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Abstract

The Manatee corpus manager can process large corpora containing billions of words.
Some operations with search results from such large corpora can be time-consuming.
This thesis provides and describes a system that enables computation of the selected
operations in parallel. The system is evaluated on a single computer, and on a cluster of
computers. The evaluation contains evaluation of the scalability, and comparions with
the Manatee system and a MapReduce system that provides a platform for distributed
computing.
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Chapter 1

Introduction

Text corpora are collections of text in electronic form [25]. As kind of empirical data,
they are used in linguistics and related disciplines [2]. Thanks to the Internet and web
crawling, it is relatively easy to create extreme large corpora containing billions of words
and providing more information that can be used in a research [20].

Large corpora can be accessible by modern corpus manager systems, but some oper-
ations can be time-consuming. Time-consuming operations create unpleasant user expe-
rience and consume hardware resources, so all other operations are also slowed down.
This thesis presents and describes a solution enhancing the performance of corpus man-
ager’s operations by their parallelization on a cluster of computers.

1.1 Manatee

Manatee is a state-of-the-art corpus manager system [9]. It is capable of managing even
extremely large corpora with billions of words [20]. The basic function is retrieving re-
sults for a given query from a specified corpus. A corpus is queried by an extended
Corpus Query Language (CQL, [10]). List of all occurrences for a given query is called
concordance [25]. Concordance can be used to perform additional operations like sort-
ing or computing a frequency distribution.

Bonito is a web-based graphical user interface of the Manatee system [26]. It dis-
plays a concordance in form of KWIC (keywords in context) lines. The KWIC lines are
based on KWIC format, which shows one line for each occurrence of a concordance [25].
Bonito lays out the KWIC lines to separate pages and displays one page at a time. This
approach enables a parallel computation of a concordance in a background, while a user
can already see the first page of results.

Some operations can produce the results only after processing of the whole con-
cordance. The concordance can be every word from a corpus, so if the corpus is large,
the operations can be time-consuming as they process huge amount of data and often
results in large number of disk reads.

As a concordance can contain any words from a corpus, it requires random access
and makes impossible to optimize access to the memory by storing related data next
to each other. Manatee optimizes access to the memory by creating and using indices.
Another enhancement can be achieved by a technology of distributing data to mutliple
disks, e.g. RAID 6. Data can be also distributed to a cluster of computers that can also
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1. INTRODUCTION

enable parallel computing.

1.2 Corpus Query Language

Corpus Query Language (CQL) is used to search for a sequence of words in the text cor-
pora. The language was developed at University of Stuttgart in the early 1990s. Manatee
uses the CQL and extends it in several ways. [13] This chapter provides brief description
sufficient enough to underestand queries stated in this thesis.

1.2.1 Simple Attribute-Value Queries

Words in corpora can have attached multiple attributes, e.g. part-of-speech or syntac-
tic categories. Every defined attribute can be queried. The basic attribute is the word
attribute, which represent words of a text corpus.

Simple form to query a value of an attribute is [attribute="value"], where the
value can be a regular expression. For example, to find all occurrences of the words that
has prefix confus, the query [word="confus.*"] can be used. Figure 1.1 shows the
first 20 results of the query [word="test"] evaluated on the British National Corpus
(BNC) [1].

The form can use two types of the comparison operators:

• operators evaluating the specified value as a regular expression: matches the reg-
ular expression =, or does not match the regular expression !=

• operators evaluating the specified value as a plain string: exact match ==, in-
equality !==, less than or equal <=, greater than or equal >=, greater than !<=

and less than !>=

To find a sequence of words, the query is expressed as a sequence of the related
expressions. For example, the query to find all words blue followed by the word car

can be expressed as [word="blue"] [word="car"].

1.2.2 More Complex Expressions

The attribute-value expressions can be more complex. They can restrict or enlarge the
suitable results. The restriction is denoted with the conjunction (&) and enlarging is de-
noted with the disjunction (|). For example, [word=".*ing" & tag="V.*"] finds
all words that match the regular expression ".*ing" and have the tag attribute match-
ing the regular expression "V.*".

More information about the query language can be found at [13].

1.3 Frequency Distribution and Sort of a Concordance

Frequency distribution computes a list of unique words and their number of occur-
rences. Sort of a concordance, referred to as concordance sort operation, sorts a con-
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1. INTRODUCTION

Figure 1.1: The first 20 results of the query [word="test"] evaluated on the BNC
corpus.

cordance. Both operations require a concordance and criteria. The given criteria are
evaluated for each occurrence (item of a concordance), and the result is a line of text
for each occurrence. Both operations process the lines. The frequency distribution com-
putes number of occurrences for each unique line, and the concordance sort operation
sorts the results and then sorts the concordance by the sorted results.

The result of frequency distribution is a list of pairs of the evaluated criteria and
number of its occurences. Figure 1.2 shows the frequency distribution of a concordance
of all occurrences of the word test and criterion returning the first word after an eval-
uated item. The operation is evaluated on the BNC corpus.

The concordance sort operation produces a concordance sorted by the evaluated
criteria. Figure 1.3 shows the last 20 results of a sorted concordance of all occurrences of
the word test. The concordance and operation are evaluated on the BNC corpus. The
criterion of the concordance sort operation defines the right context of each concordance
item as the following 3 words and it also converts the results to lower case, so the sort
is case insensitive.

The operations have to process the whole concordance before any results are pro-
duced. The time to perform such operations depends on the size of the concordance.
The size of a concordance is limited by a size of an appropriate corpus, so the concor-
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1. INTRODUCTION

dance can be huge and the operations time-consuming.

Figure 1.2: The first 20 results of the frequency distribution of the first words after the
words test evaluated on the BNC corpus.

Criteria

Criteria are quite complex as they have many options and variants. Each criterion de-
fines attribute and context. Context can be node or collocation, or can define a range
relative to the node or collocation. Node denotes the words matched by a query [14].
Collocation is a word of a node that is explicitly labeled in the query.

The following patterns and examples should help a reader to understand the criteria
mentioned in this thesis.

Simple criteria can define the right or left context as one of the following or preceding
words:

• word 1 – defines the right context as the following word (the first word on the
right side of a node).

• word 2 – defines the right context as the second word on the right side of a node.

• word -2 – defines the left context as the second word on the left side of a node.

The context can be defined from the beginning or the end of a node. It is useful when
the node has variable number of words.

4



1. INTRODUCTION

Figure 1.3: The last 20 results of a concordance for the query [word="test"] evaluated
on the BNC corpus and sorted by the following 3 words with case insensitivity.

• word 1<0 – defines the context as one word to the right from the beginning of
the node. It is equivalent to word 1.

• word 1>0 – defines the context as one word to the right from the end of the
node. If, and only if, the node has only one word, the criterion is equivalent to
word 1.

In the similar way, the context can refer to the beginning or the end of a collocation.
A collocation is always part of a node and it is distinguished in the node by a numeric
label. The numeric label is defined by an user in a given query and each collocation
should have an unique number within a query.

• word 1<1 – defines the context as one word to the right from the beginning of
the first collocation (collocation with the label 1).

• word 1>2 – defines the context as one word to the right from the end of the
second collocation (collocation with the label 2).

The criteria can refer to more than just one word. They can define range of words.

• word 1∼3 – uses from the first to the third word on the right side as the context.
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1. INTRODUCTION

The notations can be combinged together to specify range of words from the begin-
ning or the end of a node or collocation.

• word 1>0∼3>1 – defines the right context from the first word on the right side
from the end of node, to the third word on the right side from the first collocation

The result of the criteria can be modified by predefined modificators. The modifi-
cators are listed after an attribute and between the attribute and the list is a separator
(/).

• word/i 1 – converts the results to a lower case, e.g. enables the concordance
sort operation with case insensitivity.

• word/r 1 – reverses the string results, e.g. enables sorting from the end of words.

1.4 Text Compression in Manatee

The Manatee system compresses text of a corpus in two steps: the first step is to map a
string to an integer; the second step is encoding of the integer using Elias delta coding
[6]. The mapping is provided by lexicons. The lexicon provides bidirectional mapping as
each unique word has assigned a unique numeric identifier. The whole text of a corpus
is encoded as a sequence of the numeric identifiers that can be converted to the words
by using the lexicon.

Elias delta coding is a variable-size coding of integers. It does not support a random
access to the encoded data, but each code can be decoded when its position in a bit
stream is known. Manatee ensures relatively random access to any part of the encoded
text by dividing the text into segments and storing positions of the segments. Each seg-
ment has the same size. It is usually 128 words for corpora with less than billion words
and 64 words for corpora with more than billion words.

Table 1.1 shows files structure of the encoded text. Index of the lexicon ensures effi-
cient mapping from an integer to string, and index of the sorted lexicon ensures efficient
mapping from a string to integer. Not all files are required to dump the whole corpus.
Such action requires only the encoded text, lexicon, and index of the lexicon.
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1. INTRODUCTION

File suffix File description

.text contains the encoded text – identifiers of the words encoded using Elias
delta coding

.text.seg index of the segments

.lex unique string values in such order that their position is equal to the
appropriate identifier

.lex.idx index of the lexicon

.lex.srt index of the sorted lexicon

Table 1.1: File structure of the text encoded by the Manatee system.
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Chapter 2

Text Compression

Distribution of a corpus to a cluster of computers can result in inconsistency of the
words’s numeric identificators. Possible solution is to use the identificators only locally
on a single computer, and the results propagate as the appropriate text. Although, the
problem can be solved, it questions mapping of strings to integers and whether the
current encoding should not be replaced.

There are many compression algorithms that are faster or have better compression
ration than the text compression of the Manatee system. Manatee has to provide fast
data access and efficient storage methods for even extremely large corpora with billions
of words. Thus, the priorities are the compression ratio and decompression time. The
compression time is not a priority because corpora are typically compiled once.

The new and better text compression should have faster decompression time and
better compression ratio. It is also acceptable to have slightly worse compression ratio, if
the decompression is faster. If the compression does not support the random access, the
input text can be divided into segments and the segments can be compressed separately.

2.1 Text Compression Benchmarks

Manatee is an open-source software, so the selected algorithm has to be open source
too. It is the reason why most of the evaluated programs are open-source. The bench-
marks contains also a few closed-source programs (e.g. LzTurbo) as they declare better
results. Although, the closed-source programs cannot be used to replace the Manatee’s
encoding, they can be at least compared.

The first benchmark evaluates 30 selected compression programs with different op-
tions. The benchmark contains 61 results in total. Many of the programs were selected
by their results stated in Large Text Compression Benchmark [18], which ranks more
than 190 text compression programs by the compression of enwik9 and enwik8. Enwik9
and enwik8 are dumps of the English Wikipedia version from 3. March 2006. Enwik9
contains the first 109 bytes and the enwik8 contains the first 108 bytes of the English
Wikipedia. [17]

The second benchmark contains only 14 results of the best 10 compression algo-
rithms, which were selected by their results in the first benchmark. The number of
algorithms was limited, because the second benchmark is more complex and time-
consuming.
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2. TEXT COMPRESSION

Both benchmarks use data from the vertical text of the British National Corpus
(BNC). BNC is a hundred million word text corpus of samples of written and spoken
English [1]. The benchmarks were executed in the same environment: 64-bit Ubuntu
14.04.03 running as a virtual machine with 2 CPU cores and 2 GB RAM.

2.1.1 Evaluated Text Compression Programs

The evaluated compression programs use different algorithms. Most of them use or are
derived from LZ77, e.g. LzTurbo uses LZ77 with arithmetic coding. Others use for exam-
ple BWT, LZMA, LZMA2, LZP, byte-oriented LZP, LZSS followed by arithmetic coding,
LZW, symbol ranking, or byte pair coding. More information about the programs can
be found at [18].

LZ77 (also called ”Sliding window”) uses a sliding window of a fixed size divided
into 2 parts: search buffer and look-ahead buffer. Search buffer contains already encoded
text and is used as a dictionary for the current encoding. Look-ahead buffer contains text
to be encoded. The first symbol in the look-ahead buffer is scanned in the search buffer
from the right to the left, and if it is found, the encoder tries to match as many symbols
as possible. The output contains triples consisting of an offset (distance) from the end
of the search buffer, the length of the matched sequence, and the unmatched character.
[27]

2.1.2 The First Text Compression Benchmark

The purpose of the first benchmark is to select some candidates that will be compared
with the Manatee’s text compression algorithm in the second benchmark. The second
benchmark evaluates only the selected candidates – the best algorithms of the first
benchmark.

The first benchmark uses a reduced vertical text of the BNC’s word attribute, re-
ferred to as comparative text, to compare the algorithms. The comparative text consists
of the first 28,202,868 lines (141 MB) of the BNC’s word attribute, which has 112,181,015
lines (556 MB) in total. The Manatee system compresses the comparative text to 56 MB
– 50 MB of the encoded text, 2.8 MB of the lexicon, and 1.2 MB of the lexicon’s index.
Other files, such as index of the sorted lexicon, are not relevant for decompression of
the whole text. The comparative text was decompresed in 2.74 s.

