
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Bc. Jǐŕı Helmich

Analysing and Visualizing
Statistical Linked Data

KSI

Supervisor of the master thesis: Mgr. Martin Nečaský, Ph.D.

Study programme: Informatics

Specialization: ISS

Prague 2013

I wish to thank my supervisor Mgr. Martin Nečaský Ph.D. for his time and his very
helpful and constructive advice concerning this thesis.

My thanks also belong to Bc. Martina Mandová who helped me with the cor-
rection of the English text. I would also like to thank my parents and my girlfriend
for being supportive.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date signature of the author

Název práce: Analysing and Visualizing Statistical Linked Data

Autor: Bc. Jǐŕı Helmich

Katedra: KSI

Vedoućı diplomové práce: Mgr. Martin Nečaský, Ph.D., KSI

Abstrakt: Práce popisuje zp̊usoby zpracováńı statistických dat v prostřed́ı Linked
Data, předevš́ım s využit́ım metaformátu Data Cube Vocabulary. Jej́ı součást́ı
je popis nástroj̊u, které souviśı s analýzou a vizualizaćı RDF dat nejen ze stati-
stického prostřed́ı. Ned́ılnou součást́ı je také popis nástroje Payola, na jehož
vývoji se autor i nadále pod́ıĺı. Výsledkem práce je zejména návrh a implementace
systému, který umožňuje konverzi RDF dat dle slovńık̊u Data Cube Vocabulary.
Navržený systém byl implementován a integrován do aplikace Payola. Dále autor
implementoval několik daľśıch rozš́ı̌reńı tohoto systému. V rámci popisu imple-
mentace jsou zmı́něna také omezeńı vyplývaj́ıćı z integrace se systémem Payola.
V závěru práce autor popisuje několik experiment̊u, v jejichž rámci aplikoval
implementovaný systém na vybrané datasety.

Kĺıčová slova: Linked Data, Data Cube, analýza, vizualizace, Payola

Title: Analysing and Visualizing Statistical Linked Data

Author: Bc. Jǐŕı Helmich

Department: KSI

Supervisor: Mgr. Martin Nečaský, Ph.D., KSI

Abstract:

The thesis describes several means of processing statistical data in the ambience
of Linked Data and is in particular focused on the utilization of Data Cube Vo-
cabulary metaformat. Its content offers a description of tools related to analysis
and visualization of RDF data not only from the statistical view. An indivisi-
ble part of this work is the depiction of the Payola tool on whose development
is the author still working on. The outcome of this thesis is mainly proposal
and consequential implementation of the system that enables a conversion of RDF
data in compliance with the DCV vocabularies. The designed system was im-
plemented and integrated to the Payola application. Several other extensions
of the system were also implemented by the author. Within the scope of the im-
plementation process there are mentioned also limitations arising from the inte-
gration with Payola. In the conclusion the writer describes a few experiments
where some of the chosen datasets were applied to the implemented system.

Keywords: Linked Data, Data Cube, analysis, visualization, Payola

Contents

Introduction and motivation 3

1 Statistical data in the context of Linked Data 5

1.1 From speech to structured data 5
1.2 Resource Description Framework 8
1.3 Linked Data . 9
1.4 Data Cube . 13
1.5 Statistical Data and Metadata eXchange 14
1.6 Data Cube Vocabulary . 16

2 Related Work 23

2.1 OLAP2DataCube . 24
2.2 Tabels . 26
2.3 CubeViz . 27
2.4 Visualbox . 28
2.5 GeoGlobe . 29
2.6 ViDaX . 30
2.7 Tabulator . 30
2.8 Explorator . 32
2.9 Exhibit . 32
2.10 Sgvizler . 32
2.11 Rhizomer . 33
2.12 LODStats . 33
2.13 Yahoo Pipes, DERI pipes . 35
2.14 Payola visualization model vs. LDVM 36
2.15 Payola visualisator framework features 41

3 Payola 44

3.1 Payola concepts . 44
3.2 Payola features . 45

3.2.1 Exploration mode . 45
3.2.2 Analytical mode . 46
3.2.3 Visualisations . 46
3.2.4 Sharing . 47

3.3 Payola architecture . 47
3.4 Analysis evaluation . 50
3.5 Technological stack . 51

4 System proposal 52

4.1 Pattern selection . 54
4.2 Mockups . 56
4.3 Benefits of integration into Payola 59
4.4 Formalization . 61

4.4.1 Input and output . 61
4.4.2 Transformation query . 63

1

4.5 Visualizers . 68
4.5.1 TimeHeatmap . 68
4.5.2 Universal DCV . 68

5 Implementation 70

5.1 Integration of the proposed system 70
5.2 Analytical plugins . 70

5.2.1 Data Cube Vocabulary analytical plugin 73
5.2.2 Obtaining the transformation pattern 78
5.2.3 User interface . 81

5.3 Visualisers . 85
5.3.1 TimeHeatmap . 85
5.3.2 Universal Data Cube Vocabulary 86

5.4 Payola improvements . 87
5.4.1 LodVis integration . 87
5.4.2 Secured endpoints . 88
5.4.3 Analytical pipeline reuse 88
5.4.4 Data Source browser permalinks 91
5.4.5 Limit plugin . 91

6 Experiments 92

6.1 DBPedia demography . 92
6.2 COINS – UK government spending 96
6.3 Czech public contracts . 100

7 Future work 105

Conclusion 106

Bibliography 107

List of Tables 113

List of Abbreviations 114

A CD Contents 117

A.1 Files and directories . 117

B Online sources 118

C List of commits related to this thesis 119

2

Introduction and motivation

Nowadays, there are many techniques of processing data. Unfortunately, there
are many different data formats one can work with. It makes the processing a lot
more difficult. The task becomes even harder when one wants to connect two
different datasets in order to benefit from the connection. The connection allows
us to get some additional information about entities from each of the standalone
datasets. Therefore, a lot of computation time is spent on converting, format-
ting and transforming data into another form. But transforming datasets into
a matching format is not enough. One needs to specify how the data should
be linked together.

There are many ways of doing that. Starting with implementing the log-
ic into a simple conversion script (according to a specific dataset) to introducing
a more complex metadata description framework for purposes of generic data pro-
cessing. Since one of the most attractive tasks in this area is to be able to connect
any of the datasets available on the Internet, we are interested in the generic de-
scription frameworks. We would like to have a tool, which enables us to work with
any data on the Internet (formatted according to some kind of rules). We would
like to link them together, analyze them and visualize them.

One of the most used description frameworks is the Resource Description
Framework [1]. It is a standard model for data interchange on the Web. It tells
us how to describe resources on the Internet in order to allow other people,
applications and tools to understand such a description. That gives us a potential
to link any data on the Internet. Based on the framework, a new model named
Linked Data [2] was introduced. The model has been brought up to make data
interconnecting easier.

The result of interconnecting data while utilizing the principles of the Linked
Data model and Resource Description Framework is a directed graph. Its ver-
tices represent resources we have information about. The edges stand for rela-
tions between such entities. From this point on, it is up to us, how we look
at the data. We can either explore them in a plain graph or apply some more se-
mantics and make domain specific visualizations while using ontologies and other
advanced techniques.

One of the specific domains are statistical data, which are one of the most
interesting kind of data. They are produced and processed by many stakehold-
ers. In the context of Linked Open Data, the most interesting are, of course,
governments and scientific groups. But we would like to work with such data
in the usual way — make tables, charts or more interesting visualizations. While
speaking about Open Data, a specific user group — data journalists — would
like to work with Linked Data, but they are probably missing some basic tools,
which would enable them to interpret gathered results in the way readers would
understand.

After applying the rules of the Linked Data model, the statistical data (even
tabular data) get transformed into a generic graph. The only, but very impor-
tant advantage, is that we have some additional metadata information available.
Moreover, the data are still linked with related entities from all over the Internet.
That brings us to another model, the Data Cube Vocabulary [3]. It is a model,

3

which tells us how to describe multi-dimensional (statistical) data with respect
to Linked Data and RDF principles.

Goals of the thesis

The aim of this thesis is to describe these models, analyze the possibilities of work-
ing with multi–dimensional data in the environment of Linked Data. We will al-
so propose a system which will enable its user to convert Linked Data into the Da-
ta Cube Vocabulary model. A prototype of such a system will be implemented.
An exemplary visualisation of the statistical data will be implemented and pre-
sented. Moreover, some missing Payola user interface features will be implement-
ed.

Structure of the text

In Chapter 1, we describe the aforementioned models and standards — RDF,
Linked Data, Data Cube and Data Cube Vocabulary. Some examples are present-
ed. Chapter 2 contains description of existing tools and applications. We compare
those to our application, Payola [4]. We also examine some related papers, espe-
cially the LDVM proposal [5]. The Payola application is described in Chapter 3.
Later on (Chapter 4), we propose a system for analyzing and visualizing data
compliant with the Data Cube Vocabulary model. Implementation of a proto-
type is described in Chapter 5. In Chapter 6, we present capabilities of the im-
plemented system and experiment with some statistical datasets.

4

1. Statistical data in the context

of Linked Data

To understand the rest of the thesis, let us talk about the aforementioned mod-
els. We will take the description step by step, starting with a dataset stored
in a plaintext file. After a while, we will get familiar with RDF, Linked Data
and last, but not least, with the Data Cube Vocabulary.

Since we are discussing statistical data, we will use a simple real–life example.
National statistical offices all over the world are well–known for periodic gathering
of the statistics about the population of the country they are operating in. More-
over, those statistics are being regularly published and gathered by international
organizations, e.g. the UN [6] which can make a comparison and build another
statistics upon the national data. Also, other organizations, like Google [7] use
those data to publish them and make some advanced statistics.

That is, in fact, why we would like to have the data in a pre–defined struc-
ture, wrapped with metadata to perfectly understand what the data in a given
dataset mean. Moreover, we would take advantage of such a dataset to speed
up and automate its processing. It would be great to be able to introduce a tool,
which will take the national statistics immediately after its publishing and deliver
a new version of the international dataset without the need of any user input.

1.1 From speech to structured data

We will introduce the reader to the problem by examining an example based
on the total number of citizens living in the country. That is a very simple kind
of information, but we will demonstrate how this could be put into the context
of the models mentioned in the introduction.

Let us start with a dataset with only one entry:

The Czech Republic has 10 505 445 citizens.

That is a sentence a normal person would say but it holds a statistical infor-
mation. If we wanted to keep this information in a simple structured text file,
we would e.g. name it number of citizens.txt and it would have the following
contents:

Czech Republic 10505445

Normally, we keep this kind of statistics to make a comparison, for instance,
to compare the total number of citizens of all the countries in the world. We will,
however, continue with just the two of them:

Czech Republic 10505445

Slovakia 5404555

5

That gives us a dataset with two entries. Each entry is consisted of two parts.
Let us notice, that its semantics are kept in the reader’s head. The document itself
does not keep the information. To process the data, it is necessary to know what
the information in the file represents. You could change the contents of the file
into the following form:

Czech Republic 10505445

Slovakia 5404555

Meat like

Fruit orange

Such a dataset is technically correct (values are separated by tabulators),
nevertheless semantically, it makes no sense. After reading the contents of the file,
the reader is aware of the fact that in the given context the added lines do not
fit in. Let us return to the meaningful example.

If we keep the meaning of the values, we know that in the first column
we have the name of the country and in the second one, we have the total num-
ber of citizens. Those statements could be called observations, as it can be said
that someone made an observation about there being over 10 million people living
in the Czech Republic. We can also say that the dataset has got two dimensions.
The first one is the place where the observation has taken place, the second one
is the value being measured.

That would make a nice Excel table, simple chart or a nice map of central
Europe with two labels. Those are the usual ways of processing such datasets.

Now, let us get back to the very first statement:

The Czech Republic has 10 505 445 citizens.

When transferring the statement into a more technical form, we forgot to ex-
tract one dimension. The sentence also carries information about time. This
is quite an important part of the information since the count of citizens of the spe-
cific country evolves with time. People are dying as well as getting born.
Since the sentence is presented while using the present tense, we can conclude
that the observation is valid for the current year (2013).

That means the dataset stored in a plaintext file should look similar to this:

Czech Republic 10505445 2013

Slovakia 5404555 2013

The last column evidently holds the year of the observation being made. That
gives us three dimensional dataset. We know the place, the total number of citi-
zens and the time of the measured value being acquired.

Now, we may come to a decision of publishing such a document to the Web.
We can transform it into a web page and publish it on a server.

Example of such a web page source code can be seen in Figure 1.1. We pub-
lished the data not only in a more structured form but also provided an explana-
tion of its meaning. Therefore, some additional data had to be added. In fact, we
should speak of it as of metadata, since the meaning is rather descriptive instead
of semantical.

6

<html>

<head>

<title>Number of citizens in a country</title>

</head>

<body>

<table>

<thead>

<tr>

<th>Country name</th>

<th>Number of citizens</th>

<th>Year</th>

</tr>

</thead>

<tbody>

<tr>

<td>Czech Republic</td>

<td>10505445</td>

<td>2013</td>

</tr>

<tr>

<td>Slovakia</td>

<td>5404555</td>

<td>2013</td>

</tr>

</tbody>

</table>

</body>

</html>

Figure 1.1: An example of an HTML file with tabular data

7

With a specifically programmed script or a tool (so-called scraper) it is possi-
ble to convert such a web page into another format or make an eye–catching visu-
alization. But one gets to learn the tool, the meaning of the data, its structures
and the handling of each of the dimensions. Moreover, one is not able to gath-
er more information, because there is not any in the document itself and there
is no way of automatically linking the values in the document to other documents
(unless, of course, one is developed).

This is where the Resource Description Framework [1] and the Linked Data [2]
model come in. Those can help us introduce some semantical meaning to link
entities in the document to other entities on the Internet. Let us provide more
details about the RDF before getting back to this example.

1.2 Resource Description Framework

As stated before, the Resource Description Framework is one of the most used
models for describing data with metadata. Its purpose is to give a common
model for data interchange on the Internet in order to make all its users able
to exchange data with semantics. It introduces a way of describing a schema
of the interchanged data. It also offers features that help facing a situation when
two datasets describe the same thing, but have different schemas.

The standard model of the web works on the principle of URIs. Each page,
which is, in fact, an entity or resource, has a URI, which stands for its unique
identifier. Nothing on the web should have the same identifier. What RDF adds
to this model is that even relations between those resources have their URIs.
An example of such a relation could be:

http://dbpedia.org/resource/Kenya http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://dbpedia.org/ontology/Country

This actually tells us that Kenya is a country. That statement could ob-
viously be found on the Internet in a countless of different data sources; they
are not usually presented in a machine–readable form, though. In order to work
with that sentence we need a parser, which is able to get the information based
on a bunch of linguistical rules. Moreso, the sentence might be more complicat-
ed, e.g. Kenya, with Nairobi as its capital city, is a very beautiful

country. Ignoring the fact that the sentence brings another useful information,
we should aim our focus on the fact that it is more of a complicated piece of lan-
guage to parse.

The RDF notation gives a semantic meaning to the relation. The RDF mod-
el is based on making certain kinds of triples; such can be seen in the previous
example. If we extend the set of triples with another, what we get is a di-
rected labeled graph, where an edge represents relation between two resources.
Those resources are represented by graph nodes. Based on the actual content
of the triples, the graph may consist of two or more standalone connected com-
ponents as well as of just a single one. Such a graph may potentially contain
information about entities from all over the Internet, which would be very useful.

The main point is, that all the information published with respect to the RDF
model may be automatically processed by a computer able to work with the se-
mantics without needing the user to specify it (as somebody has already done
that while publishing the dataset).

8

1.3 Linked Data

One implementation of the Resource Description Framework is the Linked Data
model. It utillizes several technologies and principles to actually interconnect
the data on the Internet. Both resources and relations are denoted with URIs.
The HTTP protocol is used to make the resource public on the Internet. It may
be found by dereferencing (accessing) the assigned URI. Both machines and peo-
ple are therefore capable of looking the resource up.

When the URI is dereferenced, more useful information could be provided
while utillizing the RDF and SPARQL standards. Since the model is called
Linked Data, the most significant part of the concept is about knowing how
the data could be connected when being published on the Web. It also brings
some serialization formats, such as RDFa, RDF/XML, N3, Turtle and many
others. One of the most significant projects involving Linked Data is the LOD2
project [8] (its visualization can bee seen) in Figure 1.5.

To make the idea about datasets more clear, let us mention some well–known
data sources involving Linked Data:

• DBPedia — dataset made by transforming Wikipedia into the RDF model.

• FOAF — dataset describing persons, their properties and relationships.

• GeoNames — geographical LD database.

• CKAN — community–run catalogue of useful sets of data on the Internet.

Namespaces and prefixes

There is one rather technical note we should mention before taking further steps.
The RDF also brings a way of expressing URI of a resource in a more compact
form while utilizing so–called prefixes and namespaces. Let us look at an example:

http://dbpedia.org/ontology/populationTotal

http://dbpedia.org/ontology/populationAsOf

Those are URIs which reference specific properties with a semantic meaning
as designed by the DBPedia [9]. At a closer look, one can see that there are
some parts of the URI that are repeated in each of them. E.g. the scheme —
http. Although that is a rather technical point of view. The most long common
part of both URIs is http://dbpedia.org/ontology/ which makes a namespace.
It makes a logical sense that all the resources in the virtual folder ontology have
something in common, therefore, they are grouped into the namespace.

Since one could remember easily the name of the specific resource in a names-
pace, e.g. populationTotal, it would be great if they had no need to look
up the full URI of the namespace and express it with a short and easy–to–
remember, but still unique, identifier. That is what prefixes are designed
for. For instance, the http://dbpedia.org/ontology/ was assigned the pre-
fix dbpedia-owl. Since the scheme is then prefix:localname, one could write:

dbpedia-owl:populationTotal

dbpedia-owl:populationAsOf

9

http://dbpedia.org/ontology/
http://dbpedia.org/ontology/

Figure 1.2: LOD cloud diagram by Anja Jentzsch [11] (situation as of 19. 9.
2011)

which is equivalent to the previous example. It is then a lot easier to write
RDF documents for a human being, especially while using well–known prefixes.
A kind of unofficial registry could be found on [10].

In order to get the processes in a country more transparent, governments
also publish data related to the country (statistics, public spendings data, . . .)
to the Internet. Not many of them are published in the form of the Linked Data,
so there are many initiatives interested in transforming the data into a machine-
readable form.

It is definitely a great achievement to have such a dataset in a form of Linked
Data, but what we need for understanding its contents is a suitable visualization
of the data. Due to our knowledge of working with statistical multi–dimensional
data we can apply our know–how to the aforementioned data as they are statis-
tical datasets as well.

Our aim is to have a description model, which annotates a dataset with
a semantically–specific notation. That would enable us to generalize the processes
involving statistical Linked Data and prepare some universal types of visualiza-
tions, which are commonly used in the non-LD world.

Ontologies

Let us also introduce the concept of an ontology, which is a product of the RDF
evolution. The Resource Description Framework is not very restrictive. One can
build his own content of a RDF document, e.g.:

http://example.com/Czech_republic http://example.com/relation/hasCapital http://example.com/Prague

10

or

http://pedia.rdf/Czech_republic http://pedia.rdf/hasCapital http://pedia.rdf/Prague

http://pedia.rdf/Czech_republic http://pedia.rdf/language http://pedia.rf/Czech

By comparing the first lines from each of the documents, it might be appar-
ent they hold the same information; that the capital city of the Czech Repub-
lic is Prague. At a closer look, a more observant reader can notice, that each
of them uses different URIs to dereference the resources related to the Czech Re-
public and Prague (in fact, they use different namespaces to make the reference).
They also use different URIs (and namespaces) to express the relation between
a country and its capital.

Moreso, the second document holds more information as it tells us, that people
of the Czech Republic speak Czech. Both documents are perfectly valid and could
be published on the Web. That is why the concept of ontologies was introduced.
With an ontology, one may specify the requested outline of the document.

When formalized as defined in [12]: An ontology O is a triple (C, P,M)
where C is a set of classes, P is a set of predicates and M is a set of RDF
statements (mappings of the classes and properties to other ontologies). Both
classes and predicates are specified using their unique URIs.

Let us start with countries. Without a restriction, one may also include,
let us say, planets. With an ontology, it can be specified what kind of re-
sources could be included. It is needed to specify a URI describing the type
country, for instance a rule can be set that a resource needs to be of the type
http://schema.org/Country.

After that, another rule is added, which will define that the country may have
its capital specified. Let us say one decides to go with the relation described
by dereferencing the URI of dbpprop:capital.

It is clear, that none of the examples conform, since neither of them utilizes
the relation dbpprop:capital.This is a very simple example of how ontologies
could be used. What we did was that we utilized the possibility to constraint
properties of a resource.

A new language, OWL (Web Ontology Language) [13], was developed based
on the RDF in order to standardise the way of making restrictions. It gives
us much stronger possibilities than just restricting the properties, which is,
on the other side, the most commonly used technique.

Example with the usage of RDFa

Now, let us get back to the example related to the number of citizens in a country.
At first, we will alter the HTML document to involve some semantics. To achieve
that, we will utilize the RDFa model, as can be seen in Figure 1.3.

Since the original data were taken from Wikipedia [14], we decided to dec-
orate the HTML document while using semantic definitions defined by DB-
Pedia, the Linked Data version of Wikipedia. The DBPedia needed to come
up with a series of ontologies to present the structure of documents extract-
ed from Wikipedia. The ontology can be used not only to declare a publicly
available definition of the document format, which is useful for those who query
the DBPedia database; it can also be used by the team of the DBPedia in order

11

http://schema.org/Country

<html prefix="dbpedia-owl: http://dbpedia.org/ontology/">

<head>

<title>Number of citizens in a country</title>

</head>

<body>

<table>

<thead>

<tr>

<th>Country name</th>

<th>Number of citizens</th>

<th>Year</th>

</tr>

</thead>

<tbody>

<tr about="http://dbpedia.org/page/Czech_Republic">

<td property="rdfs:label">Czech Republic</td>

<td property="dbpedia-owl:populationTotal">10505445</td>

<td property="dbpedia-owl:populationAsOf">2013</td>

</tr>

<tr>

<td property="rdfs:label">Slovakia</td>

<td property="dbpedia-owl:populationTotal">5404555</td>

<td property="dbpedia-owl:populationAsOf">2013</td>

</tr>

</tbody>

</table>

</body>

</html>

Figure 1.3: RDFa document example

to unify internal rules of a document which is created by scraping a Wikipedia
page into RDF.

As can be seen, we have utilized the RDF Schema and DBPedia Ontology
to describe the document and give it some semantic meaning. While this is a rel-
atively simple process, it has dramatically increased the possibilities of the docu-
ment processing by expressing the resource URI. By dereferencing the URI, one
can get more related information and link his data with the rest of the Internet.

RDF example

When such a page is analyzed by a RDF–aware tool, it may be extracted in-
to a more concise form:

http://dbpedia.org/page/Czech_Republic dbpedia-owl:populationTotal 10505445 ;

dbpedia-owl:populationAsOf 2013 .

http://dbpedia.org/page/Slovakia dbpedia-owl:populationTotal 5404555 ;

dbpedia-owl:populationAsOf 2013 .

The document may naturally contain much more information about the re-
sources, but for the purposes of our interest in the statistical values related
to the population size we do not need anything more. In fact, the DBPedia
database contains many more data related to the entity, e.g. the capital city,
the name of the president, etc.

But all we need to start with statistical data in combination with the Linked
Data concept is held by those RDF triples. In fact, the main goal of this thesis
is to implement a prototype of a system, which will be able to convert such triples
(and more complicated statistical structures) into slightly another, but still RDF–
complaint, format.

12

1.4 Data Cube

Before proceeding with the example, let us stop for a while and talk about Data
Cube outside of RDF and Linked Data scope. Generally speaking, a data cube
is a multi-dimensional array of values describing some kind of data. In the data–
mining context, it is often referenced as an OLAP cube, where OLAP stands for
OnLine Analytical Processing.

One may think about it as a generalization of a well–known concept — spread-
sheets. A spreadsheet (known e.g. from the Excel) is a two dimensional table,
which can be made dynamic while using formulas and other techniques available
in the software. What OLAP cube brings up is a higher count of dimensions.
It holds a set of measures or, if you want, observations. Those are organised
in a special data structure (star schema, snowflake schema, . . .) and point to so–
called facts table consisted of the actual measured values.

While involving some facts from the database theory, we could say
that an OLAP cube is a form of a projection of an RDBMS relation. If we think
about a standard two–dimensional table, we can formalize the relation between
key and value in the following way:

R = f : K → V

We have a single value (denoted V) that we get after dereferencing the key
(denoted K). If we add one dimension, e.g. let us go back to the population count
example, we would write:

R = f : (Y, C) → V

where Y stands for a year and C stands for a country. V is the total number
of citizens in the country C in the year Y. But as we presented before, the OLAP
cube represents a concept of multi–dimensional statistical data. That is why
we should generalize the formula a lot more. Let us think about a cube which
has n dimensions. That could be expressed with the following formula:

R = f : (X1, X2, . . . , Xn−1) → Xn

But, of course, the Xn could be also a set of facts.
The Data Cube Vocabulary is a concept based on the previously mentioned

Data Cube and OLAP cube theory. As we are interested in the ways of represent-
ing statistical data in the Linked Data model, the reader would not be surprised,
that the Data Cube Vocabulary [3] concept is tightly connected to the Linked
Data model.

Since the Data Cube Vocabulary is the starting point for reaching the goal
of this thesis, we will pay a special attention to its description. It combines the ad-
vantages of the RDF model and Data Cube concept in order to make it easier
to interlink resources involved in the published statistics. As the Data Cube Vo-
cabulary model is based on the model defined by Statistical Data and Metadata
eXchange standard [16], let us discuss the standard a bit more.

13

Figure 1.4: An example of data cube by Microsoft [15]

1.5 Statistical Data and Metadata eXchange

The SDMX Initiative [16] was introduced by seven organizations in order to make
an effective standard to interchange statistical data. All those organizations,
e.g. OECD, UN or Eurostat, have, without any doubt, an access to a large
amount of statistical data, even more, they produce them. Some examples of such
data could be found on [7]. In 2005, the Initiative has introduced a version 1.0
of a technical specification, which was approved by the International Organization
for Standardization [17] as ISO:TS 17369. Later on, in May 2011, it was updated
to version 2.1 (changes in web services guidelines, revised data messages, partial
code lists and new metadata management). In January 2013 the specification has
evolved into an International Standard, ISO/IS 17369 [18].

The Initiative has also published a User Guide to cover major SDMX use cas-
es [19]. It is focused on maintaining and handling statistical data and its meta-
data. It shows how to manage reporting, storage, retrieval and extending.
As a natural side–effect, every organization, which follows the guide not only
solves its problems with handling the data, but is also able to interchange those
with any other company following the guide.

That corresponds with the idea of the RDF and Linked Data models. We have
a large amount of datasets we want to interchange or even interlink. Actually,
it comes out of needs of the founding organizations, which cooperate on the data
they gather. Each of the companies creates a report, which is then processed
or often even extended by one of the others. To make the chain of the data
processing more efficient, they agreed on the original technical specification. They
focused especially on the following issues detected in the statistical data exchange:

• Time consumption of the whole processing (data collection, transforma-
tions, exchange).

• Different approaches introduced by different organizations.

14

• Different approaches in how to utilize new technologies (like XML or web
services).

