
Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Liferay communication infrastructure

Bc. Marcel Mika

Supervisor: Ing. Pavel Kord́ık, Ph.D.

10th May 2013

Acknowledgements

I would like to thank and express my appreciation to Ing. Pavel Kord́ık,
Ph.D. for his invaluable contribution throughout the development of this
project, as well as the Czech Technical University in Prague for one of the
most inspiring periods of my life. Also, a special thanks to Angela Scarselli
for her proofreading help. Last, but certainly not least, I would like to
thank my family and Bc. Miroslava Horáková for their amazing support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as a school
work under the provisions of Article 60(1) of the Act.

In Prague on 10th May 2013 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2013 Marcel Mika. All rights reserved.
This thesis is a school work as defined by Copyright Act of the Czech Repub-
lic. It has been submitted at Czech Technical University in Prague, Faculty
of Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis

MIKA, Marcel. Liferay communication infrastructure. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2013.

Abstract

The thesis investigates a modern instant messaging communication system
in the Liferay portal environment. Such software is currently a widely used
form of direct, real-time communication. The given system consists of three
plugins. The first plugin, imported to the Liferay portal, serves as a user
interface and a gate to the Openfire server. It is divided into the backend
and frontend side. The backend side is responsible for the communication
with the Openfire server and also for the creation of view. The frontend side
handles all user actions via the modern, interactive javascript interface and
communicates with backend via AJAX calls. The second plugin, imported
to the Openfire server, creates public chat rooms based on the data from the
KOSapi service. The third plugin, imported to the Openfire server, serves
as a platform for the social network analysis which will visualize connections
between participants and thus show interesting social patterns that can be
used for a variety of different purposes.

The final product will be a part of the emerging University Information
System which is currently in the phase of development. It aims to be a
frequently used channel that will connect multiple groups like students,
teachers, employees and alumni. It should also be ready for the Liferay
marketplace and thus distributed among a large group of Liferay portal
instances.

Keywords Liferay, Openfire, XMPP, Instant Messaging System, Social
Network Analysis

ix

Abstrakt

Následuj́ıćı text popisuje analýzu, návrh, implementaci a nasazeńı ,,in-
stant messaging” komunikačńıho systému v prostřed́ı portálu Liferay, jenž
byl vyvinut v rámci této diplomové práce. Tento druh software je mo-
mentálně široce použ́ıvaným zp̊usobem př́ımé komunikace v reálném čase.
Systém se skládá ze tř́ı část́ı ve formě tzv. plugin̊u. Prvńı plugin, jenž
lze importovat do Liferay, slouž́ı jako uživatelské rozhrańı a také jako kli-
ent serveru Openfire. Děĺı se na dvě části: backend, který je zodpovědný
za komunikaci s Openfire serverem a také za vytvořeńı zobrazovaćı části
a frontend, který zpracovává všechny uživatelovy podněty skrze moderńı
a interaktivńı javascriptové rozrańı. S backendem komunikuje pomoćı voláńı
AJAX. Druhý plugin importovaný do serveru Openfire vytvář́ı veřejné
mı́stnosti na základě dat ze služby KOSapi. Posledńı plugin pak slouž́ı
jako platforma pro analýzu sociálńıch śıt́ı. Jej́ım ćılem je vizualizace spo-
jeńı mezi uživateli umožňuj́ıćı zobrazovat podnětné vzory chováńı, které
mohou být využity pro rozmanité účely.

Finálńı produkt bude součást́ı nově vznikaj́ıćıho univerzitńıho
informačńıho systému. Ćılem celé práce je vytvořit intenzivně využ́ıvaný
informačńı kanál, s jehož pomoćı bude možné spojit r̊uznorodé skupiny
uživatel̊u, kterými jsou např́ıklad studenti, kantoři, zaměstnanci školy či
absolventi. Finálńı produkt je připraven k distribuci pomoćı Liferay mar-
ketplace, č́ımž se zaručuje jeho využit́ı v rámci velkého množstv́ı Liferay
instanćı.

Kĺıčová slova Liferay, Openfire, XMPP, Instant Messaging System,
Analýza sociálńıch śıt́ı

x

Contents

Introduction 1
Motivation . 1
Thesis goals . 1
About the text . 2

1 State of the Art 3
1.1 Instant Messaging . 3
1.2 Social Network . 5
1.3 Gephi . 6
1.4 Gexf4j . 7
1.5 XMPP Protocol . 7
1.6 Openfire . 8
1.7 Smack API . 9
1.8 Liferay . 9
1.9 Alloy UI . 11
1.10 Liferay Chat Portlet . 11

2 Analysis and Design 17
2.1 Functional requirements . 17
2.2 Project architecture . 18
2.3 Openfire Server . 21
2.4 Openfire Data Mining Plugin 24
2.5 Liferay Chat Plugin . 26

3 Implementation 41
3.1 Openfire Chat Plugin . 41
3.2 Openfire Data Mining Plugin 44
3.3 Liferay Chat Plugin . 46

4 Testing and Experiments 51
4.1 Unit testing . 51

xi

4.2 Testing environment . 52
4.3 Deployment . 53
4.4 Known issues . 56
4.5 Experiments . 57

Conclusion 59
Future improvements . 60

References 63

A Acronyms 69

B User guide 71
B.1 Liferay Chat Plugin . 71
B.2 Openfire Chat Plugin . 79
B.3 Openfire Data Mining Plugin 82

C Contents of enclosed DVD 83

xii

List of Figures

1.1 Facebook Chat panel vs. Google+ Chat panel 5
1.2 Example of a simple social network 6
1.3 Liferay Chat Portlet infrastructure 12
1.4 Poller Receive Request . 12
1.5 Poller Send Request . 13

2.1 Architecture . 19
2.2 Openfire Chat Plugin class diagram 23
2.3 Angela sends a message to Brian and Chloe 24
2.4 Angela sends another message to Brian and Chloe 25
2.5 Angela sends a message to Chloe 25
2.6 Chloe sends a message to Angela 26
2.7 The generator object manages generation process 27
2.8 Liferay Chat Plugin architecture 28
2.9 Liferay Chat Plugin conversation model 29
2.10 Database model . 29
2.11 Fire an event via the Global Object 31
2.12 Frontend architecture . 32
2.13 Frontend panel . 32
2.14 Frontend containers . 33
2.15 Status panel . 33
2.16 Buddy list panel . 34
2.17 Settings panel . 34
2.18 Conversation list panel . 35
2.19 New Conversation menu . 36
2.20 Conversation panel . 37
2.21 Message feed loading . 39

3.1 Kos Synchronization Servlet class diagram 43
3.2 Kos Synchronization Servlet sequence diagram 43
3.3 Generator Servlet class diagram 45
3.4 Generator Servlet sequence diagram 45

xiii

3.5 Backend class diagram . 47
3.6 Conversation class diagram . 48
3.7 Frontend class diagram . 50

4.1 JabberImpl class replaced with JabberTestImpl class 52
4.2 JabberImpl class replaced with JabberTestImpl class 52
4.3 The community analysis experiment 57
4.4 Large dataset with multiple communities 58

4.5 Comet AJAX mechanism . 61
4.6 The message timestamp . 62

B.1 Chat interface . 71
B.2 Status panel . 72
B.3 Buddy list panel . 73
B.4 Settings panel . 74
B.5 Conversation list panel . 74
B.6 New Conversation menu . 75
B.7 Conversation panel . 76
B.8 Search menu . 77
B.9 Opened menu . 77
B.10 Add Participants to Conversation menu 78
B.11 List of Participants menu . 78
B.12 Leave Conversation menu . 79
B.13 The list of uploaded plugins . 80
B.14 Openfire Chat Plugin Properties 81
B.15 Openfire Data Mining Plugin page 82

xiv

Introduction

Motivation

I have always been fascinated by the growth of modern communication
platforms. I still remember the video of Mark Zuckerberg talking about
a new way of communication that will make e-mail history. One of the
reasons I chose this project for my thesis was that Liferay, such a widely
used platform, does not have a decent tool for direct instant messaging
communication. The recent implementation of Liferay Chat Portlet just
does not fulfill my high requirements. Given these facts, I realized that
there might be a small gap in the market.

The solution I am about to implement will be a part of the University
Information System. This provides a great testing opportunity with many
users who can potentially generate a lot of feedback.

Furthermore, the thesis includes a chapter about social network analysis,
which might be considered the key research technique in modern sociology.
I really appreciate such trends that have emerged in the last couple years.
The computer is now more social and human than ever before. As a result,
machines can decide or deliver content based on user behavior. In the scope
of this project, social network analysis may optimize decisions during the
student schedule composition process and may show trending topics within
the community.

Thesis goals

The main focus of this project is to create a modern instant messaging
communication system in the environment of a Liferay [36] portal. As
aforementioned, such software is currently a widely used form of direct,
real-time communication. It would appear on nearly every page within
the portal, which makes it even more interactive. This would provide the

1

Introduction

possibility to send text messages not only between two individuals, but also
across groups.

The final product will be a part of the emerging University Information
System, which is currently in the development phase. It aims to be a
frequently used channel that will connect multiple groups like students,
teachers, employees and alumni. It should be also ready for the Liferay
marketplace and thus distributed among a large group of Liferay portal
instances.

Last but not least, all conversations will be stored on a separate secured
server. Therefore, it would be possible to perform a social network analysis
on data located in the server database. The thesis also aims to create
a platform that will visualize connections between participants and thus
show interesting social patterns that can be used for a variety of different
purposes.

About the text

The following text is divided into chapters based on the standard soft-
ware development process. The State of the Art chapter discusses existing
available implementations of similar software and technology. The Ana-
lysis and Design chapter is introduced by a list of functional requirements
and subsequently covers the software architecture in a broader view. It de-
scribes all components within the system and the way they communicate,
the relationships among them, and their behaviour and properties. The
Design section examines the more in-depth specification of each compon-
ent. Properties and methods are described with a set of UML1 diagrams.
The Implementation chapter discusses the implementation process. The
Testing and Examples chapter describes testing methodologies and results.
The Conclusion serves as a summary of the thesis results and contribu-
tions. It also includes a future improvement section, which lists all possible
improvements that have not yet been implemented.

1UML – Unified Modeling Language [49]

2

Chapter 1

State of the Art

This chapter sheds insight into the current level of development in the field
of instant messaging. Facebook1 and Google+2 were chosen as references
because they are both currently widely used services and therefore mirror
the latest evolution. A discussion of social network analysis and an example
of the graph visualization software – Gephi [8] will follow. Then the XMPP3

protocol is introduced, as protocol is a leading standard for presence and
real-time messaging [23]. The adoption of XMPP protocol is a must for
any instance messaging service that tends to communicate with the outside
world. Subsequently, Openfire, which was chosen as a XMPP server for this
project, will be described. Liferay portal, as a leading platform, and Liferay
Chat Portlet, as a current implementation of XMPP client, are described
at the end of this chapter.

1.1 Instant Messaging

Nowadays, communication via instant messaging is widely used. Thanks to
this kind of software, users can get a response a short time after sending
the message. For the majority of people, it is cheaper than phone calls
and faster than e-mail. Moreover, the newest IM software has integrated
voice chatting, data transmission, video conferencing and other advanced
features.

1Facebook is a social utility that connects people with friends and others who work,
study and live around them. [4]

2Google+ is a social network from Google [14]
3XMPP – Extensible Messaging and Presence Protocol [56]

3

1. State of the Art

1.1.1 History

As described in [32, p. 201], instant messaging use expanded with the intro-
duction of the ICQ4 in November 1996. Since then AOL5, Microsoft MSN
Messenger, Yahoo! Messenger, and others were introduced and adopted by
the public. Nowadays, instant messaging has become integrated into other
services rather than being independent. Particularly, Facebook and Google
have instant messaging built into their user interfaces.

1.1.2 Facebook Chat

Facebook’s instant messaging feature is integrated into their user interface
but can also be accessed via XMPP protocol [5]. Consequently, users may
use their own clients as long as they implement given protocol.

Chat has two user interfaces. Firstly, users can chat via small panels
related to each conversation 1.1. The panels are visible on each page hence
easily accessible and interactive. The second option is to use a separate
chat page, which is more comfortable due to the larger visible area, but less
interactive.

