurences of byte 0x0D (carriage

return CR) is equal to the number of occurences of byte 0x0A (line feed LF).

A logic behind is simple: in plaintext protocols bytes CR and LF used to

denote new line are always together, so their frequencies are also the same.

We introduce this metric as potentially useful for dividing traffic protocols

into plaintext and binary. However, it could also be used for classification,

so we implement a version of this feature that returns array suitable for
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classification metric. When byte counts match, result is [1,0], otherwise

[0,1] is returned.

4.3 Classification features

We chose to implement these 6 features from SPID: AccumulatedDirection-

Bytes, ActionReactionFirst3ByteHash, ByteFrequency, DirectionPacketLength-

Distribution, First2OrderedFirst4CharWords and FirstPacketPerDirection-

FirstNByteNibbles. They were chosen according to the information from

SPID‘s wiki [23] regarding their speed and precision. We also add two novel

features NullFrequency and DirectionEntropy.

4.3.1 NullFrequency

This feature measures the relative frequency of Null byte in payload. Null

byte is the most outstanding byte in several protocols, and this features

leverages that. It is stored in vector as

[NullFrequency, 1-NullFrequency]

where NullFrequency is ratio of byte 0x00 to all bytes.

We propose this feature since many protocols have byte frequencies of

Null byte biased. The frequency is either much higher compared to other

bytes - as is the case for HTTPS or SMB 2, or close to zero as in SMTP or

IMAP. Graphs of byte frequencies and values of this feature for protocols

used in this work are included in Appendix A.

4.3.2 AccumulatedDirectionBytes

This feature captures the amount of consecutive data sent in the same direc-

tion. Only first three direction changes are measured, so the vector is split

into four parts. Therefore sizes of the first two application layer request-

response pairs are measured. Measured sizes are mapped linearly to fin-

gerprint vector using function

offset =
accumulatedBytesCount

byteChunkSize

where accumulatedBytesCount is cumulative size of consecutive packets

sent in one direction and byteChunkSize is a constant set to 64. This means
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the maximum size that can be mapped is byteChunkSize∗fingerprintLength/4 =

64 ∗ 256/4 = 4096 bytes.

Other similar features in SPID use logarithmic function to map values

onto fingerprint vector to get higher granularity for lower values. Decision

to use linear function is not discussed by author of SPID, so we also imple-

mented a logarithmic version of this feature with function

offset = accumulatedBytesCountexp

exp =
log(fingerprintLength/4)

log(maxPacketLength)

where maxPacketLength is equal to 4096 and compare it to the linear

version.
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Chapter 5

Implementation

To evaluate proposed solution, we created a proof-of-concept implementa-

tion of proposed algorithm. It is written in Ruby, a high-level object-oriented

programming language. Reason for this is practical - thanks to its high level

nature and programmer-friendliness, it allowed us to quickly rewrite sub-

stantial blocks of code and we were able to test and try numerous ideas

and improvements in the process. Disadvantage of this choice is the speed

of processing, which makes this implementation not suitable for high-speed

environments or commercial use. To mitigate some inefficiency and increase

performance, we identified bottlenecks and functions that interpret spent

the most time in and reimplemented them in C. These chucks of C code

were embedded inline directly into Ruby code using RubyInline library.

5.1 FingerprintContainer

Classifier consists of hierarchy of clusterers, that split the set of protocols

into groups. Each group has its own classifier with different features and

metric. Node in hierarchy is implemented by the class FingerprintContainer,

that represents a general node - see figure 5.1.

The type of instance of FingerprintContainer can be either inner node

or leaf depending on its position. Inner node is configured to perform clus-

tering and forward data to the correct cluster. Leaf node contains a list of

protocols to be classified and metric, with respect to which it performs final

classification of flow. Class Classifier acts as a wrapper around the hierar-

chy and provides a high-level interface for classification.

5.2 Classifier and Optimizer

Interaction between instances of these classes is described in figure 3.2. We

optimize the work in training phase by processing the training traffic only

once. This is possible because classifiers for clusters require only measured
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FingerprintContainer

metr ic :   <metr ic>

features: <set of features>

FingerprintContainer

clustered:  <feature>

FingerprintContainer

clustered:  <feature>

FingerprintContainer

metr ic :   <metr ic>

features: <set of features>

FingerprintContainer

metr ic :   <metr ic>

features: <set of features>

Protocol #1 Protocol #2

Protocol #3 Protocol #4 Protocol #5 Protocol #6 Protocol #7

Figure 5.1: Example hierarchy of FingerprintContainer instances

features of protocols to compare them to classified flows. Therefore, we

measure the values of features of protocols from training traffic once before

optimization. During optimization phase, we copy measured data instead

of training each configuration of Classifier on training traffic.

We do not implement separate methods to measure features of proto-

cols. Instead, we make use of existing methods to measure features of flows.

We combine values of all flows with the same protocol to get the represen-

tative value for each protocol.

5.3 Feature extractors

Each feature is implemented by corresponding feature extractor. It provides

methods for:

• updating a value of feature for a given flow when a packet arrives

• calculating the final value

• merging values of flow to get a representative value for a set of flows.