While discussing the standard, several subprojects were introduced. One
of them was to come up with a standardized vocabulary for statistical meta-
data (metadata common vocabulary). It was decided to use new technologies,
such as web services or XML, but many of the subprojects were based on existing
concepts, which were utilizing existing technologies. In the case of metadata com-
mon vocabulary, it was Eurostat’s Concept and Definitions Database (CODED)
and the OECD Glossary of Terms.

The important result of the process is SDMX Content-Oriented Guidelines.
They were separated from the technical specification since they help to introduce
some approaches to statisticians for their work. The technical specification was
focused on developing applications conforming with the SDMX model. One could
think that it is the technical specification which enabled us to make the transi-
tion between common statistical data and Linked Data, but it were the SDMX
Content–Oriented Guidelines. On top of other products, it introduces the follow-
ing:

• Cross–Domain Concepts.

• Cross–Domain Codelists.

• Statistical Subject–Matter Domains.

• Metadata Common Vocabulary.

• SDMX–ML for the Content-Oriented Guidelines (Concepts, Code Lists,
Category Scheme).

These are products that the Data Cube Vocabulary works with and builds
upon. More important features were added in the revision 2.0. The SDMX mod-
el was extended with reference metadata concept which tells us how to format
and structure metadata with respect to data quality frameworks. Corresponding
XML formats were introduced. Furthermore, a set of standard XML interfaces
was added to enable SDMX Registry manipulation. The registry was introduced
to enable data location catalogization and metadata cross–referencing over the In-
ternet. Also, structured metadata manipulation was introduced.

Since the SDMX Content–Oriented Guidelines are focused on SDMX use cas-
es, we will present one of them to the reader, since the same use case could
be applied in the derived Data Cube Vocabulary in the environment of Linked
Data.

In fact, the primary use case designed by the Initiative is called “web data
dissemination” and is tightly related to the Linked Data world. It comes with
a standardized process of retrieving data from the web periodically and keeping
them up–to–date. It resembles a bit a process of scraping data into a Linked
Data datastore, which was, perhaps, derived just from the web data dissemination
process.

The next SDMX fundamental connected to the Linked Data model is defining
concepts. That is very similar to the LD ontologies. A concept is a source of data
semantics. It:

15

• Provides a detailed definition of the component, which describes the struc-
ture of the data or metadata.

• Can allow data and metadata for different structures to be comparable
when concepts are reused.

The goal of SDMX is to reuse existing concepts introduced by any commu-
nity related to the given dataset, not to enforce its own proprietary format.
It is enforced by a rule which states that a new concept can be introduced only
if no existing concept suffices. The reason is that those concepts are already used
and implemented by a certain spectrum of applications, therefore it will lead
to a greater interoperability. Similar concepts are then grouped into schemes
which are versioned. When a concept changes, a new version of the whole scheme
needs to be introduced.

Also the list of three main components of SDMX concept goes well
with the Linked Data model

• Its identification, which must be unique within the scheme.

• Its name.

• Its description.

One is also able to include all those properties into a RDF–compliant resource
definition, furthermore, the first one is also mandatory and represented by a URI.

Hand in hand with concepts goes defining code lists. It is a way of determin-
ing possible values. In fact, those code lists are enumerations. They also have
the three basic components (identification, name and description) as concepts do.
Code lists could be organized into hierarchies to reflect a certain kind of relations
between members of the list. The hierarchy is meant to represent a children–
parent relationship, but no additional properties are specified. Let us mention
Nomenclature des Unites Territoriales Statistiques (NUTS) as an example of such
a hierarchy.

The data definition reflects exactly what we need. It consists of a collection
of components, which define what is being measured together with additional
metadata.

1.6 Data Cube Vocabulary

This model could be relatively easily decorated with syntactic sugar taken
from the RDF/LD world. This is exactly how the Data Cube Vocabulary was in-
troduced based on the model shown earlier. The most significant rule of the model
is that each dimension is needed to reference a concept to determine its semantic
meaning.

But this is only a definition of a data structure, a set of rules of how a specific
kind of information should be published. Based on that, a dataset is published
in a way to respect such a set of rules. Therefore, every dataset represents a col-
lection of data structures. Each data structure is consisted of a set of components.
One of them needs to be a measure, so–called primary measure. The primary

16

measure is marked with a special flag to be found easily to enable more efficient
processing.

Besides measures, there are dimensions. A data structure needs to have
at least one. Each dimension references its concept and has a unique identi-
fication. The combination of all the dimensions (except the measure) defines
a key, which allows it to point to the primary measure.

There are some kinds of specialized dimensions, which can be defined only
once for a data structure:

• Time (point in time, when the observation was made).

• Measure (but could be a collection).

There are some preferred formats, which tell us how to publish the time
of capturing the observation — a period, a duration or a timestamp. More details
about that could be found in the SDMX User Guide [19].

Moreover, a data structure can hold some metadata, e.g. the unit of the mea-
surement or a starting day of the week (in case of periodic time format).

As stated before, the SDMX 2.0 Information Model was used to build
up the RDF Data Cube Vocabulary, especially the Content–Oriented Guidelines
(COGs). The Data Cube vocabulary specification itself does not cover mechanics
of transforming other formats into the Data Cube Vocabulary, including the SD-
MX mostly used SDMX-ML. It presents the final product, a model which builds
upon the RDF and SDMX models.

In the section dedicated to the brief description of the RDF, we have discussed
that resources are identified by a unique identifier — a URI. We have also men-
tioned that it is used to express them in a compact form while utilizing prefixes
and namespaces. Before going further with the description of the Data Cube Vo-
cabulary, let us present a short list of significant prefixes (presented in the Table
1.1), since some of them could appear in the text.

Table 1.1: Prefixes used frequently with Data Cube Vocabulary
Prefix Namespace Brief description
qb http://purl.org/linked-data/cube# Data Cube vocabulary
skos http://www.w3.org/2004/02/skos/core# Knowledge Organization Systems dictionary
scovo http://purl.org/NET/scovo# Statistical Core Vocabulary
void http://rdfs.org/ns/void# Vocabulary of Interlinked Datasets
foaf http://xmlns.com/foaf/0.1/ People-related schemes
org http://www.w3.org/ns/org# Organizations dictionary
dcterms http://purl.org/dc/terms Dublin Core common properties dictionary
owl http://www.w3.org/2002/07/owl# Ontologies
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# RDF concepts
rdfs http://www.w3.org/2000/01/rdf-schema# RDF schema
eg http://example.org/ns# for examples only
pc http://purl.org/procurement/public-contracts# Public contracts

The Data Cube Vocabulary reuses the concept of a data structure as pre-
sented in the section dedicated to the SDMX description. Therefore, a data
cube is also consisted of a set of dimensions, attributes and measures — compo-
nents, speaking generally. As in the cases of OLAP cube and SDMX, dimensions
are used to uniquely identify observed measures (remember the formal mapping
marking mentioned in the section about RDBMS representation of OLAP cube).
The outline of Data Cube Vocabulary can bee seen in Figure 1.5.

17

http://purl.org/linked-data/cube#
http://www.w3.org/2004/02/skos/core#
http://purl.org/NET/scovo#
http://rdfs.org/ns/void#
http://xmlns.com/foaf/0.1/
http://www.w3.org/ns/org#
http://purl.org/dc/terms
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://example.org/ns#
http://purl.org/procurement/public-contracts#

Figure 1.5: Data Cube Vocabulary Outline [3]

As a result, we are perfectly able to describe the measurement process - e.g.,
place, time and other significant conditions, combined with the measured val-
ue itself. The whole information is supplemented with additional attributes,
which may make the measurement more accurate - units, multipliers but also
other, not so important, notes.

As we have discussed in the section dedicated to the SDMX model, each data
set should be published according to a specific data structure. Let us have a look
on how the data structures are modified by including Linked Data and let us try
to create a data structure definition according to our demography example.

A data structure definition is represented by qb:DataStructureDefinition

resource. It defines how the data set should be formed in order to comply with
Data Cube Vocabulary. It defines dimensions, attributes and measures, which
may appear in the data set. Alongside with the definition, optional and required
attributes are defined, as well as their ordering. This kind of information can
be extracted easily from a well–formed document and needs to not be explicitly
declared. But the explicit declaration enables you to:

• Verify the data set structure easily.

• Determine what dimensions are available for a given data set.

• Exchange structure definition.

Since the data structure defines attributes, measures and dimensions, oth-
er resources need to be involved. That is why qb:ComponentProperty

class was introduced. It has a few derived classes, qb:DimensionProperty,

18

qb:AttributeProperty and qb:MeasureProperty. Those carry multiple pieces
of information. Firstly, the concept, which is represented (e.g. time, place, nation,
currency, chemical substance, etc.) is followed by the type of the component (di-
mension, attribute, measure). Last but not least, it carries the information about
which code list (see section 1.5) is used to represent the value.

Since the goal of the SDMX model and Data Cube Vocabulary is to reuse
community–proposed taxonomies, qb:concept property was introduced to make
it possible to link qb:ComponentProperty with an existing concept. SKOS vo-
cabulary is used to represent such concepts. SKOS does not define any specific
concepts. It just defines a vocabulary for concept interlinking.

One could specify the range of the concept while defining a value
of the rdfs:range property. Also, the concepts may be used repeatedly in a da-
ta set in different roles. For example, time could be used as a dimension (in
the meaning that something was measured in the year 2012) as well as a mea-
sured value (something took 203 seconds).

It is of a great help, if the value is a part of an enumeration defined in a code
list. Due to the existence of the qb:codeList property, an automatic validation
and range checking can be performed. Moreover, tools can easily retrieve the com-
plete list of possible values. To enable range checking on non–coded values,
rdfs:range can be used.

Before getting back to our example, we need to point out a bridge between
the SDMX and Data Cube Vocabulary models. A community group has in-
troduced some RDF encodings of SDMX COGs. These are sdmx-concept,
sdmx-code, sdmx-dimension, sdmx-attribute and sdmx-measure. That
is a simple way of interlinking the Data Cube Vocabulary with the SDMX model.

Let us get back to the demography example. We will continue with the pre-
pared RDF document and transform it into a Data Cube Vocabulary model.
Since we know that each observation should conform to a specified data struc-
ture, we should at first define such a structure. To define a structure, we need
to define all components first. We will use slightly modified examples presented
in the Data Cube vocabulary definition since it fits our use case:

1. Time definition [dimension]:

eg:refPeriod a rdf:Property, qb:DimensionProperty ;

rdfs:label "reference period"@en ;

rdfs:subPropertyOf sdmx-dimension:refPeriod ;

rdfs:range interval:Interval ;

qb:concept sdmx-concept:refPeriod .

We define the eg:refPeriod and we state, that it is a rdf:Property

and Data Cube dimension. The rest of the statements are metadata,
which are not really necessary, textual description (label) and interlink-
ing with existing concepts (relations to sdmx-dimension). To enable range
cheking, rdfs:range is defined.

2. Place definiton [dimension]:

19

SELECT ?v WHERE {

?v a ?x .

?x rdfs:subPropertyOf sdmx-measure:obsValue .

}

Figure 1.6: A SPARQL query, which retrieves all observation values from
a dataset

eg:refArea a rdf:Property, qb:DimensionProperty ;

rdfs:label "reference area"@en ;

rdfs:subPropertyOf sdmx-dimension:refArea ;

rdfs:range admingeo:UnitaryAuthority ;

qb:concept sdmx-concept:refArea .

3. Population count definiton [measure]:

eg:finalPopulation a rdf:Property, qb:MeasureProperty ;

rdfs:label "the total number of citizens"@en ;

rdfs:subPropertyOf sdmx-measure:obsValue ;

rdfs:range xsd:decimal .

It is important to notice the link to the sdmx-measure:obsValue,
which is the special flag mentioned in the section dedicated to description
of SDMX values. With the power of SPARQL it is very easy to query
a triple store for all the values, which are the observation values to get all
values in a given graph. In fact, it should be sufficient to query all instances
of qb:MeasureProperty, the relation to sdmx-measure:obsValue just makes
the definition more precise. An example of such a SPARQL query can be seen
in Figure 1.6.

It is natural that while performing a measurement, you can retrieve multiple
values within a single observation. A good example of such an observation could
be weather information sampling. One can measure many physical values (e.g.
temperature, air pressure, humidity, . . .) in a specific timeframe on a specific
place. One can store those values separately, each in a standalone observation.
But since the observation has been made at the same moment and the dimen-
sions are exactly the same, it is only natural to add those value components
into the same observation. One will end up with a 5–dimensional observation
where 2 components are dimension properties (place and time) and 3 compo-
nents are measure properties (temperature, pressure, humidity). Without group-
ing, one would make 3 related observations, each with a single measure property
(3 dimensions overall).

Regardless of whether you group those observations into a single one or not,
one is able to select the related observations from the data cube dataset relatively
easily since they are all determined by exactly the same dimension properties.
That is called slicing. If you take a cube and select all the related observations
you make a slice. The slice is exactly the same as the 5–dimensional observation
mentioned before.

20

Based on the data structure, we can publish a specific dataset. The dataset
could be formalized as a collection of four data types:

• Observations — values, measured numbers.

• Organizational structure — dimensions of the measured value (could
be in the form of slices)

• Internal metadata — additional data description used to interpret observa-
tions (units, estimation, etc.).

• External metadata — interlink to an author, dataset categorization, etc.
(linked data principle).

An example of such a dataset can be seen in Figure 1.7.
In this chapter, we have introduced a long process of transforming a sim-

ple statement into a form, which is compliant with the Data Cube Vocabulary
standard. The original statement was processed while applying a set of a simple
transformation steps, at least from the point of view of a human brain. The goal
of this thesis is to make one of these steps as automatic as possible in order
to come up with a prototype of a system, which is able to transform an arbitrary
set of RDF data into a Data Cube Vocabulary form, if possible. Also, a user
input (a set of transformation rules) is needed to get such a task done.

Since Payola was designed to provide a platform for analyzing and vi-
sualizing Linked Data and its main goal is to lower the knowledge barrier,
which one needs to overcome in order to analyze Linked Data, we also want all
the newly–introduced components to fit into the concept of the whole platform
— to be reusable. We will also demonstrate the benefits of such transformations
while implementing a visualization, which will take advantage of the Data Cube
Vocabulary.

21

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix scovo: <http://purl.org/NET/scovo#> .

@prefix void: <http://rdfs.org/ns/void#> .

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix qb: <http://purl.org/linked-data/cube#> .

@prefix sdmx: <http://purl.org/linked-data/sdmx#> .

@prefix sdmx-concept: <http://purl.org/linked-data/sdmx/2009/concept#> .

@prefix sdmx-dimension: <http://purl.org/linked-data/sdmx/2009/dimension#> .

@prefix sdmx-attribute: <http://purl.org/linked-data/sdmx/2009/attribute#> .

@prefix sdmx-measure: <http://purl.org/linked-data/sdmx/2009/measure#> .

@prefix sdmx-metadata: <http://purl.org/linked-data/sdmx/2009/metadata#> .

@prefix sdmx-code: <http://purl.org/linked-data/sdmx/2009/code#> .

@prefix sdmx-subject: <http://purl.org/linked-data/sdmx/2009/subject#> .

@prefix eugeo: <http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#> .

@prefix czso-teritorries: <http://purl.org/cszo/teritorries#> .

@prefix czso-ds-dem-pop: <http://linked.opendata.cz/resource/czso.cz/dataset/demography/final-population#> .

@prefix czso-ds-dem-bir: <http://linked.opendata.cz/resource/czso.cz/dataset/demography/births#> .

@prefix czso-ds-dem-dea: <http://linked.opendata.cz/resource/czso.cz/dataset/demography/deaths#> .

@prefix czso-ds-dem-imm: <http://linked.opendata.cz/resource/czso.cz/dataset/demography/immigrants#> .

@prefix czso-ds-dem-emm: <http://linked.opendata.cz/resource/czso.cz/dataset/demography/emmigrants#> .

@prefix czso-ds-def: <http://linked.opendata.cz/resource/czso.cz/dataset-definitions#> .

czso-ds-dem-pop: a sdmx:DataSet ;

dcterms:subject <http://eulersharp.sourceforge.net/2003/03swap/countries#cz>, <http://dbpedia.org/resource/Czech_Republic> ;

dcterms:publisher <http://opendata.cz/me#> ;

sdmx:maintainer <http://linked.opendata.cz/resource/business-entity/00025593> ;

dcterms:date "2012-09-05"^^xsd:date ;

qb:structure czso-ds-def:DemographyFinalPopulationDefinition .

czso-ds-dem-bir: a sdmx:DataSet ;

dcterms:subject <http://eulersharp.sourceforge.net/2003/03swap/countries#cz>, <http://dbpedia.org/resource/Czech_Republic> ;

dcterms:publisher <http://opendata.cz/me#> ;

sdmx:maintainer <http://linked.opendata.cz/resource/business-entity/00025593> ;

dcterms:date "2012-09-05"^^xsd:date ;

qb:structure czso-ds-def:DemographyBirthsDefinition .

czso-ds-dem-dea: a sdmx:DataSet ;

dcterms:subject <http://eulersharp.sourceforge.net/2003/03swap/countries#cz>, <http://dbpedia.org/resource/Czech_Republic> ;

dcterms:publisher <http://opendata.cz/me#> ;

sdmx:maintainer <http://linked.opendata.cz/resource/business-entity/00025593> ;

dcterms:date "2012-09-05"^^xsd:date ;

qb:structure czso-ds-def:DemographyDeathsDefinition .

czso-ds-dem-imm: a sdmx:DataSet ;

dcterms:subject <http://eulersharp.sourceforge.net/2003/03swap/countries#cz>, <http://dbpedia.org/resource/Czech_Republic> ;

dcterms:publisher <http://opendata.cz/me#> ;

sdmx:maintainer <http://linked.opendata.cz/resource/business-entity/00025593> ;

dcterms:date "2012-09-05"^^xsd:date ;

qb:structure czso-ds-def:DemographyImmigrantsDefinition .

czso-ds-dem-emm: a sdmx:DataSet ;

dcterms:subject <http://eulersharp.sourceforge.net/2003/03swap/countries#cz>, <http://dbpedia.org/resource/Czech_Republic> ;

dcterms:publisher <http://opendata.cz/me#> ;

sdmx:maintainer <http://linked.opendata.cz/resource/business-entity/00025593> ;

dcterms:date "2012-09-05"^^xsd:date ;

qb:structure czso-ds-def:DemographyEmmigrantsDefinition .

<http://linked.opendata.cz/resource/czso.cz/dataset/demography/final-population/554782-2011> a qb:Observation ;

qb:dataSet <http://linked.opendata.cz/resource/czso.cz/dataset/demography/final-population#> ;

czso-ds-def:refArea <http://linked.opendata.cz/resource/region/554782> ;

czso-ds-def:refPeriod "2011"^^xsd:gYear ;

czso-ds-def:finalPopulation "1241664"^^xsd:nonNegativeInteger .

<http://linked.opendata.cz/resource/czso.cz/dataset/demography/births/554782-2011> a qb:Observation ;

qb:dataSet <http://linked.opendata.cz/resource/czso.cz/dataset/demography/births#> ;

czso-ds-def:refArea <http://linked.opendata.cz/resource/region/554782> ;

czso-ds-def:refPeriod "2011"^^xsd:gYear ;

czso-ds-def:births "13968"^^xsd:nonNegativeInteger .

Figure 1.7: An example of a DCV dataset by OpenData.cz

22

2. Related Work

In this chapter, we would like to get the reader familiar with the variety of tools,
which one can use to analyze and visualize Linked Data. We will naturally com-
pare these tools with Payola, since in the past we participated on the proposal
and development of this system. Since the goal of this thesis is to propose and im-
plement a system based on the Data Cube Vocabulary standard we will, at first,
focus on tools with the data cube support.

We will provide a well–arranged table in order to present a quick overview
of what related tools are available at the time of writing this thesis and what
are those tools capable of. Before we come up with the table let us mention,
which features are examined and why.

The main goal of this thesis is to deliver a prototype of a system, which will
map arbitrary RDF data to a form compliant with the Data cube Vocabulary.
Based on this fact, one of the criteria is an ability to convert arbitrary data in-
to a form of cubes. A difference lies in a format of input data of the mapping
process. There are tools working with relational (R), Linked Data (LD) or arbi-
trary format (A).

The main benefit of implementing such a feature into Payola is that it be-
comes a part of the ecosystem. First of all, we have the user make an analysis
over an arbitrary dataset (or, while using more than one data source even more
than one dataset) and then map it into the Data Cube Vocabulary standard.
That also means that one is able to analyze the data, interconnect them, fil-
ter them and enrich entities with more properties while utilizing the principles
of Linked Data before the mapping is made. Moreover, the statistical dataset
could be the result of an analysis. A new statistical dataset may originate
from performing such an analysis. On the other hand, many of the existing
tools provide a way of converting a rather static dataset. Let us imagine a sit-
uation when a user has a database of statistical facts. While using a tool, they
can convert the database into a set of triples according to the Data Cube Vo-
cabulary format. When it is done they are able to apply Linked Data principles
on such a dataset. It might be a bit cumbersome to make the same analysis
similar to the previous case after the mapping is done. As the two use cases are
dissimilar in process we will learn whether the existing tools make the user able
to analyze datasets or create new ones.

A part of the Payola ecosystem is also based on a fact that Payola is a web
application with a sharing option. A user is able to make an analysis (an ana-
lytical algorithm or an analytical pipeline) and share it with other users. This
applies also to analytical plugins, ontologies, etc. That is why we will differentiate
between the following application types — desktop (D) and web (W). We will
also want to know if it is possible to share within the application.

There are also tools, which make the user capable of developing a custom
vocabulary definition (DCV data structure definition) based on the metadata
of the input data. This feature will be also covered in the overview.

While Payola is a platform for analysing and visualising data, we will also focus
on the latter. First of all, it interests us whether an examined tool allows the user
to prepare a visualization. While keeping in mind the main principles of Visual

23

lnformation–Seeking Mantra [20] we will also discover which of these tools provide
faceted browsing.

What is also important to know is how a tool behaves while converting a rather
large dataset. We will not benchmark the tools but we will make a conclusion
based on information available in corresponding papers since the authors usually
make this very clear.

Table 2.1: Features of related tools

T
o
ol

C
u
b
e
su
p
p
or
t

C
u
b
e
m
ap

p
in
g

M
ap

p
in
g
in
p
u
t

A
n
al
y
si
n
g

C
re
at
e
d
at
as
et
s

A
p
p
li
ca
ti
on

ty
p
e

S
h
ar
in
g

C
u
st
om

vo
ca
b
u
la
ry

V
is
u
al
iz
e

F
ac
et
ed

b
ro
w
si
n
g

L
ar
ge

d
at
as
et
s

Payola Y Y LD Y Y W Y N Y N N
OLAP2DataCube Y Y R N N W N Y Y Y Y

Tabels Y Y A N Y W N Y Y Y Y
CubeViz Y N - N N W Y - Y Y Y

Geo Globe N - - N - W N - Y Y N
Visualbox N - - N - W Y - Y N Y

ViDaX N - - N - D N - Y Y Y
LodVis N - - Y - W N - Y Y Y

Rhizomer N - - N - W N - N Y N
Sgvizler N - - N - W Y - Y N N
Exhibit N - - N - W Y - Y Y *

Explorator N - - N - W N - Y Y Y
Tabulator N - - Y - W N - Y N Y

2.1 OLAP2DataCube

While comparing this tool we also rely on information presented by its authors
in [21]. The OLAP2DataCube tool is in fact a plugin for a well–known platform,
the OntoWiki, which serves as an ontological knowledge base enabling the user
to visualize and edit facts in the knowledge base in a specific way while utilizing
the principles of Linked Data.

The idea behind this tool is the closest to what we aim to achieve in this the-
sis. In spite of this, it does something a bit different. It is designed to con-
vert a whole relational database containing statistical data into a form of Data
Cube Vocabulary. This also presents one of the biggest dissimilarities between
the OLAP2DataCube and what we are about to propose — the source is not
in the RDF format.

The reason why this plugin was introduced was the need to convert a large
dataset of statistical Brazilian government data into the Linked Data standard.
While doing that the authors wanted to build up on existing metadata standards,

24

Figure 2.1: OLAP2DataCube mapping specification example (taken from [21])

such as SDMX and therefore on Data Cube Vocabulary. This could provide
the idea of what this tool does. It takes a dataset from a relational database
and produces another dataset compliant with the Data Cube Vocabulary.

It could be advantageous to borrow principles of the relational databases world
and have them fit perfectly into the world of Linked Data. Tables in the re-
lational database are organized into a shape of a star or a snowflake as de-
scribed in Section 1.4. Moreover, they are interconnected through defined foreign
keys, which can have the same semantics as edges in the directed RDF graph.
On the other hand, what is completely missing is any kind of structured metadata.
That is what the plugin needs to obtain from the user while the user is required
to give the data a precise meaning.

That is why the authors introduced some steps where the user is asked
to do the following:

• Select the fact table.

• Select dimensions tables.

• Enter additional metadata — units, description, etc. or point to a special
dimension table containing the metadata.

The whole process of dataset conversion from relational database into Data
Cube Vocabulary (the authors call it triplification) is then divided into the fol-
lowing steps:

• Metadata extraction and Table categorization (PKs and FKs analysis).
The tables are precategorized as dimension or fact tables based on the num-
ber and direction of FKs.

• Cube definition done by the user as described in the previous paragraph.

• Mapping. The relational database is converted into a Data Cube Vocabulary
compliant dataset while executing a set of SQL queries assembled based
on the previous steps.

25

As a matter of fact, this process has two different outcomes. A converted
dataset itself and a definition of dimensions. This varies a lot from what we
would like to achieve. We are about to propose a system, which will convert
a dataset in order to comply with an already existing datastructure definition.

The authors have proven the system qualities by converting a dataset of Brasil-
ian government data into more than 31M triples, which is quite a large dataset.
The faceted browsing capability fully depends on the OntoWiki platform features.

2.2 Tabels

Tabels [22] is quite an interesting tool, which enables the user to convert arbi-
trary data into the Data Cube Vocabulary compliant format. Moreover, it allows
the user to interconnect the data with its existing RDF representation, if avail-
able.

The most interesting feature of the tool is that it supports a large variety
of input types. The user can pass a URL of an arbitrary website or upload a file
in many supported formats. The application then generates an automated script,
which converts the source document from the input format into the RDF while
utilizing the Data Cube Vocabulary standard.

Let us imagine a case of converting a webpage. The tool parses the source
code of the webpage and finds tables contained in the body of the page. Those
are converted into a simple RDF dataset. The same is done not only in the case
of a webpage, but also in a case of other specific supported file formats. To achieve
that a specific algorithm is used to extract the data from the file into a RDF graph.
After this step is complete, the tool generates a DCV datastructure definition
with respect to the kind of data found in the input dataset. Also, an automatic
conversion script, which the user can later execute in order to triplificate the input
data, is generated.

The script is written in a custom DSL (an example in Figure 2.2) which,
with its structure, resembles the well–known transformation language XQuery.
Although the script makes its job, the user may need to edit the script to im-
prove the behaviour. That is one of the most problematic features of this tool.
The user needs to have a heavy programmatic background in order to be able
to use the advantages of all of the offered features. Even when binding the data
in the input dataset with entities in an existing RDF dataset, the user needs
to alter the generated script and specify, which field to bind and, of course, how.

On the other hand, the tool provides a unique form of making the user’s
own Data Cube Vocabulary dataset based on their statistical data in common
file formats such as CSV, XLS, PX, KML and formats published by rather large
institutions like Eurostat. The application is therefore able to visualize data
in charts as well as on map in case of geospatial data.