Conversations can be one-to-one or many-to-many. They can be created
by either clicking on the user name in the list of friends or via the “Send a
New Message” option in the list of conversations. Any participant who is
already in the conversation can invite other participants via the “Add more
friends to chat” button on the conversation panel.

Whenever the user receives incoming message he or she is notificated by
the following:

• Page title is extended with the number of unread messages6.

• Conversation icon and conversation panel are extended with the badge
which contains number of unread messages.

• Audio notification is played7.

1.1.3 Google+ Chat

Google+ [14] offers features similar to Facebook. On the other hand, one
of the key differences is that the chat panels are used only for one-to-one

4I Seek You – Instant messaging computer program
5AOL – America Online is a mass media corporation from New York
6e.g. for five unread messages: (5) Facebook
7User can always turn this option off.

4

1.2. Social Network

Figure 1.1: Facebook Chat panel vs. Google+ Chat panel

communication8. If the user wants to interact with more friends, Google
Hangouts needs to be started.

Thanks to Google Hangouts [16], users may videochat with up to nine
friends, share screens, use Google Drive and other Google technologies.
Such integration brings communication to a completely new level.

1.2 Social Network

People connect with others through social networks formed by kinship, lan-
guage, trade, exchange, conflict, citation and collaboration [19, p. 31].
In the scope of this project, connections are made by sending messages
within private conversations. Figure 1.2 shows a simple social network. It
comprises four nodes (A,B,C,D) which represent four individuals and ar-
rows which represent an interpersonal interaction between them (linkage).
While individual D does not interact with A and C, he/she is part of the
network through his/her relationship with B.

8Although the many-to-many chat is available in Google Talk [15] it is not available in
the Google+ Chat. Google Talk represents similar service based on the XMPP protocol
like e.g. Facebook Chat.

5

1. State of the Art

Figure 1.2: Example of a simple social network

Social network theory is described as a: “set of theories for forecasting,
reasoning about, and understanding how social networks form, are main-
tained, and evolve, and the role of variables such as social networking tools,
media, and stress in affecting the emergence, utilization, management, and
change in social networks.” [48].

Social network analysis is defined as a: ”tool that can be used to analyze
the structure of interpersonal relationships within a group of individuals.
These relationships, taken collectively, constitute a network. SNA treats
individuals as nodes and the relationship between individuals as linkages”
[51, p. 49]

Network analysis metrics allow analysts to examine social networks. Ini-
tially, they focused on simple counts of connections. However, their studies
evolved after the inventions of concepts like density, centrality, structural
holes, balance, and transitivity. Given concepts are described here [19].

A graphical representation of a social network can be visualized and
explored via the social network tools (e.g. Gephi).

1.3 Gephi

Gephi [9] is an interactive visualization and exploration platform for all
kinds of networks and complex systems, dynamic and hierarchical graphs
[8]. It facilitates the creation of social data connectors in order to map com-
munity organizations and small-world networks. The statistics and metrics
framework offer the most common metrics for social network analysis:

• Betweenness,

• Closeness,

• Diameter,

• Clustering Coefficient,

6

1.4. Gexf4j

• Average shortest path,

• Community detection (Modularity).

Gephi accepts multiple graph formats (e.g. GEXF, GDF, GML, GraphML,
CSV, Spreadsheet, and others) [10]. The GEXF9 file was chosen as a main
format for this project.

Overview

Current stable version: 0.8.2 Beta
Platforms: Windows, Linux, MacOS X
Language: Java 1.6
License: CDDL + GNU GPL 3

1.4 Gexf4j

The GEXF file format is distributed as an XML file. Gexf4j [6][7] serves
as a Java library, which can easily generate such files. This library is used
to create and write GEXF files for visualizing graphs using Gephi and any
other GEXF-supporting application. It supports GEXF 1.2 format.

Overview

Current stable version: 0.4.2-BETA
Language: Java
License: Apache License 2.0

1.5 XMPP Protocol

XMPP (formerly known as Jabber) is the leading open standard for pres-
ence and real-time messaging [23]. It has been an approved standard of
the IETF10 since 2004 and is maintained by the Jabber Software Founda-
tion. Today, XMPP is used by leading companies and has millions of users
worldwide. Although the core technology is stable, the XMPP community
continues to define various XMPP extensions through an open standards
process run by the XMPP Standards Foundation [56].

9GEXF – Graph Exchange XML Format [20]
10The Internet Engineering Task Force is a large open international community of

network designers, operators, vendors, and researchers concerned with the evolution of
the Internet architecture and the smooth operation of the Internet [21].

7

1. State of the Art

1.6 Openfire

Liferay Chat Portlet (will be described later) directly supports the Openfire
server [27] via the Smack API Library [25]. Since Openfire was already
chosen by the Liferay Chat Portlet developers, there was no need to look
for other Jabber servers.

Jive Software refers to Openfire as a: “real time collaboration (RTC)
server licensed under the Open Source Apache License. It uses the only
widely adopted open protocol for instant messaging, XMPP (also called
Jabber).” [24] XMPP protocol is almost fully implemented [30]. Moreover,
it supports all the features that are needed to satisfy the goals of this thesis:

• Plugin interface;

• SSL/TLS11 support;

• Offline Messages support;

• Server-to-Server connectivity;

• Database connectivity for storing messages and user details (including
the embedded HSQL database and support for MySQL, PosgreSQL
and other databases);

• LDAP12 integration;

• Platform independent (with the installers for different platforms);

• Connection manager for load balancing;

• Message archiving-logging;

• User-friendly web-based installation and administration panel;

• Multi-user chat.

Overview

Current stable version: 3.8.1
Programming language: Java
Licence type: Apache License 2.0

11SSL/TLS – Secure Sockets Layer and Transport Layer Security are cryptographic
protocols used over the Internet.

12LDAP – Lightweight Directory Access Protocol is a protocol for accessing and main-
taining distributed directory information services over the Internet.

8

1.7. Smack API

1.7 Smack API

Smack [31][25] is an XMPP client library for instant messaging and pres-
ence. It is already embedded in the Liferay Chat Portlet. It provides full
XMPP integrations such as sending notification messages and presence-
enabling devices.

Overview

Current stable version: 3.2.2
Programming language: Java
Licence type: Apache License 2.0

1.8 Liferay

Liferay [38] serves as a portal. According to Sezov a portal might be de-
scribed as: “A single web-based environment from which all of a user’s
applications can run. These applications are integrated together in a con-
sistent and systematic way.” [53] Basically, Liferay is a container for small
applications that encapsulate functionality. These applications are called
portlets.

The given approach promises a lot of flexibility and scalability since each
portlet is an independent unit with strictly defined boundaries. It can be
developed separately and easily integrated into the portal afterwards. Port-
lets should be platform independent. With their strictly defined boundaries
and interfaces as described in the JSR-286 standard [50], it should be pos-
sible to integrate any portlet into any portal.

Liferay possess their own marketplace [39] similar to Google Play [13]
and the Apple App Store [2]. Currently, the marketplace only accepts the
submission of free applications. Paid licensing options will be added in the
coming months.

There have been more than 4 million downloads of Liferay to date.
Based on the product overview [42], it is also an independent market leader.
The source code is public and under LGPL13 licence, and it can thus be
linked to software that is not open source. The source code is available on
Github [11].

13LGPL – Lesser General Public License is a free software licence which allows de-
velopers to integrate software under the LGPL licence into their own without being
required to release the source code.

9

1. State of the Art

Based on these points, Liferay was chosen as the leading platform for
the emerging University Information System developed by the Faculty of
Information Technology, Czech Technical University in Prague. Therefore,
the selection of technologies should consider Liferay as a main platform for
any further development.

1.8.1 Difference between a portlet and a plugin

To clarify further reading it is necessary to distinguish between a portlet
and plugin:

• portlet - documentation defines portlets as: “pluggable user interface
software components that are managed and displayed in a web portal.
Portlets produce fragments of markup code that are aggregated into
a portal page. Typically, following the desktop metaphor, a portal
page is displayed as a collection of non-overlapping portlet windows,
where each portlet window displays a portlet.”[33];

• plugin - is defined as an: “umbrella term for installable portlet, theme,
layout template, hook, Ext and webmodule Java EE .war files. Though
Liferay comes bundled with a number of functional portlets, themes,
layout templates, hooks and web modules, plugins provide a means
of extending Liferay to be able to do almost anything.”[41].

In other words, a portlet is an encapsulated functionality in the form of a
window that can be dragged and dropped by the user to the area of the
portal. Hence the user is usually the final authority on deciding which
portlets are going to be displayed. The plugin, on the other hand, serves
as an extension to the Liferay portal core functionality. Thus the plugin is
most likely dealt with by the portal administrator.

Overview

Current stable version: 6.1
Programming language: Java
Licence type: LGPL

10

1.9. Alloy UI

1.9 Alloy UI

Liferay uses Alloy UI [1][47] for the javascript part of its functionality. Al-
loy is a UI framework built on top of YUI314 that provides a simple API
for building highly scalable applications. It is a JavaScript library, a CSS
framework, a set of HTML recipes and a taglib library, all combined to
empower developers across multi-skilled teams deliver rich and dynamic
applications.

Overview

Current stable version: 2.0
Programming language: Javascript
Licence type: BSD

1.10 Liferay Chat Portlet

As mentioned in the previous chapter, one part of the solution will be in
the form of a plugin to the Liferay portal. This makes the scope of possible
existing implementations relatively narrow. Currently there is only one
major implementation – Liferay Chat Portlet.

The user guide describes it as a component that “provides a convenient
way of allowing users to send each other instant messages when they are
logged into your web site. It appears as a bar at the bottom of every
page, showing who is logged on, their statuses, and any chats the logged-in
user has open.”[44] The Portlet is also hosted as an open source project on
Github [12].

Currently there is no specific documentation on the Liferay Chat Portlet.
All necessary information was taken by reverse engineering and reading the
code. In further text, all occurrences of Liferay Chat Portlet will be related
to the existing portlet developed by Liferay. Any occurrence of Liferay Chat
Plugin will be related to the newly created plugin based on the Liferay Chat
Portlet.

The Portlet might be divided into 2 parts; the Frontend and Backend
(Figure 1.3). They communicate with each other via AJAX.

14YUI – Yahoo User Interface is a free, open source JavaScript and CSS library for
building richly interactive web applications. [58]

11

1. State of the Art

Figure 1.3: Liferay Chat Portlet infrastructure

1.10.1 Communication

Liferay Chat Portlet sends two types of AJAX requests:

• receive – frontend sends an AJAX request every 4-8 seconds to check
if there is any change. Chat Poller Processor responds with a JSON
object containing a list of updated data (Figure 1.4). There is no

Figure 1.4: Poller Receive Request

12

1.10. Liferay Chat Portlet

way to explicitly trigger the receive action. Liferay has its own timer,
which repeats the given operation for each allotted amount of time.

The programmer usually starts poller. Liferay.Poller object’s method
addListener, also called by the programmer, is served with a para-
meter specifying a pointer to the custom callback method, which is
called whenever the poller receives a response.

• send – on the other hand, a way to send data to the backend side still
exists (Figure 1.5).

Liferay.Poller has a method called submitRequest(portletId, data, key).
Unfortunately, this method does not return any value. As a result,

Figure 1.5: Poller Send Request

there is no way to confirm success or failure of the given request
because no response (!) is received. Consequently, there is no other
way to receive data from the backend besides waiting for the response
of the receive action.

1.10.2 Frontend

The Frontend mainly consists of javascript components and a view page.
Although the javascript code is located in a single main.js file, it is divided
into separate classes. For future development, it would be necessary to split
the classes into separate files for the purpose of clarity.

1.10.3 Backend

The Backend has the following responsibilities:

• Request handling,

• User session management,

• List distribution of connected users,

• Message delivery,

• Jabber server integration.

13

1. State of the Art

User session management

Backend uses Liferay Hooks [37] to perform custom actions based on cir-
cumstances that might occur:

• LoginPostAction [40] – to obtain user credentials and login to the
Jabber server.

• SessionDestroyAction – to perform disconnect action on the Jabber
server.