37



5. IMPLEMENTATION

This method is used to obtain values for protocols during the training

phase.

• checking validity of value. Each feature may define thresholds and a

method, that checks whether the value can be used for classification

against the thresholds.

In our implementation we usually use thresholds to specify minimum

amount of data or packets required to get a representative value. Specifica-

tion of checking method allows us to express more complex conditions. An

example is ActionReactionFirst3ByteHash feature, that is valid only after

packets in both directions were captured.

5.4 Classification metrics

We implement metrics as subclasses of class ClassificationMetric, which de-

fines the interface used by classifiers. This allows us to implement different

metrics, as long as they provide methods specified by the interface. Three

required methods are:

get score returns score of similarity between classified

flow and protocol

is valid? returns true if score is above/below de-

fined threshold and is therefore valid. Result

UNKNOWN is returned otherwise.

choose best protocol given an array of protocols and scores, re-

turns protocol most similar to classified flow

5.5 Configuration representation

Low-level configuration of Classifier is represented by the class Gene. Op-

timizer based on genetic algorithm uses instance of Gene to perform mu-

tation and reproduction. It is therefore desirable that the Gene has a fixed

length and structure.

It consists of three parts:

1. feature, that is used for clustering

2. set of features used for classification

3. classification metrics
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All three are unique and defined for each FingerprintContainer in hi-

erarchy. However, not all are used. Internal nodes that perform clustering

ignore classification features and metric, while leaf nodes ignore feature for

clustering. To decide whether a node will be a clusterer or classifier, we

add a special Nil clustering feature. Presence of this feature switches Fin-

gerprintContainer into classification mode.

node Node #1 . . . Node #N

binary vector 1 0 . . . 1 0 . . . 0 1 . . . 1 1

Figure 5.2: Sets of features used for classification are encoded in binary vec-

tor. Chunks of this vector represent nodes in tree hierarchy, which are stored

in breadth-first order.

To further simplify representation, we assume that depth of hierarchy

of FingerprintContainers is no more than 3 levels high. Subset of used clas-

sification features is determined by the binary vector, where 1 represents

used feature and 0 ignored - see figure 5.2. Feature used for clustering is

represented as integer with 0 being the Nil clustering feature. Classification

metric is also encoded as integer. Mutation and reproduction functions re-

quired by genetic algorithm are defined on all three parts separately.

A Dna class is added to simplify the interface of the class Gene. It is ef-

fectively a wrapper around Gene and provides methods for querying and

decoding information stored in Gene. Class Chromosome is used by ge-

netic algorithm and represents one solution. It is a wrapper around the Dna

and provides methods to get score and compute fitness function of solution

encoded in the Dna.

5.6 Clusterer and GeneticSearch

We do not implement these two classes in our framework, but rather use

implementations from library AI4R :: Artificial Intelligence for Ruby, avail-

able at ai4r.org. We choose K-Means algorithm as clusterer without fur-

ther investigation - it is left for future work to determine which clustering

algorithm performs best. Perhaps even choice of clustering algorithm could

be determined by optimization, as it can be added to the Gene as another in-

formation specific to a FingerprintContainer with no issues. However, fea-

sibility and usefulness of this approach remains untested.

GeneticSearch class from AI4R library implements fitness proportionate

selection operator, also known as roulette wheel selection. Selection works

as follows:
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1. Population is sorted by fitness

2. Accumulated normalized values are calculated. Accumulated value

is a sum of fitness values of worse or equal solutions. After normal-

ization the best individual has normalized fitness 1.

3. Random number R from interval 〈0, 1〉 is chosen. First individual,

whose accumulated normalized fitness is higher than R is chosen for

the next generation.

Chance of individual with fitness fi to get to next generation is fi
∑N

j=1
fj

,

where N is the size of population. This selection algorithm assures that bet-

ter individuals will have proportionally higher chance to get to the next

generation, while it may still choose some weaker individuals to prevent

quick convergence to the local optimum.

Fitness and mutation function along with generation of new individu-

als in population are problem specific and have to be implemented before

using GeneticSearch class. We implement fitness function to return aver-

age F measure of a given configuration and ignore memory usage or speed

of classification. Mutation function can flip each bit of configuration with

probability

(1 − Fn) ∗ 0.03

where Fn is fitness of configuration normalized across the population,

so that the highest is set to 1 and the lowest set to 0. Inverted value of fitness

will result in better solutions having less mutations.
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Chapter 6

Evaluation

In this chapter we present experimental results together with description of

test setup and interpretation of results.

6.1 Methodology

We chose 9 protocols to test our framework: HTTP, HTTPS, IMAP, IMAPS,

SMTP, SMTPS, SSH, BITTORRENT and SMB version 2. This collection in-

cludes plaintext, encrypted and binary protocols in order to test the clus-

tering and classification performance.

Obtaining existing traffic traces with full payload proved to be difficult

- to protect the privacy of users, they are not generally available. Several In-

ternet archives provide pcap traces with full payload, but samples usually

contain just one flow and are very specific, e.g. capture network traffic of a

virus or network attack.

