
L.S.

prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 2, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Behaviour Analysis and Improvement of the Proposed PUF on FPGA

 Student: Bc. Filip Kodýtek

 Supervisor: prof. Ing. Róbert Lórencz, CSc.

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2016/17

Instructions

Analyze statistical parameters of the proposed ring-oscillator-based PUF. Furthermore, test the quality of the
PUF output in dependence on the temperature conditions and the change of supply voltage. Propose suitable
modifications of the PUF based on the results of the experiments that will improve the quality of its output in
case of varying physical conditions.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of computer systems

Master’s thesis

Behaviour Analysis and Improvement of

the Proposed PUF on FPGA

Bc. Filip Kodýtek

Supervisor: prof. Ing. Róbert Lórencz, CSc.

9th May 2016

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor prof.
Ing. Róbert Lórencz, CSc. for his guidance during my studies and the time he
devoted to me when I was working on this interesting topic. I would also like to
thank Ing. Jǐŕı Buček for his help with performing the experiments presented
in this work and for his helpful comments and advice. Finally, I would like
to express my deep gratitude to my family for their support throughout my
studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 9th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Filip Kodýtek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kodýtek, Filip. Behaviour Analysis and Improvement of the Proposed PUF
on FPGA. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2016.

Abstrakt

Tato práce se zabývá fyzicky neklonovatelnými funkcemi (PUF) na FPGA.
Nejprve poskytneme čtenáři literárńı rešerši týkaj́ıćı se problematiky PUF
obecně a také r̊uzné konstrukce PUF se zaměřeńım na ty, jež jsou vhodné pro
FPGA. Poté představ́ıme PUF založený na kruhových oscilátorech, navržený
v naš́ı předešlé práci, a poṕı̌seme jeho vlastnosti. Tento PUF je následně ana-
lyzován a testován v r̊uzných teplotńıch podmı́nkách a při r̊uzném napájećım
napět́ı. Na základě výsledk̊u provedených experiment̊u navrhneme vhodné
úpravy tohoto PUFu ke zvýšeńı kvality jeho výstupu.

Kĺıčová slova Fyzicky neklonovatelná funkce, FPGA, kruhový oscilátor,
bezpečnost hardwaru, identifikace zař́ızeńı, generováńı kĺıč̊u.

ix

Abstract

This thesis deals with Physical Unclonable Functions (PUFs) on FPGAs.
First, we provide a literature research concerning PUFs in general and their
various constructions with a focus on PUFs suitable for FPGAs. Then we
introduce PUF design proposed in our previous work which is based on ring
oscillators and we discuss its properties. The proposed PUF is analysed and
tested at varying temperature and voltage. Based on the results of the ex-
periments, we propose suitable modifications of the PUF design in order to
improve the quality of its output.

Keywords Physical unclonable function, FPGA, ring oscillator, hardware
security, device identification, key generation.

x

Contents

Introduction 1

Motivation and background . 1

Research goals . 2

Thesis outline . 3

1 Physical Unclonable Functions 5

1.1 Description of PUFs . 5

1.2 PUF’s properties . 7

1.3 PUF’s applications . 10

2 PUF classification and construction 15

2.1 PUF classification . 15

2.2 PUF construction . 19

3 Description and properties of the proposed PUF 33

3.1 The ring oscillator based PUF proposal 34

3.2 Properties of the proposed PUF design 41

4 Improvements to the proposed PUF 45

4.1 Gray code . 45

4.2 Placement of ROs . 47

5 Experimental results and analysis 49

5.1 Selection of suitable positions 49

5.2 Timing analysis . 51

5.3 Gray code . 52

5.4 Evaluation of the proposed PUF on Nexys 3 FPGA boards . . 53

5.5 Evaluation of randomness . 54

5.6 Evaluation of the proposed PUF with symmetric ROs 57

5.7 Influence of supply voltage . 59

xi

5.8 Influence of temperature . 65
5.9 Comparison of different methods 68

Conclusion 73

Bibliography 77

A FPGA 81

B Acronyms 85

C Contents of the enclosed CD 87

xii

List of Figures

1.1 PUF: principle of identification . 11

1.2 PUF: authentication . 12

1.3 PUF: key generation . 13

2.1 Optical PUF . 20

2.2 Coating PUF . 21

2.3 Concept of SRAM PUF . 21

2.4 SRAM PUF: cell selection . 22

2.5 Butterfly and Latch PUF . 23

2.6 TERO loop structure . 24

2.7 Electrical behaviour of TERO loops 25

2.8 TERO PUF architecture . 26

2.9 Arbiter PUF . 27

2.10 Basic ring oscillator . 28

2.11 Ring Oscillator PUF . 29

2.12 Configurable ring oscillator . 30

2.13 Extended configurable ring oscillator 31

2.14 Glitch PUF . 32

3.1 Measurement method used in the proposed ROPUF design 35

3.2 The example behaviour of positions’ stability 35

3.3 Selection of suitable bit positions for PUF 38

3.4 The design of the proposed ROPUF 39

3.5 Partial overflow of counter value 43

4.1 Partial overflow of counter value in binary and Gray code 46

4.2 Comparison of binary and Gray code 47

4.3 Placement of logic gates of ROs . 48

5.1 Frequency behaviour during warm-up of FPGA 60

5.2 Behaviour of counter values at varying voltage 61

xiii

5.3 Dependency of frequencies and their ratio on the change of voltage 62
5.4 Comparison of symmetric and asymmetric ROs at varying voltage 64
5.5 Measurement setup for measuring at elevated temperature 66
5.6 Dependency of frequencies and their ratio on temperature change . 68
5.7 Three different methods of using ROs for PUF 69
5.8 Behaviour of ϕ at varying temperature 70

A.1 Spartan-3E family architecture . 82
A.2 Digilent Basys 2 . 83

xiv

List of Tables

5.1 Statistical evaluation of bit positions 50
5.2 Statistical evaluation of various bit selections for PUF 51
5.3 Difference of measured counter values from the correct ones 52
5.4 Evaluation of various bit selections with and without Gray code . 53
5.5 Comparison of different applications of Gray code 54
5.6 Statistical evaluation of PUF outputs obtained from Nexys 3 . . . 54
5.7 The results of the tests from NIST STS 56
5.8 Statistical evaluation of bit positions for symmetric ROs 57
5.9 Evaluation of various bit positions for PUF – symmetric ROs . . . 58
5.10 Statistical evaluation of PUF outputs at varying voltage 61
5.11 Behaviour of 5-stage and 7-stage ROs at varying voltage 63
5.12 Statistical evaluation of PUF outputs at small range of voltage . . 63
5.13 Evaluation of PUF outputs at varying voltage – symmetric ROs . 65
5.14 Statistical evaluation of PUF outputs at varying temperature . . . 67
5.15 Comparison of different approaches at varying physical conditions 71

xv

Introduction

Motivation and background

Electronic devices are currently becoming an integral part of our everyday life.
Such devices (for example mobile phones, smart cards, RFIDs) can be used
to authenticate their owners and provide them with access to private areas or
their bank accounts, to store personal data, and for many other applications.
Since these devices are widespread and commonly used, they are a target for
adversaries. This fact implies a problem with security. Most of the devices
contain some secret information or key which is used to authenticate their
owners. Therefore this secret has to be stored in a secure manner so that the
potential adversary is not able to extract it from the device.