Moreover, the tool also supports RDF as an input format, which makes
it a competitor of the system we are about to propose. That is why we want-
ed to examine this tool a bit more in the manner of processing different RDF
datasets. Despite the fact that the tool should be able to process RDF datasets,
it produced an empty conversion script even on DCV datasets downloaded from
the tool itself. Therefore, the only form of converting the input file into the DCV
compliant dataset was to write the whole script manually, while specifying a set

26

Figure 2.2: Tabels DSL example (script taken from examples repository [22])

of SPARQL construct statements. That is, in fact, a default behaviour of any avail-
able SPARQL endpoint, which enables it to execute a SPARQL query on datasets.

2.3 CubeViz

The CubeViz [23] tool has been developed by the AKSW [24] group in the scope
of the LOD2, a large–scale project co–funded by European Commission that is fo-
cused on integrating and syndicating Linked Data with existing applications.

The motivation behind this tool was to bring a better user–experience in-
to a large–scale application, developed by this group, called the Open Data Portal
of European Commision. While utilizing the Data Cube Vocabulary standard,
they prepared a library of 5700 visualized statistical datasets.

As well as the OLAP2DataCube tool, the CubeViz is also based
on the OntoWiki [25] application. In fact, it adds another layer to the tech-
nology stack and provides a way of exploring and discovering statistical data
in a faceted browser. The GUI is made with common technologies like PHP,
HTML and JavaScript. They used the HighCharts [26] library in order to pro-
vide data visualization (an example can be seen in Figure 2.3).

While utilizing the principles of Linked Data and Data Cube Vocabulary
standard, the authors were able to come up with a really sophisticated faceted
browser, which makes the user capable of filtering data in detail based on the sta-
tistical semantics (DCV). The user is able to filter data based on each dimension,
or to use the proper term, to slice the cube as needed. That gives us a generic tool,
which compares any statistical data with the ability to learn more information
while taking advantage of the entities Linked Data interconnection.

At the time of writing this thesis, the tool was limited [27], [28] to basic
chart types such as line, bar and pie chart (for datasets with one dimension).
Those types were available also for the 2–dimensional datasets for which the polar

27

Figure 2.3: CubeViz visualization example

chart is offered as well. More than two dimensions were not supported at all.
In order to visualize multidimensional datasets one needs to slice it into a 2–or–
less–dimensional one. The tool also makes it able to publish dataset metadata.

An interesting feature of the faceted browser is that the user can generate
a permalink in order to obtain a reference to the current visualization state.
That makes it very easy for the user to share their visualization with the com-
munity.

2.4 Visualbox

Based on LODSPeaKr [29], a tool, which makes it easier to create Linked Data
Websites and to publish RDF datasets, a visualization tool named Visualbox [30]
has been introduced. The motivation behind this was very similiar to those behind
OLAP2DataCube, ViDaX or CubeViz. The author wanted to present a visual
tool, which would make it easy for the user to understand results of a data
analysis.

The main argument is e.g. that a line chart is much more expressive and much
easier to understand than a table of data or some even more complicated data
representation. Therefore, the author wanted to utilize existing visualization
techniques people are used to intercept.

As a result of this effort, he presented [31] a developer tool, which enables
an easier preparation of a visualization. One needs to know basic web develop-
ment technologies in order to be able to use the tool. Specifically, the HTML
language, the handlebars templating syntax and a concept of filters, which re-
sembles the concept used in the JavaScript MVC framework AngularJS [32]. One
is however required to posses the knowledge of the SPARQL in order to select
data and prepare them for the visualization. An example of a SPARQL query
and a visualization embed into a webpage can be seen in Figure 2.4.

On the other side, for those, who have this technological background the tool
is really easy to use. By using a simple snippet, the developer is able to embed

28

PREFIX conversion: <http://purl.org/twc/vocab/conversion/>

SELECT ?g sum(?triples) as ?estimated_triples

WHERE {

GRAPH ?g {

?g void:subset ?subdataset .

?subdataset conversion:num_triples ?triples .

}

}

GROUP BY ?g

{{models.logd.triples|GoogleVizColumnChart:"g,estimated_triples,width=1200"}}

Figure 2.4: Visualbox scripting examples

a chart visualization on the web.
The main benefit of this tool is that it brings a unified approach to visualising

tabular data. Furthermore, it comes up with an informal standard of processing
such data and visualising them. Based on the Google Charts visualization API,
it allows the developer to visualize their data in basic charts as well as in a map
if geospatial data are present. Although the features of the tool are mainly
shown while visualising statistical data, the tool has no support for Data Cube
Vocabulary.

2.5 GeoGlobe

The GeoGlobe mashup [33] is an example of a faceted browser for statistical data
related to all the countries in the world. As the SPARQL query, visualization
rules and more are hardcoded in this single–file demonstration, it serves us only
as a great example of what could be the result of a Data Cube Vocabulary dataset
visualization.

The tool fires a XHR to the server, which contains a SPARQL query. The query
is executed in order to obtain data from a remote SPARQL endpoint. In fact,
it uses some Data Cube Vocabulary constructs to filter the data. The data are sent
back to the client in a form of a JSON string. The mashup then uses the D3 [34]
visualization library in order to present the user with a D3 Geo visualization
of the obtained data.

Simple GUI of the faceted browser changes the contents of the exectued SPAR-
QL query. It decides how the original data cube is sliced to be visualized as the us-
er wanted.

29

Figure 2.5: GeoGlobe visualization example

2.6 ViDaX

ViDaX [35] is a desktop application written in the Java programming language.
Based on the features of the underlying visualization toolkit Prefuse [36], it man-
ages to visualize RDF data in many ways. The toolkit is perfectly capable of vi-
sualising statistical data, but the application does not take advantage of the Data
Cube Vocabulary standard.

Despite this, the application has some features related to statistical data.
The visualization type is selected automatically based on the semantics of the vi-
sualized data. The application analyzes and normalizes the data selected by the us-
er and extracts the types of the different properties. Those are consequently
mapped to some basic supertypes such as Time, Location, etc. Based on the map-
ping, the tool offers a visualization template to the user.

As a result, the authors implemented a tool capable of visualizing statistical
data with appropriate visualization type without the need of using the Data
Cube Vocabulary standard. On the other hand, if the tool followed the standard,
the results could be even more reliable.

2.7 Tabulator

Tabulator is a generic RDF browser and editor. The motivation behind this tool
is to provide a generic semantic browser with serendipitous re–use. The authors
want to provide a form of finding more relevant datasets while exploring or pub-

30

Figure 2.6: Tabulator browsing mode example

lishing another datasets.
The experimental version of the tool was, according to [37], developed com-

pletely as a client–side application for a web browser. Therefore, technologies like
JavaScript, AJAX, XML, RDF and SPARQL were utilized.

The tool offers two basic modes, exploration and analysis. In the exploration
mode, the user starts to explore the Semantic Web by entering a URI of a resource.
They are then presented with a tree view where each node represents a resource.
By clicking the node, the user expands a subtree to obtain more information.
The tool implicitly follows links that may contain more relevant nodes.

In order to switch to the analysis mode, the user selects fields to define a pat-
tern, which is then matched against the original graph. The tool executes a spe-
cific SPARQL query to find all occurrences of the selected pattern. The projection
of this kind of analysis could be visualized in many different views such as a table,
a timeline, a calendar and a map. The user can switch back to the exploration
mode by double–clicking on an instance in the analysis view.

The most important feature of this tool is an implementation of a query–
by–example principle. By highlighting the properties in a tree view, the user
unknowingly constructs a SPARQL query. As a result of such a process, the user
may create a SPARQL query, which selects e.g., latitude and longitude. Dataset
containing such properties (geospatial data) is then visualized on a map. Al-
though the tool is able to visualize statistical data, the Data Cube Vocabulary
standard is not used.

31

2.8 Explorator

The authors of the Explorator application had the same motivation as the au-
thors of the Tabulator — to come up with a tool that simplifies a dataset ex-
ploration. One can browse RDF datasets without a deep knowledge of the RDF
standard. In order to offer the exploratory search [38] feature, the authors also
utilized the query–by–example principle. Only simple so–called SPO SPARQL
queries (SELECT { ?s ?p ?o } WHERE { ?s ?p ?o }) are supported. Gener-
ally, the tool enables the user to specify a much simpler pattern than the Tabu-
lator application. On the other hand, it offers a faceted browser, which generates
those queries.

Unlike the Tabulator project, based on information presented in [39], the Ex-
plorator is not able to offer any advanced visualizations, such as a map or a chart.
To speed up the application, the authors integrated a local SESAME [40] repos-
itory where dereferenced URIs are stored.

2.9 Exhibit

The MIT Simile project [41] has spent a more than a decade developing and ex-
perimenting with software tools for Web–based data publishing. As a result
of the whole process a new tool, Exhibit, was introduced.

Exhibit is a JavaScript library, which produces embeddable widgets. A devel-
oper can easily embed a visualization of a RDF dataset in an arbitrary web page.
The idea behind the tool is very similar to the idea behind the Visualbox project.
After a quick examination, the use of the tool is no more complicated compared
to the Visualbox despite the fact that the manual suggests so. As an exam-
ple of a visualization, we can mention timeline, lenses and maps. Again, the tool
is able to visualize data, which could be considered statistical, but it lacks the sup-
port of the Data Cube Vocabulary standard.

The tool became very popular for its rather easy–to–use approach of pub-
lishing visualizations. The very first version of the software was introduced while
completely ignoring the problem of large datasets. Since it runs in a web browser,
it needs to have the visualized data fitted into the memory of the client comput-
er. That is why U.S. Library of Congress initially funded the project to make
its authors solve the scaling problem.

According to the information in [42] the last version of the software supports
1000 times more items in the dataset (100000 vs. 1000) and up to 20000 properties
in the faceted browser. The user is able to share views on the data after applying
filters of the faceted browser.

2.10 Sgvizler

The Sgvizler project is, as the name suggests, focused on data visualization.
It is a JavaScript library, which parses an HTML source and finds specific element
attributes. It fills matched elements with a data visualization based on the rules
specified in the element attributes.

32

The developer is required to specify a SPARQL query as one of those at-
tributes. The query is executed against a defined SPARQL endpoint. By setting
an attribute of the placeholder element, the user also specifies the type of visual-
ization, which should be applied on results of the SPARQL query execution.

As well as the aforementioned tools, Sgvizler is also capable of visualising
statistical data, but the Data Cube Vocabulary standard is not used in any way.
For instance, in the case of a map visualization, the library expects the query
to return a table with a location name in the first column and a measurement
value in the second one. It does not really take advantage of the semantical
properties in the dataset.

2.11 Rhizomer

Another tool focused on faceted browsing is Rhizomer. It is a web application
offering quite an interesting feature, which partially fits into the LDVM concept.
Based on data filtered by the faceted browser, the user is hinted about which
visualizers are available. Moreover, it indicates how many entities of the current
view will be displayed after switching to the more advanced browsing mode.

As usually, those advanced modes are a timeline, a map and a chart visualiza-
tion. As in the previous cases, the tool also works with datasets that could be clas-
sified as statistical, but it does not comply with the DCV standard. On the other
hand, it relies on semantics of the data and autodetects properties, which can
have a dimensional meaning, e.g. latitude and longitude for geospatial data.

2.12 LODStats

The authors of the LODStats project suggested that a major problem while work-
ing with data on the Web is to get a clear picture of the structure of a dataset.
They also introduced a term external coherence, which explaines how well the re-
sources of the examined dataset are connected with other resources, generally
speaking, how the dataset is interconnected with other datasets.

In order to solve the problem, they have introduced the LODStats project,
an extensible framework optimized to work on a rather large datasets. Its pur-
pose is to compute statistics on the given datasets. The tool is integrated with
the CKAN [43] dataset metadata registry (The Data Hub [44]) in order to cover
the most known and most used datasets, therefore to offer statistics for a great
part of the Data Web.

Since one can overview rather small datasets without any significant prob-
lem, the biggest advantage of the LODStats tool lies in the ability to work
fast with datasets containing millions of RDF triples. The authors took ad-
vantage of the presence of a SPARQL endpoint, which allows them to work with
the datasets dynamically, without the need to load all those millions of triples
into the memory.

The way of processing a dataset with a large amount of triples is an approach
which Payola should definitely adopt in the future.

The authors of the tool implemented statistics that were defined by VoID [45].
Which means that 32 different statistics are computed while utilizing the following

33

Figure 2.7: LodStats statistics example

approaches:

• Quality analysis — The problem of a dataset quality is tightly connected
to the form of the eventual data use. Therefore, a static analysis should give
us a general purpose measure (similar to Google’s Page Rank) to determine
the quality very briefly, e.g. based on the number of outgoing and incoming
edges.

• Coverage analysis — The authors present two subtypes of coverage - ver-
tical and horizontal. While the horizontal is introduced to determine
the size of the domain (how many resources are described), the vertical
deals with the scale of details (how deeply the description goes).

• Privacy analysis — While analyzing what classes and properties are used,
the authors of the project try to determine if a dataset might contain
any personal information.

• Link target identification — According to the authors, less than 10 % of en-
tities on the Data Web are interlinked. This technique should help the user
determine what dataset should the examined one be connected with.

Since the authors have focused on performance and declared to develop a tool
with a smaller memory footprint and better scalability, it would be really useful
to integrate such a tool with the Payola tool. The integration would give the Pay-
ola user the opportunity to get familiar with the chosen dataset before analyzing
it. In fact, as a circumstantial goal of this thesis, we will integrate the tool
(on HTTP communication basis) with the previously mentioned LODvisualiza-
tion application, the illustration of the concept introduced in [5]. Integrating

34

Payola with the LODStats analyzer should be also possible since the source code
of both tools is available on GitHub [46] [47], but that is not a part of this thesis.

The authors made the tool to examine a given dataset in two ways, to ex-
amine the schema-level characteristics and data–level characteristics. The for-
mer describes the characteristics of an entity in the context of the used schema
fragments (e.g. depth in a tree where hierarchical ontologies are used). The lat-
ter then describes the characteristics related directly to the values appearing
in the dataset (such as minimum, maximum values, average values, entities equal-
ity, etc.). An example of computed statistics can be seen in Figure 2.7.

One will learn very quickly that Payola and LODStats are focused each
on something completely different, but can complement each other very well.
The Payola tool should definitely learn from the statement–stream–based ap-
proach in order to handle larger datasets better. The authors of the tool also pub-
lished some statistics [48] gathered while integrating with the CKAN database,
which is a great source of information when trying to get the idea of how an av-
erage dataset could look like.

2.13 Yahoo Pipes, DERI pipes

There are many analytical tools for processing RDF data. We would like to com-
pare the Payola tool with the most important of them and provide the most
significant differences. When deciding how the Payola tool should work, we came
across an existing tool — Yahoo Pipes [49]. Providing an interactive editor, it al-
lows the user to construct his own analytical pipe, which, in fact, corresponds
with the term analyser (as defined in LDVM [5]). The only exception is that
the various offered data sources are providing plain XML data (they are not
in the RDF format). The tool does not offer the same level of analyzing data.
It would be very hard to simulate SPARQL with tools like XPath.

That is how we came up with the idea of analysis concept for Payola. We
offered a basic editor, which enables the user to build his own analysis (also called
an analytical pipeline).

On purpose we made the editor with a rather restrictive behavior in order
to avoid creating invalid or incomplete analyses. The user is able to insert
new plugins into an existing analysis (analytical pipeline) only by connecting
it to an output of another one. Since we are analyzing RDF data, the basic set
of plugins is strongly related to the capabilities of the SPARQL.

After a while, we came across the DERI Pipes project [50], which is also
inspired by the Yahoo Pipes project and is focused on processing RDF data.
The editor is distributed in a form of a Java JAR package, therefore, one should
be able to integrate it in another Java–based software rather easily.

Unlike Payola, it contains some basic text operators, which even enable the us-
er to construct the URL that is used as a parameter of the RDF data fetcher. This
is also the biggest difference between DERI Pipes and Payola: Payola lets you
work only with RDF data which is the reason why plugin parameters (with basic
data types string, boolean, integer and float) could not be computed in the pro-
cess and are statically given by the user when defining an analytical pipeline.

The DERI Pipes tool offers some of the operators provided also by Payola.
Some of them require the user to know the SPARQL in order to fill in the pa-

35

Figure 2.8: Deri Pipes example as shown in an instruction videocast [51]

rameters, e.g. the SELECT operator. One may also apply XSLT transformation
operators and use FOR loops. It also enables the user to use more datatypes
as an input of a pipe, for instance a classic HTML document.

2.14 Payola visualization model vs. LDVM

The primal reason of the Payola tool implementation was to prove some basic
concepts:

• Generic Linked Data analysis with a web application.

• Generic visualization of analysis results.

• All–in–one (read, share, analyze, visualize) Linked Data tool.

As the original intent of the tool was not to implement any specific existing
visualization model, the system has been created with its own internal visualiza-
tion pipeline architecture. Let us compare such an architecture with the model
proposed in [5]. For an easier orientation, let us name the Payola visualization
model as Payola model. The model proposed in [5] is named LDVM. We will
describe the Payola model while utilizing the terms used in [5]. Moreover, we will
also explain the differences between the LDVM and the Payola model.

The Payola system is able to visualize all kinds of RDF data. It retrieves
them from different types of RDF storages. Since it is not currently important,
suffice it to say that it just fetches arbitrary RDF raw data. It uses SPARQL
CONSTRUCT queries to retrieve those data from the given sources in order to work
with graphs.

After the dataset is fetched, it is processed by an analyzer. This could be a set
of any kind of transformations or operations. The most common case is running

36

a SPARQL query on the input graph. The only invariant is that the analyzer
retrieves a RDF graph representation and its output is also a RDF graph repre-
sentation (regardless of a concrete implementation). This is the phase described
in [5] as Data transformation. Naturally, the product of such an operation is a re-
sult of the analysis, which is called an Analytical abstraction in [5].

Since Payola is a web application, which delegates rendering the view
to the client–side of the application, the result of an analysis is transformed
into a simplified format for a visualizer. At first, the result, which is an RDF
format representation, is serialized to a custom JSON string that is transferred
to the client–side. The string is then deserialized to an internal visualizer repre-
sentation. In fact, this procedure is similar to one called visualization transfor-
mation in [5]. The product is the visual abstraction [5].

When the visualizer has all the data it needs, it maps the visualization ab-
straction to a visual representation, or, as described in [5], to a View. Actually,
the process of mapping in [5] described as Visual mapping transformation is just
traversing the retrieved data and interpreting them in a visual form (regardless
of the concrete form).

As one can see, the Payola model and the LDVM are very similar. In fact,
the Payola pipeline architecture corresponds with the proposed LDVM with some
minor exceptions. Some of them originate from the fact that the Payola model
is the result of an implementation based on concrete technologies. That is why
some additional constraints (especially the graph invariant) are added.

Another exceptions issue from the modularity of the Payola system. The sys-
tem was designed to provide a platform, which also means that the developer
is able to build his own visualization plugins. This suggests as well that while
serializing data into the JSON, the platform cannot perform any data optimiza-
tions in order to preserve all available information. Let us remind the reader
of a part of visualization transformation definition from [5]:

The goal of this transformation is to condense the data into a displayable size
and create a suitable data structure for particular visualizations.

This operation may be repeated on–the–fly in the visualization mapping trans-
formation phase by the concrete visualization plugin chosen by the application
user. In fact, one can say that the visualization transformation phase is dupli-
cated and the pipeline contains two stages of visual abstraction. One can see
an overview of the Payola visualization model in the fig. 2.9.

LOD visualization

To prove the concept of LDVM, one of the authors decided to come up with a tool
based on the concept. The LOD visualization tool [52] is oriented to perform well
on rather big datasets and provide their main characteristics in a reasonable
time. Its main purpose is to enable to orient quickly in a given dataset. It pro-
vides several visualization types that help the user to understand the structure
of the dataset.

That is also the most significant difference between the Payola tool and LOD
visualization. The basic Payola analyzer and visualizer implementation provides
deep details. It shows the whole dataset in the most possible detail. In fact,
the performance could become an issue on a rather larger dataset.

37

Figure 2.9: Payola visualization model

38

Figure 2.10: LodVis visualization of DBPedia class hierarchy

Those two tools are actually complementing each other. While working with
a dataset one could start with the LOD visualization tool to get the overall picture
of the dataset — the data coherence. It will also help to get the idea of what
is included in the dataset without making a specific query.

Payola comes in when one is familiar with the structure of the dataset. The us-
er is now able to perform specific queries, analayze the dataset and attempt
to make a visualization of the analysis result. Therefore, one of the minor tasks
of this thesis will be a simple integration of the LODvisualization tool into Payola.

The user of the LOD visualization tool is able to utilize the following visual-
izations:

• Class hierarchy.

• SKOS hierarchy.

• Property hierarchy.

• Properties connecting two classes.

• Instances with the highest indegree.

• Instances with the highest outdegree.

In a form of an interactive treemap or tree view, one can traverse through
the tree that expresses the hierarchy of RDF classes used in the given dataset.
One can also do the very same thing with properties. The user is also able to list
all of the properties that are somehow (in both directions) connecting any two
classes from the dataset. When given a class, the tool is able to quickly find
an instance of such a class, which is the most referenced instance. It is also able
to determine what instances have the largest amount of references — they have
the highest amount of outgoing edges.

39

The extended version of LDVM

Since the original paper was published on ISWC 2012 as a demo and a work–
in–progress, the model is being developed even while writing the text of this
thesis. We will operate with the latest available version [12] and look at the new
features of the proposed model. In fact, the latest version of the paper also covers
an evaluation of RDF data visualization tools including Payola.

The most significant change came with introducing the concept of a visual-
isator reusability. The authors talk about so–called GVDTs (Generic Visual-
ization Data Types). That forces us to think about what types of visualizators
we could need. That applies also to one of the core products of this thesis — visu-
alizators for multi–dimensional data. One will probably repeatedly use a limited
count of visualizers.

While Payola makes it possible to reuse a visualizer, it does not satisfy the re-
quirements set down in the proposal [12]. The idea goes a little bit further, be-
yond the borders of a single application. Being integrated with the LOD cloud,
it should be possible to query it with the characteristics of the data we would
like to visualize and get a list of visualizers available in the cloud and suitable
for the task.

By reusing this concept, the same could be applied to analyzers and so–called
transformers designed to transform the results of an analysis into another form
more suitable for a certain class of visualizers. That could include a process
of gathering more useful data (e.g. to visualize some data on a map it is needed
to enrich the dataset with a GPS locations).

The result is a dynamic pipeline architecture (LDVM Pipeline Instance), start-
ing with an arbitrary dataset passed to some analyzer followed by a chosen trans-
former ending up with visualising the result with one of the visualizers. As a result
of applying the concept, we would obtain something similar to dynamic registry
of analyzers, visualizers and transformers.

To make the Payola tool compliant with this concept, we would need to in-
troduce a module, which allows the user to describe the analyzer (user–made
analyses) and make the analyses more reusable. Currently, each analysis is tight-
ly connected to the data sources it utilizes and those cannot be easily switched.
That would, in fact, require massive changes in the analyses editor, which is not
very user–friendly when it comes to editing an existing analysis.

The concept of transformers is completely missing in Payola since, as stated
before, it is up to each visualizer to transform the passed data into a more suitable
form, even enrich them with necessary information.

All the visualizers currently implemented in the Payola stack are fully reusable.
But the tool lacks the feature to receive data from an external source and apply
a visualizer on them. Or, from another point of view, there is no way of invok-
ing the visualizer itself and specify where the data is and execute a visualization
process.

All those missing features have one thing in common. Payola is missing
an API, which would be able to tell, which analyzers, transformers and visualizers
are present in the current installation of the tool and provide a machine–readable
description of such components. Moreover, it is missing a mechanism that will al-
low the user to run those components separately out of the context of the Payola
tool.

40

The authors call the above a compatibility in [12] and introduce a formal-
ization that involves defining an input signature. In case of the basic Payola
components, with an exception of one visualizer, the signatures would be empty.
This would effectively express the fact that they are designed to visualize every
dataset. The only exception is the Chart visualization, which requires the data
to have a specific pattern so it would be sufficient to sign it just with a SPAR-
QL query. While speaking about analyses made by the user or more advanced
visualizers, ontologies would also come in.

2.15 Payola visualisator framework features

Since there are generally many publications focused on data visualization (with
no connection to Linked Data), we would like to compare the recommended ap-
proaches to the implementation of visualizers embedded in Payola.

Ben Shneiderman introduces in [20] a term Visual lnformation–Seeking Mantra.
He tries to define what a good visualizer should provide to satisfy its user. He
also puts those definitions into a context with some specific data formats, more
particularly with multi–dimensional data, which are related to the topic of Linked
Data, moreover the Data Cubes metaformat. We try to compare the specified list
of features with those provided by Payola. We also want to explain, why some
of those features are missing or provided in another form.

The author states that every visualizer should have the following features:

• Overview.

• Zoom.

• Filter.

• Details-on-demand.

• Relationship view.

• User actions history.

• Sub-collections extractions.

Let us go through the list of the features and comment them gradually. All
the visual plugins embedded within Payola provides the Overview. It is important
to state that it contains some limitations. Since Payola is a generic Linked Data
visualization tool, the output of practically all of the plugins is a graph (network).
It contains all of the vertices included in the visualized dataset. Those are placed
by a given algorithm on the screen, but are not clustered. The result is that
the user is (in most cases) able to see the whole dataset on his screen (Figure 2.11).
But the visualization could be a bit confusing since all the vertices are present.
The recommended adjustment would be to somehow simplify the initial view.

The visualized graph might be dense. Some of the used algorithms will create
a graph, which will have virtual clusters of vertices with a very little distance
between them. In fact, some of those vertices would be so close to one another that

41

Figure 2.11: Payola analysis result visualization

they would overlap. Therefore Payola enables the user to zoom in and regulate
the virtual distance between vertices.

When speaking about the Details–on–demand feature, we would like to dis-
tinguish between two different scenarios:

• Detailed information about a vertex.

• More detailed relationship information.

To make the view more synoptic many of the embedded plugins extract
the related literal vertices and collapse them into a vertex meta information.
E.g. the entity http://dbpedia.org/resource/Dhaka has some properties -
label, populationDensity, populationTotal. Those are actually relations.
Despite that fact, visualizers do not treat them that way. They store this informa-
tion in the memory and display it if and only if the user interacts with the related
vertex.

The most missing Payola feature is loading relationships on–demand. With
the connection to the problem mentioned in the overview section of this chapter
it would be more suitable, if the Payola system would enable the user to view
only significant vertices at first and only load details when needed. This is also
connected to the Sub–collections extractions feature, which is partially available
in the analytical Payola module.

Since Payola visualizes Linked Data, it naturally visualizes the relations be-
tween the entities. The only feature, which is rather missing in comparison
to the feature list from [20], is User actions history. There is only one com-
ponent of Payola that enables a user to walk through history of actions and that
is a SPARQL endpoint browser. It remembers the path that the user creates while
clicking through the dataset. The other visualizers however are not equipped
with such a feature.

42

http://dbpedia.org/resource/Dhaka

Payola does not fulfill the basic thought stated in [20], since there is no visu-
alization plugin that would enable the user to overview the examined data set via
a specialized visualization such as a treemap in [52]. What one gets after visual-
izing the results of an analysis is a detailed view, which is (in the case of graph
visualizations) however zoomed out to enable the user to see the whole dataset
at once. Despite that fact, it contains representation of all the nodes in the data
set and therefore breaks the visual information seeking mantra.