All results of the first text compression benchmark are in Appendix A. The first 20
results of the first benchmark are shown in Table 2.1. The table is sorted by the decom-
pression time and a table cell of the compressed file size column has gray background,
when the size of the compressed file is greater than the size of the file compressed by
Manatee (worse compression ratio than Manatee).

1. source: <https://github.com/Cyan4973/lz4> (last commit: d86dc91)
2. enabled multithreading
3. single-threaded
4. Unix command
5. multithreaded compression and single-threaded decompression
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2. TEXT COMPRESSION

Program
name

Options Com-
pression
time [s]

Decom-
pression
time [s]

Compressed
file size
[MB]

Com-
pression
ratio

LZ4-r131 0.62 0.22 77 7.17
LZ4-r131 -9 8.86 0.22 54 10.21
LZ4 1 -9 10.06 0.23 54 10.21
Shrinker 0.69 0.27 73 7.56
LzTurbo 2 -32 3.94 0.33 41 13.60
LzTurbo 3 -32 -p1 5.35 0.54 41 13.6
lzop -9 29.66 0.57 55 10.10
eXdupe 2.09 0.58 75 7.40
lzop 0.68 0.61 79 7.05
lrzip 0.621 2 -l 7.94 0.70 77 7.25
QuickLZ -3 9.54 0.84 61 9.05
eXdupe -x2 2.93 0.86 60 9.30
zlib-1.2.8
minigzip

9.90 0.91 48 11.63

NanoZip -3 -cf
-M1670

1.00 0.94 67 8.35

compress 4 4.17 0.98 56 9.95
GZIP -9 12.46 1.07 48 11.70
GZIP -5 5.29 1.09 49 11.42
lrzip 0.621 5 -l -p 1 8.26 1.11 77 7.25
Info-ZIP 9.74 1.23 48 11.64
GZIP -1 2.50 1.25 58 9.65

Table 2.1: Results of the first text compression benchmark.

2.1.3 The Second Text Compression Benchmark

The second benchmark evaluates compression and decompression of the BNC’s word,
lemma, and ambtag attribute. The attributes are compressed and decompressed sepa-
rately. The inputs are files containing one word of an attribute per line. All three at-
tributes have the same number of lines, but their total sizes are different. The word,
lempos, and ambtag attribute have 556 MB, 753 MB, and 443 MB respectively.

Manatee compresses the BNC’s word attribute to 210 MB, lempos attribute to 203
MB, and ambtag attribute to 96 MB. Table B.4 in Appendix B shows sizes of the files for
word, lempos and ambtag respectively. Considered are only files necessary to decode
the whole attribute.

The results of the second benchmark are shown in Table B.1, B.2, and B.3 in Ap-
pendix B for word, lempos, and ambtag respectively. All results are sorted by the de-
compression time and the table cells are labeled in the same way as the results of the
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2. TEXT COMPRESSION

first benchmark: grey background – worse compression ratio than Manatee. Only Table
B.1 contains results of the Tornado 0.6 program. It was discovered during the evalu-
ation of the second benchmark and the program was suppose to be much faster than
the other programs. However, its results of the BNC’s word attribute compression are
below average which was the reason to not proceed with futher evaluations.

Manatee decompresses the BNC’s word attribute in 10.3 s, lempos in 10.8 s, and amb-
tag in 8.4 s. It seems that many of the evaluated compression programs could replace
the Manatee’s encoding as they have better results. The following chapter explains why
it is not sufficient to compare algorithms only by the decompression time of the whole
text and what has to be compared.

2.2 Compression Algorithms and the Concordance Sort Operation

Manatee is rarely used to dump the whole corpus text. It can be even undesired in
some cases, e.g. when we want to prevent from copying of the corpora, or when the
corpora are extremely large. Therefore, the compression algorithms should be evaluated
by performing operations that are commonly performed by the Manatee system. Such
operations includes the frequency distribution and the concordance sort operation.

2.2.1 Segmentation

Basically, all operations executed by the Manatee system require random access to any
word in the encoded text. The Manatee system uses Elias delta coding, which doesn’t
support random access. However, when a position of any encoded integer in a bit
stream is known, then it is possible to decode all integers from the given location to
the end of the stream. It would be memory consuming to store all positions of the en-
coded integers and because of that, the encoded integers are divided into segments of
the same size, and only the positions of these segments are stored. Index of the segments
provides relatively random access with a small overhead.

The algorithms in the benchmarks are not designed to provide random access to the
words of the compressed text. The random access can be ensured by the segmentation,
but the only way for most of the selected programs is to split an input text to segments,
and compress these parts separately. As many of the programs uses already encoded
data to encode the remaining uncompressed data, the segmentation can affect the size
of the compressed data.

Table 2.2 shows how the size of segments affects the final size of the compressed
data. The table presents sizes of the compressed BNC’s word attribute with various seg-
ment size and different programs. It contains results of the GZIP 6, LZ-4 7, and LzTurbo8

compression.
All presented results have worse compression ratio than Manatee. The total size of

the GZIP compression is increased by approximately 10 % in average by decreasing the
segment size by half. The total size of the LZ-4 compression is increased by approxi-
mately 6 % by decreasing segment size by half. However, the LZ-4 has worse compres-
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2. TEXT COMPRESSION

sion ratio than GZIP. The LzTurbo compression has the most significant degradation of
the compression ratio. The compression with the segment of size 256 shrinks only 2 %
from the input size. The futher evaluations were not performed as it was clear that it
cannot be used.

The segment size always affects the size of the segment index file. Table 2.3 shows
the sizes of segment index file with various segment sizes.

Segment size Compressed with
GZIP [MB] 6

Compressed with
LZ-4 [MB] 7

Compressed with
LzTurbo [MB] 8

1024 253 397 326
512 273 424 410
256 299 453 547
128 337 485
64 395 518

Table 2.2: The BNC’s word attribute divided into segments with different sizes and com-
pressed with the GZIP, LZ-4, and LzTurbo compression.

Segment size Segment index file size

1024 427.90 KB
512 855.80 KB
256 1.67 MB
128 3.34 MB
64 6.69 MB

Table 2.3: Segment size and size of the segment index file.

2.2.2 Benchmark of the Concordance Sort Operation

Benchmark of the concordance sort operation compares the performance of the concor-
dance sort operation executed with different compressions and various segment sizes.
The benchmark compares performance of the concordance sort operation with data
compressed by the Manatee system, the GZIP6 and LZ47 compression, and with un-
compressed data (plain text). According to the second text compression benchmark, the
LZ4 compression is the fastest decompression program, but it has worse compression
ratio than Manatee. On the other hand, the best GZIP compression has better compres-
sion ratio of the word attribute than Manatee.

The concordance sort operation is performed with the concordance from the BNC
corpus for the query [word="test"] and with criterion word/i 1>0⇠3>0. The query

6. with the option -9 (best compression)
7. source: <https://github.com/bkaradzic/go-lz4> (last commit: 74ddf825)
8. with the option -32
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represents all occurrences of the word test and the criterion defines the right context
as the following three words from each occurrence of the word test. The criterion also
determines sorting of the context with case insensitivity.

Manatee performs the operation in 0.114 s with the default segment size (128 words
in a segment). The compressed BNC’s word attribute has 200 MB, lexicon has 7.2 MB,
and index of lexicon has 3 MB. Table 2.4 shows how the performance of the operation
is affected by the Manatee’s compression with various segment sizes. The segment size
affects the performance and size of the index of segments. The size of lexicon and size
of the compressed text are not affected.

Table 2.5 and 2.6 present the results of the GZIP and LZ-4 compression respectively.
The operation with the data compressed by GZIP has always worse performance than
the operation with the data compressed by Manatee with same segment size. The oper-
ation with the data compressed by LZ-4 has achieved better performance than Manatee
when the segment size is 64, but the size of the compressed file is almost equal to the
size of the decompressed file.

Table 2.7 shows the performance of the concordance sort operation with uncom-
pressed data. The results indicate theoretical performance limit of the sort operation,
because the data decompression is for free. The operation with the uncompressed data
has always better performance than Manatee with the same segment size. The speedup
is approximately 1.426 in average.

Although, the results of the benchmarks compressing the whole text have better
compression ratio and faster decompression, the results of the benchmark of the con-
cordance sort operation show that it is not efficient to use segmentation with the se-
lected algorithms to provide a random access to compressed data. This hypothesis is
also supported by the results of the LzTurbo program, which has the best compression
ratio among the programs in the second benchmark but worse compression ratio than
Manatee when the text is divided into segments. LzTurbo is not open-source, so it is not
suitable for the benchmark of the concordance sort operation.

Segment size Size of the com-
pressed text [MB]

Time of the concordance
sort operation [s]

1024 200 0.407
512 200 0.231
256 200 0.147
128 200 0.114
64 200 0.088

Table 2.4: Performance of the concordance sort operation executed with data encoded
by the Manatee system with various segment sizes.
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Segment size Size of the com-
pressed text [MB]

Time of the concordance
sort operation [s]

1024 253 1.027
512 273 0.699
256 299 0.533
128 337 0.430
64 396 0.395

Table 2.5: Performance of the concordance sort operation executed with the data com-
pressed by GZIP with the option -9 (best compression).

Segment size Size of the com-
pressed text [MB]

Time of the concordance
sort operation [s]

1024 397 0.566
512 424 0.298
256 453 0.179
128 485 0.115
64 518 0.084

Table 2.6: Performance of the concordance sort operation executed with the data com-
pressed by LZ-47.

Segment size Size of the com-
pressed text [MB]

Time of the concordance
sort operation [s]

1024 556 0.262
512 556 0.157
256 556 0.106
128 556 0.079
64 556 0.069

Table 2.7: Performance of the concordance sort operation executed with the uncom-
pressed data (plain text).

2.3 Compression of Integers with a Lexicon Mapping Integers to

Strings

According to the results of the benchmark of the concordance sort operation, the se-
lected compression programs are not suitable as a replacement of the current Manatee’s
compression algorithm. However, none of the evaluated algorithms use the same ap-
proach as the Manatee system – compression of integers with a lexicon mapping inte-
gers to strings.

D. Lemire and L. Boytsov [12] claim “variable byte is twice as fast as Elias gamma
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and delta coding”, but their primary goal is to “decode billions of integers per second”.
They discuss and compare several encodings that should be faster and could have better
compression ratio than Elias delta coding.

There is a possibility that the current Manatee’s text compression could be improved
just by using different encoding of the integers. This thesis do not aim to find a faster
compression than the current compression algorithm, but to get rid of the lexicons map-
ping integers to strings. Nevertheless, a short comparison of encoding of integers is
provided to lay a groundwork for a future research.

The short comparison evaluates two algorithms: BP32 and FastPFOR. According to
the results of D. Lemire and L. Boytsov [12], both algorithms have one of the best com-
pression ratio, but rather average decoding speed.

The BP32 scheme stores sequences of 32 unsigned 32-bit integers. The algorithm
finds the minimum bit width needed to store each integer in the sequence, and then all
integers of the sequence are stored to a block, in which each integer uses the computed
bit width. The block’s bit width is stored in a meta block which contains bit widths of
the following 4 blocks of integers. [12]

The FastPFOR scheme works in a similar way to BP32. It also computes the min-
imum bit width needed to store each integer in a sequence of integers, but it tries to
enhance compression by using a list of exceptions. The exceptions are used when it is
advantageous to store only the lowest bits of integers in a sequence to a block and the
remaining bits store as the exceptions. [12]

The performance of the concordance sort operation using data compressed by BP32
and FastPFOR are showed in Table 2.8 and 2.9, respectively. The BP32 scheme achieves
better performance than Elias delta coding with the same segment sizes. The perfor-
mance is better even with 4 times bigger segment size compared to the performance of
the operation with data compressed by the Elias delta coding and the default segment
size (128 words in a segment). However, the compression ratio is slightly worse – ap-
proximately by 4 %. The FastPFOR scheme also achieves better performance than Elias
delta coding with the same segment sizes, and the compression ratio is also slightly
worse – approximately by 3.4 %, so it is better the compression ratio of BP32.

Segment size Text file size [MB] Time of the concordance
sort operation [s]

1024 231.89 0.166
512 232.31 0.115
256 233.15 0.082
128 234.82 0.069

Table 2.8: Performance of the concordance sort operation with the data compressed by
BP32 and various segment sizes.
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Segment size Text file size [MB] Time of the concordance
sort operation [s]

1024 213.90 0.177
512 217.96 0.117
256 223.88 0.089
128 233.14 0.073

Table 2.9: Performance of the concordance sort operation with the data compressed by
FastPFOR and various segment sizes. FastPFOR uses the default page size (65,536).
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Chapter 3

Parallelization of the Selected Time-Consuming

Operations

The frequency distribution and the concordance sort operation are time-consuming op-
erations as they have to process the whole concordance before any results are produced.
The performance can be enhanced by a parallelization of the operations. The paralleliza-
tion can be performed locally on a single computer and globally on a cluster of comput-
ers.

3.1 Virtual and Split Concordance

The selected time-consuming operations are computed with a concordance. They can
be parallelized by parallelization of the computations with the concordance. Two ap-
proaches are proposed: virtual and split concordance. The original implementation of
the concordance is referred to as normal concordance.