To prevent an adversary from obtaining the secret from the device, it is
necessary to consider various countermeasures against possible attacks when
designing the architecture of the device. However, designing such secure ar-
chitecture is not a trivial task. There are numerous possible attacks on the
devices that the adversary can use. From the perspective of hardware security,
the possible threats are side channel attacks such as power analysis (simple
power analysis, differential power analysis etc.), timing analysis and also fault
injection attacks. Of course, the adversary can perform other attacks than
physical attacks. One can also perform mathematical attacks (linear crypt-
analysis, differential cryptanalysis etc.) on the cipher that is used, the crypto-
graphic protocol itself, or exploit wrong implementation of the cryptographic
system.

From what has been said, it is obvious, that secure storage and usage of the
secret key is a complex task. However, for secure storage of keys we can use
Physical Unclonable Functions, which are able to hide the secret in a secure
manner. Usually the secret keys are stored in a non-volatile memory, but
that is difficult to secure and therefore it is expensive. Non-volatile memory
also tends to be vulnerable to invasive attacks, because the key is stored in
a digital form. For a high level of security, the electronic devices have to be

1

Introduction

protected by expensive circuits that are able to detect manipulation with the
device and, moreover, they need to be continually supplied with power. An
additional disadvantage can be the cost of even basic cryptographic operations
for resource-constrained platforms such as RFID chips.

These issues were one of the motivations that contributed to the deeper
interest and extended development in research of Physical Unclonable Func-
tions. Physical Unclonable Functions (abbreviated as PUFs) are increasingly
used in proposals of cryptographic protocols and security architectures. PUF
is a function based on physical properties which are unique for each device.
It exploits local mismatches and differences between physical components of
a device arising during the manufacturing process to generate unpredictable
outputs. Its concept is based on these random variations which cannot be
controlled during the manufacturing process because they result from the ef-
fects of random and uncontrollable influences. Therefore it is impossible or
extremely difficult to produce two identical devices with the same physical
properties which are used in the PUF present on these devices. It is primarily
these random variations arising during the manufacturing process that play
the main role in how the PUFs are used and which source of randomness they
benefit from.

There is a strong similarity with human biometrics, such as fingerprints,
retina and others. For example, we are able to identify any person by her
fingerprints. Using physical properties as a fingerprint of a device, we can
similarly identify the electronic devices because the physical properties are
unique for each device and also random (or unpredictable) among various
devices.

There is a wide spectrum of applications where PUFs can be used. Among
others, they can be used for device identification, authentication, anti-counter-
feiting, binding software to hardware platforms, cryptographic key generation
and they can also be integrated into cryptographic algorithms. Nowadays,
security products based on PUFs are already being announced for the mar-
ket, focusing on intellectual property protection, anti-counterfeiting and RFID
applications (Verayo, Intrinsic-ID, QuantumTrace, Invia).

Research goals

This thesis deals with Physical Unclonable Functions on field-programmable
gate arrays (FPGAs). A novel PUF design for FPGA was proposed and
implemented in our previous work [13, 14, 15] where we proposed a PUF
design based on ring oscillators (RO) suited for FPGAs which showed good
results in terms of good statistical properties, simplicity and efficiency. The
basic concept of the proposed PUF consists in different usage of ROs in order
to generate PUF’s output bits. The main idea in this proposal is to let two ROs
forming a pair run simultaneously and count the number of their oscillations

2

Thesis outline

using two counters of the same size (for example 16-bit counters). When one of
the counters overflows, the ROs are stopped and the value of the counter that
did not overflow is used for further processing. The result of the processing
is a sequence of bits that is part of the final PUF output. The whole PUF
output consists of bits obtained from multiple different RO pairs.

As mentioned before, one of the advantages of the proposed PUF design
is the fact that it is easy to implement, area efficient, and additionally it does
not require all ROs to be mutually symmetric, in contrast with the classical
approach where all ROs are mutually symmetric and the PUF output is de-
rived from the comparison of RO frequencies of various RO pairs. However,
as it is shown in experimental results in Chapter 5, when the symmetric ROs
are used in our design, it enhances stability of the proposed PUF design when
the physical conditions are varying.

This thesis builds upon our previous work and one of its goals is to intro-
duce the research area of PUFs. Various PUF constructions will be presented,
mainly focusing on PUFs suitable for FPGAs. Since the proposed PUF design
is based on ring oscillators, we will put emphasis on PUFs that use ring oscil-
lators to generate PUF outputs.

The next goal is to analyse the proposed PUF design and discuss its prop-
erties. At first, we will describe the proposed PUF design from our previous
work and introduce its main principle. Then we will discuss the advantages
and disadvantages of this design and analyse its properties.

After the analysis, we propose further improvements of the design in order
to enhance its statistical properties. We will present the results of the ex-
periments to show the behaviour of the proposed PUF and the impact of the
proposed improvements. All experiments presented in this work are targeted
mainly on Digilent Basys 2 FPGA boards (containing Xilinx Spartan3E-100
CP132), and to verify that the design can be used on other types of FPGAs
we performed additional measurements on Digilent Nexys 3 FPGA boards
(Xilinx Spartan-6). Some of the findings were already published in [16].

Thesis outline

This work is divided into five chapters. The first two chapters are focused on
literature research on the topic of Physical Unclonable Functions. Chapter 1
deals with PUFs in general. We introduce the topic of PUFs and present the
properties which PUFs should meet. This chapter also presents the reader
with applications where PUFs can be used.

The next Chapter 2 contains the literature research of existing PUF con-
structions that have already been proposed and it describes these different
PUF constructions that exploit various sources of randomness and present
their properties. This literature research is focused mainly on PUFs suitable

3

Introduction

for FPGAs and since the proposed PUF design is based on ring oscillators, we
put emphasis on PUF constructions that also use ring oscillators.

Chapter 3 presents the PUF design proposed in our previous work. We
start with description of the main idea behind this PUF proposal and then
we describe its properties and behaviour. We also analyse this PUF proposal
and this analysis is then used in the next Chapter 4 where we propose some
improvements in order to enhance the proposed PUF design and improve its
statistical properties.

Finally, Chapter 5 is devoted to experiments and measurements and present-
ing their results. All of the measurements were performed on Digilent Basys 2
FPGA boards (Xilinx Spartan3E-100 CP132) and some of the measurements
were also carried out on Digilent Nexys 3 FPGA boards (Xilinx Spartan-6).
These measurements are associated with the analysis of the properties of the
proposed PUF design and the improvements we proposed in Chapter 4. We
also analyse the influence of temperature and voltage on our PUF design and
evaluate the proposed countermeasures against varying physical conditions,
which improve stability of the PUF outputs.

4

Chapter 1

Physical Unclonable Functions

Physical Unclonable Functions are now a very popular research topic espe-
cially in hardware security. Since this thesis is focused on PUFs on FPGAs,
we introduce the reader the topic of PUFs. In this chapter we provide a de-
scription of PUFs in general and the properties we may require from them.
Finally, we will also present possible PUF’s applications.

1.1 Description of PUFs

Nowadays, we can find many scientific papers dealing with the topic of PUFs.
For this reason, we can encounter multiple definitions of PUFs. In general,
it can be said that PUF is a function which is realised within some physical
system and expresses its inherent and instance-specific features [20], thus it is
strongly similar to biometric features of humans.

The first description of a general concept of PUFs can be found in Pappu’s
dissertation thesis written in 2001 [26]. Pappu used a term POWF (Physical
One-Way Function) and defined it as a function, which is easy to compute,
but hard to invert, and the underlying physical system is difficult to clone
and simulating the physical interaction is computationally demanding. The
next used term denoting a new PUF construction was PRF (Physical Random
Function) proposed by Gassend et al. [8]. But to avoid confusion with a term
Pseudo Random Function (also abbreviated as PRF) they used the term PUF.

