
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

DIPLOMA THESIS

Tomáš Juchelka

Exploration algorithms in a polygonal domain

Department of Cybernetics

Thesis supervisor: RNDr. Miroslav Kulich, Ph.D.

Acknowledgements

I would like to thank my supervisor RNDr. Miroslav Kulich, Ph.D. for his guidance and
patience. His advices always helped me to overcome difficulties in this thesis. I would also like
to thank my family for their continuous support during my studies.

Abstrakt

Diplomová práce se zamě̌ruje na exploraci neznámého prosťred́ı skupinou mo-
bilńıch robot̊u. Každý z robot̊u objevuje své okoĺı źıskáváńım senzorických
dat a p̌risṕıvá t́ım k vytvǒreńı mapy prosťred́ı. Explorace skupinou mobilńıch
robot̊u se typicky použ́ıvá p̌ri vojenských úkolech, čǐstěńı prosťred́ı, hledáńı
obět́ı a obecně v ḿıstech, která jsou lidem nebezpečná. Ćılem je prozk-
oumat prosťred́ı co nejrychleji, tedy minimalizovat celkový čas explorace.
Mapa prosťred́ı se obvykle reprezentuje pomoćı mř́ıžky obsazenosti, ale tato
práce použ́ıvá polygonálńı reprezentaci. Tento p̌ŕıstup má mnoho výhod, ale
p̌rináš́ı určité problémy a vyžaduje speciálńı úpravy. Exploračńı proces záviśı
na exploračńı strategii. Hlavńım ćılem této práce je implementovat některé
existuj́ıćı exploračńı strategie a framework s využit́ım polygonálńı reprezen-
tace, kde mohou být tyto strategie testovány. Dosažené výsledky s použit́ım
frameworku jsou prezentovány a diskutovány.

Abstract

This work is focused on the exploration of an unknown environment by a
team of mobile robots. Each robot in the team discovers its neighbourhood
by gathering sensory information from the environment and contributes to
a global map. Typical applications are military assignments, environment
cleaning, searching for victims, and generally locations dangerous for people.
The goal is to explore the environment as soon as possible, thus minimize
the exploration time. The common representation of the environment is an
occupancy grid while a polygonal representation is used in this thesis. This
approach has many advantages but it brings some problems, and requires
special handling. The exploration process depends on the exploration strat-
egy. The main goal of this thesis is to implement the general exploration
framework in ROS based on polygonal representation of the environment to-
gether with some existing exploration strategies. Finally, the results achieved
with the framework are presented and discussed.

CONTENTS Exploration algorithms in a polygonal domain

Contents

1 Introduction 1

2 State of the art 2

2.1 Yamauchi . 3

2.2 Hungarian method . 4

2.3 Burgard et al. 6

2.4 Stachniss et al. 7

2.5 Solanas et al. 8

2.6 Puig et al. 9

3 Polygonal domain 10

3.1 Polygon clipping . 11

3.1.1 Vatti algorithm . 12

3.1.2 Polygon offsetting . 14

3.2 Modifications . 15

3.2.1 Modifications of clipping . 16

3.2.2 Modifications of offsetting . 18

4 Framework 19

4.1 ROS . 19

4.2 Framework structure . 20

4.3 Implementation details . 23

4.3.1 Map representation . 23

4.3.2 Path planning . 24

4.3.3 Polygon simplification . 25

i

CONTENTS Exploration algorithms in a polygonal domain

4.3.4 Goal candidates . 26

4.3.5 K-means based strategies . 27

5 Experiments 28

5.1 Experiment setup . 28

5.2 Evaluation of strategies . 29

5.3 Methodology . 30

5.4 Results . 30

5.4.1 Empty map . 31

5.4.2 Arena map . 34

5.4.3 Jari-huge map . 36

5.4.4 Hospital-small map . 38

5.5 Robot paths . 40

5.6 Hospital section map experiment . 41

5.7 Discussion . 44

6 Conclusion 45

A CD Content 48

ii

LIST OF FIGURES Exploration algorithms in a polygonal domain

List of Figures

2.1 Greedy assignment. 4

2.2 Expected information gain. 6

2.3 Environment with Voronoi Graph. 7

3.1 Polygon with frontiers. 10

3.2 The comparison of several polygon clipping libraries. 11

3.3 Operations on polygons. 12

3.4 Vatti’s representation of a polygon. 13

3.5 Offset polygon. 14

3.6 Angle processing. 15

3.7 Problem in local minima. 16

3.8 Comparison of edges. 17

3.9 Performance of the modified algorithm. 18

3.10 Unit normals processing. 18

4.1 Framework topology with highlighted native ROS nodes. 20

4.2 Visibility graph. 24

4.3 Polygon simplification. 25

4.4 Goal candidates generated on a frontier. 26

4.5 Triangular meshes. 27

5.1 Simple maps used in the thesis. 29

5.2 Complex maps used in the thesis. 29

5.3 Empty map - planning steps comparison. 32

5.4 Empty map - maximal distance comparison. 32

iii

LIST OF FIGURES Exploration algorithms in a polygonal domain

5.5 Empty map size. 33

5.6 Arena map - planning steps comparison. 34

5.7 Arena map - maximal distance comparison. 35

5.8 Arena map size. 35

5.9 Jari huge map - planning steps comparison. 36

5.10 Jari huge map - maximal distance comparison. 37

5.11 Jari-huge map size. 37

5.12 Hospital small map - planning steps comparison. 38

5.13 Hospital small map - maximal distance comparison. 39

5.14 Hospital-small map size. 39

5.15 Robot paths. 40

5.16 Areas explored by robots. 41

5.17 Hospital section map. 42

5.18 Hospital section map explored. 42

5.19 Hospital section map size. 43

iv

LIST OF TABLES Exploration algorithms in a polygonal domain

List of Tables

3.1 Classification rules for the intersection points. 13

5.1 Map empty: Comparison . 31

5.2 Map arena: Comparison . 34

5.3 Map jari: Comparison . 36

5.4 Map hospital small: Comparison . 38

5.5 Map hospital section: Comparison . 43

A.1 CD Content . 48

v

LIST OF SCENARIOS Exploration algorithms in a polygonal domain

List of scenarios

1 The exploration algorithm . 3

2 BLE assignment algorithm. 4

3 Targets assignment algorithm . 7

4 Vatti clipping algorithm . 14

5 Polygon offsetting algorithm . 15

6 Planning loop. 22

vi

Exploration algorithms in a polygonal domain

Chapter 1

Introduction

The problem of exploring an unknown environment is a fundamental problem in the mobile
robotics. Typical applications are, e.g., search and rescue missions in a dangerous or hostile
environment. In this task, the mobile robots are autonomously driven according to a sensor in
order to discover potential victims and create a map of the environment. Each robot is equipped
with sensors, so it is able to gather information about its neighbourhood. This thesis deals with
a team of mobile robots in the exploration with several advantages. Firstly, a group of robots
can finish a task faster than a robot. Secondly, the team of robots can cover the environment
more uniformly and is also more fault-tolerant. On the other hand, more robots operating in the
same area may cause interferences or collisions. Because the exploration time is crucial in search
and rescue applications, the robots need to cooperate and make the exploration effective.

Several techniques dealing with the problem of coordinated multi-robot exploration were
presented in [1, 2, 3, 4]. In majority of nowadays approaches, the maps are represented by an
occupancy grid [5]. As the size of the environment can be very large, the grid representation
requires a lot of memory. A polygonal representation is therefore more efficient map representa-
tion which can easily handle large environments in detail. This approach has many advantages
but it brings also problems. Some of the algorithms designed for occupancy grids will not work
on polygons. This thesis aims to use the polygonal representation in the existing exploration
approaches. The goal is to improve their parameters by using of the polygonal representation.
The second contribution of the thesis is in proposing a new framework where the strategies
can be experimentally tested and analysed. The robot operating system ROS [6] was selected
for this purpose. In order to make the exploration working on the polygons it is necessary to
incorporate some external libraries, e.g., for a polygon clipping, Dijkstra’s algorithm, visibility
graph and triangulation into the developed framework.

The paper is organized as follows. The state of the art with description of the existing
approaches is presented in Chapter 2. The proposed polygonal representation is described in
Chapter 3. Chapter 4 describes the framework used for the experiments with the strategies. The
achieved results are presented and discussed in Chapter 5. The final evaluation of the thesis is
in Chapter 6.

1/48

Exploration algorithms in a polygonal domain

Chapter 2

State of the art

The mobile robot exploration is the process in which robots autonomously operate in an
unknown environment. The robots are navigated through the environment in order to create a
map of it. The map is incrementally built and serves as a model of the environment for further
exploration steps. The process consists of a goal selection and navigation towards the selected
goals. This is repeated until there are unexplored areas in the map. This paper focuses on
the multi-robot exploration. The whole exploration process is summarized in Scenario 1. The
exploration process involves the robotsR = {r1, r2, . . . , rn} and the goalsG = {g1, g2, . . . , gm}.
The robots are equipped with a laser range finder sensor. The exploration is a complex set of
actions that leads to a complete model of the environment. It starts by reading actual sensor
information by individual robots. After some data processing, the existing map is updated with
this information. New goal candidates are determined in the map. An exploration strategy
assigns the goal candidates to the robots. Having assigned the goals to the robots, the shortest
path from the robots to the goals are found. Dijkstra’s algorithm [7] is a suitable solution.
Finally, the robots are navigated along the paths.

There exist many exploration strategies, see a nice description and comparison in Amignoni [8].
Having n robots and m goals, the problem is to find the optimal robot-goal assignment ac-
cording to a defined strategy. The strategies described in this section use cost functions, utility
functions or both, and they represent different approaches to the problem. The cost function
evaluates the goal candidates and it is defined as the shortest collision-free distance. The dis-
tance is defined between each robot and goal as l(r, g), where ri ∈ R and gi ∈ G. A utility can
be defined for the goals as presented in Burgard et al. [2]. The utility is a defined reward for
visiting a goal while it does not depend on the distance. In each particular step, the task is to
minimize the cost or maximize the utility.