• UserListener – to remove any chat data related to the user who is
being removed from the Liferay database.

Jabber server integration

One of the biggest advantages of the Liferay Chat Portlet is the support for
Jabber server integration. As described in documentation: “Jabber is the
original name of the XMPP (Extensible Messaging and Presence Protocol)
protocol, an open-standard communications protocol based on XML. Using
a chat server helps Liferay’s chat scale to very large installations and allows
for communication between different chat clients.”[44]

Jabber server integration is not enabled by default since it requires a
running Jabber server. It can be enabled in the portlet-ext.properties by
setting the jabber.enabled value to true. If the integration is enabled, the
backend distributes all messages to the Jabber server but also stores them
to the Liferay database. This behaviour may cause security issues. Also, it
is not necessary to store the same information on two separate databases.

Communication with the Jabber server is mutual. User A, who is using
Liferay Chat Portlet, may send a message to the user B, who is using another
Jabber client connected to the Jabber server and vice versa. However, only
the one-to-one communication is supported. As a result, no conversation
can have more than two participants.

Future improvement

Liferay Chat Portlet does not fulfil some of the project goals:

• Support for multi-user chat,

• Precise description of status (e.g. on-line, busy, unavailable),

• Possibility to turn the chat off.

14

1.10. Liferay Chat Portlet

Also, several issues were discovered during research:

• Open conversations disappear when the user moves to different page,

• User interface does not match University Information System design,

• Pure code quality,

• No documentation,

• Business logic in scriptlets.

More requests for improvement are listed here [34] and are also a part of
Liferay’s JIRA [45].

Overview

Current stable version: 1.0.2
Requirements: Liferay Portal 6.1 CE GA2+
Programming language: Java
Licence type: LGPL

15

Chapter 2

Analysis and Design

2.1 Functional requirements

1. Authentication via LDAP directory
User credentials will be authenticated via LDAP directory during the
login process to Liferay portal.

2. Concept of private conversations
Users will be able to create their own private conversations. The
creator of a conversation will have the option to choose participants
during the creation process. Afterwards, the creator becomes a reg-
ular participant. There is no need to explicitly distinguish between
the conversation owner and a regular member (although the XMPP
protocol has a direct support for this). Any participant will be able
to add other users to the conversation. Users not added by other
participants cannot become a participant. Any participant can leave
the conversation at any time.

3. Concept of public conversations
Users will become participants in public conversations based on sev-
eral circumstances. For example, if the student is signed up in the
Math class 2013 he will become a participant in the public room Math
2013. The given approach will lead to tighter social connections. Ac-
cordingly, students will have the option to discuss the class and share
their opinions with their schoolmates or even teachers in the automat-
ically created groups. Currently, two public rooms should be created:

a) Alumni Bachelor - public room containing users who graduated
with a bachelor degree

17

2. Analysis and Design

b) Alumni Master - public room containing users who graduated
with a master degree

4. People in conversation
Each conversation will have a list of participants and their current
status. As a result, each participant can quickly check if the other
participants are able to see his/her messages.

5. User status
Users will have the option to decide their current status (e.g. online,
busy, unavailable or offline).

6. Possibility to turn the chat off
If the user does not want to communicate with the others, the option
exists to turn chat off. The reverse should also be true to turn the
chat function on again.

7. New message notification
Users will be notified about incoming messages via:

a) extension of page title with the number of unread messages,

b) badge above particular panel with a number of unread messages,

c) audio notification.

The user will have the option to switch the audio notification off.

8. Adding other participants to the conversation
the user will have the option to add other participants to the conver-
sation.

9. Leave conversation
The user will have the option to leave the conversation.

10. GEXF file generation
The system will be able to generate a GEXF file with the information
about social ties between participants.

2.2 Project architecture

The project consists of several independent components with strictly defined
responsibilities. All of them have to communicate with each other extens-
ively in order to create the illusion of a real-time communication (Figure

18

2.2. Project architecture

Figure 2.1: Architecture

2.1). The following sections describe an overview of the project architecture,
its components, their responsibilities and the way they communicate.

Communication between the components is based on the following pro-
tocols: XMPP, HTTP (AJAX and REST). Communication between Open-
fire Data Mining Plugin and Gephi is based on the file transfer. The plugin
generates a single XML file, which can be opened via Gephi.

2.2.1 XMPP protocol

XMPP protocol is the main communication protocol between the Liferay
server (Smack API particularly) and the Openfire server. The definition of
the entire protocol is beyond the scope of this thesis. On the other hand, a
basic understanding of some principles is necessary for further reading.

JID

Jabber ID (usually abbreviated as JID) serves as a unique XMPP identifier.
It is made up of a node (generally a username), a domain, and a resource.
The node and resource are optional; the domain is required. In simple
ABNF1 form:

jid = [node "@"] domain ["/" resource]

1ABNF – Augmented Backus–Naur Form

19

2. Analysis and Design

Some sample JID’s:

user@example.com

user@example.com/home

example.com

Each allowable portion of a JID (node, domain, and resource) must not be
more than 1023 bytes in length, resulting in a maximum total size (including
the ’@’ and ’/’ separators) of 3071 bytes.

Resource

XMPP protocol supports multiple clients via resources [55]. As a result,
there is no need to have different accounts while logged in via different
clients. Each client may have its own resource identifier. For example, if
the user John Doe with account john.doe@example.com signs up via Liferay,
his JID will be:

john.doe@example.com/Liferay

Similarly, if he signs up via the other client, e.g. Pidgin the resource may
look like:

john.doe@example.com/Pidgin

Multi User Chat

Initially, instant messaging was meant to be a one-to-one rather than a
many-to-many chat. However, in 1999 Jabber group developed a multi user
chat protocol [52]. Since then, it has been possible to have a conversation
with multiple participants.

Service

XMPP extension XEP-0045: Multi-User Chat describes service as: “A host
that offers text-based conferencing capabilities; often but not necessarily a
sub-domain of an XMPP server (e.g., conference.jabber.org).”[52] It serves
as the hostname on which the multi-user chat service is running.

Room

A room is a virtual space that users figuratively enter in order to participate
in real-time, text-based conferencing with other users.

20

2.3. Openfire Server

Room has a unique identificator called “room JID” which is in a form of:

room@service

where room is the name of the room and service is the hostname at which
the multi-user chat service is running.

Some sample Room JID’s:

teachers@conference.example.com

alumni@conference.example.com

Each occupant in a room is identified with an “occupant JID” in a form of:

room@service/nick

where nick is the room nickname of the occupant as specified on entering
the room or subsequently changed during the occupant’s visit.

Some sample Occupant JID’s:

teachers@conference.example.com/john.doe

alumni@conference.example.com/peter.griffin

2.3 Openfire Server

Openfire is the heart of the whole architecture. It is responsible for the
following:

• List maintenance of private and public conversations,

• Storage of history,

• Management of user statuses,

• Message delivery,

• User session maintenance.

To fulfil project goals, its functionality will be extended via the Chat Plugin
and Data Mining Plugin. The first one will assure correct synchronization
between virtual groups on the KOS server and public rooms on the Openfire
side. The second one will create a Gephi compatible XML file based on the
user chat history.

21

2. Analysis and Design

2.3.1 Openfire plugin development

Plugins enhance the functionality of Openfire. Additionally, the developer
is able to access the internal API of the server which includes access to the
user or room management, history, handling of privileges and many other
useful features.

Each plugin has to maintain a predefined structure [29]. Moreover, plu-
gin icons and metadata files like readme.html, changelog.html and plugin.xml
must be included too.

The plugin.xml file is necessary for the description of plugin. It contains
definition of the main plugin class that will be called whenever the plugin
is initialized. Other metadata tags e.g. name, description, author, version,
date, url, minimal server version and license type can be set here too. They
usually serve as descriptive information in the plugin section of the admin
user interface. Thus it is good practice to complete them before taking the
plugin public.

Another important plugin.xml function is to define behavior of the ad-
min console, especially the left side bar. Each time the plugin is deployed
it appears as a link in the Server Settings menu. From the plugin.xml file
it is possible to define its id, name, description and url.

A plugin can be built and deployed via the Openfire build script. The
build script will compile source files and create a valid plugin structure and
JAR file, which is the only file needed during the deployment process.

2.3.2 Openfire Chat Plugin

The main responsibility of this plugin is to assure the correct synchroniz-
ation between virtual groups on the KOS server and public rooms on the
Openfire side. Currently, there is a requirement to assure the synchroniza-
tion of:

• Alumni Bachelors – users who graduated with the bachelor degree
and are no longer students of the University.

• Alumni Masters – users who graduated with the master degree and
are no longer students of the University.

Synchronizer

The synchronization process is handled by the Public Room Synchronizer
(Figure 2.2). The given object inquires Kos Wrapper about the list of

22

2.3. Openfire Server

Figure 2.2: Openfire Chat Plugin class diagram

Alumni Bachelors and Alumni Masters. Afterward, the given list is distrib-
uted to the Openfire Wrapper which creates related public rooms.

KOSApi

The Openfire Chat Plugin retrieves data from KOS. KOSapi [22] serves as
a bridge between KOS and the rest of the world. It provides an API in a
form of RESTful web service. The REST call, which returns a list of alumni
bachelor users is in this form:

/students?query=

studyTerminationReason==GRADUATION;

faculty=18000;

programme.type=BACHELOR

&limit=500

Similarly, for the list of alumni master users:

/students?query=

studyTerminationReason==GRADUATION;

faculty=18000;

programme.type=MASTER

&limit=500

23

2. Analysis and Design

Kos Wrapper encapsulates the logic which is needed to obtain data. The
Connection Manager serves as a connector to the KOSapi service. Kos
Parser analyzes the retrieved data in XML format and creates the appro-
priate objects.

2.4 Openfire Data Mining Plugin

The main function of the data mining plugin is to generate a GEXF file
based on the data from private conversations. GEXF [20] is a language for
describing complex network structures, their associated data and dynamics.

The Openfire Data Mining Plugin monitors communication between
users. Furthermore, based on the obtained data, it constructs complex
networks, which are described via the GEXF file. It might then be opened
in any editor which is compatible with the given file format (e.g. Gephi).

2.4.1 Network construction

To illustrate network construction, imagine the following scenario. Angela,
Brian and Chloe are together in a conversation (Figure 2.3). Angela sends
a message to Brian and Chloe. Message is wrapped in the envelope object
that contains information about the sender (from), recipient (to) and a total
number of messages that were exchanged between these two participants in
all conversations (count). The graph which is generated from the previous
communication has three nodes (A, B, C) and two edges (A-B, A-C).

Figure 2.3: Angela sends a message to Brian and Chloe

24

2.4. Openfire Data Mining Plugin

Each edge has a weight parameter, which represents the count of messages
exchanged between two nodes. Higher weight is visualized by a thicker line.

Later on, Angela sends another message (Figure 2.4). As we can see in
the picture below, the envelopes remain. Only the number of messages has
been incremented. Subsequently, the weight parameter is higher and the
lines between nodes are thicker.

Figure 2.4: Angela sends another message to Brian and Chloe

In the meantime, Angela and Chloe can have their own conversation without
Brian. Angela sends a message to Chloe (Figure 2.5). As expected, the
message count is incremented as well as the weight parameter. Moreover,
the line between nodes A and C is thicker but the line between A and B
remains.

Figure 2.5: Angela sends a message to Chloe

Last but not least, Chloe sends a message to Angela (Figure 2.6). In such
a case, a completely new independent envelope is created. The envelope

25

2. Analysis and Design

creation is thus bidirectional. On the other hand, the graph does not dis-
tinguish between these two envelopes and simply sums the count2.

Figure 2.6: Chloe sends a message to Angela

2.4.2 Generator

The generator object manages generation process (Figure 2.7). Firstly, it
collects all private rooms within the system from the Openfire Wrapper.
Furthermore, it constructs envelopes based on the chat history from the
private rooms. Finally, it passes the list of envelopes to the Gephi Wrapper
object which creates a GEXF file.

2.5 Liferay Chat Plugin

Liferay Chat Plugin serves as a client to the Openfire server (Figure 2.8).
It is divided into the backend and frontend side. The backend side is re-
sponsible for communication with the Openfire server and also for view
creation. The frontend side handles all user actions and communicates
with the backend via the AJAX calls. Liferay disposes of the own poller
mechanism, which was already described in the Liferay Chat Portlet section.

