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Abstrakt

Klasifikátory založené na strojovém učení se používají v takových bezpečnostních apli-
kacích jako detekce podvodného chování nebo detekce narušení bezpečnosti počítačo-
vých sítí. V aplikacích tohoto druhu klasifikované entity mají tendenci se vyvíjet v čase
ve snaze předejít detekci. Avšak klasické metody strojového učení se s tím nedokážou
vypořádat jelikož jsou založené na předpokladu že budoucí pozorování budou odpovídat
rozložení trenovácích dat. S použitím relevantní literatury možné útoky na klasifikátory
vyplývající z této jejich limitace jsou analyzovány spolu s existujícími metodami reakce
na nebezpečí útoků. Diskutujeme že místo ignorování existence adaptability útočníků
a opravy následně způsobené škody je výhodnější namodelovat soupeře pomocí teo-
rie her s následnou predikcí a omezením jeho možností způsobovat škodu. Jenže byla
zjištěna mezera mezi praktickými požadavky na klasifikátory a vlastnostmi existujících
modelů herně teoretické optimalizace detekce škodlivého chování. V této práci vyvíjíme
postup který vyplní danou mezeru. Praktická aplikovatelnost navržené metody byla
vynucena spoluprací s Divizí Bezpečnosti společnosti O2 Czech Republic a.s.: nová me-
toda byla vyvinuta jako vylepšení interního systému na detekci podvodného chování.
Ve výsledku navrženou metodu se dá aplikovat na binární klasifikátor jako na černou
skříňku, bez omezení na použitý algoritmus strojového učení. Navíc vyvinutý postup
umožňuje omezovat poměr falešných poplachů, což je zásadním požadavkem v bezpeč-
nostních aplikacích strojového učení. Dále model bere v úvahu skutečnost že existují
různé typy útočníka. Kromě toho variabilita typů útočníka a zisky v rámci modelu jsou
odvozený na základě nasbíraných datech, což minimalizuje počet hypotéz nepodlože-
ných pozorováními. Taky model bere v potaz omezenou racionalitu útočníků. Součástí
postupu jsou i vyvinuté efektivní algoritmy na počítání několika herně teoretických
konceptů řešení: Nashovy rovnováhy, Stackelbergovy rovnováhy i Stackelbergovy rov-
nováhy za omezení na poměr falešných poplachů. Díky efektivitě navržených algoritmů
je očekáváno že vyvinutý postup zůstane aplikovatelný i pro větší soubory dat. Nako-
nec efektivita postupu je demonstrována pomocí rozsáhlé experimentální evaluace. S
využitím dat z klasifikátorů pro detekce narušení bezpečnosti bylo ukázáno že navržené
algoritmy jsou lepší než existující alternativy. Dále na případě detekce podvodného
chování v O2 Czech Republic je ukázáno že vyvinutá metoda zachovává účinnost klasi-
fikátoru bez herně teoretické optimalizace na statických datech a vylepšuje robustnost
klasifikace pokud se útočník chová v souladu s navrženým modelem.

Klíčová slova

Teorie her, oponentní strojové učení, algoritmy, bezpečnost, detekce podvodného cho-
vání
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Abstract

Machine learning classifiers are used in security applications such as fraud detection
or intrusion detection in computer networks. In applications of this kind the classi-
fied entities tend to evolve in time attempting to avoid detection. However, classical
machine learning methods fail to address the issue, assuming that future observations
would follow the same distribution as training data. Based on related work we analyze
possible attacks against a classifier arising due to this limitation and survey existing
approaches to deal with the attacks. We discuss that rather than ignoring the adap-
tivity and repairing the damage once it occurs, it is more advantageous to model the
adversary by means of game theory and mitigate his ability to cause the damage in
a predictive manner. Yet, we identify a gap between practical requirements on adver-
sarial classifiers and properties of the present methods for game theoretic optimization
of detecting malicious behavior. In this thesis we develop an approach filling the gap.
Practical applicability of the method was enforced by the collaboration with the Se-
curity Division of O2 Czech Republic telecommunications company: the novel method
was developed as an improvement for the company’s internal fraud detection system.
As a result, the devised method can be applied to any binary classifier as a black box,
not limiting the modeling power of the used machine learning algorithm. Moreover, the
approach enables restricting a false alarm rate, satisfying a crucial requirement in the
security domain. Furthermore, the model takes into consideration the fact that there
are different types of adversaries. In addition, both variability of the adversary types
and utilities in the model are derived based on collected data, minimizing hypotheses
unfounded with observations. The model also addresses the bounded rationality of ad-
versaries. As part of the approach, we develop efficient algorithms for computation of
several solution concepts: Nash equilibrium, Stackelberg equilibrium and Stackelberg
equilibrium under the restriction on false alarm rate. Thanks to the algorithms effi-
ciency the approach is expected to remain applicable in case of large datasets. Finally,
the efficacy of the developed approach is demonstrated via extensive experimental eval-
uation. Using data from real-world intrusion detection classifiers, it is shown that the
developed algorithms are superior compared to available alternatives. Next, on the case
of O2 Czech Republic fraud detection it is demonstrated that the developed method
preserves out-of-sample performance of the classifier without the game theoretic opti-
mization, while improving robustness of the classification when the attacker behaves in
accordance with the model.

Keywords

Game theory, adversarial machine learning, algorithms, security, fraud detection
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1. Introduction

“ If you know the enemy and know yourself, you need not fear
the result of a hundred battles. If you know yourself but not the
enemy, for every victory gained you will also suffer a defeat. ”

Sun Tzu, The Art of War, the 5th century BC

1.1. Motivation

Machine learning is presently one of the fastest developing fields of computer science
due to the wide, diverse, and practical applications, driven by the availability of data
and cheap computational power. Advances in machine learning made it an efficient
tool for detection of malicious behavior in a wide variety of security applications such
as steganalysis [1], intrusion detection in computer networks [2], spam filtering [3],
computer viruses detection [4, 5], biometric personal authentication [6], watermarking
[7], and fraud detection [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The author of this thesis
developed a machine learning classification module for the internal fraud detection
system of a telecommunications company O2 Czech Republic a.s.

In contrast with classical machine learning tasks, in security domain the detected
objects attempt to undermine the classifier [18, 19, 20, 21, 22, 23, 24, 25, 26]. Adaptivity
of adversaries was observed in spam filtering, or fraud detection [27, 11, 21, 13, 28].
It was empirically confirmed that adversaries adapt to existing classification systems:
features of malicious instances were found to evolve in time to eventually look more
like features of legitimate ones. As a result, adaptive attacks make machine learning
detection system less efficient [21].

Classical machine learning methods were found to be vulnerable to adaptive adver-
saries [29, 30], who degrade performance of security systems [24], causing industry
higher financial losses. The average loss due to frauds per company increased approx-
imately by 40 % in 2 years from roughly US $1.7 million in 2005 to nearly US $2.4
million in 2007 [31]. Due to fraud the telecommunications industry reportedly used to
loss $2.5 million per year in the late nineties [32] and now reportedly losses more than
$150 million annually [33]. In fraud detection one of the main opened issues, which
makes the problem so challenging, is the dynamic adaptivity of frauds [13, 28, 11].
As a result, companies are interested in developing defense systems which are able to
preserve their effectiveness under attacks by adaptive adversaries [21].

In the literature there are several possibilities how to improve robustness of the
machine learning defense systems against rational adversaries. The most promising
one is to develop a predictive defense, because a reactive defense obviously does not
suffice and it is necessary to explicitly forecast and preemptively counter possible future
attacks [21]. Several approaches were formulated, in which future attacks are being
foreseen and incorporated into machine learning defense design by modeling the rational
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1. Introduction

adversary and his interaction with the security system [34, 21, 24, 35, 36, 37, 38,
39, 40]. The modeling is done using a framework of game theory. A wide variety
of studies suggest that game theory is in general an efficient tool for understanding
adversary evolution in security [41, 34, 24, 21, 36, 42, 43]. Regarding adversarial
classification, it was shown that game theoretic adversary-aware classification models
can provide more robust defense systems against rational attackers [35, 24, 21, 36,
37]. The approach of adversary-aware classification, when a designer models strategic
interaction between the defense system and the adversary and proactively predicts
potential attacks, corresponds to the strong principle of security by design [20].

However, the majority of present adversary-aware classification approaches provide
deterministic classification [19]. At the same time, randomization is recognized to be
helpful in security applications: it mitigates the capability of adversaries to exploit
predictable security patterns to their advantage [44, 42]. There were several successful
attempts to incorporate randomization into adversarial classification approaches. In
[23] noise was added to the classification boundary of adversary-aware game theoretic
classification model from [24]. It was formally shown that even ad-hoc randomization
of the decision boundary makes it harder for adversaries to evade the classifier. In [45]
it was argued that randomization can be a defense against several types of attacks on
machine learning systems. The theoretical results were confirmed in a recent empirical
behavior study of spam filter evasion, where it was shown that randomization degrades
evasion performance of rational attackers [18]. Even though an ad-hoc randomization
improves robustness of adversarial classification, adversary-aware randomization is con-
sidered more efficient due to explicit modeling of the adversary. In recent works [36, 35]
first adversary-aware randomization of classifier decision boundary was introduced. In
[36] it was shown that such randomization forces a rational adversary to design weaker
attacks, and in [35] randomized adversary-aware classification was demonstrated to
outperform all state-of-the-art deterministic adversary-aware classification methods.

And the main problem with the most of existing adversary-aware approaches is that
their application in practical real-world defense systems is either impossible or very
limited [21]. Realistic constraints might be considered too complex to be incorporated
into game-theoretic approaches [22]. This lead to several limitations of the majority of
existing methods [35, 29, 46]:

a) most of the methods are unable to account for the real-world operational con-
straints. To the best author’s knowledge the only method incorporating operational
constraints is a recent work [35], where an expected number of all processed instances
can be restricted. However, there are no methods enabling restriction of the expected
false positive rate, which is a primal practical requirement: blocking legitimate cases
(e.g., filtering out non-spam messages or disabling services to non-fraudulent customers)
often corresponds to critical and dominant costs for companies in real-world settings
[35, 24, 13, 39, 29, 47, 28]. It was reported that in practice high false positive rate is
an often complaint about systems detecting malicious behavior. Consequently, limiting
false positive rate was argued to be a top priority for practical adversarial classification
[5].

b) Most of the existing methods have limited practical applicability due to high
computational complexity.

c) Most of the methods are restricted to deterministic decisions not leveraging from
effectiveness of randomization in security.

d) The majority of the methods do not take real-world variability of adversaries into
consideration.

e) Most of the methods consider adversaries to be fully rational, while it is more

2
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realistic to model partial rationality of the attackers.
f) The majority of existing methods put significant restrictions on the machine learn-

ing method (e.g., linear or logistic loss function).
These challenges must be addressed, applicable in practice adversary-aware security

is required, as attacks by rational adversaries are becoming more and more sophisti-
cated [26]. In recent years cyber attackers are becoming increasingly more rational
[48, 37]. Examples of successful attacks by highly sophisticated adversaries can be
spear phishing attacks on the RSA company [49], on the Oak Ridge national security
and energy laboratory, White House and the Nuclear Regulatory Commission of the
U.S. [47], or attacks by the Stuxnet worm which reportedly ruined several nuclear cen-
trifuges, bypassing security and increasing the centrifuges pressure, while sending false
measurements data to the control room [34].

1.2. Aim and Outline of the Thesis

Adversarial machine learning is an emerging field of research. The aim of this work is to
develop a novel applicable adversarial machine learning approach which can be directly
deployed in such real-world applications as the O2 Czech Republic fraud detection
system. The requirements on a new method are: it must

a) be highly accurate,
b) enable control over expected false positives rate,
c) be robust against detection avoidance by adaptive adversaries,
d) model a real-world variability of rational adversaries,
e) enable to set an application-specific adaptability rate of the adversaries,
f) create a realistic model, based on historical data,
g) be computationally efficient.

1.2.1. Goals

The listed goals a) - g) are to described in more details.

a) High accuracy

In order for the approach to be highly accurate, it must enable the usage of any state-
of-the-art machine learning method as a black box without any restrictions both on the
algorithm and on training data, unlike the majority of existing adversarial classification
models which either directly incorporate the classification method into the model or
require significant restrictions on the learning algorithms or on training data.

b) Control over expected false positives rate

The approach must enable control over expected false positive rate of the final system,
in order to make it possible to deploy the approach in a real-world setting. Unbounded
false positive rate was pointed out as one of the major limitations for deployment of
adversarial classification in practice [5]. Still, to the best author’s knowledge there
is no adversary-aware classification model optimizing performance of the security sys-
tem under a specified restriction on the total expected false positives rate. The only
adversary-aware model involving operational constraints was developed in the recent
work [35, 50]. However, in the model due to [35, 50] a total expected number of all

3



1. Introduction

alarms, rather than false alarm rate, is restricted. In the case of the O2 CZ fraud clas-
sifier, as well as in many other practical applications, it is operationally possible and is
required to detect as many malicious cases as possible. However, high false alarm rate
results in the denial of service in practical adversarial classification [5, 35, 24, 13, 39,
29, 47, 28]. Thus, the goal is to address a problem in the style of the Neyman-Pearson
approach to decision theory [51, 52]: the novel approach must improve the robustness
of security under the constraint on expected false positive rate.

c) Robustness against detection avoidance by adaptive adversaries

In order for the approach to be robust against adaptive adversaries, rationality of
adversaries and their interaction with the defense system must be modeled using a
formal mathematical framework: game theory.

Furthermore, unlike most of the existing game theoretic models which stick to deter-
ministic classfication [35], the novel approach must enable leveraging from randomiza-
tion which was shown to make detection avoidance harder for adversaries [18, 45].

d) Variability of rational adversaries

The approach must address the real-world fact that rational adversaries are not identi-
cal. To the best author’s knowledge, [35] is the only model taking realistic variability of
adversaries into consideration. Moreover, the model from [35] addresses goals e) and
f) as well.

e) Adaptability rate of the adversaries

The novel approach must enable setting an application-specific adaptability rate of the
adversaries. It is unrealistic to assume all malicious entities to be fully rational. In
real-world cases adversarial rationality is bounded. The approach must enable setting
an application-specific expected probability that an adversary is adaptive. This would
enable the usage of the approach in both applications with highly adaptable attackers,
and in applications were rationality and, thus, adaptability of the adversaries are rather
bounded.

f) Data-driven modeling

The majority of existing game-theoretic models for adversarial classification are based
on idealized modeling of utilities, which limits practical applicability of the models [35].
Modeling the utilities and variability of the adversaries in the approach must be driven
directly by the real-world data, aiming to avoid any unrealistic assumptions.

g) Computational efficiency

Last but not least, as a part of the new approach, efficient algorithms for computation of
the model solution must be developed. Expressive models tend to lead to intractable in
practice formulations. For instance, the model from [35], which successfully addresses
goals c) - f) and moreover enables usage of arbitrary machine learning method, re-
sults in an infinitely large LP formulation if at least one attribute in training data is
continuous.
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1.2.2. Outline

The rest of the thesis is structured as follows.
In Chapter 2 we analyze which types of attacks against a machine learning classifier

are possible. A general taxonomy of the attacks is provided. Next, we describe the O2
CZ fraud detection application and specify the type of attacks we focus on. Finally
the chapter is concluded with analysis of possible ways to deal with the attacks and
identification of the most promising ones. In Chapter 3 we overview the background
required to deals with the promising approaches and then we analyze existing methods
from the perspective of the practical requirements stated as goals in Section 1.2.1.
Capitalizing on the most promising approaches from Chapter 3, in Chapter 4 we develop
a novel game theoretic model of adversarial classification addressing several research
goals. Next, in Chapter 5 we analyze the formulated model and discover several facts
about it. Based on the discoveries, we devise efficient algorithms for computation of
several game theoretic solution concepts in the model. In Chapter 6 we demonstrate
results of the extensive evaluation of the proposed methods. Finally, in Chapter 7 we
conclude this work.
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2. Problem Analysis

In the previous chapter we have introduced an emerging field of adversarial machine
learning, discussed why it is crucially important for the industry to make state-of-
the-art classification robust against avoidance attacks and what are the main opened
problems in the field which we aim to address. In this chapter we first provide a general
categorization of existing types of attacks on machine learning classifiers. Next, in terms
of a general taxonomy we categorize a broad type of avoidance attacks this work focuses
on. This is the most common and the most frequently studied type of adversarial
problem arising in security applications of machine learning [26]. Therefore, the reader
should be able to directly use the results of this work in many real-world applications
of adversarial classification in order to improve its robustness and, consequently, long-
term performance. In order to keep the description illustrative and all assumptions
in the following chapters realistic, the addressed type of the real-world problems is
illustrated with the fraud detection module for the O2 Czech Republic company, a.s.
We conclude the chapter with discussion why for the specified problem a proactive
adversary-aware classification approach is required, comparing it to a currently common
reactive approach of dealing with the problem once it occurs [21, 26, 20].

Rational Adversary

In the following taxonomy we frequently use a term rational adversary who attacks the
machine learning classifier. In order to avoid ambiguity and to improve the reader’s
experience, we are about to briefly discuss what is meant by the rational adversary in
the following section.

In applications of adversarial machine learning classified entities are rational1. The
goal of the classifier designer is to distinguish malicious and legitimate instances apart.
At the same time malicious rational entities have intention to avoid detection, in other
words to be misclassified as legitimate instances. Rational malicious entities tend to
analyze how close their behavior is to possible legitimate behavior. They tend to analyze
what are the odds that a security system would classify them to be malicious. Based
on such reasonaing they decide how much they should modify their behavior in order to
remain undetected. Cumulative behavior of rational malicious entities cause a decrease
in the security classifier performance. In the literature this cumulative behavior is
considered to be an attack on the machine learning system. The attack is modeled as
an action of a rational adversary who has intention to increase the overall number of
false negatives2[54, 34, 47, 37, 48, 35, 22, 55, 25, 24]. In some security applications, like
fraud detection, the rational adversary might be intuitively considered as some criminal
mastermind who coordinates malicious entities. In other security applications several
instances can be produced by a single person, spam detection is an example of such
applications. In the later case the rational adversary can be viewed as an author of all
spam messages. In addition, introducing the concept of the rational adversary provides

1In general a decision-maker is rational if he consistently pursues his own objectives [53].
2False negatives are malicious instances misclassified as legitimate. Analogously, false positives are

legitimate instances wrongly classified as malicious. For more details see Section 3.2.
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certain modeling flexibility. Using the concept, it is possible to address cases when a
legitimate instance can be generated by the rational adversary, as well as cases when
the rational adversary not only adapts to the security classifier but also attempts to
corrupt the classifier before its deployment by providing misleading training data.

In the following, the term rational adversary would have the discussed meaning, if
explicitly not stated otherwise. Moreover, terms the adversary and the attacker would
be used interchangeably.

2.1. Taxonomy of Attacks Against Machine Learning

Classifiers

A qualitative taxonomy of possible attacks by an adversary against machine learning
classifiers was first introduced in [45] and then the taxonomy was extended in [26].
The taxonomy was used in design of frameworks for empirical evaluation of a classifier
security under adversarial attacks [56, 20]. Even though the field of adversarial machine
learning is relatively young, it already deals with a broad variety of real-world problems.
The taxonomy serves as a formal map to orientate in the diverse world of adversarial
machine learning problems. It will help us to formally specify the subject of this thesis
and differentiate it from related yet different problems.

The taxonomy differentiates all possible attacks based on several properties: a) the
type of influence that a rational adversary has on the classifier, b) the type of security
violation the undetected attack causes, and c) the level of specificity of the attack.
According to the taxonomy, each attack against a classifier is categorized with a com-
bination of values for each property. Intuitively, the category of each attack is a point
in a three-dimensional space, where the axes are a) the influence, b) the security vio-
lation, and c) the specificity of the attack. Possible values for each one of these attack
properties will be described.

2.1.1. Influence

This property characterizes the capability of the adversary to influence the classifier.
Based on the type of attacker’s influence, the attacks are divided into a) causative, and
b) exploratory.

Causative Attacks

In case of causative attacks the rational adversary has a capability to modify training
data which are later used to develop a machine learning classifier. Depending on the
application, the adversary might have control over some fraction of training data, or
over the whole training dataset. When the adversary controls a fraction of training
data, he might control only malicious training samples, or both legitimate and mali-
cious instances. Furthermore, even if all instances from the training dataset are under
the adversary’s control, it might be the case that the attacker can manipulate just
some aspects of data: for instance, modify just a restricted subset of instance features.
Regardless of the described application-specific nuances of causative attacks, the main
adversary’s strategy remains the same: first, influence training data in such a way that
the produced classifier would have vulnerabilities, and subsequently take advantage of
the vulnerabilities once the bad classifier is deployed. For instance, it might be possible
for the attacker to perform a causative attack if the classifier is being retrained on-line,
i.e. once new data sample arrives, and if the adversary is able to produce sufficient
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amount of modified instances [26, 57]. Note that in case of causative attacks the adver-
sary might be able to modify the testing data as well as the training data. However,
the idea of this type of attacks is to harm a classifier during the training phase in such
a way, that later malicious instances would be wrongly classified as legitimate because
of the initially corrupted classifier.

Exploratory Attacks

In case of exploratory attacks the rational adversary attempts to bypass the already
deployed machine learning classifier without previous modifications of the learning pro-
cess. In attacks of this type the rational adversary tries to make the malicious samples
to be viewed by the deployed security system as legitimate. Depending on application-
specific details, the adversary might have control either over all malicious instances
or over some subset of the instances. Analogously to the case of causative attacks, it
might be the case that the adversary can do any modifications of a controlled instance,
being able to change any attributes of the sample. It also might be the case that the
adversary’s control over instances is limited, for instance, it could be possible for the
attacker to modify just a subset of the attributes.

2.1.2. Security Violation

Based on the type of the caused security violation, there are three sorts of attacks: a)
integrity, b) availability, and c) privacy attacks.

Integrity Attacks

In this type of attacks the adversary aims to bypass the deployed classifier. Such attacks
are closely related to exploratory attacks. In [26] the whole section on exploratory
attacks is dedicated to exploratory integrity attacks. At the same time the attacker
might perform the causative integrity attack by modifying training data. In case of
integrity attacks the adversary’s goal is to increase a number of false negatives of the
machine learning classifier. Increasing a number of false negatives is considered the
main realistic goal of the adversary attacking a machine learning system [54, 34, 47, 37,
48, 35, 22, 55, 25, 24].

Availability Attacks

In this type of attacks the attacker tries to make the system effectively unusable. By
means of either causative or exploratory attacks the adversary attempts to degrade the
overall classifier performance, so that the security system would be shut down. In order
to cause the denial of service, the attacker intends to increase both a number of false
negatives and a number of false positives.

Privacy Attacks

In case of privacy violation attacks, the adversary probes the classifier trying to reveal
the confidential information about the used training instances.

2.1.3. Specificity

The last property describes to what extend the adversary’s intentions are specific. There
are a) targeted and b) indiscriminate attacks.

9
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Targeted Attacks

In case of targeted attacks the adversary desires several particular malicious instances
to bypass the classifier.

Indiscriminate Attacks

In case of indiscriminate attacks the adversary pursues a more general goal of degrading
the classifier’s performance on a broader set of malicious instances. The attacker’s goal
in case of indiscriminate attacks can be formulated as producing any false negative.

2.2. Real-world Problems to Apply Our Results to

One of the main motivations for this work is to develop and deploy a robust and effi-
cient machine learning classifier for a fraud detection system in the O2 Czech Republic
company. At the same time practical limitations of current state-of-the-art models for
adversarial classification make their deployment in production environment either im-
possible or unreasonable. Addressing the opened issues of adversarial machine-learning
in a context of a real-world application forces the author to keep all assumptions of
formal modeling realistic and to resolve relevant issues arising in practice. Moreover,
a real-world use case would make dealing with formal modeling more illustrative. For
those purposes, an adversarial classification case of the O2 CZ fraud detection system
is briefly introduced.