The virtual concordance is based on an idea of dividing a large corpus into multi-
ple smaller parts. An operation can be computed on each part separately, and the partial
results can be merged together. Moreover, the parts of the corpus can be stored on differ-
ent computers, so the virtual concordance enables parallelization on a single computer
and a cluster of computers.

The split concordance uses a single corpus just like the normal concordance. They
differ in the design of operations. The split concordance divides data of the concordance
into splits and computes an operation concurrently with each part. Then, the partial re-
sults are merged. The concurrency enables parallism when a computer has more avail-
able processors.

3.1.1 Benchmarks of the Virtual and Split Concordance

The virtual and split concordance benchmarks evaluate the performance of the fre-
quency distribution and the concordance sort operation with the virtual and split con-
cordance. Both operations are executed with several queries from the BNC corpus that
differ in the size of the results. Table 3.1 shows queries used in the benchmarks and the
sizes of results of both operations. The concordance sort operation was performed with
the criterion word/i 1>0∼3>0, and the frequency distribution was performed with
the criterion word 1>0.
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3. PARALLELIZATION OF THE SELECTED TIME-CONSUMING OPERATIONS

Both operations were evaluated on one core and also on the maximum number of
available cores (8 cores). The evaluation uses a single computer with the following hard-
ware specification: 8 GB RAM, 256 GB SSD disk, and 2.0 GHz Intel Core i7 (I7-4750HQ)
– 4 cores (plus 4 virtual cores) processor.

Query Size of the concordance
= number of results of
the concordance sort oper-
ation

Number of results of the
frequency distribution

[word="Gauss"] 60 15
[word="recurrence"] 500 68
[word="enjoyment"] 1,000 104
[word="test"] 11,040 1,265
[word="said"] 194,767 7,364
[word="a"] 2,040,346 76,277

Table 3.1: Queries used in the virtual concordance and split concordance benchmarks
and number of results of the frequency distribution and the concordance sort operation.

Benchmark of the Virtual Concordance

The virtual concordance benchmark compares the performance of the virtual concor-
dance on the BNC corpus divided into various number of parts. All parts are located on
a single computer.

The results of the benchmark are in Appendix C: Table C.1 and Table C.2 for the
concordance sort operation and frequency distribution, respectively. The performance is
enhanced each time the number of parts is increased. The enhancement is achieved until
the number of parts is less than 8. The evaluations with 8 parts have worse performance
when the queries with rather small size of results are evaluated, but the performance is
better when the queries with rather larger size of results and evaluated on all available
cores. The evaluation with 9 parts have very similar performance as with 8 parts.

Benchmark of the Split Concordance

The split concordance benchmark compares the performance of the split concordance
on the whole BNC corpus and various number of the splits.

The results of the benchmark are in Appendix D: Table D.1 and Table D.2 for the
concordance sort operation and frequency distribution, respectively. The performance
is enhanced each time the number of parts is increased. The enhancement is achieved
until the number of parts is less than 8. The evaluations with 8 parts have mostly worse
performance when the queries are evaluated only on one core, but better performance
when the queries are evaluated on all available cores. The evaluation with 9 parts have
very similar performance as with 8 parts.
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3.1.2 Comparison with the Normal Concordance

The concordance sort operation and frequency distribution are evaluated with the nor-
mal concordance and the same queries as used in the virtual and split concordance
benchmarks. The evaluation uses also the same environment. Table 3.2 and 3.3 show
evaluation of the normal concordance and the results are compared with the results of
the virtual concordance with 8 parts and the split concordance with 8 splits.

The benchmark of the virtual and the benchmark of the split concordance indicate
that the performance with 8 parts and 8 splits reaches almost the maximum perfor-
mance. Although, more than 8 parts and splits can slightly enhance the performance,
the performance of some queries can be degraded.

Both, virtual and split concordance, have better performance than the normal con-
cordance when the operations are executed with all available cores. In some cases, the
virtual and split concordance have also better performance when running on one core.

The virtual concordance has better performance in more cases than the split concor-
dance, and also the benchmarks show that the virtual concordance have better perfor-
mance with lower number of parts when compared to the number of splits.

Query Number of

available

processors

Performance

of the normal

concordance

Performance

of the virtual

concordance

(8 parts)

Performance

of the split

concordance

(8 splits)

[word="Gauss"]
1 0.014 0.015 0.018
8 0.013 0.006 0.004

[word="recurrence"]
1 0.114 0.099 0.119
8 0.118 0.034 0.030

[word="enjoyment"]
1 0.275 0.253 0.281
8 0.270 0.047 0.057

[word="test"]
1 1.368 1.408 1.429
8 1.279 0.233 0.260

[word="said"]
1 6.439 6.394 6.339
8 5.625 1.206 1.300

[word="a"]
1 27.909 28.435 28.727
8 24.753 7.067 7.606

Table 3.2: Performance of the concordance sort operation compared between the normal,
virtual (8 parts), and split (8 splits) concordance.

3.2 MapReduce

MapReduce is a programming model inspired by the functional programming which
makes it easy to parallelize execution on a large cluster of commodity computers. The
model provides an abstraction of computations with large amount of data in a dis-
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Query Number of

available

processors

Performance

of the normal

concordance

Performance

of the virtual

concordance

(8 parts)

Performance

of the split

concordance

(8 splits)

[word="Gauss"]
1 0.009 0.010 0.012
8 0.010 0.003 0.003

[word="recurrence"]
1 0.101 0.077 0.099
8 0.118 0.034 0.030

[word="enjoyment"]
1 0.252 0.215 0.264
8 0.250 0.038 0.051

[word="test"]
1 1.212 1.213 1.184
8 1.209 0.206 0.237

[word="said"]
1 4.852 4.941 4.972
8 4.536 0.796 0.985

[word="a"]
1 10.021 10.965 9.824
8 9.184 2.290 2.910

Table 3.3: Performance of the frequency distribution compared between the normal,
virtual (8 parts), and split (8 splits) concordance.

tributed environment. The aim is to hide details of parallelization and problems related
to using a cluster of computers – such as data distribution, fault tolerance, or load bal-
ancing. [28]

The model enables to define a computation as a map and reduce functions, which are
present in many functional languages (e.g. Lisp, Haskell). The map function is applied
to records of an input (e.g. lines, words), and emits intermediate key-value pairs. The in-
termediate pairs with the same keys are grouped and processed by the reduce operation.
This approach makes it easy to express distributed algorithms as simple computations,
and solve fault tolerance with simple re-execution of the operations. [4]

3.2.1 MapReduce and Manatee

As Tom White [28] claims “MapReduce is a complement to the traditional rational
database management system (RDBMS) in many ways”. RDBMS has a lot in common
with the Manatee, e.g. strict data schema, indexed data, and interactive queries, but
probably the only thing that have Manatee and the MapReduce run-time in common is
how they treat the data: write once and read many times [28]. Although, it appears that
Manatee is not suitable for MapReduce frameworks, the operations match the MapRe-
duce programming model.

The concordance sort operation and frequency distribution can be implemented as
MapReduce tasks with the virtual or split concordance. Both operations are evaluated
with a concordance and criteria. Parallelization in a cluster of computers requires to
divide a corpus into smaller corpora that are stored in the cluster.

The map function has to receive a part of a divided corpus, query, and criteria. If an
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implementation uses the virtual concordance, the map function can receive more than
just one part of the divided corpus. The function creates the concordance, executes the
operation, and emits the results. If a split concordance is used, the map function must
divide the concordance into splits. The implementation can contain two phases of the
map phase. The first phase creates and divides the concordances. The second phase can
receive the splits, execute the operation, and emit the results.

MapReduce Model of the Frequency Distribution

Figure 3.1: Run times of the proposed MapReduce models of the frequency distribution
computed from a concordance with large amount of data and executed with the Glow
framework.

The frequnecy distribution is computed from a concordance and criteria. The criteria
are evaluated for each item of the concordance and the result of the frequency distribu-
tion is a list of pairs of the evaluated criteria and number of its occurrences.

The MapReduce model of the frequency distribution can be quite simple. The map
phase can create concordances and execute the operation. The results are emitted. The
reduce phase receives lists of pairs. They can be merged together and the merged results
can be sorted by the frequencies. This model uses only one reducer, which can be a
bottleneck of scalability.

The proposed first approach can be enhanced by using more reducers. The map
function can be changed to iterate the created list and emit the pairs. The emitted pairs
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can be partitioned by the key, so all pairs with the same key will be given to the same
reducer. The maximum number of reducers is equal to the number of different keys. The
reduce phase has two stages. The first stage of the reduce phase sums the frequencies
for each group of pairs with the same key, and emit the results. The second stage merges
the results together and then sorts them.

The second approach emits huge number of pairs – at most NUMBER OF MAPS *
NUMBER OF UNIQUE STRINGS in the map phase, and NUMBER OF UNIQUE STRINGS

in the reduce phase. It can be optimized by using a hash function, that creates a hash
code from the string. The map function emits all pairs with the same hash as one pair.
The emitted pair has the hash code as the key, and all appropriate pairs as the value. The
advantage of using the hash function in the map phase is that the reducers will receive
smaller number of pairs. The reducers can merge the lists with the same keys and sort
them by the frequencies. Then, the sorted lists are merged together in such way that the
output list will be sorted by the frequencies.

All three approaches were evaluated with the Glow framework [15]. The third ap-
proach uses a simple hash function that returns the first character of a given string as the
hash code. The Glow framework is an open-source MapReduce system written in Go
[5]. The framework is more described in the section 3.2.3. Figure 3.1 shows the measured
performance of the specified approaches. They were evaluated on huge amount of data
in a cluster of 20 computers. The used concordance had 87,159,527 items and the fre-
quency distribution produced 1,056,289 results. The comparison suggests to use a hash
function to divide large amount of data when the frequency distribution is computed
using the Glow framework.

MapReduce Model of the Concordance Sort Operation

The concordance sort operation is more complex than the frequency distribution. The
operation uses a concordance, criteria, and query. The criteria are evaluated for each
item of concordance, and the concordance is sorted by the evaluated criteria. The result
of the concordance sort operation is a sorted concordance. The sorted concordance is
presented to a user just like any other concordance – in form of KWIC lines.

The Bonito web interface lays out the KWIC lines to separate pages and displays one
page at a time. The KWIC lines are based on the KWIC format, which is customizable
and can be changed. The web interface enables to display the following or previous
pages, jump to any page, and provides a sort index that can be used to jump to a page
containing the first lines with a specified key. The sort index is usually built from the
first characters of the evaluated criteria.

The sort can be implemented as two-phase merge sort. The map phase passes the
evaluated criteria to the reduce phase, which merges them. Each evaluated criteria has
to contain additional information that can be used to identify an original concordance.
The created concordances must be stored as they are used to compute the requested
KWIC lines. The identificator is used by a client that gets the merged results and asks
for the KWIC lines of items that are present at a requested page. The MapReduce frame-
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work can be used to store the concordances and also to compute the KWIC lines.
The described model is simple, but the amount of merged data can be significantly

reduced. It is not always necessary to merge all results of the map functions, e.g. when
the first page is required, only the first items could be merged, then when the second
page is required, only the next items could be merged. The results of the map functions
can be divided into segments of the same size and stored. The merge can be done on
demand only for those segments that are necessary to merge to get the results for a
requested page.

The enhancement solves the common case – displaying the first page and iterating
to the next and previous pages. Jump to the middle page can be optimized by building
a sort index for each concordance. However, the optimized solution is beyond a simple
MapReduce model and because of that, it won’t be implemented.

3.2.2 Hadoop

Hadoop is an open-source framework implementing MapReduce written in Java. The
idea is derived from Google’s MapReduce and Google File System (GFS) [7]. Apache
Hadoop was created by Douch Cutting, the author of Apache Lucene – text search li-
brary. Originally, it was part of Apache Nutch, an open source web search engine. The
framework is used by more than 150 companies such as Yahoo!, Facebook, Twitter, IBM,
LinkedIn, The New York Times, or Adobe [21].

The framework is able to run applications on large cluster of computers, e.g. in Jan-
uary 2007 – cluster with 900 nodes, in March 2009 – 17 clusters with a total of 24,000
nodes. A cluster can consist of cheap commodity hardware – commonly available hard-
ware. It can process large-scale data quite fast, e.g. in April 2008 Hadoop broke a world
record as the fastest system sorting a terabyte of data.

Data are stored to and loaded from HDFS (Hadoop Distributed File System). HDFS
is designed to store large files (hundreds of MB, GB, or TB in size) with streaming data
access pattern. It is optimized for a high throughput of data which can be in cost of
higher latency. Data are stored to HDFS blocks which are 64 MB by default. Block is the
minimum amount of data that can be read or write.

Hadoop is designed for batch processing of the whole files, but Manatee is based on
the interactive queries and random access to the files. The framework is not suitable for
tasks provided by Manatee. On the other hand, there are many Hadoop related projects,
called the Hadoop ecosystem, and some of them (e.g. HBase) could probably meet Man-
atee’s requirements for the random data access and suit for the distributed computing
of Manatee’s operations. However, such research is outside of scope of this thesis as it
would probably require enormous changes in Manatee’s persistent layer and there is no
garantee that such system would have better performance than the distributed system
presented in this thesis.