43

3. Payola

Quite some time ago, we decided to participate on a large–scale software project
focused on analyzing and visualising Linked Data. As a result of the project
a completely new tool, Payola, was introduced. Since we are proposing a system,
which could fit into the technological stack of Payola, in this chapter, we will get
the reader familiar with the tool. Even if we decide not to integrate the system
we are about to propose, the Payola tool remains a related work tool and worth
describing.

Payola is an HTML5 application oriented on a generic processing of Linked
Data. The main goal was to come up with an application that will eventually
reduce the software stack one needs to browse, analyze and visualize Linked Data.
We wanted the tool to compile some existing approaches and bring a compact
way for processing LD.

Upon a closer look at Section 2, it will become apparent that many of those
tools are immensely capable. However at a more detailed look one will see that
they might have to be chained in order to convert data into RDF, perform analysis
over an RDF graph and visualize those results.

Payola, on the other hand, is a framework developed with keeping in mind that
the user should have no need for another tool to process their data. However,
as a large–scale project actively being developed, it still lacks many features
and originally offers just a basic set of operations to enable a generic processing
of an arbitrary dataset.

To understand the architecture of a possibly proposed plugin, we need to walk
the reader through the architecture of the framework itself. But, to be able
to understand the architecture of the system it is required to familiarize oneself
with its features first.

3.1 Payola concepts

In order to fully understand the following text, let us explain some concepts
implemented in Payola:

• Data Source — data storage with a defined interface like a SPARQL end-
point. If we talk about a data source, we almost always have in mind
an RDF data source.

• Analysis — one can look at an analysis as an algorithm, which describes
transformation of data from a data source in order to provide results.
It is a way of specifying the data sources you want to fetch the data from,
filtering them, combining them, constraining them on properties, applying
ontologies, etc. Also known as an analytical pipeline or an analyser.

• Plugin — as Payola is a platform, it is reasonable to expect that some
of the features might get to be extended by plugins. In Payola, we distin-
guish between two different types of plugins — analytical plugins and visu-
alisation plugins. Whilst visualisation plugins are small components, which

44

take an RDF graph as an input, the analytical plugins are processing units,
which generally transform one input graph (or more) into another one.

That includes anything from a simple forwarding of the graph from in-
put to output, making union of two graphs, executing a SPARQL query
on the graph to constructing a completely different graph. The new graph
is created by applying in–memory operations defined by the source code
of the plugin.

• Data fetcher — a component, which serves to fetch data from a data source.
For example, while communicating with DBPedia [9], a data fetcher is need-
ed to connect to a SPARQL Endpoint, execute a SPARQL query against
it and return the results.

3.2 Payola features

Basically, we differentiate between two types of Payola users — anonymous
and registered. While an anonymous user has a very limited accessibility as they
can only view and explore publicly available resources a registered user is able
to take a full advantage of the application.

One of the basic features offers the possibility of creating your own instances
of a data source. Based on the available data fetcher types, the user is able
to create his own instance. An instance is a mean where one specifies parameters
of a concrete data fetcher. For example in the case of a SPARQL Endpoint data
fetcher, the user fills in the URL of the SPARQL Endpoint and optionally a URI
of the named graph containing the desired dataset. Having done this, the user
is able to share such an instance with the other users of Payola. Moreover, the user
can make it publicly available and share an URL of that instance, which allows
any Internet user to browse through the data source equally as its owner.

3.2.1 Exploration mode

On the application dashboard is the user presented with a list of accessible re-
sources, including data sources. After clicking on a data source the user is pre-
sented with a neighbourhood of an initial vertex. The choice of an initial vertex
depends on the implementation of the underlying data fetcher. Those bundled
with Payola choose a random entity from the data source and use it as a starting
point of a data source exploration.

The user is also provided with his own data repository, which is created
by Payola in the underlying installation of the Virtuoso [53] triplestore. Pay-
ola then eases the upload of an arbitrary dataset in the RDF/XML or TTL
format into the private repository. The repository may be used as a data source
in analyses.

In the exploration mode, one can choose from a couple of visualisation plugins.
By default, the results are displayed in a form of a triple table, but the user can
opt to more advanced modes — a graph visualisation and a chart visualisation
(which currently requires a special pattern to be present in the data). By using
those visualizers, the user is able to traverse from a node to a node, thus exploring
the whole dataset.

45

3.2.2 Analytical mode

In the analytical mode, the user is able to build a custom data analysis. As stated
before, an analysis could be presented as an algorithm, which decides how to pro-
cess data. Moreso, in the analysis, one is expected to specify where the data have
to be fetched from.

The analysis concept arises from ideas seen in projects like DERI Pipes [50],
meaning, that the user is needed to assemble a pipeline, which processes the input
data in a specified way. Therefore, to enable them to build an analysis, Payola
is bundled with several basic plugins. Generally, the list of plugins contains
as many plugins as needed in order to simulate basic SPARQL query behaviour.

• Typed — This plugin selects vertices of an RDF type that is filled in as a pa-
rameter called RDF Type URI from its input graph.

• Property Selection — the plugin takes property URIs separated by the new-
line character as a single parameter. It selects vertices connected to others
using one of the listed URIs.

• Filter — the plugin lets the user select vertices with an attribute of a par-
ticular value or property.

• Ontological Filter — this plugin filters the input data so that the result con-
tains only vertices and properties defined in an ontology specified by the giv-
en URI.

• SPARQL Query — a plugin for more advanced users who are capable of con-
structing a custom SPARQL query. Since plugins in the pipeline work solely
with graphs, the SPARQL query should be of a CONSTRUCT type.

• Union — a plugin with more than one input. As the name suggests, it takes
the input graphs and unifies them into a single one that is passed on-
to the output.

• Join — the behaviour of the Join plugin could be a bit tricky so it is advis-
ible to take a closer look at it in the application’s user guide [54]. The most
common case simulates the behaviour of the join statement as we know
it from the world of relational databases.

An example of an analysis can be seen in Figure 3.1. The goal of the analysis
is to query against DBPedia SPARQL Endpoint and retrieve cities with a num-
ber of population higher than the specified parameter. Those cities are then
connected to the country they belong to.

3.2.3 Visualisations

One would certainly like to visualize the results of an analysis. Therefore, Pay-
ola is bundled with some basic visualizer plugins. As described in Chapter 2,
the Payola basic visualization plugins support some features suggested in the Vi-
sualisation mantra [20].

46

Figure 3.1: An example of Payola analysis

The bundled plugins enable the user to visualize the results of an analysis
in a couple of different ways. The basic visualisation generates a triple table,
while more advanced variants offer a generic graph visualisation with a support
of OWL ontologies. The visualizer allows the user to customize the view based
on an ontology. The user can customize colours and other graphical features
of a rendered graph representation with respect to a URI type defined in an on-
tology.

3.2.4 Sharing

Since Payola was designed as a collaborative tool, it contains group management
and a generic mechanism for sharing. Many types of content such as a data source,
an analysis, a custom analytical plugin, an ontology customization for visualiza-
tion, all can be shared with other users of the Payola application installation.

Since the description of the tool is not the main goal of this thesis, we will
keep it brief and refer the reader to the Payola User’s guide [55] to learn more.

3.3 Payola architecture

The application is divided into several parts, packages, in fact. That can be seen
in Figure 3.2. Since this will be useful in an upcoming chapter about implemen-
tation, we will look at them more closely.

At first, there is the common package consisted of a code, which is shared
with all of the other parts of the application. Every other packages can access
it and use the declared code. Moreso, the classes and objects in this package
are automatically compiled into the JavaScript language and are available al-
so on the client–side. As an example of a class from the common package, we
can name the Graph or Vertex classes, which serve as object representations
of an RDF graph or a vertex (resource, entity). Moreover, there are traits for en-

47

tities that are consequentially independent on a concrete DAL implementation.
The domain package contains a code related to the business logic of the ap-

plication. It solves mostly basic operations for entities, such as add a user in-
to a group or grant a certain privilege to a user. It also contains components
related to the analytical plugins compiler. The compiler is executed when a user
submits their own analytical plugin via the user interface. It validates and com-
piles the code. If successful, the plugin is loaded into the application. Last,
but not least, the analysis evaluator is present in this package. Since this is cru-
cial, we will talk about the evaluator in more detail in this chapter.

The data package then wraps the entities from the previous packages
with a concrete implementation of DAL (Data Access Layer), which in our case
is the Squeryl ORM framework [56].

The model package builds up a wrapper, which encapsulates all the busi-
ness and data access logic. The goal of the code in this package is to decouple
any presentation layer from the application logic and data access. In fact, all
of the existing presentation layers (web application controllers and RPC remote
objects) are built on top of this package.

The web package contains all the code needed to build the web application
— a server side, a client–side and everything in between. It contains the code
of the MVC application as well as the code of the client–side subapplications.
It also contains the code of visualizer plugins and an analysis editor. One
of the most complex and interesting features from this package is the RPC mech-
anism.

The RPC mechanism was implemented in order to bridge the gap between
the client side and the server side application and to hide the XHR request
from the developer of the application and/or any extension. Since the appli-
cation heavily uses the Scala to JavaScript component, we invested some effort
into developing the RPC protocol. That enables a developer to transparently call
a method on the server from the client–side.

To learn more about the architecture or the implementation details, please
see the Payola Developer’s Guide [57].

48

Figure 3.2: Packages structure

49

3.4 Analysis evaluation

When we are now familiar with the parts of the application, we may explain a bit
more the processing and visualizing of an analytical pipeline. That is crucial
to know before an implementation of any extension.

When an analysis evaluation is requested, the analysis gets validated. We need
to make sure that the application meets some requirements, e.g. it has one output,
all inputs and outputs of all the plugins in the analysis are bound, etc. If it does,
the application tries to optimize it. Generally, executing a plugin means that
it is provided with an input graph, it performs some operations and returns
another graph. Since the project has integrated the Jena library [58], it is very
easy to query an in–memory representation of a graph and return the results.

Let us imagine a situation where a user wants to select a rather small range
of data from a data source. For instance, a list of cities from DBPedia, which in-
cludes those with a population count higher than 2000000 people. Without an op-
timization the evaluator would have selected all available entities from the DB-
Pedia database (which is not possible anyway due to their SPARQL endpoint
configuration). After transferring all of the data to the Payola server, it would
have executed a simple SPARQL typed&filter query in the memory. However,
this would be a far cry from an efficient solution. It would even bring many
technical difficulties, e.g. the whole DBPedia dataset would require the Payola
server to have a huge amount of RAM.

That is why an optimalization would take place in such a situation. The origi-
nal query which would fetch all the data from DBPedia would be altered to include
the constraints set by the presence of typed and filter plugins, so that the data
fetcher would have to fetch as less data as possible. The optimizer can also handle
unions or joins over the same data sources.

That gives us the idea of how the plugins work and how they can cooperate
in the context of an optimized analysis. The evaluation itself is transformed in-
to a problem, which is solved by the Scala Actors framework. For each plugin
in the optimized analysis, there is an instance of an actor. The actor waits until
all of the inputs of the corresponding plugin have been provided with the input
data from its predecessor. When inputs are bound with input data, the exec-
utive part of the plugin is performed. That could be anything from executing
a SPARQL query to finding the shortest path between two nodes in a speci-
fied graph. The only constraint is that the result of the plugin execution needs
to be also a graph.

As the last plugin (with no bound successor on its output) gets evaluated,
the analysis is done. The results are sent via RPC (while being serialized in-
to JSON) to the client–side and visualized by the basic visualisation – the triple
table. The user is then able to switch to another visualisation. The JSON repre-
sentation of the resulting graph is stored in the memory of the user’s web browser
and every visualizer, which is activated by the user accesses the in–memory rep-
resentation and renders whatever it needs into a given canvas.

That is a brief description of the evaluation process. It offers an insight
to what happens of in the background. Later, we will learn how this affects
the implementation of the proposed system.

50

3.5 Technological stack

In order to deliver an application, which is easy to use and does not require
the user to install it on a client machine, Payola is being developed as a web ap-
plication. Since it is assumed that Linked Data community is consisted of rather
advanced computer users with modern web browsers installed, the application
takes advantage of a variety of modern technologies, like HTML5 (specifically
canvas element) and CSS3.

In order to bring a basic level of compatibility with existing applications
from the LOD2 stack, it was decided that it has to run on the JVM platform.
The Scala programming language was chosen as a main implementation lan-
guage of the whole application. Since the team of the project wanted to avoid
a code repetition while keeping in mind the DRY programming paradigm, one
of the members introduced his own version of Scala to JavaScript compiler [59].
Therefore, even the client–side code of the application is written in the Scala pro-
gramming language and many parts of the code are shared between the client–side
and the server side.

There were many different advantages of choosing the Scala programming
language, for example the presence of the Scala Actors framework, which fits
into the analysis evaluation problem.

The application utilizes the following libraries and technologies:

• Play Framework 2.0 — a web application MVC framework completely writ-
ten in the Scala programming language.

• SBT — build tool for Scala projects.

• jQuery — JavaScript library used mainly for solving crossbrowser differ-
ences.

• Squeryl — Scala ORM framework used in DAL.

• Apache Jena — well known Java RDF library.

• Twitter Bootstrap — library for building an eye-catching user interface.

• Ace — JavaScript editor for programming languages.

• Flot — JavaScript chart library.

51

4. System proposal

Based on what we have presented in Chapter 2, we would like to propose a system,
which will enable the user to map arbitrary RDF dataset into a form compliant
with the Data Cube Vocabulary standard. Since this is quite an open definition,
we have to dive into the problem a little bit deeper to find out what is possible
and to propose a system that meets some real–world functional requirements.

We are about to propose a system that is in a specific way very similar
to the implementation of OLAP2DataCube (Section 2.1) or Tabels (Section 2.2).
On the other hand, both of them are focused on converting arbitrary statis-
tical non–RDF data into a form compliant with the Data Cube Vocabulary.
In Figure 4.1 we remind the reader how the transformation process is done
in the case of OLAP2DataCube. The important fact is that the data source
(RDBMS) already contains statistical data in an obvious form. Those are struc-
tured in tables connected via foreign keys and organized in a shape of a star
or a snowflake. The system is designed to take advantage of those foreign keys.
Based on them it categorizes tables (fact table, dimension tables) and hints the
user within the cube definition step. The user is required to define relations
semantics and select columns containing measures and dimensions. In the last
step, a mapping is done based on the information gathered in the previous steps.
Notice that a Data Cube Vocabulary definition is a part of the result.

Let us take a brief excursion back to the OLAP2DataCube described in Sec-
tion 2.1. The tool was not designed just to convert a non–RDF dataset in-
to the RDF standard with respect to the DCV metaformat. Executing the tool
on a dataset has one important side–effect: there is a new QB data structure
definition generated with bases on the structure of the input dataset. Therefore,
the tool does not map the dataset to match an existing data structure definition,
it creates a new one. That is definitely needed when one transforms a non–RDF
dataset into RDF. But once this is done, it is probable that a company or an or-
ganzation will produce the same kind of data periodically, therefore, they will
reuse the same data structure definition.

This is the reason why we will propose a system which fill focus on the task
of mapping the input dataset to match an existing data structure definition.
The authors of the LDVM [5] (see Section 2.14) propose to make standalone
visualizers. Each of them will be able to visualize a specific kind of datasets.
Its visualization abilities will be described with an input signature. A Data Cube

Figure 4.1: OLAP2DataCube mapping process

52

Figure 4.2: RDF to DataCube mapping in a generic system

data structure definition could be easily transformed into an example of such
a signature. That is another reason why we want the tool to map the input
dataset into an existing definition.

That means we would like to enable the user to take an existing RDF dataset
and give it a statistical meaning. The initial thought was to implement a set
of specialized mapping modules. We would have to implement a standalone
mapping module for each existing Data Cube Vocabulary. Since this is rather
impossible and surely inefficient, we made some experiments in order to ensure
that we would be able to come up with a generic mapping component. That
is why the process of the implemented system will be similar to what is shown
in Figure 4.2. The process seen in the diagram represents a high–level view
of the system. As we consider some additional criteria we will provide a more
detailed schema of the proposed system.

The biggest difference is that the original dataset can contain the statistical
data in a not–so–obvious form, as in the case of the relational DB. The user
may need to apply an analytical extraction (a term introduced in [5]) in order
to select the transformed data. We start with an arbitrary RDF document,
specify the process of mapping and how the system transforms the data in order
to comply with the Data Cube Vocabulary standard. We also require the user
to provide a Data Cube Vocabulary definition. The proposed system will map
the data to conform with such a definition.

We will now walk the reader through the decision process we have made
in order to propose the system. As stated before, the input is an arbitrary RDF
graph. To be able to map data from the graph to a form compliant with a Data
Cube Vocabulary, the system also needs for a vocabulary to be a part of the input.
As discovered in Section 1.6, the vocabulary is another RDF graph.

Based on that fact, we concur that the system needs to contain a mecha-
nism, which parses an arbitrary RDF graph and searches for DCV data structure
definitions. We need to extract those definitions and have the user select one.
The selected definition will be used in the upcoming steps to obtain mapping
specification from the user. What we need to obtain is presented in Figure 4.3.
On the right side the reader can see a generic visualization of a DCV data struc-
ture definition. A random graph is placed on the left side of the illustration.

53

Figure 4.3: Mapping example. Original dataset on the left, DCV data structure
definition on the right.

The dashed lines connect the resources from the original dataset with correspond-
ing DCV components. Naturally, the figure represents an example of a mapping.

4.1 Pattern selection

We are lacking some rules telling the system how to do the mapping. Without
such rules it is not possible to map the input graph properly. Let us imagine
an input graph, for instance the whole DBPedia database. That represents a huge
graph containing many facts and naturally, some of those are statistical data.
But they are not referenced in such a context. For example the resource Prague,
which is the capital city of the Czech Republic has properties populationTotal
and populationAsOf. Together it creates a slice of a cube. This says that the city
Prague (location dimension) had in a certain day (time dimension) a certain
amount of citizens (measure).

Although this cube is originally based on a very simple pattern (a shape
of a pair of cherries), it is not possible to map such a slice into a form com-
pliant with a data structure definition since the relation between the definition
and the dataset is not defined in the original data. For a well–defined data
structure definition and a well–defined dataset, it could be possible to propose
another system, which would try to detect the relation and create them automati-
cally. For instance, the location dimension, which is usually named reference area
could be connected to a generic type – a location. Also the resource Prague could

54

be connected with the location type. But that would mean introducing a system,
which would process a lot of data trying to match each supertype of the dimen-
sion with the properties of every resource in the graph. It would have to use
advanced heuristics and it would probably have to adopt some techniques from
the machine–learning field. A fully–automated system would also introduce a lot
of mistakes into the results since it would be a highly experimental approach.
Therefore, implementing such a system would not be the goal of this thesis.

On the other hand, we would like to propose a system, which will be flexi-
ble enough to allow the user to take an arbitrary Data Cube Vocabulary data
structure definition and map a reasonable part of this dataset into a compliant
form.

Unfortunately, the phrase reasonable part is not very scientific. It comes from
the data semantics and it is quite difficult to formalize. What the user should
map to a given data structure definition should have a corresponding semantics.
For instance, if we use the population size example, the user should probably not
map the statistics of government debts to that definition. Even though a country
is a location, the amount of the debt represents a number and was certainly
calculated on a specific day, therefore, the data match the ranges of the data
structure definition components, but it does not match the semantics.

On the other hand, we do not want to make the tool too restrictive
in order to achieve better user experience. For instance, we have mentioned
(Figure 1.7) a data structure for the population example that declares a di-
mension czso-ds-def:refArea. The range of that dimension is specified
as czso-reg:Municipality. With a restrictive approach, the tool would not
enable the user to map the data from the DBPedia database to match the data
structure definition, since the DBPedia dataset does not contain the czso-reg

namespace. Nonetheless, Prague is certainly a Czech municipality. Therefore,
the tool will not check the range while performing the mapping. If it had, the user
would need to involve other datasets so as to provide the range–related informa-
tion.

What is still missing is the way of informing the tool about how to map the da-
ta. Obtaining such a specification can be implemented in many different ways.
All of them are actually described in Chapter 2. Some of the tools used their
native language – the SPARQL. That is beneficial for a developer due to its rela-
tively easy implementation. But it is a bit cumbersome for a user who is required
to know the SPARQL language. On the other hand, from all the approaches
it restricts the possibilities of the system the least. It enables the user to specify
a wide range of mappings.

OLAP2DataCube took an advantage of the database structure (Section
2.1) — especially of relational feature — foreign keys. Since the RDF
format is based on expressing relations it would not present an issue.
But what the OLAP2DataCube tool did, was that it transformed already exist-
ing statistical data from the star–shaped database structure into another format.
But in the world of RDF data we would restrict the tool a lot if we relied only
on star–shaped schemas, hence, we need to work with a generic graph.

Tabels introduced a custom DSL that should have made the situation easier
for a user (Section 2.2). But as experienced while doing research for Chapter 2,
we did not find it very user–friendly. There certainly was a pre–generated script

55

Figure 4.4: Detail of the proposed system.

based on the uploaded file but in most cases the user had to modify the script
in order to achieve desired results. The user is required to learn a completely
new language, but will probably not find any other use of such a skill elsewhere.
Moreover, it is not an easy task to implement the custom DSL itself. Therefore,
we consider this approach to be the worst.

The last approach we have noted is the query–by–example introduced in Tabu-
lator (Section 2.7). It was used to let the user specify what type of data patterns
they are interested in. In the exploration mode the user was able to visually
specify the pattern and switch to the analytical mode. Such an approach enables
us to construct a SPARQL query and come closer to the very first (and the least
restrictive) approach. Nonetheless, it brings some new implementation issues.

The most obvious one is the transformation of the user’s selection into a SPAR-
QL query. We will also require the system to be capable of making a preview
of the original dataset in order to offer the user a visualization. The visualization
itself will interact with the user and provide them a way to specify the pattern.

Of course, the query–by–example does not need to be necessarily done vi-
sually. But obtaining an example with a non–visual approach leads to the in-
volvement of a DSL. Even a simple DSL, for instance a variation of CSV format,
is not as user–friendly as the visual approach. The visual approach also enables
us to force some restrictions to avoid dealing with an arbitrary user input. We will
obtain an input that is already valid.

After obtaining the pattern all the necessary information are gathered. We may
proceed to the mapping process itself. The mapping module will query the data
source for the data. It will use the pattern specified by the user. After fetching
the data, it will construct a new graph containing a set of DCV observations.
Based on what we have learnt so far, the system will appear in detail as shown
in Figure 4.4.

4.2 Mockups

We will show the reader our idea of a user interface of the proposed system.
We will refine some previously outlined features, especially the pattern selection.

In the first step (Figure 4.5), the user is required to specify the source of the da-

56

Figure 4.5: Step 1: data source and vocabulary specification

Figure 4.6: Step 2: DCV data structure selection

ta that will be transformed. They will probably supply a reference to a SPAR-
QL Endpoint, e.g. http://dbpedia.org/sparql. The user also has to refer-
ence a graph, which contains the desired Data Cube Vocabulary data struc-
ture definition. That is a URL as well, e.g. http://datacube.payola.cz/dsd/
population.ttl. The type of data source is needed in order to determine how
to fetch the data.

After proceeding to the next step (Figure 4.6), the user will be asked to choose
a DCV data structure definition. The definition list is prepared based on the vo-
cabulary provided in the previous step. The system has already parsed the sup-
plied graph and filtered all DCV data structure definitions. As an example, the us-
er will select the http://datacube.payola.cz/dsd#PopulationSizeDefinition
data structure definition.

The system now selects data for a preview. The retrieved dataset is visualized
and shown in a dialog (Figure 4.7). The user is required to specify a pattern.
The specification is done by clicking the vertices in the visualized graph (some
progress is shown in Figure 4.8).

After the pattern is specified the system has all the information it needs.
The user is able to start the mapping process. When done, the system offers
the results (RDF graph).

57

http://dbpedia.org/sparql
http://datacube.payola.cz/dsd/population.ttl
http://datacube.payola.cz/dsd/population.ttl
http://datacube.payola.cz/dsd#PopulationSizeDefinition

Figure 4.7: Step 3: Pattern selection

Figure 4.8: Step 3 (example): Pattern selection. The user has to provide an exam-
ple for mapping the dataset to a population vocabulary. In the last step, the user
is asked to select a vertex corresponding to the payola-dcv:populationSize

property. They have already selected the vertices representing Prague and obser-
vation date in order to satisfy the other components. The dbpedia-owl:City ver-
tex can be selected to refine the example, but it does not correspond with any com-
ponent. The user is about to select the vertex connected via the populationAsOf
relation. This represents an example of selecting a meaningful pattern, which
is a connected graph.

58

4.3 Benefits of integration into Payola

Since we have participated on the implementation of the Payola RDF tool, we will
now go through the pros and cons of integrating the proposed system into Payola.
We will also decide if we proceed with the integration.

In Chapter 3 we familiarized the reader briefly with the main concepts
of the Payola framework. The reader also knows how the analysis evaluation
is done. Therefore we may demonstrate the benefits arising from the integration
of the proposed system with the Payola framework.

The crucial feature of the Payola framework is the analysis subsystem. It en-
ables a user to combine multiple data sources and benefit from their combina-
tion. Based on that, a completely new set of facts can be computed. (This could
be optimized with SPARQL 1.1 and Federated queries [60].) Therefore, it could
be handy to introduce a Data Cube Vocabulary analytical plugin, which would
be able to convert the results of an analysis into the Data Cube Vocabulary for-
mat. Such a plugin could be connected directly to an output of a data fetcher
plugin — this will cover the basic implementation shown in Figure 4.4.

But we can go a bit further. Since it would be an analytical plugin, the user
would be able to use such a plugin in an arbitrary step of the analysis. Let us look
back again at the DBPedia and the population statistics example. A plugin rep-
resenting the proposed system would substitute multiple different plugins in order
to obtain the same data. In this case it is the Typed plugin and the Property

selection plugin. Those are covered based on the selected pattern. In addition,
the result would be compliant with the Data Cube Vocabulary standard.

Another asset is considered to be the ability to transform multiple data sources
in one step. The users might also further use the converted datasets — com-
bine them (join, union) and analyze those datasets in a unified format (specified
by the DCV).

The next benefit of the integration with the Payola analyzer is that the us-
er can assemble an algorithm, which is applicable multiple times. The main
advantage is that it reflects the current state of the data sources at the time
of the execution. That means that if the data source contents get updated,
the user just executes the analysis again and the mapping is instantly performed.
There is no need to specify anything for the second time. This is useful especially
in a case where the analysis is more complicated than the mapping process itself.

As stated before, the Payola application also offers the functionality of sharing.
This feature is usable at least in a case of sharing the results of an analysis.
The introduction of a Data Cube Vocabulary plugin does not change anything.
The user will still be able to share the analysis. If the analysis contains just
the data fetcher and the DCV plugins, the user shares only the mapping process.

Another aspect could be an effort needed to implement such a system. Since
the goal of software engineering is not to implement the same systems over and over
but to bring new systems, new features, speed up the computation process
and bring better user experience, it makes no sense not to take advantage of an al-
ready existing platform. The same approach could be seen in the case of reviewed
tools like Olap2DataCube (section 2.1) or CubeViz (section 2.3).