Term PUF is now widespread and various constructions and concepts
which share a number of properties are called PUFs. Some of these construc-
tions or concepts were proposed earlier than the term PUF was used, and
therefore they were not denoted as PUFs from the beginning. In other cases,
the proposal of some construction that could be qualified as PUF was made
in other research areas than hardware security, where this term is unknown.

As the term PUF indicates, PUF is a function that is unclonable. The
concept of PUFs is based on random variations arising during a manufacturing
process, which causes each device to possess unique physical properties. These

5

1. Physical Unclonable Functions

physical properties are, for example, circuit delay or bias of memory cells
to some certain value (0 or 1) after power-up. The variations of physical
properties arising during manufacturing process are random, since they arise
from the influence of random and uncontrollable effects.

Since PUF is a function, it should have some characteristics of functions;
given an input we should obtain the corresponding output (in this text, we will
often use term challenge instead of input and response instead of output). So
it maps any input (challenge) to its corresponding output (response), forming
challenge-response pairs (CRPs). However, it is not strictly a mathematical
function, because a PUF can produce multiple different outputs for one input
or even from several inputs it can produce one output. This behaviour may be
caused by random variations which can be caused by various physical condi-
tions [12]. A more fitting mathematical description of a PUF is a probabilistic
function, where part of the input is an uncontrollable random variable [20].

In summary, PUF is a function that gives us, for a given challenge, a
corresponding response. These responses may change in time in dependence
on physical conditions; however, the responses should be similar enough so
that we can recognize that the response we obtained belongs to the given
challenge. At the same time, we require the PUF responses to be unique
among different devices. It means that for the same challenge we obtain
different response from each device. The difference between these responses
should be sufficiently large, because based on these responses we can identify
or authenticate the devices. The uniqueness applies also to responses from
one device, but produced by a PUF for various challenges.

Both of these requirements (similarity of responses from one device and
uniqueness of responses from various devices or different challenges) imply
that we need the PUF responses to be both stable and unique. This is the
main difference compared to TRNG (True Random Number Generator). The
purpose of TRNG is to produce a sequence of bits that are random and even
if we know a large sequence of bits, we should not be able to predict the
following bits. In case of PUF, we need the PUF responses to behave like
random sequences of bits from the perspective of population (devices) so that
if we know a large number of responses from a large population of devices,
we should not be able to predict a response for a given challenge from some
unknown device. This condition also holds for various challenge-response pairs
for one device. Therefore, responses should be random from the viewpoint
of population of devices and also different challenges, but not for the same
challenge applied to one device repeatedly. In summary, even though PUF
and TRNG may have a common basis, because they both exploit physical
properties of some device, the source of randomness for PUF and TRNG is
very different. TRNGs exploit continuous real-time random behaviour of the
hardware they are implemented on, while PUFs benefit from the randomness
that occurs only once during the manufacturing process.

6

1.2. PUF’s properties

1.2 PUF’s properties

This section provides an overview of the properties that are sensible for PUFs.
Some of the presented properties are necessary and they define a PUF, while
the others are only considered nice to have properties and they are not guar-
anteed for some PUF constructions [20].

Constructibility

A necessary condition for a PUF and all of its properties is that it is con-
structible. We can hardly discuss the remaining PUF’s properties if they
were not practically feasible. Constructibility requires the PUF proposal to
be at least feasible within the laws of physics. However, from a more prac-
tical viewpoint, it is related to the cost of producing the PUF. There is also
a big difference if we require for the produced PUF to have some particular
challenge-response behaviour. In case of producing a random PUF without
any specific requirement on its challenge-response behaviour, it should be easy
to construct. Conversely, if we want to construct a specific PUF with defined
challenge-response behaviour, then it can be infeasible to construct such PUF.
This implies that this property is strongly related to physical unclonability.

Evaluability

A PUF is considered to be evaluable if for any random challenge it is “easy” to
evaluate a corresponding response. Since PUF exhibits a challenge-response
behaviour, this property is necessary for a PUF to achieve, because it would
be difficult to discuss any properties of a PUF that is not evaluable. However,
the “easiness” is context dependent. From a theoretical perspective this refers
to polynomial time and effort. In practice it means that it is evaluable in
terms of timing, area, power, energy and cost.

Reproducibility

For a given PUF and challenge on one chosen device, we should obtain the
same response with high probability when the challenge is evaluated repeatedly.
Reproducibility is one of the properties that puts constraints on a PUF’s
challenge-response behaviour. The PUF responses are influenced by varying
physical conditions, therefore some errors may occur in the PUF responses
when the PUF responses are obtained repeatedly for the same challenge. For
this reason we consider a response with sufficiently small number of errors as
the “same” response. Similarity of the PUF responses is evaluated based on
the considered distance metric (usually Hamming distance of the bit strings
that represent the outputs).

7

1. Physical Unclonable Functions

Uniqueness

As in the case of reproducibility, we consider one given PUF and challenge, but
we observe the responses obtained from different devices and not only from
one device. The responses resulting from evaluating the same challenge on
different devices should be different enough (dissimilar) with high probability.
Again, the similarity of the PUF responses is evaluated according to the used
distance metric.

Physical unclonability

This property is crucial for PUFs. Since a PUF is based on random variations
arising during manufacturing process due to the influence of random and un-
controllable influences, it is infeasible to manufacture two identical devices
containing PUF that would exhibit the same challenge-response behaviour.
The infeasibility is related to the physical and technical difficulties in manu-
facturing such pair of identical devices.

The property of physical unclonability has the security advantage that
even the manufacturer, who may influence the manufacturing process, cannot
break the uniqueness property, since there are uncontrollable influences which
interfere with the manufacturing process. Therefore, it is not necessary to
trust the manufacturer to be sure that every device containing PUF is unique
with high probability, because it is implied by the physical unclonability of
PUF.

When we combine this property with constructibility, we can say that it
is easy to create a PUF with arbitrary and random challenge-response beha-
viour, but it is infeasible to create a PUF with a specific challenge-response
behaviour.

Unpredictability

Numerous PUF applications rely on their challenge-response functionality
which is to send some challenge and to obtain random (but corresponding
to given challenge) response. In this sense, neither uniqueness nor physical
unclonability sufficiently guarantee security. It is necessary to achieve unpre-
dictability of the PUF responses to ensure the randomness of PUF responses
for an adversary even if the adversary has already observed a number of chal-
lenges and their responses. Unpredictability means that the adversary should
not be able to build a model based on observed challenge-response pairs that
would predict responses for a new challenge.

Mathematical unclonability

In case of unpredictability, it was assumed that an adversary learned a limited
number of challenge-response pairs which he uses to predict other responses.

8

1.2. PUF’s properties

This is usually the case when the adversary eavesdrops on communication
when a challenge-response based protocol is used. However, a situation may
occur, where the adversary has unlimited physical access to a device containing
PUF and therefore can obtain as many challenge-response pairs as she is able
to store. If the responses remain unpredictable even in such a case, one can
say that the mathematical unclonability property is achieved. A necessary
assumption for mathematical unclonability is the fact that the set of possible
challenge-response pairs is so large (preferably exponential) that it is beyond
the capacity of any adversary to store the whole challenge-response set.

Mathematical unclonability takes into account a stronger adversarial model,
where the adversary has unlimited physical access to a PUF; hence it is the
extension of unpredictability. It is obvious, that mathematical unclonability
implies unpredictability.

True unclonability

There are already two different notions of unclonability defined in this section.
They are physical and mathematical unclonability. Both of them have the
same goal, which is to ensure that a PUF cannot be cloned, but different
perspectives. Physical unclonability deals with the infeasibility of creating a
clone of a specific device containing PUF with the same challenge-response
behaviour. On the other hand, mathematical unclonability addresses only the
cloning of the challenge-response behaviour of a chosen PUF, but not cloning
the physical device itself. The true unclonability property is achieved when
both physical and mathematical unclonability are met.