More information about Hadoop can be found in [28].
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3.2.3 Glow

Figure 3.2: Example of a directed acyclic graph created by a driver application.

Glow is an open-source MapReduce system implemented in Go (also called Golang,
[5]) similar to Hadoop [28]. The primary goal of the system is to provide simple and
scalable framework supporting the MapReduce programming model. Glow has been
developed since 2015 and so far it does not handle fault tolerance, monitoring of com-
puters in the cluster, or error handling. An applications using Glow can run in 2 modes:
standalone or distributed.

The distributed mode uses the master/slave architecture. The master must run only
on one computer, but slaves, called agents, can run on one or more computers. The
master provides resource management. The agents report resource usage to the server
by heartbeats.
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An application using the Glow framework running in the distributed mode can act
either as a driver or an executor. The mode of the application is specified via command
line arguments. The driver handles the distributed computing. It divides tasks into di-
rected acyclic graph (see example at Figure 3.2). The graph is optimized to minimize
streaming of data to a disk, and is used to create tasks groups that consist of subse-
quent tasks. The driver asks the Glow master server for the resources required by each
tasks group and the server checks whether there are available such agents that fullfil the
specified resource requirements. If so, the master assigns the agents to the driver.

The driver sends groups of tasks to the assigned agents. Each contacted agent re-
ceives tasks, locations of the input data, and binary copy of the driver, which will run
in the executor mode. The executor reads the data from network channels, executes the
tasks, and writes the result to local agent.

More information about the Glow framework can be found at [15].

Glow and Implementation of the Frequency Distribution

The section 3.2.1 concludes that the concordance sort operation and retrieval of the sort
concordance page is beyond a simple MapReduce model. Therefore, only the frequency
distribution is implemented with the MapReduce framework. The implemented model
of the frequency distribution is equivalent to the best model described in the section
3.2.1. The implementation uses the virtual concordance because it has better results on
a single computer than the split concordance.

Glow in Standalone Mode Benchmark

The implementation of the frequency distribution using the Glow framework is eval-
uated in the same way as the virtual concordance. The benchmark uses the same con-
figuration, parameters, and environment. The executed program runs in the standalone
mode.

Table E.1 in Appendix E shows results of the benchmark. They are very similar to the
results of virtual concordance. The virtual concordance has better performance, but the
difference in the performance shrinks as the queries produce large number of results.

Glow and Data in a Cluster

The proposed design of the distributed computation on a cluster of computers uses a
large corpus divided into smaller corpora. The smaller corpora are stored on computers
of the cluster.

The Glow framework does not support storing data to or locating data in a cluster.
Data are either available from all nodes or they are transmitted from a driver (client
application). The framework supports definition of a node’s location and its capabilities.
The computer’s location is naturally defined by its address and port number, and Glow
also enables grouping of computers into data centers and racks. The node’s capabilities
is a list of memory size, number of CPU cores, CPU level (relative computing power of a
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single CPU core), and the upper limit of the number of executors running concurrently
on the agent [16]. A driver can define name of the preferred data center and rack, but
allocation of such agents is not guaranteed.

It is required to support propagation of information about corpus parts located on
each computer of the Glow cluster and to allow a driver to specify demanded corpus
parts. Glow is an open-source software, so it can be freely modified and extended to
match our design.

The required corpus parts can be stored as an attribute of a tasks group, because the
required resources are computed from the tasks groups. The attribute will be set only
for the tasks groups containing a map task, because the corpus parts are used only in
the map phase.

The agents have to report the available corpus parts to the master server. The avail-
able corpus parts can be specified via a command line flag or an environment variable.
The driver can specify what corpus parts are needed to execute tasks groups and the
master assigns only such agents that have such resources on their computers.
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Chapter 4

Implementation

The implemented system uses large corpora divided into smaller parts that are located
on computers of a cluster. On each computer runs a server that has an access to com-
piled corpus parts. The implementation has the client/server architecture, but unlike
the traditional communication model of the architecture, the model of the implemented
system involves one client and multiple servers. A client contacts the servers that have
a required data and asks them to perform some operations. The results are returned to
the client, which processes the results and displays the output to a user.

The system is written in Go and extends the latest version of the Manatee system
implemented in Go. The Manatee system is also written in C++, but the Go version
provides faster processing of corpus queries and it is intended to use only the Go version
in the future. [23]

4.1 Server

Server is a REST service [24] communicating over the HTTP protocol with clients. It
exposes an interface that provides an access to the corpus parts located on the computer,
on which the server application is running. The interface offers the following operations:

• get information about corpora – returns total size of the specified corpora.

• create a virtual concordance – accepts a request containing names of corpus parts,
query, and concordance name. The server computes the virtual concordance for
the queries from each corpus part. The created concordance is stored with the
specified name on a server. The response is the size of the created concordance.

• get a concordance page – a request contains a concordance name, page number,
page size, and KWIC format. The server loads the requested concordance from a
local storage and computes the requested page. The page has form of KWIC lines
with the specified KWIC format. The result is a list of the computed KWIC lines.

• compute the frequency distribution – the frequency distribution is computed on a
concordance specified by its name and with criteria defined in a client’s request.
The server returns results of the frequency distribution. The results are lexico-
graphically sorted by the evaluated criteria.
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• sort a concordance – a client defines a name of concordance to be sorted and cri-
teria of the concordance sort operation. The appropriate concordance is loaded
and sorted by the results of the criteria evaluation, referred to as sort data. The
sorted concordance and the sort data are divided into segments of the same size
and stored. Each segment contains the same amount of items of the sorted con-
cordance as the amount of items of the related sort data. An index of segments is
built to enable a random access to the stored segments. The server’s response to
the request is the number of segments and a sort index. The sort index is created
from the sort data and is usually built from the first characters of the sort data.

• get a segment of a sorted concordance – a client sends a request with a segment
number, concordance name, and KWIC format. The server loads the specified
segment of the sorted concordance, computes the KWIC lines with the specified
format, and returns the computed KWIC lines and the sort data of the requested
segment.

4.2 Client

Client handles the distributed computation of a concordance, the frequency distribu-
tion, retrieving of a specified concordance page, and the concordance sort operation
and retrieving of a specified page of the sorted concordance. All operations can be ex-
ecuted only when the client knows locations of the parts of a divided corpus. They are
defined in a configuration file.

The configuration file defines locations of parts of a corpus. The file consists of blocks
that start with a corpus name followed by list of servers with names of the corpus parts
located on each server. The servers are described by their URLs and port numbers.
The corpus parts on the server should have names with the same prefix and subse-
quent suffix numbers, so the names can be expressed by the common prefix and range
of the suffix numbers. For example, the corpora names bnc-part1, bnc-part2, and
bnc-part3 can be described with the prefix bnc-part and range from 1 to 3.

It is expected that the suffix numbers denote the order of parts, and the list of servers
is sorted by the order of parts. It means that the first part of a divided corpus is located
on the first listed server and other parts located on the same server have greater suffix
numbers.

4.2.1 Workflow of Receiving a Concordance Page

The client sends a request to create a virtual concordance to all servers containing any
part of a specified corpus. The servers return sizes of their concordances. The client
determines which concordance or concordances contain results of the requested page,
and asks for the relevant pages. The pages are joined together to one page and presented
to a user.
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4.2.2 Workflow of the Frequency Distribution

The distributed computation of the frequency distribution has relatively easy work-
flow. First, all servers containing any part of a specified corpus are requested to create
a concordance. Then, the servers are asked to perform the frequency distribution. They
produce lists of pairs of the evaluated criteria as a key and number of the key’s oc-
currences (frequency) as a value. The keys of the lists are lexicographically sorted. The
client merges the entries of the lists with the same key and sums the frequencies. The
merged results are sorted by the frequencies and displayed to a user.

4.2.3 Workflow of the Concordance Sort Operation and Retrieving of a Specified
Page

The concordance sort operation and retrieval of a specified page is the most complex
operation that is present in the implemented system. The workflow begins with the
same steps as the workflow of the frequency distribution: contact all servers that have
any part of a specified corpus, send requests to create the virtual concordances and
execute the operation (sort a concordance).

Results of the sort a concordance are sort data, sorted concordance, and sort index.
The client merges the sort data and computes which items of the sort data correspond
to the specified page requested by a user. The items are used to determine list of servers
that have the concordances involved in computation of the specified page. These servers
are asked to compute KWIC lines that will be used to construct the requested page. The
computed KWIC lines are returned together with the related sort data. The returned
sort data are merged in such way that the results are lexicographically sorted. The re-
turned KWIC lines are merged in the order denoted by the merged sort data and the
constructed page is presented to a user.

Merge of the sort data can be optimized to significantly reduce amount of the merged
data. The optimization is briefly described in the section 3.2.1. It is easy to optimize
retrieval of the first page, because the merge phase can merge all sort data from the
beginnings and proceed with the merge only until the the number of merged items
is lower than the size of the first page. Retrieval of the second page is similar, but it
merges two times more data than the retrieval of the first page, or just the same amount
of data when the second page is called as a retrieval of the next page of the first page. It
is easy to compute the next or previous pages of any page when the client had already
computed the page that precedes or follows the requested page. The problem is jumping
to a random page.

The jumping to a random page is similar to loading a page by merging the sort data
from the beginnings. It is optimized by using the sort index, which is computed from
the sort data. The sort index enables to reduce amount of the merged data when the
random page is requested.

The sort indices from the servers can be merged together to get a global sort index.
The global sort index can be used to find a key that has its first occurence on the re-
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quested page, or if such key does not exists, a key that is just present on the page. The
sort indices of the servers are searched for the selected key which can result in one of
the following cases: 1. an index contains the key; 2. an index does not contain the key
but contains greater keys; 3. all keys of the sort index are lower than the selected key.
If an index contains the key, then the first segment containing the key is loaded. If the
sort index does not contain the key but contains greater keys, the first segment with the
first greater key, referred to as greater segment, is loaded. If all keys of the sort index are
lower than the selected key, then the last segment of a sorted concordance, also referred
to as lower segment, is loaded.

Iterators

Data of segments and merging of the data are managed by iterators. The loaded seg-
ments are iterated by segment iterators. The items of loaded segments are merged by
line iterators that use the segment iterators to access the segments. The line iterators are
used by a page iterator to construct a requested page.

Segment Iterator

The items of segments are accessed via segment iterators. The iterators are initialized
with the loaded segment. The current value of an segment iterator is set to the first item
with the selected key, or if a greater segment was given, it is set to the first item with
the selected greater key, or if a lower segment was given, the current value is set to the
last item. The current value of the iterator is a pair of the KWIC line and sort data that
correspond to the current item of the segment.

Segment iterator provides methods to load the next and previous items of the seg-
ment. The iterator handles loading of the next and previous segments when it is neces-
sary.

Line Iterators

The segment iterators are used by line forward iterators and line backward iterators.
Line iterators group together the segment iterators and merges the sort results to calcu-
late the next or previous line.

The line forward iterator groups the segment iterators with the segments contain-
ing the selected key and with the greater segments. The selected segment iterators are
inserted into a min-heap that arranges the segment iterators by their current values of
the sort data. The line forward iterator uses the top item of the min-heap as its current
value. The iterator provides next line method. It calls the method of the top segment
iterator of the min-heap to load the next item, and then fixes the heap.

The line backward iterator is similar. It groups the segments iterators with the seg-
ments containing the selected key and with the lower segments, and puts them into
a max-heap. The line iterator uses the top item of the max-heap as its current value.
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The iterator provides previous line method, which calls the method of the top segment
iterator of the max-heap to load the previous item, and then fixes the heap.

Page Iterator

Page iterator is an iterator of pages of a sorted concordance. The initialization initalizes
the page iterator to a specified page. It uses the global sort index to find the key of the
specified page as it was described. The position of the selected key in the first page
containing the key is computed and the line iterators are initialzied to the computed
position. First, the page iterator uses the line backward iterator to get lines from the
computed position to the beginning of the first page with the selected key. Then, the
page iterator uses the line forward iterator to get lines from the computed position to
the end of the first page with the selected key. After the first page with the selected key
is computed, the page iterator uses the line forward iterator to load the next pages until
the requested page is loaded.

The iterator provides methods to load the next page, the previous page, and to get
the current page. The current page is list of the KWIC lines that correspond to the page
of the sorted concordance.

4.3 Format of the Transmitted Data

Format of the transmitted data affects the size of the transmitted data, and therefore,
the time of the transmission is affected. The performance of data transmission is also
affected by the time to encode and decode the data.

Requests to the server uses the JSON1 format, which is a human-readable and lan-
guage independent data format derived from JavaScript [3]. JSON is also used as format
of the responses that do not contain large amount of data, e.g. create a concordance re-
turns only the size of the created concordance.