The O2 CZ case description should help the reader to better understand a type of
real-world applications the results of this work can be directly applied to. The addressed
problem represents a general type of the adversary-related problem commonly arising
in security applications of machine learning [26]. The studied problem will be analyzed
and categorized from the perspective of the general attacks taxonomy.

2.2.1. Machine Learning Module for the O2 CZ Fraud Detection System

Using state-of-the-art machine learning practices [58], a new module for the internal
fraud detection system at O2 Czech Republic has been designed and implemented.

The existing internal fraud detection system is quite complex. One of core subsys-
tems detects fraudulent customers of the company who actively use various services
but intend not to pay for it. Let us call this subsystem a subscription-fraud system3.
The existing complex subscription-fraud system consists of various previously developed
modules which are used by operators of the O2 CZ fraud division. Even though the
existing subscription-fraud system has proven himself to be efficient, some fraudulent
customers still manage to bypass the system. It is primarily given by the adaptability
of frauds [13, 28, 11]. The author of this work focused on developing the new last line
of defense for the existing subscription-fraud system as a part of his O2 CZ student
internship. For this purpose one-year data on instances inspected by the system and
discarded as legitimate were collected. The collected data were labeled based on the fact
if the inspected but discarded customer eventually payed for the service. After under-
standing, preprocessing the data and reviewing current state-of-the-art in the detection
of fraud by means of supervised machine learning, the author developed a predictive
model. The company data analysts and management were satisfied with performance of

3The meaning of a subscription fraud will be briefly explained in the following text.
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the developed prototype and it was decided to invest in further improvements and de-
ployment of the last-defense classification module into the production environment. As
the developed model is meant to be the last line of defense against the most non-trivial
fraudulent cases, it was required to increase robustness of the module against rational
adaptability of fraud. However, no current state-of-the-art method of adversary-aware
classification satisfied all the practical requirements listed in Section 1.2. As a result, the
goal of this thesis was formulated to improve state-of-the-art game-theoretic optimiza-
tion of adversarial classification making it applicable in practical settings. Even though
neither the machine learning classifier itself nor telecommunications frauds in general
is a subject of this work, both will be briefly introduced to the reader. Dealing with a
real-world application throughout the thesis will keep the work illustrative. Moreover,
the following introduction of the underlying classifier together with non-restrictive re-
quirements on it will help the reader to better understand which type of adversarial
classification applications would leverage from the results of this work.

The fraud detection module introduction is structured as follows. First, it is men-
tioned what is often meant by telecommunications fraud and what is the primary goal
of the existing internal subscription-fraud detection system. Next, general properties
and requirements on the underlying classifier are discussed. Finally, the dataset used
for developing the classifier is introduced, so that when throughout this work the author
would refer to the O2 CZ dataset, the reader would be comfortable with following the
discussion.

Addressed Telecommunications Fraud

Telecommunications fraud can be in the most general form defined as any activity by
which service is obtained without intention of paying [59, 32]. More specifically, the
addressed type of frauds is some times called contractual fraud which generates revenue
through the unforbidden use of the service with no intention of paying for the use. The
contractual fraud can be divided into subscription fraud and premium rate fraud [32].
The latter type occurs when fraudsters increase a number and/or duration of calls to a
premium rate number, the phones which have been calling the premium rate number
might eventually not pay their high bills [60, 32]. Subscription fraud can be divided
into two classes: one includes new customers who sign up for the service with no desire
to pay, in this type of the subscription fraud false identification can take place, while
another class of subscription fraud includes customers who decide part way through
their contract that they would no longer pay for the use of the service [33, 32]. The
subscription fraud was argued to be the most common type of fraud encountered by
telecommunications companies [10]. Detection of subscription fraud can be considered
the primary goal of the existing fraud detection system.

Underlying Classifier

For the purpose of this work it is sufficient to know that the last-defense module was
created using labeled historical data and methods of supervised machine learning. In
general, the goal of malicious behavior detection is to classify a previously unseen in-
stance as either malicious or legitimate. Analogously, the developed machine learning
module classifies a previously unseen user as either fraudulent or benign. In other words,
the underlying machine learning method performs binary classification. Out of several
developed classifiers the one with the best perfromance was selected. The classifiers’
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performance was mainly evaluated using ROC curves4. The chosen machine learning
methods for design of the classifiers were either considered state-of-the-art supervised
approaches in the applied fraud detection research [8, 13, 10, 14, 15] or/and have proven
themselves to be very efficient achieving state-of-the-art performance in machine learn-
ing challenges, e.g. competitions on the Kaggle platform: http://www.kaggle.com.
However, practically any supervised machine learning classifier, or classifier ensemble
[61], can be used as a black box in the developed method of efficient adversary-aware
classification. The only restriction on the resulting binary classifier is to enable produc-
ing an ROC curve4, which is a broadly used technique for evaluation of binary classifiers
performance. To put it differently, for the classifier it must be possible to determine the
degree to which a particular instance belongs to a positive class. Note that in practice
it is not a restrictive requirement. The majority of state-of-the-art classification models
in detection of malicious behavior naturally output a continuous quantity, a probability
value or a score which represents the degree to which an instance is a member of a
positive class, and final classification is made by thresholding the produced quantity [8,
13, 10, 14, 15]. Examples of the classifiers which output continuous scoring quantity
might be: Naive Bayes classifier, neural networks and their ensembles, ensembles of
classification and regression decision trees, such as random forests and boosted trees5.
In addition, implementations of some popular machine learning models outputting dis-
crete labels, such as Support Vector Machines, directly provide an option of predicting
the class probabilities6.

To sum up, based on state-of-the-art machine learning practices and using labeled
data the machine learning classifier was developed. A strict requirement on adversary-
aware method improving the long-term robustness was to not restrict the used machine
learning method in any way, e.g., by restricting its decision boundary or its loss function,
see the goal a) in Section 1.2.1. The requirement was to take the developed classifier
and improve it for the adversarial setting. Besides not imposing any restrictions on the
machine learning method, it was also required to not loose any information available in
data. Thus, no assumptions about the data were allowed. The used labeled dataset is
to be briefly described.

Collected Dataset

The dataset used to develop the machine learning classifier contained 20 484 of historical
instances. All instances were labeled based on information whether or not a person
eventually paid for the used services. As one would expect based on the previous
description of the challenging nature of the last-defense problem, class distribution of
the dataset was significantly skewed: there were just 1941 positive (fraudulent) cases.
Each instance was described using a set of features one would naturally expect for this
kind of applications. Among others, there were features equal to amount of money
spent by a person during previous periods of time, e.g. during the last 24 hours and
during the last 28 days. The money-based features were represented by floating-point

4See Section 3.2 for more details on an ROC curve.
5It is worth noting that recently an incredibly efficient implementation of gradient tree boosting

algorithm appeared: a scalable tree boosting system named XGBoost [62]. The system has already
proven itself very useful achieving state-of-the-art results in various machine learning challenges, e.g.,
competitions on the Kaggle platform: http://www.kaggle.com. Moreover, XGBoost implementation
"runs more than ten times faster than existing popular solutions on a single machine and scales to
billions of examples in distributed or memory-limited settings"[62].

6E.g., in libsvm-based R package for Support Vector Machines, "the probability model for classification
fits a logistic distribution using maximum likelihood to the decision values of a binary classifier"[63].
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numbers with two decimal places. Some features contained information about a person’s
history, e.g. for how long the user is a company’s customer, statistics on payments
during the contract, etc. Some features captured the pattern of the person’s behavior,
e.g. what services he used lately. There were as well features capturing demographic
characteristics of a customer: for instance, a reported by the customer age category,
or a safety score for a place where the person lives, etc. The dataset contains more
features, including several engineered ones, however, for the purpose of the illustration
the mentioned features would suffice. The overall number of features used for the final
model training was eighteen. As it might be obvious from the overview, in the dataset
there were both features with continuous domains and discrete-domain features. Note
that in the following text terms feature and attribute are used interchangeably.

2.2.2. Addressed Type of Attacks on Machine Learning Classifiers

We have discussed the O2 CZ fraud detection case, which motivated this research. Now,
the studied type of the avoidance attack against supervised machine learning classifiers
is to be categorized in terms of the general taxonomy.

Regarding the capabilities of the adversary, which is the first attack property in the
taxonomy, in this work we target exploratory attacks.

In [64] it was discussed that in many applications causative attacks are too imprecise
and of a limited practical use to the adversary: in order to produce a significant fraction
of training data, it requires large amount of time, powerful computational resources,
and/or system privileges. This is obvious for the O2 CZ fraud detection as well: in
order to produce a single positive training instance, a person has to sign up for the
service, actively use it in the same manner as if he plans not to pay for the service, and
in the end of month pay the bill. Still, without devising information about the deployed
classifier, the causative attack itself does not provide the adversary any guarantees for
not being detected [64].

In terms of the caused security violation, we address integrity attacks. Exploratory
integrity attacks against machine learning systems are the most common in practice
[26]. It is often considered the case that the rational adversary is mainly concerned
with causing as many false negatives of the system, as possible [54, 34, 47, 37, 48, 35,
55, 25, 24, 22].

Regarding the type of the caused security violation, the results of this work can
be applied both in case of targeted and in case of indiscriminate attacks, because the
novel approach enables to derive types of attacks from a collected case-specific data.
In the case of the O2 CZ fraud detection, the attack can be better described as an
indiscriminate one.

2.3. Adversarial Adaptability and Security by Design

To conclude the problem analysis, we will examine possible approaches how to deal with
adaptability of adversaries in security classification. It will be shown that in machine
learning applications in security domain attacks by the adaptive adversary should be
taken into consideration during the design phase, in order to build a system secure from
the ground-up.

One of the main open issues in fraud detection is the dynamic adaptability of frauds
[13, 28, 11]. Adversarial adaptability was observed in other security applications of
machine learning as well [27, 21]. However, very often in practice the issue is not
considered during the design phase. Machine learning classifiers are designed as if the
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Fig. 2.3.1. Illustration of a reactive security approach

classification task does not deal with rational entities. As the rationality of malicious
entities is neglected during the design phase, later it results in decrease of the classifier
performance. Once the problem occurs, the classifier designer reacts to it by retraining
the classifier on new data [21, 26, 20]. Such a reactive approach to the adversarial
adaptability is illustrated in Fig. 2.3.1 on a simple example of classification based on a
single attribute x.

For illustrative purposes, in the depicted example initial populations of both malicious
and legitimate instances are assumed to be normally distributed. Based on initial train-
ing data the defender develops and deploys an optimal linear threshold-based classifier.
However, once some of rational adversaries become aware of the classifier existence,
they attempt to avoid detection, changing a shape of the malicious class distribution.
It in its turn results in decay of the classifier performance. Once the decay is so con-
siderable that it cannot be ignored any more, the defender collects new data depicting
the current state of affairs and reactively retrain the classifier. Despite the simplicity
of the example, it also illustrates a constraint on maximum false positive rate, which
is crucial for real-world adversarial classification [5, 35, 24, 13, 39, 29, 47, 28]. Due to
the constraint on maximal acceptable probability of false alarms, the defender cannot
perform an optimal detection of malicious instances any more. To sum up, the occurred
problem, which was neglected during the design phase, is so serious that the reactive
approach is unable to resolve it completely.

Reactive security arises primarily due to the designer’s expectation that details of
the deployed system can be kept secret from the rational adversary, this common ap-
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Fig. 2.3.2. Illustration of a proactive adversary-aware approach

proach in engineering is known as security by obscurity [20]. However, in case of widely
used security applications, such as spam, intrusion, or fraud detection, the latest ad-
vances in the applied machine learning techniques are being openly published [8] and
application-specific state-of-the-art algorithms are common knowledge [45]. Except for
some very rare security applications with a small number of deployments, it is un-
realistic even to expect the set of possible instance features to be unknown to the
adversary [45]. Furthermore, recently it was formally shown that an arbitrary classi-
fier can be reversed-engineered under real-world restrictions [19]. Additionally, it was
proven that any randomized combination of classifiers can be also reverse engineered,
though imperfectly [19].

As a result, in order for the system to be secure, a system designer should not rely
on unrealistic beliefs in secrecy. Such approach follows the Kerckhoffs’s Principle or the
paradigm of security by design [34, 26, 20]. It was shown that if adversarial adaptability
is taken into consideration during the design phase, then the resulting adversary-aware
security systems lower the systems losses due to rationality of adversaries [36, 35, 24,
21, 37]. Adversary-aware approach attempts to predict and prevent the problem before
it actually occurs, in a proactive manner, see Fig. 2.3.2.

In the figure we continue the described simple example. Fig. 2.3.2 illustrates, that
when the problem is anticipated before it actually occurs, it can be possible to mini-
mize the extent of the problem. To put it differently, by understanding intentions and
capabilities of the adversary and by deploying adversary-aware randomized classifica-
tion, losses of a security system can be minimized compared to eventual losses when
the adaptability is ignored during the design phase [36]. The Fig. 2.3.2 also illustrates,
that when using a randomized classification it is possible to seldom use a classification
corresponding to higher false alarm rates without violation of the constraint on maximal
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Fig. 2.3.3. Illustration of an unrealistic optimal attack

acceptable probability of false alarms. It reduces the ability of adversaries to exploit
security patterns to their advantage compared to the case of ignoring the adversarial
adaptability. Note that the reactive approach to the problem, see Fig 2.3.1, is still
better than the approach of ignoring the very existence of the problem.

To sum up, in order to design a system which would be secure from the ground-up,
the ability of the adversary to discover information on the used algorithms, on training
data, and on the final classifier must not be ignored. Neither abilities of the adversary
should be overestimated, however. It would be unrealistic to assume that the adversary
is capable of performing an optimal attack as in Fig. 2.3.3. Therefore, it is required
to tune the level of the adversarial adaptability based on a specific application. The
approach developed in this work enables that.
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In this chapter we overview and systematically categorize existing game theoretic adversary-
aware models for robust adversarial machine learning. The categorization is based on
real-world requirements of the model applicability, dictated by the O2 CZ fraud detec-
tion use case. Before diving into related work, we provide a reader with an overview of
background required for understanding this thesis.

3.1. Basic Game-Theoretic Definitions

Game theory is a mathematical study of interaction between several rational entities,
termed players, such that each player maximizes his own utility. Informally, game
theory can be viewed as a tool which helps to optimize a payoff in some dynamic
environment, where the dynamic nature of the environment arises due to the fact that
all other inhabitants of the environment maximize their own payoffs. Knowing about
the discussed adaptivity of the rational adversary, game theory is exactly what is needed
to minimize the defender’s losses by modeling what the adversary wants, can, and has
intention to do when he knows what the security system designer wants and can do,
see Fig. 2.3.1. Successful real-world applications of game theory demonstrate that it
is in general an efficient tool for modeling and understanding adversarial interaction in
security [42, 43].

Note that in this work a framework of non-cooperative game theory is used, which is
notably suitable for the studied problem of exploratory integrity attacks. Cooperative
game theory is not within the scope of this thesis. If we need to refer to cooperative game
theory it would be stated explicitly, otherwise in the following text non-cooperative
game theory is meant by game theory.

3.1.1. Normal-Form Game

Definition 3.1.1. "The simplest game definition, known as a normal form, contains a
tuple (N, A, u), where:

• N is a finite set of n players who are taking the action.

• A = A1 × A2 × ... × An and Ai is a set of actions available to the ith player.

• u = (u1, u2, ..., un) and ui : A 7→ R is a utility function of the ith player. The utility
function of a player maps every vector of actions a ∈ A to a real-valued number. This
number characterizes a degree of the player’s happiness about the outcome of the vector
of actions a, which is also called an action profile. The greater the ui(a) is, the more
satisfied the ith player is about the outcome of the action profile a ([65], p. 118)."

A normal-form game is often viewed as the most fundamental one. Normal-form game
is also called a single-stage game to underline the fact, that the game has no temporal
structure. For some problems other game formulations might be more appropriate.
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3.1.2. Bayesian Game

In case of the normal-form game it is assumed that all players know against whom
they play. However, for some real-world settings it required to model the player’s
uncertainties about an adversary. This is possible using a model called Bayesian game.
The uncertainty is often modeled as a probability distribution over possible types of
players. We provide a definition of Bayesian game from ([65], p. 167)

Definition 3.1.2. A Bayesian game is a tuple (N, A, Θ, p, u), where:

• N is a set of players.

• A = A1 × A2 × ... × An and Ai is a set of actions available to the ith player.

• Θ = Θ1 × Θ2 × ... × Θn, where Θi is the type space of ith player.

• p : Θ 7→ [0, 1] is a common prior over types.

• u = (u1, u2, ..., un) and ui : A × Θ 7→ R is a utility function of the ith player.

3.1.3. Players’ Strategies

In game theory a set of all available player’s choices is called a set of his strategies.
One type of strategies is a pure strategy [65]. For a normal-form game it means that
a player chooses one action and plays it deterministically. For a Bayesian game a pure
strategy ai of the ith player is defined as a mapping from each possible type a player
might have to his action he performs in case he has this type, αi : Θi 7→ Ai ([65], p.
168).

A selection of an action for every player is called a pure-strategy profile.
We have already discussed the pure strategy. Another type of strategies is a mixed

strategy. The definition of mixed strategies from ([65], p. 59) follows.

Definition 3.1.3. "Let Si be a set of all pure strategies the ith player has, and for
any set X let

∏

(X) be the set of all probability distributions over X. Then the set of
mixed strategies for the player is

∏

(Si). The set of mixed-strategy profiles is simply the
Cartesian product of the individual mixed-strategy sets."

Pure strategies which are played with non-zero probability form a support of the
mixed strategy.

It can be shown, that some strategies would be always preferred by a rational player
over other strategies, because the later always provide either worse or not better out-
come for the player. Such unappealing strategies are termed as dominated. Intuitively,
a strategy is dominated if there is another strategy which always provides a player either
better or equally good outcome, no matter what all other players play. Domination of
strategies is not restricted to pure strategies only. If a rational player is always better
off when playing one mixed strategy instead of the other, we can describe this case by
means of the domination as well. The formal definitions regarding strategy domination
from [65] follow.

Definition 3.1.4. "Let si and s′
i be two strategies of player i, and S⊗i be the set of all

strategy profiles of the remaining players. Then

1. si strictly dominates s′
i if for all ∀s⊗i ∈ S⊗i, it is the case that ui(si, s⊗i) >

ui(s
′
i, s⊗i).
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2. si weakly dominates s′
i if for all ∀s⊗i ∈ S⊗i, it is the case that ui(si, s⊗i) ≥

ui(s
′
i, s⊗i) and for at least one s⊗i ∈ S⊗i, it is the case that ui(si, s⊗i) > ui(s

′
i, s⊗i).

3. si very weakly dominates s′
i if for all ∀s⊗i ∈ S⊗i, it is the case that ui(si, s⊗i) ≥

ui(s
′
i, s⊗i).

Definition 3.1.5. "A strategy is strictly (resp., weakly; very weakly) dominant for a
player if it strictly (weakly; very weakly) dominates any other strategy for that player."

Definition 3.1.6. "A strategy si is strictly (weakly; very weakly) dominated for a player
i if some other strategy s′

i strictly (weakly; very weakly) dominates si."

3.1.4. Solution Concepts

Nash Equilibrium

If we know strategies of all players except the ith one, assuming that the players are
rational, it is possible to predict a strategy of the ith player. The ith player would
choose such a strategy which maximizes his own utility. Such a maximizing strategy
as a response to a given set of other players’ strategies is called a best response of
the ith player [65]. One of the most powerful and stable solution concepts in game
theory is Nash Equilibrium which can be defined using the best response definition.
The definitions from ([65], p. 62) follow.

Definition 3.1.7. "Let Si be a set of possible strategies for the ith player. Let s⊗i =
(s1, ..., si⊗1, si+1, ..., sn) be a strategy profile without a strategy of the ith player. The ith

player’s best response to the s⊗i is a strategy s*
i ∈ Si such that ui(s

*
i , s⊗i) ≥ ui(si, s⊗i)

for all strategies si ∈ Si."

Definition 3.1.8. "A strategy profile s = (s1, ..., sn) is a Nash Equilibrium (NE) if, for
all agents i, si is a best response to s⊗i."

Bayes–Nash Equilibrium

Compared with a normal-form game, in a Bayesian game there are additional sources
of uncertainty. In order to define the best response, it is first required to specify a
meaningful notion of the agent’s utility. There are several definitions of expected utility
for Bayesian games. In this work we will need a so called ex interim expected utility,
which models the setting when a player is aware of his own type but does not know the
types of the other players. The following definitions are taken from ([65], p. 168 - 170).

Definition 3.1.9. Ex interim expected utility of the ith player in a Bayesian game
(N, A, Θ, p, u), where the type of the ith player is θi and where the players’ strategies
are given by the mixed-strategy profile s, is defined as

EUi(s, θi) =
∑

θ⊗i∈Θ⊗i

p(θ⊗i | θi)
∑

a∈A





∏

j∈N

sj(aj | θj)



 ui(a, θ⊗i, θi).

To sum up, the ith player has to consider each possible assignment of types to all
other agents and every pure action profile a to evaluate his utility in the ex interim
setting.

Having defined a player’s utility, it is now possible to define best response in a
Bayesian game.
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Definition 3.1.10. The set of player i’s best responses to mixed-strategy profile s⊗i

are given by

BRi(s⊗i) = argmaxs′

i
∈Si

EUi(s
′
i, s⊗i, θi).

Now it is possible to define Bayes-Nash equilibrium.

Definition 3.1.11. A Bayes-Nash equilibrium is a mixed-strategy profile s that satisfies
∀i si ∈ BRi(s⊗i).

Stackelberg Equilibrium

In security domain, game theoretic solution concept of Stackelberg Equilibrium has
been very popular recently [41]. The concept assumes that in strategic interaction
between two players one particular player is dominant. The dominant player computes
its strategy and discloses it to the other player before the game starts. Then the other
player, who is often called a follower, plays optimally with respect to the strategy of the
dominant player [36]. In security applications, the concept of Stackelberg Equilibrium
better describes the situation, when the attacker is able to discover the defender’s
strategy before performing the attack. The following definition is adapted from [66].

Definition 3.1.12. Without loss of generality, let a leader be denoted as a player 1
and let a follower be denoted as a player 2. Let S1 be a set of possible strategies for the
leader. Let b2(s1) denote the follower’s best response to the leader’s strategy s1 ∈ S1.

A strategy profile s = (s1, s2) is a Stackelberg Equilibrium (SE) if u1(s1, b2(s1)) ≥
u1(s′

1, b2(s′
1)), ∀s′

1 ∈ S1.

In addition, if the follower breaks ties in favor of the leader, then the solution concept
is called a Strong Stackelberg Equilibrium (SSE). Note that the effect of breaking ties
in favor of the leader is not restrictive in practice: by using negligible perturbations,
the defender can make a particular follower’s pure action the only optimal one for the
follower [36, 34].