One-Wayness

One-wayness property is defined similarly to the definition of physical one-
way functions proposed by Pappu [26]. A PUF exhibits one-wayness if it is
evaluable and there exists no efficient inversion algorithm that finds a challenge
based on a given response which produces similar response to the given one.
This definition resembles to the definition of a one-way functions, but it takes
into account the unreliability and uniqueness of PUFs.

Tamper-evidence

Tampering is the alteration of the physical integrity of some circuit, in this case
a PUF. The intent is to modify the circuit’s operation in an unauthorized and
harmful manner. It is usually used to remove or bypass protection mechanisms
to obtain confidential data, and is therefore a powerful attack against security
implementations. Hence it is essential to detect tampering and to provide
an appropriate reaction, such as clearing confidential data or blocking all
functionality.

9

1. Physical Unclonable Functions

In order to detect any tampering attempt, a security system needs to have
some tamper-evidence. It means that tampering will have an unavoidable
and observable impact on the system. In the perspective of PUFs, tamper-
evidence means that it is very hard to physically alter a PUF without any
noticeable effect on its challenge-response behaviour. Ideally, the alteration
would cause the PUF to become a completely different one.

1.3 PUF’s applications

Due to its properties, PUF is suitable to be used for example for identific-
ation and authentication purposes. This section gives an overview of three
possible applications of PUFs. First we describe device identification, then
authentication and finally we will present the concept of cryptographic key
generation.

1.3.1 Device identification

Device identification is the most basic application scenario of PUFs and it is an
inherent feature of a PUF. It is used to identify some physical object (device).
Just like we are able to identify any person by her fingerprints, we can identify
any device based on its individual and unique physical characteristics which
PUF uses for its functionality. Therefore it is very similar to a biometrical
identification scheme.

Since there are errors present in the PUF responses and it is influenced by
varying physical conditions, the PUF responses produced by a PUF on the
same device will not be the same every time. However, for the identification
purposes we do not have to worry about the errors in the PUF responses,
provided that the PUF responses from the same device will be sufficiently
similar and also different enough from the responses produced by PUF on
other devices at the same time.

During the identification process, PUF generates a response, which is then
compared to responses from various devices stored in a database. If the re-
sponse is similar to one of the responses stored in the database and it is
also different enough from the other responses, the identification process was
successful. The similarity of two responses is usually determined by their
Hamming distance. For a successful identification of a device based on its
response, the following conditions need to be met:

1. For a given response from a specific device, a response in the database
is found, such that the Hamming distance between these two responses
is less than the chosen threshold.

2. The Hamming distance between a response from a given device and the
responses from all other devices stored in the database is larger than the
chosen threshold.

10

1.3. PUF’s applications

Frequency

Hamming distance

Optimal identification

thresholdFRR:

False Rejection Rate

FAR:

False Acceptance Rate

Intra-distance Inter-distance

Figure 1.1: The principle of identification. The red curve represents the Ham-
ming distance between the PUF responses from the same devices, while the
blue curve shows the Hamming distance between the PUF responses from
different devices.[22]

The ideal value of average Hamming distance between the responses from
all devices is 50%. The principle of identification and determination of the
identification threshold is shown in Fig. 1.1 [22]. This figure shows the curves
of two metrics. They are Intra-device Hamming distance and Inter-device
Hamming distance. Intra-device Hamming distance represents the Hamming
distance of the responses generated by one device, while the Inter-device Ham-
ming distance is the Hamming distance between the responses generated by
different devices. In other words, Intra-device Hamming distance represents
the bit error rate of the PUF responses and Inter-device Hamming distance
shows how the PUF responses from various devices are different.

As Fig. 1.1 shows, if the curves were not overlapped, an errorless identi-
fication could be made by placing the identification threshold somewhere in
the area between both curves. However, when the curves partially overlap,
setting the identification threshold is a trade-off between false-acceptance rate
(FAR) and false-rejection rate (FRR). The optimal choice of the identification
threshold, minimizing the sum of FAR and FRR, is achieved by placing the
threshold at the intersection of both histograms [22].

11

1. Physical Unclonable Functions

Authentic

Device A

PUF

Untrusted

Supply Chain /

Environments

???

Challenge Response

Is this the

authentic

Device A?

=?

PUF

Challenge Response’

Challenge Response

Database for Device A

1001010 010101

1011000 101101

0111001 000110

Record

Figure 1.2: Authentication scheme using physical unclonable functions.[32]

1.3.2 Authentication

In case of authentication, any subject that wants to authenticate itself to the
other party has to provide some sort of proof of its identity. For example,
a subject can identify itself by some secret that only the subject knows. In
addition, the subject has to demonstrate that it participated in the creation
of the proof that confirms its identity.

Authentication using PUFs is realised based on challenge-response pairs.
The authentication scheme benefits from the uniqueness and unpredictability
of the PUF responses. One of the possible authentication schemes is shown
in Fig. 1.2; it consists of two phases:

1. An ID of each subject is stored and then a sufficient number of challenge-
response pairs is collected from its PUF. The challenges are generated
randomly. The collected challenge-response pairs are stored in a data-
base to the corresponding subject ID.

2. At the beginning of the authentication process, a subject identify itself
by sending its ID (it does not have to be necessarily generated by its
PUF). After the ID is found in the database, one of the stored challenge-
response pairs is selected for the corresponding ID. The challenge is sent
to the subject, which generates a response using PUF and sends back
the response. If the response is similar enough (Hamming distance is less
than the chosen threshold) to the response stored in the database (for
the selected challenge), the subject is successfully authenticated. The
challenge-response pair that was used for authentication is then deleted
and never used again.

Since the challenges and responses are sent in an insecure manner, any
third party can eavesdrop the communication and potentially use the captured
challenge-response pairs. Therefore, there is a threat of a man-in-the-middle
attack. To prevent this attack, all challenge-response pairs that were already

12

1.3. PUF’s applications

PUF PUF

ECC ECC
Key

Helper data

Key

Initialisation phase Re-generation phase

Response 1 Response 2 ≈ Response 1

Figure 1.3: Principle of cryptographic key generation.

used in the authentication process are deleted. Moreover, it is important
that the PUF is unpredictable: An adversary should not be able to predict a
response of the PUF for a given challenge based on previously eavesdropped
challenge-response pairs.

1.3.3 Cryptographic key generation

A number of security applications depend on cryptographic keys. These keys
are usually stored in a non-volatile memory. This, however, raises a problem of
how to store a cryptographic key in a secure manner so that the key is hidden
from a potential adversary. Solutions to this issue are usually expensive and
complex.

PUFs offer a cheap and efficient solution to the issue of secure storage of
cryptographic keys. Instead of storing the secret key in memory, the keys are
generated by a PUF at the moment they are needed. However, as mentioned
before, the PUF responses tend to contain some errors and they are not the
same when repeatedly generated due to varying physical conditions and ran-
dom noise. Therefore, the PUF responses have to be stabilised before they are
used as keys. This is usually achieved by the application of error correcting
codes (ECC) that correct the wrong bits in the response. The generated key
has to be the same on each generation, otherwise we would obtain a different
result by deciphering some enciphered data even if there was only one erro-
neous bit in the key. The PUFs are able to generate random, unpredictable
and stable keys when combined with error correcting codes.