To get unbiased and representative dataset with enough flows, we cap-

tured traffic on a personal computer. A small script was running in the back-

ground, that periodically captured running applications and logged them,

so we could correlate the data with captured flows. This allowed us to label

the traffic with certainty and provide a ground truth without reliance on

any other classification tool.

To evaluate the classification algorithm, we use Precision (or accuracy),

Recall, F-measure and Runtime of classification. First three are defined as

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F-measure =
2 × Precision × Recall

Precision + Recall

where TP stands for true positives, FP false positives, FN false negatives,

and Runtime is measured as overall time of classification.

We split the captured traffic of each protocol into three sets: training,

validation and testing. Traffic in each set is split into files by protocol, so
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Protocol Number of flows

in training set

Number of flows

in validation set

Number of flows

in testing set

BITTORRENT 319 6 100

HTTP 1188 6 311

HTTPS 1776 6 828

IMAP 24 5 13

IMAPS 164 6 75

SMB2 5 5 5

SMTP 27 6 14

SMTPS 31 6 9

SSH 15 6 11

Table 6.1: Structure of used dataset

we know which flow contains which protocol in each phase. Flows for each

set were chosen randomly. Training set is used by classifier for training it-

self - measure average values of features for each protocol. Validation set is

used in optimization phase to evaluate the score of generated configuration.

Configured classifier classifies traffic in the validation set and the calculated

score is returned to the optimizer. This is repeated as many times as new

configuration is generated by the genetic algorithm, so we included only

about six flows from each protocol into the validation set. After the optimal

solution is found, we evaluate performance on the testing set. Structure of

each set is summarized in Table 6.1

6.2 Measurements of SPID algorithm

In order to have a good benchmark for comparison and evaluation, we first

measured performance of our implementation in SPID configuration - with-

out clustering or optimization, with Kullback-Leibler divergence used as

metric. Comparison of our framework with this configuration has several

advantages over comparison with original implementation:

1. comparison of speed of the two approaches is possible, since no dif-

ference in performance comes from implementation

2. differences in implementation do not affect results. For example, our

framework implements on-the-fly classification logic differently than

proof-of-concept SPID implementation.
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Feature set Average F-measure Runtime [s]

base 0.72658 455.05

base + lin 0.77329 598.60

base + log 0.75846 580.81

base + null 0.80397 510.12

base + lin + log 0.80259 701.26

base + lin + null 0.82099 589.67

base + log + null 0.81682 609.85

base + lin + log + null 0.81406 691.03

Table 6.2: Scores for different feature sets

We run the experiments for several sets of features. First set contains

only features proposed and implemented in SPID, namely ActionReaction-

First3ByteHash, ByteFrequency, DirectionPacketLengthDistribution,

First2OrderedFirst4CharWords and FirstPacketPerDirectionFirstNByteNib-

bles - we refer to this as a base set. To test the effect of new features, we

add AccumulatedDirectionBytes (linear version), AccumulatedDirection-

Bytes (logarithmic version) and NullFrequency features to the base set. Re-

sults are summarized in table 6.2 and detailed reports are included in Ap-

pendix B. When we evaluate our algorithm, we will compare it with base+lin

feature set, since it contains only original features of SPID.

6.2.1 Evaluation of new classification features

Comparison of linear and logarithmic version of AccumulatedDirection-

Bytes feature shows the latter produces better results. Results are the same

for all protocols except for BitTorrent. Detailed results, included in Ap-

pendix B, show that the linear version is consistently better than logarith-

mic. However, this is not affected by other protocols. All false negatives

were classified as unknown traffic, so the difference is not produced by sim-

ilarity of BitTorrent to any other protocol. As we can see on figure 6.1, val-

ues of logarithmic version are more spread, because logarithmic function is

more fine grained for lower values. However, more spread out distribution

results in higher divergence when compared to the value of measured flow.

Therefore, a score for some BitTorrent flows exceeds the threshold and they

are classified as unknown.

The score of base feature set with both versions of AccumulatedDirec-

tionBytes included is higher than the scores for each of them. The difference

is only in classification of BitTorrent. This suggests that when Accumu-
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Figure 6.1: Comparison of two versions of AccumulatedDirectionBytes on

BitTorrent traffic

latedDirectionBytes feature has more weight in the final score, BitTorrent

can be classified more precisely. It would be an interesting topic for future

research to study how different weights of features contribute to overall

performance.

NullFrequency feature proved to have a significant impact on classifi-

cation of BitTorrent. F-measure of base set for BitTorrent protocol increased

from 0 to 0.72 for base set with NullFrequency. As discussed in section 4.3.1,

protocols tend to have a frequency of Null byte biased in some way. How-

ever, thorough obfuscation of BitTorrent results in a stable frequency and

provides a good discriminator.