3.2. Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) is a technique for visualizing and evaluating
machine learning classifier performance. The technique is primarily used for evaluation
of binary classifiers and has particular advantages for domains with skewed class distri-
butions, unequal classification error costs for different classes, and varying proportion
of the classes [67]. The class distribution in case of O2 CZ fraud detection case is very
much skewed1, costs for misclassifying a fraudulent instance and a legitimate instance
differ, and in domain of fraud detection it is known, that proportion of fraud varies from
month to month [11]. More importantly, the ROC curve enables to choose a setting of
a classifier with acceptable false positive rate, which is a crucial requirement in practice
[5, 35, 24, 13, 39, 29, 47, 28]. For these reasons the ROC curve was used for evalu-
ation and choosing a machine learning model for the O2 CZ fraud detection module.
Moreover, in this thesis we extend a state-of-the-art game-theoretic adversary-aware
method for adversarial classification which is based on the ROC curve. We provide
a brief overview of the ROC technique which is used in the adversarial classification
method developed in this work.

1Approximately 9.5% of all instances correspond to fraudulent cases, see Section 2.2.1.
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        true 

        label
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        label
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TP + FP
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accuracy = 
TP + TN

TP + FP + TN + FN

  speci city =                = 1    FPR 
TN

FP + TN

Fig. 3.2.1. Contingency table and common performance measures calculated from it

3.2.1. Classifier Performance Measures

The classifier is a mathematical model used for mapping each instance to a predicted
class label: either positive or negative. In Section 2.2.1 it was discussed that several
state-of-the-art classification models naturally output a continuous quantity, a proba-
bility value or a score which represents the degree to which an instance is a member of a
particular class, and final classification is made by thresholding the produced quantity
[8, 13, 10, 14, 15]. Examples of the classifiers which output continuous scoring quantity
might be: Naive Bayes classifier, neural networks and their ensembles, ensembles of
classification and regression decision trees, such as random forests and boosted trees.
Implementations of some machine learning models outputting discrete labels directly
provide an option of predicting the class probabilities, e.g., see libsvm-based R package
for Support Vector Machines [63]. In the following discussion we would, thus, consider
a general classifier which outputs a scoring quantity describing the degree to which a
classified instance belong to a particular class.

Given an instance to be classified, the classifier scoring output and the selected thresh-
old on the output, there are four possible outcomes. If both the predicted class and the
true instance label are positive, then it is counted as a true positive (TP). If the true
instance label is positive, but the predicted class is negative, then it is counted as a false
negative (FN). A true negative (TN) corresponds to a case when both the predicted
label and the true label are negative. And the last case, when the true label is negative,
however, the predicted label is positive, is termed a false positive (FP). Note that FP
is commonly called a false alarm. Counts of TP, TN, FP, FN can be summarized in a
contingency table, also called a confusion matrix [67]. Fig. 3.2.1 illustrates a contin-
gency table together with formulas for commonly used performance measures, which
can be calculated from the table. For the sake of conciseness, in the formulas total TP,
TN, FP, and FN counts will be denoted as TP, TN, FP, FN correspondingly. FPR in
the formulas stands for false positive rate. In literature FPR is sometimes called false
alarm rate. TPR stands for true positive rate, also called hit rate, recall, or sensitivity.
Sometimes in practice TPR is confused with precision, and precision in its turn might
be confused with accuracy. For the sake of clarity, computation of all the measures is
summarized in one place in Fig. 3.2.1.
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Fig. 3.2.2. Sample ROC curve

3.2.2. ROC curve

In the previous paragraph we defined TPR and FPR for one particular contingency table
corresponding to a specific classification threshold. However, for different classification
thresholds, contingency tables would differ.

Without loss of generality, let us assume that the higher the scoring output of the
classifier is, the higher the degree to which an instance belong to a positive class is.
Therefore, it holds that the lower the classification threshold we choose, the higher TPR
we obtain. This is something we desire. Unfortunately, this desirable result comes at a
cost: the lower the classification threshold is, the higher FPR we obtain. High FPR is
intolerable in practice and limiting FPR was argued to be a top priority for researchers
in order to make adversarial classifiers widely deployable in real-world applications [5].
An ROC curve serves to illustrate a trade-off between costly FPR and desirable TPR
in general. The ROC curve is a two-dimensional graph where TPR is plotted against
FPR for different values of FPR, as a result of different thresholds. An example ROC
curve is depicted in Fig. 3.2.2. The sample ROC curve was generated using ROCR R
package and sample data provided with the package [68].

An idealized ROC curve depicts TPR for every possible value of FPR, having an
infinite number of points. However, in practice an ROC curve is generated from a finite
test set. As a result, a real-world ROC curve is a step function, which approaches a
true ROC curve as a size of test set approaches infinity [67].

There are several important points on the ROC curve. The point (0,0) corresponds
to the deterministic strategy of predicting negative label all the time, while the point
(1,1) corresponds to predicting positive label all the time. The diagonal line TPR =
FPR corresponds to the strategy of random guessing. For instance, a point (0.5, 0.5)
corresponds to the strategy of guessing a positive label with probability 50%. Another
point on the diagonal, a point (0.7, 0.7), corresponds to the strategy of guessing a pos-
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itive label with probability 70%: if for each positive instance we choose a positive label
with probability 70%, the expected TPR is 0.7, the same holds for negative instances
and FPR. Having discussed the diagonal of random guessing, it is obvious that any
classifier which corresponds to a point in the lower right triangle of the ROC space can
be outperformed by random guessing. Finally, the point (0, 1) corresponds to perfect
classification. An ROC curve of a perfect classifier would have TPR = 1 for any FPR.

Note that the deterministic strategy of predicting a negative label all the time would
gain accuracy of 91.5% on the skewed O2 CZ fraud data, however, an ROC curve of
such strategy would consist of a single point (0, 0). For imbalanced datasets the ROC
curve depicts performance of a classifier better than accuracy. However, the ROC curve
is a two-dimensional graph, and it might be desirable to compare general performance
of different classifiers based on a scalar value derived from the ROC curve. A common
approach is to calculate the area under the ROC curve (AUC). The AUC has important
statistical interpretation: probability that a randomly chosen positive instance would
be correctly classified by a classifier is equal to the AUC of the classifier [67].

3.3. Related Work on Adversary-aware Classification Models

In this section we systematically review related work on game-theoretic adversary-aware
machine learning models for detection of malicious behavior. The reviewed models are
grouped based on the type of the used game-theoretic solution concept. When reviewing
each related work model, we investigate properties of the model related to the goals
of this work. It is shown that currently there is no model of adversarial classification
which satisfies all the practical requirements formulated as goals of this thesis, see
Section 1.2. Next, we categorize all the models based on the practical requirements
on adversarial classification. Strengths and limitations of the models are summarized
in one table, providing an overall overview to the reader. Finally, we analyze which
models address some of the specified goals of the thesis. As a result of the analysis,
we identify approaches from the existing state-of-the-art models we will capitalize our
work on.

Before diving into models using both machine learning and game theory for adver-
sarial classification, we first mention a notable study [22] of attacks against machine
learning by rational adversaries. Even though the work does not use game-theoretic
formalism to devise robust detection of malicious behavior, it formally models a ratio-
nal adversary, defining his intention to avoid detection in terms of utility, and provides
an algorithm for attacks by rational adversary against machine learning classifiers with
differentiable discriminant functions. Finally, using the devised algorithm, in [22] it
is shown that machine learning security systems can be easily evaded by attacks of
the rational adversary. It is worth noting that while the work [22] focuses on attacks
against machine learning system not using game-theoretic modeling of the interaction
between the adversary and the system, there are game-theoretic studies which analyze
general properties of the simplified attacker-system interaction without consideration
of realistic details and constraints on classification methods [69, 38, 70].

Models of Problems Other than Exploratory Integrity Attacks

Now we start reviewing models which optimize detection of malicious behavior using
game theoretic framework. As the framework is very broad, its usability is not limited
just to optimization of adversarial classification by modeling strategic interaction be-
tween a security system and an adversary. For instance, in [39] cooperative game theory,
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which is not within the scope of this work, is used to optimize intrusion detection using
a network of sensors as a means of protection for a distributed system consisting of a
set of subsystems. In [71] cooperative game theory is used to optimize configuration of
an intrusion detection system which uses several libraries.

Security in the multiple-system setting can be improved by means of non-cooperative
game theory as well. In recent works [47, 34, 37, 54] game theory was used to optimize
protection of multiple users/systems against personalized spear-phishing attacks. The
real-world requirement on low FPR was reflected in the defender’s cost in the mod-
els, without explicit control over FPR. The attacker’s utility was modeled realistically,
assuming that the attacker prospers from false negatives of the system. However, the
attacker’s intention to increase false negatives of deployed classifiers was not modeled
in [47, 34, 37, 54]. The aim of this research was not to address exploratory integrity
attacks, but to deal with a different problem: customization of user-specific security
settings when the attacker strategically chooses a subset of users to attack.

NE-based Models

First, we review models using NE as a solution concept.
The problem studied in [46] is closely related to exploratory integrity attacks. How-

ever, instead of distinguishing malicious instances from legitimate ones, in the work [46]
a classifier is designed to differentiate two types of malicious instances: spies vs. spam-
mers. The adversarial classification setting is in principle the same as in the case of
standard exploratory integrity attacks: the goal is to classify positive instances (spies)
apart from negative instances (spammers), while positive instances intend to look like
negative ones. The model assumes a linear classifier based on a single attribute: inten-
sity of the attack. The attacker chooses the intensity of the attack and the defender in
his turn chooses a classification threshold. False positives are penalized in the defender’s
utility function, however, maximal expected FPR cannot be controlled. Strategic in-
teraction is formalized as a normal-form game. NE of the model can be computed in
polynomial time using LP solvers. The complexity might be reasonable for smaller
instances of the problem. The resulting classification is randomized.

In [40] a standard problem of exploratory integrity attacks on supervised machine
learning classifiers is addressed. Intentions and interaction between a rational adver-
sary and a defender are modeled as a normal-form game. The machine learning method
is restricted to linear classifier and the defender is constrained to choose deterministic
classification. The adversary in the model is assumed to transform input data, and
the defender chooses the classifier parameters. The adversary-aware model puts con-
siderable restrictions on both utility functions and actions of both players: the joint
action space is assumed to be compact and convex, utility functions of both players
are assumed to be convex, twice differentiable and monotonic in the player’s actions.
Under the idealized restrictions an algorithm for computation of NE is devised.

In [24] the problem of exploratory integrity attacks in adversarial classification was
also addressed by modeling the strategic interaction using game theory. The attacker’s
and the defender’s incentives were modeled by a utility-based approach. In the model
the attacker prospers from false negatives and has to pay some cost for modifications of
malicious instances, while the defender prospers from correctly classified instances and
is assumed to pay for measuring features of the instances. The attacker’s action is to
modify malicious instances, and the defender’s action is to choose a classifier. In [24] the
existence of NE equilibrium of the defined game was proven. However, its calculation
was not addressed due to computational complexity: even if all attributes of training
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data are from finite discrete domains, number of actions is doubly exponential in the
number of attributes. Leaving the game-theoretic adversary-aware model unsolved, the
authors of [24] develop a computational procedure to address the following scenario:
a defender deals with training data without taking an adversary into consideration,
next the adversary avoids the deployed classifier as if the defender was unaware of his
presence, finally the defender derives a new classification rule knowing that the data
were altered by the adversary. The scenario is devised for a naive Bayes classifier. The
work [24] focuses on the described single-shot scenario when the adversary avoids the
deployed classifier just once. The repeated version of the scenario is briefly discussed
as well.

SE-based Models

Various real-world security problems were formalized as Stackelberg games. For in-
stance, Los Angeles International Airport Police scheduling problem or scheduling for
the Federal Air Marshals Service were formulated as Stackelberg games [42]. SE is
considered to be a more realistic solution concept for several adversarial classification
settings as well, because an attacker might be able to determine the deployed security
before performing an attack.

For that reason the authors of a NE-based model from [40] also modeled the inter-
action between the adversary and the defender as a Stackelberg game in [72]. In the
Stackelberg model from [72] the defender is a leader. He chooses a classifier and the
attacker playes his best response to the chosen classifier. Analogously to the NE-based
model from [40], the model from [72] also restricts machine learning method to a linear
classifier with a deterministic classification strategy. The defender’s utility function is
restricted to be convex and differentiable in the defender’s action. Under the restric-
tions, authors devise an algorithm for SE computation.

In contrast with the reviewed Stackelberg model, in some studies the attacker was
modeled to be a leader, who modifies data and discloses how the future distribution
would differ from original data. In [72] this setting was argued to contradict the intuition
of the adversarial classification problem: in the setting the defender just needs to solve
a straightforward optimization problem, minimizing the risk on the transformed data
under real-world restrictions, e.g. restriction on false-positive rate, see Fig. 2.3.1. For
the purpose of completeness, the models with the counterintuitive formulation of a
Stackelberg game are to be reviewed as well.

In [55] adversarial classification was modeled as a Stackelberg game, where an attacker
was assumed to be the leader, who modifies data knowing that the defender would play
the best response later. In practice this setting would mean that the defender would
simply produce an optimal classifier based on the new observed data and possible prac-
tical constraints. In the model classification method is restricted to a threshold-based
linear classifier with data having a single continuous feature. Interaction between play-
ers is modeled by an extensive-form game with perfect information, where each player
performs a single action. Even in this toy setting there is an infinite amount of possible
transformations by the attacker, making the problem computationally intractable. For
this reason a subgame-perfect SE in [55] is estimated using a genetic algorithm.

A conceptually similar model of adversarial classification was developed in [73].
Again, the attacker is assumed to be the leader, the machine learning method is re-
stricted to a linear classifier, training data are assumed to be one-dimensional, the
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attacker’s action is to modify the data, the defender’s action is to train an optimal
classifier on the modified data, and SE of the game is estimated with evolutionary
computation.

A Stackelberg game with the attacker moving first was also presented in [21]. The
game is modeled as an extensive-form game with a single move from both sides. The
model restricts machine learning method to a linear classifier and requires small number
of features in training data.

Lastly, adversarial classification was modeled as an analogous extensive-form Stackel-
berg game with a rational attacker being a leader also in [25]. The defender’s utility was
derived from a total number of misclassified instances, while the attacker’s utility was
based on a number of false negatives. Due to an infinite number of possible attacker’s
transformations of the data, the model was shown to be analytically intractable even
in case of a linear classifier. A subgame-perfect SE of the game was estimated using a
stochastic search algorithm.

Having reviewed models with counterintuitive formulation of a Stackelberg game, we
now proceed with overview of the most advanced adversary-aware models of machine
learning classification in security domains.

Authors of a recent work [36] use a normal-form game model to formalize the strategic
interaction between an attacker and a defender during exploratory integrity attacks.
The model enables to derive randomization of a classifier decision boundary. A notable
property of the model is that it allows usage of any machine learning approach for
classification of malicious behavior, without any restrictions on training data either.
The defender’s overall cost is realistically derived from operational costs due to FPR
and FNR, and from costs of expected attacks by a rational adversary. In the model
the defender’s costs due to FPR and FNR are estimated directly from an ROC curve
of the used machine learning classifier. In [36] it is assumed that all malicious instances
from training data are stationary, however, there is a rational attacker which has an
incentive to be undetected. The rational adversary is modeled to prefer cases when the
nondetection takes place for a classifier setting corresponding to high FPR. Note that
the rational adversary in the model can be viewed as an adaptive malicious entity in
terms of Section 2. Note that in [36] both SE and NE of the model were studied. It
was shown that a fine discretization of ROC suffices to derive randomized classification
close to the optimal one. As it was discussed in Section 3.2, every real-world ROC
curve is discrete and it approaches an ideal ROC curve as the amount of test data used
to produce the ROC curve approaches infinity. Therefore, with sufficiently large test
datasets the approach from [36] enables computation of near-optimal randomization
of the classifier decision boundary. Computation of SE was based on LP solver, and
computation of NE was addressed using a standard game theoretic solver. In other
words, the used NE computation procedure belongs to PPAD complexity class [74].

In another recent work [35] the problem of exploratory integrity attacks on supervised
machine learning classifier was also formulated as a Stackelberg game. In [50] computa-
tional tractability of the model was improved. As in [36], the formulated game-theoretic
model from [35] provides remarkable flexibility: any machine learning method can be
used as a black box. Moreover, modeling of the rational attacker’s utility is quite ad-
vanced, taking into consideration variability of different malicious rational entities and
their current feature vectors. It is realistically assumed that the goal of each rational
entity is to avoid detection by means of the smallest modification of the current feature
vector. The defender’s utility is based on positive gains from TNs and losses due to
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FNs. The model enables to set an expected probability that a random malicious entity
is adaptable. SE of the model is computed using LP solver. However, computational
tractability of the formulated LP is the main issue of the model. In the model random-
ized classification decision is optimized personally for each possible input vector. In
other words, in the initial model there is a variable for every possible feature vector of
an instance to be classified. This impressive modeling flexibility is a double-edge sword,
making the initial LP infinite in case of continuous features and making it intractably
large even in case of binary features. In [50] LP formulation and its computational
tractability was improved for the case of a binary features vector, making the model
applicable in use cases where restriction on all attributes to be binary is reasonable.
For instance, efficacy of the optimized approach was demonstrated on a spam filter
data with each email message encoded using the bag-of-words model [50]. Moreover,
to the best author’s knowledge, the model from [35, 50] is the first adversary-aware
classification model directly incorporating operational constraints in it. In the model a
total number of alarms can be restricted. Even though the authors argue that in prac-
tical applications of adversarial machine learning it is FPR which needs to be restricted
in the first place[50], the model does not enable limiting FPR directly. In real-world
applications like the O2 CZ fraud detection it is required from the machine learning
system to detect as many malicious instances as possible. However, in practice a high
FPR results in the denial of service [5].

Reviewing two advanced models concludes the overview of related work on adversary-
aware machine learning models.

3.3.1. Categorization of The Models

In the previous section adversary-aware machine learning models for detection of mali-
cious behavior were reviewed. All the models are to be categorized based on properties
required in real-world applications of adversarial classification. The properties of the
models are summarized in Table 3.3.1. The model categorization structurally summa-
rized the presented overview and is based on applicability of the model to the prob-
lem of exploratory integrity attacks on machine learning systems in real-world settings
analogous to the O2 CZ fraud detection case. Thus, if some model was shown to be
intractable even using the simplest machine learning method on a restricted training
data, then from the perspective of practical applicability we categorize the model to
be restrictive regarding the machine learning method and training data even though it
was not directly incorporated in the formal model.

3.3.2. State-of-the-art to Capitalize the Novel Model on

In practice it is required to use the most accurate state-of-the-art machine learning ap-
proaches, in order to derive the best possible predictive model. Only two recent models
due to [36] and [35, 50] enable to derive a robust adversary-aware classification based
on any state-of-the-art machine learning methods, see the summarizing Table 3.3.1.
The model from [35, 50] provides remarkable modeling power, however it is inapplica-
ble if some features of training data are continuous, which makes it impossible to use
the model for the O2 CZ fraud detection case without hurting the machine learning
predictive model2. Another notable model from [36] does not have this limitation. On

2Discretization of all continuous attributes and establishing a binary feature for each possible value
of each attribute results in significant and unnecessary decrease of the machine learning classifier
performance due to the curse of dimensionality and information losses during the discretization.
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[39] different problem: distributed system

[71] different problem: combining libraries

[47], [34], [37], [54] different problem: personalized security

[46] ✓ ±±± ✓

[40] ✓ ✓

✓(under
the idealized
restrictions)

[24] ✓ equilibrium of the problem not resolved

[72] ✓ ✓

✓(under
the idealized
restrictions)

[55]
[73]
[21] ?
[25] ✓

[36] ✓ ✓ ✓ ±±± ✓

[35, 50] ✓ ✓

±±± (with
binary
features
only)

control
over
total
alarms
only ✓ ✓ ✓

Tab. 3.3.1. Models using both machine learning and game theory for adversarial classification

the other hand the model from [36] does not address variability of various malicious
rational entities3, neither it enables to set a probability that a malicious entity is adap-
tive. Therefore, advantages of both models should be combined in order to improve
the state-of-the-art adversary-aware classification. Moreover, in order to derive not
only accurate, but also an applicable in practice method, it is required to incorporate
control over expected FPR into a novel model.

The model due to [36] is the only one directly applicable on training data for the O2
CZ fraud detection with usage of arbitraty state-of-the-art machine learning classifier.
As a result, this model would be taken as a main predecessor for a new model. The novel
model will be based on the classifier’s ROC curve as well. Moreover, this would enable to
naturally incorporate FPR into the defender’s utility function. The predecessor model is
to be extended by including advanced modeling of various types of adversarial entities,
data-driven estimation of adversarial utilities, and control over expected adaptability
of rational entities, all these extensions are inspired by the model from [35, 50] mainly.
Furthermore, the new model must be extended by incorporating user-specified control

3The model due to [36] assumes that all malicious rational entities are identical having the same
incentives, while addressing the variability was left for the future work.
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over the expected FPR in it. At the same time, in the original model computation of
NE solution concept is done with a general algorithmic procedure belonging to PPAD
complexity class and computation of the SE solution relies on solving a finite number
of subproblems with standard LP solvers. Thus, when developing a novel model by
analogy with the existing model, no computationally efficient approach for NE would be
provided as a free lunch. Moreover, knowing that in special cases SE of security games
can be computed very efficiently [43], it would be also necessary to analyze possible
ways to improve SE computation in the model. The challenging task of discovering
efficient algorithms for computation of the solution concepts is a subject of Chapter
5. The subject of the next Chapter 4 is to address in a single model all the discussed
requirements.
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4. Novel Model of Adversarial
Classification

In this chapter we design and formulate a novel model which would be used to address
the practical requirements on an adversarial classifier listed as goals in Section 1.2.1.

Introduction

In order to build a robust protection against a real-world population of rational ad-
versarial entities, a designer of security must collect information about the adversarial
population and realistically model what the rational enemies desire, what they are able
to do, what the designer himself prefers and is capable of.

To build a realistic model, it must be based on real-world observations. The model
from [35] introduces realistic modeling of the diverse attacker population and interaction
with it. In [35] it is noted that variability of rational entities in real-world adversarial
classification is given by differences in personal properties and goals of adversarial en-
tities, which take place in practice. The authors of the work [35] define a type of the
attacker based on his feature vector. Inspired by the idea from [35] we develop a model
using collected data about adversarial population to address the variability of adversar-
ial entities. Data about a rational entity, collected when there was no machine-learning
defense, reveals information about the particular type of a rational adversary showing
his ideal method of attack.

In [35] a feature vector of a malicious entity is used to define the type of the adversarial
entity. The model then aims to derive an optimal security for each possible type.
To put it differently, the model from [35] seeks to derive a defender’s decision for
each possible input feature vector separately. For real-world applications with infinite
feature spaces, for instance for the O2 CZ fraud detection case, the model leads to an
infinite number of adversarial types making it impossible to compute the formulated
security strategy1. Comparing a mathematical model of adversarial classification with
a weapon, the sharpest sword is of no practical use if it is so extremely heavy that
a warrior cannot raise it off the ground. Figuratively speaking, a handleable wooden
fighting stick might be more useful in practice. A finite model with a tractable size
from [36] can be used to model the O2 CZ fraud detection case. However, for now it
lacks modeling of the adversarial variability and efficient algorithms for computation
of the solution concepts. The goal of this chapter is to come up with a tractable finite
model enriched with data-driven estimation of the variability of the attacker, as well as
his intentions and capabilities.

The chapter is structured as follows. First, we formulate a Bayesian game model
which can be considered an extension of the model from [36] with adversarial types
from [35]. Next, to improve tractability of the solution computation in practical set-
tings, we simplify the modeling while preserving the data-driven estimation of the

1Even though for real-world cases of finite feature vector spaces the model from [35] is also impractical,
as it leads to an intractably large LP formulation, in [50] computational feasibility of the model was
improved for applications with binary features.
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adversary variability. The model is transformed to a normal-form game of a tractable
size. Notably, the novel model exhibits the same mathematical properties as the model
from [36]2. Therefore, the proposed model can be viewed as a special case of the general
model from [36]. At the same time, in term of modeling power the new model can be
considered an extension of the model from [36] to modeling in the style of Bayesian
game with a newly introduced data-driven approach. Note that the most important
notations introduced and described in this chapter are summarized in Appendix B for
quick reference. To keep the work illustrative and assumptions realistic, the proposed
data-driven utilities estimation is presented in the context of the O2 CZ fraud detection
case.