It it expected that the frequency distribution can produce huge amounts of data, so
the encoding of the data can significantly affect the performance of the data transmis-
sion. Besides JSON, there are multiple other formats that can be used to transmit data:

• Protocol Buffer is Google’s language-independent data serialization. The serial-
ized information must be first defined as a protocol buffer message in a sepa-
rate file. The messages are compiled with the compiler provided by the Protocol
Buffer. The compiler generates necessary code written in a selected langauge. [11]

• Gogoproto is an extension of the protocol buffer for Go. It provides additional
features targeted to the Go language such as fast marshalling and unmarshalling,
more cononical Go structures, or generation of tests and benchmarks. Fast mar-
shalling and unmarshalling avoid using of reflection by generating explicit meth-
ods for the serialization and deserialization. [22]

1. JavaScript Object Notation
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• Gob is a Golang specific data serialization. It does not require definition of an in-
terface or separate compilation of a message. The serialization creates streams
that are self-describing. Its design is heavily influenced by Google’s Protocol
Buffer, but some features are deliberately missing to keep the implementation
simple. Gob has expensive compilation of a data type, so it is recommended to
use a single Encoder multiple times. [19]

4.3.1 Benchmark of the Data Transmission with Different Formats

The benchmark compares the described formats used to transmit data: JSON, Gob, Pro-
tocol Buffer, and Gogoproto. Gob is evaluated in 2 variants, denoted as Gob* and Gob**,
to measure how expensive is a compilation of a data type. Gob* creates a new instance
of Encoder and Decoder each time a data type is encoded and decoded – each encoding
requires compilation of the data type. Gob** uses one shared instance of Encoder and
Decoder. Serialization with Gogoproto uses fast marshalling and unmarshalling, cast-
ing types to match the Manatee’s type system, and non-nullable feature specifying that
a field of the Protocol Buffer messages must be always set – cannot have the null value.

The benchmark measures performance of the serialization and deserialization, and
size of the encoded data. The input dataset consists of the results of the frequency dis-
tribution and the concordance sort operation (the sort data and KWIC lines). The KWIC
lines have the KWIC format that shows at most 40 characters as the left context and at
most 40 characters as the right context, the KWIC, and the beginnings and ends of sen-
tences and paragraphs. The results of the concordance sort operation are divided into
chunks of 50 elements because the server also divides the results into chunks.

The frequency distribution and the concordance sort operation are computed with
the criteria word 1>0 and word/i 1>0∼3>0, respectively. They are computed from
various concordances from the BNC corpus. Encoding of such results are, almost in all
cases, too fast (below 1 second), so the benchmark measures repeated encoding of the
whole input.

The measured results are presented in Appendix F. According to the results, the best
format is Gogoproto. Gob* has always worse performance than Gob**. The difference
between them is more significant when the size of data is smaller. Gob** achieves the
smallest size of the encoded data (when the data type is already compiled). JSON has
the worst results almost in all cases – except the case when small amout of data are se-
rialized (encoded as hundreds of bytes). Moreover, the JSON format has approximately
2–3 times bigger size of the encoded data.

Gogoproto serializes the data with the same compression ratio as Protocol Buffer,
but Gogoproto has better performance. It is caused by the features of the fast mar-
shalling and unmarshalling, and by using additional features such as type casting and
non-nullable fields, which makes a structure representing a protocol buffer message
identical to a structure representing an application’s data. It is much easier and faster to
convert one structure to another, when the structures are identical.

Table 4.1 shows the results of the benchmark as average ratios to Gogoproto. The
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sizes of the encoded data by Gob** were measured after the data types were already
compiled. Because of that, they are denoted with ***. The difference between streams
with and without the compiled data type is 86 B for the data type of results of the
frequency distribution, and 309 B for the data type of results of the concordance sort
operation.

Based on the results of this benchmark, the implementation uses Gogoproto to seri-
alize and deserialize results of the frequency distribution, segments of the results of sort
operation, and a concordance page.

Format
Transmission of the
frequency distribu-
tion data

Transmission of the segment containg
the sort data and LWIC lines

Average
ratio of
the time

Average
ratio of
the size
of en-
coded
data

Average
ratio of
the time

Average
ratio
of the
average
size of
encoded
data

Average
ratio of
the min-
imum
size of
encoded
data

Average
ratio of
the max-
imum
size of
encoded
data

JSON 9.126 3.119 4.383 1.873 1.878 1.934
Gob* 6.676 1.062 2.786 1.023 1.063 1.002
Gob** 3.046 ***0.925 1.948 ***0.982 ***0.983 ***0.975
Protocol
Buffer

2.465 1 1.483 1 1 1

Table 4.1: Results of the benchmark of the data transmission with different formats. The
results are expressed as average ratios to Gogoproto.

4.4 Future Development

The implemented system provides methods to create a virtual concordances, get a con-
cordance page, sort a concordance, get a page of a sorted concordance, and compute
the frequency distribution. Some features are missing such as selection of collocation
candidates or computation of histogram data. Implementation of the missing features
should be flawless, because the absent functionality is simplier or not more complex
than the implemented concordance sort operation and retrieval of a page of a sorted
concordance.
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Chapter 5

Evaluation

The evaluation of the implemented system is executed on the Nymfe cluster, the Aurora
server, and the Arachne server. The Nymfe cluster consists of the Nymfe computers –
computers in the Computer lab of Faculty of Informatics at Masaryk University. The lab
has more than 100 computers and they are available to everybody with the access to the
faculty network or to the Computer lab. It is not possible to get an exclusive access to
the computers and the evaluation can be affected by additional processes running on
the computers.

The implementation is evaluated on the enTenTen 2012 corpus. It has more than 11
billions of words and it is from the family of TenTen corpora – corpora with size of 10
billion words. They were created by web crawling and additional postprocessing, e.g.
to remove duplications. [8]

The corpus is divided into 130 parts that are stored on the first 65 Nymfe computers:
Nymfe01–Nymfe65. Each of the 65 Nymfe computers holds 2 subsequent parts. The
corpus divided into 130 parts is also referred to as 130 parts corpus.

The Nymfe computers provide very similar environment. All have the GNU/Linux
operating system, 4 cores processors, 16 GB of RAM, but they have different processors.
Table 5.1 lists the computers and their processors of the Nymfe cluster.

Clients executing tasks on the Nymfe cluster were executed on the Aurora server.
The server is connected to the network of Faculty of Informatics and it has 16 GB of
RAM and 8 cores Intel R� Xeon R� CPU X5355, 2.66GHz.

Other programs and evaluations were executed on the Arachne server. The server is
in the network of Masaryk University. The Arachne server uses RAID 6, and has 32 GB
of RAM and 8 cores Intel R� Xeon R� CPU E5-2680 v3, 2.50GHz.

Computers Processor

Nymfe01–Nymfe22 Intel R� CoreTM i5-4590 CPU, 3.30GHz
Nymfe23–Nymfe74 Intel R� CoreTM i5-3470 CPU, 3.20GHz
Nymfe75–Nymfe86 Intel R� CoreTM i5-3330 CPU, 3.00GHz
Nymfe87–Nymfe105 Intel R� CoreTM i5-4690 CPU, 3.50GHz

Table 5.1: Computers of the Nymfe cluster and their processors.
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5.1 Comparison with the MapReduce Framework

The frequency distribution is described also as a MapReduce model in the section 3.2.1.
The map phase uses Manatee to compute the frequency distribution and passes the
results to the reduce phase. The reduce phase merges, and then sorts the results. The
model can be implemented with the Glow framework modified to locate corpus parts
in a cluster of computers. The modification is described in the section 3.2.3.

The performance of the frequency distribution implemented with the Glow frame-
work is compared with the performance of the implemented system. The evaluation
was executed in the Nymfe cluster. The Glow agents run on the Nymfe1–Nymfe65
computers and the Glow master server run on Nymfe66. The client was executed on
the Aurora server. The frequency distribution was evaluted with the queries listed in
Table 5.2 and criterion word 1>0.

Table 5.3 shows the performance of frequency distribution implemented with the
Glow framework and in the implemented system. The implemented system has better
performance when the queries has rather small number of results and the Glow frame-
work is more powerful to process queries with quite extreme huge number of results.
The bottleneck of the implemented system is merging and sorting of the results on a
client’s computer, but it is much simplier as executing the reduce phase on multiple
computers.

The evaluation of the application using the Glow framework was quite complicated
as Glow does not provide error handling or fault tolerance. The operation sometimes
produced unexpected results and the cluster of the Glow agents seemed to be unstable.

Query Number of results of the
frequency distribution

Number of occurences in
the corpus

[word="Gauss"] 497 2,132
[word="recurrence"] 1,580 28,927
[word="enjoyment"] 48,41 157,287
[word="test"] 33,100 1,625,427
[word="said"] 208,676 10,842,497
[word="a"] 1,700,427 241,926,311
[word="the"] 3,716,817 547,226,436

Table 5.2: Queries used in the evaluations of the implemented system and sizes of the
results from the enTenTen 2012 corpus.

5.2 Comparison with the Original System

The comparision of the implemented system with the original system contains perfor-
mance evaluation of the frequency distribution, the concordance sort operation and re-
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Query Time of the frequency dis-
tribution by Glow

Time of the frequency dis-
tribution by the imple-
mented system

[word="Gauss"] 2.168 1.760
[word="recurrence"] 2.409 2.260
[word="enjoyment"] 2.492 2.325
[word="test"] 4.210 3.797
[word="said"] 5.194 5.363
[word="a"] 10.851 16.190
[word="the"] 15.594 29.790

Table 5.3: Performance of the frequency distribution by the Glow framework and the
implemented system.

trieval of the first page of a sorted concordance, and computation of a concordance and
retrieval of the first page.

All operations are evaluated on the 130 parts corpus. The new system is evaluated in
the Nymfe cluster (distributed environment), and on a single computer. The evaluation
on a single computer uses a single server application and the enTenTen 2012 corpus di-
vided into 13 parts, also referred to as 13 parts corpus. The original system is evaluated
on the enTenTen 2012 corpus.

5.2.1 Computation of a Concordance

Manatee supports an asynchronous computation of a concordance. It is used by the
Bonito web interface, which divides results of concordances into pages. The advantage
is that a user can see the first page while the rest of the concordance is still being com-
puted as a background task. However, many operations with a concordance processes
the whole concordance, so a user must wait until the concordance finishes its compu-
tation before such operation is executed. The implemented system does not use the
asynchronous evaluation and the first page of a concordance is obtained only after all
servers had already computed the concordances.

The computation of a concordance is compared between the implemented system
running in the Nymfe cluster, the implemented system running on a single computer,
and the original system with a synchronous and asynchronous computation of a con-
cordance.

The first pages of the evaluated concordances are obtained with the default values
of the page size (20 lines) and format of the KWIC lines (40 characters before and 40
characters after the KWIC; show the word attribute, and the beginnings and ends of
paragraphs; the empty g structure1; and reference to a document number).

1. Empty structure g denotes a glue (no space separation) between words, <https://www.

sketchengine.co.uk/preparing-a-text-corpus-for-the-sketch-engine-overview/>
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Query Concord-

ance size

Original

s. – as. [s]

Original

s. – syn.

[s]

Imple-

mented s.

– Nymfe

cluster [s]

Imple-

mented s.

– single

comp. [s]

[word="test.*ing"] 721,212 12.280 14.449 2.667 30.411

[word="work.*ing"] 3,696,606 14.627 20.045 0.997 37.194

[word="confus.*"] 702,436 14.887 18.244 0.295 34.893

[word="(?i)confus.*"] 731,452 25.440 34.512 0.765 43.639

[word=".*ing"] 371,767,766 240.000 626.947 4.183 241.772

[tag="JJ"]

[lemma="plan"]

553,724 3.183 18.214 1.330 15.743

[lemma lc="good"]

[lc="plan"]

20,804 6.185 6.274 0.464 18.945

"some" [tag="NN"] 5,107,984 3.280 36.141 1.462 22.728

[lc=".*ing" &

tag!="VVG"]

141,174,215 61.750 229.081 5.846 281.317

[tag="DT"]

[lc=".*ly"]

[lc=".*ing"]

[word="[A-Z].*"]

54,957 334.002 more than

3600

32.889 more than

3600

[lc=".*ing" &

tag="VVG"]

231,346,778 61.100 242.514 5.013 222.768

[tag="DT"]

[lc=".*ly"]

[lc=".*ing"]

[word="[A-Z].*" &

tag!="P.*"]

29,053 344.571 more than

3600

35.443 more than

3600

Table 5.4: Performance of creating and retrieving the first page of a concordance com-
pared between the implemented and original system. Original s. – as. denotes the origi-
nal system with asynchronous evaluation. Original s. – syn. denotes the original system
with synchronous evaluation. Implemented s. – Nymfe cluster denotes the original sys-
tem evaluated in the Nymfe cluster. Implemented s. – single comp. denotes the original
system evaluated on a single computer.

Computation of a concordance is evaluated with several queries. The queries are
different as the queries used in other evaluations. They cover searching for regular ex-
pressions, and searching based on multiple attributes. Table 5.4 shows results of the
evaluation and size of the used concordances.

The evaluation shows that the implemented system using a cluster of computers is
much faster than the original system. It is faster than the both variants of the original
system: synchronous and also asynchronous evaluation. The speedup is from 2.39 to
69.2.