In general, the process of key generation using PUFs is divided into two
phases. During the initialisation phase a PUF generates the key and the error
correcting code produces some helper data which are later used to correct the

13

1. Physical Unclonable Functions

PUF response. The helper data does not necessarily contain only information
required by the error correcting code, but it can also contain some additional
information needed by the PUF (for example configuration of the PUF). Since
the helper data is usually public, it should not be possible to retrieve the key
based on the content of helper data.

The second phase, called re-generation phase, re-generates the key when
some application needs it. First the PUF generates a response, which is pro-
cessed by the error correcting code. The error correcting code corrects the
PUF response with the help of the helper data that were produced in the
initialisation phase. After the correction of the PUF response, the same key
as in the initialisation phase is obtained. The key generation process is shown
in Fig. 1.3.

This method of key generation is only one of many possible methods. In
other variants we may encounter e.g. the usage of hash functions which are
applied on the PUF output after it is corrected by the error correcting code.

14

Chapter 2

PUF classification and

construction

There are a lot of different PUF constructions. Based on their construction
and operation principles, PUFs can be classified into various categories. One
of possible classifications is to divide PUFs to electronic and non-electronic
PUFs [22]. Non-electronic PUFs are, for example, Optical PUF and Paper
PUF. It is also possible to classify PUFs based on their need to use some spe-
cialized or external equipment for their operation. Another criteria that can
be used to distinguish PUFs is their source of randomness. Typical examples
of sources of randomness are circuit delay or memory content after power-up.

In this chapter, we provide a brief introduction to possible classification of
PUFs followed by description of various PUF constructions which is focused
on intrinsic PUFs with two exceptions, which are Optical PUF and Coating
PUF. The following Section 2.1 presents some of the possible classifications of
PUFs and is followed by Section 2.2 that describes some PUF constructions;
it does not present them all since there have been many PUF constructions
proposed so far.

2.1 PUF classification

The PUF constructions were proposed for a large variety of technologies, ma-
terials and platforms. Therefore, we can classify PUFs based on the nature
of their features (electronic components, glass, silicon integrated circuits) or
even on their sources of randomness [20, 22]. Another classification can be
the division of PUFs into intrinsic and non-intrinsic PUFs in dependence on
the source of measurement and the origin of their random features [20, 22].
Ultimately, the PUFs can be classified based on the security properties of their
challenge-response behaviour, i.e. weak and strong PUFs [10].

15

2. PUF classification and construction

2.1.1 Electronic and non-electronic PUFs

The terms electronic and non-electronic corresponds to the nature of the com-
ponents that are used for PUF and contribute to its randomness and unique-
ness. These terms are not related to the processing methods or measurements
which can be performed with the help of some electronic equipment.

The first class of PUFs are non-electronic PUFs. Their properties are based
on non-electronic technologies or materials such as light scattering character-
istics of an optical medium. The term non-eletronic in this case reflects the
non-electronic physical basis of the PUF and not the way PUF responses are
handled.

The opposite of non-electronic PUFs are electronic PUFs which exploit
random variations in the electronic characteristics of electronic components or
circuits. These characteristics are, for example, resistance, capacitance, delay
etc. Furthermore, some of the electronic PUFs have their basic operations
consisting of an analog measurement of some electric or electronic features [22]
while other PUF proposals perform the measurements digitally. Therefore, the
electronic PUFs may be distinguished also from this perspective.

A large subclass of electronic PUFs are silicon PUFs, which are the most
popular in security solutions since they can be used in cryptographic imple-
mentations directly on an integrated circuit. Section 2.2 is focused on this
type of PUFs.

2.1.2 Intrinsic and non-intrinsic PUFs

Another possible classification is based on the construction properties of PUFs.
The PUFs are divided into intrinsic and non-intrinsic PUFs. According to [20,
22], two following conditions need to be met for a PUF in order to be classified
as intrinsic PUF:

1. The PUF together with a measurement equipment should be embed-
ded in the device and its evaluations are performed internally by the
embedded measurement equipment.

2. Its random features are implicitly introduced during the manufacturing
process.

In the following text, both of the conditions are discussed, since there
are some practical and security advantages to intrinsic PUFs. Regarding the
first condition, we can distinguish between two forms of a PUF evaluation,
i.e. external and internal evaluation. In case of external evaluation, the
measurements are performed using external instruments and the measured
features have to be externally observable. Internal evaluation assumes that
the necessary equipment used for measurement of random features of a device
is embedded in the device together with the PUF. However, this implies a

16

2.1. PUF classification

possible disadvantage of an internal evaluation, because the embedded meas-
urement equipment needs to be trusted since it might be impossible to verify
the measurements externally.

One advantage of performing the evaluations internally is of a practical
nature. Internal evaluations can be more accurate, since they avoid external
influences possibly causing measurement errors. More importantly, the device
containing PUF can evaluate itself without any restrictions since the necessary
measurement equipment is embedded in the device.

The second advantage of internal evaluations is associated with security.
When all evaluations are performed internally, the PUF response remains
in the device and can be considered as internal secret that can be used for
example as a key (in case of PUF used for key generation). This is useful
when the PUF responses are used immediately for an embedded cryptographic
applications.

The next discussed condition is related to the source of randomness which
is measured during the PUF evaluation. The randomness used by PUF can be
introduced implicitly to the device during the manufacturing process and form
an integral and inseparable part of the PUF. The measured random features
are caused by uncontrollable effects during the manufacturing process. The
randomness may also be introduced by an explicit procedure during manufac-
turing process with the sole purpose of introducing random features that will
be used by PUF. This condition implies that in case of intrinsic PUF, no extra
manufacturing steps are required during the manufacturing process [22].

The advantage of implicit random variations is that there is no extra over-
head and additional cost, since they are an inherent part of the manufacturing
process. Introducing the randomness explicitly usually comes with extra cost.
However, the main advantage of implicit random variations is in the perspect-
ive of security. The implicit randomness is caused by random variations arising
during the manufacturing process and they are considered as undesirable be-
cause they may have negative impact on the manufactured device. Therefore
manufacturers apply countermeasures against these process variations to re-
duce the effect of various random influences. However, it is technically im-
possible for the manufacturers to completely eliminate all random effects in
the manufacturing process. This implies an interesting security advantage
of PUF constructions based on implicit process variations: Even though the
manufacturer has control over the manufacturing process, he is not able to
control or eliminate the random features present in his manufactured devices,
which are later used by PUF.

The intrinsic PUFs can be divided into two classes based on their basic
operations. The two major classes of intrinsic PUFs that are also suitable for
FPGAs according to their sources of randomness are delay-based and memory-
based PUFs. A very common PUF design is based on SRAM (static random-
access memory) and uses it as a source of randomness, since many electronic
devices have embedded SRAM [11, 29]. This PUF is based on the content

17

2. PUF classification and construction

of SRAM after power-up. However, some FPGAs initialise their memory
after power-up, so all randomness is lost. That led to proposals of other
memory-based PUFs such as Butterfly PUF [17], Latch PUF [31] and Flip-
flop PUF [21].

Delay-based PUFs exploit the random variations in delays of logic gates
and interconnects. One of the first delay-based PUFs is Arbiter PUF [18].
Another examples are Ring Oscillator PUF (ROPUF) [32, 9, 23] and Glitch
PUF [33].

Optical PUF [26] and Coating PUF [34], introduced in the next Sec-
tion 2.2, do not meet the conditions of intrinsic PUFs and they are some of
the best known PUF constructions from the other class. The Optical PUF is
non-intrinsic, because its evaluation is performed externally by observing the
speckle pattern and also its random features are explicitly introduced by the
random placement of the light scattering particles in an optical medium. The
Coating PUF is classified as non-intrinsic, despite its ability to be evaluated
internally, because its randomness is introduced explicitly during a manufac-
turing process by covering an integrated circuit by a protective coating with
random dielectric particles.