The Payola framework contains a variety of useful components. As an exam-
ple of such components we might name data fetchers, RDF processing modules

59

Figure 4.9: Mapping process integrated into the Payola analyzer.

or visualization API.
Since a part of the goal of this thesis is to implement an exemplary visu-

alization that takes advantage of the Data Cube Vocabulary format, it will be
very useful to stay focused on the task and implement just the visualizer, instead
of a lot of supporting subsystems that are already implemented elsewhere.

Moreover, we can take advantage of the existing visualization plugins. The ba-
sic one, triple table plugin, offers a quick overview of the data. The user will also
be able to download the results of the transformation into a static RDF file
for further use or just for simple backup purposes.

We show a possible way of the integration of the mapping process into the Pay-
ola analytical extraction in Figure 4.9. It shows the proposed system in a context
of an analytical pipeline. Such a pipeline is constructed by the user. The pro-
cess starts with querying data sources in order to offer the user an overview.
The amount of the sources depends on which sources are involved in the ana-
lytical pipeline. They are fully independent and spread throughout the whole
Internet. The obtained data are visualized to the user who is required to select
a pattern. Since we need to guide the user to select a proper one, we also need
them to specify a Data Cube Vocabulary. We will need to parse the Vocabulary,
extract the DCV datastructure definitions and offer the user a list of the avail-
able definitions. After they choose one, we will be able to determine how many
mapping references we need the pattern to contain. The number is, of course,
based on the amount of components within the datastructure definition. We will
construct a SPARQL query based on the selected pattern.

60

The rest of the process is a common analytical pipeline execution. The Data
Cube Vocabulary plugin can be interpreted as a standard plugin. Since the trans-
formation is done by executing a SPARQL query, it corresponds with an execu-
tion of a SPARQL query plugin. During the evaluation of the analytical pipeline
we reach a certain point of an undergoing mapping (thanks to a DCV plug-
in). On the output of this plugin, we will for certain find a dataset compliant
with the DCV standard. But the dataset need not be the result of the analytical
pipeline execution. It may be used as an input for the upcoming analytical steps.

Based on facts presented in the text above we find it reasonable to integrate
the proposed system into Payola.

4.4 Formalization

In this section, we are going to formalize the aforementioned process a bit more.
We need to specify the input of the system. We will also provide a definition
of the mapping process. A description of the output will be also presented.

4.4.1 Input and output

The input of the system will be an arbitrary RDF graph Ginput as shown in Fig-
ure 4.3. It will be mapped into a form compliant with the DCV standard. Since
the DCV also takes advantage of the RDF standard, the result will likewise
be a graph, let us say Goutput.

As stated before, the system will have another input — a data structure
definition. The Data Cube Vocabulary standards are built on top of the RDF
as described in the section 1.6. That means, that a data structure is also a graph.
We will denote the user–provided definition as D. But the user will probably
not supply just a definition. They will provide an arbitrary graph, which con-
tains the definition D (or even more definitions) as a subgraph (see Figure 4.10).
We will denote a graph supplied by the user as Gdef . The system has to ex-
tract a list of all the definitions (let us say D1, ..., Dd) from the graph Gdef .
As shown in Figure 4.6, the user will select one of the offered definitions, for in-
stance D = Dx(1 ≤ x ≤ d). The graph may contain also other data, not only
DCV definitions. It is true that:

D ⊆ Gdef

But having the graphs Ginput and D is not enough. We require the user
to specify also an example pattern (based on the query–by–example principle).
Since all the inputs and outputs are RDF graphs (Ginput, Gdef , D, Goutput), we can
take advantage of some existing approaches specialized on RDF transformation.
A technically simple but powerful way, is to utilize the SPARQL language. Based
on what we have introduced before, we are able to transform a user–selected pat-
tern into a form of a SPARQL query. We will talk about such a query as of a trans-
formation query and denote it Qt.

What we have now is an information about what is needed on the input
and what the result would be:

(Ginput, Gdef , Qt) → Goutput

61

Figure 4.10: A user will provide an arbitrary RDF graph Gdef , which may contain
more than one definition. The user will select only one to work with, D.

In fact, the user will make the selection of the definition D before the map-
ping starts. Therefore, we can extract the definition D from the generic graph
Gdef and use it as a part of the input. That is possible because the system does
not require an arbitrary RDF graph Gdef . It requires the DCV data structure
definition D. The rest is done in order to improve the user experience. Therefore:

(Ginput, Gdef , Qt) → (Ginput, D,Qt) → Goutput

What we still do not have is a description of the SPARQL query used to trans-
form the data in order to obtain the output graph Goutput. The form of the query
is dependent on the definition D. To be more accurate, the definition D contains
a set of components (C1, ..., Cn), which represent dimensions, measures and at-
tributes. Let us say, that the structure defines n components, m measures, d di-
mensions and a attributes. It is true that

n = m+ d+ a

For each n–tuple matched in Ginput, the output graph Goutput will contain
a node with n + 2 neighbours (+1 for qb:Observation and +1 for qb:dataSet
— first two statements in Figure 4.11). A concrete example of an observation
is shown in Figure 4.12.

The result will comply with the template shown in Figure 4.11. Oi de-
notes an identifier (URI) of the generated observation, S stands for an identifier
of the input dataset, TDim1

... TDimd
stands for the type of a corresponding di-

mensions from the given data structure definition, similarly for TMsr1 ... TMsrm

– measures and TAttr1 ... TAttra – attributes. Ri,1 ... Ri,n stands for resources
matched in the input graph Ginput, moreover, it means that the value of the di-
mension TDim1

is Ri,1, etc.

62

Oi a qb:Observation ;
qb:dataSet S ;
TDim1

Ri,1 ;
... ...

TDimd
Ri,k ;

TMsr1 Ri,l ;
... ...

TMsrm Ri,m ;
TAttr1 Ri,o ;
... ...

TAttra Ri,n .

Figure 4.11: Description of an output graph node (turtle notation)

<http://ex.com/observed#1234> a qb:Observation ;
qb:dataSet <http://dbpedia.org/sparql> ;
my-population:count ’10233222’ ;
my-population:location <http://dbpedia.org/page/Prague> ;
my-population:time ’2012-02-23’ .

Figure 4.12: A concrete instance of the pattern shown in Figure 4.11

4.4.2 Transformation query

The last unanswered question is how the query Qt should look like. It would cer-
tainly not be an arbitrary query. Let us analyze the situation and walk the reader
through the process of coming up with a set of constraints for the query.

It should be obvious that the query Qt will generate a new graph (in fact,
it will generate the graph Goutput) based on some specific rules (see Figure 4.3).
Therefore, it would be a CONSTRUCT query. It is also very clear what kind
of triples it will generate; the pattern is shown in Figure 4.11. The only thing
we need to sort out is retrieving the resources Ri,1, ...Ri,n.

Pattern

The process of resolving those resources depends on the input graph Ginput. We
will demonstrate it on the most simple case — a 2–dimensional data structure
definition. Such a definition requires us to specify how to select a 3–tuple of re-
sources from the graph (2 dimensions, 1 measure). We will present some ideas
while using the example of the population size.

The initial idea could be that we need a country, therefore, we map all
the countries to the refArea dimension, all instances of time to the refPeriod

dimension and all instances of numbers to the measure. But that is not suffi-
cient. At first, we need to make sure that all instances of numbers really express
an amount of citizens in a country. Moreover, we need to map the matching
amount of citizens to a corresponding country. Therefore, all the selected re-
sources need to be connected with the rest. We need to select a specific pattern,
which will contain the relation between the resources.

We will use an example from DBPedia, the Czech Republic resource. The re-
source itself references a location, therefore, it should be mapped to the refArea
dimension. It has got a populationTotal property, which should be mapped

63

Figure 4.13: Cherry–shaped pattern example.

Figure 4.14: The example from Figure 4.13 extended with a blank node.

to the measure. Last, but not least, it has the populationAsOf property, which
should be mapped to the refPeriod dimension.

That gives us a simple shape of a cherry–pair as shown in Figure 4.13. But
what if the resource is connected to a blank node with an edge of type popula-
tion and the blank node had two properties — size and time (see Figure 4.14)?
It is clear now that there could be in the least a long oriented path between
the participating vertices.

While keeping this fact in mind, we can accede to assembling a formula
of a generic pattern used for an extraction of the resources from the original
graph Ginput. But there is one piece of the puzzle still missing. While analyzing
all the possibilities, until now we assumed that the pattern starts (in the topologi-
cal order) with a resource, which represents one of the data structure components.
But that is not the case.

The most simple example is the observation pattern itself. The entities come
together but their connection is dependent on a completely different resource.
We reference such an entity as a reference vertex. Any pattern vertices corre-
sponding to a component from the data structure definition could also match
the reference vertex.

Later on, we have discovered that such a kind of patterns is not what the us-
er wants to select. We have applied too much restrictions. Such a pattern
represents only a subset of patterns the user may want to select. We have
learnt that the most concrete designation of such a pattern is the well–known
term: connected graph.

64

Figure 4.15: An example of mapping. Ginput is an input graph, D a data struc-
ture definition, Goutput an output graph. Lines between those graphs represent
mapping. For each component C1, ..., Cn we need the user to give an example
of a matching entity. That means one concrete instance Ri,1 for component C1.
Such a match is generally denoted as M1.

We left out the term oriented on purpose. While experimenting with the sys-
tem, we had discovered that for purposes of the pattern specification the orien-
tation is not necessary. We need all the referenced vertices to have a relation
between each other, but the orientation does not matter.

In order to get the reader familiar with some approaches we will utilize while
implementing the system, we are about to point out some facts.

We are about to build a pattern P . The pattern reflects an example set
by the user, an example that represents the user’s proceedings of the data map-
ping to the components from a data structure definition. The pattern will be
used later to construct the desired transformation query Qt. As shown in Fig-
ure 4.3, we require the user to find an equivalent for each component ({C1, ...Cn})
of the data structure definition D in the input graph Ginput. The equivalent
for C1 is in Figure 4.11 denoted as Ri,1. But there are many other equivalents
for the component in the input graph (Ri,1 is one of many instances). That is why
we need to generalize the symbols used for matching resources. Therefore, we in-
troduce a new set of symbols,M1, ...,Mn to express that such a resource is a vertex
matched in the mapping process, M1 for component C1, etc. To understand this
better, see Figure 4.15.

Please, keep in mind that we are about to construct a connected graph. There-
fore, we define an invariant, which says that in every step of the pattern construc-
tion the pattern P needs to be a connected graph.

As shown in Figure 4.7 and Figure 4.8, the system iterates over data structure
definition components and lets the user select an example of a vertex correspond-
ing to the current component.

For each component we are about to extend the constructed pattern. We will
take advantage of the notation from the graph theory, because the pattern is also

65

Figure 4.16: An example of pattern extension. We start with three selected
vertices – v1, v2, v3. Due to the invariant, we are able to extend the pattern only
with the vertices a, b, c, d. We choose the vertex d.

a graph (let us remember the connected graph invariant). Therefore, in the be-
ginning:

P = (V = ∅, E = ∅)

We will extend the pattern P for each component C1, ..., Cn of the definition
D. We need the pattern to contain all the vertices from {M1, ...,Mn}, because
they represent examples of each component. An example of a pattern extension
for a component is shown in Figure 4.16.

In order to maintain the invariant, we will enable the user to add only such
vertices that are somehow related with an arbitrary vertex already contained
in the pattern P (an element of set of vertices V — vertices a, b, c, d in Figure 4.16,
step 1). To make it more formal, let us remind the reader that an edge is a tuple
of vertices (e.g. (v1, v2)).

Therefore when adding an arbitrary vertex vi, we demand that there exists
an edge e for which it is true that:

e = ((vi, vx) or e = (vx, vi)) ∧vx ∈ V

Of course, this is not possible to apply in the first step since the graph P

is empty. In order to make the pattern more accurate or more restrictive to ob-
tain a more efficient transformation query, the user may want to reference some
other vertices and not only the component equivalents. Because of that observa-
tion, for each component from Ci ∈ {C1, ..., Cn} the pattern is extended by adding
a set of vertices Vi = {vi1 , ..., viu} and set of corresponding edges Ei:

∀Ci ∈ {C1, ..., Cn}: P = (V = V ∪ Vi, E = E ∪ Ei)

In Figure 4.16 we make two steps. In the first one, we can add vertices
a, b, c, d and we choose to add d. That means that we extend the set of vertices V

66

CONSTRUCT {
[] a <http://purl.org/linked-data/cube#Observation> ;

<http://purl.org/linked-data/cube#dataSet> S ;

C1 M1 ;

...

Ci Mi ;

...

Cn Mn .

} WHERE {
{

SELECT DISTINCT ?M1 ... ?Mn

{
v1 E1 v2
v2 E2 v3
...

vi−1 Ei−1 vi
vi Ei vi+1

...

vv−1 Ev−1 vv
}

}
}

Figure 4.17: Pattern of the transformation SPARQL query

with the set Vi = {v4 = d} and the set of edges E with the set Ei = {(v1, v4 = d)}.
Because of the invariant:

∃e ∈ Ei : e = (vin, vout) ∧ (vin ∈ V ∨ vout ∈ V)

and of course:

Mi ∈ Vi ⊆ V

— the example equivalent Mi for component Ci was also selected. One
of the added vertices from Vi = {vi1 , ..., viu} is equal to Mi (v3 is equal to M1

in Figure 4.16).
By applying the described approach, we get a connected graph, where:

{M1, ...,Mn} ⊂ V .

That means, that the pattern covers our needs. Now, we are about to present
a generic form of the pattern, which will come out from such an approach.
The pattern is shown in Figure 4.17. n of the vertices from the {v1, ..., vv}matches
vertices M1, ...,Mn.

67

4.5 Visualizers

In the beginning, we promised to implement an exemplary visualization. Un-
fortunately, the Data Cube Vocabulary standard covers a wide variety of data
domains, therefore it is hard to make a decision and choose, which visualization
should be offered.

Based on what we have seen while exploring tools described in Chapter 2
and keeping in mind the rules of a so–called visualisation mantra (Section 2.15),
we decided to implement two visualizers, TimeHeatmap and Universal DCV.

4.5.1 TimeHeatmap

The decision to implement this visualizer was based on the example of the pop-
ulation size data presented in Chapter 1. A table or a bar chart is definite-
ly a reliable way of presenting this kind of data. But while getting familiar
with Data Cube Vocabulary, we found out that it is very popular to visualize
geospatial data. A visualization on a map is easy to understand and is very
popular among the non–technical people. It helps to popularize Data Cube Vo-
cabulary. This is also the correct type of visualization for data journalists we have
mentioned before.

As the name suggests, this visualizer is able to handle datasets with two kinds
of dimensions. The first one will express the time of the measurement, the second
one will cover its location. It will support one measure that has to be a number.

We will place a heatmap layer over a standard map layer. The layer will
express the intensity of the measured value with respect to the others. The scale
will go from green to red where the latter represents the largest value measured.

4.5.2 Universal DCV

Implementing a domain–complete library of visualizers is a long–term project.
Despite the fact, we would like to offer a visualizer, which would enable the user
to visualize a large amount of datasets in a comfortable way. While experimenting
we have experienced on our own some discomfort in reading triple tables.

That is why we have decided to implement a visualizer, which takes advantage
of the idea behind faceted browsers. We presented some of those in Chapter 2.
Therefore we would like to implement a visualizer that will enable the user to slice
visualized datasets and prepare usual visualizations of the slices. A mockup
of such a visualizer is shown in Figure 4.18. It should contain a pie chart and a bar
chart visualization.

68

Figure 4.18: Data Cube Vocabulary universal visualizer. The user is presented
with a chart visualization and a set of controls. Those controls make them able
to change parameters of the visualization, especially slice the data.

69

5. Implementation

In this chapter we would like to walk the reader through the process of imple-
menting the proposed system. Naturally, one of the possibilities was to implement
a completely new system, which would comply with our requirements. But since
we participate on a development of a large RDF application – Payola; and based
on the facts from Section 4.3, we had decided to implement the proposed system
as a plugin for Payola. This will affect the implementation by fetching into spec-
ifications a few non–functional requirements.

Before we start, let us mention again some tools whose authors decided
to do the same — to integrate them into a larger project. We are talking specifi-
cally about OLAP2DataCube(Section 2.1) and CubeViz (Section 2.3), which are
based on the OntoWiki platform developed by the AKSW [24] group at the Uni-
versity of Leipzig [61].

We would now like to describe in detail the process of integration of our
proposed system with Payola. However at first, we need to provide a description
of Payola internals, thus presenting all the facts that we deem necessary, in order
to make the implementation fully understandable to the reader.

5.1 Integration of the proposed system

We will build up on the brief description from Chapter 3 and familiarize the reader
more with the architecture of Payola. We will especially focus on those parts
that were important to the integration of the proposed system.

Payola is a web application. It is built on top of a Scala MVC framework
(Play! 2.1 [62]). Payola takes advantage of some modern web technologies like
HTML5 (especially the canvas element). Therefore, we will implement the sys-
tem as a component of a web application. We could have implemented the tool
as a standalone application (e.g. a console or web a service) with a certain kind
of API, but that would have meant less than full advantage of some of the Payola
framework features. It would not allow us to profit from all the benefits described
in Section 4.3.

We are used to talk about Payola as either an application or a tool or a frame-
work. To distinguish those terms we consider Payola to be an application
(or a tool) from the user’s point of view whereas we are looking at it as a frame-
work from the developer’s side.

As described in Section 4.3, the most beneficial way of implementing the pro-
posed system into Payola is as an analytical plugin. In Chapter 3 we have got
the reader acquinted with the general principles of how the analyses and plugins
work. We have also provided some examples of already existing plugins. We are
about to widen the variety of plugins and introduce a new one.

5.2 Analytical plugins

Before moving forward, one needs to understand the technical details behind
the analytical plugins. We have already stated that such a plugin is a compu-

70

tation unit. Its task is to transform the input graph(s) into one output graph.
The transformation fully depends on the implementation of such a plugin. Each
plugin has always exactly one output but may have more than one input. It might
also have no input at all. For instance, all the data source plugins that fetch
data from some kind of storage, are generally considered to be graph genera-
tors. That is why they have no inputs. The Filter plugin filters the input graph
by applying a specified constraint. That is why it has one input (the constraint
is applied on a single graph). An example of a plugin with more than one in-
put is known as the Union plugin, which takes two graphs and combines them
together.

One can see that this is perfectly suitable for completing our task — we are
about to implement a system that will transform an input graph into a different
one.

In the case of the Filter plugin, we spoke about specifying a constraint.
The plugin has parameters that enable its reuse in multiple–case scenarios. For in-
stance, the Data Fetcher plugin has a parameter, which tells the plugin where
to fetch the data from. It would be to no avail had we implemented a plugin
enabling the user to fetch the data solely from DBPedia (the fact that it is one
of the largest data sources notwithstanding). The original implementation of Pay-
ola recognized 4 different types of plugin parameters — string, float, int

and boolean.
If the reader were to remember Chapter 4, they would recall that we deter-

mined that the system would need the following input:

• An arbitrary RDF graph.

• A graph containing the DCV data structure definition.

• A transformation pattern.

At this point we should decide, which of them would become parameters
and which of them inputs of the plugin. It may seem to be a good idea to supply
the graphs as inputs and the transformation pattern as a parameter. At least,
it is consistent with the idea that a graph is an input type of an analytical plu-
gin. But if we think about it just a bit longer we realize that once we have
the transformation SPARQL query, we do not need the data structure defini-
tion for processing anymore. We just need the plugin to receive the input data
and transform them while applying the transformation query.

We need from the data structure definition to only inform the user as to what
kind of data are they are working with. We require them to select a valid
and meaningful pattern. Therefore, we need for the plugin to have one in-
put (the arbitrary RDF dataset) and one parameter (the transformation pat-
tern). Under normal circumstances that would be sufficient, but we need to find
a way of storing the data structure definition metadata in order to present them
to the user if necessary.

When we started experimenting with the system, the idea of specifying
the transformation pattern was a little bit different. Initially, we thought
that it would be possible to specify a pattern for each DCV component sepa-
rately. After a while, we had learnt that it makes the task harder for the us-
er. It is more complicated to select a valid pattern, especially when the pattern

71

Figure 5.1: Payola entities schema containing a schema of the parameters sub-
system of the Payola framework. [57]

needs to be a connected graph for a conclusive expression of the relations between
matched entities.

In the process of experimenting, we came up with a new way of storing the da-
ta structure definition within an analytical plugin. We made each component
to be a parameter in order to enable the user to select a pattern for each of them.
Such an approach was an unexplored territory in the scope of the Payola frame-
work.

The architecture of the parameters subsystem can be deduced from a schema
in Figure 5.1. We distinguish between two different basic types of entities –
Plugin and PluginInstance. The first one represents a template for each plugin
type. An instance of the second one is created for each occurrence of the plugin
in an analytical pipeline. Whilst an instance of the Plugin class defines the num-
ber of parameters, an instance of the PluginInstance defines their values.

For instance, the Filter plugin implementation is coded in the class Filter.
That class is derived from the Plugin abstract class. There is a single record
in the database table plugins, which represents the information about the Fil-
ter plugin existence. Among others, it contains the FQDN of the Filter class.
This course will inform the analytical pipeline evaluator which class is responsi-
ble for handling a specific type of plugin. The class also defines that the Filter
plugin has 3 parameters. It even defines their data types. One single instance
of such a class is sufficient. On the other hand, we need multiple instances
of the PluginInstance class in order to handle parameters values. Each occur-
rence of the Filter plugin will be probably used with a completely different set
of parameters (while having the same count).

The aforementioned features enabled us to implement what is shown in Fig-

72

Figure 5.2: A user is able to create a new DCV plugin or to connect an existing
one.

Figure 5.3: To create a new one, the user is required to supply an URL of a graph
containing a chosen vocabulary.

ure 5.2. When adding a new connection into the analytical pipeline the user
is able to create a new DCV plugin or connect an existing one. To create a new
one, the user is required to supply an URL of a graph containing a chosen vocab-
ulary (see Figure 5.3). After processing the supplied graph, the user is required
to choose a desired definition as shown in Figure 5.4.

5.2.1 Data Cube Vocabulary analytical plugin

In the case of the implemented plugin, we take advantage of the fact
that the Plugin abstract class allows us to pass a variable count of parame-
ters to the plugin implementation. See Figure 5.5 to learn how the abstract class
header looks like. That is beneficial mostly due to every vocabulary being con-
sisted of a different count of components. But we need to create an instance
of the Plugin entity for each vocabulary in order to store the components meta-
data.

Until now, there was usually just one entity derived from the type Plugin

associated with a codebase of a plugin. The concept of plugins was not formerly
designed to have a variable count of parameters for each plugin instance.

That is why we have decided to acquire a new approach. By adding a plugin
into the analytical pipeline we will give the user an opportunity to create a new
instance of the Plugin class. This instance is based on a specified data structure
definition with an appropriate count of parameters. Each parameter represents
a component of the data structure definition. Moreover, a Plugin instance

is instantly created based on the formed Plugin template. A representation

73

Figure 5.4: A list of detected DCV definitions is shown to the user.

/**

* @param _name Name of the plugin.

* @param _inputCount Count of the plugin inputs.

* @param _parameters The plugin parameters.

* @param id ID of the plugin.

*/

abstract class Plugin(

protected var _name: String,

protected val _inputCount: Int,

protected val _parameters: immutable.Seq[Plugin#ParameterType],

override val id: String = IDGenerator.newId) ...

Figure 5.5: The header of the cz.payola.domain.entities.Plugin class.
It does not restrict the count of the passed parameters, it receives a generic
sequence.

74

of that instance is consequently rendered into the pipeline editor and the instance
itself bound into the analytical pipeline.

Let us present a short example and consider an exemplary data
structure definition example:population consisted of 3 components; let
us say dimensions example:refArea, example:populationAsOf and measure
example:populationCount. Such a data structure leads us to the creation
of a new plugin of type Data Cube Vocabulary named example:population.
It would have 3 parameters named in the same way the components are, all
of type string.

Such an implementation fits into the Payola architecture. Moreover, as a side–
effect, it brings an added value — based on the data structure definition, a plugin
is created. That means that there will be a specific plugin for each DCV data
structure definition. That plugin can be owned by the user who initiated its cre-
ation. From that point onward, the plugin will be available to the user and they
will not need the data structure definition anymore. What we got is a compo-
nent, which is reusable on the level of an analyzer. Since the user is able to share
their custom plugins with other Payola users, they are naturally able to share
the created Data Cube Vocabulary plugin, too.

An important fact is that regardless of the amount of the parameters, it is suf-
ficient to have a single codebase. We will implement a single Scala class that rep-
resents the behaviour of the plugin. That is because the Plugin abstract class
(Figure 5.5) from the Payola framework API does not constrain the count of pa-
rameters supplied to the class.

This however causes a different kind of a problem. As we have stated be-
fore, the approach of selecting a pattern per each component does not align well
with what we need. Only a few lines above we also discovered that all that
is needed is a single parameter — a transformation pattern. Therefore, we need
to modify a bit the behaviour of the analytical pipeline editor in order to ren-
der the Plugin instance in a non–generic way. We will also coerce the plugin
to always store the transformation query within the first parameter.

We realize that this approach is not quite clean nor nice but we need to accept
it for several reasons. The first being a simultaneous research based on the original
Payola done by various people where at the time of writing this thesis and exper-
imenting with the proposed system, some of the researchers would not be able
to overcome the major architectural change and thus not finish their project.
But such a change would have been required since it would have been necessary
to introduce a new parameter into the Plugin trait. It would demand something
general enough to carry metadata that are not determined for computational
purposes (and distributed together with the plugin throughout the whole sys-
tem). It would have also been extremely difficult to coordinate such a change
at that time, that is why it will be more suitable to refactor the implementation
in the future when the concept of the proposed system is proved.

The second reason is that the Payola data access layer is consisted of three
different sublayers (Figure 5.6) and due to the utilization of the Squeryl ORM
framework [56] it would be a very difficult task to try and modify the existing
database structure. In the list of the future changes of the Payola framework there
is a thought for a replacement of the underlying ORM framework and respectively
for a heavy refactoring of the data access layer.

75

Figure 5.6: The data access is divided into 3 layers. The first one, which is a part
of the common package defines entities and relations between them (not in the fig-
ure — see Figure 3.2). The second one is a part of the domain package. It defines
basic business logic. The last one has its own package — data. It binds the others
with a concrete DAL implementation, in this case with the Squeryl ORM. [57]

76

Figure 5.7: Payola plugin hierarchy. Notice the SparqlQuery class.

Therefore, we have decided to focus on the task and implement the feature
with as little modifications to the Payola framework as possible. In fact, the used
adjustment is kept in the socpe of the newly added features and does not blemish
the rest of the framework.

The implementation of the plugin is pretty straightforward since we are taking
advantage of the Payola framework. The Payola framework recognizes a special
subtype of a Plugin, a SparqlQuery. See Figure 5.7 to see the whole plugins’
hierarchy. There is a special reason for this as a SPARQL query could be executed
on a remote data source, e.g. a SPARQL endpoint. A series of SPARQL queries
could be optimized into a single, more efficient query. Without such a mechanism,
the framework would have to fetch all the data from the data source, transfer them
to the server where Payola is running on, store them in the memory (wrapped
with the Payola internal object representation) and pass it to a plugin. After that,
the graph would be processed inefficiently within the memory of the Payola server
with the JENA RDF toolkit consuming uselessly a lot of probably unnecessary
computation time.