The implemented system evaluated on a single computer with the 13 parts corpus is
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always slower than the asynchronous evalation of the original system. It is faster than
the synchronous evaluation for some queries, but most of the queries are evaluated
slower even that the evaluation used a virtual concordance with 13 corpora. The issue
can be the configuration of server’s RAID 6, or the fact that the implemented system
uses the server with the REST interface that is stateless and therefore, it is required to
store each created concordance.

5.2.2 Frequency Distribution and the Concordance Sort Operation

Performance of the frequency distribution and the concordance sort operation are eval-
uated in the similar way as the computation of a concordance. The implemented system
is also evaluated in the Nymfe cluster on the 130 parts corpus, and on a single computer
with the 13 parts corpus. The original system is evaluated on the whole enTenTen 2012
corpus.

Result of the concordance sort operation is a sorted concordance, so the result is pre-
sented in the same way as a concordance – pages displaying the related KWIC lines. The
evaluation measured the total time of creating and sorting concordance, and obtaining
of the first page of the sorted concordance.

Table 5.5 and 5.6 show results of the evaluation of the sort and frequency distribution
respectively. The implemented system evaluated on a cluster of computers is faster than
the original system. The speedup is from 55.78 to 304.44 for the sort operation (ignoring
queries that took too long to compute), and from 27.91 to 614.45 for the frequency distri-
bution. The implemented system evaluated on a single computer is also faster than the
original system. Besides the [word="Gauss"] query, the queries are speeded up from
2.65 to 3.46 for the sort operation, and from 2.05 to 4.99.

Query Original system Implemented system
Nymfe cluster single computer

[word="Gauss"] 26.887 0.482 26.854
[word="recurrence"] 180.160 1.086 52.003
[word="enjoyment"] 410.078 1.347 123.934
[word="test"] 492.789 3.292 158.377
[word="said"] 266.687 4.513 100.772
[word="a"] more than 3600 s 23.987 more than 3600 s

[word="the"] more than 3600 s 54.728 more than 3600 s

Table 5.5: Performance of the concordance sort operation compared between the imple-
mented and original system. The measured times include creation of concordances, sort
of the concordances, and retrieving of the first pages of the sorted concordances.

38



5. EVALUATION

Query Original system Implemented system
Nymfe cluster single computer

[word="Gauss"] 17.006 0.357 12.795
[word="recurrence"] 159.315 0.328 31.899
[word="enjoyment"] 361.910 0.589 101.561
[word="test"] 482.941 3.667 138.392
[word="said"] 147.496 5.285 67.245
[word="a"] 576.388 15.415 136.895
[word="the"] 1273.009 28.858 621.957

Table 5.6: Performance of the frequency distribution compared between the imple-
mented and original system.

5.2.3 Scalability

Amount of Data in a Cluster

Distributed operations executed on a cluster of computers are performed in parallel.
However, the results are merged on a single computer which can be a bottleneck of
the scalability as only one computer processes all the data and communicates with all
servers.

The following comparison shows how the scalability is affected by the amount of
data and number of servers in a cluster. The comparison evaluates the scalability of the
frequency distribution, concordance sort operation and retrieving of the first page of a
sorted concordance, and computation of a concordance and obtaining of the first page
of the concordance. The operations are evaluated on the first 10, 20, 30, 40, 50, 60, and
70 servers of the Nymfe cluster. The first 10 computers of the Nymfe cluster have the
first 20 parts of the 130 parts corpus. Each computer has 2 parts. The first 20 parts were
copied to the next 10 computers. It means that the 20 servers produce exactly 2 times
more data than the 10 servers. The first 20 parts were also copied to the other servers in
the same way, so the 70 servers produce exactly 7 times more data than the 10 servers,
and the 60 servers produce exactly 2 times more data than the 30 servers.

Table 5.7, 5.8, and 5.9 show the performances of the concordance sort operation and
retrieving of the first page of a sorted concordance, frequency distribution, and compu-
tation of a concordance and obtaining of the first page of the concordance, respectively.
The measured times are affected by other users and their processes that can consume
hardware resouces, because the Nymfe cluster is not dedicated and other users could
run their processes during the evaluation.

The frequency distribution and the concordance sort operation involve communi-
cation with the servers and processing of the data produced by the servers. Therefore,
larger amount of data in a cluster results in more data to be received and processed by
a client. The most of the results are inconclusive which is probably caused by the fact
that the servers were not dedicated. For example, the frequency distribution evaluated
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with the query [word="Gauss"] and the data from the 60 servers is slowed down 3.36
times compared to the evaluation with the data from only the 50 servers. On the other
hand, the frequency distribution evaluated with the query [word="said"] and the
data from the 60 servers is speeded-up by 1.05 times compared to the evaluation with
the data from only the 50 servers. The results of the concordance sort operation are also
inconsistent.

The evaluation of the computation of a concordance and obtaining of the first page of
the concordance involves mostly communication with the servers because the retrieval
of the first page of the concordance usually requires only one request to the first server.
The computation of concordances on more servers should not affect the performance,
because the computation runs in parallel and is independent. If a larger number of com-
puters in a cluster affects the performance of the computation of a concordance, then the
performance is mainly affected by the increased number of communication channels.
The evaluation of the query [word="said"] shows that the increased number of com-
munication channels does not affect the performance because the performance of the
evaluation with the data from the 10 servers is similar to the performance with the data
from the 40, 50, 60, and 70 servers, but the evaluation of the query [word="Gauss"]

shows the opposite – the performance is worse as the number of servers is increased.
The results of the computation of a concordance are also inconsistent.

Despite the fact that the servers were not dedicated, the measured data show that the
performance of the implemented system is affected by the amount of data in a cluster
as expected but the impact is not significant.

Query
Number of servers
10 20 30 40 50 60 70

[word="Gauss"] 0.293 0.570 0.828 0.813 1.020 3.239 4.089
[word="recurrence"] 0.652 0.644 0.750 0.869 1.073 1.702 2.177
[word="enjoyment"] 0.927 0.938 0.947 0.971 1.372 1.297 1.637
[word="test"] 2.105 1.929 2.054 2.058 2.657 2.366 2.483
[word="said"] 2.546 2.300 2.843 2.988 3.223 3.060 3.131
[word="a"] 22.841 23.263 23.772 24.049 24.056 26.086 30.881
[word="the"] 51.606 52.394 52.795 54.826 53.282 57.549 55.280

Table 5.7: Scalability of the distributed concordance sort operation including creation
of a concordance, sort of the concordance, and retrieving of the first page of the sorted
concordance.

Amount of Data on a Computer

The minimum size of a cluster is given by the maximum amount of data that can be
stored on a single computer of the cluster. The more data on a server result in more
disk operations and more usage of a CPU. The evaluations of the amount of data on
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Query Number of servers
10 20 30 40 50 60 70

[word="Gauss"] 0.219 0.256 0.341 0.371 0.433 1.457 1.777
[word="recurrence"] 0.196 0.228 0.253 0.226 0.407 0.670 0.618
[word="enjoyment"] 0.425 0.416 0.495 0.550 0.466 0.596 0.651
[word="test"] 1.597 1.541 1.654 1.694 1.679 1.880 2.278
[word="said"] 2.122 1.891 2.286 2.595 2.684 2.555 2.642
[word="a"] 8.197 8.500 10.827 10.396 11.288 11.969 12.843
[word="the"] 12.905 14.366 16.208 17.841 19.458 21.148 22.605

Table 5.8: Scalability of the distributed frequency distribution.

Query Number of servers
10 20 30 40 50 60 70

[word="Gauss"] 0.115 0.111 0.172 0.200 0.260 0.579 0.940
[word="recurrence"] 0.181 0.115 0.174 0.236 0.219 0.218 0.293
[word="enjoyment"] 0.153 0.122 0.122 0.168 0.208 0.130 0.216
[word="test"] 0.143 0.212 0.163 0.147 0.133 0.177 0.226
[word="said"] 0.226 0.168 0.353 0.455 0.248 0.174 0.166
[word="a"] 0.911 0.859 1.386 0.995 1.096 1.049 1.050
[word="the"] 1.833 1.921 2.240 2.330 2.284 2.358 2.284

Table 5.9: Scalability of the distributed computation of a concordance and retrieval of
the first page of the concordance.

a computer show how the performance is affected by storing more data on a single
computer, and storing data in a smaller and bigger cluster.

The evaluation of storing more data on a single computer compares the performance
of creating a virtual concordance containing all words from given corpora. The evalua-
tion was executed on the Arachne server. The evaluation uses only the data of the first
part of the 130 parts corpus, but the part is copied multiple times to see how the per-
formance is affected when operations on a single computer process exactly 2, 3, 4, and
5 times more data.

The results are presented in Table 5.10. The operation is slowed down by aproxi-
matelly 1.05 times when 2 corpora are used instead of 1 corpus. The computation with 3
corpora is slower by aproximatelly 1.26 times compared to the computation with 1 cor-
pus. 4 corpora slowed down the operation by approximatelly 2.01 times, and 5 corpora
slowed down the operation by more than 10 times. The best scalability of the compu-
tation of the virtual concordance containing all words from given corpora is achieved
with 3 corpora.

The second evaluation compares two clusters with different sizes. The smaller clus-
ter consists of 10 computers (Nymfe01–Nymfe10) and the bigger cluster consists of 20
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computers (Nymfe01–Nymfe20). Both clusters provide the data of the first 20 parts of
the 130 parts corpus. The bigger cluster has 1 part of the corpus on each computer. The
smaller cluster is evaluated in 2 variants. The first variant uses the first 20 parts of the
130 parts corpus – each computer has 2 parts. The second variant uses merged parts.
The merged parts have the same amount of data but instead of having 2 parts on each
computer, there is only 1 merged part on each computer. The first variant uses paral-
lelism to handle more data on a single computer and the second variant uses the same
computations as the bigger cluster but the amount of data on a computer is larger.

The evaluation shows performance of the frequency distribution, concordance sort
operation and retrieving of the first page of the sorted concordance, and creating of a
concordance and retrieval of the first page of the concordance. The queries with rather
larger number of results are evaluated faster when they are evaluated on the bigger clus-
ter. The performance is the worst when the queries are evaluated on the smaller cluster
with the merged parts. Most of the queries that are evaluated under 1 s have similar
performance regardeless of the cluster size or number of the corpus parts on comput-
ers. It is probably caused by the overhead of network communication that outweights
the evaluation of operations. The results are presented in Table 5.11, 5.12, and 5.13.

Number of corpora Time to create a virtual
concordance containing all
words [s]

Total size of a concordance

1 35.359 100,174,007
2 37.386 200,348,014
3 44.520 300,522,021
4 71.250 400,696,028
5 506.260 500,870,035

Table 5.10: Evaluation of the performance affected by more data on a server.

Query
10 servers

20 servers
Each server has 2
parts

Each server has 1
merged part

[word="Gauss"] 0.168 0.143 0.187
[word="recurrence"] 0.168 0.170 0.444
[word="enjoyment"] 0.464 0.458 0.449
[word="test"] 1.683 1.322 2.292
[word="said"] 2.065 1.685 1.508
[word="a"] 8.147 10.967 7.737
[word="the"] 13.206 18.862 12.149

Table 5.11: Evaluation of the bigger and smaller cluster comparing the sort operation.
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Query
10 servers

20 servers
Each server has 2
parts

Each server has 1
merged part

[word="Gauss"] 0.265 0.258 0.178
[word="recurrence"] 0.564 0.609 0.667
[word="enjoyment"] 0.897 0.963 1.043
[word="test"] 1.828 1.844 1.706
[word="said"] 2.508 2.519 2.022
[word="a"] 23.946 35.194 20.214
[word="the"] 53.313 78.451 43.915

Table 5.12: Evaluation of the bigger and smaller cluster comparing the frequency distri-
bution.

Query
10 servers

20 servers
Each server has 2
parts

Each server has 1
merged part

[word="Gauss"] 0.189 0.298 0.137
[word="recurrence"] 0.139 0.105 0.104
[word="enjoyment"] 0.148 0.083 0.080
[word="test"] 0.135 0.080 0.070
[word="said"] 0.139 0.176 0.101
[word="a"] 1.026 1.333 0.788
[word="the"] 2.221 2.859 1.566

Table 5.13: Evaluation of the bigger and smaller cluster comparing the creating and
retrieving of the first page of a concordance.

43



Chapter 6

Conclusions

This thesis presents parallel processing of the selected time-consuming operations of
the Manatee system with large text corpora. The implemented system is much faster
than the original system, which solves problems with the time-consuming operations
that create unpleasant user experience and consume hardware resources.

The implemented system has the client/server architecture and implements the fre-
quency distribution, concordance sort operation and retrieving of a page of the sorted
concordance, and computation of a concordance and retrieving of the concordance page.
Some features of the original system are missing but the missing functionality can be
easily implemented because it is simplier or not more complex than the implemented
concordance sort operation and retrieval of a page of a sorted concordance.