6.3 Evaluation of proposed algorithm

To allow Optimizer search a large portion of possible solutions, we have set

the size of population in each generation to 50 and the number of genera-

tions to 100. Classifier accepted also a configuration with clustering feature

set to Nil, in which case no clustering was used. We allow such configura-
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FingerprintContainer

metric:  KL divergence

features: NullFrequency,

  ActionReaction-First3ByteHash, 

  AccumulatedDirectionBytes (Log),

  First2OrderedFirst4CharWords,

  

FingerprintContainer

clustered: N truncated entropy

FingerprintContainer

metric: KL divergence

features: ByteFrequency,

  NullFrequency, NewlineEquality,

  FirstPacketPerDirectionFirstNByteNibbles

SMB

HTTP

HTTPS

IMAP IMAPS SMTP

SMTPSSSH BITTORRENT

Figure 6.2: Generated solution #1

tions to test the hypothesis that splitting protocols into groups and training

a separate classifiers for them results in higher precision. Fitness function

was based only on classification F-measure and ignored number of features.

Results generated by the Optimizer were stored in external database to al-

low further analysis.

Generated solution is shown on figure 6.2. Optimizer favored cluster-

ing and N truncated entropy was chosen as the clustering feature. Unfor-

tunately, due to the low entropy of SMB 2 protocol it is the only protocol

in its cluster. Optimizer reduced number of features in the second cluster,

but the cluster with SMB 2 has also four features. This is unnecessary and

no classification is needed - when clusterer assigns flow to SMB 2 cluster,

it can be immediately labeled as SMB 2 without measuring any additional

feature. However, this is not a fault in Optimizer - since the fitness function

does not take a number of features into account, it found set of features that

describes SMB 2 the best.

Average F-measure of generated solution is slightly better than SPID’s

F-measure - see Table 6.3. Training phase took more than 6 hours and 2160

45



6. EVALUATION

Average Precision 0.8175

Average Recall 0.8518

Average F measure 0.80277

Optimization runtime 6h 20m 42.493 s

Classificaiton runtime 164.93 s

Table 6.3: Measurement of solution #1

unique solutions were generated during optimization. However, classifi-

cation phase took only 164 seconds, which is a substantial improvement

compared to SPID’s 598 seconds. Investigation of the speedup showed that

it was not achieved only by reduction of the number of features. Since we

implement on-the-fly classification, optimized classifier will label the flows

earlier. On the other hand, SPID needed to measure on average more pack-

ets until the resulting score dropped below the threshold and the flow was

classified.

6.3.1 Evaluation with SMB 2 excluded

SMB 2 protocol has the lowest entropy out of the protocols in our dataset

and clusterer correctly creates a separate cluster for it, since the gap between

entropy of SMB 2 and second lowest entropy is the widest - see Table A.1.

To evaluate behavior of the framework in a more natural setting without

such extreme, we excluded SMB 2 from our dataset and generated second

solution using the framework.

Average Precision 0.8546

Average Recall 0.8833

Average F measure 0.8185

Optimization runtime 1h 3m 42.803 s

Classification runtime 290.09 s

Table 6.4: Measurement of solution #2

As shown in Figure 6.3, Optimizer again chose N truncated entropy as

the feature for clustering. Protocols are split into two even clusters - one

contains protocols SSH, HTTP and SMTP that have a higher values of N trun-

cated entropy, the other contains BITTORRENT, IMAPS, SMTPS and HTTPS.

It is also interesting that both clusters use AccumulatedDirectionBytes in

both variants for classification - this suggests that it is not only helpful in

classification of BITTORRENT traffic as discussed in section 6.2.1.
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Figure 6.3: Generated solution #2

Results of classification are summarized in Table 6.4 and detailed report

is included in Appendix C. Overall performance is better than for the first

solution and also optimization phase took considerably less time. However,

classification runtime almost doubled. This was caused by HTTPS, classifi-

cation of which took 3 minutes 22 second compared to 1 minute 36 seconds

for the first solution.

F-measure of classification of HTTP improved - number of false nega-

tives dropped from 118 to 41. One cause is a better feature set for classifier -

low recall of the first solution was caused by high count of HTTP flows clas-

sified as unknown. Since the feature set of second solution matches HTTP

better, more flows are successfully classified. Another source of imprecision

was confusion of HTTP and BITTORRENT - they fell into the same cluster

and 14 flows were incorrectly classified as BITTORRENT. This was not pos-

sible in second solution since they are separated into different clusters.
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Figure 6.4: Generated solution #3

6.3.2 Clustering with newline equality

To test the clustering with newline equality and investigate, why it was

not chosen by optimizer, we manually configure classifier as shown on Fig-

ure 6.4. As expected, clusterer puts SMTP and IMAP into the same cluster,

since only for these two protocols NewlineEquality returns true. Since both

IMAP and SMTP are plaintext protocols, only the value of ActionReaction-

First3ByteHash should suffice to classify them. For the second cluster we

chose feature set from the first generated solution.

Average Precision 0.8263

Average Recall 0.7741

Average F measure 0.7921

Classification runtime 97.02 s

Table 6.5: Measurement of solution #3

Overall F-measure decreased and the main cause is low recall of classi-

fication of HTTP. High number of false negatives was caused by clustering
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Figure 6.5: Solutions generated randomly

by NewlineEquality. Even though HTTP flows are often compressed, there

is still considerable amount of HTTP traffic, which contains the same count

of CR and LF bytes and thus falls within the first cluster. After the flow

falls within incorrect cluster, the best thing classifier can to is to label it un-

known, and that is the source of high false negatives for HTTP. For this

reason clustering with NewlineEquality is not robust.