Moreover, the Payola framework restricts the use of a non–SPARQL–query
in the analytical pipeline right after the data fetcher plugin. That is done in or-
der to avoid the aforementioned performance difficulties. There is one restric-
tion regarding our plugin if we were to derive it from the SparqlQuery class.
The complete behaviour of the plugin needs to be expressed by a single SPARQL
query. Fortunately, such a constraint does comply with what we need in or-
der to implement the proposed system. That also means that the existing Payola
query optimizer will engage and will make the plugin execution faster. Therefore,
the system will again benefit from the integration with the Payola framework.

The plugin will load the stored query from the database and pass it to the eval-
uation framework, which will handle the rest.

77

Figure 5.8: Making a preview for the Data Cube Vocabulary plugin. Only the plu-
gins in the dashed box are relevant. The rest of the analytical pipeline is not.

5.2.2 Obtaining the transformation pattern

The more complicated task still awaits us. We need to implement an interface,
which will obtain the transformation pattern from the user. The implementa-
tion builds up on what we have learnt of the pattern in Chapter 4. The best way
is to simulate the approach we used for getting the formal expression of the trans-
formation pattern (see Section 4.4.2).

We have already stated that we are about to implement a user interface, which
will allow the user to select the pattern based on the Tabulator’s (Section 2.7)
query–by–example principle. But to do that, we need to introduce a lot of new
features into the Payola framework.

Analysis preview

In order to enable the user to choose a pattern by an example, we need to of-
fer them a preview of the given dataset. The dataset serves as an input graph
of the mapping process. We have decided to make the proposed system a part
of the analytical pipeline, which brings on some interesting and unexpected com-
plications.

Mainly, the dataset may come from any point of the analytical pipeline ex-
ecution. In fact, we need the evaluation framework to give us a partial result.
We need the analyzer to process the pipeline and at some point, to take an input
of the inserted Data Cube Vocabulary Plugin instance and send it to us as a re-
sult. Moreover, only a part of the pipeline could be used to make a preview.
For instance, if we had an analysis based on extracting the data from several dif-
ferent data sources, let us say 4, those 4 fetching processes would run collaterally
regardless of the fact that the DCV plugin is a part of one of them. We will throw
away the results of the rest. It is shown in Figure 5.8.

It brings on not only a technical complication, it also rises a performance
question. The analytical pipeline may take a lot of time to be processed.

78

Figure 5.9: Making a preview for the Data Cube Vocabulary plugin. The high-
lighted plugins are required to be evaluated and become a part of a sub–pipeline
created in the background.

That is why we had to introduce a mechanism, which, in the right moment,
extracts a proper sub–pipeline. If the reader looks closer on Figure 3.1 they
learn that the pipeline is, in the reverse topological order, a tree (as known
from the graph theory). Every instance has one output. Every output is con-
nected to an input of a successor (if present, if not it is an output of the whole
pipeline). Therefore, it is easy to traverse the tree and select a subtree, which pre-
cedes the Data Cube Vocabulary plugin instance.

Such a tree is then used in the background without the knowledge of the user
to create a completely new analytical pipeline. When this step is complete, such
a pipeline can be executed by a standard pipeline evaluator. That is because
the result of the whole newly created pipeline is the dataset we make the preview
from. See an example of such a pipeline in Figure 5.9.

Nonetheless, what remains is a potential performance problem, which is par-
tially given by features provided by the Payola framework. The result of executing
an analytical pipeline could become eventually a very huge dataset. A dataset
so large that it may not fit into the memory of the user’s computer. That is a lim-
iting factor, since the visualisation is performed fully on the client–side. It makes
no difference whether it is a table or a graph rendered into the canvas HTML
element.

In order to solve this problem in the Payola framework, a larger milestone
is planned. The results need to be cached on the server hosting Payola. Such
an approach could be seen in the case of the project Explorator (section 2.8)
project, which implemented a local cache while utilizing the tool SESAME [40].
It is planned to introduce a new subtype of the Graph trait, PersistentGraph,
which would be cached on the Payola server in order to enable techniques like
pagination, exploration in the analytical mode, etc. Since this requires also a huge
modification to the existing visualizers but is not a goal of this thesis, we will
not realize this plan. However we will implement the preview in a way that will

79

Figure 5.10: Making a preview for the Data Cube Vocabulary plugin. An instance
of SparqlQuery plugin representing a LIMIT statement is added.

automatically take advantage of the modifications when they are done.
This still leaves us with the problem of a huge results dataset. Therefore,

we decided to make use of the LIMIT SPARQL query statement, which will enforce
the results to be reasonably large. This could be done by extending the previ-
ously extracted sub–pipeline with appending a plugin that will limit the number
of the results of the analytical pipeline evaluation (see Figure 5.10). Therefore,
we introduced another completely new plugin – Limit.

Unfortunately, that brings a completely new problem. By limiting the size
of the result, it is possible that some important vertices might get excluded from
the preview. And there is no way of telling, which vertices could be important
to the user. Therefore, we made the size of the preview to be a variable that could
be changed before making the preview and selecting the transformation pattern.
Of course, the better approach would be to insert the plugin into such an execution
point of the pipeline that it would work with data as small as possible. In other
words, we should use an analysis to compensate a large size of the original dataset,
if possible.

Obtaining the pattern

Hopefully, it is now fully understood what is required to be done before a preview
is made so we can move onto the description of the process of obtaining the pattern
from the user. Moreover, we will describe, which components have been modified
or newly implemented and why.

We take advantage of the previously presented approach (the query–by–
example), which we consider to be the best for the user. Firstly, the user is asked
to mark a vertex that represents the first component of the associated Data
Cube Vocabulary data structure definition. Since the only criteria we set is that
the pattern needs to be a connected graph at any time, it is sufficient to select
only a single vertex. Of course, the user might consider selecting a more com-
plicated pattern with keeping in mind the reference vertex concept mentioned
in the proposal (Chapter 4).

If we enable the user to extend the pattern not only by adding a vertex,
which has an incoming edge from one of the already added vertices, but also
by adding a vertex, which has an outgoing edge into one of the already added

80

vertices, the user is capable of building a complicated pattern in a way com-
patible with a natural thinking process. They will select the important vertex
accidentally while extending the pattern in order to select another. Therefore,
the only restriction applied in the vertex selection mode is that we prevent the us-
er from selecting a non–related vertex (more accurately a vertex, which would
break the connected graph invariant).

The selection process is made to be as simple as possible. We will describe
the user interface in the following text more deeply.

5.2.3 User interface

The basics of the user interface come out of the architecture of the Payola frame-
work. We need to make the plugin as simple as possible for the user. But we also
need to keep it aligned with the design of the Payola framework. In order to make
the reader understand the following text, we need to dive a bit into the architec-
ture of the Payola application.

As stated before, Payola is a web application. Its implementation is based
on the MVC design pattern. Nowadays, that is a usual approach to a web applica-
tion. However, it is not that usual to acquire a stance to the utilization of a design
pattern on the client–side. The Payola team has decided to use the MVP pattern
there and due to the presence of the Scala to JavaScript compiler, the client–side
is also being developed in the Scala programming language.

Therefore a majority of pages produced by the Payola application is delivered
in two different parts. The layout of a page and a placeholder for the client side
application is rendered on the server while utilizing the subsystems of the Play
Framework 2.x. The placeholder is then provided to a JavaScript application,
which is referenced from the rendered layout. The utilization of the s2js com-
piler and the custom RPC gateway (which translates JSON calls into method
invocation and serializes its results back to the client), prevents code duplication
and makes the development process more transparent.

Therefore, every client–side application can avoid becoming a confusing piece
of a spaghetti code and utilize the MVC pattern. A crucial feature is the RPC
mechanism that, hand in hand with the Scala to JavaScript compiler brings a way
of transparent client–server communication.

The analytical pipeline editor is one of those client–side MVC applications.
We are interested specifically in this one since we require for it to be able to work
with our newly introduced Data Cube Vocabulary analytical plugin.

Until now, the pipeline editor applied a unified approach for rendering the lay-
out of the pipeline. Every plugin was rendered while using a generic renderer,
which determined the appearance of the plugin based on its metadata. An exam-
ple of such a rendered pipeline could be seen in Figure 5.11. The reader can see
a rendered title, based on the name of the plugin and a parameter form. The form
is based on the type of the corresponding parameters. A string parameter gets
rendered as an input or a textarea based on an additional flag isMultiline,
which determines whether the value can be spread into multiple lines. An int

or float parameter is also rendered as an input field. A boolean parameter
is rendered as a checkbox.

Since we would like to provide the ability to select a pattern, we need to intro-

81

Figure 5.11: An example of an editable analysis (retrieving a list of cities with
a certain population size).

82

duce a completely new approach. To keep it generic, we start with the modifica-
tion of the parameters subsystem. We would like to introduce a new type of pa-
rameter, a pattern. Since the data access layer of Payola is very difficult to modi-
fy, we use a less obtrusive approach. A pattern results in a SPARQL query, which
is a string. Therefore, we add a flag to the string parameter, called isPattern,
which the system will take advantage of. It is based on the same unobtrusive
principle as the isMultiline flag.

Another problem comes out of the fact that a plugin has as many parameters
as the data structure definition has components and we utilize just the first one
to store the query. That also means that we need to render the representation
of the plugin in a slightly different way. At the time of implementing this thesis,
the same requirement came up from two other developers who integrate their tools
with Payola. Therefore, we introduced a mechanism, which solves the problem
of loading custom plugin renderers.

We introduce a dynamic loader of plugin instance renderers for an analy-
sis editor. Based on the plugin classname, it tries to load a custom override
of the default renderer. It enhances the extensibility of Payola. Until now, it was
not possible to override the visualization of a plugin instance within the editor.
The user was able to upload a custom analytical plugin, but they were not capable
of affecting its appearance in the editor.

With our loader, the user is able to define a custom renderer derived from one
of the ReadOnlyPluginInstanceView and EditablePluginInstanceView class-
es. The name of the override is precisely given. It is required
to match one of the following patterns: classnamePluginInstanceView,
classnameEditablePluginInstanceView. The implementation is required to be
declared within the cz.payola.web.client.views.entity.plugins.custom

package.
The editor was altered so that it does not create renderer instances itself. It us-

es a newly introduced PluginInstanceViewFactory. This factory is responsible
for creating a proper instance. Based on the given plugin classname it calls a de-
pendency manager. The manager is a part of the s2js compiler and it provides
a JavaScript implementation of the required class with all the necessary depen-
dencies. Therefore the factory calls the manager and requests an implementation
of a specified override. If it exists, the manager returns its implementation.
If it does not, it returns an empty string. After that, the factory tries to make
an instance of the override. If it succeeds, an instance of the override renderer
is created. If it fails, it returns an instance of a generic renderer.

Our custom implementation of the Data Cube Vocabulary plugin renderer
results in a form shown in Figure 5.12. First of all, it enables the user to select
the pattern. Clicking the Preview button starts the process of making a sub–
pipeline, evaluating it and rendering a preview. It also opens a pattern–selection
dialog, which we introduce later. The second provided field enables the user
to specify how large should the pattern–selection preview be. We have already
presented the reason behind this a few paragraphs above.

The last part of the UI is the pattern selection dialog. After the user clicks
on the button of the rendered plugin, the application extracts a sub–pipeline,
which is relevant to the preview. Such a pipeline is executed automatically. When
the pipeline evaluation is done, the application opens a new dialog, which gives

83

Figure 5.12: Data Cube Vocabulary plugin instance custom view.

the user the opportunity to select the transformation pattern. With every step,
the user is presented with a label and/or a URI of the matching DCV component
based on what is available. An example of a pattern selection is shown in Fig-
ure 5.13 (some additional details are provided in Section 4.4.2 and in figures 5.13
and 4.16). With a single click the user includes a vertex into the constructed
pattern. A double–click has it representing a currently processed component.
We also had to modify the visualization algorithm to avoid collapsing literal
vertices into an info table. We need the literals to remain visualized in order
to be selectable.

84

Figure 5.13: An example of a pattern selection.

5.3 Visualisers

As stated in Chapter 4, we have decided to implement two different visualization
plugins for Payola. All the presented visualizers are configurable by specifying
a Data Cube Vocabulary. As in the case of the rest of the system, the im-
plementation of the visualization plugins will be influenced by the architecture
and features of the Payola framework as well.

The feature that is lacking the most is a sophisticated faceted browsing. All
the presented plugins implement offered filters only on the client–side, therefore
all the data needs to be loaded within the memory of the user’s computer. As de-
scribed before, Payola needs a series of modifications in order to work effectively
with larger datasets, hence a client–side–only visualization is the only one cur-
rently making sense.

To make them able to work with the Data Cube vocabularies, we had to ap-
pend definitions of those vocabularies into the result of the mapping process.
The visualizer is then able to acquire them and take advantage of them, for in-
stance while building a user interface.

5.3.1 TimeHeatmap

In order to deliver the TimeHeatmap visualizer, we took advantage of an existing
map library. We chose to integrate a visualization based on Google Maps API.
We decided to do so for several reasons. One of them is an easy use of the API
and that it allows us to create an eye–catching visualization in a short time.
Google is known for its high–quality map imagery and due to its infrastructure
also for a reliable delivery. The API also offers the ability to create a heatmap
layer.

But the heatmap layer itself is not enough. In order to support the time
dimension, we had to come up with a way of visualizing time entries. The interface
is built with the following idea in mind. Let us imagine an example of population
size data (see Figure 5.1).

85

City Population size Year
Prague 1000000 2010
Prague 1100000 2011
Prague 1200000 2011
Liberec 100000 2010
Liberec 110000 2011
Liberec 112000 2012

Table 5.1: Population size example

It is more constructive to visualize such a dataset year–by–year. Grouped
values are not very attractive no matter what aggregation is applied. The most
useful approach is to enable the user to make a slice based on the year and visu-
alize a heatmap for the selected year.

Therefore, we wrap the map with a custom control. It contains a list of years
detected in the dataset. The user is able to select an arbitrary subset of years.
The visualizer shows and hides a corresponding layer based on what is selected.

In order to deliver an easy–to–use visualizer, we decided to ignore GPS data
and employ places names. With the integration of the Geocoder library of a col-
league of ours, Matej Snoha, the visualizer is now able to translate the names
of the places to GPS coordinates and place them into the map. The library
takes advantage of a locally installed application Gisgraphy. The installation
is maintained by the author of the used library.

We tried to make the visualization as easy as possible, therefore we decid-
ed to exert the URI resource itself. It usually contains the name of the place
in a way, which is convertible into a form recognized by the Gisgraphy application.
For instance, http://dbpedia.org/page/Brasserie Du Bocq can be converted
into Brasserie du Bocq very easily.

An example of such a visualisation will be presented in Chapter 6.

5.3.2 Universal Data Cube Vocabulary

We decided to offer a basic set of usual statistical visualisations. As stated
in Chapter 4, we achieve that by giving the user the ability to slice the dataset.
We need them to fix values of n− 1 dimensions in order to transform the dataset
into a two–dimensional one (1 dimension + 1 measure).

We took advantage of the chart library Flot [63] and prepared a visualizer,
which allows the user to create bar or pie charts. It comes out from the proposal
shown in Figure 4.18. By applying filters, the user slices the dataset.

It supports multiple dimensions, attributes and even measures. It is config-
urable by a Data Cube Vocabulary. We require the user to specify a dimension
that gets to be used on x–axis of a bar chart (or defined groups in a pie chart).
Based on filters, the visualizer groups DCV measures by the specified dimension
(aggregated by applying sum function). In case of a bar chart, multiple measures
are displayed as groups of columns.

We present an example of a visualization made by this plugin in Chapter 6.

86

Figure 5.14: LodVis integration link in a visualization of an analytical pipeline.

5.4 Payola improvements

In order to make the added value of the Payola application integrated with the pro-
posed system even higher, we decided to implement also some other improve-
ments. Mostly in order to enhance the user experience. Some of the changes had
also brought completely new features and possibilities. We will mention these
modifications briefly. Since they are of a rather technical character than scientif-
ic, we will make the corresponding analyses a part of the implementation reports
in order to make the text consistent for the reader.

5.4.1 LodVis integration

While writing the review of the tool LodVis (see Section 2.14), we have discov-
ered, that the provided features are very conducive though completely missing
in Payola. The application does not offer an overview of a dataset in order to help
discover the most used concepts.

Since we want the user to know their dataset before choosing the pattern
in the preview, we find this tool very interesting. It may help the user to lo-
cate the statistical subset of the data. Therefore, we discovered a simple way
of implementing a plain kind of interaction between Payola and LodVis.

Visualising Payola data sources in LodVis

The first part is introducing a way of allowing the user to visualize a dataset
in the scope of the LodVis application. That is done by utilizing a simple REST
API. We only create a link, which is inserted wherever we consider it relevant.
The user can click on the link in order to switch to LodVis, which handles the rest.
We utilize a simple URL pattern:

http://lodvisualization.appspot.com/?graphUri={graph-uri}&endpointUri={endpoint-uri}

The pattern has only two parameters. The first one, the graph-uri designates
the URI of the graph we want LodVis to visualise. This parameter is not manda-
tory. The second parameter, endpoint-uri is required and it tells the LodVis
application, where to fetch the data from. It is not possible to visualize results
of an analysis in LodVis. An example of this could be seen in Figure 5.14.

Visualising Payola data sources in LodVis

In cooperation with the LodVis team, we have also implemented a reverse mech-
anism — an API, which allows the user of the LodVis application to browse
a dataset in the scope of the Payola application. To make it easy for the Lod-
Vis team to integrate a link to the Payola application, we prepared an API very
similar to theirs. The URL pattern is very similar:

87

http://live.payola.cz/visualize?endpointUri={endpoint-uri}&graphUri={graph-uri}

In addition, we support referencing a list of graph URIs separated by a comma.
Since we wanted to avoid any difficulties arising from passing a URI in an URL,
we decided to have the parameters encoded with the Base64 algorithm.

The only problem was, that Payola was not able to visualize a dataset not
registered within its database. Therefore, when somebody accesses the URL,
the application takes the parameters and creates an anonymous analyzer pipeline.
The only plugin in the pipeline is a data source specified by the passed parameters.
By evaluating such a pipeline, the user is able to visualize the neighbourhood
of the vertex in the given dataset. The vertex is chosen by the SPARQL endpoint
backend, e.g. OpenLink Virutoso [53].

To allow an anonymous user to modify the pipeline, we also set a cookie
with an authorization token to their browser. When logged into Payola a user
having such a token can overtake the ownership of the pipeline and fully modify
it.

5.4.2 Secured endpoints

What was also lacking was the support for password–guarded SPARQL endpoints.
It is a natural matter, that a company would like to keep its statistics non–public,
but they might wish to analyze and visualize them. Therefore, we have decided
to introduce a support for secured endpoints.

Since every SPARQL endpoint may have different possible solutions, we have
introduced a support for only one specific engine. We chose the most used Open-
Link Virutoso [53]. It takes advantage of the Digest HTTP authentication as in-
troduced in the RFC 2617 [64]. Therefore, we had to include the Apache HTTP
commons library [65]. It was also necessary to introduce a new subtype of string
parameter — password. That was done as before (remember the isMultiline

or the isPattern flag) by adding a new flag.
One can see a visualization of the described plugin in Figure 5.15.

5.4.3 Analytical pipeline reuse

During the period of writing this thesis Payola has undertaken a user test. One
of the significant results of the test was that the users wished to modify the anal-
yses of others. At least, they would like to reference an analysis of another user
within their own. That also fits into analyzing statistical data — a company pro-
vides an analysis and presents its statistics while somebody else wishes to process
them and apply DCV. That is why two different features were added.

Clone and edit

The first one is less powerful. It enables the user to clone an analysis of another
user. After doing that, they get a newly created analysis owned by them. There-
fore, they are in a full control of the analysis and may modify it in any way they
want.

We were required to enhance the capabilities of the application in order to sup-
port a plugin instance cloning. We also had to clone bindings from an existing

88

Figure 5.15: One may simply include an instance of Virtuoso Secured SPARQL
Endpoint plugin instead of an instance of the generic SPARQL Endpoint plugin.

Figure 5.16: A clone button.

analytical pipeline and translate the identifiers of the cloned plugin instances
in order to keep the bindings working.

The most difficult part was, unfortunately, to find a way of storing the cloned
analysis, because the data access layer was not prepared for that. That is why
the persistence of the cloned analysis had to be split into several steps and may
take a bit longer than expected.

As a result the user is presented with a inconspicuous button as shown in Fig-
ure 5.16.

Inner analyses

Much powerful feature is enabling the user to reference an existing analysis in an-
other one. We introduced a fake analytical plugin with no implementation at all.
It allows the user to insert a reference to an existing analysis instead of specifying
a data source. As the inserted analysis generates a graph, it is hence a graph
generator and might be considered a data source.

Of course, we had to find a way of implementing such a feature without making
huge modifications of the evaluation framework. That is why the plugin has
no implementation at all. The trick is that before starting an analysis evaluation
we walk through the analysis and make some changes. The idea is very simple.
We examine the analysis and replace each instance of the fake plugin with all
the plugins from the referenced analysis. We call such a process an analysis
expansion.

89

Figure 5.17: A great example of an analysis that can benefit from inner analyses.
Notice the two rightmost branches of the analytical pipeline. They are the same.
By making an inner analysis we can at least convert the analysis into a pipeline
shown in Figure 5.18

.

Figure 5.18: An example of simplifying an analysis while utilizing inner analyses.
.

To make the feature even more sophisticated we made a special user interface
to enable them to parametrize an inner analysis. When inserting an analysis
into another, the user is able to click the names of parameters of plugin instances
in the inner analysis in order to promote them to analysis parameters.

That is why we took an advantage of what we have learnt while implementing
the core of this thesis and created a special plugin for each inner analysis. That
makes it possible for the plugin to have a variable parameters count. As a re-
sult the user creates a new shareable plugin. Such a plugin is also promoted
to be a new data source available at any time in the future.

Moreover, we gave the user a tool for a simple parametrization of an existing
analysis. They do not need to extend the analysis with other steps. They may
simply take advantage of the new feature to ease their work.

90

5.4.4 Data Source browser permalinks

Another minor change was done within the scope of the data source browser. We
introduced a mechanism, which enables the user to send a link to a current state
of the triple table data source browser. It detects the specified URI in the URL
and fetches an initial vertex based on that. The original behaviour delegates
the decision on an underlying engine of the queried data source. We simply add
a location hash to the URL that makes the permalink available in the address bar
of the user’s browser. The implementation was extended with an onload event
handler, which looks for the location hash and reacts to it.

5.4.5 Limit plugin

In order to bring a better performance and user experience to the DataCube plug-
in preview mechanism, we had to implement a completely new plugin. It is derived
from the ConstructQuery class in order to allow some optimalizations. We need-
ed to modify the DataFetcher plugin and introduce new optimalization phases
to increase the speed of the most common cases of dataset preview. For instance,
we merge a DataFetcher plugin followed by Typed and Filter, terminated with
the Limit plugin into a single SPARQL query. We have also implemented a phase
which optimizes the query in the case we combine a common SPARQL query with
the Limit plugin.

91

6. Experiments

In this chapter, we would like to demonstrate the abilities of the implemented
system. We experimented with a variety of datasets and will use some of them
to show how the system works. We will also present how the implemented visu-
alizers work on an example of real–world data.

6.1 DBPedia demography

We used the example of the DBPedia demography throughout the whole thesis.
Now it is time to show how the implemented system deals with such a dataset.
In order to start the conversion, we need to have a dataset (DBPedia) and a vo-
cabulary containing a data structure definition. We made a custom vocabulary
with a definition as shown in Figure 6.1.

DBPedia is based on a very large dataset (about 400 million
facts). Therefore we need to narrow down the dataset a lot in or-
der to make a meaningful data preview for the pattern selection.
We briefly examined the resource http://dbpedia.org/Prague and learnt
that it is of a type dbpedia-owl:City and has two important properties –
dbpedia-owl:populationTotal and dbpedia-owl:populationAsOf. Hence,
we prepared an analytical pipeline as shown in Figure 6.2.

With the preview size set to 20, the preview is shown as pictured in Figure 6.3.
In this case, the transformation pattern is very simple, as shown in Figure 6.4.
As a result, the system will apply the following query to transform the data
into the Data Cube Vocabulary standard:

CONSTRUCT {

[] a <http://purl.org/linked-data/cube#Observation> ;

<http://purl.org/linked-data/cube#dataSet> <http://live.payola.cz/analysis/...> ;

<http://datacube.payola.cz/dataset-definitions#location> ?v1 ;

<http://datacube.payola.cz/dataset-definitions#period> ?v3 ;

<http://datacube.payola.cz/dataset-definitions#populationSize> ?v4 .

} where {

{

SELECT DISTINCT ?v1 ?v3 ?v4 {

?v1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .

?v1 <http://dbpedia.org/ontology/populationAsOf> ?v3 .

?v1 <http://dbpedia.org/ontology/populationTotal> ?v4 .

}

}

}

The transformation is made in another step of the analytical pipeline.
The whole evaluation is done in seconds. An exact measurement would not
be conclusive since it depends on the actual load of the DBPedia. The endpoint
returns in about 150 entities no matter what we do because that is the final count
of entities with the required properties.

As a result, we get a dataset compliant with the Data Cube Vocabulary stan-
dard. We made a visualization of the dataset in both new visualizers. The results
are shown in Figure 6.5 and Figure 6.6.

In this experiment, we proved that the system is capable of converting an ar-
bitrary RDF dataset to a format compliant with the Data Cube Vocalbulary

92

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix qb: <http://purl.org/linked-data/cube#> .

@prefix sdmx: <http://purl.org/linked-data/sdmx#> .

@prefix sdmx-concept: <http://purl.org/linked-data/sdmx/2009/concept#> .

@prefix sdmx-dimension: <http://purl.org/linked-data/sdmx/2009/dimension#> .

@prefix sdmx-measure: <http://purl.org/linked-data/sdmx/2009/measure#> .

@prefix payola-dcv: <http://datacube.payola.cz/dataset-definitions#> .

payola-dcv:PopulationSizeDefinition a qb:DataStructureDefinition ;

rdfs:label "The definition of the DS of a dataset containing information about population size."@en ;

Dimensions

qb:component [

qb:dimension payola-dcv:location;

qb:order 1 ;

rdfs:label "The dimension representing populated location."

] ;

qb:component [

qb:dimension payola-dcv:period;

qb:order 2 ;

rdfs:label "The dimension representing the time of the measurement."

] ;

Measure

qb:component [

qb:measure payola-dcv:populationSize;

rdfs:label "The measure representing the total count of citizens."@en

] .

Attributes

payola-dcv:location a rdf:Property, qb:DimensionProperty ;

rdfs:label "reference location"@en ;

qb:concept sdmx-concept:refArea .

payola-dcv:period a rdf:Property, qb:DimensionProperty ;

rdfs:label "reference period"@en ;

qb:concept sdmx-concept:refPeriod .

payola-dcv:populationSize a rdf:Property, qb:MeasureProperty ;

rdfs:label "population at the end of the measured period"@en ;

rdfs:subPropertyOf sdmx-measure:obsValue ;

rdfs:range xsd:nonNegativeInteger ;

qb:concept sdmx-concept:statPop .

Figure 6.1: A custom Data Cube vocabulary containing a data structure defini-
tion for population size.

93

Figure 6.2: An analytical pipeline made to extract population data from the DB-
Pedia.

Figure 6.3: An analytical pipeline preview used for a pattern selection.

94

Figure 6.4: An example provided by the user in a form of a pattern.