2This is not a dogmatic rule. Data Mining Plugin can be always modified to accept
bidirectional generation of network. It was simply not considered to be useful during the
analysis phase.

26

2.5. Liferay Chat Plugin

Figure 2.7: The generator object manages generation process

2.5.1 Backend

The backend is divided into four layers (Figure 2.8):

• Data Transfer Layer – contains Chat Portlet and Chat Poller Pro-
cessor objects. It is responsible for view creation during the initial
request and for communication with the frontend.

• Chat Util Layer – serves as an API to the Liferay Chat Plugin func-
tionality. All requests must be triggered via this layer. No objects
within the plugin can be accessed directly. It also serves as a bridge
between the transfer layer and jabber util layer. As a result, the
transfer layer is loosely coupled with the actual jabber implementa-
tion. Due to this fact, it is possible to change the jabber util layer
with no effect on the transfer layer side.

• Jabber Util Layer – serves as an API to the actual jabber implement-
ation.

• Jabber Layer – contains the actual jabber implementation. It com-
municates directly with the jabber server.

Liferay Chat Portlet has all the server logic located in scriptlets within
the view.jsp file. This is not considered as a good programming practice.
Moreover, there does not exist any controller class either. The server lo-
gic should be a part of the separate controller class and view should be
responsible for the representation of data. Therefore, Liferay Chat Plugin
implements separate Chat Portlet class which servers as a controller and is
responsible for the creation of View, which is in a form of JSP3 page.

3JSP – Java Server Page

27

2. Analysis and Design

Figure 2.8: Liferay Chat Plugin architecture

Conversation Container

Whenever the user logs in, the backend creates a Conversation Container
that contains all conversations in which the user participates. Furthermore,
it instantiates proper Conversation objects. The user is set as the owner
of each object (owner relationship on the Figure 2.9). Each conversation
stores all messages and participants that belong to it. Finally, it has a link
to the proper jabber room.

28

2.5. Liferay Chat Plugin

Figure 2.9: Liferay Chat Plugin conversation model

Database model

Some of the information needs to be stored in database (Figure 2.10). Each
user participates in several rooms and some of them are opened – visible on
the panel. Also, each user has a list of settings that belong to their account.

Figure 2.10: Database model

29

2. Analysis and Design

Room

The room table contains the following columns:

• roomJID – unique jabber id for the given room;

• roomType – describes room type. it has two possible values:

– jabber.room.type.private

– jabber.room.type.public

• roomName – public rooms usually have a name which is stored here;

• unreadMessages – number of unread messages within the conversation
that belong to the given room.

Opened Conversation

The opened conversation table contains this column:

• roomJID – unique jabber id for the room that belongs to the open
conversation.

Settings

The settings table contains the following columns:

• status – indicates current user’s status. Can have the following values:

– jabber.status.online

– jabber.status.busy

– jabber.status.unavailable

– jabber.status.off

• activeRoomType – indicates the tab which is selected by user in the
conversation list panel. There are two possible values:

– jabber.status.public

– jabber.status.private

• activePanelId – indicates active (open) panel;

• mute – set to 1 if the user does not want to be notified about the
incoming messages by playing a sound, 0 if otherwise;

• chatEnabled - set to 1 if chat plugin is enabled, 0 if otherwise.

30

2.5. Liferay Chat Plugin

2.5.2 Frontend

The frontend consists of multiple components, the manager object and a
view page. Firstly, the view page is rendered. At the end of the rendering
process, while all components are loaded, the manager object takes care of
the orchestration.

Figure 2.11: Fire an event via the Global Object

The components never call the manager directly (Figure 2.11). They al-
ways fire an event to the Global Object [57]. The manager then listens
to all events which might occur. As a result, the components are loosely
coupled with the manager. They only fire an event and do not care about
consequences.

The manager points to several objects (Figure 2.12). First of all, Poller
is responsible for the server side communication (backend). No other ob-
jects can use poller directly. They always fire an event that is captured by
the manager, which then uses poller if needed. The notification object is
responsible for the sound notifications on incoming messages, and the error
object shows or hides error messages. The manager also points to several
containers, which are responsible for the panel rendering.

Panels

The frontend view layer mainly consists of panels. A panel is an independent
visible area, which can be created statically from an already rendered html
markup or dynamically based on the user action or poller request. It has a
title, content and buttons that trigger display actions like hide, show, toggle
and close (Figure 2.13).

The panel is automatically set to the hidden state whenever it is cre-
ated. While the panel is hidden, only the panel trigger is visible. If a user
clicks on the trigger, the panel changes state to displayed (toggle action).
Concurrently, other panels are set to hidden. As a result, only one panel

31

2. Analysis and Design

Figure 2.12: Frontend architecture

can be displayed. Each visible panel consists of panel title, content, buttons
and trigger. The trigger always rotates between the hidden and displayed
state. The hide button hides the displayed panel and the close button sets
the panel to the closed state. The closed panel is destroyed and removed
from the container.

Figure 2.13: Frontend panel

32

2.5. Liferay Chat Plugin

Containers

The containers (Figure 2.14) encapsulate logic that is needed to handle
related panels. They also listen to the user actions and fire proper events
to the Global Object.

Figure 2.14: Frontend containers

Status container

The status container controls the status panel (Figure 2.15) where user
may select his/her status or turn chat off. The status container fires the
following events:

• statusUpdated – whenever user changes status.

Figure 2.15: Status panel

Buddy list container

The buddy list container controls the buddy list panel (Figure 2.16). The
given panel contains a list of all users who participate in conversations

33

2. Analysis and Design

where logged users participate too. Each line displays the user’s portrait,
full name and his/her current status. The List can be filtered via the search
bar.
The container fires the following events:

• buddyListUpdated - whenever the list of buddies is updated.

Figure 2.16: Buddy list panel

Settings container

The settings container controls the settings panel (Figure 2.17). The given
panel contains a list of all possible settings within the application. Cur-
rently there is only one option; to switch the notification sound on/off. The
container fires the following events:

• settingsUpdated - whenever the user changes any setting.

Figure 2.17: Settings panel

34

2.5. Liferay Chat Plugin

Conversations container

The conversation container has two responsibilities. It controls the panel
that shows a list of conversations where the user participates. Furthermore,
it provides a functionality to create a new conversation (Figure 2.18).

The panel contains both private and public conversations. It is possible
to switch between them thanks to the conversation type switch. Each row
of the conversation list contains a portrait of the last message sender, a list
of participants and the last message. The new conversation button opens a
new conversation menu.

Figure 2.18: Conversation list panel

The new conversation menu contains (Figure 2.19) a list of participants.
Initially, the list is empty. Whenever the user starts typing, the system
shows a dropdown list of possible buddies4, from which the user may select.
A participant may be removed from the list by clicking on the remove from
list button next to his/her name. A new conversation cannot be created if
there is no buddy on the list or if the message box is empty, and the system
warns the user whenever he/she wants to create a new conversation with
either an empty participant list or an empty message box. The container
fires the following events:

• newConversationCreated – whenever the user clicks on the send but-
ton (participant list and message box are not empty).

• conversationSelected – whenever the user clicks on a conversation in
the conversation list.

4Othe users within the system

35

2. Analysis and Design

• publicConversationSelected – whenever the user clicks on the public
conversation switch.

• privateConversationSlected – whenever the user clicks on the private
conversation switch.

Figure 2.19: New Conversation menu

Conversation sessions container

The conversation sessions container takes care of opened conversations. The
conversation is an extended panel (Figure 2.20) and its main responsibil-
ity is to show the message feed. Messages are sorted chronologically. The
oldest are at the top and the newest at the bottom. Each message con-
tains the participant’s portrait, his/her full name and a message timestamp
which shows the difference between the current time and the time when the
message was sent (e.g. 5 mins ago).

The top part of the conversation panel contains the portrait and full
name of the last message sender. Moreover, it contains several buttons
such as open menu, hide and close. The search bar is a part of the search
menu, which will be described later. If the user clicks on the close button,
the conversation disappears. To make it visible again, the user must click
on the given conversation in the conversation list panel.

The conversation panel also holds the following menus:

• Search menu – allows user to search for any phrase within the message
feed;

• Add to conversation menu – adds new participants to the conversa-
tion;

36

2.5. Liferay Chat Plugin

Figure 2.20: Conversation panel

• People in conversation menu – displays participants within the con-
versation;

• Leave conversation menu – allows user to leave the conversation.

2.5.3 Liferay Chat Portlet Extensions

The previous research revealed several missing features in Liferay Chat
Portlet:

• Support for multi-user chat,

• Precise description of status (e.g. on-line, busy, unavailable),

• Possibility to turn chat off,

• Opened conversations disappear when user moves to different page.

Based on the given circumstances, there is a need to extend the existing
functionality with the foregoing features. This will be achieved with the
Liferay Chat Plugin.

37

2. Analysis and Design

Multi User Chat Support

All conversations will be considered many-to-many conversations, even with
only two participants in the conversation. This will make it easier to add
more participants to the conversation.

Precise description of status

The user’s presence is described by the following status types:

• online – user is actively interested in chatting;

• busy – user is busy but still interested in chatting;

• unavailable – user is not interested in chatting but available in the
urgent situations;

• off – user is not logged in or he/she turned chat off.

XMPP protocol disposes of even more statuses. However, the aforemen-
tioned set of statuses was considered sufficient. The table 2.1 shows the
mapping between the XMPP and Liferay Chat Plugin statues.

Table 2.1: Status conversion table

Liferay Chat Plugin Status XMPP Status

online available

busy away

unavailable dnd

off unavailable

Possibility to turn the chat off

The Liferay Chat Portlet cannot be turned off. The absence of this feature,
as the chat portlet is visible on each portal page, might be considered
unpleasant for the user’s experience. Therefore, the Liferay Chat Plugin
will have an option to turn the chat off. Accordingly, if the chat is off no
other panels apart from the status panel will be visible.

However, the connection between the jabber server and chat plugin can-
not be disconnected because the user password is only reachable during the
login process. Hence If we disconnect from the jabber server there is no

38

2.5. Liferay Chat Plugin

possibility to reconnect again. Due to this fact, turning the chat off will
not trigger a disconnect action. It only sets user XMPP status to unavail-
able. Consequently, the user will still be connected to the jabber server but
he/she will not be shown as available.

Opened conversations disappear when user moves to different
page

Whenever the user goes to another page within the portal, all opened con-
versations disappear for a while. This is caused by a small gap5 between the
create view action and the initial response from the Chat Poller Processor.
To avoid this behavior, all panels on the frontend need to be rendered dur-
ing the create view action. On the other hand, the message feed may be
relatively long (thousands of messages). Moreover, the user may have mul-
tiple conversations open. If the server loads all messages during the create
view action it may slow down server responsiveness. Given these facts,
the message feed will be delivered at the initial request by the Chat Poller
Processor after the create view action (Figure 2.21).

Figure 2.21: Message feed loading

5Usually less than 5 seconds.

39

2. Analysis and Design

Due to this fact, the message feed does not contain messages until the
frontend receives initial response. This behavior may cause confusion, which
will be avoided by displaying the preloader until the message feed loads.

40

Chapter 3

Implementation

The following lines introduce the project from the implementation perspect-
ive. The analysis and design from the previous chapter described a general
view of the problem. From now on the focus will be on a specific imple-
mentation of each component.

3.1 Openfire Chat Plugin

The Openfire Chat Plugin synchronizes users from the virtual groups on
the KOS server with users in Openfire public rooms. To provide the given
functionality, it needs to collect the following information:

• Service name – name of the service all public rooms belong to;

• Public room prefix – to distinguish between public and private rooms;

• KOSapi URL – resource locator for the KOS REST service;

• KOSapi Username – login username for the KOS REST service;

• KOSapi Password – login password for the KOS REST service;

• Name of the alumni bachelor public room;

• Name of the alumni master public room.

The values are collected via the web form located on the Chat plugin set-
tings page. It also contains a button that triggers synchronization with
KOS virtual groups.