2.1.3 Weak and strong PUFs

The last classification we will introduce in this thesis is based on the secur-
ity properties of the challenge-response behaviour of the PUFs [10]. In this
perspective, we can distinguish between weak and strong PUFs.

Weak PUFs can be considered as a digital fingerprint of some circuit. PUFs
from this class usually have a very small challenge-response set or even only
one challenge (or no challenge, but just some stimulation that starts the PUF
evaluation to generate the fingerprint) in some extreme cases. An example of
a weak PUF is a SRAM PUF, which is based on reading the memory content
after device power-up. Each SRAM cell will have bias to some certain value
caused by the manufacturing variability and this variability is random in the
entire SRAM and also in the whole population of devices. The PUF response
will be the memory content of the SRAM after power-up, but there will be no
challenge, since the only challenge is powering the SRAM on. However, we can
also consider some address of the SRAM as a challenge of the SRAM PUF.
The fact that the challenge-response set is small implies that these challenge-
response pairs must be kept secret. A typical application of weak PUFs is a
cryptographic key generation.

The opposite of weak PUFs are strong PUFs. The main difference of
strong and weak PUFs is the number of supported challenge-response pairs.
Strong PUFs offer a large challenge-response set. The requirements for a
strong PUFs are a large challenge-response set (large in this case means that
ideally it should be exponential in the number of challenge bits), so that an
adversary is not able to store all challenge-response pairs, and the unpre-

18

2.2. PUF construction

dictability of PUF responses even with the knowledge of a large number of
challenge-response pairs. It is not feasible to build a model of the PUF based
on the observed challenge-response pairs. If these requirements are not met,
the PUF is classified as weak PUF.

Typically, the application of strong PUFs is authentication, where a device
containing PUF is authenticated by a query with different challenge each time
and comparing its response with the one stored in a database. After each
usage of some challenge-response pair, this pair is deleted and never used
again. However, it turned out that constructing a practical (intrinsic) strong
PUF with strong security properties is a very difficult task [20].

2.2 PUF construction

The following list of PUF constructions is not complete, since there is a con-
siderable amount of PUF constructions and we focus primarily on intrinsic
PUFs.

2.2.1 Optical PUF

We can encounter one of the first PUF designs in Pappu’s dissertation thesis
written in 2002 [26]. At that time, the term physical unclonable function was
not known and Optical PUF was classified as physical one-way function.

The main component of Optical PUF is a transparent optical medium (op-
tical token) filled with a large amount of light scattering particles [2]. When
a laser beam shines on the optical medium, a unique and random speckle pat-
tern arises. The basic concept of Optical PUF is a very complex interaction
between the laser beam and light scattering particles. The source of random-
ness in this PUF construction is the random placement of the light scattering
particles in the optical medium during manufacturing process. The resulting
speckle pattern is recorded and encoded (for example by Gabor hash) into a
bit string representing a PUF response.

An exact position and angle of the laser beam is an input (challenge) to
Optical PUF. Even a minute change in the relative orientation of the laser
beam and the optical medium result in a completely different speckle pat-
tern [22]. The basic principle of Optical PUF is depicted in Fig. 2.1.

2.2.2 Coating PUF

The concept of Coating PUF, introduced by Tuyls et al. in [34] consists of
covering an integrated circuit with a protective coating. The coating material
is filled with random dielectric particles. By random dielectric particles it
is ment that they have random size, shape and location in the coating layer.
Below the coating layer, a comb-shaped metal wire sensors are used to measure
the local capacitance of the coating [27] as shown in Fig. 2.2. Measuring

19

2. PUF classification and construction

Figure 2.1: Basic operation of an Optical PUF. The setting of laser beam
serves as input to Optical PUF. The laser beam shines on the optical token,
which is a transparent material filled with light scattering particles. After
shining on the optical token, we obtain a unique speckle pattern which is then
encoded by Gabor hash into a bit string used as a response of the Optical
PUF.[22]

the Coating PUF from the outside gives different capacitance results since
the measurements are very sensitive to the precise locations of the dielectric
particles.

Coating PUF does not rely on the random effects of manufacturing vari-
ability, but it uses the random elements explicitly introduced by a passive
dielectric coating sprayed directly on the top of the sensors. Coating PUF
offers strong protection against physical attacks such as tampering since the
protective coating is opaque and chemically inert. By any physical interven-
tion into the protective layer a change in the capacitance of the layer occurs,
resulting in a completely different behaviour of the Coating PUF. Note that
implementing a Coating PUF requires an additional manufacturing step, but
it is still very cheap to produce [27].

2.2.3 SRAM PUF

SRAM (static random-access memory) is a static memory based on bistable
flip-flops that are used to store data. Fig 2.3(a) shows a SRAM cell, logically
constructed as two cross-coupled inverters. This circuit has two possible stable
values (0 and 1) which represent the binary value stored in the cell [20].

The principle of SRAM PUF operation is based on the memory content
after power-up. Since the preference of each memory cell cannot be influenced
and their preference is random and independent, they are a suitable source
of randomness for PUF. Large SRAM memories are capable of storing many

20

2.2. PUF construction

Figure 2.2: Coating PUF.[22]

Q Q

(a) SRAM cell.[22]

(b) SRAM content. The shade of
grey illustrates the probability of state
1.[11]

Figure 2.3: Concept of SRAM PUF.

kilobits or megabits that could be used for PUF. A memory address in SRAM
PUF can be considered as the challenge for PUF.

A key property of an SRAM cell in terms of the PUF characteristics is
bistability [28]. Each SRAM cell prefers different state after power-up. Some
memory cells have bias to binary 1, while other cells have bias to binary
0. However, some of the memory cells do not have bias to any of the two
binary values. The distribution of these three types of SRAM cells over the
whole memory is random [22]. The memory cells with strong bias to one
of the two binary values which in most cases stabilise in the same value are
considered as stable memory cells. On the other hand, memory cells with no
real preference which usually have different states over time are called unstable
cells. The bias toward some value of memory cells after power-up is caused
by random physical mismatches in the memory cells that originate from the
manufacturing process.

The stable memory cells allow us to identify various devices when used
for SRAM PUF while the unstable memory cells cause the errors in the PUF

21

2. PUF classification and construction

Figure 2.4: Measurement of decision time (UF: useful, NUF: not useful).[28]

output. Fig. 2.3(b) shows an example of SRAM map with probabilities of
binary value 1 occurring in the corresponding cell. Ideally, we want each cell
to be 100% stable. If we want the PUF output to be stable, we would need
to perform measurements repeatedly in order to select only the stable SRAM
cells. However, such measurements would increase the manufacturing costs
and they would have to be performed at varying physical conditions such as
varying temperature or voltage.

Another option of obtaining stable output is to select cells that settle in
their final state faster after power-up [28]. The concept of this approach is
shown in Fig. 2.4. All the cells with the decision time under tuseful and lie
under a lower threshold or above upper threshold are considered to be useful.
All other cells are not used.

2.2.4 Butterfly PUF

SRAM PUF is often impossible to implement on some FPGA platforms be-
cause the SRAM is initialised to predefined values. Another disadvantage of
SRAM PUF is the fact that to generate the PUF output, the SRAM needs to
be read after power-up before the memory is overwritten and the randomness
is lost. These drawbacks were the main motivation for the proposal of Butter-
fly PUF [17], which is based on cross-coupled circuit and can be implemented
on any FPGA.