4.1. Bayesian Game of Data-driven Security against Varying
Adversary

4.1.1. Players

We model adversarial classification as a game between two players: a defender and an
attacker.

4.1.2. Actions

As in [36] we assume that each player chooses a classification thresholds from a set of
thresholds T.

Defender

In [36] the game has continuous strategy spaces which are later discretized and the
discretized version of the game is extensively analyzed. Both in the novel model and
the model from [36] the defender’s available actions are derived based on an ROC
curve. Due to the fact discussed in Section 3.2 that each real-world ROC curve has
a finite number of points, in contrast with the model [36] we deal with finite strategy
spaces from the beginning. Let F be a finite set of all FPR’s of points specifying the
real-world ROC curve3. And let τ denote a mapping from the set of FPR’s onto a
set of classification thresholds. We define T = τ(F). The defender’s action is thus
to choose a classification threshold td ∈ T and classify all instances using the chosen
threshold. Note that in [35] the defender chooses a different classification rule for each
possible instance, or in other words for each possible type of the attacker4. As a result,
such approach leads to an infinite model in case at least one feature in the dataset is
continuous. We rather choose to base our model on the observed instances and estimate
properties of the population of adversaries using collected data. Thus, we define the
types of the attacker based on the observed malicious instances only. Note that this way
we avoid hypotheses unfounded with observations. At the same time if in such data-
driven modeling the defender’s action is to choose a classification rule for each known
attacker type, it restricts the defender to the already observed malicious feature vectors
only, and as a result the model would likely become of limited practical use in real-world

2In the following chapter it will be shown how the newly derived utilities can be mapped to utilities
from [36].

3To be more specific, once a real-world ROC curve is generated, F can be obtained as follows: for
each unique TPR value of the generated step function, consider the minimal FPR.

4Remember, in [35] attacker types are given by unique feature vectors.
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settings as the classifier would assume to be legitimate each feature vector not observed
as malicious previously. Therefore, our modeling choice of the defender’s pure strategy
is to set a general classification rule based on the observed data describing malicious
and legitimate population5. To sum up, the model is based on the collected dataset.
Moreover, we assume that the observed data provide us some general information about
the population of attackers and based on this information we derive a general security
against the population, at the same time we do not assume that we have collected data
on each possible attacker type6.

As it was discussed in more detail in Section 2.2.1, for the used classifier it must be
possible to produce an ROC curve. In other words it must be possible to determine the
degree to which a particular instance belongs to a malicious class. The defender classifies
as malicious all instances with the danger degree higher than the chosen classification
threshold. In the following text for the sake of conciseness we often call the degree
to which a particular instance belongs to a malicious class the probability of being
malicious.

Attacker

Note that in the Bayesian model by an attacker we mean a particular malicious entity.

Analogously to [36], in the novel model an action of the attacker is to guess which
classification threshold the defender has chosen and then to perform the exploratory
integrity attack against the guessed threshold. In Section 2.3 it was discussed why in
order to build the system secure from ground-up, the defender should not rely on the
assumption that the attacker cannot know the used classification method. Based on
the principle of security by design, it is assumed that the attacker is able to estimate
the classifier output representing the degree to which an instance belongs to malicious
samples. To put it in context, the adversary is assumed to be able to determine the
probability that a particular email belongs to spam messages, or the probability that a
customer would be considered fraudulent. To sum up, the pure strategy of the attacker
is to guess thresholding on the probability predicted by the classifier and perform the
avoidance attack against the chosen thresholding.

Lastly, it remains to mention what happens if the attacker guesses a threshold which
can be never played by the defender. In [36] it was shown that a rational attacker would
always guess thresholds which a defender might play, as guessing other thresholds are
dominated actions for the adversary. Therefore, we assume that the attacker guesses the
same thresholds as the defender. If the assumption does not hold, then the performance
of the security system only improves.

To sum up, the attacker’s action is for each his type x to guess a classification thresh-
old ta(x) ∈ T and perform detection avoidance. Let X denote a set of all attacker’s
types. Then the attacker’s action is a mapping ta : X 7→ T.

5Detailed modeling of the players’ utility functions is described in Section 4.1.4.
6An interesting extension of our model for the future work might be developing a data-driven approach

based on clustering of the observed malicious instances and defining attacker types using the clusters.
Perhaps, Gaussian Mixture Model (GGM) clustering might be a promising method of choice. Using
the derived from collected data GGM it would be possible to estimate for each new instance its
probability of being malicious and the cluster-based type of a probable attacker. Using this idea it
might be possible to derive a type-specific security. It would be required to develop a method for
estimation of the players’ utility functions from the suggested GGM-based attacker types.
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4.1.3. Player Types

In [36] the model was motivated by security applications with a natural notion of the
attack intensity. Examples of such applications can be brute-force password cracking
or data exfiltration. The ideal attack for each rational entity in such applications
correspond to the highest attack intensity and the intensity was assumed to be mapped
onto the classification threshold. To put it differently, in terms of the model from [35] it
was assumed in [36] that there is just one type of rational adversarial entities and this
type corresponds to the highest intensity possible. We extend it to the setting when
there are many types of the attacker. We define types of the attacker based on historical
data about malicious population, inspired by the idea from [35]. It was discussed at the
beginning of this section that an attacker feature vector observed before deployment
of the classifier contains information about the optimal natural attack for a particular
adversarial entity. Thus, each observed feature vector x defines a type of the attacker.

One of strong properties of the novel model is that it presents a data-driven approach
to estimation of utilities. Let the dataset used for derivation of the model be called a
validation dataset.

Thus, a set of all attacker’s types X is a set of all malicious feature vectors in the
validation dataset. All the entities are assumed to occur with the same probability,
moreover, in real-world application with huge or infinite feature spaces it is very unlikely
that in the collected data, feature vectors of malicious entities repeat. Therefore, if there
are |X | malicious instances in the collected data, we assume that there are |X | different
types of the attacker and each type occurs with probability p(x) = 1

♣X ♣ .
Regarding the second player, there is just one type of the defender.

4.1.4. Utilities

Defender

In the case of the O2 CZ application7 the defender’s primary goal is to prevent losses
due to fraud by detecting fraudulent entities. However, rational fraudulent adversaries
tend to modify their feature vectors aiming to avoid detection [13, 28, 11]. In related
work it was noted that for the attacker it is easier to avoid detection by changing his
natural type for the type as close to the natural one as possible [40, 72, 21, 24, 35]. In
the context of the O2 CZ case it holds that a customer very well estimates legitimate
behavior patterns of people from his social group. However, if he aims to fake someone
legitimate from a completely different social group, then it is a challenging task to
precisely estimate the probability of the unknown type to be fraudulent. Consequently,
the more extreme modifications of the feature vector the attacker performs, the less
certain his success is. We use the same mathematical model for capturing uncertainty
of severe feature vector modifications as in [35]. To be specific, let us assume that by
the attack corresponding to a feature vector x′ the attacker can steal amount of money
G and that the attacker with a natural type corresponding to a feature vector x needs
to modify his feature vector from x to x′, in order to avoid detection. To model the fact
that the more extreme modification is required, the less certain is the attacker’s success
because it is harder for the attacker to reason about the unknown type of instances,
we assume that even if the classification threshold is guessed correctly, in the described
setting the attacker can steal G · exp⊗γ‖x⊗x′‖, where ‖ · ‖ stands for L2-norm and γ is
a user-specified parameter [35]. The defender can loose exactly what the attacker can

7See Section 2.2.1 for the description of the O2 CZ use case.
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steal. Thus, this modeling choice is reflected in the defender’s utility as well. This way
we aim to avoid unrealistic overestimation of the attacker’s abilities, as discussed in
Section 2.3.

As it was described in Section 2.2.1, the developed machine learning classifier among
others uses two money-based features: the amount of money spent by the customer
during the last 28 days u28d and the amount of money spent during the last 24 hours
u24h. If a particular customer is not detected as malicious but in fact turns out to be
fraudulent8 it is assumed that the customer would be able to use the services during the
month without intention to pay. The amount of money a fraudulent customer would
be able to steal in the end of the month is estimated based on u28d and u24h. Money
u28d spent during the last four weeks by the customer who decided not to pay for the
service part way through his contract might be a good approximation of the amount
the customer would try to steal during the month. However, there is no historical
information for customers who sign up for the service with no desire to pay. The
amount of money such fraudulent customer would be able to steal during the next four
weeks can be estimated as 28 · u24h. To sum up, when a customer with a feature vector
x is not detected as malicious but turns out to be a fraud with the natural type x′,
then we assume the estimated gain of the fraud and therefore the estimated loss of the
defender to be

lF N
d (x) = max{u28d

x , 28 · u24h
x } · exp⊗γ‖xn⊗x′

n‖ . (4.1.1)

To address the fact that in reality not all adversaries are fully rational, we intro-
duce into the model probability that an adversary is adaptive. Let it be denoted Pa.
Note that Pa and γ both address real-world bounded rationality of adversarial pop-
ulation. Pa captures how likely an attacker of type x is adaptive, while γ captures
another application-specific property: if an attacker of type x is adaptable, how much
we expect him to modify the natural feature vector preserving the certain detection
avoidance. Note that xn denotes a feature vector x with all features normalized, to
make modification of all features equivalent.

Also note that the estimation of a potential loss for a given fraud type x can be further
improved. By collecting and analyzing corresponding data, it is should be possible to
build a predictive model which would in addition estimate, based on a specific type of a
fraudulent entity x, how much money can be returned by the debt recovery. However,
this is not within the scope of this thesis.

Next, if a fraudulent entity is correctly detected, then the loss is avoided, lT P
d (x) = 0.

Neither the defender losses anything when a legitimate user is not detected as a fraud,
lT N
d (x) = 0.

Next, let us analyze the defender’s losses due to false alarms. In the model, anal-
ogously to existing related work [36, 35], we assume that the defender has to pay a
constant cost for each FP, lF P = cF P . The cost can be derived based on internal ex-
penses for the operation of the fraud detection department9. However, in reality wrong
classification of a customer as fraudulent might result in loosing the customer. It might
be possible to collect relevant data and develop a model predicting a customer churn
for a particular type x if wrongly declared a fraud. Yet, it is not within the scope of
this thesis.

8See Section 2.2.1 for more information about the addressed type of telecommunications fraud.
9Note that there is an analogous operational cost for detecting TP. Yet, it is negligible compared to

the money saved thanks to the detection. However, it is required to introduce cF P into the model
to capture the fact that FP comes with some cost.
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Having discussed the defender’s losses due to FP, FN, TP and TN, we now proceed
to the total defender’s costs when choosing a particular classification threshold. Let
XF N

s (td) denote a set of attacker types which would not be detected for the defender’s
thresholding td even if the rational attacker is static, not doing anything. The subscript
s stands for static. It was discussed that each attacker’s type has probability ∀x, p(x) =

1
♣X ♣ . Thus, taking into account the attacker types probability, the defender’s loss due

to the undetected static attacker is
1

|X |

∑

x∈XF N
s (td)

lF N
d (x).

Let XF N
a (td, ta()) denote a set of the attacker types which would avoid detection

due to adaptive action of the attacker. Remember that a classifier detects all instances
with probability of being malicious exceeding the classification threshold. To put it
differently, td < ta(x) =⇒ x 6∈ XF N

a (td, ta()). Lastly, let XF P (td) denote a set of FP’s
for the classification threshold td.

The defender’s expected utility for choosing a classification threshold td when the
attacker’s action is ta(), denoting a mapping ta : X 7→ T, can be summarized as

Ud(td, ta()) = −
1

|X |

∑

x∈XF N
s (td)

lF N
d (x) − |XF P (td)| · cF P −

Pa

|X |

∑

x∈XF N
a (td,ta())

lF N
d (x).

(4.1.2)

Attacker

The money which the defender looses due to adaptivity of the adversary, the rational
attacker gains10. Therefore, the attacker’s expected utility for his action function ta()
when a defender plays td is modeled as

Ua(td, ta()) =
Pa

|X |

∑

x∈XF N
a (td,ta())

lF N
d (x). (4.1.3)

It is assumed that the higher the classification threshold the attacker successfully
bypasses, the higher the reward for undetected attack he gains. It was first motivated
in [36] by security applications with a natural dimension of the attack intensity [36]. The
assumption can be also motivated with the intuition, that the higher the probability
of being malicious the unstopped fraud had, the more damaging behavior in terms
of financial losses it established. Another possible intuition is that we assume the
classifier to distinguish the attackers from legitimate user, in other words we assume
that for the attacker the most natural and desirable way of behaving corresponds to
behavior patterns which a classifier detects as the attacker’s ones.

4.1.5. Bayes-Nash Equilibrium

It is possible to transform a Bayesian game into a normal-form game in such a way
that NE of the resulting normal-form game is precisely Bayes-Nash equilibrium of the
initial Bayesian game [65]. The core part of the transformation is done as follows:
for each player i a set of his actions in the normal-form game is a set of distinct

10Note that the defender would loss some money even if the attacker is stationary. Analogously to
[36] the stationary costs, not arising due to the rationality of the attacker, are not considered in
the attacker’s utility function, which is intended to capture consequences of actions by the rational
attacker and his preferences over those.
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mappings from the set of the player types to the set of his actions. For illustra-
tion purposes, consider a player with two types and three possible actions: A, B, C.
Then in the induced normal-form game the player would have nine possible actions:
AA, AB, AC, BA, BB, BC, CA, CB, CC. The action AC means that the player would
choose an action A in case of his first type and would choose an action C in case of the
second type.

As a result, a number of the attacker’s actions in the normal-form game induced from
the formulated Bayesian game would be |T|♣X ♣, making this straightforward transforma-
tion intractable. At the same time, for real-world settings the formulated model might
be solvable by transformation to extensive-form game and computing equilibria using
the sequence form formulation. However, this is not within the scope of the thesis. We
observe that for an attacker of any type the best response to an action by the defender
is the same. Thus, by making an assumption that the attacker of any type always plays
its best response to a particular defender’s action should not result in significant losses
of the simplified model performance. For this reason we proceed with the simplification
and leave for the future work development of efficient algorithms solving the sequence
form and addressing the restriction on FPR in it.

4.2. Normal-form Game

We are about to make a simplifying assumption in the developed Bayesian game model
and formulate a normal-form game with the equivalent defender’s actions, utilities and
with analogous modeling of the rational attacker.

Observe, that if in the formulated Bayesian game the defender chooses a classification
threshold td, then for the attacker the only dominant action is to guess the threshold
td and modify all currently detected types x of the malicious instances. This follows
from the modeling assumption that the higher is the probability of being malicious
for the bypassed attacker, the higher the utility the attacker gains. Note that the
defender detects all instances whose probability of being malicious exceed the threshold
td. Motivated with the observation about the non-dominated attacker’s action, we
assume that the attacker guesses the same threshold no matter which type x.

Thus, after the simple modification the game transforms into a normal-form game.
The structure of the normal-game remains very similar to the formulated Bayesian
game: the set of players is the same and actions available to the players remain the
same.

4.2.1. Utilities

Now, when the attacker guesses one threshold ta, it is possible to simplify the defender’s
utility.

In the Bayesian game XF N
a (td, ta()) denoted a set of adversarial types which for a

classification threshold td would avoid detection thanks to attacker’s adaptability. It
held that td < ta(x) =⇒ x 6∈ XF N

a (td, ta()). For the normal-form game the notation
simplifies to XF N

a (td, ta). Moreover, now it holds that td < ta =⇒ XF N
a (td, ta) = ∅.
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Therefore, the defender’s utility function from Eq. 4.1.2 can be rewritten as follows:

Ud(td, ta) =























− 1
♣X ♣

∑

x∈XF N
s (td)

lF N
d (x) − |XF P (td)| · cF P − Pa

♣X ♣

∑

x∈XF N
a (td,ta)

lF N
d (x), td ≥ ta;

− 1
♣X ♣

∑

x∈XF N
s (td)

lF N
d (x) − |XF P (td)| · cF P , otherwise.

(4.2.1)
Analogously, the attacker’s utility can be simplified:

Ua(td, ta) =



















Pa

♣X ♣

∑

x∈XF N
a (td,ta)

lF N
d (x), td ≥ ta;

0, otherwise.

(4.2.2)

On Usage of the Model in General

Note that in applications of adversarial classification without money-based attributes,
when it is hard to correctly estimate losses due to different types of the attacker, it is
possible to assume that each rational entity steals a single money unit if not detected.
This way the model would capture the main attacker’s desire to avoid detection.
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Solutions

In this chapter we develop efficient algorithms for computation of optimal security
strategies in the developed model based on both concepts of NE and SSE. Moreover,
we address the restriction on the expected FPR.

The chapter is structured as follows. First, we show that the extended model has
the same mathematical structure as the model from [36]. However, no model-specific
efficient algorithm can be borrowed from [36] to determine solutions for the novel model,
as computation of solutions in [36] was performed using general solvers. The main issue
is that the used NE computation procedure belongs to PPAD complexity class [74]. Yet,
neither a procedure for SSE computation optimized for the model has been developed
yet. At the same time in order for the devised method to remain applicable in the
future, efficient and scalable algorithms must be part of the approach. A current trend
is to keep storing more and more data. As it was discussed in Section 3.2, with a size of
a dataset approaching infinity, an ROC curve generated based on the data approaches
a true continuous curve. Thus, we expect our algorithm to deal with significantly larger
problem instances in the future, compared to the current state of affair.

Next, we develop a linear time algorithm for precise computation of the defender’s
strategy in NE. Furthermore, we address computation of SSE in the models. As a
part of a general SSE computation for normal-form games, a set of LP’s or a mixed
integer linear program is usually solved. We analyze the model-specific LP formulation
and develop linear time algorithm for solving the LP. This leads to a quadratic time
algorithm for solving the SSE problem. The developed algorithms can be used to
solve both the initial model from [36] and the novel model. Lastly, we develop an
approximation algorithm to compute SSE randomized strategy satisfying the specified
restriction on expected FPR, addressing the previously discussed practical requirement
on adversarial classifiers to not produce a large amount of false alarms [5, 35, 24, 13, 39,
29, 47, 28]. The developed approximation algorithm addresses a problem in the style of
the Neyman-Pearson approach to decision theory: the performance is optimized under
the constraint on expected false positive rate.

5.1. General Model Structure

First, the mathematical structure of the initial model from [36] is presented. Next, it
is shown that the novel model in fact provides a data-driven approach to estimation of
utility functions from [36], having the same mathematical structure. We comment on
a model notation which would be used in the following derivation of the algorithms.

Model from [36]

In the model from [36] the defender’s overall costs for false positives and false negatives
arising due to stationary population are denoted with cb

d(td), where td is a classification
threshold chosen by the defender. cb

d(td) is called the defender’s background costs. In
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[36] cr
d(ta) denotes the defender’s non-decreasing costs for an undetected attack by a

rational attacker, when the attacker guesses classification threshold ta.
ra(ta) denotes the attacker’s non-decreasing and non-negative reward function for

performing an undetected attack. In the case of a detected attack the attacker’s non-
negative penalty is assumed to be pa. It is assumed that there is a single type of the
attacker.

The sum of the defender’s costs cb
d(td) arising due to stationary population and costs

cr
d(ta) due to the rational attacker gives the defender’s total costs. In [36] the defender’s

utility is defined as

Ud(td, ta) =

{

−cb
d(td) − cr

d(ta), if td ≥ ta;
−cb

d(td), otherwise.
(5.1.1)

The utility of the rational attacker is his reward for the undetected attacks and his
penalty for detected ones:

Ua(td, ta) =

{

ra(ta), if td ≥ ta;
−pa, otherwise.

(5.1.2)

Novel Model Rewritten

Comparing the presented model formulation from [36] and the novel model formulation
from Eqs. 4.2.1, 4.2.2, we can see that the players’ utilities in the novel model can be
rewritten as the initial model Eqs. 5.1.1, 5.1.2, where the defender’s background costs
due to stationary population are

cb
d(td) =

1

|X |

∑

x∈XF N
s (td)

lF N
d (x) + |XF P (td)| · cF P , (5.1.3)

for the defender’s costs due to attacks by the rational adversary holds

td ≥ ta : cr
d(ta) =

Pa

|X |

∑

x∈XF N
a (td,ta)

lF N
d (x), (5.1.4)

the function of the attacker’s reward for a successful attack

ra(ta) =
Pa

|X |

∑

x∈XF N
a (td,ta)

lF N
d (x), (5.1.5)

and finally the penalty for detection pa = 0.

For the sake of compactness we will use in this chapter the notation cb
d(td), cr

d, ra,
pa. The discussed meaning of the notation is summarized in Appendix B.

5.2. Nash equilibrium

In [36] a continuous set of thresholds was analyzed and it was proven that some dom-
inated thresholds can never be a part of NE. We extend the analysis and prove that
there is an additional group of thresholds which does not belong to NE support. Next,
we continue analysis of the problem and develop a linear time procedure for NE com-
putation.
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5.2.1. Set of thresholds

Let U c
d(td) = −cb

d(td) denote the defender’s utility for playing a threshold td in case
an attack by the rational attacker is detected. In the case of an undetected attack the
defender’s utility is denoted by Uu

d (td, ta) = −cb
d(td) − cr

d(ta). It is assumed that if the
defender sets a fixed threshold, then the rational attacker would find out the threshold
value and will successfully attack exactly on this threshold, causing the highest possible
harm to the defender. Let Uu

d (td) = −cb
d(td) − cr

d(td) denote the defender’s utility for
playing a fixed threshold td.

For the defender it is possible to find an optimal non-randomised (i.e. fixed) threshold
as:

t*
d = argmin{cb

d(t) + cr
d(t)}.

Hence, Uu
d (t*

d) is a global maximum of Uu
d (td). However, it might be profitable for the

defender to play other thresholds instead of t*
d in order to make the attack of the rational

attacker detected. Yet, in [36] it was shown that in NE a rational defender would never
consider to play any threshold t for which cb

d(t) > cb
d(t*

d) + cr
d(t*

d). Therefore,

U c
d(t) − Uu

d (t*
d) ≥ 0 (5.2.1)

is the defender’s necessary condition for playing threshold t instead of playing t*
d. In

other words, a rational defender would never play a threshold t if the corresponding
background costs cb

d(t) is higher than the total costs (cb
d(t*

d) + cr
d(t*

d)) for playing the
optimal fixed threshold t*

d.
Motivated by real-world situations, a bounded and closed set of all possible thresholds

can be considered [36]. Let T denote the set of all possible thresholds. Let T0 ⊆ T
be a set of the thresholds such that for ∀t ∈ T0 : U c

d(t) − Uu
d (t*

d) ≥ 0. In other words
T0 denotes a set of thresholds considered for computation of NE strategies in [36]. We
show that some thresholds from the set T0 are dominated.

Proposition 5.2.1. A defender cannot improve his utility by playing a threshold td

instead of playing t′
d if td > t′

d ∧ cb
d(td) ≥ cb

d(t′
d) .

Proof: A set T0 can be mapped to interval 〈0, 1〉 [36]. Without loss of generality let
us assume that all thresholds from the set T0 form an interval 〈0, 1〉. If t′

d = 1, then
the Proposition obviously holds. Suppose that 0 < t′

d < 1. Let talt
d be such a threshold

that t′
d < talt

d ∧ cb
d(talt

d ) ≥ cb
d(t′

d). Several cases of attacks by a rational adversary are
possible in relation to t′

d and talt
d , see Fig. 5.2.1.