6.3.3 Solution space structure and the peaking effect

To better understand the structure of solution space and the correlation be-

tween the number of features and precision, we generated random solu-

tions and measured their performance. The results are plotted in Figure 6.5,

with memory score on x-axis and precision on y-axis. Memory score was

computed as a ratio of number of used features to the total number of fea-

tures, with 0 meaning no features were used and 1 that all features were

used.

The majority of solutions have a low score. There are almost no solutions

with one or two features and a high precision, however, the same holds for
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6. EVALUATION
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Figure 6.6: Solutions generated by Optimizer

solutions with many features. It is clear that solutions with high precision

usually use from 3 to 7 features for classification.

Figure 6.6 contains configurations generated by Optimizer during gen-

eration of the first solution. We can see the peaking effect - solutions with

the highest precision have 4 to 7 features and genetic algorithm preferred

them. Hourglass-like structure is the result of genetic algorithm. Solutions

with low score are generated randomly, whereas solutions with high scores

are results of mutation of individuals from the previous population.

6.4 Discussion

Evaluation of the framework shows the optimal configuration of Classifier

highly depends on the set of protocols to be classified. Moreover, compar-

ison of the first and second generated solution shows that two sets of fea-

tures can have a similar classification performance without having much

in common. Such structure of the problem highly increases the difficulty of

finding the optimal classification algorithm. Therefore, it is advantageous

to include Optimizer that automates this task.
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6. EVALUATION

Optimizer based on generic genetic algorithm could be more stable and

predictable. During our work with framework we found that during mul-

tiple runs with the same setup the number of solutions generated by the

Optimizer was varying a lot. During optimization phase of the first solu-

tion, 2160 unique solutions were generated compared to 468 for the second

solution. This suggests there is a room for improvement of the Optimizer,

either by optimizing genetic algorithm, or by choosing a different algorithm

for optimization. In this work we used the simplest to prove the concept of

classifier optimization and the enhancement of the Optimizer can be a topic

for future research.

Splitting the protocols into different groups with their own classifiers

proved to be more effective and the Optimizer favored it in both solu-

tions. Resulting algorithm was considerably faster than SPID with slightly

higher F-measure and less measured features. However, this was caused by

more optimal selection of features, which can classify BITTORRENT better.

As shown in section 6.2, feature set of SPID can be further optimized, too.

Therefore, more important observation comes from the comparison of two

generated solutions - splitting the protocols decreases amount of false neg-

atives. The reason behind this is simple - since classifiers have less possible

outcomes, they are less likely to make an incorrect decision.

To leverage the fact that each classifiers has a smaller set of protocols

to classify, a different classification method should be proposed. Kullback-

Leibler divergence proved to be a good metric, but choosing the outcome

based on maximum likelihood with threshold does not differ with the num-

ber of possible outcomes. A classifier that would take differences in Kullback-

Leibler divergences into account could achieve better results. As example,

we might have three protocols with high Kullback-Leibler divergence and

thus unlikely to be the correct outcome, and one with rather low score. If

this score is still above the threshold, 2.25 for SPID, it will be marked un-

known. However, since one protocol is much more likely than others, we

could output it as a result despite being slightly above the threshold. This

will affect classification of traffic unknown to classifier, but whether the

amount of false positives would significantly increase remains to be tested.

It may be the case that unknown traffic would result in more even distribu-

tion of scores across known protocols and none of them would dominate.

Design of new classification method is a promising area for improvement

of the framework, since other classification methods and heuristics could

utilize the advantage of split traffic better.

Clustering performance met expectations, however, it proved difficult

to optimize clustering feature. A novel feature - NewlineEquality - was

51



6. EVALUATION

not suitable and N truncated entropy was sensitive to the amount of bytes

and packets measured. In case of HTTP, when the whole payload was mea-

sured, value was likely to be higher due to the compression of application

data. Choosing different range of payload bytes to be measured, designing

a novel feature or proposing a heuristic could significantly improve robust-

ness of clustering.

A novel classification features NullFrequency and NewlineEquality

proved to be rather effective, as they were included in the first generated so-

lution. However, logarithmic version of AccumulatedDirectionBytes proved

less effective than linear version. Explanation of this rather surprising result

suggests that even optimal representation of features is difficult to identify.

NewlineEquality was originally designed as a feature for clustering. Its

binary output is not suitable for classification that uses Kullback-Leibler

divergence. We designed a version for classification with binary output

[1,0] or [0,1] that can be used as input to the KL divergence function.

However, the output of metric is still binary, as the two values of feature

can be either the same or opposite. It was rather surprising that this feature

was chosen into feature set of classifier in the first solution. However, it fits

into idea that each classifier has to distinguish between small set of proto-

cols, rather than match the correct label out of all possible outcomes with

the highest probability.
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Chapter 7

Conclusion

We presented a novel framework for designing new traffic classification

algorithms. It is based on the study of other approaches, SPID in particu-

lar, and designed to address a common issues with precision, memory ef-

ficiency, speed of classification and the tradeoff between them. The frame-

work represents a general approach, which we used to propose a new algo-

rithm. Implementation of the algorithm was considerably faster and more

precise than SPID.