The Butterfly PUF concept consists of simulating the SRAM PUF beha-
viour after power-up, when the SRAM cells stabilise on particular values. The
basic building element of Butterfly PUF is a circuit made of two cross-coupled
latches, simulating the SRAM cell. This structure can be forced into an un-
stable state after which the structure converges back to one of the possible
stable states.

To ensure a proper behaviour of Butterfly PUF, it is necessary to achieve
the best possible symmetry of the interconnects between the two latches [25] as
shown in Fig. 2.5(a). The interconnects between the outputs Q and the inputs
D between both latches have to be symmetric. When set to high, the signal

22

2.2. PUF construction

excite

Latch 2
CLK

PRE

CLK
Latch 1

CLR

PRE

CLR

out

0

0

D Q

QD

(a) Structure of Butterfly PUF
cell.[17]

out

reset

(b) Logical circuit of a Latch PUF
cell.[22]

Figure 2.5: Butterfly and Latch PUF.

signal starts the Butterfly PUF cell operation. When the input signals PRE
(preset) and CLR (clear) are set to 1, the value of the output Q is changed
to 1 or 0. Signal CLK (clock) transfers the input signal D to the output Q.
Signal CLK is always set to high in order to simulate a combinational loop.
By setting the signal excite to 1, the structure is forced into an unstable
state because of the cross-coupled latches where the output Q of each latch
is transferred to the input D of the other latch. After a few clock cycles the
excite signal is set to low and the Butterfly PUF cell will stabilise in one of
the possible states. The resulting state depends on the slight delay differences
of the interconnects between the two latches, which will be different among
various devices and positions on the FPGA [17].

2.2.5 Latch PUF

A method of identifying integrated circuits based on latches realised by two
cross-coupled NOR gates was introduced by Su et al. [31]. A simple circuit
used as a latch for Latch PUF is shown in Fig. 2.5(b). This concept is very
similar to SRAM PUF; however, the SRAM PUF cells are in an unstable state
at the beginning before they settle on the resulting value. Latches in case of
Latch PUF are in a stable state and they are brought into an unstable state
using reset signal. The resulting value will be derived based on the random
internal mismatches of the electronic components.

The advantage of Latch PUF compared to SRAM PUF is that, similarly to
Butterfly PUF, it does not depend on the device power-up but we can obtain
the PUF’s output whenever it is needed. This implies that when the device is
powered up, it is not necessary to store the PUF output – we can generate it

23

2. PUF classification and construction

ctrl

S

TERO loop

Figure 2.6: TERO loop structure.[1]

anytime.

2.2.6 Flip-flop PUF

As in the case of SRAM PUF, Flip-flop PUF depends on the device power-up,
but it uses D-flip-flops instead of SRAM cells. Flip-flop PUF was proposed
by Maes et al. [21] as a replacement of SRAM PUF on FPGA boards.

2.2.7 TERO PUF

A new PUF structure which exploits the oscillatory metastability of cross-
coupled elements was proposed by Bossuet et al. [1] and then extended by
Marchand et al. [24]. The source of the entropy in this proposal is the mean
number of oscillations of the oscillatory circuit before the oscillations stop and
the structure is stabilised. This PUF is based on transient effect ring oscil-
lator (TERO) cells, therefore it is called TERO PUF. TEROs were originally
proposed by Varchola and Drutarovsky [35] for TRNG designs.

The basic building element of this design is a TERO loop structure. It
is composed of an SR-flip-flop implemented as two AND gates and an even
number of inverters. There are usually two inverters used for the TERO loop,
but the loop can be extended with more inverters in order to extend the
oscillations.

The oscillatory metastability in this design is achieved by connecting the
S and R inputs of the SR-flip-flop to the ctrl signal. An example TERO
loop structure is shown in Fig. 2.6. When the signal ctrl is set to high, the
structure is brought into an unstable state and causes transitory oscillations
in the loop if certain conditions are fulfilled [35]. Theoretically, if the loop
was absolutely symmetrical, the oscillations would never stop. However, the
TERO loop structure oscillates for a short period of time before it stops due
to the asymmetry in the time delay of both halves of the loop.

24

2.2. PUF construction

Temporary oscillations

S/1 final stable logic level ‘1’

ctrl

S#1

S#2

S/2 final stable logic level ‘0’

(X, Y): 0.5µs/div – 0.25V/div

Figure 2.7: Electrical behaviour of the two TERO loops. Signal ctrl is an
input signal to both of the TERO loops that causes temporary oscillations of
the TERO loops. Signals S#1 and S#2 are outputs of the TERO loops.[1]

An example of behaviour of two TERO loop structures is shown in Fig. 2.7.
It shows an input signal ctrl and output signals (S#1, S#2). The ctrl signal
for both TERO loops is forced to logical value 1. The rising edge of the ctrl
signal causes temporary oscillations in both of the TERO loops as can be seen
at the S#1 and S#2 signals. In Fig. 2.7 it is clearly visible that the number of
oscillations of both TERO loops is different, and when the loops are stabilised,
the resulting value for both loops is also different.

In [1] Bossuet et al. measured the number of oscillations using 8-bit coun-
ters and the measurements were performed 218 times for each TERO loop.
Then the mean value of the number of oscillations of each TERO loop was
used for further processing. Finally, the mean values were subtracted in a
pair-wise manner and particular bits were selected from the resulting binary
value and used for the PUF output, based on their statistical properties. The
described TERO PUF architecture is shown in Fig. 2.8.

2.2.8 Arbiter PUF

Arbiter PUF uses the delay difference of logic gates and their interconnects
as a source of randomness. We can find its initial proposals in the works of
Lee [18] and Lim [19]. The basic concept of Arbiter PUF is a digital race
on two paths on a circuit which have to be mutually symmetric. Both of the
paths end in arbiter that decides which one of the two paths won the race,
or in other words, which path had a smaller delay. Based on the result of the
race, the arbiter generates one output bit for PUF. Arbiter is a logical circuit

25

2. PUF classification and construction

ctrl

8-bit counter

F
ro
m
2
to
4
ti
m
e
s
(N
-1
)

b
it
s
o
f
P
U
F
ID

26-bit accumulator 18-bit shift register
8 26 8

From

2 to 4

8-bit counter 26-bit accumulator 18-bit shift register
8 26 8

8-bit counter 26-bit accumulator 18-bit shift register
8 26 8

8-bit counter 26-bit accumulator 18-bit shift register
8 26 8

Figure 2.8: TERO PUF architecture.[1]

used to determine which path is faster. To ensure that the result is random
and unpredictable, both of the paths have to be mutually symmetric, meaning
that their intended delay is the same. When this condition is satisfied, the
path with smaller delay will be dependent on the random delay variations in
individual gates and their interconnects which arise during the manufacturing
process.

Fig 2.9 shows the basic Arbiter PUF scheme according to [18]. Both of
the paths are implemented as a series of switch components. The switch com-
ponent interconnects its two input signals to the output ports with different
configurations depending on the control bit (bi). For bi = 0 the paths go
straight through, while for bi = 1 the paths are crossed. The switch compon-
ent logic can be implemented for example as two multiplexers. At the end of
both of the paths, there is an arbiter detecting the first rising edge and which
can be realised as a latch.

To obtain 2n possible configurations of this circuit, we need n control bits
configuring n switch components forming a chain of switch components. The
configuration of this circuit is determined by the challenge of the PUF, which
represents n control bits. The result of the operation of the whole circuit for
one configuration is one output bit. To obtain more output bits, there are
two possible solutions that can be combined together [3]. The first option
is to implement more of these circuits which will all use the same challenge
(configuration) when generating the PUF output. The second possibility is to
send multiple challenges to only one circuit and chain the output bits to form
the PUF response.