Let ta denote a threshold the rational adversary attacks on. The case a), arises
when talt

d < ta < 1. For both defender’s thresholds t′
d and talt

d the attack of the rational
adversary is detected. Hence, the defender’s costs due to rational attacker is zero. Due
to background costs, a rational defender has no incentive to play the threshold talt

d .
In the case b), when t′

d < ta ≤ talt
d , the defender’s costs corresponding to the

threshold t′
d are still cb

d(t′
d) while the defender’s costs corresponding to talt

d are (cb
d(talt

d )+
cr

d(ta)). As cr
d(t) is a non-negative function and cb

d(talt
d ) ≥ cb

d(t′
d), cb

d(talt
d ) + cr

d(ta)) ≥
cb

d(t′
d). Again, a rational defender has no incentive to play the threshold talt

d .
In the case c) the attack is always undetected and the defender has pay costs cr

d in
both case. Further reasoning is the same, as in the case a).

To sum up, the proposition 5.2.1 holds in all cases.�
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Fig. 5.2.1. Possible attacks by a rational adversary in relation to t′
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and talt

d

Corollary 5.2.1. If tmax
d is the smallest threshold corresponding to the global minimum

of the defender’s background costs cb
d(t) on the set T0, then a rational defender cannot

improve his utility by playing any threshold t, t > tmax
d , instead of playing tmax

d .

Note that on the bounded and closed set T0 the function cb
d(td) must attain a mini-

mum at least once.

Corollary 5.2.2. If the function cb
d(t) of the defender’s background costs is non-

decreasing on set T0, then the defender’s best response to any attacker’s strategy is
to play the lowest threshold t from set T0, t = min{t | t ∈ T0}.

To sum up, a set of thresholds a rational defender should consider can be reduced.
As a result of Eq. 5.2.1, Proposition 5.2.1, Corollary 5.2.1, a restricted set of thresh-

olds can be obtained. Let this subset of thresholds be called a set of reasonable thresh-
olds Tr. If cb

d(t) has a graph depicted in Fig. 5.2.2, then the set of reasonable thresholds
corresponds to solid-line intervals on the x-axis. The defender’s dominated actions are
not taken into consideration.

Corollary 5.2.3. The defender’s background costs cb
d(t) is non-increasing on set Tr.

Discretization

In [36] thresholds represent a continuous quantity. Capitalizing on this work, we have
proven the discovered properties for the continuous case. Yet, the properties analo-
gously hold for the case of a finite threshold set. Note that in [36] it was shown that
discretization of a continuous interval of thresholds provide a reasonable approximation
to the continuous problem formulation, i.e. there exists such a discretization that an
error of approximation would be reasonably low, see [36] for details. At the same time
due to the discussed in Chapter 4 fact that a real-world ROC curve is a step function,
the realistic novel game model deals with the finite number of thresholds from the be-
ginning. Hence, in the following a finite set of thresholds is considered, which can also
be viewed as a discretization of the continuous interval of thresholds.

If the defender plays thresholds t1 and t2 with non-zero probability and at the same
time he never plays thresholds from the interval (t1, t2), then the rational attacker
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would consider playing only the bounds of the interval, t1 or t2, in order to best re-
spond [36]. It obviously follows from the monotonicity of the attacker’s reward. By
a discretization of a continuous interval of thresholds the defender can choose a set of
thresholds which would be attacked by the rational adversary. Furthermore, due to the
discovered threshold domination, it is sufficient to consider only thresholds from the set
of reasonable thresholds in order to compute NE. Note that only dominated strategies
were filtered out during formation of the set of reasonable thresholds Tr, hence, at least
one NE has its support from Tr. To sum up, in the following text we focus on the set
Tr, in order to compute NE.

5.2.2. Computation of the players’ strategies

An important fact about the defender’s support of NE can be proven.

Proposition 5.2.2. The support of the defender’s strategy in NE always contains the
highest threshold from the set of reasonable thresholds.

Proof: The proposition can be proven by contradiction. Let us assume that in NE
the defender plays the highest reasonable threshold with zero probability. Hence, the
attack on the highest threshold is always detected. As a result, in NE the attacker never
plays the highest threshold if it is not played by the defender. Hence, in NE neither
the defender, nor the attacker plays the highest threshold with non-zero probability.

The considered defender’s strategy cannot be the best response to the considered at-
tacker’s strategy. The defender can improve his expected utility by starting playing the
highest reasonable threshold instead of the highest threshold which is currently played
with non-zero probability. The defender cannot detect any attack while playing this
threshold. Neither he can while playing the highest available threshold. However, in the
latter case the defender’s background costs becomes lower. To sum up, the defender’s
mixed strategy when the highest reasonable threshold is played with zero probability

43



5. Efficient Algorithms for Optimal Solutions

cannot be the best response to the corresponding attacker’s strategy. This contradicts
the assumption that in NE the defender plays the highest reasonable threshold with
zero probability.�

Using the described finding, an algorithm for computation of the attacker’s strategy
in NE can be formulated.

The attacker has to make the defender indifferent on the support of NE. The de-
fender’s support of at least one NE is a subset of the set of reasonable thresholds.
Moreover, the highest reasonable threshold has to be contained in the defender’s NE
support by Proposition 5.2.2. Hence, in NE the attacker has to make all reasonable
thresholds at most equally appealing to the defender as the highest one.

Computation of such attacker’s strategy can be done in an elegant and easy way.
First, we construct initial attacker’s strategy. The strategy support is tested whether or
not it corresponds to a NE strategy. While it is not satisfied, the strategy is iteratively
modified. Namely, the algorithm starts with the attacker’s strategy when he plays
only the highest reasonable threshold. If the strategy has to be modified, the attacker
takes into consideration next reasonable threshold and makes all considered thresholds
equally appealing to the defender. The only yet unconsidered threshold which might be
more attractive for the defender compared to all considered ones would be the highest
unconsidered threshold. The algorithm terminates due to non-increasing defender’s
background costs.

Proposition 5.2.3. Let us number thresholds in descending order starting with an
ordinal number 11. The following Algorithm 1 will compute the attacker’s strategy σ.
Moreover, it will return an ordinal number N of the lowest threshold in the defender’s
support of NE.

1 N = 1;
2 σ1 = [1];

/* helping variable containing probability of playing the last added

threshold */

3 last_probability = 1;
/* for the sake of compactness assuming condition evaluation from

left to right: if N = number of thresholds, then no threshold

tN+1 exists */

4 while N < number of thresholds and cb
d(tN+1) < cb

d(tN ) + σN cr
d(tN ) do

/* variable containing the probability required to equal the next

threshold */

5 next_probability = (cb
d(tN+1) − cb

d(tN ))/cr
d(tN );

6 last_probability -= next_probability;
7 σN = next_probability;
8 σN+1 = last_probability;
9 N = N + 1;

10 end
11 return σ, N ;

Algorithm 1: The algorithm for determining the players’ support of NE and the
attacker’s strategy.

1This way the first threshold corresponds to zero on the x-axis of the ROC curve.
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Fig. 5.2.3. The defender’s expected costs in the case of considering only two first thresholds.

Proof: First, it is checked if there are more thresholds than just one in the set of
reasonable thresholds. In case there is no threshold more appealing to the defender
than the highest one, the only reasonable threshold is played by both the defender and
the attacker with probability 1.

If there are two or more thresholds in the reasonable set and the second threshold
is more appealing to the defender than the first one, then in the first step the attacker
has to compute probabilities p1 and p2 of playing the first and the second thresholds
respectively. The probabilities p1 and p2 must be computed in such a way that both
the first and the second thresholds would be equally appealing to the defender. (p1, p2)
would be the next attacker’s strategy estimation. Remember, that when the defender
plays the first threshold, neither attacks on the first threshold nor attacks on the sec-
ond threshold can be detected. On the other hand, if the defender plays the second
threshold, then only attacks on the second threshold cannot be detected. Taking into
account background costs, the defender’s expected costs for playing the first threshold
can be computed as follows:

c1 = cb
d(t1) + p1 · cr

d(t1) + p2 · cr
d(t2). (5.2.2)

Analogously, for the expected costs for playing the second threshold we have

c2 = cb
d(t2) + p2 · cr

d(t2). (5.2.3)

From the equation c1 = c2 it can be easily obtained, that

p1 =
cb

d(t2) − cb
d(t1)

cr
d(t1)

, (5.2.4)

see Fig. 5.2.3.
One terminating condition for the algorithm is based on a total number of reasonable

thresholds. If there are only two thresholds, then the attacker’s strategy in NE is
computed in this case.

However, when there is the third reasonable threshold the defender can play, then
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the current attacker’s strategy cannot form NE if

cb
d(t2) + p2 · cr

d(t2) > cb
d(t3),

see Fig. 5.2.3. If the condition holds the defender would prefer to play the highest
threshold with zero probability, which contradicts Proposition 5.2.2. However, if the
condition does not hold, then the algorithm terminates.

This terminating condition remains the same when more thresholds have been already
made equally appealing to the defender. It is so because the defender’s expected utility
of playing any of these thresholds, including the lowest one, is equal to the expected
utility of playing the highest threshold.

Obvious yet important fact is, that once computed, the attacker’s probability of
playing a higher threshold remains the same in all next iterations of the algorithm.
The defender’s expected costs corresponding to all n thresholds have to be the same,
therefore, the expected costs have to be equal pairwise.�

The lowest and the highest thresholds from the defender’s support of NE were ob-
tained. They define an interval of thresholds the attacker makes the defender indifferent
on. In order for the computed attacker’s strategy to be NE strategy, the defender must
in his turn make the attacker indifferent on the same interval of thresholds. Otherwise
the attacker would prefer to play the action with the highest expected utility instead
of the previously computed strategy.

Computation of the defender’s strategy can be done in an elegant way as well. Basic
intuition about the computation is to be provided. The attacker’s reward function
is non-decreasing on the set of reasonable thresholds. Furthermore, the attacker can
always gain a reward for attacking on the lowest threshold, as such attacks cannot be
detected. Therefore, the defender would make the attacker’s expected utility of playing
any higher threshold equal to the attacker’s reward for playing the lowest threshold
from the support. Knowing the lowest threshold from the support, in the first step the
defender makes the attacker indifferent between two lowest thresholds. Let there be
n, n ∈ N, thresholds in the players’ support of NE. In order to make the nth and the
(n − 1)th thresholds equally appealing to the attacker, the defender has to find out how
often the (n − 1)th must be left unprotected using the equation

ra(tn) = pn⊗1,2 · ra(tn⊗1) − (1 − pn⊗1,2) · pa, (5.2.5)

where pn⊗1,2 is the defender’s probability of playing the (n − 1)th threshold when just
two lowest thresholds are considered. Note that from the attacker’s point of view pn⊗1,2

is probability that the (n − 1)th threshold is unprotected. Also note that the right side
of Eq. 5.2.5 represents the attacker’s expected utility for playing the (n−1)th threshold.
From Eq.5.2.5

pn⊗1,2 =
ra(tn) + pa

ra(tn⊗1) + pa
. (5.2.6)

And pn = 1 − pn⊗1,2. If the defender makes the attacker indifferent between k ∈ N

thresholds, the attacker’s expected utility for playing the (n − 1)th threshold still must
be equal to ra(tn). It implies the fact that the (n−1)th threshold must remain uncovered
with the computed probability. The defender can cover the (n − 1)th threshold only by
playing the nth threshold. And so, the computed defender’s probability pn of playing
the nth threshold remains the same in the case of k thresholds.
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When in the second step of the algorithm the defender makes three lowest thresholds
equally appealing to the attacker, he can compute how often the (n − 2)th threshold
must be unprotected using an analogous equation

ra(tn) = pn⊗2,3 · ra(tn⊗2) + (1 − pn⊗2,3) · pa.

As a result,

pn⊗2,3 =
ra(tn) + pa

ra(tn⊗2) + pa
. (5.2.7)

Probability that the (n − 1)th threshold is uncovered is equal to (pn⊗1,3 + pn⊗2,3).
The (n − 1)th threshold must be equally appealing to the attacker as in the case of
two thresholds. Hence, the defender’s probability of playing the (n − 1)th threshold
pn⊗1 = pn⊗1,2 − pn⊗2,3. On the set of reasonable thresholds the attacker’s reward
function ra is non-decreasing. Taking this fact into account together with formulas for
pn⊗1,2 and pn⊗2,3, see Eqs.5.2.6, 5.2.7, it is obvious that pn⊗1,2 ≥ pn⊗2,3. Therefore,
pn⊗1 can be always computed using the described procedure.

Probability pn⊗2,3 of leaving the (n−2)th uncovered has to remain the same even when
more thresholds are made equally appealing to the attacker. Consequently, probability
(pn+pn⊗1) of covering the (n−2)th threshold must remain the same. As pn is constant no
matter how many thresholds are taken into consideration by the defender, the computed
probability pn⊗1 is constant in the same way. Further probabilities pn⊗2, pn⊗3,... ,p1

can be computed analogously to the computation of pn⊗1. The overall algorithm is
summed up as Algorithm 2.

Input: ordinal number N of the lowest threshold to consider, ra, pa

Output: the defender’s NE strategy ς
1 i = N − 1;
2 ςN = 1;
3 while i > 0 do

4 weighting_factor =
ra(tN ) + pa

ra(ti) + pa
;

5 ςi+1 = ςi+1 - weighting_factor;
6 ςi = weighting_factor;
7 i = i − 1;
8 end
9 return ς;

Algorithm 2: The algorithm for determining the defender’s NE strategy.

5.3. Stackelberg equilibrium

If an attacker can estimate the defender’s strategy before acting, then NE should not
be used as a solution concept. SE concept suits better the case when a defender must
come up with an optimal randomized strategy knowing that later on an attacker will
response optimally to the strategy [66]. We devise the quadratic time algorithm for
computation of the SSE in the model.
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5.3.1. Computation of the players’ strategies

When dealing with a normal-form game,it is possible to find Stackelberg strategy by
formulating for every threshold ta a related LP-problem [75]:

maxd −
tn

∑

t=t1

dtc
b
d(t) − cr

ta

tn
∑

t=ta

dt; (5.3.1a)

dt ∈ [0, 1] ∀t ∈ {t1, .., tn} (5.3.1b)
tn

∑

t=t1

dt = 1 (5.3.1c)

Ua(ta, d) ≥ Ua(t, d) ∀t ∈ {t1, .., tn}. (5.3.1d)

The LP says that the defender looks for a mixed strategy d which would maximize
his utility, or in other words, would minimize his overall costs. dt denotes probability
of playing threshold t as a part the mixed strategy d. Let tn and t1 denote the lowest
and the highest thresholds from T correspondingly, tn = min{T}, t1 = max{T}. In
objective 5.3.1a the first summand

∑tn
t=t1

dtc
b
d(t) corresponds to expected costs due to

background costs and the second summand cr
ta

∑tn
t=ta

dt represents expected costs due to
attack by the rational attacker on the threshold ta. Constraint 5.3.1d ensures that the
attacker plays a best response to the defender’s strategy d. From the form of constraint
5.3.1d you may note that we use the SSE assumption, see Section 3.1.4 for more details.

By solving the LP’s, a set of strategy profiles would be obtained. One can see
from LP 5.3.1 that the resulting strategy profile (d, ta) satisfies all conditions for SSE
except for the condition that the defender forces an attacker to play a threshold which
maximizes the defender’s overall utility. Hence, in order to get the defender’s optimal
SSE strategy we must choose a solution to the LP, which corresponds to the highest
value of the defender’s utility.

In this work each LP subproblem is not solved using a standard solver. Rather we
construct a solution to each LP subproblem in linear time. The main idea is to gradually
expand a set of targets equally appealing to the attacker. The set of all targets equally
appealing to the attacker is called an attack set.

Note that the approach of gradual attack set expansion was used in ORIGAMI algo-
rithm to compute SSE in a normal-form game optimizing allocation of security resources
in such real-world applications as scheduling the police patrolling or randomized bag-
gage screening [43]. The ORIGAMI algorithm cannot be used to solve the problem
formulated in this work, as there are several principal differences between the prob-
lem solved with ORIGAMI and the problem we face. In the addressed by ORIGAMI
problem it is possible to put additional protection on one particular target without
affecting any other target. On the other hand, in the case of the formulated adver-
sarial classification game it is impossible to strengthen the protection of a threshold
independently on protection of higher thresholds. To be specific, if we start detecting
instances with danger probability exceeding a threshold t, then we automatically start
detecting instances with danger probability exceeding any t′ > t as well. Considering
the ORIGAMI, it is assumed that the attack set expansion cannot provide a worse
outcome for the defender. On contrary, in our case there are additional background
costs for protection of each target, i.e., each threshold. Hence, before any expansion of
the attack set it is be needed to determine if protection of a corresponding threshold
improves the defender’s utility or not.

As we have already formalized it in LP 5.3.1, the attacker chooses a threshold which
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guarantees to him the highest possible utility with respect to a given defender’s strategy.
In each LP subproblem we fix the threshold an attacker would choose. It can be shown
that there exists just one pure strategy of the defender such that the fixed attacker’s
threshold belongs to the attack set.

Proposition 5.3.1. For any fixed threshold ta there is only one defender’s pure strategy
which satisfies constraint 5.3.1d. The pure strategy for the defender is to play ta.

Proof: The proposition can be proved by contradiction. Let us assume there is another
defender’s pure strategy which satisfies constraint 5.3.1d. It can not be any threshold
lower than the fixed threshold ta, as if the defender plays a lower threshold then the
attacker’s utility for playing ta is a cost for being detected. However, for playing the
lower threshold, which the defender plays, the attacker would achieve a non-negative
payoff, as the attacker’s reward function ra(t) is non-negative and the attacker would
not be detected.

At the same time, a threshold th higher than ta can correspond to the attacker’s
reward ra(th) > ra(ta). Therefore, if the defender plays th, making it unprotected,
constraint 5.3.1d does not hold in general, because the attacker might prefer to play th.

This contradicts the assumption that there is a defender’s pure strategy another than
ta which satisfies constraint 5.3.1d.�

It can be shown that the defender’s pure strategy from Prop. 5.3.1, i.e., playing the
fixed attacker’s threshold ta, is not a solution to LP 5.3.1 in general.

Proposition 5.3.2. In case when there is at least one threshold th higher than ta and
for background costs holds cb

d(ta) > cb
d(th), then there is a defender’s mixed strategy

satisfying constraint 5.3.1d with a higher expected utility compared to the defender’s
utility of always playing ta.

Proof: To put the proposition differently, it might be possible to maximize the de-
fender’s expected utility by expanding the attack set {ta} to higher thresholds. Ex-
pansion of the attack set means including new thresholds into the set of thresholds
appealing to the attacker. The expansion of the attack set {ta} to higher thresholds
effectively means starting playing some higher thresholds with non-zero probability. In
terms of the utility Ud = −

∑tn
t=t1

dtc
b
d(t) − cr

a(ta)
∑tn

t=ta
dt the expansion of the initial

attack set to higher thresholds leaves a value of the summand cr
ta

∑tn
t=ta

dt unchanged.
Note that

∑tn
t=ta

dt is the probability that the threshold ta is not covered by the defender.
In other words, the expansion to higher thresholds aims to minimize background costs
∑tn

t=t1
dtc

b
d(t) while not changing probability of leaving ta uncovered.

Let us discuss in more details an attack set expansion to thresholds higher than
ta. It is required to analyze under which conditions such expansion would not violate
constraint 5.3.1d.

In case of the defender’s pure strategy of playing ta, any higher threshold th was
always covered by the defender, i.e., the attack on th was always detected. However, if
instead of always playing ta the defender starts playing th and higher thresholds with
non-zero probability punprotected(th) > 0, then with the probability punprotected(th) the
attack on th would be undetected. In order to ensure that constraint 5.3.1d is satisfied,
the defender must not leave any th with too weak protection. Informally, the protection
is too weak when the defender plays thresholds not lower than th with too high proba-
bility. What can happen in this case is that a weakly protected higher threshold would
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be more appealing to the attacker than the fixed threshold ta. This would contradict
constraint 5.3.1d. As a result, there exists a maximum allowed probability of leaving
any higher threshold uncovered. The maximum probability can be computed based on
the fixed threshold attacker’s reward ra(ta) and the fact that expected utility for play-
ing any threshold must be not higher than ra(ta). Based on Eq. 5.2.7, the maximum
probability of leaving a particular threshold unprotected can be computed as

punprotected,max(th) =
ra(ta) + pa

ra(th) + pa
(5.3.2)

To sum up, in order to minimize the total background costs for leaving the fixed
attacker’s threshold ta uncovered, the defender has incentive to play higher thresholds
with background costs cb

d(t) < cb
ta

. However, each higher threshold th can be uncovered
at most with the probability punprotected,max(th), in order to satisfy constraint 5.3.1d.

Furthermore, the attacker’s reward function for a successful attack is non-decreasing
on thresholds. From this fact and from Eq. 5.3.2 it follows that the higher the threshold
is, the lower the maximum probability of allowed non-protection punprotected,max(th) is.
Formally, ∀ti, tj : ti < tj =⇒ punprotected,max(ti) ≥ punprotected,max(tj). Therefore, for
any threshold th higher than the fixed one ta, ∀th : ta < th =⇒ punprotected,max(ta) ≥
punprotected,max(th). As a result, if a threshold th is higher than ta, then it is always

possible to start playing the threshold th with probability p(th) = ra(ta)+pa

ra(th)+pa
and play

the fixed threshold ta with probability p(ta) = 1 − p(th) ≥ 0. This way constraint
5.3.1d would not be violated and at the same time the defender’s expected utility is
higher compared to the utility of the pure strategy from Prop. 5.3.1, as cb

d(ta) > cb
d(th)

according to the assumptions.�

In the proof of Proposition 5.3.2 we analyzed some properties of the defender’s mixed
strategies on thresholds non-lower than the fixed threshold ta. Furthermore, based on
the analyzed properties and constraint 5.3.1d it is possible to show that some of the
thresholds higher than ta are dominated. This leads to a result similar to Prop. 5.2.1
which holds for NE on all thresholds. In the following proposition for the most of
dominated actions a concept of strict domination applies, see Section 3.1.3 for definitions
regarding the domination. Moreover, we use the concept of the weak domination as
well. If an action of choosing one threshold is no worse than choosing another threshold,
we prefer choosing the threshold providing stronger protection. Remember, the lower
the threshold is, the more malicious instances are detected, and therefore the stronger
the protection is.

Proposition 5.3.3. When satisfying constraint 5.3.1d, the defender cannot improve
his utility by playing a threshold td instead of playing t′

d if td > t′
d ∧ cb

d(td) ≥ cb
d(t′

d),
where td and t′

d are thresholds higher than the fixed attacker’s threshold ta.

Proof: It is given by the fact that under the satisfied constraint 5.3.1d the attacker
always plays the fixed threshold ta. Therefore, the costs due to the rational attacker is
always the same. Therefore, background costs are the only costs which differ for playing
different thresholds. Thus, for the defender it is better to play thresholds with lower
background costs. Note that in the discussed case when td > t′

d ∧ cb
d(td) ≥ cb

d(t′
d) the

defender can start playing the smaller-cost threshold t′
d instead of playing the higher-

cost threshold td without violation of constraint 5.3.1d, see proof to the Prop. 5.3.2 for
more details.�
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Note that in case td > t′
d ∧ cb

d(td) < cb
d(t′

d) it is in general not possible to move the
whole probability of playing a higher-cost threshold t′

d onto the lower-cost threshold
td without violation of constraint 5.3.1d. This is given by the fact that the maximum
allowed probability of leaving the higher threshold t′

d unprotected is lower or equal to
the analogous maximum probability for the threshold td.