Evaluation of the system includes comparison with the original system and with an
application implementing the MapReduce model of the frequency distribution and us-
ing the Glow framework. The Glow framework is an open-source MapReduce system.
The comparison with the original system prooves that the parallelization speeds up the
operations.

The comparison with the MapReduce framework shows that the MapReduce envi-
ronment brings some overhead that slows down operations that do not produce large
amount of results, but when an operation produce large amount of data, then the MapRe-
duce approach has better performance than the implemented system. It is caused by
the merge phase of the implemented system that is executed only on a single computer
which is a bottleneck of the system.

Scalability of the implemented system is evaluated on a single computer and also on
a cluster of computers. On a single computer, the system scales with a virtual concor-
dance processing a corpus divided into parts. The number of parts should be at most
equal to the number of processors of the computer. Evaluation on the Arachne server
indicates that a virtual concordance scale for corpora that have at most 400 million of
words.

The evaluation of the scalability of a cluster of computers shows that a bigger cluster
with smaller amount of data on a computer achieve better performance than a smaller
cluster with larger amount of data on a computer. The scalability is also evaluated with
increasing number of servers and amount of data in a cluster. The evaluation shows
that the system is affected by the amount of data in a cluster but it does not cause a
significant slow down.
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The implemented system, just like every distributed system, must specify format of
transmitted data. Considered formats were JSON, Gob, Protocol Buffer, and Gogoproto.
The formats are compared in a benchmark and the Gogoproto format was selected as
the format with the best performance.

The thesis also opens a discussion if the Manatee’s compression algorithm could be
enhanced. The original idea was to replace the current encoding with a different one to
get rid of the mapping from strings to integers, because the mapping can be inconsistent
on different computers of a cluster. It turned out that all selected algorithms have slower
decompression or worse compression ratio. Because of that, the mapping is preserved,
but the encoding of integers could be probably replaced to achieve better performance
with preserved or enhanced compression ratio. A short comparison evaluates the BP32
and FastPFOR compressions and both affect the performance of the concordance sort
operation positively without significant loss of the compression ratio. A future research
should be done to find an algorithm that could enhance performance and compresion
ratio of the Manate’s encoding.

The implemented system solves problems with the time-consuming operations and
will be used in the production environment as soon as the remaining functionality of
the original system will be implemented.
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[23] RÁBARA, Radoslav; RYCHLÝ, Pavel. Concurrent Processing of Text Corpus
Queries. In Ninth Workshop on Recent Advances in Slavonic Natural Language
Processing. Brno: Tribun EU, 2015. pp. 49-58, 10 p. ISBN 978-80-263-0974-1.

[24] RICHARDSON, Leonard; RUBY, Sam. RESTful web services. Sebastopol: O’Reilly
Media, Inc., 2008. ISBN 978-0-596-52926-0.
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Appendix A

All Results of the First Text Compression Benchmark

Program
name

Options Com-
pression
time [s]

Decom-
pression
time [s]

Compressed
file size
[MB]

Com-
pression
ratio

LZ4-r131 0.62 0.22 77 7.17
LZ4-r131 -9 8.86 0.22 54 10.21
LZ4 1 -9 10.06 0.23 54 10.21
Shrinker 0.69 0.27 73 7.56
LzTurbo 2 -32 3.94 0.33 41 13.60
LzTurbo 3 -32 -p1 5.35 0.54 41 13.60
lzop -9 29.66 0.57 55 10.10
eXdupe 2.09 0.58 75 7.40
lzop 0.68 0.61 79 7.05
lrzip 0.621 -5 -l 7.94 0.70 77 7.25
QuickLZ -3 9.54 0.84 61 9.05
eXdupe -x2 2.93 0.86 60 9.30
zlib-1.2.8
minigzip

9.90 0.91 48 11.63

NanoZip 4 -cf
-M1670

1.00 0.94 67 8.35

compress 5 4.17 0.98 56 9.95
GZIP -9 12.46 1.07 48 11.70
GZIP -5 5.29 1.09 49 11.42
lrzip 0.621 6 -l -p 1 8.26 1.11 77 7.25
Info-ZIP 9.74 1.23 48 11.64
GZIP -1 2.50 1.25 58 9.65
Info-ZIP -9 13.96 1.25 47 11.70
zpaq-705 -3 -m 24 24.63 1.33 43 12.96
Info-zip -1 2.64 1.37 58 9.65
lrzip 0.621 -5 75.32 1.52 35 15.79
zpaq-705 -3 5.23 1.55 48 11.52
QuickLZ 1.33 1.65 72 7.69
crush 7 131.14 1.72 44 12.75
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alba -c32768 64.92 1.82 67 8.31
crush 0 -cf 7.64 1.85 51 10.80
7-zip 108.72 2.13 34 16.22
zpaq-705 -4 -m 24

-threads
1

45.43 2.19 43 12.96

alba 70.60 2.30 72 7.68
XZ 5.1.0al-
pha

133.30 2.51 35 15.97

xwrt 32b 18.99 3.14 41 13.69
flzp 7.12 3.42 82 6.76
XZ 5.1.0al-
pha

-F lzma -
zv0

10.83 3.55 51 10.82

NanoZip -3 6.44 3.72 28 19.62
bzip2 -1 12.85 5.03 41 13.47
eXdupe -x3 9.60 5.26 40 13.89
bzip2 13.88 5.32 36 15.52
comprox -5 -m100 -

b1000 -f
224.23 5.52 35 16.05

bzip2 -9 13.73 5.59 36 15.52
comprox -5 -m100 -

b1000
67.98 5.82 35 15.86

srank 6.56 5.93 62 9.00
srank -C8 6.68 6.05 58 2.43
comprox 2 -m40

-b16
28.81 6.09 36 3.86

srank -C1 6.78 6.22 73 1.92

Table A.1: All results of the first text compression benchmark.
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Appendix B

Data and Results of The Second Text Compression Bench-

mark

Program
name

Options Com-
pression
time [s]

Decom-
pression
time [s]

Compressed
file size
[MB]

Com-
pression
ratio

LZ4-r131 -9 36.29 0.95 223.97 2.48
LZ4-r131 4.00 0.99 317.80 1.74
LzTurbo -5 -32 20.02 1.60 167.30 3.32
lzop -9 118.41 2.24 225.59 2.46
LzTurbo -4 -32 -p1 22.60 2.26 167.30 3.32
Shrinker 7.28 2.27 299.00 1.86
zlib-1.2.8
minigzip

40.21 3.69 196.00 2.83

compress -2 17.81 3.86 228.12 2.43
Tornado 0.6 -1 4.87 4.25 332.01 1.67
GZIP -5 23.47 4.49 199.37 2.79
GZIP -9 51.94 4.70 194.92 2.85
zpaq 705 -3 95.58 5.22 176.93 3.14
Info-zip -9 57.01 5.22 194.92 2.85
Info-zip 43.69 5.31 195.90 2.84
Tornado 0.6 -5 17.21 5.66 190.16 2.92
lrzip 0.621 -5 276.99 5.744 144.87 3.84

Table B.1: Results of the second text compression benchmark: compression of the word
attribute.

-6. source: <https://github.com/Cyan4973/lz4> (last commit: d86dc91)
-5. enabled multithreading
-4. single-threaded
-3. uses 2 threads
-2. Unix command
-1. multithreaded compression and single-threaded decompression
0. http://compressme.net
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Program
name

Options Com-
pression
time [s]

Decom-
pression
time [s]

Compressed
file size
[MB]

Com-
pression
ratio

LZ4-r131 5.10 1.41 346.64 2.17
LzTurbo -5 -32 17.50 1.49 179.11 4.20
LZ4-r131 -9 67.27 1.54 237.56 3.17
LzTurbo -4 -32 22.50 2.36 179.11 4.20
lzop -9 260.78 2.60 248.10 3.03
Shrinker 9.32 2.90 335.64 2.24
zlib-1.2.8
minigzip

46.79 4.56 212.08 3.55

compress -2 22.83 5.37 245.48 3.07
GZIP -9 114.98 5.48 208.61 3.60
GZIP -5 25.03 5.51 217.95 3.45
Info-zip -9 126.40 6.72 208.61 3.61
zpaq 705 -3 113.32 7.09 183.01 4.11
Info-zip 47.32 7.27 211.94 3.55
lrzip 0.621 -5 334.68 7.89 149.20 5.04

Table B.2: Results of the second text compression benchmark: compression of the lempos
attribute.
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Program
name

Options Com-
pression
time [s]

Decom-
pression
time [s]

Compressed
file size
[MB]

Com-
pression
ratio

LZ4-r131 2.39 0.73 177.63 2.49
LzTurbo 2 -32 4.41 0.79 87.79 5.04
LZ4-r131 -9 87.07 0.79 99.78 4.43
LzTurbo -4 -32 6.50 1.19 87.79 5.04
lzop -9 318.02 1.25 102.42 4.32
Shrinker 4.36 2.08 181.74 2.43
zlib-1.2.8
minigzip

35.00 2.12 83.77 5.28

GZIP -9 229.72 2.60 78.57 5.63
Info-zip 35.00 2.99 83.73 5.29
zpaq 705 -3 48.38 3.15 78.17 5.66
GZIP -5 14.80 3.19 91.39 4.84
Info-zip -9 186.70 3.85 78.57 5.63
lrzip 0.621 -5 241.71 4.15 66.75 6.63
compress -2 10.55 4.18 78.22 5.66

Table B.3: Results of the second text compression benchmark: compression of the amb-
tag attribute.

File Word
attribute

Lempos
attribute

Ambtag
attribute

Compressed text 200 MB 192 MB 95 MB
Lexicon 7.2 MB 8 MB 484 B
Index of lexicon 3 MB 2.8 MB 364 B

Table B.4: File sizes of the compressed BNC’s word, lempos, and ambtag attribute.
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Appendix C

Results of the Virtual Concordance Benchmark

Query #P
Number of parts

2 3 4 5 6 7 8 9

[word="Gauss"]
1 0.019 0.021 0.021 0.020 0.017 0.014 0.015 0.018
8 0.011 0.011 0.008 0.010 0.006 0.005 0.006 0.007

[word="recurrence"]
1 0.120 0.113 0.119 0.106 0.102 0.096 0.099 0.100
8 0.077 0.058 0.052 0.049 0.039 0.033 0.034 0.035

[word="enjoyment"]
1 0.281 0.263 0.265 0.261 0.251 0.268 0.253 0.261
8 0.150 0.111 0.095 0.080 0.064 0.058 0.047 0.061

[word="test"]
1 1.368 1.412 1.372 1.403 1.406 1.395 1.408 1.425
8 0.674 0.489 0.384 0.306 0.267 0.246 0.233 0.231

[word="said"]
1 6.423 6.487 6.486 6.457 6.441 6.491 6.394 6.465
8 3.039 2.147 1.880 1.600 1.263 1.230 1.206 1.136

[word="a"]
1 29.055 28.490 28.759 28.104 27.892 27.722 28.435 27.794
8 13.971 10.014 8.498 7.957 7.682 7.294 7.067 6.941

Table C.1: Performance of the sort operation executed with the virtual concordance com-
pared between the BNC corpus divided to various number of parts. #P denotes number
of available processors.
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Query #P
Number of parts

2 3 4 5 6 7 8 9

[word="Gauss"]
1 0.011 0.011 0.011 0.012 0.010 0.010 0.010 0.010
8 0.006 0.005 0.004 0.006 0.004 0.004 0.003 0.003

[word="recurrence"]
1 0.089 0.090 0.087 0.082 0.077 0.076 0.077 0.077
8 0.057 0.042 0.039 0.038 0.031 0.026 0.024 0.024

[word="enjoyment"]
1 0.241 0.236 0.234 0.229 0.221 0.217 0.215 0.222
8 0.139 0.101 0.090 0.070 0.053 0.049 0.038 0.043

[word="test"]
1 1.213 1.187 1.196 1.200 1.203 1.209 1.213 1.198
8 0.626 0.458 0.360 0.283 0.240 0.222 0.206 0.211

[word="said"]
1 4.862 4.925 4.903 4.900 4.877 4.921 4.941 4.943
8 2.415 1.758 1.429 1.137 0.907 0.853 0.796 0.802

[word="a"]
1 10.255 10.418 10.662 10.880 10.912 10.933 10.965 11.005
8 5.010 3.594 3.103 2.784 2.538 2.329 2.290 2.280

Table C.2: Performance of the frequency distribution executed with the virtual concor-
dance compared between the BNC corpus divided to various number of parts. #P de-
notes number of available processors.