The exploration can be either centralized or decentralized. In the first one, the robots share
the common map and there is only a central element assigning goals to the robots. In the second
one, each robot selects a goal individually. The centralized approach coordinates robots to work
more effectively but suffers in the robustness. The decentralized approach is not dependent on
the single element but it requires more complicated communication between the robots.

2/48

2.1. YAMAUCHI Exploration algorithms in a polygonal domain

while exists unexplored areas do
read current sensor information;
update map with obtained data;
select a new goal candidates;
assign the goals to the robots;
plan paths for the robots;
move the robots towards the goals;

Scenario 1: The exploration algorithm

All the algorithms described in this section work on an occupancy grid. The occupancy grid
is a representation of an environment where a map is divided into small cells with the defined
size. Each cell stores information about the corresponding piece of the environment in the form
of a probabilistic estimate of its state. It is obvious, that more cells give a more precise model of
an environment with higher demands on memory and computational power. The choice of an
appropriate granularity is therefore a trade-off between the model precision and system resource
requirements. Each cell holds a probability value pc that the cell is occupied and this probability
lies in range [0, 1]. The cells are updated during the exploration according to the Bayes law [5]:

p(occ|r) =
p(r|occ) ∗ p(occ)

p(r)
,

where occ is the state of the cell and r is a new measurement to be incorporated. In the mobile
robot exploration, the probability is threshold. The whole range is divided into three intervals,
where cells in the same interval have assigned a label indicating their state. Thus the map cell
can have one of the three different states. By default, cells have assigned pc between pfree and
pocc which means that they are in the unexplored state.

cell =

free, pc < pfree
occupied, pc > pocc

unexplored, pfree < pc < pocc

Yamauchi [9] presented a basic exploration strategy which introduces a frontier. The fron-
tier is a location between the free and unexplored space. Figures 2.1 show an example of an
occupancy grid with frontiers. There are two frontiers on the picture marked with the blue
color. Both consist of adjacent cells and they can be reduced to a few goal candidates - the
red cells. One may place the goal candidates either into the middle of the frontier or they can
be distributed in a sensor range distance. The frontier is used in many approaches which are
called frontier-based methods.

2.1 Yamauchi

In Yamauchi [9], each robot greedily heads towards the nearest goal according to a cost
function without any coordination between robots. The strategy is simple and can be easily

3/48

2.2. HUNGARIAN METHOD Exploration algorithms in a polygonal domain

implemented. On the other hand, one goal can be selected and explored by many robots as
depicted in Figure 2.1(a). To remove this inefficiency it is possible to hide already selected goals
for the further selection. This is used in the Broadcast of Local Eligibility (BLE) assignment
algorithm developed by Werger & Mataric [10], see Scenario 2.

(a) (b)

Figure 2.1: Greedy assignment: (a) depicts two robots exploring the same goal; (b) shows an
inefficient assignment of goals;

while any robot remains unassigned do
find the robot-goal pair (i, j) with the highest utility;
assign the goal j to the robot i and remove them from the consideration;

Scenario 2: BLE assignment algorithm.

Nevertheless, it is still a greedy algorithm which not necessarily produces the optimal solution.
The solution depends on the order of the robot-goal assignments. Figure 2.1(b) depicts an
example of an inefficient targets assignment.

2.2 Hungarian method

The more sophisticated method is the Hungarian method firstly introduced in Kuhn [11].
It is an optimization algorithm which solves the worker-task assignment. The assignment can
be written in a form of the n x n matrix. In general, the element in the i-th row and j-th
column represents the cost of assignment of the j-th task to the i-th worker. Let ci,j be the
cost of assigning the j-th goal to the i -th robot. A naive approach is to test all combinations
of the assignments and find the assignment with the minimum total cost. There are n! possible
assignments to test. The Hungarian method finds the optimal assignment for the given cost
matrix C.

4/48

2.2. HUNGARIAN METHOD Exploration algorithms in a polygonal domain

C =

c1,1 c1,2 . . . c1,n
c2,1 c2,2 . . . c2,n
...

...
. . .

...
cn,1 cn,2 . . . cn,n

The algorithm which finds the optimal solution can be shortly described in four steps.

1. In each row, subtract the minimal element from each element in the row.

2. In each column, subtract the minimal element from its column.

3. Cover all zeros of the matrix with the minimal number of horizontal or vertical lines. If
the number of lines equals n it is finished. The optimal assignment is given by the zeros
covered by the lines. Otherwise proceed to the next step.

4. Find the smallest element not covered by any line. Subtract the element from each
uncovered row and add the element to each covered column. Go to step 3

The problem can be also expressed as a linear program. The objective is to find integers αij

that minimize

Z =
n
∑

i=1

n
∑

j=1

αijcij (2.1)

subject to

n
∑

i=1

αij = 1, 1 ≤ j ≤ n,

(2.2)
n
∑

j=1

αij = 1, 1 ≤ i ≤ n.

The equation 2.1 expresses the total cost of the assignment, the same as the cost matrix C, and
the equations 2.2 are constraints that ensure that the one goal is assigned to exactly one robot.
The algorithm requires the number of robots to be the same as the number of goals which can
not be guaranteed throughout the exploration. If the number of robots or goals is lower it is
possible to add imaginary robots or goals to satisfy the assumption. They have assigned a fixed
cost, so they don’t affect the real ones. In the selection, the imaginary robots and targets are
skipped. This strategy doesn’t assign the same goal to different robots and it doesn’t depend
on the order of selection. The Hungarian method solves the robot-goal assignment in O(n3)
polynomial time.

5/48

2.3. BURGARD ET AL. Exploration algorithms in a polygonal domain

2.3 Burgard et al.

Burgard et al. [1, 2] use a decision theory to coordinate the exploration. The method estimates
an expected information gain (EIG) of a frontier and combines it with a path cost. The EIG
is the number of unexplored cells that are within the sensor range radius of the frontier. The
EIG of the frontier is reduced considering the number of robots having it in their sensor range.
Figure 2.2 shows the key features of the method. The circles indicate a sensor range and contain
information gain regions. Dashed lines are rectangular approximations of the information gain
regions. The rectangles are used to compute a potential overlap in the EIG. This approximation
is fairly accurate while being much more efficient. A percentage of the overlap dj for a frontier
cell is computed between its information gain region and the information gain region of the
other assigned frontiers as:

dj =
|IGRj| ∩

∑n
i=1

|IGRi|

|IGRj|

Here |IGRj| is a size of the information gain region of a frontier cell, n is the number of robots
and |IGRi| are sizes of the other assigned information gain regions. The EIG is decreased by
the percentage dj. The overall utility uj is then computed as:

uj = (1− dj)× ij − cj,

where ij is the EIG and cj is the path cost. The method minimizes the overlap in the information
gain among robots. The algorithm is presented in Scenario 3.

Figure 2.2: Expected information gain.

This strategy leads to a robot dispersion in small areas. Most of the computations are
distributed amongst the robots. If robots can’t see each other it is in fact a greedy strategy.

6/48

2.4. STACHNISS ET AL. Exploration algorithms in a polygonal domain

repeat
find the target with the highest utility (EIG - cost);
assign the target with a greedy algorithm;
discount the utility of the remaining robots;

until all targets have been assigned or no target has the EIG above a threshold ;
Scenario 3: Targets assignment algorithm

2.4 Stachniss et al.

The method presented in Stachniss et al. [12] takes the structure of the environment into
account. In general, indoor environments are structured and divided into rooms and corridors.
This method tries to assign robots to the separated rooms. It partitions the explored space
into segments and instead of the frontiers, robots are sent to the individual segments. Map is
segmented using the Voronoi Graphs. The Voronoi Graph is a set of nodes for which at least
two obstacle points with an equal distance exist and there is no other obstacle point closer to
the nodes.

Figure 2.3: Environment with Voronoi Graph.

The Voronoi Graph consists of edges and nodes of a certain degree. The edges of the graph
represent paths furthest from obstacles and without any collisions. So-called critical points are
identified in the graph and they are marked with red colour. The critical points are nodes in
the Voronoi Graph that satisfy several conditions.

• Their distance to the closest obstacle is a local minimum.

• They have to be nodes of degree 2.

• They must have a neighbour of degree 3.

7/48

2.5. SOLANAS ET AL. Exploration algorithms in a polygonal domain

Figure 2.3 shows the Voronoi Graph and the critical points found by the described method. The
critical points are used as candidates for the goals. In most of cases, the critical point lies in
a doorway. The problem here is that there is a lot of false positive candidates for the critical
points. More complex environments require a more sophisticated segmentation algorithm based
on a training data set.

2.5 Solanas et al.

In the majority of multi-robot tasks, robots start from a single area, e.g., building entrance.
It leads to an exhaustive exploration of the starting area during the first phase of exploration.
In search and rescue it is preferable that the robots quickly make a map in outline and then
focus on the individual parts of the environment. Solanas et al. [13] presented an exploration
strategy based on K-means clustering. The proposed technique divides the unknown space into
K regions, where K is the number of robots.

At the beginning, K-means is applied and the map is partitioned into regions. The particular
regions are assigned to the closest robots. After the assignment, each robot chooses a frontier
according to a cost function. The cost function distinguishes whether the frontier belongs to
the assigned region or not. The cost of Fj for the robot Ri assigned to the region ζi is defined
as:

ci,j =

{

∆+ e(Fj, Ci) + oi,j Fj /∈ ζi
d(Fj, Ri) + oi,j Fj ∈ ζi

where∆ is a constant penalization representing the diagonal length of the map, e is the euclidean
distance, Ci is the centroid of the region, d is the real path cost defined by any path planning
algorithm and oi,j is the accumulated penalization increasing the cost when the frontier has
been already selected.

The frontier that does not belong to the assigned region receives a high penalization ∆. Thus
robots prefer the frontiers in their assigned regions. If there is no frontier in the assigned region,
robots select the closest frontier to their region. As the result, robots tend to work separately
in their assigned regions. If a region is not directly accessible, other regions are explored on
the way to the assigned one. Robots explore all these separated regions simultaneously because
each robot heads to its own region. This leads to a dispersion between robots and different
parts of the environment are explored at similar speeds.