We also use the algorithm to study certain aspects of traffic classification

to get a better understanding of the problem. We confirmed peaking effect

in feature selection, which we avoid by splitting the traffic using clustering

and optimization of feature set. Adding the Optimizer and creating config-

urable Classifier proved to be both feasible and more practical approach to-

wards classification. Despite this we identify potential for improvement in

Optimizer and selection method of classifier. Feature representation from

SPID was extended to support variable length vectors and this improve-

ment allowed us to design two novel features.

We proposed a new feature NewlineEquality to be used for clustering,

but surprisingly, it was more suitable for classification. A NullFrequency

feature was designed to capture a simple observation, that some protocols

have high ratio of Null bytes in payload, and it proved useful. We stud-

ied the effect of a slight change in representation of AccumulatedDirection-

Bytes feature and observed its high impact on precision of classification. Us-

ing entropy to split the traffic was difficult, since it heavily depends on all

details of implementation. Despite our findings, study of features, their rep-

resentation, measurement and parameter optimization is often overlooked.

Current state of methodology has several open problems, that do not

allow effective comparison of proposed approaches. Evaluation of differ-

ent machine learning algorithms applied on problem of classifying network

traffic often omits important implementation details. In such situation, we

believe that equally important as design of new algorithms is asking Why?

and searching for deeper understanding of the results.
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Muttukrishnan Rajarajan, and R Jäger. Enhancements to statistical pro-

tocol identification (spid) for self-organised qos in lans. In Computer

Communications and Networks (ICCCN), 2010 Proceedings of 19th

International Conference on, pages 1–6. IEEE, 2010.

[35] Solomon Kullback and Richard A Leibler. On information and suffi-

ciency. The Annals of Mathematical Statistics, 22(1):79–86, 1951.

[36] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and

Jonathan Turner. Algorithms to accelerate multiple regular expres-

sions matching for deep packet inspection. In ACM SIGCOMM Com-

puter Communication Review, volume 36, pages 339–350. ACM, 2006.

[37] Sailesh Kumar, Jonathan Turner, and John Williams. Advanced al-

gorithms for fast and scalable deep packet inspection. In Architec-

57



7. CONCLUSION

ture for Networking and Communications systems, 2006. ANCS 2006.

ACM/IEEE Symposium on, pages 81–92. IEEE, 2006.

[38] Marc Liberatore and Brian Neil Levine. Inferring the source of en-

crypted http connections. In Proceedings of the 13th ACM conference

on Computer and communications security, pages 255–263. ACM,

2006.

[39] Yeon-sup Lim, Hyun-chul Kim, Jiwoong Jeong, Chong-kwon Kim,

Ted Taekyoung Kwon, and Yanghee Choi. Internet traffic classification

demystified: on the sources of the discriminative power. In Proceed-

ings of the 6th International COnference, page 9. ACM, 2010.

[40] Yongli Ma, Zongjue Qian, Guochu Shou, and Yihong Hu. Study of

information network traffic identification based on c4. 5 algorithm. In

Wireless Communications, Networking and Mobile Computing, 2008.

WiCOM’08. 4th International Conference on, pages 1–5. IEEE, 2008.

[41] A. Madhukar and C. Williamson. A longitudinal study of p2p traf-

fic classification. In Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE In-

ternational Symposium on, pages 179–188. IEEE, 2006.

[42] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On dominant char-

acteristics of residential broadband internet traffic. In Proceedings of

the 9th ACM SIGCOMM conference on Internet measurement confer-

ence, pages 90–102. ACM, 2009.

[43] A. Moore and K. Papagiannaki. Toward the accurate identification

of network applications. Passive and Active Network Measurement,

pages 41–54, 2005.

[44] Andrew W Moore and Denis Zuev. Internet traffic classification us-

ing bayesian analysis techniques. In ACM SIGMETRICS Performance

Evaluation Review, volume 33, pages 50–60. ACM, 2005.

[45] Andrew W Moore, Denis Zuev, and Michael Crogan. Discriminators

for use in flow-based classification. Technical report, Technical report,

Intel Research, Cambridge, 2005.

[46] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for

internet traffic classification using machine learning. Communications

Surveys & Tutorials, IEEE, 10(4):56–76, 2008.

58



7. CONCLUSION

[47] J Olivain and J Goubault-Larrecq. Detecting subverted crypto-

graphic protocols by entropy checking. Laboratoire Spécification et

Vérification, ENS Cachan, France, Research Report LSV-06-13, 2006.

[48] Vern Paxson. Bro: a system for detecting network intruders in real-

time. Computer networks, 31(23):2435–2463, 1999.

[49] Piti Piyachon and Yan Luo. Efficient memory utilization on network

processors for deep packet inspection. In Proceedings of the 2006

ACM/IEEE symposium on Architecture for networking and commu-

nications systems, pages 71–80. ACM, 2006.