41

3. Implementation

The plugin consists of two servlets:

• Settings Servlet – responsible for the settings form;

• Kos Synchronization Servlet – responsible for the synchronization pro-
cess.

Servlets are defined in the web-custom.xml file. The given file also contains
servlet mappings to the url patterns. For example, the Settings Servlet is
mapped to the /settings url pattern and thus accessible at:

http://url.domain/settings

Settings Servlet

The Settings Servlet is responsible for the collection of properties from the
users via the web form. All properties are stored in the Openfire database
and further accessible via the Plugin Properties object. All properties are
thus persistent and should remain after the crash or restart of the server.

Kos Synchronization Servlet

Asynchronous requests from the Settings Servlet are handled via the Kos
Synchronization Servlet. Based on good coding standards, all the business
logic is located outside of the servlet itself in a separate class, the Pub-
lic Room Synchronizer, which takes control of the synchronization process
(Figure 3.1). At the end, the servlet sends a response with a JSON Object
that contains information about the success or failure of the process (Fig-
ure 3.2). The Javascript code on the frontend side is thus able to show the
possible success or error message.

Public Room Synchronizer

The Synchronizer takes responsibility for an orchestration of two objects -
Kos Wrapper and Openfire Wrapper. Basically, it requests data from the
first and then passes it to the second. If there is any problem during the
process it notifies Kos Synchronization Servlet about the failure by throwing
an exception (Figure 3.2).

42

3.1. Openfire Chat Plugin

Figure 3.1: Kos Synchronization Servlet class diagram

Kos Wrapper

All logic needed to handle the connection with the KOSapi service is located
within this object. It requests data from the KOSapi service by the REST
call and then parses the response and creates a list of users.

Figure 3.2: Kos Synchronization Servlet sequence diagram

43

3. Implementation

Openfire Wrapper

Any communication with the Openfire server is maintained via this class.
During the process of synchronization it takes a user list, room JID and
room name. If there is no room with the given JID, it creates a new one
and sets its name based on the parameter it receives.

3.2 Openfire Data Mining Plugin

Openfire Data Mining Plugin generates GEXF, which contains the data
needed for the social network analysis. Data is generated based on the
private conversations. The plugin thus operates with the Gephi and Open-
fire Wrapper classes. The generation process is controlled by the Generate
Servlet class.

Generate Servlet

The generator servlet has two responsibilities. Firstly, if a GET request
is received, it forwards to it the generate.jsp page. Secondly, if it receives
a POST request, it generates a GEXF file via the Generator object. The
Generator does not actually generate a file which gets saved in the file
system and distributed to user. Conversely, it writes the data directly into
the response output stream. To make it possible, the following lines of code
need to be added to the response to set a different content type and change
a response header:

response.setContentType("application/octet-stream");

response.setHeader("Content-Disposition",

"attachment; filename=graph.gexf");

As a result, the web browser automatically takes the output stream and
saves it as a graph.gexf file in the user’s file system.

Generator

Whenever the Generator Servlet (Figure 3.3) calls the generate() method
on the Generator object, it receives an output stream which contains the
desired graph. To make it possible, the Generator takes a list of private
rooms from the Openfire Wrapper object. Afterwards, it iterates through
the list and creates envelopes. The envelope list is then passed to the Gephi
Wrapper object, which constructs and returns the final graph (Figure 3.4).

44

3.2. Openfire Data Mining Plugin

Figure 3.3: Generator Servlet class diagram

Openfire Wrapper

The Openfire wrapper object has a simple role in this scenario. It retrieves
all private rooms from the Openfire server and returns them to the Gener-
ator object.

Figure 3.4: Generator Servlet sequence diagram

45

3. Implementation

Gephi Wrapper

The Gephi Wrapper is a little bit more complex. It receives a list of en-
velopes from the Generator object and the output stream. From the list
of envelopes, it creates a set of nodes1. Each node represents an individual
user. The set has no duplicates. Afterwards, it opens each envelope and
creates a linkage between nodes based on the from and to parameters. Then
it sets the weight parameter of each linkage based on the count parameter
of envelope. At the end of this process, the Gephi Wrapper generates a
graph into the output stream.

3.3 Liferay Chat Plugin

The Liferay Chat Plugin consists of the backend and frontend side. The
backend runs in a servlet container on the server. The frontend is in a form
of javascript code, which runs in the user’s web browser.

3.3.1 Backend

The backend copies the class structure from the analysis and design chapter
(Figures 3.5 and 3.6). The Openfire connection is accessible via the Con-
nection class which is a part of the Smack library.

The Jabber Implementation class holds a connection object for each
user who has logged in. Whenever the user logs out, the Connection object
is destroyed. The Chat Portlet class extends an MVCPortlet [17] from the
Spring Framework [18] library, which is already linked, to Liferay. The Chat
Poller Processor extends the Base Poller Processor, which is an integral part
of Liferay.

Moreover, the Jabber Implementation class holds a Conversation Con-
tainer that contains all conversations related to the particular user. Objects
which can be distributed to the frontend (e.g. Buddy, Message, Conversa-
tion and Room) implement JSONable interface with the toJSON() method.
Due to this approach, JSON mapping is handled within the object itself and
thus does not need to be done in the controller classes.

1Each envelope has a from and to parameter which contains the username

46

3.3. Liferay Chat Plugin

Figure 3.5: Backend class diagram

47

3. Implementation

Some objects need to be stored in database (e.g. Room). Liferay offers
the Service Builder [43] tool, which may be used for such purposes. It
automates the creation of interfaces and classes that are used by a given
portal or portlet. This includes code for EJBs, Spring, Persistence, and
Model. Persistence classes can be stored in the database2. The input to the
Service Builder is an XML file3 located in /WEB-INF/service.xml. Class
generation can be run via the ant tool:

ant build-service

The Builder then generates several classes to the /WEB-INF/service folder.
Those files are not allowed to be changed by the programmer. The classes
that can be modified are located in the /WEB-INF/src folder under the
*.service package.

Figure 3.6: Conversation class diagram

2Specifically, classes that implement the PersistedModel interface
3The DTD for the XML file can be found here: http://www.liferay.com/dtd/liferay-

service-builder 6 0 0.dtd

48

3.3. Liferay Chat Plugin

3.3.2 Frontend

The frontend mainly consists of javascript files located in the docroot/js
folder. All chat classes and libraries are dynamically loaded in the main.js
file4. After it loads all resources it initializes Liferay.Chat.Manager class by
calling its init() method. The class diagram is shown on the Figure 3.7. All
class names start with the Liferay.Chat prefix.

Alloy UI

The frontend fully exploits the Alloy UI framework functionality, which is
built on the top of the YUI framework. The Alloy uses the concept of sand-
boxes. First, the programmer defines which packages he/she wants to use.
Those packages are then used inside of the sandbox. This approach allows
the code to run as leanly as possible, and load only what is needed. Further-
more, the sandbox pattern ensures that the custom code does not pollute
the global scope of the page or interfere with other javascript libraries. The
sandbox can be created by the following code:

AUI().use(’aui-base’, ’anim’, function(A) {

// Custom code

});

AUI() creates a brand new AUI instance without any active modules. Those
are then listed inside the use() function. The last parameter has to be a
callback function. Parameter A, which is passed to the callback function,
is called the “Global object”. It stores all Alloy objects and classes. This
concept is crucial because all Alloy elements, events and functions are called
via this object.

4To avoid library inconsistence, it loads JQuery only if it is not already included by
some other component.

49

3. Implementation

Figure 3.7: Frontend class diagram

50

Chapter 4

Testing and Experiments

The project is currently in the testing phase. The following chapter de-
scribes tests and experiments that have already been performed. Moreover,
it includes issues, which have already been localized.

4.1 Unit testing

The unit testing is a popular way to test the source code. Unfortunately,
Liferay Chat Portlet, whose source code was used as a basis for the Liferay
Chat Plugin, does not support them. Therefore, they had to be implemen-
ted later1.

The unit tests are mostly used to test a simple application logic, typically
single methods [46]. However, the Liferay Chat Plugin does not contain
many instances of such application logic. It usually communicates with
multiple resources, which are located outside of the application environment
container (e.g. Openfire server or the frontend).

On the other hand, the architecture of the Liferay Chat Portlet consists
of nicely separated layers that can be easily replaced by the testing layers
(Figure 4.1). For example JabberUtil class communicates with Openfire via
the JabberImpl class, which implements the Jabber interface. Due to this
approach, it can be easily replaced with any other class that implements the
same interface. In our case, it is the JabberTestImpl class. The given class
simulates the behaviour of a real Jabber class but does not communicate
with the actual Jabber server. As a result, the programmer may run unit
tests on the particular component without the need of the Openfire server.

1The unit test are usually created at the beginning of the implementation process.

51

4. Testing and Experiments

Figure 4.1: JabberImpl class replaced with JabberTestImpl class

Currently, such layers are being developed. Due to them, it will be possible
to cover as much of the source code with the unit tests as desired.

4.2 Testing environment

The project is currently being tested in the faculty testing server infrastruc-
ture (Figure 4.2).

Figure 4.2: JabberImpl class replaced with JabberTestImpl class

52

4.3. Deployment

KOSapi is already in the production phase and accessible at the following
URL:

https://kosapi.fit.cvut.cz/api/3

Openfire server is fully functional and running at:

https://talk.fit.cvut.cz

The admin console of the Openfire server can be accessed at the same url
but via the 9091 port. Liferay is currently deployed on the development
server at the following URL:

http://liferay.is-dev.fit.cvut.cz

After the testing phase, the Liferay Chat Plugin will be deployed to the
stage server and later on to the production server at:

http://is.fit.cvut.cz

4.3 Deployment

During the testing phase plugins need to be deployed quite often. The
following text describes this process.

4.3.1 Liferay Chat Plugin

The plugin needs to be built before deployment. The Liferay Chat Portlet
is a part of the liferay-plugins repository [12]. The built process is thus
based on the development guide, which is located within the repository2.
Before you start the building process follow these steps:

For demonstration purposes, let’s pretend your user name is joe and you
have a Liferay instance bundled with Apache Tomcat running in your
/home/joe/ directory.

2Liferay Chat Plugin is currently build via the Ant tool. The build process is thus
quite complicated. However, Ant will be replaced with Maven as a part of the future
improvements.

53

4. Testing and Experiments

1. Fork the liferay-plugins repository [12].

2. Clone your fork of the repository.

3. Create a textbuild.[username].properties file in the root directory of
your liferay-plugins repository clone. Be sure to replace [username]
with your user name. The file path should be similar to:

/home/joe/liferay-plugins/build.joe.properties

4. In your build.[username].properties file, specify the app.server.dir

property set to the path of your app server:

app.server.dir =

/home/joe/liferay-portal-6.1.1-ga2/tomcat-7.0.27

5. Replace the /home/joe/liferay-plugins/portlets/chat-portlet folder with
the similar folder from the enclosed DVD.

6. Edit the chat-portlet/docroot/WEB-INF/src/portlet-ext.properties file.
The following lines show the example which works within the testing
environment which was described before:

jabber.host=talk.fit.cvut.cz

jabber.port=5222

jabber.service.name=talk.fit.cvut.cz

jabber.service.multichat.name=conference.talk.fit.cvut.cz

jabber.resource=Liferay

jabber.sock5.proxy.enabled=false

jabber.sock5.proxy.port=-1

jabber.prefix.private=private_

jabber.prefix.public=public_

7. Modify the webapps/ROOT/WEB-INF/classes/portal-ext.properties
file which is located in the tomcat directory. The file suppose to
define the portlet.add.default.resource.check.whitelist prop-
erty which should contain the chat portlet identifier:

1_WAR_chatportlet

If there is no such property or if it does not contain the identifier copy
the following line into the file:

portlet.add.default.resource.check.whitelist=3,

56_INSTANCE_0000,58,82,86,87,88,103,113,145,164,166,170,

177,1_WAR_chatportlet

54

4.3. Deployment

8. Navigate to the directory of a plugin and deploy it using Ant:

cd /home/joe/liferay-plugins/portlets/chat-portlet

ant deploy

The plugin compiles, its WAR file is built to the plugin’s dist directory.