In general, the K-means algorithm consists of the following steps.

1. Randomly choose K centroids Ci where 1 ≤ i ≤ K.

2. Classify each cell to the class ζi of its closest centroid Ci.

3. Determine a new centroid for each class.

4. If all the centroids didn’t change, it is finished. Otherwise continue with step 2.

8/48

2.6. PUIG ET AL. Exploration algorithms in a polygonal domain

2.6 Puig et al.

The exploration algorithm described in Puig et al. [14] also applies the K-means clustering
to spread robots in the environment. The algorithm keeps the robots separated and working
in different areas. It prevents some areas to be explored significantly later than others. It is
similar approach to the previous method [13] in Section 2.5: unknown areas are partitioned into
regions by the K-means algorithm, where the number of regions K is the same as the number
of robots.

Two types of regions are distinguished. If the region assigned to the robot is directly accessible
through a free space, the region is accessible. If the region isn’t directly accessible, the region is
inaccessible and a robot selects the goal from the accessible region which is the nearest to the
assigned region according to a defined metric. The distances are defined for both region types
separately. For the accessible region ζA, the distance from the robot r to the closest cell c of
the region is defined as the minimal real path distance from r to all frontier cells adjacent to c.
Fc is a set of the frontier cells adjacent to c.

d(r, c) = min {δ(r, f) | f ∈ Fc} , c ∈ ζA

For the inaccessible region ζI , the distance is defined as the geometric distance from r to c. If
there is an obstacle between r and c a penalty ρ with the diagonal length of the map is added.

d(r, c) = g(r, c) + ρ, c ∈ ζI

Finally the distance between a robot r and a region ζ is the minimum of the distances to all
regions.

d(r, ζ) = min d(r, c), c ∈ ζA or c ∈ ζI

After the robot-region assignment it is necessary to assign goals to robots. The robots with
assigned inaccessible region have priority to select goals first. The distance between a robot and
a frontier is defined as:

d(ri, fj) =

{

δ(ri, fj) + ρ(fj, ccri), fj ∈ ζA
∞, otherwise

where ccri is the closest cell of the region assigned to the robot ri. The sum ρ(fj, ccri) =
g(fj, ccri) + ρ1(fj, ccri) + ρ2(fj) consists of the geometric distance between fj and ccri and
penalizations ρ1 if is there is an obstacle between fj and ccri and ρ2 is also a penalization with a
positive value if the frontier has been already selected. If fj is not accessible for ri the distance
is infinite.

Robots tend to explore their assigned regions as in [13] and the main difference is in penal-
ization if there is an obstacle.

9/48

Exploration algorithms in a polygonal domain

Chapter 3

Polygonal domain

The exploration process with the strategies described in chapter 2 works primarily on the
occupancy grid. This chapter summarizes all modifications and tools necessary to use the
polygonal representation. The goal is to make it working in the same way but with advantages of
the effective polygonal approach of the environment. It requires much less memory in comparison
with the occupancy grid while it keeps a high detail. Notice also that various operations can be
done more easily on the polygon rather than on the occupancy grid, e.g., rotation, scaling, etc.

In geometry a polygon is a geometric shape composed of finite number of line segments.
The line segments are called edges and the point where two of the line segments meet is called
a vertex. The polygon edges form a closed contour surrounding the polygon interior. A chain
of edges or a part of the polygon is called a polyline.

For the exploration itself it is necessary to extend the polygon with a frontier information,
therefore an edge can be either a frontier or obstacle. The absence of the third unexplored state
is a difference in comparison with the occupancy grid.

v1

v2

v3

v4

v5

v6

Figure 3.1: Polygon with frontiers.

An example of polygon is shown in Figure 3.1. The frontier edges are marked with the blue
colour and the other edges belong to the obstacles. Algorithms used in the exploration need

10/48

3.1. POLYGON CLIPPING Exploration algorithms in a polygonal domain

to work with these types of edges. Furthermore, it is common that a polygon contains more
frontier edges forming a polyline.

A library for operations on polygons necessary for the map building is presented in Section 3.1
followed by a description of the algorithm used in the library and its modifications.

3.1 Polygon clipping

The clipping is a general term for boolean operations, e.g., intersection, union, difference,
etc. For the gradual building of the map it is needed to perform the union operation. There
exists a wide range of libraries. This work uses the Clipper library [15] which is open-source
library based on the Vatti clipping algorithm [16]. The algorithm is described in Section 3.1.1. It
is fast and versatile, see the comparison of polygon clipping libraries [17]. Polygons with 174244
vertices were used in this benchmark.

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

B
o

o
st

G
eo

m
et

ry

B
o

o
st

P
o

ly
g

o
n

C
li

p
p

er

G
eo

s

G
p

c

K
B

o
o

l

P
o

ly
B

o
o

le
an

S
q

lS
er

v
er

S
T

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Classic Polygons − 174244 Vertices

Figure 3.2: The comparison of several polygon clipping libraries.

The graph 3.2 was generated on the basis of the results presented in [17]. The Boost.Geometry
has been the fastest followed by the Clipper. All the libraries primarily perform the boolean clip-
ping operations. The selected library needs to handle polygons with holes, self-intersecting
polygons and polygons with overlapping co-linear edges. All these attributes are crucial in this
project except the self-intersection because the laser range finder produces a star-shaped poly-
gons. The Clipper has been finally selected because it meets all requirements and offers an
additional useful feature, i.e., a polygon offsetting. At the time of the polygon library selection,
the Boost.Geometry was under development and not a part of the Boost library.

The only drawback which occurs across all the clipping libraries is that it is not possible
to set the property of the edge of polygon. This project also uses the frontier based approach

11/48

3.1. POLYGON CLIPPING Exploration algorithms in a polygonal domain

that was mentioned in chapter 2. So there must be a way how to identify frontiers in the map.
Practically it is needed to propagate the information throughout the clipping process. This can
be done by the modification of the library described in Section 3.2.

Figure 3.3(b) shows an example of union operation which is used in this thesis for the
incremental map building.

(a) (b)

(c) (d)

Figure 3.3: Operations on polygons: (a) shows default polygons; (b) describes union operation;
(c) describes application of positive offset; (d) describes application of negative offset

3.1.1 Vatti algorithm

The Vatti algorithm can handle a large set of polygons like ones with holes, self-intersecting
etc. Here, the simplified overview of the algorithm is described. The complete description is

12/48

3.1. POLYGON CLIPPING Exploration algorithms in a polygonal domain

beyond the scope of this thesis and can be found in [16]. The algorithm clips a subject polygon
against a clip polygon. The algorithm distinguishes a left or right edge with respect to the
interior of the polygon. Horizontal edges can be considered as left or right as it comes. Thus
a polygon can be represented as a set of left and right bounds. The bound starts at a local
minimum and ends at a local maximum. The vertices between these extremes are called an
intermediate vertices. The algorithm builds the bounds in a bottom-up fashion using a scan
beam. A scan beam is a horizontal area between two scan lines which contain at least one
vertex from the polygons. There are no vertices between the scan lines. A polygon described
with this notation is in Figure 3.4

A

B

C

D

E

F

G

H

I

scan beam

Figure 3.4: Vatti’s representation of a polygon.

The vertices A,B,C,D form the right bound and the vertices A,I,H,G form the left bound.
The vertex A is the local minimum and the vertex D is the local maximum. The scan beam
passes through each vertex.

The polygons are scanned from the bottom to the top starting at the lowest scan beam. The
first step is to compute the left and right bounds and build a local minima list (LML). Then
an active edge list (AEL) is build. The AEL contains all the edges intersected by the current
scan beam. Edge intersections are found and new vertices are created. These intersections are
classified according to classification rules. Two edges are like if they belong to the same polygon
and unlike otherwise. The classification rules are defined in Table 3.1 for like and unlike edges
respectively. Letters are shortcuts for left (L), right (R), subject (S), clip (C), local minimum
(MN), local maximum (MX), left intermediate (LI) and right intermediate (RI).

Unlike edges Like edges

(LC × LS) or (LS × LC) = LI (LC ×RC) or (RC × LC) = LI and RI
(RC ×RS) or (RS ×RC) = RI (LS ×RS) or (RS × LS) = RI and LI
(LS ×RC) or (LC ×RS) = MX
(RS × LC) or (RC × LS) = MN

Table 3.1: Classification rules for the intersection points.

13/48

3.1. POLYGON CLIPPING Exploration algorithms in a polygonal domain

The rules produce the union of polygons. After the classification, various actions are applied.
In a local minimum, a new polygon node is created and added into the output polygon. A left
or right intermediate vertex is added into the left or right end of the vertex list of the output
polygon. In a local maximum the polygon may be closed or is appended to the other polygon.
There is a lot of exceptions and special handling so this description is very simplified. Especially
horizontal edges cause problems so they are handled separately and collinear horizontal edges
are joined into a single edge. The algorithm is summarized in Scenario 4.

while an unprocessed scan beam exists do
compute the left and right bounds and build the LML;
find intersections of edges in the current scan beam and build the AEL;
classify the vertices according to the classification rules;
process the vertices according to their class;
process the horizontal edges;

Scenario 4: Vatti clipping algorithm

3.1.2 Polygon offsetting

For planning purposes it is common that a map is inflated by a robot radius. The inflated
map forms a free configuration space, the space of the robot positions where a collision with
obstacle can’t happen. Finding the shortest path is then limited by this space. On an occupancy
grid it is quite straightforward process, e.g., an application of dilation mask. In the polygonal
domain the inflating resides in applying an offsetting operation. The library performs a polygon
offsetting depicted in Figures 3.3(c),(d). When a negative offset is applied, outer polygons are
contracted and holes are expanded by the offset amount. With a positive offset it is reversed.
An example of the negative offset application is in Figure 3.5.

Figure 3.5: Offset polygon.