It has been shown that constraint 5.3.1d leads to domination of some of the defender’s
thresholds. Capitalizing on this result, it is possible to compute an optimal defender’s
mixed strategy on non-dominated thresholds higher or equal to the fixed threshold.

Proposition 5.3.4. On non-dominated thresholds higher and equal to the fixed thresh-
old ta the defender’s mixed strategy obtained with Alg. 2 is a solution to LP 5.3.1 on
this set of thresholds, i.e., it is optimal in terms of the defender’s expected utility and
does not violate constraint 5.3.1d regarding the attack set2.

Proof: The Alg. 2 leaves each threshold unprotected with a maximum allowed proba-
bility from Eq. 5.3.2. Therefore, the attack set condition from LP 5.3.1 is satisfied by
construction.

At the same time, the defender’s background costs are minimized, as by construction
of the mixed strategy the threshold corresponding to the lowest background costs is
played with the maximum probability which does not violate the attack set condition.
Note that the threshold corresponding to the lowest background costs is the highest
one from the defender’s support. The threshold just before the lowest-cost threshold
is played with a remaining probability, i.e., the probability which cannot be moved
to the lowest-cost threshold in order to not violate the attack set condition from LP
5.3.1. At the same time it is the highest possible probability to play the second lowest-
cost threshold, derived from the maximum allowed probability to leave the threshold
unprotected. As a result, for the second and the third highest thresholds in the support
it holds that no probability can be moved on threshold(-s) with lower background costs
without violating constraint 5.3.1d. As the mixed strategy is constructed analogously
for all the thresholds, for each threshold it holds that without violation of the attack
set constraint 5.3.1d, it is impossible to reduce background costs. In other words, on
thresholds higher or equal to the fixed threshold ta the computed with Alg. 2 mixed
strategy corresponds to minimal expected background costs.

Moreover, the defender’s costs for attacks by the rational attacker is the same for
all mixed strategies satisfying constraint 5.3.1d, as the attacker always plays the fixed
threshold ta. As a result, the mixed strategy satisfying constraint 5.3.1d and corre-
sponding to minimal background costs is optimal in terms of the defender’s expected
utility.�

The mixed strategy from Prop. 5.3.4 is optimal on thresholds higher or equal to the
fixed thresholds ta. However, the strategy might not be optimal in case there is a lower
threshold with low background costs.

Proposition 5.3.5. If there is a threshold tl lower than ta, tl < ta, with background
costs cb

d(tl) lower than the defender’s expected costs for the mixed strategy from Prop.
5.3.4, then the mixed strategy is never optimal solution to LP 5.3.1.

2Remember, Alg. 2 requires the lowest threshold to consider as an input. The fixed threshold ta is
thus the required input.

51



5. Efficient Algorithms for Optimal Solutions

Proof: Informally, in this case a defender can improve his expected utility by starting
playing the lower threshold tl with such probability, that the attack set constraint 5.3.1d
still would be satisfied.

The proof is structured as follows: first, it is proven that the defender can always
start playing tl without violation of constraint 5.3.1d. The allowed probability d(tl)
of playing tl is derived. Next, it is shown how to derive the defender’s mixed strategy
which would satisfy constraints of LP 5.3.1 while a support of the strategy would include
tl and the support of the mixed strategy from Prop. 5.3.4. Finally, it is shown that the
expected utility of the newly derived mixed strategy is higher than the expected utility
of the strategy from Prop. 5.3.4.

a) Playing tl without violation of constraint 5.3.1d.

By starting playing tl, the defender puts some protection on higher thresholds includ-
ing ta. The defender must not put too much protection on the fixed threshold ta, as the
fixed threshold must still belong to the attack set. The attacker’s expected utility for
playing the fixed threshold must be higher or equal to the attacker’s reward for playing
the threshold tl. Note that the attack on the lower threshold tl is always undetected.
Thus,

ra(tl) ≤ (1 − d(tl)) · ra(ta) − pa · d(tl) =⇒ d(tl) ≤
ra(ta) − ra(tl)

ra(ta) + pa
.

To sum up, when satisfying the attack set constraint 5.3.1d, the defender can start
playing the lower thresholds tl at most with probability

dmax(tl) =
ra(ta) − ra(tl)

ra(ta) + pa
. (5.3.3)

b) The defender’s mixed strategy satisfying the constraints of LP 5.3.1

As a result of playing tl with probability dmax(tl), a total probability left for playing
thresholds equal to or higher than the fixed threshold is (1 − dmax(tl)). In other words,
(1 − dmax(tl)) is probability of leaving the fixed threshold unprotected. Again, we aim
to minimize the defender’s background costs for the given total probability of leaving
ta unprotected.

Analogously to Eq. 5.3.2, it is possible to determine a maximum probability of
playing a threshold th, th > tl, without violation of constraints from LP 5.3.1:

p′
unprotected,max(th) =

ra(tl) + pa

ra(th) + pa
.

Moreover, ra(tl) = (1 − dmax(tl)) · ra(ta) − pa · dmax(tl). Therefore, ra(tl) + pa =
(1 − dmax(tl)) · (ra(ta) + pa).

As a result, a newly computed maximum allowed probability of leaving the thresh-
old th unprotected, p′

unprotected,max(th), can be easily obtained using the probability
punprotected,max(th) of playing the corresponding threshold in the optimal mixed strat-
egy from Prop. 5.3.4, computed using Eq. 5.3.2:

punprotected,max(th) =
ra(ta) + pa

ra(th) + pa
∧ ra(tl) + pa = (1 − dmax(tl)) · (ra(ta) + pa) ∧

∧ p′
unprotected,max(th) =

ra(tl) + pa

ra(th) + pa
=⇒ p′

unprotected,max(th) =

= (1 − dmax(tl))punprotected,max(th).
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Therefore, we can elegantly compute an optimal3 mixed strategy with the support in-
cluding the lower threshold tl, the fixed threshold ta and all non-dominated thresholds
higher than ta. Probability of playing tl is dmax(tl), and in order to determine prob-
ability of playing any other threshold t′, it is sufficient to multiply the probability of
playing t′ in the optimal mixed strategy from Prop. 5.3.4 by (1 − dmax(tl)).

c) The expected utility of the derived mixed strategy

We derived the mixed strategy with the support including tl and thresholds from the
support of the mixed strategy from Prop. 5.3.4. Knowing a player’s mixed strategy
and his utility function it is straightforward to compute the expected utility. To make
the discussion more intuitive, we consider expected costs of the derived mixed strategy,
which is the negated expected utility.

There is an intuitive view on the expected costs of the derived mixed strategy. The
lower threshold is played with probability dmax(tl) and all thresholds belonging to the
support of the optimal mixed strategy from Prop. 5.3.4 are played with probabilities
p(t) = (1 − dmax(tl)) · punprotected,max(t), where punprotected,max(t) is probability of play-
ing t in the optimal mixed strategy on thresholds not lower than ta. Thus, if we view
choosing to play the mixed strategy from Prop. 5.3.4 as one action available to the de-
fender, and playing the lower threshold tl as another available action, then the defender
chooses to play tl with probability dmax(tl) and stick to the previously computed mixed
strategy with probability (1 − dmax(tl)). The expected costs is then

Cnew = dmax(tnew)cb
d(tl) + (1 − dmax(tnew))C0,

where C0 stands for the expected costs for the optimal mixed strategy from Prop. 5.3.4.
The attacker’s reward function is non-decreasing, hence,

tl < ta =⇒ ra(ta) ≥ ra(tl) =⇒
Eq.5.3.3

dmax(tl) ≥ 0 =⇒
cb

d
(tl)<C0

Cnew ≤ C0.�

In the proof of the Prop. 5.3.5, in order to show that the optimal mixed strategy
on thresholds not lower than ta might not be a solution to LP 5.3.1 in general, we
constructed the mixed strategy corresponding to better defender’s expected utility.
The constructed mixed strategy is moreover optimal on the considered thresholds.

Proposition 5.3.6. Let tl be a threshold lower than ta with background costs cb
d(tl)

lower than the total defender’s expected costs for the mixed strategy from Prop. 5.3.4.
The optimal defender’s mixed strategy on the set of thresholds {tl, ta, all non-dominated
thresholds not-lower than ta} is the one constructed in the proof of Prop. 5.3.5.

Proof: Note that the mixed strategy on the set of thresholds was in fact obtained with
Alg. 2 and satisfies constraint 5.3.1d regarding the attack set. Therefore, the proof is
analogous to the proof of Prop. 5.3.4.�

In Props. 5.3.5,5.3.6 it was not discussed whether there are any thresholds between
ta and tl. In case there are such thresholds, it can be shown that some of them are
dominated.

3For more details on the optimality of the mixed strategy see Prop. 5.3.6.
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Proposition 5.3.7. When satisfying constraint 5.3.1d, the defender cannot improve
his utility by playing a threshold td instead of playing t′

d if td > t′
d ∧ cb

d(td) ≥ cb
d(t′

d),
where td and t′

d are thresholds lower than the fixed attacker’s threshold ta .

Proof: When the attack set condition of LP 5.3.1 is satisfied, the attacker always plays
the fixed threshold. Moreover, considering playing one threshold lower than ta instead
of another threshold lower than ta, probability of covering the ta always remains the
same. As a result, the defender’s costs due to attacks by the rational attacker is always
the same. Having said that, the proof is analogous to the proof of Prop. 5.3.3.�

It has been shown that thresholds lower than ta can improve the defender’s expected
utility. Furthermore, it has been shown that some thresholds might be dominated.
However, it has not been discussed under which conditions a non-dominated threshold
lower than ta is guaranteed to belong to the support of an optimal defender’s mixed
strategy.

Proposition 5.3.8. Let d be the optimal defender’s strategy on thresholds equal to or
higher than a threshold t0, t0 ≤ ta. Let tl be a non-dominated threshold lower than t0.
If background costs cb

d(tl) are lower than the defender’s expected costs C(d) for playing
the mixed strategy d and tl is the highest threshold which satisfies this property, denoted
tl = max{t | cb

d(t) < C(d) ∧ t is non − dominated}, then on thresholds higher or equal
to tl, tl belongs to the support of an optimal defender’s mixed strategy solving LP 5.3.1.

Proof:
From Prop. 5.3.6 it follows that tl belongs to an optimal mixed strategy on the

following set of thresholds: {tl, th | th ≥ t0∧th is non−dominated}. Moreover, there are
no non-dominated thresholds between tl and t0 satisfying the property on background
costs, as tl = max{t | cb

d(t) < C(d) ∧ t is non−dominated}. Therefore, tl belongs to the
optimal defender’s mixed strategy on thresholds {th | th ≥ tl∧th is non−dominated}.�

It is worth discussing the condition on optimality of the mixed strategy d from
Prop. 5.3.8. Let us show why the strategy d must be an optimal one on all thresholds
higher than or equal to t0, otherwise tl might not belong to the optimal mixed strategy
on thresholds higher than or equal to tl. Let C(d) denote the defender’s expected
costs associated with the mixed strategy d. Assume, the strategy d is not optimal on
thresholds higher than or equal to t0, and it holds that C(d) > cb

d(tl). If d is not an
optimal strategy, then there exists a defender’s strategy d

′ such that the corresponding
defender’s expected costs C(d) > C(d′). Nothing forbids a situation when C(d) >
cb

d(tl) > C(d′), when tl does not belong to the support of the optimal defender’s mixed
strategy on thresholds higher than or equal to tl.

It means that it is impossible to expand the attack set to thresholds lower than ta

until the defender’s expected costs on all thresholds greater or equal to ta is minimized.
Next, even when the strategy d is optimal on thresholds {t | t ≥ t0} and C(d) >

cb
d(tl), it might happen that there is a threshold t′

l > tl such that C(d) > cb
d(t′

l). That
might lead to a mixed strategy on thresholds {t | t ≥ t′

l} which is more appealing
to the defender than playing tl. Therefore, the expansion of the attack set to lower
thresholds must be done without skipping the maximal threshold tl = max{t | cb

d(t) <
C(d) ∧ t is non − dominated}.
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Note that the proven facts enable us to derive linear time algorithm for computing
the solution to LP 5.3.1. First, based on Props. 5.3.3, 5.3.7 we filter out all dominated
thresholds. Then, using Alg. 2 we compute an optimal mixed strategy on thresholds
higher or equal to the fixed threshold ta. Next, while there are thresholds satisfying the
conditions from Prop. 5.3.8, i.e., Z = {t | cb

d(t) < C(d) ∧ t is non − dominated} 6= ∅,
we add the highest threshold from the set Z to the attack set. It is done analogously
to the procedure from the proof to Prop. 5.3.5. Namely, the probability of playing the
newly added threshold is computed as:

d(tnew) =
ra(tprev) − ra(tnew)

ra(tprev) + pa
,

where tnew is the next threshold to add to the attack set, tprev is the lowest threshold
in the attack set before adding of tnew.

Therefore, if the total expected utility was Uprevious before, then it becomes

Unew = −d(tnew)cb
d(tnew) + (1 − d(tnew))Uprevious.

This enables us to determine the lowest threshold of the defender’s support. After
that, knowing the lowest threshold of the optimal attack set, the construction of the
defender’s optimal strategy again can be done using Alg. 2. The algorithm for compu-
tation of the solution to LP 5.3.1 is summarized in Alg. 34. Note that Alg. 2 constructs
an optimal strategy on the support consisted of all non-dominated thresholds. If you
compare Prop. 5.2.1 regarding dominated actions in case of NE and Props. 5.3.3, 5.3.7,
the only difference between the sets of non-dominated thresholds might arise due to
ta, which must belong to the support in case of LP 5.3.1, because otherwise constraint
5.3.1d would be violated.

Input: ta, ra, pa

Output: the defender’s strategy d

1 Filter out dominated thresholds based on Props. 5.3.3, 5.3.7;
2 dh = Alg. 2(ta, ra, pa);
3 U = expected costs of dh;
4 tprev = ta;
5 while {t | t < tprev ∧ cb

d(t) < U} 6= ∅ do
6 t = max{t | t < tprev ∧ cb

d(t) < U};

7 d(t) =
ra(tprev)⊗ra(t)

ra(tprev)+pa
;

8 U = d(t)cb
d(t) + (1 − d(t))U ;

9 tprev = t;
10 end
11 d = Alg. 2(tprev, ra, pa);
12 return d;

Algorithm 3: The algorithm for computation the defender’s strategy for LP 5.3.1.

Considering the complexity of the algorithm, it is obvious that it takes three passes
through all thresholds in the worst case, when the fixed attacker’s threshold is the high-
est threshold and the lowest threshold belongs to the SSE support as well. During each

4To be precise, as a first input to Alg. 2 it is required to provide an order number of the lower
threshold to consider. For the sake of conciseness in the pseudocode we directly provide a threshold
as an input, but the threshold’s order number is meant.
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pass we perform just simple constant-time operations on thresholds. Hence, construc-
tion of the solution to one subgame is done in linear time. It in its turn leads to the
quadratic-time algorithm for computation of the defender’s SSE strategy.

5.4. FPR Restriction

Restriction on FPR is an important requirement in practical applications of adversarial
classification [5, 35, 24, 13, 39, 29, 47, 28]. For that reason we suggest how to devise a
randomized adversary-aware classification respecting the restriction on FPR.

The most naive approach to restrict FPR is to set the lowest classification threshold
with corresponding FPR not exceeding the maximum expected FPR, if the optimal
classification threshold violates the FPR constraint. However, in this approach adap-
tivity of the adversaries is ignored leading to the problems discussed in Sections 1.1,
2.3. A better straightforward solution is to choose a fixed classification threshold opti-
mizing the adversary-aware utility Uu

d (td) under the restriction on maximum expected
FPR. However, this solution does not leverage from randomization which was found to
mitigate the capabilities of adversaries [36]. Another option is to consider all thresholds
corresponding to FPR’s not exceeding the maximum expected FPR and devise a ran-
domized equilibrium strategy on those thresholds only. Due to the fact that the fixed
threshold optimizing Uu

d (td) also belongs to the considered thresholds, the defender’s
utility cannot be lower than the utility for the fixed threshold, analogously to the result
from [36].

Even though the latter approach makes it possible to devise a randomized adversary-
aware security, disregarding thresholds limits abilities of the defender significantly. We
rather analyze computation of the randomized security without limiting ourselves to
particular thresholds.

We suggest an approximation algorithm for computation of SSE under the restriction
on the expected FPR. First, we analyze a modified version of the optimization problem
5.3.1 for SSE computation with constraint on FPR introduced. We show how to check
whether or not there is a feasible solution to the FPR-constrained LP when a threshold
t is the lowest one from the attack set5. Based on the discovered result we develop
an approximation algorithm for computation of SSE. Lastly, we show how to derive
an upper bound on the utility of the optimal solution, which enables estimation of the
absolute performance guarantee for the solution provided with the algorithm.

5.4.1. SSE computation

First, we analyze the computation of the SSE under the restriction on maximum ex-
pected FPR. The high-level idea of the SSE computation remains the same: for each
possible attacker’s fixed threshold ta resolve LP analogous to LP 5.3.1. Let φt denote
a FPR6 corresponding to the threshold t. Let Φmax denote the maximum expected
FPR which can be tolerated in a specific security application. Let d denote the de-
fender strategy. Then the introduced restriction on expected FPR is formulated as
∑tn

t=t1
dtφt ≤ Φmax. A modified LP is summarized in LP 5.4.1.

5Remember that the Alg. 3, which computes an optimal solution to LP 5.3.1 without the FPR-
constraint, gradually added thresholds lower than the fixed threshold ta to the attack set if it
improved the defender’s utility. Lower thresholds are assumed to correspond to weaker attacks, see
Section 4.1.4.

6FPR’s are assumed to be estimated based on the classifier ROC curve.
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maxd −
tn

∑

t=t1

dtc
b
d(t) − cr

ta

tn
∑

t=ta

dt; (5.4.1a)

dt ∈ [0, 1] ∀t ∈ {t1, .., tn} (5.4.1b)
tn

∑

t=t1

dt = 1 (5.4.1c)

Ua(ta, d) ≥ Ua(t, d) ∀t ∈ {t1, .., tn} (5.4.1d)
tn

∑

t=t1

dtφt ≤ Φmax. (5.4.1e)

Capitalizing on previous findings, we develop a procedure to solve LP 5.4.1. From
Section 5.3 it is known that the mixed strategy d obtained with d = Alg. 3(ta, ra,
pa) is the optimal defender’s solution to LP 5.3.1. LP 5.3.1 is exactly LP 5.4.1 with
constrain 5.4.1e relaxed. If for d 5.4.1e is satisfied, then the computed strategy is also
an optimal solution to LP 5.4.1.

Let us analyze the case when the mixed strategy d = Alg. 3(ta, ra, pa) violates
constraint 5.4.1e. Remember that Alg. 3 gradually extended the attack set by including
lower thresholds to the set if it improved the defender’s utility. Extension of the attack
set to lower threshold can be interpreted as forcing the adversary to consider a weaker
attack7. Let the lowest threshold belonging to the d-strategy attack set be denoted
tweakest attack. Note that from the discussion in Section 5.3 and Alg. 3 it follows that
twa is the lowest threshold from the support of d.

We introduce a method how to check whether there is a feasible defender’s strategy,
satisfying both 5.4.1d and 5.4.1e and forcing the adversary to consider the attack on
the threshold twa.

Proposition 5.4.1. Consider a problem of constructing the defender’s strategy satis-
fying 5.4.1e for the threshold twa and minimizing the expected FPR. The problem can
be formalized as LP 5.4.2.

mind

tn
∑

t=t1

dtφt; (5.4.2a)

dt ∈ [0, 1] ∀t ∈ {t1, .., tn} (5.4.2b)
tn

∑

t=t1

dt = 1 (5.4.2c)

Ua(twa, d) ≥ Ua(t, d) ∀t ∈ {t1, .., tn} (5.4.2d)

dφ = Alg. 2(twa, ra, pa) is an optimal solution to LP 5.4.2 if in Alg. 2 all thresholds
{t | t ≥ twa} are considered, including dominated ones.

Proof: Alg. 2(twa, ra, pa) was designed to make all thresholds {t | t ≥ twa} equally
appealing to the attacker. Thus 5.4.2d is satisfied for d by construction of the strategy.

7As it was discussed in Section 4.1.4, the assumption from [36] that the higher the classification
threshold the attacker successfully bypasses, the higher the reward for undetected attack he gains,
can be motivated with the intuition, that the higher the probability of being malicious the unstopped
attacker had, the more damaging behavior it established.
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From the derivation of Alg. 2 it follows that in the resulting strategy each threshold t
is uncovered with a maximum probability punprotected,max which does not violate 5.4.2d.
Remember that in Alg. 2 the probability is gradually transferred from a lower threshold
to the next higher threshold. From Eq. 5.2.7 for the transferred probability it holds

punprotected,max(t) =
ra(twa) + pa

ra(t) + pa
=⇒

ra is non⊗decreasing

=⇒
ra is non⊗decreasing

∀t1, t2 : t1 < t2 =⇒ punprotected,max(t1) ≥ punprotected,max(t2).

To sum up, when gradually transferring the probability to higher thresholds, some
probability must remain on a lower threshold in order for 5.4.2d to be satisfied. At
the same time, it follows that, as the maximum possible probability is transferred onto
higher thresholds, the probability remained on a lower threshold is the minimal possible.
This holds for all thresholds except for the highest one, as Alg. 2 terminates once on
the highest threshold a maximal possible probability was transferred.

Also note that FPR is decreasing in thresholds. Thus, the highest threshold corre-
sponds to the lowest FPR possible. Hence, the lowest-FPR threshold is played with the
maximum possible probability not violating 5.4.2d. Analogously, the next lowest-FPR
threshold is also played with the maximal possible probability not violation 5.4.2d, as
no probability can be transferred from any higher-FPR thresholds. The same holds for
all thresholds going from the highest thresholds (i.e., from the lowest-FPR thresholds)
to the lowest ones (the highest-FPR ones).�

Remember that d denotes the optimal solution to LP 5.3.1 when twa is the lowest
threshold from the attack set. From the proven Prop. 5.4.1 it follows that dφ =Alg.
2(twa, ra, pa, include dominated thresholds) corresponds to the minimum possible ex-
pected FPR on the attack set extended by the dominated thresholds. Thus, in case the
expected FPR of dφ exceeds Φmax, there is no feasible solution to LP 5.4.1 with twa

belonging to the attack set. twa corresponds to the highest FPR among all thresholds
from the defender’s support. Let us pick as twa = twa⊗1, i.e., the next threshold higher
than twa, and consider the defender’s strategy with a new twa being the lowest threshold
in the attack set. From the perspective of Alg. 3 we in fact have undone the last step of
the algorithm. Based on Proposition 5.4.1 we know that the utility improvement gained
by adding the threshold in the last step of Alg. 3 to an attack set leads to infeasible
solution to LP 5.4.1.

We then proceed further analogously, by calling Alg. 2(twa, ra, pa, include dominated
thresholds). In case the expected FPR again exceeds the limit, we proceed analogously
until we find the attack set for which there is a feasible solution to LP 5.4.1 or until
twa = ta.

In the latter case there is no feasible solution to LP 5.4.1 with the fixed threshold
ta belonging to the attack set. As ta must belong to the attack set by the formulation
of LP 5.4.1, there is no feasible solution at all. Note that for the purpose of the SSE
computation a set of LP’s corresponding to all possible thresholds must be solved.
Therefore, there is always a feasible solution to at least one LP with ta being equal to
the highest threshold, which corresponds to zero FPR.