To deploy the WAR file within the testing environment follow the steps:

1. Copy the file from your local drive to the development server:

scp -P 2210 chat-portlet-6.1.0.1.war

username@is.fit.cvut.cz:

2. Login to the server:

ssh -p 2210 username@is.fit.cvut.cz

3. Copy the file to the Liferay’s deploy folder:

sudo -u liferay cp chat-portlet-6.1.0.1.war

/opt/liferay/deploy

4.3.2 Openfire plugins

According to the Openfire Plugin Developer Guide, all Openfire plugins
must be deployed as JAR or WAR files. When a JAR or WAR is not
present for the plugin, Openfire assumes that the file has been deleted and
that the user wants to destroy the plugin, so it also deletes the directory.
To build the JAR file follow the steps:

1. Download the latest Openfire source code [26].

2. Remove all unnecessary plugins from the src/plugins directory except
of the admin plugin.

3. Go to the openfire folder and build the openfire server:

ant openfire

4. Copy the chat plugin and the data mining plugin source code from
the enclosed DVD into the src/plugins directory.

5. Copy the modified build file from the enclosed DVD into the build
folder.

6. Build plugins:

ant plugins

55

4. Testing and Experiments

The plugins compile and their JAR files are built to the target/openfire/plugins
directory. The given files can be uploaded to the Openfire via the admin
console as described in the user guide.

4.4 Known issues

This chapter discusses the issues that have appeared during the testing
phase.

Message thread does not load

Problem: This problem occurs accidentally. Sometimes if the user jumps to
a different page, and the conversation panel is open, the message feed does
not load.

Possible solution: It probably has something to do with the chat poller
concept. Because of the performance issues, the message feed is loaded at
the initial response. All other responses contain newly added messages only.
If the initial response fails, then the message feed does not appear within
the conversation panel.

User is not logged out from the Openfire server properly

Problem: If the user closes the web browser window, his/her status is not
changed to unavailable on the Openfire server side.

Possible solution: When users close the web browser window, his/her status
is changed to jabber.status.off on the Liferay Chat Plugin backend side only.
It should be changed on the Openfire server as well. On the other hand,
Openfire has a timer which sets the status to unavailable after 2 minutes of
user inactivity.

Possible memory leak

Problem: During the deployment process the following message appears:

The web application [/chat-portlet] appears to have started a

thread named [Smack Packet Reader (1)] but has failed to stop

it. This is very likely to create a memory leak.

Possible solution: The given problem is inherited from the Liferay Chat
Portlet. It should be tested and repaired soon.

56

4.5. Experiments

4.5 Experiments

During the testing phase, several experiments with the data mining plugin
and the social network analysis were performed. For example, figure 4.3
shows the result of the community analysis3 experiment. The GEXF file
was generated via the Openfire Data Mining plugin and opened in Gephi.
The graph has six nodes – students and several edges, which display the
communication between them. Afterwards, the community analysis was
performed. The resulting graph has shown two communities – red and
blue.

Figure 4.3: The community analysis experiment

The given results might, for example, identify groups of friends within the
University based on the their frequent communication. The given results
might be used during the composition of the student’s schedule, e.g. the
system might automatically put friends in the same class.

The traditional method for identifying communities in networks is hier-
archical clustering: “Given a set of N nodes to be clustered, and an N x N
distance (or similarity) matrix, the basic process of hierarchical clustering
is this: Start by assigning each node its own cluster, so that if you have
N nodes, you now have N clusters, each containing just one node. Let the
distances between the clusters equal the distances between the nodes they
contain. Find the closest (or most similar) pair of clusters and merge them
into a single cluster, so that now you have one less cluster. Compute dis-

3The community analysis studies strong social ties within the network.

57

4. Testing and Experiments

tances between the new cluster and each of the old clusters. Repeat until
all nodes are clustered into a single cluster of size N” [3].

Figure Y. shows another example of a much bigger dataset [54] which
contains many nodes, edges and thus more communities.

Figure 4.4: Large dataset with multiple communities

58

Conclusion

The requirements of this project were successfully met. The newly cre-
ated communication system aims to be a frequently used channel that will
connect multiple groups like students, teachers, employees and alumni.

The final product contains three independent plugins:

• Liferay Chat Plugin,

• Openfire Chat Plugin,

• Openfire Data Mining Plugin.

The given plugins form a modern instant messaging communication system
in the environment of the Liferay portal. The Liferay Chat Plugin consists
of a modern javascript interactive user interface and a backend server side,
which is responsible for correct message delivery, conversation creation and
communication with the Openfire server.

All conversations are stored on a separate, secured Openfire server.
Therefore, it is possible to perform a social network analysis on the data
located in the server database via the Open Chat Data Mining Plugin to
show key social patterns that can be used for a variety of different research
purposes. The given plugin generates a GEXF file that describes the con-
nections between participants within private conversations.

The plugins were successfully tested in the emerging University Inform-
ation System infrastructure. Therefore, they are ready for the production
environment.

59

Conclusion

Future improvements

One-to-one conversations

Currently, all conversations are considered to be many-to-many, which
makes it is easier to add new participants to a conversation. On the other
hand, the XMPP protocol implements a different approach for either one-
to-one or many-to-many conversations. This results in the fact that if the
user wants to connect to the Openfire server with a different client than the
Liferay Chat Plugin, he/she cannot chat with other participants directly.
They must always create a multi- user chat room via Liferay first.

The next version of the Liferay Chat Plugin thus needs to implement
both one-to-one and many-to-many conversations. Conversations which
contains two participants will be handled as one-to-one. Conversations with
more than two participants will be automatically considered as many-to-
many. If users add new participants to the existing one-to-one conversation,
it will be converted to a many-to-many format but not vice versa.

Open conversation by clicking on the user name or

portrait

During the testing process it was discovered that users usually tend to create
a new conversation by clicking on the buddy’s username or portrait.

Therefore, the next version should implement this feature. If the user
clicks on a buddy’s username or portrait, the system will check if there is
already a one-to-one conversation between those two participants. If so, it
opens the given conversation. If not, it creates a new conversation. It should
also be mentioned that the implementation of a one-to-one conversation is
a prerequisite for this particular improvement.

Signalization of undelivered messages

Currently, there is no signalization of undelivered messages. Whenever the
user sends a message that was not delivered to the server4, the system
should show a warning message. There should also be a resend option.

Signalization of an event when the user starts typing

There should be a signalization of an event when the user starts typing.
The improvement cannot be implemented yet because the poller sends a

4Due to the e.g. connection problems

60

Future improvements

request every 4-8 seconds. The given time interval is simply too long. A
possible solution would be to replace the Poller mechanism with the Comet
model.

Comet model

The Poller mechanism, which is currently used, works on a ping-pong
scheme. The frontend sends a request to the backend every 4-8 seconds
(ping). The server responds immediately (pong). The ping interval can-
not be shorter because server might be overloaded by a huge number of
requests. On the other hand, the frontend cannot be notified about any
change until it sends another request. The given downside might again be
overcome by the comet model.

Figure 4.5: Comet AJAX mechanism

The comet mechanism is based on long-held HTTP requests (Figure 4.5).
Due to this approach, the server can send data to the browser, without
the browser explicitly requesting it. Comet has many implementations and
techniques. Based on the requirements of this project, I would recommend
using AJAX with a long polling approach. Although Liferay already sup-
ports comet integration [35], it is not well documented and thus needs more
research.

61

Conclusion

Recurrent update of the message timestamp

The message timestamp (Figure 4.6) is updated on the full page refresh
only. It would be appropriate to create a timer on the frontend side which
would update the given timestamp every 30 seconds.

Figure 4.6: The message timestamp

62

References

[1] ALLOYUI: AlloyUI 2.0.0pr5. [software] [access 2013-05-07]. Available
at WWW: <http://alloyui.com/>

[2] APPLE, INC.: Apple (United Kingdom) – iPhone 5 - Learn
about apps from the App Store. [online] c2013 [cit. 2013-05-07].
Available at WWW: <https://www.apple.com/uk/iphone/from-

the-app-store/>

[3] ARENAS, A.; DANON, L.; D’IAZ-GUILERA, A.; etc.: Com-
munity analysis in social networks. The European Physical Journal B,
volume 38, May 2004: pp. 373–380, doi:10.1371/journal.pone.0023176,
ISSN 1434-6028

[4] FACEBOOK, INC.: Facebook. [online] c2013 [cit. 2013-05-07]. Avail-
able at WWW: <http://facebook.com>

[5] FACEBOOK, INC.: Facebook Chat. [online] c2013 [cit. 2013-05-
07]. Available at WWW: <https://www.facebook.com/sitetour/

chat.php>

[6] FICAROLA, Francesco: gexf4j 0.4.2-BETA. [software] [access 2013-
05-07]. Available at WWW: <https://github.com/francesco-

ficarola/gexf4j>

[7] FICAROLA, Francesco: Gexf4j, a new Java library to create GEXF
files — Gephi. [online] c2008-2012, last revision 21st of May 2012
[cit. 2013-05-07]. Available at WWW: <https://gephi.org/2012/

gexf4j-a-new-java-library-to-handle-gexf-file-format/>

[8] GEPHI CONSORTIUM: Gephi. [online] c2008-2012 [cit. 2013-05-07].
Available at WWW: <http://gephi.org>

[9] GEPHI CONSORTIUM: Gephi 0.8.2-beta. [software] [access 2013-05-
07] User requirements: 500 MHz CPU, 128 MB RAM, OpenGL 1.2.
Available at WWW: <https://gephi.org/users/download/>

63

http://alloyui.com/
https://www.apple.com/uk/iphone/from-the-app-store/
https://www.apple.com/uk/iphone/from-the-app-store/
http://facebook.com
https://www.facebook.com/sitetour/chat.php
https://www.facebook.com/sitetour/chat.php
https://github.com/francesco-ficarola/gexf4j
https://github.com/francesco-ficarola/gexf4j
https://gephi.org/2012/gexf4j-a-new-java-library-to-handle-gexf-file-format/
https://gephi.org/2012/gexf4j-a-new-java-library-to-handle-gexf-file-format/
http://gephi.org
https://gephi.org/users/download/

References

[10] GEPHI CONSORTIUM: Supported Graph Formats — Gephi, open
source graph visualization software. [online] c2008-2012 [cit. 2013-05-
07]. Available at WWW: <https://gephi.org/users/supported-

graph-formats/>

[11] GITHUB, INC.: liferay (Liferay Inc.) · GitHub. [online] c2013 [cit.
2013-05-07]. Available at WWW: <https://github.com/liferay>

[12] GITHUB, INC.: liferay/liferay-plugins · GitHub. [online] c2013, last re-
vision 9th of May 2013 [cit. 2013-05-07]. Available at WWW: <https:
//github.com/liferay/liferay-plugins>

[13] GOOGLE, INC.: Android Apps on Google Play. [online] c2013
[cit. 2013-05-07]. Available at WWW: <https://play.google.com/

store>

[14] GOOGLE, INC.: Google +. [online] [cit. 2013-05-07]. Available at
WWW: <https://plus.google.com/>

[15] GOOGLE, INC.: Google Talk - About. [online] c2011 [cit. 2013-05-07].
Available at WWW: <http://www.google.com/talk/about.html>

[16] GOOGLE, INC.: Video chat with up to nine friends - Google+. [online]
[cit. 2013-05-07]. Available at WWW: <http://www.google.com/+/

learnmore/hangouts>

[17] GOPIVOTAL, INC.: Chapter 16. Portlet MVC Framework.
[online] c2013 [cit. 2013-05-07]. Available at WWW: <http:

//static.springsource.org/spring/docs/2.0.8/reference/

portlet.html>

[18] GOPIVOTAL, INC.: SpringSource.org. [online] c2013 [cit. 2013-05-07].
Available at WWW: <http://www.springsource.org/>

[19] HANSEND, D.; SHNEIDERMAN, B.; SMITH, M.: Analyzing social
media networks with NodeXL: insights from a connected world. Burl-
ington: Morgan Kaufmann, first edition, 2011, 284 pp., ISBN 978-0-
12-382229-1

[20] HEYMANN, S.; BASTIAN, M.: GEXF File Format. GEXF Working
Group, [online] c2009 [cit. 2013-05-07]. Available at WWW: <http:
//gexf.net/format>