Vertices with an obtuse angle must be approximated, i.e., rounded or squared. The red
circle shows the squaring. The first step of the polygon offsetting algorithm is to compute a

14/48

3.2. MODIFICATIONS Exploration algorithms in a polygonal domain

unit normal to an edge at each vertex. A new points are created on the normals in the offset
distance. In general, there are two cases depicted in Figure 3.6.

e1 e2

e3p1 p2

(a)

e1

e2
p1

p2

p3

(b)

Figure 3.6: Angle processing: (a) for the obtuse angle a new edge and new points are created;
(b) for the sharp angle a new point is created as an intersection of the edges;

Figure 3.6(b) shows the occurrence of a redundant area. The new points p1,p2 and the
intersection p3 form a triangle which must be excluded from the output. The output of the
polygon offsetting contains the redundant areas as self-intersections which are removed by the
union operation. The summary of the offsetting is described in Scenario 5.

forall polygons in the map do
compute the unit normals to edges;
create new points on the normals;
add the new points to the output polygon;
clip potential redundant areas;

Scenario 5: Polygon offsetting algorithm

3.2 Modifications

Let polygons passed to the clipping algorithm be original polygons and let polygons created
by the algorithm be output polygons. The problem with the polygonal representation is that
the clipping libraries are not capable of preserving user-defined point attributes through the
clipping process. The Clipper library and the others do the clipping regardless of the attributes.
Also the polygon offsetting must be done with respect to the attributes. The contracted and
expanded polygons must contain the same information about the points as the original polygon.
Unfortunately it is not currently supported by the library.

15/48

3.2. MODIFICATIONS Exploration algorithms in a polygonal domain

3.2.1 Modifications of clipping

Necessary modifications of the clipping algorithm can be divided in two approaches. The first
approach lies in modifications of the specific parts of the algorithm. The modifications start with
extending the internal data structures with the user-defined attribute. A vertex is represented
by x,y values and information about the type of input and output edge, i.e., whether the edge
is a frontier or obstacle. The edge is a structure containing two vertices and the whole edge can
be marked as a frontier according to the types of the vertices. The idea was to use the marked
edges and work with them according to their type. The modifications done were tested with
unsatisfactory results. The problems are in joining horizontal edges, overlapping edges, local
minima, etc. One of the reasons is that there is no relation between the output vertices and
the input edges. For example, if two different bounds share their local minima, a new vertex is
added into the output polygon. There is no guarantee which bound the algorithm takes first.
In processing the next bound it skips the vertex because it was already added. The example
situation is illustrated in Figure 3.7 where vmin is the local minimum which is added to the
output either in processing edges e1 and e2 or e3 and e4. Because the first pair of edges is a
frontier and the second pair is not, the parameters of the added vertex may be different. It would
require a significant implementation effort and knowledge about the concrete implementation
of the algorithm.

vmin

e1

e2
e3

e4

Figure 3.7: Problem in local minima.

The second approach, which was used in the thesis, is to post-process the edges of the
output polygons, compare them with the original ones and assign them the correct property.
Each edge from the result polygon is compared against the edges from the original polygon.
A comparison is made by computing perpendicular distances from both vertices of the output
edge to all edges in the original polygon and adding a penalty when the output edge is shifted
or longer than the original edge. Thus each pair of edges is evaluated and its quality is expressed
by a penalty value.

The penalty value can be expressed as a sum of all the distances depicted in Figure 3.8.

P = p1 + p2 + |d1|+ |d2| (3.1)

16/48

3.2. MODIFICATIONS Exploration algorithms in a polygonal domain

d1

d2

p1

p2

eorig

eout

Figure 3.8: Comparison of edges.

Distances p1,p2 are the perpendicular distances from vertices to a line and d1,d2 are differences
in y-axis. Notice that the distance d1 is considered only if the bottom vertex of eout has lower
y-coordinate than the bottom vertex of eorig and the distance d2 is considered only if the top
vertex of eout has higher y-coordinate than the top vertex of eorig The differences are added
as the absolute values to eliminate the sign effect. The best matching pair, i.e., the pair with
the lowest penalty, is considered as correct and the information from the found original edge is
passed to the output edge.

This process is done after polygon clipping and it is unfortunately much more computationally
complex. From the knowledge of the clipping algorithm it is possible to do some simplifications
that speed up the matching. The algorithm creates the bounds with the edges in bottom-up
fashion starting at the local minima. The most important fact is that the edges are ordered by
y-coordinate. The bounds are also ordered by y-coordinate of their local minima. These internal
structures can be used instead of the original polygons. Three general rules can be defined.

• The bounds with y-coordinate of its local minima higher than y-coordinate of the top
vertex of the output edge can be completely skipped.

• Skip the rest of one bound if y-coordinate of the bottom vertex of the edge from the
bound is higher that the top vertex of the output edge.

• Skip further comparison of an output edge if the penalty value is zero.

These criteria improve the speed of the algorithm significantly. Figure 3.9 shows how the sim-
plifications affect the performance of the algorithm. Although the modifications slow-down the
clipping, with the simplifications, the clipping can be applied on real problems with no worries.
For example the biggest map used in the experiments, i.e., Hospital section map, contains ap-
proximately 1300 vertices and the clipping with the accelerated modifications is 2 times slower
than the original clipping algorithm.

17/48

3.2. MODIFICATIONS Exploration algorithms in a polygonal domain

 0

 50

 100

 150

 200

 250

 300

 350

 400

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

E
x

ec
u

ti
o

n
 t

im
e

(m
il

is
ec

o
n

d
s)

Vertex count

Algorithm performance

Clipping
Clipping with the modifications
Clipping with the modifications and acceleration

Figure 3.9: Performance of the modified algorithm.

3.2.2 Modifications of offsetting

Passing of the user-defined attribute, i.e., the frontier information, is much easier than in
the clipping process. The modifications again reside in extending the internal data structures
with the user-defined attribute. Here, the unit normal is extended by the frontier information.
If an edge is a frontier, the unit normals at both vertices are considered as frontiers. The new
point created on the unit normal inherits the frontier information from the edge. As shown in
Figure 3.10, the point p1 must inherit the frontier information from the edge e1, etc. A new
edge e3 between the points p1 and p2 is created. The edge e3 can have assigned the same
information as one of its neighbours. It does not matter which neighbour is chosen but in this
thesis, the obstacle edge is preferred.

e1 e2

e3p1 p2

Figure 3.10: Unit normals processing.

Notice that because of the clipping of redundant areas it is necessary to do the edge matching
too. There is exactly the same algorithm as the one used for the polygon clipping.

18/48

Exploration algorithms in a polygonal domain

Chapter 4

Framework

The framework providing a complex support for creating and testing exploration strategies
has been created as a part of this thesis. The framework contains all the components necessary
for the mobile robot exploration in a polygonal domain. The framework includes robot control,
map handling, path planning, exploration strategies, etc. The framework was designed to be
modular and therefore the particular parts can be easily substituted as needed. A great emphasis
was put on the modularity of the exploration strategies. The framework presented here allows
to implement a new exploration strategy, test it, and see its parameters. The evaluation of the
exploration strategies creates a log file containing results. The framework is written in C++
language and it uses ROS [6] as a communication middleware. Section 4.1 briefly presents some
informations about ROS and describes the framework.

4.1 ROS

ROS (Robot Operating System) is an open-source operating system for developing robot
applications. ROS is described in a greater detail in [18]. ROS is a distributed framework of
processes - nodes that enables executables to be individually designed and run. It provides
interprocess communication, package system, tools, and libraries, etc. The system supports
different languages: C++, Python, Octave, and LISP. The ROS node is one of the fundamental
elements in ROS. It is a process performing an individual task. Each node has a defined rate
that specifies a frequency at which the node loops at. Since ROS is modular and distributed
there are typically many nodes in a project.

The nodes communicate with each other by sending messages. The messages may be deliv-
ered in a form of a topic or a service differing in the type of use. Firstly, the node may send
the message by publishing it on the topic. The topic works as a broadcast. When a node is
publishing a message on the topic, several other nodes can receive the message. Secondly, when
a node needs a message at a given time it is possible to use the service. The service is called
upon a request and serves for a synchronous communication but only between two nodes.

19/48

4.2. FRAMEWORK STRUCTURE Exploration algorithms in a polygonal domain

4.2 Framework structure

The graph 4.1 depicts the structure of the framework with one robot. The nodes in the graph
represent individual ROS nodes and the arrows indicate ROS communication infrastructure such
as topics or services. Several nodes are used in this project. The stage and rviz nodes highlighted
in the graph are parts of ROS framework. The other nodes were implemented within the thesis.
The following text describes the individual nodes.

Robot

PlannerMap

Odometry

Stage

Rviz

Figure 4.1: Framework topology with highlighted native ROS nodes.

Stage node

The stage node provides 2D simulation using the Stage multi-robot simulator [19]. The Stage
simulates a world which is defined in a world file. This file defines the environment and its
content like a map, robot and position models, laser models, and other objects. The stage node
exposes a functionality of the Stage as the ROS topics. If there is more than one robot in the
simulation, their topics are prefixed with their names, e.g., /robot 0/base scan, etc.

• topics

– /robot i/base scan - publishes scans from the laser range finder

– /robot i/base pose ground truth - publishes positions of the robots

– /robot i/cmd vel - subscribes to velocity commands to drive the model of the robot

Odometry node

The odometry node listens to the simulated odometry produced by the Stage. It provides the
actual position for the robot node as a service. Reading odometry data in the separated node is
much faster instead of reading it from the Robot node. The Odometry node runs with different
(unlimited) frequency to receive data with the lowest possible delay.

• topics

– /robot i/odom - subscribes to the odometry published by the Stage

20/48

4.2. FRAMEWORK STRUCTURE Exploration algorithms in a polygonal domain

• services

– /robot i/get robot state - provides the actual robot position

Robot node

The robot node listens to the topics published by the Stage and receives odometry data and data
from the sensors as laser scans. Its main goal is to gather the information about the environment.
This information is published after a transformation to a global map which is shared between
robots. There is a relation among the robot and stage nodes. The topics published by the stage
node are primarily subscribed by the robot node and otherwise.