Figure 6.5: Experiment 1: visualization with the TimeHeatmap plugin.

Figure 6.6: Experiment 1: visualization with the Universal DataCube plugin.

95

standard. We took advantage of the integration with the Payola application
in order to obtain a meaningful preview.

The system performed well on the dataset provided by the DBPedia endpoint,
but it is important to remember that the endpoint returned a small amount of re-
sources. The quality of the DBPedia datasets differs a lot and many statistical da-
ta are present in a non–user–friendly form, e.g. while using the property 2000pop.
It might be interesting to use Payola to discover all those properties and build
an analytical pipeline, which will unify all the approaches. When unified, the im-
plemented system can be used in order to transform the data into the form of DCV
and/or visualize those.

We have also shown that our visualizers work with real–life data. Based
on what we have experienced, we will propose some future user experience im-
provements in Chapter 7. One of those is optimizing a longer running geocoding
process, which transforms the city names into GPS coordinates.

6.2 COINS – UK government spending

Many organizations including governments produce a lot of statistical datasets fo-
cused on spendings. Therefore, we wanted to examine the behaviour of the system
when applied on such a dataset. We chose to use a dataset named COINS [66].
It is the database for UK Government expenditure.

The data.gov.uk project also made the dataset available in a form of Linked
Data. Moreover, it is published in a form compliant with Data Cube Vocabulary.
Therefore, it is not necessary to do a transformation of the dataset. But we tried
to use the implemented system to extract the data from the original dataset.

It is possible to use only the universal visualizer to visualize the data con-
tained in the dataset, but we would need to extract them manually. In fact, we
tried to do that and we had to construct a SPARQL query, which is shown in Fig-
ure 6.10. It allows us to extract the data for a specific data structure definition
and visualize them. The result of such a visualization is shown in Figure 6.7.

As stated before, we tried to use the implemented system in order to ob-
tain similar results. Since the original dataset is very large, we had to prepare
an analysis in order to get a reasonable preview for a pattern selection. The anal-
ysis contained only one step. We added a SPARQL query plugin. The query
is presented in Figure 6.11.

By executing such a query, we obtained all triples from the endpoint related
to the specified dataset. We made a strong constraint for bringing down the vol-
ume of returned entries. By using the qb:dataSet property, we automatically
filtered the observations.

Despite the narrowed dataset, the preview was still too large for the resulting
visualization to be well–arranged. A screenshot of the preview can be seen in Fig-
ure 6.8. After a while, we managed to select the desired pattern. The SPARQL
query shown in Figure 6.12 was constructed.

As one can see, the query differs from the one we were about to simulate.
We did not select available labels. On the other hand, we obtained a more general
query, which does not fix a value of the dataType dimension. That means that
the user is able to slice the results of such an analysis with the universal visualizer

96

data.gov.uk

Figure 6.7: Experiment 2: visualization of a custom query with the Universal
DataCube plugin.

Figure 6.8: Experiment 2: Selecting an exemplary pattern in a complex graph
might be difficult, yet possible.

97

Figure 6.9: Experiment 2: Visualization of the extracted dataset.

PREFIX coins-dimension: <http://finance.data.gov.uk/dsd/coins/dimension/>

PREFIX coins-measure: <http://finance.data.gov.uk/dsd/coins/measure/>

PREFIX source: <http://source.data.gov.uk/>

PREFIX coins-attribute: <http://finance.data.gov.uk/dsd/coins/attribute/>

PREFIX qb: <http://purl.org/linked-data/cube#>

CONSTRUCT

{ ?obs qb:dataSet ?ds .

?obs a qb:Observation .

?obs coins-dimension:dataType <http://finance.data.gov.uk/def/coins/data-type/outturn> .

?obs coins-measure:amount ?amount .

?obs coins-dimension:departmentLabel ?deptLongName .

?obs coins-attribute:budgetBoundaryLabel ?boundaryLabel .

?obs coins-attribute:resourceCapitalLabel ?rcLabel . }

WHERE

{ ?obs qb:dataSet ?ds .

?obs coins-dimension:departmentCode ?dept .

?obs coins-dimension:dataType <http://finance.data.gov.uk/def/coins/data-type/outturn> .

?obs coins-measure:amount ?amount .

?obs coins-attribute:budgetBoundary ?boundary .

?obs coins-attribute:resourceCapital ?rc

GRAPH <http://source.data.gov.uk/finance/coins/2010-06-14/schema>

{ ?boundary <http://www.w3.org/2000/01/rdf-schema#label> ?boundaryLabel .

?rc <http://www.w3.org/2000/01/rdf-schema#label> ?rcLabel .

?dept <http://www.w3.org/2000/01/rdf-schema#comment> ?deptLongName

}

}

Figure 6.10: A custom SPARQL query used to extract DCV from the COINS
dataset.

CONSTRUCT { ?o ?p ?x }

WHERE

{ ?o qb:dataSet <http://source.data.gov.uk/dataset/coins/fact-table-extract-2009-10> ;

?p ?x .

}

Figure 6.11: A custom SPARQL query used for narrowing the original dataset.

98

CONSTRUCT {

[] a <http://purl.org/linked-data/cube#Observation> ;

<http://purl.org/linked-data/cube#dataSet> <http://live.payola.cz/analysis/...> ;

<http://finance.data.gov.uk/dsd/coins/dimension/departmentCode> ?v2 ;

<http://finance.data.gov.uk/dsd/coins/dimension/dataType> ?v3 ;

<http://finance.data.gov.uk/dsd/coins/measure/amount> ?v4 .

} WHERE {

{

SELECT DISTINCT ?v2 ?v3 ?v4 {

?v1 <http://finance.data.gov.uk/dsd/coins/dimension/departmentCode> ?v2 .

?v1 <http://finance.data.gov.uk/dsd/coins/dimension/dataType> ?v3 .

?v1 <http://finance.data.gov.uk/dsd/coins/measure/amount> ?v4 .

}

}

}

Figure 6.12: A SPARQL query constructed based on the pattern selection dialog.

in order to obtain the same visualization as was in the case of the custom query.
Moreover, they are able to explore a much wider range of data.

Unfortunately, as the original dataset is way too large it was
not possible to fetch all the related data. The SPARQL endpoint
http://openuplabs.tso.co.uk/ is placed behind an Apache proxy, which mon-
itors the load of the underlying triplestore caused by executing a query. After
a while we hit the limit and had a restricted access to the endpoint for a few
minutes. Therefore, we had to limit the size of the extracted dataset. We man-
aged to get 10000 in the Payola’s default limit (30 seconds). Most of the time
was spent on obtaining all the data from the endpoint, the extraction to DCV
was completed in a matter of seconds. Also, the universal visualizer performed
well on a dataset that large. We made a screenshot of the visualization that was
prepared during this experiment. It can be seen in Figure 6.9.

We learnt that the system is capable of mapping larger datasets in a reason-
able time. But we also found out that the preview mechanism will need further
modifications in order to handle larger previews in a more user–friendly way.
Performance of the universal visualizer was acceptable for the user interface re-
sponded continuously without any lags. However, we hit the limit of the endpoint
and were not able to obtain the complete dataset.

The proper way of working with this dataset would require a fully faceted
browser connected directly to the original SPARQL endpoint. Since it contains
DCV data, the system would be able to automatically discover used vocabularies
and offer them to the user. On the other hand, the vocabularies are not published
separately, which made our task a bit harder. Implementing an advanced browser
with an exploration mode will definitely become the next step in the future work.
It would be very useful to give the user a tool, which will help them discover
vocabularies and related data in datasets, which are already compliant with Data
Cube Vocabulary.

The recommended way of solving the large dataset problem with the cur-
rent state of the system is to place the DCV plugin into a more suitable point.
The preceding operations should narrow the dataset more naturally by setting
semantical constraints.

In this experiment, we tried to use the implemented system in a slightly
different use case. We used it in order to extract a dataset which is already

99

http://openuplabs.tso.co.uk/

in a form of Data Cube Vocabulary. Despite the fact that the tool was not
originally meant for this, we managed to fulfill our goal. On the other hand,
we discovered some user experience flaws, which will be eliminated in the future
development of the whole Payola framework.

6.3 Czech public contracts

As we are able to access the data related to public contracts realized in the Czech
Republic, we want to demonstrate on them the possibilities of the implemented
system. The dataset was created by scraping website produced by an online
system focused on publishing details about public contracts. Therefore, the form
of the data is natural and does not come out from a statistical source.

At first, we wanted to extract the data by using a very simple analysis contain-
ing a sole plugin, an ontological filter. Unfortunately, the length of the generated
SPARQL query exceeds the limit of the queried SPARQL endpoint. We extracted
the generated query and tried to shorten it by applying prefixes and removing
whitespace characters. However, after overcoming this challenge, we hit another
limit — the underlying Virtuoso endpoint refused to run the query due to a large
estimated time of transaction execution.

That is why we had to construct a custom query in order to obtain the re-
quired data for making a preview and a transformation. We designed the query
to gather as much data as possible while keeping the important statistical facts
in all of the returned entries. The query is shown in Figure 6.13. It returns
the details of about 40000 public contracts.

We also had to construct a custom Data Cube vocabulary with a data struc-
ture definition. We present the vocabulary in Figure 6.14.

After we had prepared all the prerequisities, we proceeded with transforming
the original dataset to the form compliant with Data Cube Vocabulary. Based
on the data structure definition, we created a corresponding plugin, which was
then inserted into an analysis. The preview contained one of the selected entries,
therefore it was an easy task to select a mapping pattern. One step of the pat-
tern selection process is pictured in Figure 6.15. As a result, the system gave
us the SPARQL query show in Figure 6.16.

The conversion of all the resources in the source lasted around 300 seconds.
We have noticed that it took about 200 seconds to make the mapping itself,
the rest was spent on fetching the data.

We tried to visualize the dataset in both implemented Data Cube visualizers.
At first, we experimented with the TimeHeatmap visualizer. While working with
the large dataset, we experienced some user discomfort. The UI was unrespon-
sive for a short period of time (that is caused by the single–threaded JavaScript
processing concept and would require involving Web Workers to avoid such be-
haviour). In order to geocode the locations from the result, we had to increase
the maximum size of a POST request allowed in the application. We present
samples of created visualizations in Figure 6.17 and Figure 6.18.

The geocoding process was done in an acceptable time, but the size
of the dataset caused that the Google Maps visualization had troubles with zoom-
ing. It had to recompute all the 40000 of locations with every zoom.

100

PREFIX contract: <http://purl.org/procurement/public-contracts#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dcterms: <http://purl.org/dc/terms/>

prefix vcard: <http://www.w3.org/2006/vcard/ns#>

prefix gr: <http://purl.org/goodrelations/v1#>

prefix ns4: <http://purl.org/procurement/public-contracts-eu#>

CONSTRUCT

{

?v1 a contract:Contract .

?v1 contract:location ?vloc .

?vloc rdfs:label ?locLabel .

?vloc ns4:hasParentRegion ?reg .

?v1 contract:startDate ?v17 .

?v1 contract:estimatedPrice ?ep .

?ep gr:hasCurrencyValue ?epv.

}

WHERE

{

?v1 a contract:Contract .

?v1 contract:location ?vloc .

?vloc rdfs:label ?locLabel .

?vloc ns4:hasParentRegion ?reg .

?v1 contract:startDate ?v17 .

?v1 contract:estimatedPrice ?ep .

?ep gr:hasCurrencyValue ?epv.

}

Figure 6.13: A query constructed to obtain a dataset containing desired data.

The size of the dataset caused a performance drop also in the case of the Uni-
versal Data Cube visualizer. Despite the fact, we are able to slice it and take
advantage of the Data Cube Vocabulary format. An example of a visualization
made by the Universal Data Cube visualizer is shown in Figure 6.19.

In this experiment, we confirmed that the implemented system is capable
of transforming an arbitrary RDF dataset into a form compliant with a selected
Data Cube vocabulary. We also examined the system while working with a larger
dataset. We confirmed some aforementioned assumptions about the performance
of the system. Therefore, we confirmed that we have correctly identified all
the bottlenecks predicted while preparing the proposal of integrating the system
with Payola. We will account them in the future improvements.

101

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix payola-dcv: <http://datacube.payola.cz/dataset-definitions#> .

@prefix qb: <http://purl.org/linked-data/cube#> .

@prefix sdmx: <http://purl.org/linked-data/sdmx#> .

@prefix sdmx-concept: <http://purl.org/linked-data/sdmx/2009/concept#> .

@prefix sdmx-dimension: <http://purl.org/linked-data/sdmx/2009/dimension#> .

@prefix sdmx-measure: <http://purl.org/linked-data/sdmx/2009/measure#> .

@prefix pc: <http://purl.org/procurement/public-contracts#> .

@prefix ns4: <http://purl.org/procurement/public-contracts-eu#> .

@prefix nuts: <http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#> .

payola-dcv:ContractsDatastructureDefinition a qb:DataStructureDefinition ;

rdfs:label "The definition of the DS of a dataset containing information about public contracts."@en ;

Dimensions

qb:component [

qb:dimension payola-dcv:location;

qb:order 1 ;

rdfs:label "The dimension representing location, where the money was spent."

] ;

qb:component [

qb:dimension payola-dcv:period;

qb:order 2 ;

rdfs:label "The dimension representing the time of realizing the contract."

] ;

Measure

qb:component [

qb:measure payola-dcv:price;

rdfs:label "The measure representing the price spent on realizing the contract."@en

] ;

qb:component [

qb:attribute payola-dcv:contract;

rdfs:label "The attribute linking the observation with a corresponing contract."@en

] ;

qb:component [

qb:attribute payola-dcv:region;

rdfs:label "The attribute specifying the region, where the contract was realized."@en

] ;

qb:component [

qb:attribute payola-dcv:currency;

rdfs:label "Currency of the price."@en

] .

payola-dcv:location a rdf:Property, qb:DimensionProperty ;

rdfs:label "reference location"@en ;

qb:concept sdmx-concept:refArea .

payola-dcv:period a rdf:Property, qb:DimensionProperty ;

rdfs:label "reference period"@en ;

qb:concept sdmx-concept:refPeriod .

payola-dcv:price a rdf:Property, qb:MeasureProperty ;

rdfs:label "price"@en ;

rdfs:subPropertyOf sdmx-measure:obsValue ;

rdfs:range xsd:nonNegativeInteger ;

qb:concept sdmx-concept:valuation .

payola-dcv:contract a rdf:Property, qb:AttributeProperty ;

rdfs:label "corresponding public contract"@en ;

rdfs:range pc:Contract ;

qb:concept sdmx-concept:comment .

payola-dcv:region a rdf:Property, qb:AttributeProperty ;

rdfs:label "Parent NUTS region."@en ;

rdfs:range nuts:NUTSRegion;

qb:concept sdmx-concept:refArea .

Figure 6.14: Public contracts data structure definition.

102

Figure 6.15: Experiment 3: Pattern selection.

CONSTRUCT {

[] a <http://purl.org/linked-data/cube#Observation> ;

qb:dataSet <http://live.payola.cz/analysis/...> ;

<http://datacube.payola.cz/dataset-definitions#location> ?v2 ;

<http://datacube.payola.cz/dataset-definitions#period> ?v4 ;

<http://datacube.payola.cz/dataset-definitions#price> ?v6 ;

<http://datacube.payola.cz/dataset-definitions#contract> ?v3 ;

<http://datacube.payola.cz/dataset-definitions#region> ?v7 ;

} where {

{

SELECT DISTINCT ?v2 ?v4 ?v6 ?v3 ?v7 {

?v1 <http://www.w3.org/2000/01/rdf-schema#label> ?v2 .

?v3 <http://purl.org/procurement/public-contracts#location> ?v1 .

?v3 <http://purl.org/procurement/public-contracts#startDate> ?v4 .

?v3 <http://purl.org/procurement/public-contracts#estimatedPrice> ?v5 .

?v5 <http://purl.org/goodrelations/v1#hasCurrencyValue> ?v6 .

?v2 <http://purl.org/procurement/public-contracts-eu#hasParentRegion> ?v7 .

}

}

}

Figure 6.16: Experiment 3: Transformation query.

Figure 6.17: Experiment 3: Map expressing the amount of money spent
by the Czech Republic in the world.

103

Figure 6.18: Experiment 3: Map from Figure 6.17 zoomed to the level of the Czech
Republic.

Figure 6.19: Experiment 3: Universal Data Cube visualizer.

104

7. Future work

Based on the restrictions of the Payola framwork mentioned in Chapter 5
and based on experiments with the implemented system (some of them are de-
scribed in Chapter 6), we learnt what needs to be done in the future in order
to improve the qualities of the implemented system.

The most crucial lacking feature is a fully faceted browser. We had to adopt
the design flaw of Payola, which is not capable of caching the results of an analysis.
Therefore, the user is forced to work with all the results at once, which may cause
poor performance of the system. We need the Payola framework to adopt some
existing approaches in order to deliver such a feature. One of them was mentioned
before — the integration of a caching mechanism (SESAME, Virtuoso, etc.).

That will dramatically increase the capabilities of the implemented system,
because it will be possible to work with a proper portion of the data. The user
will be potentially able to preview the whole dataset while selecting a pattern.
A really important fact is that the visualizers will be able to query the data based
on the current state of the visualization, which will significantly help to increase
the performance of the whole system. One of the features that could be done im-
mediately is an improvement to the listings of the detected values of the Universal
DCV visualizer — also more sophisticated component than a list of checkboxes
should be used.

In order to improve the user experience of the preview, we can use some
advanced techniques described in [67], for instance an ordering by IRI:RANK.

Another task will be to undergo a user evaluation in order to reveal other
missing features and imperfections. Not only based on that, we should continue
improving the existing visualizers and introduce others for domain–specific visu-
alisations. The list of requested visualizers will form on–the–fly, while exploring
other datasets. Such a process will also suggest other modifications to the existing
visualizers. One comes to mind instantly — we should be able to take advantage
of more metadata, for instance measure and dimension datatypes, ranges, etc.
It is also possible to integrate other types of charts.

It would be also possible to propose some procedures, which will examine
a given dataset and try to convert it to Data Cube Vocabulary automatically.
It will almost certainly require a more sophisticated integration with the LodVis
project.

We will also continue to improve Payola features, which are not related to Da-
ta Cube Vocabulary. Based on the feedback from the ESWC 2013 conference,
where the Inner analysis feature was presented, people found these modifications
and features interesting and would like to use them.

Some of those improvements will require Payola to undergo a heavy refac-
toring, where the most adjusted subsystems would be the data access layer
and the analytical pipeline evaluator.

105

Conclusion

We have implemented the proposed system. We have thusly introduced a tool
which is, with a user input, able to convert an arbitrary RDF dataset into a form
compliant with Data Cube Vocabulary. As a part of our long–term research,
we decided to integrate it into a larger system (Payola) in order to benefit from
such an integration. For example, the user is able to make the conversion as a part
of a larger analytical process. It enables the user to work with the statistical data
in a usual way. Moreover, they are able to work with data from multiple datasets
at once.

We have also examined several already existing tools but did not find any that
would enable the user to perform such a conversion. There were some related tools
focused on a very similar task and we used the knowledge gained from examining
them. Especially, we used the query–by–example principle in order to deliver our
system to our advantage.

During the process of implementation, we have managed to extend Payola,
our RDF application. We not only added the Data Cube Vocabulary related fea-
tures but also included some other useful user experience improvements. Moreso,
we integrated a completely new approach (in the scope of Payola) a construction
of a SPARQL query, which can be reused in other scenarios in order to deliver
some new features.

Based on our experience and our research, we have also determined those
parts of Payola, which are in need of an improvement or redesign for providing
a more efficient behaviour. That is also crucial in order to improve the reliabili-
ty, the performance and the usability of the implemented system while working
on this thesis.

Last, but not least, we delivered two new visualizer plugins, which enable
the user to explore the Data Cube Vocabulary related datasets. Whilst the first
one tends to be universal, the second one is focused on visualizing geospatial
data. Improving the user experience of those visualizers should become the core
of the future work, including an implementation of a fully faceted browser. To of-
fer a visualizer, which may probably be considered a basis for a sophisticated
faceted browser for cube data, represents a significant achievement.

We fulfilled the goal of this thesis. In spite of the fact that the system will
be eventually improved as it happens with every other new system, we find the im-
plementation satisfactory to the current state of the Payola framework. We con-
sider the provided feature to be of a great benefit to the Payola users.

106

Bibliography

[1] W3C. Resource Description Framework (RDF): Semantic Web Standards.
W3C - RDF CORE WORKING GROUP. W3C - Semantic Web Standards
[online]. 2013, 22.3.2013 [cit. 2013-05-22]. Available from: http://www.w3.
org/RDF/

[2] HEATH, Tom. LINKED DATA COMMUNITY. Linked Data: Connect Dis-
tributed Data across the Web [online]. 2013 [cit. 2013-02-3]. Available from:
http://linkeddata.org/

[3] W3C. The RDF Data Cube Vocabulary: W3C Candidate Recommendation
25 June 2013 [online]. 2013 [cit. 2013-07-26]. Available from: http://www.
w3.org/TR/vocab-data-cube/

[4] ŠIROKÝ, Jan, Jǐŕı HELMICH, Ondřej HEŘMÁNEK, Ondřej KUDLÁČEK
and Kryštof VÁŠA. PAYOLA. Payola [online]. Prague, 2012 [cit. 2013-07-
26]. Available from: http://www.payola.cz/

[5] FERNÁNDEZ, Josep Maria Brunetti, Sören AUER and Roberto GAR-
CIA. The Linked Data Visualization Model [online]. Lleida, Spain; Leipzig,
Germany, 2012 [cit. 2013-04-13]. Available from: http://iswc2012.

semanticweb.org/sites/default/files/paper_29.pdf

[6] UNITED NATIONS. United Nations: We the peoples... A stronger UN
for a better world. [online]. New York, 2013 [cit. 2013-05-22]. Available from:
http://www.un.org/en/

[7] GOOGLE INC. Google Public Data Explorer [online]. 2013 [cit. 2013-04-13].
Available from: http://www.google.com/publicdata/explore

[8] UNIVERSITY OF LEIPZIG LOD2: Creating Knowledge out of Inter-
linked Data [online]. 2013 [cit. 2013-07-26]. Available from: http://lod2.

eu/

[9] DBPEDIA. DBPedia [online]. 2013, 2013-05-08 [cit. 2013-01-16]. Available
from: http://dbpedia.org/

[10] CYGANIAK, Richard. DIGITAL ENTERPRISE RESEARCH INSTI-
TUTE. Namespace lookup for RDF developers [online]. 2013 [cit. 2013-04-13].
Available from: http://prefix.cc/

[11] CYGANIAK, Richard a Anja JENTZSCH. LATC, DERI. The Linking
Open Data cloud diagram [online]. 2011, 2011-09-19 [cit. 2013-07-27]. Avail-
able from: http://lod-cloud.net/

[12] BRUNETTI, Josep Maria, Sören AUER, Roberto GARCÍA, Jakub
KLÍMEK and Martin NECASKY. The Linked Data Visualisation Model.
AKSW Subversion Repository [online]. 2013, č. 1 [cit. 2013-04-14]. Available
from: http://svn.aksw.org/papers/2013/WWW_LDVM/public.pdf

107

http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://linkeddata.org/
http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/vocab-data-cube/
http://www.payola.cz/
http://iswc2012.semanticweb.org/sites/default/files/paper_29.pdf
http://iswc2012.semanticweb.org/sites/default/files/paper_29.pdf
http://www.un.org/en/
http://www.google.com/publicdata/explore
http://lod2.eu/
http://lod2.eu/
http://dbpedia.org/
http://prefix.cc/
http://lod-cloud.net/
http://svn.aksw.org/papers/2013/WWW_LDVM/public.pdf

[13] W3C. OWL Web Ontology Language: Overview [online]. 2004, 2004-02-10
[cit. 2012-12-28]. Available from: http://www.w3.org/TR/owl-features/

[14] WIKIMEDIA FOUNDATION, Inc Wikipedia [online]. 2012 [cit. 2012-
11-22]. Available from: http://en.wikipedia.org/wiki/Main_Page

[15] MICROSOFT. MSDN Library: an essential source of information
for developers [online]. Just What Are Cubes Anyway?: A Pain-
less Introduction to OLAP Technology. 2012 [cit. 2012-12-26]. Avail-
able from: http://msdn.microsoft.com/en-us/library/aa140038%28v=

office.10%29.aspx#odc_da_whatrcubes_topic2

[16] SDMX INITIATIVE. Statistical Data and Metadata Exchange [online]. 2001
[cit. 2013-04-13]. Available from: www.sdmx.org

[17] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO -
International Organization for Standardization [online]. 2013 [cit. 2013-04-
13]. Available from: http://www.iso.org

[18] ISO 17369:2013 - Statistical data and metadata exchange (SDMX). INTER-
NATIONAL ORGANIZATION FOR STANDARDIZATION. ISO - Interna-
tional Organization for Standardization [online]. 2013 [cit. 2013-04-13]. Avail-
able from: http://www.iso.org/iso/catalogue_detail.htm?csnumber=

52500

[19] SDMX 2.1 User Guide. SDMX 2.1 User Guide. Version 0.1. SDMX, 2012.
Available from: http://sdmx.org/wp-content/uploads/2012/11/SDMX_

2-1_User_Guide_draft_0-1.pdf

[20] SHNEIDERMAN, Ben. The eyes have it: A task by data type taxonomy
for information visualizations. Proceedings 1996 IEEE Symposium on Visual
Languages: proceedings, August 14-16, 1996, Blue Mountain Lake, New York
[online]. Los Alamitos, Calif.: IEEE Comput. Soc. Press, 1996, s. 336-343
[cit. 2013-04-13]. ISSN 0-8186-7469-5. DOI: 10.1109/VL.1996.545307. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=545307

[21] SALAS, Percy E, Michael MARTIN and Fernando Maia Da MOTA.
OLAP2DataCube: An Ontowiki Plug-In for Statistical Data Publish-
ing. Proceedings of the 2nd Workshop on Developing Tools as Plug-
ins. [online]. 2012, Pages: 79-83 [cit. 2013-07-26]. ISBN:9781467318204.
Available from: http://www.inf.puc-rio.br/~casanova/Publications/

Papers/2012-Papers/2012-TOPI-olap.pdf

[22] CTIC. Tabels: Make meaning of tabular data [online]. [cit. 2012-12-20].
Available from: http://idi.fundacionctic.org/tabels/

[23] MARTIN, Michael. AKSW. CubeViz: The RDF DataCube Browser. [on-
line]. 2012 [cit. 2013-06-20]. Available from: http://aksw.org/Projects/

CubeViz.html

108

http://www.w3.org/TR/owl-features/
http://en.wikipedia.org/wiki/Main_Page
http://msdn.microsoft.com/en-us/library/aa140038%28v=office.10%29.aspx#odc_da_whatrcubes_topic2
http://msdn.microsoft.com/en-us/library/aa140038%28v=office.10%29.aspx#odc_da_whatrcubes_topic2
www.sdmx.org
http://www.iso.org
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52500
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52500
http://sdmx.org/wp-content/uploads/2012/11/SDMX_2-1_User_Guide_draft_0-1.pdf
http://sdmx.org/wp-content/uploads/2012/11/SDMX_2-1_User_Guide_draft_0-1.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=545307
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=545307
http://www.inf.puc-rio.br/~casanova/Publications/Papers/2012-Papers/2012-TOPI-olap.pdf
http://www.inf.puc-rio.br/~casanova/Publications/Papers/2012-Papers/2012-TOPI-olap.pdf
http://idi.fundacionctic.org/tabels/
http://aksw.org/Projects/CubeViz.html
http://aksw.org/Projects/CubeViz.html