[21] IETF: Internet Engineering Task Force (IETF). [online] [cit. 2013-05-
07]. Available at WWW: <http://www.ietf.org>

64

https://gephi.org/users/supported-graph-formats/
https://gephi.org/users/supported-graph-formats/
https://github.com/liferay
https://github.com/liferay/liferay-plugins
https://github.com/liferay/liferay-plugins
https://play.google.com/store
https://play.google.com/store
https://plus.google.com/
http://www.google.com/talk/about.html
http://www.google.com/+/learnmore/hangouts
http://www.google.com/+/learnmore/hangouts
http://static.springsource.org/spring/docs/2.0.8/reference/portlet.html
http://static.springsource.org/spring/docs/2.0.8/reference/portlet.html
http://static.springsource.org/spring/docs/2.0.8/reference/portlet.html
http://www.springsource.org/
http://gexf.net/format
http://gexf.net/format
http://www.ietf.org

References

[22] JIRŮTKA, Jakub: Main - KOSapi - Projekt KOSapi. [online] last
revision 29th of May 2013 [cit. 2013-05-07]. Available at WWW:
<https://kosapi.fit.cvut.cz/projects/kosapi/wiki>

[23] JIVE SOFTWARE: Ignite Realtime: About. [online] [cit. 2013-05-
07]. Available at WWW: <http://www.igniterealtime.org/about/
index.jsp>

[24] JIVE SOFTWARE: Ignite Realtime: Openfire Server. [online] [cit.
2013-05-07]. Available at WWW: <http://www.igniterealtime.org/
projects/openfire/index.jsp>

[25] JIVE SOFTWARE: Ignite Realtime: Smack API. [online] [cit.
2013-05-07]. Available at WWW: <http://www.igniterealtime.org/
projects/smack/index.jsp>

[26] JIVE SOFTWARE: Ignite Realtime: Source Code. [online] [cit.
2013-05-07]. Available at WWW: <http://www.igniterealtime.org/
downloads/source.jsp>

[27] JIVE SOFTWARE: Openfire 3.8.1. [software] [access 2013-05-07].
Available at WWW: <http://www.igniterealtime.org/downloads/
index.jsp>

[28] JIVE SOFTWARE: Openfire: Installation Guide. [online] [cit. 2013-05-
07]. Available at WWW: <http://www.igniterealtime.org/builds/
openfire/docs/latest/documentation/install-guide.html>

[29] JIVE SOFTWARE: Openfire: Plugin Developer Guide. [online] [cit.
2013-05-07]. Available at WWW: <http://www.igniterealtime.org/
builds/openfire/docs/latest/documentation/plugin-dev-

guide.html>

[30] JIVE SOFTWARE: Openfire: Protocol Support. [online] [cit. 2013-05-
07]. Available at WWW: <http://www.igniterealtime.org/builds/
openfire/docs/latest/documentation/protocol-support.html>

[31] JIVE SOFTWARE: Smack 3.3.0. [software] [access 2013-05-07].
Available at WWW: <http://www.igniterealtime.org/downloads/
index.jsp>

[32] KRAUT, R.; BRYNIN, M.; KIESLER, S.: Computers, Phones, and the
Internet: Domesticating Information Technology. USA: Oxford Univer-
sity Press, first edition, 2006, 344 pp., ISBN 978-0-195-17963-7

65

https://kosapi.fit.cvut.cz/projects/kosapi/wiki
http://www.igniterealtime.org/about/index.jsp
http://www.igniterealtime.org/about/index.jsp
http://www.igniterealtime.org/projects/openfire/index.jsp
http://www.igniterealtime.org/projects/openfire/index.jsp
http://www.igniterealtime.org/projects/smack/index.jsp
http://www.igniterealtime.org/projects/smack/index.jsp
http://www.igniterealtime.org/downloads/source.jsp
http://www.igniterealtime.org/downloads/source.jsp
http://www.igniterealtime.org/downloads/index.jsp
http://www.igniterealtime.org/downloads/index.jsp
http://www.igniterealtime.org/builds/openfire/docs/latest/documentation/install-guide.html
http://www.igniterealtime.org/builds/openfire/docs/latest/documentation/install-guide.html
http://www.igniterealtime.org/builds/openfire/docs/latest/documentation/plugin-dev-guide.html
http://www.igniterealtime.org/builds/openfire/docs/latest/documentation/plugin-dev-guide.html
http://www.igniterealtime.org/builds/openfire/docs/latest/documentation/plugin-dev-guide.html
http://www.igniterealtime.org/builds/openfire/docs/latest/documentation/protocol-support.html
http://www.igniterealtime.org/builds/openfire/docs/latest/documentation/protocol-support.html
http://www.igniterealtime.org/downloads/index.jsp
http://www.igniterealtime.org/downloads/index.jsp

References

[33] LIFERAY, INC.: About Portlets - Wiki - Liferay.com. [online] c2013,
last revision 9th of October 2011 [cit. 2013-05-07]. Available at
WWW: <http://www.liferay.com/community/wiki/-/wiki/Main/

About+Portlets>

[34] LIFERAY, INC.: Chat Improvements - Wiki - Liferay.com. [on-
line] c2013, last revision 14th of February 2013 [cit. 2013-05-07].
Available at WWW: <http://www.liferay.com/community/wiki/-/
wiki/Proposals/Chat+Improvements>

[35] LIFERAY, INC.: Comet Integration - Wiki - Liferay.com. [on-
line] c2013, last revision 6th of June 2011 [cit. 2013-05-07].
Available at WWW: <http://www.liferay.com/community/wiki/-/
wiki/1071674/Comet+Integration>

[36] LIFERAY, INC.: Enterprise open source portal and collaboration
software. - Liferay.com. [online] c2013 [cit. 2013-05-07]. Available at
WWW: <http://www.liferay.com>

[37] LIFERAY, INC.: Hooks - Development - Liferay.com. [online] c2013
[cit. 2013-05-07]. Available at WWW: <http://www.liferay.com/

documentation/liferay-portal/6.0/development/-/ai/hooks>

[38] LIFERAY, INC.: Liferay Portal 6.1 Community Edition GA2.
[software] [access 2013-05-07]. Available at WWW: <http://

www.igniterealtime.org/downloads/index.jsp>

[39] LIFERAY, INC.: Marketplace - Liferay.com. [online] c2013
[cit. 2013-05-07]. Available at WWW: <http://www.liferay.com/

marketplace>

[40] LIFERAY, INC.: Performing a Custom Action - Development -
Liferay.com. [online] c2013 [cit. 2013-05-07]. Available at WWW:
<http://www.liferay.com/documentation/liferay-portal/6.0/

development/-/ai/performing-a-custom-action>

[41] LIFERAY, INC.: Plugin Management - User Guide -
Liferay.com. [online] c2013 [cit. 2013-05-07]. Available at WWW:
<http://www.liferay.com/documentation/liferay-portal/6.1/

user-guide/-/ai/lp-6-1-ugen15-plugin-management-0>

[42] LIFERAY, INC.: Portal, Content, and Collaboration for the En-
terprise. - Liferay.com. [online] c2013 [cit. 2013-05-07]. Available
at WWW: <http://www.liferay.com/products/liferay-portal/

overview>

66

http://www.liferay.com/community/wiki/-/wiki/Main/About+Portlets
http://www.liferay.com/community/wiki/-/wiki/Main/About+Portlets
http://www.liferay.com/community/wiki/-/wiki/Proposals/Chat+Improvements
http://www.liferay.com/community/wiki/-/wiki/Proposals/Chat+Improvements
http://www.liferay.com/community/wiki/-/wiki/1071674/Comet+Integration
http://www.liferay.com/community/wiki/-/wiki/1071674/Comet+Integration
http://www.liferay.com
http://www.liferay.com/documentation/liferay-portal/6.0/development/-/ai/hooks
http://www.liferay.com/documentation/liferay-portal/6.0/development/-/ai/hooks
http://www.igniterealtime.org/downloads/index.jsp
http://www.igniterealtime.org/downloads/index.jsp
http://www.liferay.com/marketplace
http://www.liferay.com/marketplace
http://www.liferay.com/documentation/liferay-portal/6.0/development/-/ai/performing-a-custom-action
http://www.liferay.com/documentation/liferay-portal/6.0/development/-/ai/performing-a-custom-action
http://www.liferay.com/documentation/liferay-portal/6.1/user-guide/-/ai/lp-6-1-ugen15-plugin-management-0
http://www.liferay.com/documentation/liferay-portal/6.1/user-guide/-/ai/lp-6-1-ugen15-plugin-management-0
http://www.liferay.com/products/liferay-portal/overview
http://www.liferay.com/products/liferay-portal/overview

References

[43] LIFERAY, INC.: Service Builder - Wiki - Liferay.com. [online]
c2013, last revision 16th of June 2011 [cit. 2013-05-07]. Available at
WWW: <http://www.liferay.com/community/wiki/-/wiki/Main/

Service+Builder>

[44] LIFERAY, INC.: Staying in touch with the Chat - User Guide -
Liferay.com. [online] c2013 [cit. 2013-05-07]. Available at WWW:
<http://www.liferay.com/documentation/liferay-portal/6.1/

user-guide/-/ai/ch-4>

[45] LIFERAY, INC.: System Dashboard - Liferay Issues. [online] [cit. 2013-
05-07]. Available at WWW: <http://issues.liferay.com/>

[46] LORENZ, Jesse: How to Write Good Unit Tests - developer.force.com.
[online] c2000-2013 [cit. 2013-05-07]. Available at WWW: <http://
wiki.developerforce.com/page/How to Write Good Unit Tests>

[47] LUNDGREN, E.; CAVANAUGH, N.: AlloyUI. ALLOY, [online] [cit.
2013-05-07]. Available at WWW: <http://alloyui.com>

[48] MAGSINO, Sammantha: Applications of Social Network Analysis for
Building Community Disaster Resilience : Workshop Summary. Wash-
ington, DC, USA: National Academies Press, 2009, 82 pp., ISBN 0-309-
14094-3

[49] OBJECT MANAGEMENT GROUP, INC.: Object Management
Group – UML. [online] c1997-2013, last revision 15th of April 2013
[cit. 2013-05-07]. Available at WWW: <http://uml.org>

[50] ORACLE CORPORATION: JSR-000286 Portlet Specification 2.0 -
Final Release. [online] c2013 [cit. 2013-05-07]. Available at WWW:
<http://jcp.org/aboutJava/communityprocess/final/jsr286/>

[51] REID, N.; SMITH, B. W.: Social network analysis. Economic De-
velopment Journal, volume 8, no. 3, Summer 2009, pp. 48–55, ISSN
15391922.