• topics

– /robot i/base scan - subscribes to the scans from the laser range finder

– /robot i/path - subscribes to the paths from the planner

– /robot i/cmd vel - publishes the velocity commands

– /laser scan - publishes the laser scan to the global map

• services

– /robot i/get robot state - requests the actual robot positions

– /robot i/get log path - provides the logged paths

The robot is driven to move along a received path from a planner using the Smooth Nearness
Diagram (SND) algorithm [20] driver with which the robots are able to avoid obstacles. On the
other hand, SND slows down the robot whenever it is close to obstacles. An another type of
the robot navigation is to move the robot in discrete jumps along a received path. This robot
navigation is not affected by the problems with SND control. This approach is suitable for
comparison of the exploration strategies without the influence of robot control. A disadvantage
of this approach is that it is not realistic and the robots are not protected against collisions.
The Stage node has been modified to subscribe to the topic with robot positions:

• topics

– /robot i/cmd pos - subscribes to position commands to change the position of the
robot

Map node

The map node collects data from the individual robots and combines it to the global map.
This node also performs some map processing, e.g., point reduction. It maintains the map in a
format of two separated polygonal structures. The first one is for a free space and the second
one contains obstacles. Both are finally merged into the map of the environment. The reason
of this approach is described later in Section 4.3.1. The polygon clipping happens in the map
node. It provides the map for the planner and publishes some visualizations.

21/48

4.2. FRAMEWORK STRUCTURE Exploration algorithms in a polygonal domain

• topics

– /laser scan - subscribes to the individual scans from the robots

– /map global - publishes the global map for all the robots

– /visualization marker - publishes visualizations related to the map

Planner node

The planner node is the central node controlling the whole exploration. The node receives the
map and based on the exploration strategy it commands the robots. The following strategies
has been implemented (see Section 4.3 for implementation details):

• Greedy strategy

• Greedy-ble strategy

• Hungarian strategy

• K-means strategy (Solanas et al.)

• Region strategy (Puig et al.)

• Segmentation strategy (Stachniss et al.)

The Hungarian strategy uses the C implementation of the Hungarian algorithm by Stachniss [21].
This node is responsible for creation of a log file containing information about the exploration
progress. The main exploration loop is described in Scenario 6.

while the global map contains frontiers do
receive the global map;
offset the polygons in the map;
request the robot positions;
create the goal candidates;
apply the exploration strategy to assign the goals to the robots;
plan paths for the robots;
send the goal paths to the robots;
create log entry;

Scenario 6: Planning loop.

• topics

– /map global - subscribes to the global map

– /robot i/path - publishes the goal paths to the robots

22/48

4.3. IMPLEMENTATION DETAILS Exploration algorithms in a polygonal domain

– /planning - publishes visualizations related to the planning

• services

– /robot i/get robot state - requests the actual robot positions

– /robot i/get log path - requests the logged paths

Rviz node

The rviz node visualizes the important parts of the exploration. It subscribes to specific topics
and draws the map, robot positions, paths, frontiers, etc.

• topics

– /planning - subscribes to visualizations related to the planning

– /visualization marker - subscribes to visualizations related to the map

– /map - subscribes to the same map as defined in the world file

4.3 Implementation details

The strategies described in Chapter 2 work on the occupancy grid. Because of the polygonal
approach they can’t be implemented exactly as the original. This section describes changes
made in the strategies, specific algorithms for the polygonal domain and libraries working on
polygons used as part of the framework. First, common techniques necessary to perform in the
exploration are proposed. Second, specific changes in the strategies are described.

4.3.1 Map representation

In this thesis, all objects are represented as polygons of different sizes. It is possible to
maintain the all-in-one map as a set of polygons with some edges marked as frontiers. This
complicates the manipulation with polygons mainly in the polygon simplification described below
in Section 4.3.3. Another problem is with the frontiers that are very close to obstacles. Because
of a laser range finder or odometry errors the frontier may be generated along the obstacle or
slightly in the obstacle and it is not possible to reach the goal generated there.

The most robust approach proved to be the separation of a free-space map and obstacle
map. Both are represented as sets of polygons independently. Whenever a new scan is added
into the map it is added into the free-space map as is. The scan is next checked if it contains
obstacles. If so, the obstacles are a little bit offset (proportionally to the map size) and added
into the obstacle map. The offset is performed due to the error described above.

Before the map is used by the planner both maps are temporary combined together into
a single map. The modified clipping is performed here and the resulting map contains the
information about frontiers. If the resulting edge comes from the free-space map it is considered
as a frontier, while it is marked as an obstacle if it comes from the obstacle map.

23/48

4.3. IMPLEMENTATION DETAILS Exploration algorithms in a polygonal domain

4.3.2 Path planning

The main problem, common to all the strategies, is that it is not possible to directly apply
any path planning algorithm. The polygonal description is not sufficient because it offers a map
contour only. The visibility graph is useful for path planning. With this instrument it is possible
to find the shortest path between the specific locations inside the polygon. Given a set S of
n polygon edges, the visibility graph GS is the undirected graph that has the vertices of the
polygon as nodes. Two nodes are adjacent if they can be connected with a line disjoint from
all edges in S or they are contained in an edge. In other words, two nodes are adjacent if they
see each other.

There are several ways how to compute it and the method posted by Overmars [22], the one
used in this thesis is described in this section. The comparison made by Kitzinger [23] shows
that although the selected method is not optimal it is fast and easy to implement. It runs in a
time O(m log n) where m is the number of edges in GS The visibility graph computation is
started at the vertex for which a scanline is moved from −π/2 to π/2 then it proceeds to the
vertex identified in its path. An example of visibility graph is in Figure 4.2

Figure 4.2: Visibility graph.

Dashed lines are edges of the visibility graph. The red node is the robot position which is
included in the graph. Having all robot and goal positions as nodes in the graph, it is possible
to find the shortest path from any robot to any goal.

This thesis uses the C implementation of visibility graph algorithm based on rotation trees [22]
provided by the thesis supervisor. Although the implementation of Overmarses algorithm is
straightforward, handling collinear edges is problematic because the scanline may reach any of

24/48

4.3. IMPLEMENTATION DETAILS Exploration algorithms in a polygonal domain

the set of collinear vertices. The solution is to look ahead and move to the last of the collinear
points, remembering the nearest one or eliminate the collinear vertices at the beginning of the
visibility graph computation. At last, the algorithm is defined for non-intersecting edges.

The path planning is performed on the visibility graph which is created on offset polygons.
The polygon offsetting was previously described in Section 3.1.2. Notice that the polygon
offsetting happens in order to create a feasible paths for robots. Dijkstra’s algorithm is used to
find the shortest path between two nodes in the visibility graph.

4.3.3 Polygon simplification

Since a level of a map detail is not set in advance, the number of vertices is increasing
enormously. After each addition of a laser scan to the map, the total number of vertices
increases. In fact, the most of the vertices is useless for a description of the environment
because they are collinear. It is preferable to have the number of vertices as lowest as possible
because of memory requirements and a time complexity of the individual algorithms, e.g., path
planning, visibility graph computation, etc.

There exist many approaches how to remove redundant vertices from a polygon. The most
of them is based on a tolerance, i.e., a threshold defining redundant vertices. Specification of
the appropriate threshold is most difficult part of the algorithm. If a tolerance is too small the
redundant points are not removed and a high tolerance may deform the polygon. Removing an
important vertex may cause irreversible defects in the polygon. The first attempt in this thesis
was to find the optimal tolerance. Every three consecutive vertices v1,v2,v3 were compared
according to a criterion:

[e(v1, v2) + e(v2, v3)]− e(v1, v3) < ε

where e is the euclidean distance and ε is the threshold. If the vertices satisfy the criterion the
vertex v2 is considered to be removed because it lies on the line between the two neighbouring
vertices v1 and v3. Figure 4.3(a) depicts which euclidean distances are computed. This method
proved to be unsuitable for big maps with high detailed areas.

v1

v2

v3e(v1,v3)

e(v2,v3)e(v1,v2)

(a)

v1

v2

v3

v4

v5

(b)

Figure 4.3: Polygon simplification: (a) criterion based on a comparison of edge lengths using a
tolerance; (b) RDP - recursive algorithm for the polygon simplification;

The Ramer-Douglas–Peucker algorithm was the second method of the polygon simplification.
Given a series of consecutive points it creates a line between the first and the last vertex that

25/48

4.3. IMPLEMENTATION DETAILS Exploration algorithms in a polygonal domain

are always kept. It then finds the furthest vertex from the line (see Figure 4.3(b) where the
furthest vertex v4 is marked by the red circle). If the distance is smaller than a defined tolerance
ε any points between the start and the end point may be removed. If the distance is greater
than ε the point is kept and the algorithm is recursively called with the first vertex and the
furthest vertex and also with the furthest vertex and the last vertex. Figure 4.3 depicts the both
approaches.

Finally a modified RDP algorithm is used in this thesis. The algorithm normally marks the
vertices that will be kept. Moreover, the vertices that lie on a boundary between obstacles and
frontiers are always kept. The marked vertices are then checked if there is a frontier in some
distance, e.g., in a laser range distance. Any point within the distance is also kept and not
affected by the simplification algorithm. This feature allows to set greater ε without negative
effects because a deformation happens frequently on the boundary.

4.3.4 Goal candidates

Having a series of adjacent frontier edges (frontier) it is necessary to reduce the frontier into
goal candidates. The goal candidates are the places that must be visited by robots in a defined
order. The candidates are commonly distributed in a sensor range which leads to the effective
covering of an unknown space. On the occupancy grid a frontier cell lying in the defined distance
is simply marked as the goal candidate.

On polygons a vertex does not have to exist in the distance. In this case a temporary vertex
is added and used as the goal candidate. The temporary vertices are inserted only for planing
purposes and are lost after the planning. The algorithm must count with several situations that
may happen. While processing edges of the frontier, several goal candidates may be inserted
on a single edge or the edge can be completely skipped. A goal candidate may also correspond
with an existing vertex and the vertex is then marked as the candidate.