[50] Martin Roesch et al. Snort-lightweight intrusion detection for net-

works. In Proceedings of the 13th USENIX conference on System ad-

ministration, pages 229–238. Seattle, Washington, 1999.

[51] Luca Salgarelli, Francesco Gringoli, and Thomas Karagiannis. Com-

paring traffic classifiers. ACM SIGCOMM Computer Communication

Review, 37(3):65–68, 2007.

[52] Yong Shi, Yuqing Song, and Aidong Zhang. A shrinking-based clus-

tering approach for multidimensional data. Knowledge and Data En-

gineering, IEEE Transactions on, 17(10):1389–1403, 2005.

[53] Chao Sima and Edward R Dougherty. The peaking phenomenon in the

presence of feature-selection. Pattern Recognition Letters, 29(11):1667–

1674, 2008.

[54] Jung-Sik Sung, Seok-Min Kang, Youngseok Lee, Taeck-Geun Kwon,

and Bong-Tae Kim. A multi-gigabit rate deep packet inspection algo-

rithm using tcam. In Global Telecommunications Conference, 2005.

GLOBECOM’05. IEEE, volume 1, pages 5–pp. IEEE, 2005.
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Appendix A

Values of features and byte frequencies of protocols

Investigation of byte frequencies of protocol proved to be a good way to

understand a protocol better from the classification standpoint. Table A.1

shows values of four features for each protocol as measured and used by

our implementation.

Protocol Entropy
N truncated

entropy

NullFrequency

[%]

Newline

Equality

BITTORRENT 7.99 0.06 0.39 False

HTTP 7.65 1.18 2.36 False

HTTPS 7.96 0.68 0.75 False

IMAP 6.08 0.81 0.00 True

IMAPS 7.92 0.51 1.22 False

SMB2 3.34 2.68 62.18 False

SMTP 6.10 0.95 0.00 True

SMTPS 7.98 0.43 0.41 False

SSH 7.93 1.51 2.52 False

Table A.1: Values of chosen features of protocols
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A. VALUES OF FEATURES AND BYTE FREQUENCIES OF PROTOCOLS
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A. VALUES OF FEATURES AND BYTE FREQUENCIES OF PROTOCOLS
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A. VALUES OF FEATURES AND BYTE FREQUENCIES OF PROTOCOLS
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A. VALUES OF FEATURES AND BYTE FREQUENCIES OF PROTOCOLS
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A. VALUES OF FEATURES AND BYTE FREQUENCIES OF PROTOCOLS
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Appendix B

Detailed results of SPID evaluation

Protocol
base

TP FP FN Precision Recall F-measure

BITTORRENT 0 0 36 - 0.0 -

HTTP 253 0 53 1.0 0.8267 0.9051

HTTPS 660 13 14 0.9806 0.9792 0.9799

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 35 0 40 1.0 0.4666 0.6363

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 22 6 0.12 0.3333 0.1764

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 116 0 0.0 - -

average 0.78895 0.70164 0.72658

Protocol
base+lin

TP FP FN Precision Recall F-measure

BITTORRENT 13 0 31 1.0 0.2954 0.4561

HTTP 252 0 54 1.0 0.8235 0.9032

HTTPS 654 14 19 0.9790 0.9717 0.9753

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 34 5 40 0.8717 0.4594 0.6017

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 21 6 0.125 0.3333 0.1818

SSH 10 0 1 1.0 0.9090 0.9523

unknown 112 0 0.0 - -

average 0.88618 0.73248 0.77329
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B. DETAILED RESULTS OF SPID EVALUATION

Protocol
base+log

TP FP FN Precision Recall F-measure

BITTORRENT 8 0 34 1.0 0.1904 0.32

HTTP 253 0 53 1.0 0.8267 0.9051

HTTPS 654 13 19 0.9805 0.9717 0.9761

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 34 5 40 0.8717 0.4594 0.6017

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 21 6 0.125 0.3333 0.1818

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 115 0 0.0 - -

average 0.88636 0.72117 0.75846

Protocol
base+null

TP FP FN Precision Recall F-measure

BITTORRENT 34 0 26 1.0 0.5666 0.7234

HTTP 257 0 51 1.0 0.8344 0.9097

HTTPS 655 13 19 0.9805 0.9718 0.9761

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 35 5 40 0.875 0.4666 0.6086

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 22 6 0.12 0.3333 0.1764

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 104 0 0.0 - -

average 0.88617 0.76463 0.80397
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B. DETAILED RESULTS OF SPID EVALUATION

Protocol
base+lin+log

TP FP FN Precision Recall F-measure

BITTORRENT 32 0 25 1.0 0.5614 0.7191

HTTP 252 0 54 1.0 0.8235 0.9032

HTTPS 654 13 19 0.9805 0.9717 0.9761

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 34 5 40 0.8717 0.4594 0.6017

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 21 6 0.125 0.3333 0.1818

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 107 0 0.0 - -

average 0.88636 0.76203 0.80259

Protocol
base+lin+null

TP FP FN Precision Recall F-measure

BITTORRENT 54 1 14 0.9818 0.7941 0.8780

HTTP 257 0 50 1.0 0.8371 0.9113

HTTPS 654 14 20 0.9790 0.9703 0.9746

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 34 5 40 0.8717 0.4594 0.6017