Let us now consider the former case when a feasible solution to LP 5.4.1 was found.
Let twa denote the lowest threshold belonging to the attack set in the feasible solution.
It is known that no lower threshold can belong to the attack set, in order for LP 5.4.1
to have a solution. We are about to devise an algorithm for finding the optimal solution
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to LP 5.4.1 on thresholds {t | t ≥ twa}.

First, we compute an optimal solution to LP 5.3.1 on the attack set with twa being
the lowest threshold from the set. It can be done straightaway. As in Alg. 3, once we
know the lowest threshold twa from the attack set, we can compute the optimal solution
d to the relaxed LP by calling Alg. 2(twa, ra, pa) on non-dominated thresholds. If the
expected FPR of the computed solution satisfies 5.4.1e, then we have obtained the
optimal solution to LP 5.4.1 on thresholds {t | t ≥ twa}. It remains to analyze the case
when constraint 5.4.1e is not satisfied for d.

Note that both the strategy minimizing the expected FPR analyzed in Proposition
5.4.1 and the strategy optimizing the utility for the relaxed LP 5.3.1 are produced with
the same computational procedure from Alg. 2 applied on different sets of thresholds. In
more details, the computation of the relaxed optimal strategy skips dominated thresh-
olds when proceeding from the lowest threshold in the attack set to the highest one,
unlike the computation of the strategy minimizing the expected FPR. Therefore, all
thresholds which are neither dominated nor dominant are played with the same proba-
bility in both the strategies, see thresholds t4, t7 in Fig. 5.4.1 for illustration. This is so
because for each such a threshold, based on the algorithm, the result from the proof of
Proposition 5.4.1 holds: neither probability of playing any higher-FPR thresholds can
be transferred onto the threshold, nor probability of playing the threshold can be trans-
ferred onto lower-FPR thresholds without violation of 5.4.2d. Analogously, in case of
the strategy d for each dominant threshold it holds that no probability from lower-FPR
thresholds can be transferred on the threshold without violation of 5.4.1d. Therefore,
the only modifications of the d which decrease the expected FPR and do not violate
constraint 5.4.1e is transferring of the probability from some dominant thresholds onto
their corresponding dominated thresholds. The modifications permitted with respect
to 5.4.1d are illustrated with arrows in Fig. 5.4.1. Note that the transferred probability
cannot be arbitrary. In order to preserve validity of 5.4.1d, the discussed restriction on
maximum probability of leaving each threshold uncovered must be respected.

To sum up, the optimal solution to the FPR-restricted LP 5.4.1 can differ from the
optimal solution to LP 5.3.1 in probabilities of playing some dominant and dominated
thresholds. Remember we are analyzing the case when the solution to LP 5.3.1 violates
5.4.1e. Note that transferring probability from a dominant threshold onto a dominated
one can be viewed as a fix of the violated constraint 5.4.1e, because the dominated
threshold corresponds to lower FPR. At the same time each such fix results in increase
of the defender’s expected cost, it follows from the domination, see Props. 5.3.3, 5.3.7.
Interestingly, the problem of finding the solution to LP 5.4.1 has a structure analogous
to the well known fractional knapsack problem. Knowing that the only difference of
the solution we need to find from the known solution to LP 5.3.1 can be modeled with
the discussed probability transfers, we are interested in a subset of such transfers that
the overall cost increase is minimized while the summarized FPR fix is higher than the
minimal required one.

Relation of the Subproblem to Fractional Knapsack

The definition of the fraction knapsack problem from ([76], p. 415) follows:
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thresholds

t1t2t3t4t5t6t7t8t9

cd
b

minimal probability 

in utility-optimal strategy

max probability for 

the highest threshold

in utility-optimal strategy

minimal probability 

in FPR-optimal strategy

max probability for 

the highest threshold

in FPR-optimal strategy

Fig. 5.4.1. Illustration of differences between the strategies

"Fractional Knapsack Problem
Instance: Nonnegative integers n, c1, c2, ..., cn, w1, w2, ..., wn, W .
Task: Find numbers x1, x2, ..., xn ∈ [0, 1] such that

∑n
j=1 xjwj < W

and
∑n

j=1 xjcj is maximum."
In the knapsack problem, n is a number of items, ci and wi are the ith item cost and
weight correspondingly. W is the upper bound on the total weight.

In the following we draw a parallel between the fractional knapsack and the analyzed
subproblem.

Let a set of dominated thresholds be denoted as {tx1, tx2, ..., txl}. The set {tx1, tx2, ..., txl}
can be considered a set of items. Picking a fraction xi of the ith item models trans-
ferring probability xi onto the threshold txi from its dominant threshold t̂(txi). t̂(txi)
denotes the highest threshold which dominates txi. For instance, in Fig. 5.4.1 for
the threshold t8 its dominant threshold is t9 = t̂(t8), for the threshold t5 its domi-
nant threshold is t4 = t̂(t5), and for both dominated thresholds t2, t1 their dominant
threshold is t3 = t̂(t2) = t̂(t1).

Item costs are to be derived based on background costs cb
d. Note that when transfer-

ring probability xi from the dominant threshold t̂(t) onto its dominated threshold t, the
defender’s expected background costs are increased by xi(c

b
d(t) − cb

d(t̂(t))). Therefore,
let the cost of the ith item be ci = (cb

d(txi) − cb
d(t̂(t))).

Weights will be derived based on FPR’s. Note that by transferring probability xi

from a lower threshold tl onto the higher threshold txi we reduce the expected FPR by
xi(φtl

− φtxi
). Let the weight of the ith item be wi = φt̂(txi)

− φtxi
. Note that both ci

and wi are non-negative real numbers.
Let the expected FPR of the utility-optimal strategy be Φ. Then let W = Φ − Φmax.
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Let xi denote a probability transferred onto the ith threshold from its dominant
threshold.

Note that even though the structure of the problem is similar to the fractional knap-
sack, yet we have constraint 5.4.1d, which limits maximum amount of the transferable
probability on each dominated threshold. Namely, Eq. 5.3.2 gives a maximum proba-
bility punprotected,max(t) of leaving a threshold t uncovered when satisfying 5.4.1d. Let
punprotected,higher(t) denote the defender’s probability of playing thresholds higher than
t. Let xUB

i = punprotected,max(txi) − punprotected,higher(txi).
Using the introduced notation, the subproblem can be formulated as follows:

LP 5.4.1 subproblem
Instance: A nonnegative integer number n, non-negative real numbers

c1, c2, ..., cn, w1, w2, ..., wn, W .
Task: Find numbers x1 ∈ [0, xUB

1 ], x2 ∈ [0, xUB
2 ], ..., xn ∈ [0, xUB

n ]
such that

∑n
j=1 xjwj ≥ W and

∑n
j=1 xjcj is minimized.

Due to the discussed similarity of the problems, a greedy algorithm for the fractional
knapsack problem is adopted to solve the problem we face [77]. The adopted procedure
is depicted in Alg. 4.

Conjecture 5.4.1. If there exists a feasible solution to LP 5.4.1 with a threshold t
being the lowest one from the attack set, then the defender’s strategy produced by Alg.4
with t as an input is the optimal solution to LP 5.4.1 on thresholds not lower than t.

The formal proof of the algorithm optimality is left for future work8. For the time be-
ing, note that we consider only thresholds corresponding to possible differences between
the solution to LP 5.4.1 we seek and the solution to relaxed LP 5.3.1. In each iteration
of the algorithm we pick a threshold providing a maximal decrease of the expected
FPR per unit increase in background costs. Finally, once constraint 5.4.1e is satisfied
we reduce the raised probability of playing a dominated threshold corresponding to the
less effective decrease of the expected FPR per background costs. The probability is
reduced as much as possible due to 5.4.1e.

Regarding the estimation of xUB
i , a maximum probability punprotected,max(txi) of leav-

ing a threshold txi uncovered satisfying 5.4.1d is computed directly with Eq. 5.3.2. It is
possible to compute the defender’s probability punprotected,higher(t) of playing thresholds
higher than t quite easily as well.

Initially punprotected,higher(t) of a dominated threshold is set equal to punprotected,higher(tdom),
where tdom is the lowest dominant threshold higher than t, tdom = min{t′ | t′ non −
dominant ∧ t′ > t}. Based on the analyzed in detail procedure behind Alg. 2, it is
exactly a probability of leaving a dominated threshold unprotected.

If {t′ | t̂(t′) = t̂(t)} = {t}, then punprotected,higher(t) will remain the same throughout
the Alg. 4 computation. For instance, in Fig. 5.4.1 it holds for thresholds t8 and t5.
t̂(t8) = t9 does not dominate any threshold except for t8. Thus, it is impossible that
punprotected,higher(t) changes during the execution of Alg. 4. However, the threshold t3

in the figure is a dominant threshold for both t2 and t1. Therefore, it might happen that
first the probability is transferred from t3 onto t1 and later throughout the computation
the probability is transferred from t3 onto t2. The current value of punprotected,higher(t)
for a dominated threshold t can be obtained when needed by means of a list L(t)
of higher thresholds dominated by the same predecessor t̂(t). Once it is required to
estimate xUB

i , punprotected,higher(t) can be updated as follows: punprotected,higher(t) =

8An extensive empirical evaluation did not find a counterexample.
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5. Efficient Algorithms for Optimal Solutions

Input: φ, t̂, cb
d, W , t, optimal solution to LP 5.3.1 d.

Output: the defender’s strategy d.
1 if the expected FPR of d satisfies 5.4.1e then
2 return d;
3 end
4 T

′ is a set of thresholds not lower than t;
5 T

d is a set of dominated thresholds on T
′;

6 T
d

closed
is a set of closed dominated thresholds;

/* FPR improvement per unit background cost sacrifice */

7 δ(txi) =
φt̂(txi)

− φtxi

cb
d(txi) − cb

d(t̂(txi))
;

8 i = 1;
9 W ′ = 0;

10 while W ′ < W do
11 Pick a threshold txi = arg mint∈Td\Td

closed

δ(t);

12 T
d

closed = T
d

closed ∪ {txi};
13 Estimate xUB

i = punprotected,max(txi) − punprotected,higher(txi);
14 d(txi) = xUB

i ;

15 W ′ = W ′ + xi

(

φt̂(txi)
− φtxi

)

;

16 d(t̂(txi)) = d(t̂(txi)) − xUB
i ;

17 Update δ(t), t̂ for all {t | t ∈ T
d \ T

d

closed
∧ t̂(t) = t̂(txi)};

18 i = i + 1;
19 end
20 i = i − 1;

21 ∆ = W −
∑i⊗1

j=1 xj

(

φt̂(txj) − φtxj

)

;

22 d(t̂(txi)) = d(t̂(txi)) + d(txi) − ∆
φt̂(txi)⊗φtxi

;

23 d(txi) = ∆
φt̂(txi)⊗φtxi

;

24 return d;
Algorithm 4: The algorithm for solving the subproblem of LP 5.4.1.

punprotected,higher(t) +
∑

ti∈L(t) xi. In practice the procedure should not be demanding.
However, in the worst-case, when all thresholds are dominated by the same predecessor
this can lead to quadratic time complexity of Alg. 4.

Having addressed the challenging subproblem, we summarize the whole computation
of the conjectured optimal solution to LP 5.4.1 on thresholds not lower than tN in Alg.
5.

Note that the optimal solution to LP 5.4.1 on thresholds {t | t ≥ tN } is not guaranteed
to be the optimal solution to LP 5.4.1 on all thresholds in general. It is known that
no threshold lower than tN can belong to the attack set. In other words the attacker
never plays any threshold lower than tN . However, it does not imply that the defender
would never play any threshold lower tN . From Proposition 5.4.1 it is only known that
the defender is unable to play such threshold as much as he might prefer to if there was
no constraint on FPR. To put it more formally, it is known that there is no feasible
solution with the defender playing next lower threshold tN+1 with maximum possible
probability9. In other words, even in case there is a threshold lower than tN which is

9Realize that in Alg. 3 the attack set expansion to lower thresholds can be viewed as follows: a
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5.4. FPR Restriction

Input: Φmax, φ, tN , ra, pa

Output: the defender’s strategy d or no solution.
1 Consider only non-dominated thresholds;
2 d = Alg. 3(tN , ra, pa);
3 Φ = expected FPR of d;
4 if Φ ≤ Φmax then
5 return d;
6 else
7 Consider all thresholds, including dominated;
8 d

′ = Alg. 2(tN , ra, pa);
9 Φ′ = expected FPR of d

′;
10 while Φ′ > Φmax do
11 if tN = ta then
12 return no solution;
13 else

/* the next threshold higher */

14 tN = tN⊗1;
15 d

′ = Alg. 2(tN , ra, pa);
16 Φ′ = expected FPR of d

′;
17 end

18 end
19 Consider only non-dominated thresholds;
20 d = Alg. 3(tN , ra, pa);
21 Φ = expected FPR of d;
22 d = Alg. 4(φ, t̂, cb

d, Φ − Φmax, tprev, d);
23 return d;
24 end

Algorithm 5: The algorithm for solving the LP 5.4.1.

more appealing to the defender than his current mixed strategy, the defender cannot
play the optimal strategy on thresholds not lower than tN+1 due to 5.4.1e. However,
the defender still might play the thresholds lower than tN . Developing an algorithm
for precise solution of LP 5.4.1 is left for future work. However, based on the already
discovered facts we are able to estimate an upper bound on the optimal solution. There
are several case which might occur. First, it might be the case that there are no
thresholds lower than tN . Then the obtained with Alg. 5 solution is optimal, given
the Conjecture 5.4.1 is true. Otherwise, it is possible to upper-bound the value of the
optimal solution to LP 5.4.1 with utility to the relaxed LP 5.3.1. Note that this provides
a very loose upper bound. Improvement of the upper bound estimation is left for future
work

We conclude the section on SSE computation under the restriction on FPR with
remarks regarding the computational complexity of the devised algorithm.

Alg. 2 has linear-time complexity. On the line 15 it can be called for every threshold
in the worst-case when ta is the highest threshold, no strategy other than ta satisfies
5.4.1e, and all thresholds belong to the relaxed solution. This results in quadratic-time
complexity in the worst case. Moreover, Alg. 4 also belongs to O(n2). Therefore, the

defender starts playing a lower threshold because it provides him a better outcome compared to
the current mixed strategy. To optimize the utility the defender starts playing the threshold with
maximum probability not violating 5.3.1d.
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5. Efficient Algorithms for Optimal Solutions

developed algorithm for solving LP 5.4.1 belongs to O(n2), where n stands for a total
number of classification thresholds. As a result, overall computation of SSE under the
FPR constraint using the devised algorithm is in O(n3).
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6. Experimental evaluation

6.1. Evaluation of the Algorithms Computation Efficiency

In this section we experimentally demonstrate scalability of the developed algorithms
compared to the state-of-the-art general solvers. The novel algorithms outperform the
solvers. In the presented set of experiments we used ROC curves of real-world intrusion
detection systems (IDS) from [78]. The real-world ROC curves from [78] consist of 100
thresholds each. The scalability of the devised algorithms was also illustrated on the
O2 ROC curve consisting of 201 point.

For each ROC curve several problem instances were generated with model constants
initialized at random. All game constants were randomly generated from the interval
[0; 1000]1. As in [36] and in the model from Chapter 4, it was assumed that the rational
attacker gains from an undetected attack the same quantity the defender losses.

In the following text all confidence intervals were derived for the confidence level of
95%.

6.1.1. NE computation

As a baseline for NE computation we used the Gambit [79] implementation of the
algorithm computing only one NE [80]. The algorithm devised in Section 5.2 was
implemented in Python without any further optimization2.

To evaluate the algorithm scalability compared to the Gambit solver, problem in-
stances of different sizes are considered3. An instance of the problem was generated
as follows: from a real-world ROC curve we picked a required number of equidistant
thresholds and generated at random all constants defining the players utility functions.

First, we considered experiments on particular ROC curve with instance sizes upto
maximum of 100 thresholds. For each problem size we generated 20 instances at random.
The obtained results are summarized in Fig. 6.1.1.

Based on the figure, superiority of the novel algorithm is obvious.
Yet, we have also conducted a more complex set of experiments using 170 real world

IDS ROC curves from [78]. We considered problems of sizes from 5 upto 80 thresholds
with a step of 5. For each ROC curve and for each problem size we generate a problem
instance at random. Plots summarizing all experiments for one particular ROC curve
can be found on the attached CD. Based on results for all problem instances of particular
size we computed an interval estimate of the mean processing time with the confidence
level of 95%. The results are summarized in Fig. 6.1.2.

Due to the superiority of the developed algorithm, its processing times are impossi-
ble to read from the presented figures. The scalability of the algorithm was separately

1Note that the randomly generated values of the attacker’s reward function were ordered, so that the
assumptions of the modeling hold

2Correctness of the implementation of all algorithms was extensively verified by comparing the outputs
of the implemented algorithms with the outputs of the standard solvers.

3Remember, the size of the problem instance is given by a number of considered classification thresh-
olds.
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Fig. 6.1.1. NE scalability evaluation in experiments with up to 100 thresholds
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Fig. 6.1.2. NE scalability evaluation in experiments on the IDS ROC curves
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Fig. 6.1.3. NE scalability evaluation in experiments on O2 ROC curve

verified on the O2 fraud detection ROC curve4, see Fig.6.1.3. For each number of
thresholds 50 problem instances were generated at random. The results of the last
experiment demonstrate the proven O(n) complexity class of the algorithm. It is in-
teresting to note slight drops in the processing time. The drops are explained with
threshold domination. For each problem size we always pick the same set of equidistant
thresholds. When in the picked set of thresholds there are many dominated thresholds,
it effectively reduces the size of the problem from the perspective of the developed
algorithm.

Also note that the processing time of the developed algorithm does not vary much.
This is a further advantage of the developed procedure compared to the Gambit solver,
compare Fig. 6.1.3 and Fig. 6.1.1.

6.1.2. SSE computation

The method for SSE computation based on solving multiple LP with the algorithm
devised in Section 5.3 was benchmarked against the method based on IBM CPLEX
12.4.

A set of all problem instances considered in the experiments was generated in the
same way as in the previous section. The results of experiments for each ROC curve
can be found on the attached CD. The summarization of all the results on 170 ROC
curves is presented in Fig. 6.1.4.

Again, the devised algorithm significantly outperforms the standard solver. To see
the scalability of the algorithm itself and its processing times, the experiments on the
O2 ROC curve were performed. For each number of thresholds the results are derived
based on 50 randomly generated instances. Fig. 6.1.5 depicts the results. The obtained
results agree with the derived quadratic complexity of the algorithm.

4See Section 6.2.
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Fig. 6.1.4. Scalability of the SSE computation in experiments on the IDS ROC curves

6.1.3. SSE computation under the restriction on FPR

Finally, we conduct analogous experiments to verify computational efficiency of the
devised approximation algorithm for computation of SEE solution under the restriction
on expected FPR. Furthermore, we experimentally estimate how far the computed
solution might be from the optimal one. The set of conducted experiments to obtain
the results regarding the FPR-restricted SSE computation was designed in the same way
as experiments for evaluation of the NE and SSE algorithms. Results of all experiments
for individual ROC curves can be found on the attached CD.

The results of the scalability experiments are presented in Fig. 6.1.6.
From Fig. 6.1.6, summarizing all the experiments on the real world IDS ROC curves,

it follows that the developed algorithm is computationally more efficient compared to
the IBM CPLEX benchmark.

Furthermore, we tested scalability of the algorithm on the O2 ROC curve. a PyPy
optimization of our algorithm implementation. The results of the scalability test are
depicted in Fig. 6.1.7.

Notice the drop in computation time which occurred around the problem size of 100
thresholds. After the investigation it turned out that in the problem instances generated
on 105 equidistant thresholds the number of subproblems without solution decreased
significantly. It might be interesting to investigate the issue in more details in future
work.

Next, we experimentally evaluated the quality of the solution returned with the
devised algorithm. The utilities from different experiments were normalized with the
value of the corresponding optimal utility5. For illustrative purposes we present costs
of the strategy, which are the negated utility. The results are summarized in Fig. 6.1.8.

Notice that the restriction on FPR influences the resulting utility significantly. In

5Without the normalization it would be impossible to compare the results of different experiments, as
all instances were generated in random which resulted in different scales in utility functions.
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Fig. 6.1.5. Scalability of the SSE computation in experiments on the O2 ROC curve
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Fig. 6.1.7. Scalability of the SSE computation, FPR restriction
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order to satisfy the FPR constraint, a considerable amount of the utility must be
sacrificed. Note that the decrease in utility is comparable for both the optimal solution
and the solution by the devised algorithm. Yet, computationally the devised algorithm
is significantly superior.

6.2. Evaluation of Developed Adversarial Classification on the
O2 CZ application

In this section we demonstrate applicability of the developed method for solving a real
world adversarial classification problem: the O2 CZ fraud detection case.

Evaluation is based on a standard procedure for machine learning classifier perfor-
mance evaluation: out of sample error is estimated using testing dataset, and game
theoretic modeling is based on validation dataset.

All collected data (20 484 samples, out of which 1941 are positive) were divided into
3 datasets:

a) a training dataset (containing approximately 60% of all collected data: 12257
samples, out of which 1162 are positive),

b) a validation dataset (approximately 20% of all data: 4112 samples, out of which
382 are positive),

c) a test dataset (approximately 20% of all data: 4115 samples, out of which 397 are
positive).

Note that the stratified random split of data into the datasets was performed based
on an international mobile subscriber identity (IMSI), which is unique. Thus, in case
there were samples regarding the same IMSI, all of them would go to the same dataset.

Unlike classical machine learning, we are interested not only the out-of-sample static
error, but also it is required to address robustness against potential adaptive adver-
saries. Thus, besides evaluation of the resulting adversary-aware classifier on the train-
ing dataset, we also evaluate the performance on altered test dataset. Several altered
datasets were produced for the purpose of extensive evaluation. The attacker altered
the dataset first based on his NE optimal strategy, next based on his best response to
the defender’s SSE strategy, then based on the FPR-SSE optimal strategy and finally
based on the best response to the defender’s optimal fixed threshold. Moreover, for
each altering scenario a separate altered testing set was produced for different proba-
bility Pa of an arbitrary attacker to be adaptive. Finally, we address robustness of the
classification against active adversaries, which do not use strategic reasoning. In this
final scenario the testing dataset is altered as follows: an attacker modifies his feature
vector to a feature vector of the attribute-nearest user. By the attribute-nearest neigh-
bour we mean a user with smallest euclidean distance in the feature space. Again, the
modification of the training dataset was performed for different values of Pa.

We consider the developed FPR-restricting algorithm for SSE computation the most
advanced from the applicable point of view. We benchmark the algorithm against
several standard classification methods:

a) classify as fraudulent all instances with probability of being malicious exceeding
50% (termed a max-probability method in the following text);

b) using the validation dataset estimate a classification threshold corresponding to
the maximum acceptable FPR and use it for classification (for the sake of conciseness,
in the following the method is termed FPR-threshold).

Furthermore, we benchmark the algorithm against the developed NE and SSE based
algorithms, as well as against the adversary-aware fixed optimal threshold, termed in
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the following text an adversary-optimal threshold.
As performance criteria we use FPR, TPR, and total financial losses due to the

undetecked attackers. The latter are estimated from the data the way it was discussed
in Section 4.1.4.

All interval estimates of the criteria values derived based on the repeated experiments
were computed for the confidence level of 95%.

Lastly, we are about to comment the FPR acceptable in the case of O2 CZ fraud
detection. The module, which is currently being deployed, is intended to serve as
the last line of defense6. Based on the data from previous year, it is expected that
the module would process approximately 50 legitimate users daily. 1 FP per day was
decided to be reasonable. As a result, acceptable FPR was set to 2%.