Figure 4.4 shows a frontier with generated goal candidates (the red points) with all the
situations described above. The frontier is defined by the vertices (the black points) with
assigned labels and starts with the vertex v1 and ends with the vertex v5. The goal candidates
are distributed in a sensor range distance R. The first goal candidates from the start and the
end are in R/2 distances so the frontier is completely covered. The vertex v4 is marked as the
goal candidate.

v1

v2 v3

v4

v5
R

R/2

Figure 4.4: Goal candidates generated on a frontier.

26/48

4.3. IMPLEMENTATION DETAILS Exploration algorithms in a polygonal domain

Because the visibility graph can not handle collinearity goal candidates are slightly shifted
in a perpendicular distance from the edge in order to be not collinear. This feature has no side
effects and should be removed as soon as the algorithm will be repaired.

4.3.5 K-means based strategies

The exploration strategies using K-means clustering described in Chapter 2 needs to partition
the unexplored space into K regions with similar volumes, which is not straightforward in a
polygonal representation. Our idea is therefore to represent the unexplored space with a set
of points. The points are then passed to the K-means clustering algorithm. For sampling the
polygons with points the Triangle library [24] is used which is a two-dimensional mesh generator.
A triangle mesh is a set of triangles which are connected by their edges or vertices. The Triangle
is able to generate triangle meshes, (constrained) Delaunay triangulations, Voronoi graphs, etc.
Its features include user-specified constraints, e.g., a triangle area.

(a) (b)

Figure 4.5: Triangular meshes: (a) an example of triangle mesh; (b) a triangle mesh with applied
K-means clustering algorithm at the beginning of an exploration with 8 robots using the K-
means strategy;

Figure 4.5(a) shows an example of a generated triangle mesh on a polygon with hole. Fig-
ure 4.5(b) visualizes a triangle mesh with applied K-means clustering. The number of clusters
equals to the number of robots. The vertices of the triangles are shared among the other trian-
gles. The generated points covering the polygons are formed by the unique vertices from all the
triangles. The triangle area constraint allows to set the point density. The number of generated
points is not critical in our case so the point density is determined proportionally to the map
size.

27/48

Exploration algorithms in a polygonal domain

Chapter 5

Experiments

This chapter aims to combine the previous work on the framework described in Chapter 4 with
the necessary modifications described in Chapter 3 using the exploration strategies presented
in Chapter 2 to test the framework functionality. The second goal of this chapter is to compare
the selected strategies and describe their performance on various problems.

5.1 Experiment setup

The experiments have been performed using maps with various sizes and structures. The
Empty map 5.1(a) has been created to simulate a trivial case of a big room with no obsta-
cles. The Arena map 5.1(b) represents a slightly structured environment with large corridors
and rooms. The Jari-huge map 5.2(a) represents the real administrative building with many
separated rooms. The hospital small map 5.2(b) is a part of the hospital-section map from the
Stage simulator. However it is a section, it is the largest map in the main experiment. The
robot starting positions are marked by the green circles and are located close to the entrance.

The strategies used in the experiment are selected from the list in the planner node description
in Section 4.2, i.e., Greedy, Greedy-ble, Hungarian and K-means. The remaining strategies
are not considered because of implementation issues. The Segmentation strategy has been
implemented but the critical points detection is far more complicated on real maps. The Region
strategy is not implemented exactly as on the occupancy grid. There is nothing like a cell
adjacent to a frontier, vertices are in varying distances, etc. Both strategies are then rejected
because of poor results that are not caused by the strategies themselves.

Furthermore the K-means works similar to the Region strategy and takes the robot dispersion
in the environment into account. The first three strategies are in fact greedy or greedy-like with
some adjustments. The numbers of robots are 4, 6, 8, while the sensor range is set to 5 meters
with 270◦ field of view. The robots are controlled using the SND driver. The planning period
has been set to 1 second.

28/48

5.2. EVALUATION OF STRATEGIES Exploration algorithms in a polygonal domain

(a) (b)

Figure 5.1: Simple maps used in the thesis with robot starting positions marked as the green
circles: (a) Empty map with dimensions 50x50 m; (b) Arena map with dimensions 50x50 m.

(a) (b)

Figure 5.2: Complex maps used in the thesis with robot starting positions marked as the green
circles: (a) Jari-huge map with dimensions 52.5x60 m; (b) Hospital-small map with dimensions
138x110.75 m.

5.2 Evaluation of strategies

The strategies are evaluated from several points of view. The first criterion is the number of
planning steps texp which corresponds with the exploration time (assuming that the planning
period is constant). The exploration time is the time needed to explore the whole unknown
environment so the map does not contain reachable frontiers. The maximal distance dmax

travelled by a robot is the second criterion. This is important when sources of individual robots
are limited, e.g., energy.

29/48

5.3. METHODOLOGY Exploration algorithms in a polygonal domain

In search and rescue problems it is crucial to find potential victims instead of mapping the
environment. It is needed to explore as much area as possible in the shortest time instead
of complete and detailed mapping. A criterion which takes into account an effort to find the
object [25] is inspired by the expected value of the random variable defined as:

E (X) =
n
∑

i=0

xipi (5.1)

According to the expected value the mean effort needed to find the object is the weighted
average of n exploration steps:

TM =
n
∑

i=0

tiwi (5.2)

where ti is the exploration step (time) and wi is the amount of map explored since the previous
step by which the step is weighted. All the criteria are presented as the arithmetic mean (average)
together with their variances describing how far the measures lie from the average.

5.3 Methodology

All the experiments were examined on the same hardware with a quad-core processor on
3.30 GHz, 8 GB RAM running x86 64 GNU/Linux kubuntu 3.0.0-20, ROS version electric and
gcc version 4.6.1. Each experiment was repeated 30 times. The number of experimental runs
is 1440 in total. With approximately 10 minutes for a single run it would take about 240 hours.
As the computations are not time consuming, the experiments are speeded up 3 times in the
Stage’s configuration file. This acceleration has no effect on the quality of the exploration but it
has its limits in the computational complexity. The chosen acceleration is therefore a trade-off
between the run time and the system load.

5.4 Results

The tables contain the average value of the number of planning steps with explicitly stated
the minimal and the maximal values, the standard deviation computed and presented also in
graphs as a black y-bar, the maximal distance travelled by a single robot and the expected time
needed to find the object. The graphs contain only some of these parameters.

For a simplicity, the presented graphs with map built time are generated only for 6 robots
and K-means strategy. The map built time is affected mainly by the map dimensions and the
map complexity yielding the number of vertices. It can be seen that the map built time curve
does not always exactly correspond with the number of vertices because it depends also on the
polygon shapes that affect the complexity of the modified clipping process. The map built time
includes the modified polygon clipping and the polygon simplification. This time should not
exceed the planning period, otherwise the planner will not have the actual map. The results are
presented separately for each map and discussed in Section 5.7.

30/48

5.4. RESULTS Exploration algorithms in a polygonal domain

5.4.1 Empty map

There are not big differences in the exploration time between the Hungarian and the K-means
strategy. Both yield a similar exploration time. A surprise is the good performance of the Greedy
strategy. Although the greatest number of planning steps was expected, the mean effort TM

is at least comparable to the other strategies. Because there are no obstacles in the map the
robots head towards goals with no need of coordination and the robots naturally disperse in the
environment. The effect of the BLE algorithm in the Greedy-ble strategy is significant in each
experiment.

The maximal distance dmax apparently indicates the effect of the map segmentation in the
K-means strategy. The robots focus their regions which reduce the maximal travelled distance
by any robot that is smaller by 7% than in Hungarian strategy but it has longer exploration time
by 5.4% for 6 robots. For 8 robots, the K-means strategy is better in both of the parameters.

The simple structure of the map produces low number of vertices and leads to the small
map built time, see 5.5(d). The K-means strategy has also the lowest standard deviation so the
solution has not a big variance.

Robots Strategy texp tmin tmax σtexp dmax σdmax
TM σTM

4

greedy 960.2 790 1186 93.39 567.99 55.90 329 16.32
greedy-ble 909.8 824 1042 52.65 538.32 39.45 330 20.14
hungarian 893.0 804 1001 51.06 526.85 33.50 328 13.31
kmeans 903.5 783 998 44.37 484.84 30.12 348 33.67

6

greedy 744.7 595 923 89.02 458.50 54.94 263 12.94
greedy-ble 682.6 607 838 49.54 422.43 32.12 262 12.17
hungarian 667.7 561 921 63.20 412.40 30.15 257 18.63
kmeans 705.6 665 779 25.96 383.51 21.32 279 7.65

8

greedy 693.6 564 839 74.54 429.67 49.41 234 11.37
greedy-ble 629.4 517 846 75.36 377.19 45.07 245 19.43
hungarian 579.2 512 641 34.91 357.16 29.63 229 10.01
kmeans 575.3 517 618 22.50 310.19 17.03 238 7.61

Table 5.1: Map empty: Comparison

31/48

5.4. RESULTS Exploration algorithms in a polygonal domain

 0

 200

 400

 600

 800

 1,000

 1,200

4 6 8

N
u

m
b

er
 o

f
p

la
n

n
in

g
 s

te
p

s

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

Figure 5.3: Empty map - planning steps comparison.

 0

 100

 200

 300

 400

 500

 600

 700

4 6 8

M
ax

im
al

 d
is

ta
n

ce
 [

m
]

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

Figure 5.4: Empty map - maximal distance comparison.

32/48

5.4. RESULTS Exploration algorithms in a polygonal domain

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800
 0

 100

 200

 300

 400

 500

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(d)

Figure 5.5: Empty map size progress: (a) for 4 robots; (b) for 6 robots; (c) for 8 robots; (d)
shows the map built time with the number of vertices.

33/48

5.4. RESULTS Exploration algorithms in a polygonal domain

5.4.2 Arena map

The results are similar to the results on Empty map with one difference. Here the greedy
strategy does not excel in TM which is caused by the existence of the rooms that prevent the
natural dispersion of the robots. Although for 4 and 6 robots the best results are achieved by
the K-means strategy an interesting effect can be seen for 8 robots where the results are worse.
The partitioning of map forces the robots to explore small regions partially spreading over two
or three rooms which slows down the exploration, while for the lower number of robots the
regions are bigger and contain the whole rooms.