[52] SAINT-ANDRE, P.: XEP-0045: Multi-User Chat. XMPP STAND-
ARDS FOUNDATION, [online] c1999-2013, last revision 8th of Feb-
ruary 2012 [cit. 2013-05-07]. Available at WWW: <http://xmpp.org/
extensions/xep-0045.html>

[53] SEZOV, Rich: Liferay in Action: The Official Guide to Liferay Portal
Development. Shelter Island, NY, USA: Manning Publications, first
edition, 2012, 376 pp., ISBN 9781935182825

67

http://www.liferay.com/community/wiki/-/wiki/Main/Service+Builder
http://www.liferay.com/community/wiki/-/wiki/Main/Service+Builder
http://www.liferay.com/documentation/liferay-portal/6.1/user-guide/-/ai/ch-4
http://www.liferay.com/documentation/liferay-portal/6.1/user-guide/-/ai/ch-4
http://issues.liferay.com/
http://wiki.developerforce.com/page/How_to_Write_Good_Unit_Tests
http://wiki.developerforce.com/page/How_to_Write_Good_Unit_Tests
http://alloyui.com
http://uml.org
http://jcp.org/aboutJava/communityprocess/final/jsr286/
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0045.html

References

[54] STEHLÉ, J.; VIORIN, N.; BARRAT, A.; etc.: High-Resolution
Measurements of Face-to-Face Contact Patterns in a Primary School.
PLOS ONE, volume 6, no. 8, 08 2011: p. e23176, doi:10.1371/
journal.pone.0023176, [online] [cit. 2013-05-07]. Available at WWW:
<http://dx.doi.org/10.1371/journal.pone.0023176>

[55] XMPP STANDARDS FOUNDATION: Jabber Resources - XMPP
Wiki. [online] last revision 23rd of February 2010 [cit. 2013-
05-07]. Available at WWW: <http://wiki.xmpp.org/web/

Jabber Resources>

[56] XMPP STANDARDS FOUNDATION: The XMPP Standards Found-
ation. [online] [cit. 2013-05-07]. Available at WWW: <http://

xmpp.org>

[57] YAHOO, INC.: YUI Global Object - YUI Library. [online] c2006-2013
[cit. 2013-05-07]. Available at WWW:<http://yuilibrary.com/yui/
docs/yui>

[58] YAHOO, INC.: YUI Library. [online] c2006-2013 [cit. 2013-05-07].
Available at WWW: <http://yuilibrary.com/>

68

http://dx.doi.org/10.1371/journal.pone.0023176
http://wiki.xmpp.org/web/Jabber_Resources
http://wiki.xmpp.org/web/Jabber_Resources
http://xmpp.org
http://xmpp.org
http://yuilibrary.com/yui/docs/yui
http://yuilibrary.com/yui/docs/yui
http://yuilibrary.com/

Appendix A

Acronyms

AJAX Asynchronous JavaScript and XML

ABNF Augmented Backus–Naur Form

AOL America Online

API Application Programming Interface

CDDL Common Development and Distribution License

CSS Cascading Style Sheets

CSV Comma-separated Values

DTD Document Type Definition

EJB Enterprise Java Beans

GDF Geographic Data Files

GEXF Graph Exchange XML Format

GML Graph Modelling Language

GPL General Public License

HSQL Hyper Structured Query Language

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

ICQ I Seek You

69

A. Acronyms

IETF Internet Engineering Task Force

IM Instant Messaging

JAR Java Archive

JID Jabber Identificator

JSON JavaScript Object Notation

JSP Java Server Pages

KOS Komponenta Student

LDAP Lightweight Directory Access Protocol

LGPL Lesser General Public License

MVC Model View Controller

REST Representational State Transfer

RTC Real Time Communication

SNA Social Network Analysis

SSL Secure Sockets Layer

TLS Transport Layer Security

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

WAR Web Archive

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

YUI Yahoo! User Interface

70

Appendix B

User guide

B.1 Liferay Chat Plugin

The Chat interface is visible at the bottom right part of the screen B.1.
It is divided into the static and dynamic part. The static part contains
a Conversations List, Settings, Buddy List and Status Panel, which will
always be visible1. The dynamic part might be hidden2 or may contain any
number of conversations.

Figure B.1: Chat interface

Open panel: Click on the panel icon or title.

Minimize panel: There are several options to minimize the panel:

• Click on the minimize button at the top right part of the panel.
• Click on any other panel icon or text3.
• Click on any currently open panel icon or text.

1Although, If the chat is turned off they will be hidden.
2If there are no opened conversations.
3There might be only one panel opened at the same time. If you click on any other

panel, the current panel will be minimized.

71

B. User guide

Close panel: Click on the close button at the top right part of the panel.

B.1.1 Status

Status shows your current level of availability. You can be either:
Online - available, ready for chat.
Busy - busy, but still interested in chatting.
Unavailable - available in the urgent situations, not interested in chatting
Off - you are not logged in or you turned the chat off

Figure B.2: Status panel

What is my current status? Your current status is displayed as a circular
icon at the rightmost part of the chat interface. It can be distinguished by a
color4 or by a tooltip which is displayed whenever you point a cursor above
the circular icon.

Change status:

1. Open the status panel (Figure B.2).
2. Click on the status you want to change.
3. Current status indicator will be changed based on the status you have

selected.

Turn the chat off:

1. Open the status panel.
2. Choose “Turn off chat” option.
3. All panels except the status panel will be closed and the chat will be

turned off.

4green – available; yellow – bussy; red – unavailable

72

B.1. Liferay Chat Plugin

Turn the chat on:

1. Open the status panel.
2. Select one of the statuses (e.g. Online, Busy, Unavailable).

B.1.2 Buddy list

The buddy list (Figure B.3) aggregates all participants who are in the same
conversations as the user. Each item on the list contains the user’s avatar,
full user name and current status indicator. Users can be filtered via the
search box.

Filter buddies:

1. Click on the search box.
2. Start typing the buddy’s name.
3. The list will be filtered based on the search phrase.

Remove filter Clear search phrase.

Figure B.3: Buddy list panel

B.1.3 Settings

Whenever you receive a new message in a conversation, which is not open,
the system plays a notification sound. This option can be turned on/off via
the settings panel (Figure B.4).

Turn the notification sound on/off: Open settings panel. Tick the play
sound box.

73

B. User guide

Figure B.4: Settings panel

B.1.4 Conversation List

The conversation list (Figure B.5) shows all conversations the user is par-
ticipating in. Conversations might be either private or public.

Private conversation: The conversation created by the user or created
by somebody who listed the user as a participant.

Public conversation: Automatically generated conversation based on the
group the user belongs to5.

Open conversation: Click on the conversation within the list.

Figure B.5: Conversation list panel

Create new conversation:

1. Click on the “New conversation button”. A new conversation menu
should appear (Figure B.6). The menu contains a list of participants
and a message box.

2. Click on the list of participants and start typing the buddy’s name
you want to add as a participant. A dropdown list of available buddies
should appear.

3. Choose one of the options.

5Currently there are two groups: alumni bachelor and alumni master.

74

B.1. Liferay Chat Plugin

4. If you want to remove participant click on the “Remove from the list
of participants button”.

5. If you want to add more participants, simply repeat step 2.
6. Write the initial message into the message box.
7. If you do not want to create new conversation click on the cancel

button.
8. If you want to create new conversation click on the send button6.

Figure B.6: New Conversation menu

B.1.5 Conversation

The user may open as many conversations as desired (Figure B.7). To
distinguish between open panels, take a look at the panel title. The panel
title contains the full name of the last message sender and the sum of other
participants within the conversation.

Message feed: The message feed contains a list of all messages within
the conversation. Each item in the list contains a buddy’s portrait, name,
message and the message timestamp.

6List of participants and message box cannot be empty. A new conversation will not
be created until the user chooses at least one participant and writes at least one letter
in the message box.

75

B. User guide

Send message:

1. Click in the message box.
2. Type your message.
3. Press the Enter key.

The message will be added to the message feed.

Figure B.7: Conversation panel

Search in messages:

1. Click into the search box (Figure B.8).
2. Type the word or phrase needed.
3. The message feed will automatically scroll to the first occurrence of

the phrase and show the number of total results.
4. Multiple results can be viewed by clicking on the “Next” or “Previous”

button.
5. To close search menu, click on the “Close search” button.

76

B.1. Liferay Chat Plugin

Figure B.8: Search menu

Open menu: Several menu options related to the opened conversation can
be selected by clicking on the menu button. This will result in opening a
menu with related options (Figure B.9).

Figure B.9: Opened menu

Add participants to conversation: In order to add more participants
to the existing conversation (Figure B.10), simply:

1. Click on the “Add to conversation” option from the menu.
2. Click on the list of participants and start typing the buddy’s name

to add as a participant. A dropdown list of available buddies should
appear.

3. Choose one of the options.
4. To remove a participant click on the “Remove from the list of parti-

cipants” button.
5. To add more participants, simply repeat step 2.

77

B. User guide

Figure B.10: Add Participants to Conversation menu

List of participants: To see a list of participants (Figure B.11) click on
the “People in conversation” option in the menu.

Figure B.11: List of Participants menu

Leave conversation: In order to exit the conversation (Figure B.12):

1. Choose “Leave conversation” option from the menu.
2. Click on the “Leave” button.
3. To remain in the conversation click on the “Cancel” button.

78

B.2. Openfire Chat Plugin

Figure B.12: Leave Conversation menu

B.2 Openfire Chat Plugin

To put the Openfire Chat Plugin into operation, an instance of the Openfire
server must be installed and ran. Please consult the installation guide [28]
for further information.

Installation:

1. Log into the Openfire admin console.
2. Click on the “Plugins” option from the primary navigation.
3. Click on the “Choose File” button.
4. Locate and choose openfire-chat-plugin.jar file.
5. Click on the “Upload Plugin” button.

The plugin should appear in the list of uploaded plugins B.13.

Change settings:

1. Log into the Openfire admin console.
2. Click on the “Server” option from the primary navigation.
3. Choose the “Server Settings” option from the secondary navigation.
4. Click on the “Chat Plugin” from the left side bar.
5. Chat Plugin Properties page will appear (Figure B.14)
6. Now, you can change the following settings:

• Global Properties – includes properties, which are common for
the whole Openfire Chat Plugin. The given properties should
match the properties on the Liferay Chat Plugin side.

– Service name – multi-user chat service name;

– Public room prefix – prefix for the public room JID.

79

B. User guide

Figure B.13: The list of uploaded plugins

• KOS Settings – the properties related to the KOSapi service:

– KOSapi URL – unique resource locator of the KOSapi REST
service;

– Username – username which is going to be used to login to
the KOSapi REST service;

– Password – password which is going to be used to login to
the KOSapi REST service.

• Public Rooms – the settings related to the public room synchron-
ization:

– Alumni Bachelor – name of the Alumni Bachelor public
room;

– Alumni Master – name of the Alumni Master public room.

7. After you changed the settings you wanted click on the Save Settings
button.

80

B.2. Openfire Chat Plugin

Figure B.14: Openfire Chat Plugin Properties

Create public rooms based on the data from KOS:

1. Log into the Openfire admin console.
2. Click on the “Server” option from the primary navigation.
3. Choose “Server Settings” option from the secondary navigation.
4. Click on the “Chat Plugin” from the left side bar.
5. Click on the “Synchronize” button within the Public Rooms section.

The system will log into the KOSapi service and download the list of alumni.
Afterwards, the list will be used to create the particular public rooms and
add the related users to them.

81

B. User guide

B.3 Openfire Data Mining Plugin

In order to put the Openfire Chat Plugin into operation, an instance of the
Openfire server needs to be installed and ran. Please consult the installation
guide [28] for further information.

Figure B.15: Openfire Data Mining Plugin page

Generate GEXF file:

1. Log into the Openfire admin console.
2. Click on the “Server” option from the primary navigation.
3. Choose the “Server Settings” option from the secondary navigation.
4. Click on the “Data Mining Plugin” option from the left side bar.
5. Click on the “Generate” button within the Generate section (Figure

B.15).

The system will generate a GEXF file. It may then be opened in any editor
which is compatible with the given file format (e.g. Gephi).

82

Appendix C

Contents of enclosed DVD

readme.txt the file with DVD contents description
war.............................the directory with Java web archives
src the directory of source codes

liferay...................Liferay plugins implementation sources
chat-portlet.....Liferay Chat Portlet implementation sources

openfireOpenfire plugins implementation sources
chatPlugin................Openfire Chat Plugin impl. sources
dataMiningPlugin..Openfire Data Mining Plugin impl. sources
build.xml...............................modified build script

thesis the directory of LATEX source codes of the thesis
text..the thesis text directory

Marcel-Mika-thesis-2013.pdf.....the thesis text in PDF format
Marcel-Mika-thesis-2013.ps........the thesis text in PS format

83

	Introduction
	Motivation
	Thesis goals
	About the text

	State of the Art
	Instant Messaging
	Social Network
	Gephi
	Gexf4j
	XMPP Protocol
	Openfire
	Smack API
	Liferay
	Alloy UI
	Liferay Chat Portlet

	Analysis and Design
	Functional requirements
	Project architecture
	Openfire Server
	Openfire Data Mining Plugin
	Liferay Chat Plugin

	Implementation
	Openfire Chat Plugin
	Openfire Data Mining Plugin
	Liferay Chat Plugin

	Testing and Experiments
	Unit testing
	Testing environment
	Deployment
	Known issues
	Experiments

	Conclusion
	Future improvements

	References
	Acronyms
	User guide
	Liferay Chat Plugin
	Openfire Chat Plugin
	Openfire Data Mining Plugin

	Contents of enclosed DVD