55



Appendix D

Results of the Split Concordance Benchmark

Query #P
Number of splits

2 3 4 5 6 7 8 9

[word="Gauss"]
1 0.016 0.016 0.016 0.017 0.017 0.017 0.018 0.020
8 0.010 0.007 0.006 0.005 0.005 0.004 0.004 0.004

[word="recurrence"]
1 0.116 0.118 0.119 0.122 0.120 0.121 0.119 0.120
8 0.083 0.064 0.049 0.039 0.036 0.034 0.030 0.031

[word="enjoyment"]
1 0.268 0.269 0.276 0.275 0.273 0.279 0.281 0.271
8 0.161 0.122 0.091 0.074 0.067 0.063 0.057 0.071

[word="test"]
1 1.414 1.433 1.402 1.439 1.416 1.432 1.429 1.413
8 0.706 0.496 0.402 0.342 0.292 0.268 0.260 0.252

[word="said"]
1 6.397 6.407 6.463 6.420 6.426 6.363 6.339 6.383
8 3.302 2.435 2.038 1.753 1.520 1.407 1.300 1.281

[word="a"]
1 29.768 28.688 28.398 28.336 28.740 28.367 28.727 28.728
8 17.296 11.482 9.445 9.367 8.526 7.911 7.606 7.638

Table D.1: Performance of the sort operation executed with the split and various number
of splits. #P denotes number of available processors.
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D. RESULTS OF THE SPLIT CONCORDANCE BENCHMARK

Query #P
Number of splits

2 3 4 5 6 7 8 9

[word="Gauss"]
1 0.011 0.010 0.010 0.011 0.012 0.011 0.012 0.012
8 0.007 0.005 0.004 0.003 0.003 0.003 0.003 0.003

[word="recurrence"]
1 0.094 0.096 0.098 0.096 0.092 0.094 0.099 0.093
8 0.067 0.055 0.039 0.034 0.032 0.029 0.027 0.024

[word="enjoyment"]
1 0.256 0.252 0.264 0.247 0.251 0.248 0.264 0.246
8 0.149 0.109 0.082 0.069 0.063 0.055 0.051 0.066

[word="test"]
1 1.208 1.209 1.226 1.253 1.239 1.110 1.184 1.139
8 0.645 0.476 0.375 0.322 0.271 0.252 0.237 0.240

[word="said"]
1 4.925 4.837 4.876 4.826 4.930 4.965 4.972 5.024
8 2.759 2.057 1.701 1.433 1.210 1.114 0.985 0.979

[word="a"]
1 9.463 9.616 9.605 9.717 9.770 9.785 9.824 9.796
8 7.331 4.396 3.709 3.802 3.517 3.176 2.910 2.876

Table D.2: Performance of the frequency distribution executed with the split and various
number of splits. #P denotes number of available processors.
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Appendix E

Results of the Glow in Standalone Mode Benchmark

Query #P
Number of parts

2 3 4 5 6 7 8 9

[word="Gauss"]
1 0.083 0.110 0.124 0.152 0.171 0.192 0.181 0.217
8 0.071 0.089 0.108 0.128 0.141 0.156 0.163 0.189

[word="recurrence"]
1 0.158 0.172 0.202 0.219 0.243 0.269 0.280 0.314
8 0.096 0.100 0.115 0.128 0.144 0.159 0.165 0.198

[word="enjoyment"]
1 0.298 0.324 0.351 0.362 0.377 0.405 0.436 0.458
8 0.176 0.153 0.154 0.154 0.168 0.167 0.180 0.196

[word="test"]
1 1.257 1.281 1.331 1.355 1.370 1.387 1.434 1.473
8 0.669 0.515 0.418 0.362 0.346 0.333 0.320 0.340

[word="said"]
1 5.002 5.137 5.215 5.320 5.387 5.440 5.503 5.618
8 2.442 1.812 1.483 1.228 1.008 0.963 0.918 0.921

[word="a"] 1 10.451 10.775 10.943 11.192 11.257 11.209 11.302 11.380
8 5.053 3.533 3.097 2.824 2.583 2.429 2.377 2.367

Table E.1: Performance of the frequency distribution executed with the program using
Glow compared between the BNC corpus divided to various number of parts. #P de-
notes number of available processors.
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Appendix F

Results of Benchmark of the Data Transmission with Dif-

ferent Formats

Gob is evaluated in 2 variants: Gob* and Gob**. Gob* creates a new instance of Encoder
and Decoder each time a data type is encoded and decoded. Gob** uses one shared
instance of Encoder and Decoder. The sizes of the encoded data by Gob** are denoted
with ***, because they were measured after the data types had been already compiled.

Format Average time of the
sort data transmission
[s]

Size of the encoded
data

Average Minimum Maximum

JSON 7.550 9.550 KB 3.260 KB 15.841 KB
Gob* 5.026 5.265 KB 2.032 KB 8.499 KB
Gob** 3.205 ***4.956 KB ***1.723 KB ***8.499 KB
Protocol Buffer 2.305 5.061 KB 1.755 KB 8.368 KB
Gogoproto 1.557 5.061 KB 1.755 KB 8.368 KB

Table F.1: Benchmark of the sort data transmission with the query [word="Gauss"]

and 10,000 repetitions.

Format Average time of the
sort data transmission
[s]

Size of the encoded
data

Average Minimum Maximum

JSON 6.106 15.762 KB 15.405 KB 16.872 KB
Gob* 3.669 8.873 KB 8.679 KB 9.092 KB
Gob** 2.647 ***8.564 KB ***8.370 KB ***8.783 KB
Protocol Buffer 1.895 8.667 KB 8.451 KB 8.991 KB
Gogoproto 1.259 8.667 KB 8.451 KB 8.991 KB

Table F.2: Benchmark of the sort data transmission with the query
[word="recurrence"] and 1,000 repetitions.
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F. RESULTS OF BENCHMARK OF THE DATA TRANSMISSION WITH DIFFERENT FORMATS

Format Average time of the
sort data transmission
[s]

Size of the encoded
data

Average Minimum Maximum

JSON 12.391 15.828 KB 15.056 KB 16.690 KB
Gob* 7.586 8.772 KB 8.444 KB 8.933 KB
Gob** 5.429 ***8.463 KB ***8.135 KB ***8.624 KB
Protocol Buffer 3.972 8.593 KB 8.226 KB 8.852 KB
Gogoproto 2.665 8.593 KB 8.226 KB 8.852 KB

Table F.3: Benchmark of the sort data transmission with the query
[word="enjoyment"] and 1,000 repetitions.

Format Average time of the
sort data transmission
[s]

Size of the encoded
data

Average Minimum Maximum

JSON 14.580 15.863 KB 13.401 KB 18.150 KB
Gob* 9.667 8.645 KB 7.066 KB 9.177 KB
Gob** 6.835 ***8.336 KB ***6.757 KB ***8.868 KB
Protocol Buffer 5.465 8.473 KB 6.914 KB 9.188 KB
Gogoproto 3.726 8.473 KB 6.914 KB 9.188 KB

Table F.4: Benchmark of the sort data transmission with the query [word="test"] and
100 repetitions.

Format Average time of the
sort data transmission
[s]

Size of the encoded
data

Average Minimum Maximum

JSON 2.906 16.720 KB 5.658 KB 19.670 KB
Gob* 1.867 8.685 KB 3.155 KB 9.423 KB
Gob** 1.357 ***8.376 KB ***2.846 KB ***9.114 KB
Protocol Buffer 1.172 8.592 KB 2.916 KB 9.650 KB
Gogoproto 0.795 8.592 KB 2.916 KB 9.650 KB

Table F.5: Benchmark of the sort data transmission with the query [word="said"] and
1 repetition.
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F. RESULTS OF BENCHMARK OF THE DATA TRANSMISSION WITH DIFFERENT FORMATS

Format Average time of the frequency
data transmission [s]

Size of the
encoded data

JSON 15.748 2.987 MB
Gob* 6.030 1.069 MB
Gob** 5.227 ***1.069 MB
Protocol Buffer 5.848 1.141 MB
Gogoproto 3.940 1.141 MB

Table F.6: Benchmark of the frequency distribution data transmission with the query
[word="a"] and 100 repetition.

Format Average time of the frequency
data transmission [s]

Size of the
encoded data

JSON 13.844 270.950 KB
Gob* 4.651 86.102 KB
Gob** 4.376 ***86.016 KB
Protocol Buffer 3.893 93.18 KB
Gogoproto 1.833 93.18 KB

Table F.7: Benchmark of the frequency distribution data transmission with the query
[word="said"] and 1,000 repetition.

Format Average time of the frequency
data transmission [s]

Size of the
encoded data

JSON 23.611 46.400 KB
Gob* 8.207 14.760 KB
Gob** 7.498 ***14.674 KB
Protocol Buffer 5.690 15.900 KB
Gogoproto 2.036 15.900 KB

Table F.8: Benchmark of the frequency distribution data transmission with the query
[word="test"] and 10,000 repetition.

Format Average time of the frequency
data transmission [s]

Size of the
encoded data

JSON 19.212 3.574 KB
Gob* 10.744 1.057 KB
Gob** 6.341 ***0.971 KB
Protocol Buffer 4.810 1.064 KB
Gogoproto 1.698 1.064 KB

Table F.9: Benchmark of the frequency distribution data transmission with the query
[word="enjoyment"] and 100,000 repetition.
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F. RESULTS OF BENCHMARK OF THE DATA TRANSMISSION WITH DIFFERENT FORMATS

Format Average time of the frequency
data transmission [s]

Size of the
encoded data

JSON 12.771 2.379 KB
Gob* 8.625 763 B
Gob** 4.252 ***677 B
Protocol Buffer 3.253 737 B
Gogoproto 1.243 737 B

Table F.10: Benchmark of the frequency distribution data transmission with the query
[word="recurrence"] and 100,000 repetition.

Format Average time of the frequency
data transmission [s]

Size of the
encoded data

JSON 28.706 501 B
Gob* 53.529 216 B
Gob** 10.674 ***130 B
Protocol Buffer 8.418 139 B
Gogoproto 2.864 139 B

Table F.11: Benchmark of the frequency distribution data transmission with the query
[word="Gauss"] and 1,000,000 repetition.
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Appendix G

List of Attachments

G.1 manatee-go-dist.zip

The attached zip file contains all source code of the implemented system. The client
of the implemented system is in the directory src/manatee/cmd/concdistclient

and the server in the directory src/manatee/cmd/concdistserver.
The program implementing the frequency distribution and using the modified Glow

framework can be found in the directory src/manatee/cmd/concdistglow. The
framework can be found in the directory src/github.com/chrislusf/glow.

G.1.1 Installation

• Install Go (Golang)1 – at least version 1.5 (this thesis uses go1.5.1 darwin/amd64)

• Install the dependencies of the implemented system:

go get golang.org/x/text/language

go get github.com/gogo/protobuf/proto

• Install the dependencies of the Glow framework:

go get github.com/Redundancy/go-sync

go get github.com/psilva261/timsort

go get github.com/golang/protobuf/proto

go get gopkg.in/alecthomas/kingpin.v2

• Install the programs:

go install manatee/cmd/concdistserver

go install manatee/cmd/concdistclient

go install manatee/cmd/concdistglow

• Install the modified Glow framework:

go install github.com/chrislusf/glow

1. <https://golang.org>
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G. LIST OF ATTACHMENTS

G.1.2 How to run the programs

Server

It is very simple to start the server: just run the program. The server runs on the port
8080, but the port number can be changed by the command line argument -port
PORT NUMBER.

./bin/concdistserver

Client

To start the client, a configuration file must be defined. The configuration file is de-
scribed in the section 4.2. The file contains name of a corpus followed by a list of servers
with names of the corpus parts located on the server. The corpus parts on the server are
described by their common prefix, and range of suffix numbers. For example, consider
that there are the following corpus parts on the localhost server: corpus01, corpus02,
and
corpus03. The listing G.1 shows the required configuration file of the localhost server
running on the default port (8080) and with the corpus parts located in the /tmp direc-
tory.

Listing G.1: Sample configuration file with one server

corpus
http :// l o c a l h o s t :8080 ,/tmp/corpus , 1 , 3 , 2

The number after the range of suffix numbers denotes the size of the suffix. Consider
that there is another localhost server running on the port 8090 and the /tmp/second-
server directory contains the following corpus parts: corpus004 and corpus005.
The listing G.2 shows the required configuration file of the two localhost servers.

Listing G.2: Sample configuration file with two servers

corpus
http :// l o c a l h o s t :8080 ,/tmp/corpus , 1 , 3 , 2
ht tp :// l o c a l h o s t :8090 ,/tmp/secondserver/corpus , 4 , 5 , 3

The client runs with the configuration file, concordance name, name of the required
operation, corpus name, query, and criteria (criteria can be empty or omitted when the
CONC operation is specified – create a concordance and get the first concordance page).
The following code shows examples of invoking the client:
./bin/concdistclient configFileName concordanceName SORT corpus '[word="gang"]'\

'word/i 1>0∼3>0'

./bin/concdistclient configFileName concordanceName FREQ corpus '[word="of"]' 'word 1>0'

./bin/concdistclient configFileName concordanceName CONC corpus '[word="four"]'
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G. LIST OF ATTACHMENTS

Program using the Glow framework

The program using the Glow framework implements the MapReduce model of the Fre-
quency distribution as described in the section 3.2.1. It is necessary to setup the Glow
cluster as described in [15], but the agents must have specified the command line argu-
ment --resources LIST OF CORPUS PARTS2. The program requires the query, cri-
teria, and list of corpus parts:
./bin/concdistglow -glow -glow.leader 'localhost:8930' '[word="test"]' 'word 1>0' \

corpus001 corpus002 corpus003

2. a comma separated list of the corpus parts

65