Robots Strategy texp tmin tmax σtexp dmax σdmax
TM σTM

4

greedy 1278.4 1046 1567 138.76 588.33 65.39 494 46.67
greedy-ble 1197.5 994 1708 143.63 572.64 58.33 476 29.19
hungarian 1155.5 988 1305 81.86 556.12 50.08 473 27.84
kmeans 1139.2 1053 1394 84.95 546.10 50.27 448 20.82

6

greedy 1023.0 741 1382 143.27 473.39 55.86 394 40.63
greedy-ble 900.4 761 1014 66.75 435.57 36.44 377 25.64
hungarian 867.1 783 1050 65.23 429.18 31.70 361 17.70
kmeans 848.4 748 1112 74.34 427.65 37.85 365 24.30

8

greedy 987.5 791 1378 150.74 439.90 57.56 377 44.96
greedy-ble 807.3 677 977 82.61 395.00 47.62 337 20.31
hungarian 748.3 627 985 77.04 374.67 44.65 309 12.73
kmeans 788.0 681 925 72.37 403.98 31.93 322 18.65

Table 5.2: Map arena: Comparison

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

4 6 8

N
u

m
b

er
 o

f
p

la
n

n
in

g
 s

te
p

s

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

Figure 5.6: Arena map - planning steps comparison.

34/48

5.4. RESULTS Exploration algorithms in a polygonal domain

 0

 100

 200

 300

 400

 500

 600

 700

4 6 8

M
ax

im
al

 d
is

ta
n

ce
 [

m
]

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

Figure 5.7: Arena map - maximal distance comparison.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(c)

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800 900
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(d)

Figure 5.8: Arena map size progress: (a) for 4 robots; (b) for 6 robots; (c) for 8 robots; (d)
shows the map built time with the number of vertices.

35/48

5.4. RESULTS Exploration algorithms in a polygonal domain

5.4.3 Jari-huge map

The results show that the K-means strategy behaves worse on this map. A lot of small rooms
leads to the regions generated over several separated rooms. A robot must explore the assigned
rooms in the region alone. This is in fact the desired behaviour that each robot visits a single
room but it requires correctly generated regions including the whole rooms not only their parts.
The Hungarian strategy is far more better in comparison with the other strategies. For 8 robots
it is faster by 28% than the Greedy strategy, by 16% than the Greedy-ble strategy, and also by
12% than the K-means strategy.

Robots Strategy texp tmin tmax σtexp dmax σdmax
TM σTM

4

greedy 558.4 459 750 78.75 247.85 34.89 199 13.89
greedy-ble 489.2 433 568 36.75 218.17 19.55 193 28.67
hungarian 473.4 406 553 39.80 210.93 19.68 179 32.58
kmeans 524.0 470 573 31.10 235.21 15.68 203 19.06

6

greedy 488.8 365 848 138.15 208.14 52.23 169 27.49
greedy-ble 369.9 311 439 31.62 165.14 17.27 148 12.50
hungarian 336.2 301 402 26.84 150.98 13.34 142 9.38
kmeans 365.7 334 453 26.59 163.22 12.77 157 15.04

8

greedy 400.9 285 573 79.82 176.38 30.51 156 34.22
greedy-ble 345.6 281 471 42.30 159.77 20.61 136 13.83
hungarian 289.8 258 331 19.70 133.43 9.58 124 14.66
kmeans 328.5 285 371 21.96 149.48 12.66 140 6.14

Table 5.3: Map jari: Comparison

 0

 100

 200

 300

 400

 500

 600

 700

4 6 8

N
u

m
b

er
 o

f
p

la
n

n
in

g
 s

te
p

s

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

Figure 5.9: Jari huge map - planning steps comparison.

36/48

5.4. RESULTS Exploration algorithms in a polygonal domain

 0

 50

 100

 150

 200

 250

 300

4 6 8

M
ax

im
al

 d
is

ta
n

ce
 [

m
]

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

Figure 5.10: Jari huge map - maximal distance comparison.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(c)

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350
 0

 100

 200

 300

 400

 500

 600

 700

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(d)

Figure 5.11: Jari-huge map size progress: (a) for 4 robots; (b) for 6 robots; (c) for 8 robots;
(d) shows the map built time with the number of vertices.

37/48

5.4. RESULTS Exploration algorithms in a polygonal domain

5.4.4 Hospital-small map

The results are quite balanced except the Greedy strategy. The exploration time and the
maximal travelled distance is slightly better for the K-means strategy and 4 robots. The K-
means strategy is better in the mean effort parameter. This experiment confirms that there
exists a combination of the map size and the number of robots in which the K-means strategy
yields bad results (6 robots in this case) because the number of robots corresponds with the
sizes of regions that may be inappropriate for the given map. The Hungarian strategy again
seems to be the best strategy.

Robots Strategy texp tmin tmax σtexp dmax σdmax
TM σTM

4

greedy 798.5 704 901 62.97 455.31 39.09 375 14.43
greedy-ble 736.2 658 876 64.56 425.88 40.18 339 11.75
hungarian 726.1 648 861 55.39 430.05 30.26 338 24.12
kmeans 728.1 686 781 28.88 423.44 19.47 312 7.41

6

greedy 644.4 538 779 77.01 374.48 53.31 300 18.96
greedy-ble 605.9 543 672 45.99 364.79 25.34 282 15.08
hungarian 576.1 532 611 29.13 350.71 14.66 261 9.05
kmeans 637.2 605 667 19.04 384.39 13.18 271 7.81

8

greedy 568.9 500 653 49.18 343.54 31.74 270 19.13
greedy-ble 567.7 519 628 35.23 345.94 25.43 271 9.48
hungarian 533.9 458 613 44.92 331.44 23.53 247 12.79
kmeans 560.7 519 606 26.92 346.78 18.69 235 10.48

Table 5.4: Map hospital small: Comparison

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 6 8

N
u

m
b

er
 o

f
p

la
n

n
in

g
 s

te
p

s

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

Figure 5.12: Hospital small map - planning steps comparison.

38/48

5.4. RESULTS Exploration algorithms in a polygonal domain

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

4 6 8

M
ax

im
al

 d
is

ta
n

ce
 [

m
]

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

Figure 5.13: Hospital small map - maximal distance comparison.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(c)

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(d)

Figure 5.14: Hospital-small map size progress: (a) for 4 robots; (b) for 6 robots; (c) for 8 robots;
(d) shows the map built time with the number of vertices.

39/48

5.5. ROBOT PATHS Exploration algorithms in a polygonal domain

5.5 Robot paths

Robot paths from the selected experiment are visualized in Figure 5.15. The selected exper-
iment is the exploration with 6 robots on the Empty map for simplicity. The figures show that
for K-means strategy robots operate in their regions and when they finish they proceed to the
further regions. The other greedy-like strategies have more duplicate paths or crossings. Each
strategy is visualized separately.

(a) (b)

(c) (d)

Figure 5.15: Robot paths for selected experiments with 6 robots on the Empty map: (a) Greedy
strategy; (b) Greedy-ble strategy; (c) Hungarian strategy; (d) K-means strategy.

40/48

5.6. HOSPITAL SECTION MAP EXPERIMENTExploration algorithms in a polygonal domain

The areas explored by the individual robots are visualized in Figure 5.16. With the polygonal
representation it can be easily done with the Difference clipping operation provided by the
clipping library. A new scan is clipped against the already explored map and the result contains
the new explored area which is stored, while keeping the information about the author of the
scan. The areas distinguished with colours apparently correspond with the robot paths depicted
above in Figure 5.15. Only the two strategies has been selected as an example.

(a) (b)

Figure 5.16: Robot explored areas by 6 robots: (a) using the K-means strategy; (b) using the
Hungarian strategy.

5.6 Hospital section map experiment

To simulate an extreme case with many robots on a huge map the Hospital-section map is
used. The exploration is performed by 10 robots with no other changes against the previous
experiments. The starting positions of robots are the same as on the smaller Hospital-section
map. This experiment can not be speeded up because of the computational complexity so the
number of repetitions is lower, i.e., 10 trials.

Figure 5.18 shows the created map at the end of the exploration. This map occupies an area
of 14253 meters squared and contains 1226 vertices. Notice that a map is created during each
exploration but it would take a lot of pictures to present them so this map is introduced as an
example.

41/48

5.6. HOSPITAL SECTION MAP EXPERIMENTExploration algorithms in a polygonal domain

Figure 5.17: Hospital section map used to simulate the extreme case with dimensions
271.5x110.75 m.

Figure 5.18: Hospital section map explored and visualized using Rviz with paths travelled by 10
robots with the Hungarian strategy.

42/48

5.6. HOSPITAL SECTION MAP EXPERIMENTExploration algorithms in a polygonal domain

The results in Table 5.5 show the shortest time needed to find the object of the K-means
strategy. Its standard deviation shows that the exploration depends on how the regions are
generated. Because of the K-means clustering is a stochastic method and may give different
results.

The results of this experiment are in accordance with the results of the previous experiments.
The worst and the most varying strategy is the Greedy strategy. The Greedy-ble strategy is better
but still not optimal. The best results are achieved by the Hungarian strategy which has also
the shortest dmax. With this number of robots and the K-means strategy it is possible that a
robot visits a lot of goals from different regions until it reaches its region because its assigned
region lies on the other side of the map. Such a robot travels a long distance especially when
new shorter paths are frequently found.

Robots Strategy texp tmin tmax σtexp dmax σdmax
TM σTM

10

greedy 1365.7 1195 1507 158.05 710.13 81.54 607 13.58
greedy-ble 1221.7 1148 1294 40.17 697.28 35.22 572 16.91
hungarian 1098.8 1051 1168 33.27 625.72 24.71 520 17.27
kmeans 1222.7 1142 1325 48.95 691.16 26.91 515 15.04

Table 5.5: Map hospital section: Comparison

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600

M
ap

 e
x

p
lo

re
d

 [
%

]

Step

greedy
greedy-ble
hungarian

kmeans

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(b)

Figure 5.19: Hospital section map size progress: (a) for 10 robots; (b) shows the map built time
with the number of vertices.