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 21 6 0.125 0.3333 0.1818

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 91 0 0.0 - -

average 0.88417 0.78924 0.82099
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B. DETAILED RESULTS OF SPID EVALUATION

Protocol
base+log+null

TP FP FN Precision Recall F-measure

BITTORRENT 47 0 17 1.0 0.7343 0.8468

HTTP 253 0 54 1.0 0.8241 0.9035

HTTPS 654 13 19 0.9805 0.9717 0.9761

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 34 5 40 0.8717 0.4594 0.6017

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 21 6 0.125 0.3333 0.1818

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 99 0 0.0 - -

average 0.88636 0.78131 0.81682

Protocol
base+lin+log+null

TP FP FN Precision Recall F-measure

BITTORRENT 54 8 15 0.8709 0.7826 0.8244

HTTP 254 0 53 1.0 0.8273 0.9055

HTTPS 654 13 25 0.9805 0.9631 0.9717

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 34 5 40 0.8717 0.4594 0.6017

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 21 6 0.125 0.3333 0.1818

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 94 0 0.0 - -

average 0.87201 0.78608 0.81406
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Appendix C

Detailed results of generated solutions

Protocol TP FP FN Precision Recall F-measure

BITTORRENT 98 24 2 0.8032 0.98 0.8828

HTTP 172 0 118 1.0 0.5931 0.7445

HTTPS 793 13 31 0.9838 0.9623 0.9730

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 56 12 19 0.8235 0.7466 0.7832

SMB2 4 0 1 1.0 0.8 0.8888

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 0 1 9 0.0 0.0 -

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 131 0 0.0 - -

average 0.8456 0.7768 0.8027

Actual bittorrent http https imap imaps smb2 smtp smtps ssh unknown

BITTORRENT 98 0 0 0 0 0 0 0 0 2
HTTP 14 172 0 0 0 0 0 0 0 104
HTTPS 10 0 793 0 9 0 0 0 0 12
IMAP 0 0 0 13 0 0 0 0 0 0
IMAPS 0 0 7 0 56 0 0 1 0 11
SMB2 0 0 0 0 0 4 0 0 0 1
SMTP 0 0 0 0 0 0 14 0 0 0
SMTPS 0 0 6 0 3 0 0 0 0 0
SSH 0 0 0 0 0 0 0 0 10 1
unknown 0 0 0 0 0 0 0 0 0 0

Table C.1: Detailed reports for the first solution
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C. DETAILED RESULTS OF GENERATED SOLUTIONS

Protocol TP FP FN Precision Recall F-measure

BITTORRENT 84 16 8 0.84 0.9130 0.8749

HTTP 268 0 41 1.0 0.8673 0.9289

HTTPS 650 0 91 1.0 0.8771 0.9345

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 34 5 34 0.8717 0.5 0.6355

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 3 21 0 0.125 1.0 0.2222

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 133 0 0.0 - -

average 0.8546 0.8833 0.8185

Actual bittorrent http https imap imaps smtp smtps ssh unknown
BITTORRENT 84 0 0 0 0 0 0 0 8
HTTP 0 268 0 0 0 0 0 0 41
HTTPS 16 0 650 0 5 0 0 0 70
IMAP 0 0 0 13 0 0 0 0 0
IMAPS 0 0 0 0 34 0 21 0 13
SMTP 0 0 0 0 0 14 0 0 0
SMTPS 0 0 0 0 0 0 3 0 0
SSH 0 0 0 0 0 0 0 10 1
unknown 0 0 0 0 0 0 0 0 0

Table C.2: Detailed reports for the second solution
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C. DETAILED RESULTS OF GENERATED SOLUTIONS

Protocol TP FP FN Precision Recall F-measure

BITTORRENT 98 24 2 0.8032 0.98 0.8828

HTTP 173 0 118 1.0 0.5945 0.7456

HTTPS 793 13 31 0.9838 0.9623 0.9730

IMAP 13 0 0 1.0 1.0 1.0

IMAPS 56 12 19 0.8235 0.7466 0.7832

SMTP 14 0 0 1.0 1.0 1.0

SMTPS 0 1 9 0.0 0.0 -

SSH 10 0 1 1.0 0.9090 0.9523

unknown 0 130 0 0.0 - -

average 0.8263 0.7741 0.7921

Actual bittorrent http https imap imaps smtp smtps ssh unknown
BITTORRENT 98 0 0 0 0 0 0 0 2
HTTP 14 173 0 0 0 0 0 0 104
HTTPS 10 0 793 0 9 0 0 0 12
IMAP 0 0 0 13 0 0 0 0 0
IMAPS 0 0 7 0 56 0 1 0 11
SMTP 0 0 0 0 0 14 0 0 0
SMTPS 0 0 6 0 3 0 0 0 0
SSH 0 0 0 0 0 0 0 10 1
unknown 0 0 0 0 0 0 0 0 0

Table C.3: Detailed reports for the third solution
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