

Exploration Algorithms in a Polygonal Domain

Czech Technical University in Prague Faculty of Electrical Engineering

Author: Ing. Tomáš Juchelka Supervisor: RNDr. Miroslav Kulich, Ph.D.

Introduction

This work is focused on the exploration of an unknown environment by a team of mobile robots. Each robot in the team discovers its neighborhood and contributes to a global map. The aim is to explore the environment with minimal effort (e.g. time, distance traveled, fuel consumed, etc.)

Used tools and algorithms

- 0
- Robot Operating System (ROS)
- Clipper clipping library
- Triangle triangular mesh
- Visibility graph
- Dijkstra's algorithm
- K-means clustering

K-means exploration strategy Diploma Thesis, January 2013

Exploration

The mobile robot exploration is the in which robots process autonomously operate in unknown environment. The robots navigated through environment in order to create a map of it. The map is incrementally built and serves as a model of the environment for further exploration steps. The process consists of a goal selection and navigation towards the selected goals. This is repeated until unexplored areas in the map exist.

- Comparison of polygonal approach against the commonly used occupancy grid.
- Polygons have 1226 vertices vs.
 12 076 800 cells in the grid.

Goals

- Use a polygonal representation instead of an occupancy grid
- Modify clipping library to work both with polygons and their attributes
- Reduce computational complexity to represent large environments
- Handle problems in coordinated multi-robot exploration
- Compare selected exploration algorithms on various maps

Experiments

- Comparison of state-of-the-art exploration strategies
- 4.6.8.10 robots
- Exploration strategies: Greedy, Hungarian, BLE, K-means
- 4 testing environments
- Number of experiments: 1440
- Total time of experiments: 240 hours

Results

- A framework has been implemented using ROS in C++ language
- The clipping library was modified
- The polygonal approach proved to be a feasible method for the map representation
- With a quite low number of points it is possible to represent really big environments
- All the parts of exploration were successfully adapted to the polygonal representation which was proved by the experiments
- The results were presented at ICAPS 2013 conference in Rome