[24] ARNDT, Natanael. AKSW. Agile Knowledge Engineering and Semantic
Web (AKSW) [online]. 2013, 03-2013 [cit. 2013-07-26]. Available from: http:
//aksw.org

[25] TRAMP, Sebastian. AKSW. OntoWiki: a tool providing support for ag-
ile, distributed knowledge engineering scenarios. [online]. [cit. 2013-01-04].
Available from: http://aksw.org/Projects/OntoWiki.html

[26] HIGHSOFT SOLUTIONS AS. Highcharts: Interactive JavaScript charts
for your webpage [online]. 2012 [cit. 2013-07-19]. Available from: http://

www.highcharts.com/

[27] Percy E Salas, Michael Martin, Fernando Maia Da Mota, Karin Bre-
itman, Sören Auer, and Marco A Casanova. Proceedings of 6th In-
ternational IEEE Conference on Semantic Computing, Palermo, Italy,
IEEE, 2012 Available from: http://svn.aksw.org/papers/2012/ICSC_

PublishingStatisticalData/public.pdf

[28] MARTIN,Michael. SEMANTICWEB COMPANY. LOD2 Webinar Series:
CubeViz [online]. 2013, 2013-05-29 [cit. 2013-06-12]. Available from: http:

//www.youtube.com/watch?v=ZQc5lk1ug3M

[29] GRAVES, Alvaro. Lodspeakr: Framework to create Linked Data-based appli-
cations [online]. 2013 [cit. 2013-04-12]. Available from: http://alangrafu.
github.io/lodspeakr/

[30] GRAVES, Alvaro. Visualbox: Visualization server based on LODSPeaKr
[online]. 2013 [cit. 2013-06-27]. Available from: http://alangrafu.github.
io/visualbox/

[31] GRAVES, Alvaro. Creation of visualizations based on linked data. Proceed-
ings of the 3rd International Conference on Web Intelligence, Mining and
Semantics - WIMS ’13 [online]. New York, New York, USA: ACM Press,
2013, s. 1- [cit. 2013-06-19]. DOI: 10.1145/2479787.2479828. Available from:
http://dl.acm.org/citation.cfm?doid=2479787.2479828

[32] GOOGLE. AngularJS: Superheroic JavaScript MVW Framework [online].
2011 [cit. 2013-07-01]. Available from: http://angularjs.org/

[33] I2G. Geoglobe [online]. 2012 [cit. 2013-05-14]. Available from: http://data.
i2g.pl/insigos/hz-geo/globe/

[34] BOSTOCK, Michael. D3.js: Data-Driven Documents [online]. 2012 [cit.
2013-02-02]. Available from: http://d3js.org/

[35] DUMAS, Bruno, Tim BROCHÉ, Lode HOSTE a Beat SIGNER. ViDaX.
Proceedings of the International Working Conference on Advanced Visual
Interfaces - AVI ’12 [online]. New York, New York, USA: ACM Press, 2012,
s. 757- [cit. 2013-05-12]. DOI: 10.1145/2254556.2254702. Available from:
http://dl.acm.org/citation.cfm?doid=2254556.2254702

[36] Prefuse: information visualization toolkit [online]. 2012, 2012-01-13 [cit.
2013-05-28]. Available from: http://prefuse.org/

109

http://aksw.org
http://aksw.org
http://aksw.org/Projects/OntoWiki.html
http://www.highcharts.com/
http://www.highcharts.com/
http://svn.aksw.org/papers/2012/ICSC_PublishingStatisticalData/public.pdf
http://svn.aksw.org/papers/2012/ICSC_PublishingStatisticalData/public.pdf
http://www.youtube.com/watch?v=ZQc5lk1ug3M
http://www.youtube.com/watch?v=ZQc5lk1ug3M
http://alangrafu.github.io/lodspeakr/
http://alangrafu.github.io/lodspeakr/
http://alangrafu.github.io/visualbox/
http://alangrafu.github.io/visualbox/
http://dl.acm.org/citation.cfm?doid=2479787.2479828
http://angularjs.org/
http://data.i2g.pl/insigos/hz-geo/globe/
http://data.i2g.pl/insigos/hz-geo/globe/
http://dl.acm.org/citation.cfm?doid=2254556.2254702
http://prefuse.org/

[37] BERNERS-LEE, Tim, Yuhsin CHEN, Lydia CHILTON, Dan CON-
NOLLY, Ruth DHANARAJ, James HOLLENBACH, Adam LERER
and David SHEETS. Tabulator: Exploring and analyzing linked
data on the semantic web. [online]. 2006 [cit. 2013-07-26]. Avail-
able from: http://student.bus.olemiss.edu/files/conlon/others/

others/semantic%20web%20papers/Berners-Lee.pdf

[38] Marchionini, G. Exploratory search: From finding to understanding.
Comm. Of the ACM, 49(4), 2006.

[39] ARAÚJO, Samur F. C. de and Daniel SCHWABE. Explorator: a tool for
exploring RDF data through direct manipulation. LDOW 2009 Proceedings
[online]. 2009, s. 2009 [cit. 2013-04-08]. Available from: http://events.

linkeddata.org/ldow2009/papers/ldow2009_paper2.pdf

[40] ADUNA. OpenRDF.org: home of Sesame [online]. 2012 [cit. 2013-07-15].
Available from: http://www.openrdf.org/

[41] MIT. SIMILE Widgets: Free, Open-Source Data Visualization Web Wid-
gets, and More [online]. 2009 [cit. 2013-06-29]. Available from: http:

//simile-widgets.org/

[42] SMITH, MacKenzie and Eric Miller ZEPHEIRA. Exhibit 3.0: An Open
Source Software Platform for Publishing Linked Data. In: emanticweb.com:
The Voice of Semantic Web Business [online]. 2011 [cit. 2013-04-26]. Avail-
able from: http://semanticweb.com/exhibit-3-0-part-1-an-open-

source-software-platform-for-publishing-linked-data_b22962

[43] OPEN KNOWLEDGE FOUNDATION. The open source data portal
software Comprehensive Knowledge Archive [online]. 2013 [cit. 2013-04-14].
Available from: http://ckan.org/pic03/wrapper.htm?arnumber=545307

[44] OPEN KNOWLEDGE FOUNDATION. The Datahub: The easy way
to get, use and share data [online]. 2012 [cit. 2013-04-14]. Available from:
http://datahub.io

[45] ALEXANDER, Keith, Richard CYGANIAK, Michael HAUSENBLAS and
Jun ZHAO. W3C. Describing Linked Datasets with the VoID Vocabulary:
W3C Interest Group Note 03 March 2011 [online]. 2010 [cit. 2013-05-16].
Available from: http://www.w3.org/TR/void/

[46] ŠIROKÝ, Jan, Jǐŕı HELMICH, Ondřej HEŘMÁNEK, Ondřej KUDLÁČEK
and Kryštof VÁŠA. PAYOLA. Payola GitHub repository [online]. 2012 [cit.
2012-10-26]. Available from: https://github.com/payola/Payola

[47] AKSW. LODStats GitHub repository [online]. 2012 [cit. 2013-06-06]. Avail-
able from: https://github.com/AKSW/LODStats

[48] AUER, Sören, Jan DEMTER, Michael MARTIN and Jens LEHMANN.
LODStats An Extensible Framework for High-Performance Dataset Ana-
lytics. [online]. s. 353 [cit. 2013-07-26]. DOI: 10.1007/978-3-642-33876-2 31.
Available from: http://jens-lehmann.org/files/2012/ekaw_lodstats.

pdf

110

http://student.bus.olemiss.edu/files/conlon/others/others/semantic%20web%20papers/Berners-Lee.pdf
http://student.bus.olemiss.edu/files/conlon/others/others/semantic%20web%20papers/Berners-Lee.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper2.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper2.pdf
http://www.openrdf.org/
http://simile-widgets.org/
http://simile-widgets.org/
http://semanticweb.com/exhibit-3-0-part-1-an-open-source-software-platform -for-publishing-linked-data_b22962
http://semanticweb.com/exhibit-3-0-part-1-an-open-source-software-platform -for-publishing-linked-data_b22962
http://ckan.org/pic03/wrapper.htm?arnumber=545307
http://datahub.io
http://www.w3.org/TR/void/
https://github.com/payola/Payola
http://jens-lehmann.org/files/2012/ekaw_lodstats.pdf
http://jens-lehmann.org/files/2012/ekaw_lodstats.pdf

[49] YAHOO. Pipes: Rewire the web [online]. 2011 [cit. 2012-10-20]. Available
from: http://pipes.yahoo.com/pipes/

[50] PHUOC, Danh Le, Christian MORBIDONI, Axel POLLERES, Matthias
Samwald Robert FULLER and Giovanni TUMMARELLO. DERI. DERI
Pipes: Open Source, Extendable, Embeddable Web Data Mashups [online].
2011 [cit. 2012-10-12]. Available from: http://pipes.deri.org

[51] PHUOC, Danh Le, Christian MORBIDONI, Axel POLLERES, Matthias
SAMWALD, Robert FULLER and Giovanni TUMMARELLO. DERI Pipes:
Open Source, Extendable, Embeddable Web Data Mashups [online]. 2011 [cit.
2013-11-12]. Available from: http://pipes.deri.org/cityfacts.html

[52] BRUNETTI, Josep Maria. GRIHO. LodVis: prototype that implements the
Linked Data Visualization Model (LDVM) [online]. 2012 [cit. 2012-09-30].
Available from: http://lodvisualization.appspot.com/

[53] OPENLINK. Virtuoso Universal Server [online]. 2013 [cit. 2013-01-20].
Available from: http://virtuoso.openlinksw.com/

[54] ŠIROKÝ, Jan, Jǐŕı HELMICH, Ondřej HEŘMÁNEK, Ondřej KUDLÁČEK
a Kryštof VÁŠA. PAYOLA. User Guide [online]. 2012 [cit. 2013-07-
27]. Available from: https://github.com/payola/Payola/blob/master/

docs/user_guide.md#join

[55] ŠIROKÝ, Jan, Jǐŕı HELMICH, Ondřej HEŘMÁNEK, Ondřej KUDLÁČEK
a Kryštof VÁŠA. PAYOLA. User Guide [online]. 2012 [cit. 2013-07-
27]. Available from: https://github.com/payola/Payola/blob/master/

docs/user_guide.md

[56] LÉVESQUE, Maxime. Squeryl: A Scala ORM for SQL Databases [online].
2012 [cit. 2013-02-10]. Available from: http://squeryl.org/

[57] ŠIROKÝ, Jan, Jǐŕı HELMICH, Ondřej HEŘMÁNEK, Ondřej KUDLÁČEK
a Kryštof VÁŠA. PAYOLA. Developer Guide [online]. 2012 [cit. 2013-07-
27]. Available from: https://github.com/payola/Payola/blob/master/

docs/developer_guide.md

[58] SOFTWARE FOUNDATION. Apache Jena: The core RDF API [on-
line]. 2011 [cit. 2013-02-27]. Available from: http://jena.apache.org/

documentation/rdf/

[59] ŠIROKÝ, Jan. SWAT: Scala Web Application Toolkit [online]. 2012 [cit.
2013-07-27]. Available from: https://github.com/siroky/Swat

[60] PRUD’HOMMEAUX, Eric and Carlos BUIL-ARANDA. W3C. SPAR-
QL 1.1 Federated Query: W3C Recommendation 21 March 2013 [online].
2013, 2013-03-21 [cit. 2013-07-26]. Available from: http://www.w3.org/TR/
sparql11-federated-query/

[61] UNIVERSITÄT LEIPZIG. Universität Leipzig [online]. 2013 [cit. 2013-
06-27]. Available from: http://www.zv.uni-leipzig.de/

111

http://pipes.yahoo.com/pipes/
http://pipes.deri.org
http://pipes.deri.org/cityfacts.html
http://lodvisualization.appspot.com/
http://virtuoso.openlinksw.com/
https://github.com/payola/Payola/blob/master/docs/user_guide.md#join
https://github.com/payola/Payola/blob/master/docs/user_guide.md#join
https://github.com/payola/Payola/blob/master/docs/user_guide.md
https://github.com/payola/Payola/blob/master/docs/user_guide.md
http://squeryl.org/
https://github.com/payola/Payola/blob/master/docs/developer_guide.md
https://github.com/payola/Payola/blob/master/docs/developer_guide.md
http://jena.apache.org/documentation/rdf/
http://jena.apache.org/documentation/rdf/
https://github.com/siroky/Swat
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/
http://www.zv.uni-leipzig.de/

[62] TYPESAFE. Play Framework: The High Velocity Web Framework
For Java and Scala [online]. 2012 [cit. 2012-11-14]. Available from:
http://www.playframework.com/

[63] LAURSEN, Ole. IOLA. Flot: Attractive JavaScript plotting for jQuery [on-
line]. 2007 [cit. 2013-05-06]. Available from: http://www.flotcharts.org/

[64] RFC 2617. HTTP Authentication: Basic and Digest Access Authentication.
The Internet Society, June 1999. [online] Available from: http://tools.

ietf.org/html/rfc2617

[65] SOFTWARE FOUNDATION. HttpClient [online]. 2011 [cit. 2013-04-10].
Available from: http://hc.apache.org/httpclient-3.x/

[66] DATA.GOV.UK. COINS as Linked Data [online]. 2010, 11-11-2010 [cit.
2013-01-16]. Available from: http://data.gov.uk/resources/coins

[67] ERLING, Orri. Faceted Views over Large-Scale Linked Data. [online]. [cit.
2013-07-26]. Available from: http://events.linkeddata.org/ldow2009/

papers/ldow2009_paper3.pdf

[68] Data cube [online]. 2012 [cit. 2013-09-27]. Available from: http://en.

wikipedia.org/wiki/Data_cube

112

http://www.flotcharts.org/
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://hc.apache.org/httpclient-3.x/
http://data.gov.uk/resources/coins
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper3.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper3.pdf
http://en.wikipedia.org/wiki/Data_cube
http://en.wikipedia.org/wiki/Data_cube

List of Tables

• Table 1.1: Some of commonly used SDMX prefixes

• Table 2.1: Features of related tools

• Table 5.1: Population data example

113

List of Abbreviations

• AKSW : Agile Knowledge Engineering and Semantic Web

• API : Application Programming Interface

• COG : Content-Oriented Guidelines

• CSS : Cascading Style Sheets

• CSV : Comma Separated Values

• DAL: Data Access Layer

• DB : Database

• DC : Data Cube

• DCV : Data Cube Vocabulary

• DRY : Do-not Repeat Yourself

• DSL: Domain Specific Language

• ESWC : Extended Semantic Web Conference

• FOAF : Friend-of-a-friend

• FQDN : Fully-qualified Domain Name

• GPS : Global Positioning System

• GUI : Graphical user interface

• GVDT : Generic visual- ization Data Types

• HTML: HyperText Markup Language

• HTTP : HyperText Transfer Protocol

• ID : Identifier

• IRI : Internationalized Resource Identifier

• ISO : International Organization for Standardization

• ISWC : International Standard Musical Work Code

• JAR: Java Archive

• JS : JavaScript

• JSON : JavaScript Object Notation

• JVM : Java Virtual Machine

114

• LD : Linked Data

• LDVM : Linked Data Visualisation Model

• LOD : Linked Open Data

• MIT : Massachusetts Institute of Technology

• MVC : Model-View-Controller

• NUTS : Nomenclature of Territorial Units for Statistics

• OECD : Organisation for Economic Co-operation and Development

• OLAP : Online Analytical Processing

• ORM : Object-relational mapping

• OWL: Ontology Web Language

• PHP : PHP: Hypertext Preprocessor

• QB : Data Cube

• RAM : Random-access memory

• RDBMS : Relational database management system

• RDF : Resource Description Framework

• REST : Representational State Transfer

• RFC : Request For Comment

• RPC : Remote procedure call

• SBT : Simple Build Tool

• SDMX : Statistical Data and Metadata eXchange

• SKOS : Simple Knowledge Organization System

• SPARQL: SPARQL Protocol and RDF Query Language

• SPO : Subject-Predicate-Object

• SQL: Structured Query Language

• TTL: Turtle - Terse RDF Triple Language

• UI : User Interface

• UK : United Kingdom

• UN : United Nations

• URI : Uniform Resource Identifier

115

• URL: Uniform Resource Locator

• XHR: XMLHttpRequest

• XML: eXtensible Markup Language

• XSLT : eXtensible Stylesheet Language Transformations

116

A. CD Contents

A.1 Files and directories

• directory: git-repo: the latest snapshot of the git repository.

• directory: text: LaTex sources of this text.

• file: user-guide.html: User Guide

• file: developer-guide.html: Developer Guide

• file: thesis.pdf: This text

To generate API documentation, use the ‘doc‘ SBT task on the root project.
Each project has its own API documentation which can be found in the ‘target/scala-
2.9.1/api‘ subdirectory of the project.

117

B. Online sources

• http://datacube.payola.cz — a list of DCV analysis examples and DCV
DSDs.

• http://live.payola.cz — a live instance of the current Payola version.

• https://github.com/payola/Payola.git— the latest version of the code.

• http://payola.cz — the latest documentation.

• https://github.com/teuzz/master-thesis — sources of the text of this
thesis are available on GitHub.

• http://helmich.cz/master-thesis — PDF version of this text and CD
contents.

118

http://datacube.payola.cz
http://live.payola.cz
https://github.com/payola/Payola.git
http://payola.cz
https://github.com/teuzz/master-thesis
http://helmich.cz/master-thesis

C. List of commits related to this

thesis

Repository: http://github.com/payola/Payola

> git log --after={2012-09-10} --shortstat --oneline --pretty=format:"%cd %an %h %s" --date=short

--author=’Jiri Helmich’

2013-07-31 Jiri Helmich affdfde http prefixes should not be in the db

1 file changed, 1 deletion(-)

2013-07-31 Jiri Helmich 8277387 docs

1 file changed, 55 insertions(+), 63 deletions(-)

2013-07-30 Jiri Helmich 9e117f1 inner analyses bugfix, a parameter was missing in the definition

1 file changed, 1 insertion(+), 1 deletion(-)

2013-07-29 Jiri Helmich 69434e9 beautify blocking dialog

2 files changed, 11 insertions(+), 13 deletions(-)

2013-07-29 Jiri Helmich 981462d Limit constructor

1 file changed, 4 insertions(+), 2 deletions(-)

2013-07-29 Jiri Helmich 540b85d initializer repair

1 file changed, 5 deletions(-)

2013-07-29 Jiri Helmich ba6f3af dev guide update

3 files changed, 113 insertions(+), 16 deletions(-)

2013-07-28 Jiri Helmich 4248ee4 images were in a wrong order

1 file changed, 2 insertions(+), 2 deletions(-)

2013-07-28 Jiri Helmich 72e3888 move images to a proper folder and add them

3 files changed, 0 insertions(+), 0 deletions(-)

2013-07-28 Jiri Helmich 75a902a move images to a proper folder

3 files changed, 0 insertions(+), 0 deletions(-)

2013-07-28 Jiri Helmich bce587f datacube user guide, part 3

4 files changed, 7 insertions(+), 5 deletions(-)

2013-07-28 Jiri Helmich c4d3f43 datacube user guide, part 2

5 files changed, 97 insertions(+), 69 deletions(-)

2013-07-28 Jiri Helmich 79f4719 datacube user guide, images

11 files changed, 0 insertions(+), 0 deletions(-)

2013-07-28 Jiri Helmich 9ceb087 datacube user guide, part 1

1 file changed, 71 insertions(+), 1 deletion(-)

2013-07-28 Jiri Helmich 58ad7ec Merge branch ’master’ of github.com:payola/Payola

2013-07-28 Jiri Helmich 3c53e9f datacube docs

30 files changed, 286 insertions(+), 16 deletions(-)

2013-07-28 Jiri Helmich 8038c8d datacube docs

19 files changed, 189 insertions(+), 5 deletions(-)

2013-07-23 Jiri Helmich 512d910 initializer update

1 file changed, 7 insertions(+), 1 deletion(-)

2013-07-23 Jiri Helmich 7f567b5 DCV - improved pattern selection

1 file changed, 23 insertions(+), 41 deletions(-)

2013-07-22 Jiri Helmich d9c70d0 DCV ROPIV beautify

1 file changed, 4 insertions(+), 2 deletions(-)

2013-07-22 Jiri Helmich 8ef4c8c TimeHeatmap settings and beautify

8 files changed, 209 insertions(+), 64 deletions(-)

119

2013-07-21 Jiri Helmich 0971213 DataCube progress, plugin changes, new Limit plugin,

Uni DC parametrized, DCV forwarding

26 files changed, 565 insertions(+), 46 deletions(-)

2013-07-03 Jiri Helmich f38d79e touch

1 file changed, 1 insertion(+)

2013-07-02 Jiri Helmich c59ba4a DCV + param ordering

9 files changed, 17 insertions(+), 10 deletions(-)

2013-07-02 Jiri Helmich e47ba5f Merge branch ’master’ of github.com:payola/Payola

2013-07-02 Jiri Helmich 5c074bb parameter ordering

24 files changed, 68 insertions(+), 48 deletions(-)

2013-07-01 Jiri Helmich 1320f00 data cube - mapview improvement

3 files changed, 60 insertions(+), 23 deletions(-)

2013-07-01 Jiri Helmich ccfde40 MF

2013-07-01 Jiri Helmich caa004e data cube improvements

16 files changed, 210 insertions(+), 63 deletions(-)

2013-05-21 Jiri Helmich 471f7ae name parameters when selecting substitute

4 files changed, 50 insertions(+), 14 deletions(-)

2013-05-13 Jiri Helmich 5c9e077 expandable analysis need to be mapped based on parameter value,

not on parameter itself

7 files changed, 28 insertions(+), 18 deletions(-)

2013-05-10 Jiri Helmich 71b35c3 analysis plugin fixes - CSS bugs, minor UI changes, inputcount: 0

6 files changed, 30 insertions(+), 6 deletions(-)

2013-05-08 Jiri Helmich e641b10 Merge branch ’master’ of github.com:payola/Payola

2013-05-08 Jiri Helmich 48b5a31 analysis in analysis, completed.

24 files changed, 384 insertions(+), 94 deletions(-)

2013-05-03 Jiri Helmich 678338a dynamic custom PluginInstanceView loading - Editable

13 files changed, 265 insertions(+), 207 deletions(-)

2013-04-27 Jiri Helmich 3863a7e Virtuoso Secured Endpoint now with Digest Auth support

3 files changed, 46 insertions(+), 21 deletions(-)

2013-04-26 Jiri Helmich b2ab1ea String param init

1 file changed, 1 insertion(+), 1 deletion(-)

2013-04-26 Jiri Helmich 039390c isPassword constructors

1 file changed, 3 insertions(+), 3 deletions(-)

2013-04-26 Jiri Helmich 68f7afa typo

1 file changed, 2 insertions(+)

2013-04-26 Jiri Helmich d68b1e3 typo

1 file changed, 1 insertion(+), 1 deletion(-)

2013-04-26 Jiri Helmich 1befc9d secured virtuoso imports

1 file changed, 1 insertion(+)

2013-04-26 Jiri Helmich 9ada606 secured virtuoso imports

1 file changed, 2 insertions(+)

2013-04-26 Jiri Helmich 69c0420 Merge branch ’master’ of github.com:payola/Payola

2013-04-26 Jiri Helmich 0358c4e secured virtuoso endpoint plugin

6 files changed, 121 insertions(+), 4 deletions(-)

2013-03-09 Jiri Helmich 2d22c48 time heatmap - rc1

18 files changed, 966 insertions(+), 178 deletions(-)

2013-03-02 Jiri Helmich fe9f312 timeheatmap

1 file changed, 2 insertions(+), 2 deletions(-)

2013-02-28 Jiri Helmich e5503de data cubes RC1

57 files changed, 2189 insertions(+), 1123 deletions(-)

2012-12-27 Jiri Helmich b626245 multiple ontologies takes effect

120

13 files changed, 45 insertions(+), 46 deletions(-)

2012-12-03 Jiri Helmich 1685eb7 select proper plugin while editing datasource

1 file changed, 1 insertion(+), 1 deletion(-)

2012-11-22 Jiri Helmich 901488d analysis owner verification fixed in accessible analysis list

1 file changed, 1 insertion(+), 1 deletion(-)

2012-11-20 Jiri Helmich 280679e LodVis link

4 files changed, 25 insertions(+), 4 deletions(-)

2012-11-19 Jiri Helmich 24bc6b3 clone & edit, accessible analyses instead of owned

1 file changed, 1 insertion(+), 1 deletion(-)

2012-11-18 Jiri Helmich b638220 count of items on a page increased to 30

1 file changed, 1 insertion(+), 1 deletion(-)

2012-11-18 Jiri Helmich eab9879 clone and edit feature

5 files changed, 47 insertions(+), 4 deletions(-)

2012-11-11 Jiri Helmich fa25d7f solution for https://github.com/payola/Payola/issues/6

1 file changed, 1 insertion(+), 1 deletion(-)

2012-11-11 Jiri Helmich 5e5c004 jena

3 files changed, 0 insertions(+), 0 deletions(-)

2012-11-11 Jiri Helmich c115a1c scala library 2.9.2

1 file changed, 0 insertions(+), 0 deletions(-)

2012-11-11 Jiri Helmich c3063c9 upgrade play to 2.1-SNAPSHOT, scala 2.9.2, SBT 0.12.1, graphUri

in LOD API is now an array

11 files changed, 12 insertions(+), 11 deletions(-)

2012-11-04 Jiri Helmich 7ee760b lodvisualisation integration (setup analysis via URL)

14 files changed, 165 insertions(+), 42 deletions(-)

2012-10-20 Jiri Helmich 4eb3bde LODVisualisation link added to dashboard

1 file changed, 2 insertions(+)

121

	Introduction and motivation
	Statistical data in the context of Linked Data
	From speech to structured data
	Resource Description Framework
	Linked Data
	Data Cube
	Statistical Data and Metadata eXchange
	Data Cube Vocabulary

	Related Work
	OLAP2DataCube
	Tabels
	CubeViz
	Visualbox
	GeoGlobe
	ViDaX
	Tabulator
	Explorator
	Exhibit
	Sgvizler
	Rhizomer
	LODStats
	Yahoo Pipes, DERI pipes
	Payola visualization model vs. LDVM
	Payola visualisator framework features

	Payola
	Payola concepts
	Payola features
	Exploration mode
	Analytical mode
	Visualisations
	Sharing

	Payola architecture
	Analysis evaluation
	Technological stack

	System proposal
	Pattern selection
	Mockups
	Benefits of integration into Payola
	Formalization
	Input and output
	Transformation query

	Visualizers
	TimeHeatmap
	Universal DCV

	Implementation
	Integration of the proposed system
	Analytical plugins
	Data Cube Vocabulary analytical plugin
	Obtaining the transformation pattern
	User interface

	Visualisers
	TimeHeatmap
	Universal Data Cube Vocabulary

	Payola improvements
	LodVis integration
	Secured endpoints
	Analytical pipeline reuse
	Data Source browser permalinks
	Limit plugin

	Experiments
	DBPedia demography
	COINS – UK government spending
	Czech public contracts

	Future work
	Conclusion
	Bibliography
	List of Tables
	List of Abbreviations
	CD Contents
	Files and directories

	Online sources
	List of commits related to this thesis