6.2.1. Utilities Derived based on the O2 CZ Data

Before diving into the verification, we comment on the model utilities derived based
on the validation dataset. Due to the advantageous data-driven approach developed,
there is no need to hypothesize regarding the utility functions. The only thing which is
needed to be estimated based on the domain knowledge is the expected level of attacker
adaptivity, controlled with the model parameters γ and Pa.

After the classifier7 was created using the training dataset, the validation dataset was
used to produce an ROC curve, see Fig. 6.2.1.

The R package [68] was used to obtain and manipulate an ROC curve. The R
script with functions used for the game theoretic model estimation can be found on the
attached CD.

The obtained ROC curve was used to estimate FPR corresponding to different clas-
sification thresholds. Initially we picked 400 classification thresholds as follows: we
considered thresholding probabilities ranging from 0.0025 upto 0.9975 with a step of
0.0025. For each considered value we picked an ROC threshold which was the lowest
one exceeding the value.

Next, the reward of a rational attacker was estimated based on Eqs. 5.1.5, 4.1.3.
As for real-world decision boundaries there is likely no efficient procedure to optimize
lF N
d (x), we assumed that the detected attacker would imitate the closest undetected

samples from the whole collected dataset. The attacker reward function estimated
based on Eqs. 5.1.5, 4.1.3, 4.1.1 is depicted in Fig. 6.2.2.

The depicted reward function was generated with probability of the attacker’s adap-
tivity Pa = 30%. Note that Pa does not change the shape of the attacker’s reward. It
sole purpose is to enable management to set the expected trade-off between background
costs and costs due to rational attackers. The chosen value of parameter was γ = 2.
The higher the γ, the quicker the attacker’s reward increases in thresholds8.

Note an interesting observation regarding the γ parameter: the lower the threshold
is, the more sensitive to γ the attacker’s reward is. See Fig. 6.2.3.

To put it differently, the attacker’s natural type tends to correspond to attacks on
high thresholds. This empirically supports the modeling assumption from [36] adapted

6See Section 2.2.1 for more details on the machine learning module developed for the O2 CZ fraud
detection division. Here we just remind that the module was deployed as the last line of defense,
facing a challenging classification task of detecting fraudulent customers which a previous version
of the complex system would fail to catch.

7Even though the underlying machine learning classifier is not a subject of the thesis, in Section 2.2.1
the reader can find more information and interesting links regarding the fraud detection.

8Once more we remind that the numbering of the thresholds starts from the highest threshold. In
such setting on an ROC curve the first threshold corresponds to zero on the x-axis.
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Fig. 6.2.1. ROC curve of the O2 CZ fraud detector
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Fig. 6.2.3. The function of the attacker’s reward ra for γ = 20

in this work.
Notice that the estimated reward function is not non-decreasing, contradicting the

assumption of the model. However, the rational attacker would never play thresholds
from a decreasing part of the reward function, as for each such threshold there is another
threshold corresponding to higher reward with lower protection. We filter out thresholds
which can be never attacked. Rigorous analysis of the case of arbitrary reward functions
is left for the future work. Note that another fix to the occurred situation might be
setting a high value for γ.

Next, the set of FP’s XF P and stationary FN’s XF N
s were obtained for every classifi-

cation threshold from the obtained set. A cost of processing a single FP was estimated
based on internal expenses for the operation of the fraud detection department. The
resulting function of the defender’s costs due to stationary population9 is depicted in
Fig. 6.2.4. Note that in order to prevent revealing of the company’s sensitive data, all
money-based attributes were rescaled to the range chosen at random. All money-based
features were rescaled to the same range. A unit of the range is to be called a coin of
account.

In order to reduce the effect of noise, based on the obtained cost values the final
functions were derived using the R function loess for local polynomial regression fitting.

6.2.2. Performance

Out-of-sample Performance Estimation

The results of the performance evaluation of all the classification methods on the test
dataset are summarized in Table 6.2.2. To evaluate the randomized strategies 1000
repeated experiments were performed.

From the values in the table we can see that even though both the FPR-threshold and
FPR-SSE randomized strategy does not exceed the maximum expected FPR of 2% on

9See Eqs. 5.1.3,4.1.2.
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FPR,% 1.3% 2.04 17.3 2.75 ± 0.00 2.75 ± 0.00 2.09 ± 0.00

TPR,% 41.08 45.00 76.74 48.04 ± 0.03 48.04 ± 0.02 44.76 ± 0.03
Financial loss,
coin of account 694.0 670.5 372.2 622.6 ± 0.2 622.6 ± 0.2 672.6 ± 0.4

Tab. 6.2.1. Out-of-sample performance estimated on the test dataset

the validation dataset, on the test dataset both of them slightly exceeded the restriction.
However, in case of the developed module for the fraud detection system 0.1% increase
in FPR can be tolerated. The adversary-optimal threshold does not take FPR into
consideration. As a result, the deterministic strategy violates the FPR constraint by a
great margin. Neither NE nor SSE considers the FPR constraint. However, in case of
the particular application, by chance, both strategies coincide and violate the constraint
by 0.75%, which is significantly less compared to the adversary-optimal threshold. The
standard max-probability classification does not violate the FPR constraint, however it
corresponds to the lowest TPR out of all options. From the table it follows that without
violating the FPR constraint the optimal TPR is approximately 45%. It is important
to note that the devised FPR restricted SSE strategy provides on the static data perfor-
mance analogous to the classification threshold derived based on ROC curve. To sum
up, enriching the model with adversary-aware modeling did not result in decrease of
the classifier performance. Thus, the developed method satisfies the goal of remaining
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6. Experimental evaluation

highly accurate.

Performance Estimation on the Altered Datasets

We consider the strategies with the FPR out-of-sample estimate roughly satisfying the
restriction on FPR: FPR-threshold, FPR-SSE, Max-probability.
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Fig. 6.2.5. Results of robustness evaluations

The results of the robustness evaluation experiments are depicted in Fig. 6.2.5. From
the figure one can see that in several experiments costs of both FPR-threshold and
FPR-SSE strategies increase in the same way with increasing probability of adversarial
adaptability. Max-probability strategy expectedly has higher costs due to smaller TPR.
An interesting result can be seen in the case the attacker plays the strategy a defender
assumes him to. In this case the robustness of classification optimized with the devised
game theoretic approach is better compared to a non-optimized version.
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7. Conclusion

The research presented in this thesis was set out to explore the possibility of developing
a method applicable in practice and optimizing robustness of machine learning classifiers
against rational entities. After analysis of different types of attacks against machine
learning classifiers in Chapter 2, we focused on the most common type: adaptive at-
tempts to avoid detection by the deployed classifier. As it was stated in Chapter 1,
adaptivity of rational entities is a known and serious problem, causing the industry
significant financial losses. Yet, classical machine learning methods are not capable
to take the problem into consideration as they were designed based on the assump-
tion that future observations would follow the same distribution the training data do.
Thus, the only remaining option for classical machine learning methods is to neglect
the dangerous problem and deal with it and its consequences once the problem oc-
curs. As discussed in Section 2.3, one common way to deal with the arisen problem
is to retrain the classifier. However, this does not limit capabilities of the adversary
and he will be able to adapt again, harming the system to the same extent as before.
Moreover, as discussed in Section 2.1, instant retraining of the classifier might make
the system vulnerable to another type of attacks: poisoning of the classifier. To sum
up, the main problem with this approach is that the security designer passively allows
an adversary to repeatedly harm the system as much as the adversary wishes, while
the security designer just humbly repairs the damage in a reactive manner and starts
a new cycle of the never ending process. A better approach is to somehow limit the
ability of the adversary to cause harm. As it was discussed in Section 1.1, in both the-
oretical and empirical studies it was found that randomization of a classifier decision
boundary mitigates the capability of the adversary to adapt. Furthermore, from the
discussions presented in Sections 2.3 and 1.1 it follows that rather than just blindly add
a random noise to the decision boundary, a more promising approach is to understand
intentions and capabilities of the attacker, to understand the way the adversary reacts
to the defender’s actions and based on the findings derive a randomization optimal
against the understood adversary. In Chapter 1 game theory was pointed out as an
efficient tool for understanding an adversary and modeling interactions with him. Af-
ter the required background on game theory was refreshed in Section 3.1, we analyzed
the existing methods of game theoretic optimization of detecting malicious behavior in
Section 3.3. Yet, we found out that there is a gap between existing methods and prac-
tical requirements of the industry. Understanding of realistic practical requirements
on the approach was enabled by the author’s work on a machine learning module for
an internal fraud detection system of O2 Czech Republic telecommunications company,
the module was introduced in Section 2.2.1. Besides increasing the classifier robustness
against attackers, further crucial requirements, discussed in Section1.2, were:

a) The method must preserve performance of the already deployed classifier. Thus,
unlike several existing approaches, the novel approach must not put any restrictions on
the learning algorithm and is required to be applied to any state-of-the-art method as
to a black box.

b) The approach is not allowed to lead to unreasonably high false positive rate, as in
real-world security classification the majority of the classified instances are legitimate
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7. Conclusion

and high rate of false alarms would result in the denial of service.
c) The underlying model must be realistic, with a minimum number of hypotheses

unfounded with observations. It forces the model to be data-driven.
d) It is required to address the fact that there are very different types of adversaries.

Taking this fact into consideration, the model must provide a general security against
the whole population of attackers.

e) It is required to create a model which does not assume that all adversaries are
rational and adaptive. The idea is to formulate a model which can limit damages by
an expected fraction of adaptive adversaries, while classifying correctly the stationary
population.

f) Optimization of the machine learning classifier based on the model must be com-
putationally efficient, so that it would be possible to compute the solution in practice.
Moreover, it should be possible to compute the solution in the future once more data
are gather.

Capitalizing on the most advanced related work identified in Section 3.3, in Chapter
4 we developed a model addressing the requirements a), c) - e). The presented method
of game theoretic optimization does not put any restrictions on an underlying machine
learning classifier. The only requirement on the classifier is to produce a quantitative
estimate representing the degree to which an instance is adversarial. If this holds, it
is possible to derive an ROC curve and formulate the model. Estimation of utilities
in the model is fully based on data. The only domain knowledge which is required
to produce the model is an estimation of adversarial adaptability. Furthermore, the
cost for false alarms also must be derived based on internal expenses for operation of a
security division.

Once the promising game theoretic model was formulated, it was necessary to develop
efficient algorithms for computing solutions in the model, including a solution with a
control over false positive rate. Deep analysis of the formulated problem and discovering
several interesting facts about it in Chapter 5 enabled us to come up with efficient
algorithms for computing several game theoretic solution concepts. Besides a classical
concept of Nash equilibrium and a concept of Strong Stackelberg equilibrium, popular in
security applications of game theory, we tackled the newly presented concept of Strong
Stackelberg equilibrium under the restriction on false positive rate. For both NE and
SSE we managed to devise algorithms for precise computation of the solutions. For SSE
under FPR restriction we came up with an approximation algorithm. Even though the
computation of NE is in general a hard problem belonging to PPAD complexity class,
the presented algorithm computing NE in the model has linear worst-case complexity.
The algorithm for computation of SSE in the model has quadratic worst-case complexity
and the algorithm for FPR restricted SSE belongs to O(n3). All the algorithms were
benchmarked against existing alternatives in a set of extensive experiments on real-
world ROC curves of intrusion detection systems in Chapter 6. The experiments showed
an impressive scalability of the developed algorithms. Finally, we conduct another
set of experiments demonstrating applicability of the proposed model for solving real
world problems. In Section 6.2 it is demonstrated how the model can be derived in
practical applications of adversarial classification. Next, the strategy addressing FPR
is computed based on the developed model and then it is compared to several baselines:
strategies based on NE and SSE concept, which ignore FPR, an optimal fixed threshold
based on the developed game theoretic model, a strategy of classifying as malicious
any sample with probability of being malicious exceeding 50%, and a fixed threshold
based on allowed FPR. The results of the evaluation show that the proposed game
theoretic optimization did not result in a notable decrease of performance compared to
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other methods respecting FPR constraint, while the proposed approach can improve
robustness of the method against rational adversaries.

To sum up, we managed to address all points from the thesis assignment: the existing
models are analyzed in Chapter 3, a novel data-driven model is formulated in Chapter
4, several efficient algorithms are designed in Chapter 5, and finally evaluations of the
results efficiency and their practical applicability are presented in Chapter 6.

Even though we managed to solve several important problems, there is a lot of work
left for future research. For instance, probably the most exciting extension of our model
for the future work might be developing a data-driven approach based on clustering of
the observed malicious instances and defining attacker types using the clusters. Perhaps,
Gaussian Mixture Model (GGM) clustering might be a promising method of choice.
Using the derived from collected data GGM it would be possible to estimate for each
new instance its probability of being malicious and the cluster-based type of a probable
attacker. Using this idea it might be possible to derive a type-specific security. In other
words a defender would use different classification strategies for different types of the
attacker. It would be required to develop a method for estimation of the players’ utility
functions from the suggested GGM-based attacker types.

Another open problem is NE computation under the restriction on FPR. We share
our ideas regarding it in Appendix C.
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Appendix A.

Abbreviations

LP Linear Programming
O2 CZ O2 Czech Republic, a.s.
NE Nash Equilibrium
SE Stackelberg Equilibrium
SSE Strong Stackelberg Equilibrium
ROC Receiver Operating Characteristic
TP True Positive
FN False Negative
TN True Negative
FP False Positive
TPR True Positive Rate
FNR False Negative Rate
TNR True Negative Rate
FPR False Positive Rate
AUC Area under ROC curve
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Appendix B.

Model Notation

T a set of classification thresholds
td a classification threshold chosen by the defender
ta a classification threshold guessed by the attacker
X a set of malicious feature vectors in the dataset, or a set of all attacker

types
lF N
d (x) the defender’s loss when failed to detect a malicious instance with a feature

vector x
cF P the defender’s cost for processing a single FP
XF N

s a set of undetected attacker types with a stationary attacker
XF N

a a set of types undetected due to adaptability of the rational attacker
XF P a set of the produced FP’s
Pa probability that the attacker is rational and adaptive
cb

d the defender’s background costs due to stationary population
cr

d the defender’s costs due to undetected attack by a rational attacker
ra the attacker’s reward function for undetected attack
Uu

d the defender’s utility for playing a fixed threshold
Φmax maximum tolerable expected FPR
φt FPR corresponding to the fixed classification threshold t
punprotected,max(t) maximum probability of leaving a threshold t uncovered satisfying 5.3.1d,

5.4.1d, see Eq. 5.3.2
punprotected,higher(t) the defender’s total probability of playing thresholds higher than t
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Appendix C.

Ideas regarding computation of NE under
the restriction on FPR

We conclude this chapter with a few remarks regarding the NE under the restriction on
FPR, which is left for future work. We identify a subroutine which would likely be part
of the algorithm computing the constrained NE and then prove that the subroutine can
be done efficiently.

In Proposition 5.2.2 it was proven that the highest threshold from the set of non-
dominated thresholds Tr always belongs to the support of the defender’s NE strategy.
Let denote this threshold t′ = max{Tr}. It should be possible to prove that for sev-
eral special cases t′ belongs to the support of the defender’s strategy under the FPR-
restriction as well. The main difficulty in the future work proofs would likely arise due
to the fact that the discovered action domination would hold only partially if there is
the restriction on FPR. For instance, consider two thresholds t2 and t1, t2 < t1, such
that both thresholds are non-dominated when there is no restriction on FPR. In case
neither t1 nor t2 corresponds to FPR higher than Φmax, the domination analogous to
the one in this work obviously holds. However, it is required to analyze in future work
what would happen if, for instance, φt1 ≤ Φmax ∧ φt2 > Φmax.

For the case when the highest non-dominated threshold t′ does not exceed the limit
Φmax and therefore belongs to the NE support, an iterative procedure analogous to
Alg. 1 would likely be a part of the NE solution computation.

Note that the threshold t′ corresponds to the lowest FPR out of all non-dominated
thresholds Tr

1. If the highest threshold t′ satisfies φt′ ≤ Φmax, then the defender would
play t′ and might also consider playing lower thresholds. In Prop. 5.2.3 the way of the
defender’s NE support computation was discovered based on the fact that until there
is a lower threshold more appealing to the defender than t′, it contradicts Prop. 5.2.2.
Using this finding, in Alg. 1 the attacker expended the support of the defender’s NE
strategy until there were lower thresholds not included in the current estimation of the
support and until the highest non-included threshold had a background cost lower than
the defender’s current expected cost for playing t′, see Fig. 5.2.3. To put it differently,
in case of the addressed in this work unconstrained problem there are two reasons why
the defender would not consider playing any lower thresholds instead of his current
support estimate: either there are no lower thresholds or their background costs are
higher than the expected utility for playing the current support. Computation of NE
strategy in Alg. 1 starts from thresholds corresponding to lower FPR and proceeds to
thresholds with higher FPR. It is likely that in order to enforce the FPR restriction,
one more terminating condition would be introduced into an analogous algorithm: the

1Remember, a set of thresholds T was defined based on the set of FPR’s F obtained from the real-world
ROC curve as follows: for every unique TPR of the generated ROC curve only the minimal FPR
is considered. However, nothing changes if thresholds other than T are taken into consideration as
well. In this case FPR is non-increasing in thresholds.
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defender would not consider a lower threshold if playing it would lead to expected FPR
exceeding Φmax.

In order to introduce the third terminating condition into Alg. 1, we must be able to
determine the defender’s expected FPR for a current support. A straightforward way
is to call Alg. 2 for each support, compute the defender’s strategy and check whether
or not

∑tn
t=t1

dtφt ≤ Φmax. However, Alg. 2 has a linear time complexity, therefore the
resulting approach would have quadratic time complexity in the worst-case. It turns
out that we can do better than that. After adding a threshold to the support it is
possible to compute the expected FPR of a new support without computation of the
defender’s strategy. The procedure is similar to estimation of the defender’s expected
cost in Alg. 3 for SSE computation.

Proposition C.0.1. Consider any iteration of the loop in Alg. 1. Note that each
iteration can be identified by the value of N which is equal to a number of thresholds
in the current support. If in the considered iteration of the algorithm the defender’s
expected FPR is equal to Φ and the algorithm execution continues to the next iteration,
then in the next iteration of the algorithm the expected FPR would be equal to

Φ′ =
ra(tN ) − ra(tN+1)

ra(tN ) + pa
φtN+1 +

ra(tN+1) + pa

ra(tN ) + pa
Φ.

Proof: The proposition is to be proven by mathematical induction.
Base case
As a base case consider the first iteration, when N = 1, in other words tN = t′.
At the beginning of the computation in Alg. 1 the defender’s support consists only

of the highest reasonable threshold tN = t′. A current expected FPR Φ is directly
Φ = φt′ . After adding the next lower threshold tN+1, the defender’s NE support would
be {tN+1, tN }. Computation of the defender’s mixed NE strategy under the assumption
that his strategy support is {tN+1, tN } can be done using Alg. 2. Remember, the
rational attacker considers only {tN+1, tN } in this case, and the main idea behind Alg.
2 is to make the attacker indifferent between all thresholds in the support, i.e. between
tN+1 and tN . In order to do so the defender must play tN+1 with probability d(tN+1)
satisfying

ra(tN+1) = (1 − d(tN+1)) · ra(tN ) − pa · d(tN+1) =⇒ d(tN+1) =
ra(tN ) − ra(tN+1)

ra(tN ) + pa
.

Therefore, in case the next threshold would be added to the support, the new de-
fender’s expected FRP would be

Φ′ = d(tN+1)φtN+1 + (1 − d(tN+1))Φ =
ra(tN ) − ra(tN+1)

ra(tN ) + pa
φtN+1 +

ra(tN+1) + pa

ra(tN ) + pa
Φ.

Inductive step
Let us consider an iteration of the algorithm with N = n. The inductive hypothesis

states that the gradually computed expected FPR is correct, i.e., Φ =
∑n

i=1 d(ti)φti
,

where d = (d(tn), ..., d(t1)) stands for the defender’s NE mixed strategy if the NE
support is {tn, ..., t1}. To put the hypothesis differently, d is the result of Alg. 2 with
N = n as an input. Thus,

∀i ∈ {2, 3, ..., n} : d(ti) =
ra(tn) + pa

ra(ti) + pa
−

ra(tn) + pa

ra(ti⊗1) + pa
=
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= (ra(tn) + pa)

(

1

ra(ti) + pa
−

1

ra(ti⊗1) + pa

)

,

and for t1 : d(t1) =
ra(tn) + pa

ra(t1) + pa
.

Let us now compute the value Φ′ of the next iteration of the algorithm with N ′ = N +
1 = n+1. For this iteration the correct value of the expected FPR is Φ′ =

∑n+1
i=1 d′(ti)φti

,
where d

′ = (d′(tn+1), ..., d′(t1)) is the defender’s NE mixed strategy obtained by means
of Alg. 2 with N ′ = n + 1 as an input. In other words,

∀i ∈ {2, 3, ..., n + 1} : d′(ti) = (ra(tn+1) + pa)

(

1

ra(ti) + pa
−

1

ra(ti⊗1) + pa

)

,

and for t1 : d′(t1) =
ra(tn+1) + pa

ra(t1) + pa
.

Note,

d′(tn+1) = (ra(tn+1)+pa)

(

1

ra(tn+1) + pa
−

1

ra(tn) + pa

)

⇐⇒ d′(tn+1) = 1−
ra(tn+1) + pa

ra(tn) + pa
⇐⇒

⇐⇒ ra(tn+1) + pa = (1 − d′(tn+1))(ra(tn) + pa).

Therefore,

∀i ∈ {2, 3, ..., n} : d′(ti) = (ra(tn+1) + pa)

(

1

ra(ti) + pa
−

1

ra(ti⊗1) + pa

)

=

= (1 − d(tn+1))(ra(tn) + pa)

(

1

ra(ti) + pa
−

1

ra(ti⊗1) + pa

)

= (1 − d′(tn+1))d(ti),

and analogously d′(t1) = (1 − d′(tn+1))d(t1).
Hence, the correct value of the expected FPR in the next iteration can be rewritten

as

Φ′ =
n+1
∑

i=1

d′(ti)φti
= d′(tn+1)φtn+1+

n
∑

i=1

d′(ti)φti
= d′(tn+1)φtn+1+(1−d′(tn+1))

n
∑

i=1

d(ti)φti
=

= d′(tn+1)φtn+1 + (1 − d′(tn+1))Φ =⇒
d′(tn+1)=1⊗

ra(tn+1)+pa

ra(tn)+pa

=⇒ Φ′ =
ra(tn) − ra(tn+1)

ra(tn) + pa
φtn+1 +

ra(tn+1) + pa

ra(tn) + pa
Φ ⇐⇒

⇐⇒ Φ′ =
ra(tN ) − ra(tN+1)

ra(tN ) + pa
φtN+1 +

ra(tN+1) + pa

ra(tN ) + pa
Φ.�

Further analysis of NE computation under the restriction on FPR is not within the
scope of this thesis and is left for future work.
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Appendix D.

The attached CD contents

• An implementation of the developed algorithms. In addition, input files with the
used O2 ROC curve, the defender’s background costs and the attacker’s rewards are
provided. All files and source codes are located in a directory scripts/algorithms. To
compute the randomized strategies launch main.py. Source codes of the algorithms can
be found in a file implemented_algorithms.py. Moreover, an R script manipulating

data.R used for manipulation with the dataset, derivation of the utilities and conduct-
ing robustness experiments is provided as well.

• Results of numerical experiments carried out on IDS ROC curves in the achive
Results of experiments on IDS ROC curves.zip. Names of the subfolders are self-
explanatory.

• Electronic version of the thesis in PDF.
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