43/48

5.7. DISCUSSION Exploration algorithms in a polygonal domain

5.7 Discussion

The selected strategies have been tested in series of experiments on different environments.
As expected, the worst results on every map produces the Greedy strategy. It is a naive strategy
where a goal can be explored by many robots with no coordination. It is common that robots
form a group in which the robots explore the same room which is not effective. It serves for a
comparison of the improvements included in the other strategies. The effect of the preventing
selection of the same goal in the Greedy-ble strategy is significant. This strategy outperforms
the Greedy strategy in all aspects. But the fact that it can produce a suboptimal assignment
causes that it is not so good as the Hungarian strategy. The Hungarian strategy yields the
best results in the most of cases. The K-means strategy is full of contradictions. In general
it is more efficient for lower number of robots and less complex environments. In majority of
cases, the maximal travelled distance is small because the robots focus on their regions and
their operating areas are limited.

The reason why the K-means strategy is not so good as expected lies in several facts. First,
the regions may be badly generated partially spreading over many separated rooms. Second, a
robot heading to its region may select a new different path found by any other robot which is
shorter due to the penalization. There is a possibility that the robot will turn back and travel
trough the already explored environment in this case. Third, the regions contain a map border
and obstacles that affect the positions of the centers of the regions.

The experiments have been performed for a different number of robots. The difference
between the performance of the exploration with 4 and 6 robots is obvious. The higher number
of robots leads to a noticeable overlap between robot scans. If the size of the environment
is big enough, e.g., Hospital map, the additional 2 robots improve the performance of all the
strategies.

This work primarily focuses on the implementation of the framework for the multi-robot
exploration. The real experiment requires an additional effort to adapt the framework interface
to the Syrotek system but thanks to the ROS system modularity it is not a big problem. This
has not been realized because of the uselessness of running the experiments in the Syrotek
arena because of several reasons. Firstly, the Syrotek arena has dimensions only 3.5x3.8 m and
it contains only 3 robots equipped with a laser range finder which is not sufficient for the multi-
robot exploration. This thesis also assumes precise odometry data but the real arena realizes
the localization using a camera tracking the robots. The real environment does not allow to
compare the selected strategies as in the simulator. It can be expected that the framework will
work in the real arena with problems typical for the real experiments, i.e., inaccurate localization,
data noise, etc.

44/48

Exploration algorithms in a polygonal domain

Chapter 6

Conclusion

This thesis introduces a polygonal approach in the mobile robot exploration. Several explo-
ration strategies were presented in Chapter 2 and implemented in the framework. The Clipper
library has been selected for the polygon clipping. The library and its necessary modifications
were described in Chapter 3. The framework described in Chapter 4 has been implemented using
ROS in C++ language. The framework functionality was tested using some existing approaches.
The tests with results are presented in Chapter 5.

A considerable effort was devoted to learn ROS framework. It requires completely different
approach against the previous work with the Player/Stage. The hardest task was to modify
the clipping library in order to work with the frontiers. After several unsuccessful attempts
to change the clipping algorithm a compromise solution was found in the edge matching. In
the future will be hopefully found a library capable of work with the edge attributes. Another
external libraries were used in this thesis, i.e., for visibility graph, path planning, triangulation,
Hungarian method, SND driver, and incorporated into the framework.

The implemented strategies were compared according to various criteria. The best results
were achieved by the Hungarian strategy. The K-means strategy was expected to dominate
among the other strategies especially in the mean effort parameter. Unfortunately, this criterion
does not distinguish locations in the map in which the exploration happens and therefore the
difference against the other strategies is not so significant.

The polygonal approach proved to be a great method for the map representation. With a
quite low number of points it is possible to represent really big environments. On the other
hand, the polygons are sensitive to the correctness of measurement because the explored areas
are directly added to the map. All the parts of exploration were successfully adapted to the
polygonal representation which was proved by the experiments.

In the future, the framework will be extended by new exploration strategies. Improvements
will be made in order to speed up the modified clipping and handle collinearity problem in the
visibility graph algorithm. It would be also useful to consider a sensor model when updating the
map together with a focus on localization.

45/48

BIBLIOGRAPHY Exploration algorithms in a polygonal domain

Bibliography

[1] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordinated multi-robot explo-
ration. IEEE Transactions on Robotics, 21(3):376–378, 2005.

[2] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-robot
exploration. In Proc. of IEEE International Conferenceon Robotics and Automation (ICRA),
2000.

[3] Cyrill Stachniss, Oscar Martinez Mozos, and Wolfram Burgard. Efficient exploration of
unknown indoor environments using a team of mobile robots. Annals of Mathematics and
Artificial Intelligence (AMAI), 52(2-4):205–227, 2008.

[4] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, S. Moors, M.and Thrun, and Younes H.
Coordination for multi-robot exploration and mapping. In Proc. of the National Conference
on Artificial Intelligence (AAAI), 2000.

[5] A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer,
22(6):46–57, 1989.

[6] Robot operating system. http://www.ros.org, 2012.

[7] Edsger. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[8] Francesco Amigoni. Experimental evaluation of some exploration strategies for mobile
robots. In ICRA, pages 2818–2823, 2008.

[9] Brian Yamauchi. Frontier-based exploration using multiple robots. In Proc. of the Second
International Conference on Autonomous Agents, pages 47–53, 1998.

[10] Barry Brian Werger and Maja J. Mataric. Broadcast of local eligibility for multi-target
observation. In Distributed Autonomous Robotic Systems 4, pages 347–356. Springer-
Verlag, 2001.

[11] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

46/48

http://www.ros.org

BIBLIOGRAPHY Exploration algorithms in a polygonal domain

[12] K.M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-robot exploration us-
ing a segmentation of the environment. http://www.informatik.uni-freiburg.de/

~stachnis/pdf/wurm08iros.pdf, 2008.

[13] Agusti Solanas and Miguel Angel Garcia. Coordinated multi-robot exploration through un-
supervised clustering of unknown space. In International Conference on Intelligent Robots
and Systems, 2004.

[14] D. Puig, M.A. Garcia, and L. Wu. A new global optimization strategy for coordinated multi-
robot exploration: Development and comparative evaluation. http://www.elsevier.

com/locate/robot, 2011.

[15] Angus Johnson. Clipper - an open source freeware polygon clipping library. http://www.
angusj.com/delphi/clipper.php, 2012.

[16] Bala R. Vatti. A generic solution to polygon clipping. Communications of the ACM,
35:56–63, 1992.

[17] Rogue Modron. Polygon clipping: a wrapper, a benchmark. http://rogue-modron.

blogspot.cz/2011/04/polygon-clipping-wrapper-benchmark.html, 2011.

[18] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In ICRA
Workshop on Open Source Software, 2009.

[19] Richard T. Vaughan. Massively multiple robot simulations in stage. Swarm Intelligence,
2(2-4):189–208, 2008.

[20] J. W. Durham and F. Bullo. Smooth nearness-diagram navigation. In iros, pages 690–695,
Nice, France, 2008.

[21] Cyrill Stachniss. C implementation of the hungarian method. http://www.informatik.
uni-freiburg.de/~stachnis/misc/libhungarian-v0.1.2.tgz, 2004.

[22] Mark H. Overmars and Emo Welzl. New methods for computing visibility graphs, 1988.

[23] J. Kitzinger. The visibility graph among polygonal obstacles: a comparison of algorithms.
www.cs.unm.edu/~moore/tr/03-05/Kitzingerthesis.pdf, 2003.

[24] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and De-
launay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering,
volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, 1996.

[25] Alejandro Sarmiento, Rafael Murrieta-Cid, and Seth Hutchinson. An efficient motion
strategy to compute expected-time locally optimal continuous search paths in known en-
vironments. Advanced Robotics, 23(12-13):1533–1560, 2009.

47/48

http://www.informatik.uni-freiburg.de/~stachnis/pdf/wurm08iros.pdf
http://www.informatik.uni-freiburg.de/~stachnis/pdf/wurm08iros.pdf
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://www.angusj.com/delphi/clipper.php
http://www.angusj.com/delphi/clipper.php
http://rogue-modron.blogspot.cz/2011/04/polygon-clipping-wrapper-benchmark.html
http://rogue-modron.blogspot.cz/2011/04/polygon-clipping-wrapper-benchmark.html
http://www.informatik.uni-freiburg.de/~stachnis/misc/libhungarian-v0.1.2.tgz
http://www.informatik.uni-freiburg.de/~stachnis/misc/libhungarian-v0.1.2.tgz
www.cs.unm.edu/~moore/tr/03-05/Kitzingerthesis.pdf

Exploration algorithms in a polygonal domain

Appendix A

CD Content

The attached CD contains the thesis in PDF format, source codes of the thesis in LATEX format
and source codes of the framework. In table A.1 are listed names of all root directories and files
on CD.

Directory name Description

thesis.pdf The Diploma Thesis in PDF format.
doc The source codes of the thesis in LATEX format.
eapd The source codes of the framework.
lib The external libraries.

Table A.1: CD Content

48/48

	Introduction
	State of the art
	Yamauchi
	Hungarian method
	Burgard et al.
	Stachniss et al.
	Solanas et al.
	Puig et al.

	Polygonal domain
	Polygon clipping
	Vatti algorithm
	Polygon offsetting

	Modifications
	Modifications of clipping
	Modifications of offsetting

	Framework
	ROS
	Framework structure
	Implementation details
	Map representation
	Path planning
	Polygon simplification
	Goal candidates
	K-means based strategies

	Experiments
	Experiment setup
	Evaluation of strategies
	Methodology
	Results
	Empty map
	Arena map
	Jari-huge map
	Hospital-small map

	Robot paths
	Hospital section map experiment
	Discussion

	Conclusion
	CD Content