The Arbiter PUF output should be influenced solely by the random vari-
ations in delays of the individual paths. This can be achieved if both of the
following conditions are met [20]:

26

2.2. PUF construction

Figure 2.9: Basic Arbiter PUF scheme.[18]

1. Each pair of paths is designed to be perfectly symmetrical, thus any dif-
ference in delay is caused solely by the manufacturing process variations.

2. The arbiter circuit is absolutely fair, so it does not favour one of its
inputs over the other.

If any of the conditions is not met, the Arbiter PUF is biased resulting in a
lower uniqueness of its responses. Designing Arbiter PUF that satisfies both
conditions is not a trivial task since it requires a low-level control over the
implementation. In some technologies, such as FPGAs, it is not possible [20].
However, some unbiasing techniques can be used when bias is unavoidable.

2.2.9 Ring Oscillator PUF

A numerous PUF constructions based on ring oscillators (RO) have been pro-
posed to this day, but it is not the goal of this paper to introduce them all.
This section describes the main principle of Ring Oscillator PUFs (ROPUF)
that have been proposed so far. We put emphasis on this PUF construction,
because our proposed PUF design is also based on ROs.

Measuring a delay

Since ROPUF is a delay-based PUF, it exploits the random variations in delays
of logic gates and their interconnects. The method that is used in ROPUFs
to measure delays is to use some delay circuit and make it a self-oscillating

27

2. PUF classification and construction

enable
out

Figure 2.10: A basic ring oscillator composed of one NAND gate and four
inverters forming a combinational loop.

loop. This can be achieved by inverting the output of the delay circuit and
feeding it back into the delay circuit’s input [8, 9]. These oscillating circuits
are usually called ROs. An example of a ring oscillator is shown in Fig. 2.10.

The random variations in delays are reflected in the measured frequencies
of ROs. We can simply measure ring oscillator’s frequency by using counters
and some reference clock where we know the frequency. This frequency can be
determined by the number of ring oscillator’s oscillations that are recorded by
a counter at a certain time specified by the reference clock. From the resulting
value in the counter we can easily calculate the ring oscillator’s frequency.

Frequencies of each RO obtained this way can be used for PUF. These
frequencies are used depending on the particular ROPUF proposal. In some
ROPUF designs it is not necessary to know the particular frequency of each
RO; we can use the resulting value in the counter.

Ring Oscillator PUF constructions

The first type of ROPUF was proposed by Gassend et al. [8, 9]. The measured
frequencies of equal ROs on different devices shows sufficient variation to act
as a PUF output. However, the influence of environmental conditions on the
frequency of ROs is significant and some additional technique to compensate
these influences is required. Gassend et al. [8, 9] proposed a technique called
compensated measuring. The main idea behind compensated measuring is
that environmental changes will affect the frequencies of ROs approximately
the same way, therefore a ratio of measured frequencies of RO pairs can be
considered as the eventual PUF output.

This ROPUF construction proved to be effective in compensating the en-
vironmental changes. Nevertheless, this construction has some drawbacks.
Since their ROs are based on the same delay circuit as the basic Arbiter PUF,
their PUF is vulnerable to modelling attacks and some countermeasures have
to be made. In addition, the result of frequency ratios in case of compensated
measuring are real values and cannot be used directly as a bit string, hence
they have to be processed in an appropriate way to get a proper PUF output.

Another ROPUF construction proposed by Suh and Devadas [32] is shown
in Fig. 2.11. Their ROPUF design consists of n symmetric ROs that are
connected to two multiplexers. Each of the multiplexers selects one of the ROs
according to the input signal and connects its output to the counter. Both

28

2.2. PUF construction

N oscillators

MUX

counter

counter

>?

Output

Input

0 or 1

1

2

N

Figure 2.11: Ring Oscillator PUF design.[32]

counters count oscillations of the selected ROs for a fixed time interval. The
resulting values in both counters are compared and one bit of the PUF output
is produced based on the result of the comparison. Since one comparison
produces only one bit of the PUF output, this whole process has to be repeated
several times with different selections of ROs to produce the complete PUF
output.

It is required that all of the ROs in this ROPUF construction be sym-
metric to each other in order to assure that the comparison results are un-
predictable. Due to the symmetry of ROs the differences in their frequencies
are completely dependent on random variations in delays due to manufactur-
ing process variations. The frequency comparison can be considered another
form of compensated measuring to eliminate the influences of environmental
changes. Suh and Devadas [32] also proposed a technique called 1-out-of-k
masking which reduces the number of possible comparisons in order to get a
more stable output. This technique is based on the selection of one RO pair
with the biggest difference in their frequencies from k oscillators.

One of the drawbacks in this ROPUF design is the fact that the number
of possible comparisons is limited if we want the bits in the PUF output to
be independent. The maximum number of comparisons with n ROs that we
can perform using this design is

(n
2

)

= n(n−1)
2 . However, the entropy of the

design is less than
(n
2

)

, because bits obtained in this way are correlated. For
example, if RO A is faster than RO B and RO B is faster than RO C, it is
clear that RO A will be faster than RO C [32].

To determine the maximum entropy of this design, in other words the
maximum number of independent bits generated by pair-wise comparisons,

29

2. PUF classification and construction

Enable

C1 C3C2

Figure 2.12: Configurable ring oscillator.[23]

we have to consider all possible orderings of n ROs. There are n! possible
orderings of ROs based on their frequencies and if the orderings are equally
likely, the entropy of this design will be log2 n!.

An easier way to obtain independent bits in the PUF output is to use each
RO only once for comparison, thus the number of output bits would be n

2 .
Combined with the technique 1-out-of-k masking, the number of output bits
would be significantly reduced.

Another technique to increase the stability of ROPUF output was pro-
posed by Yin and Qu [39]. The ROs are divided into mutually exclusive
groups (no RO is in two groups at the same time) and the frequency com-
parison is performed only between the ROs in the same group, where a high
stability of the results of the comparisons is guaranteed. The division of ROs
into groups is performed by the proposed algorithm called LISA (Longest
Increasing Subsequence-Based Grouping Algorithm). For each RO, measure-
ments are executed at various conditions and the minimum and maximum
frequencies that were measured are stored. Using the LISA algorithm, ROs
are divided into groups in such manner that the differences of the minimum
and maximum frequencies between any RO pair were larger than some selec-
ted threshold value. Using this technique, we can obtain a very stable output
and also longer output from the same number of ROs than using 1-out-of-k
masking.

Maiti and Schaumont [23] used the same design as Suh and Devadas to-
gether with the technique of 1-out-of-k masking to increase the output sta-
bility, but the design is now based on configurable ROs instead of basic ROs.
They consider the most stable configuration out of k possible configurations
of one RO pair, not the most stable RO pair. The advantage of configurable
ROs is that they allow more efficient utilization of resources.

The configurable RO proposed in [23] is shown in Fig. 2.12. The classical
RO composed of five gates (one NAND and four inverters) implemented on
FPGA occupies almost the whole CLB (configurable logic block) on Xilinx

30

2.2. PUF construction

1

0

1

0

1

0

1

0

1

0

Latch

1

0

Latch

1

0 1

0

Latch

1

0 1

0

Latch

’0’

LUT F

’0’

LUT G

Enable bx0sel0

SLICE X0Y1

LUT F

LUT G

1

0

1

0

sel3 bx3

SLICE X1Y0

LUT F

LUT G SLICE X1Y1

bx2sel2

1

0

LUT F

LUT G SLICE X0Y0

bx1sel1

1

0

Figure 2.13: Configurable ring oscillator capable of 256 different configurations
in one CLB on FPGA. In this case, CLB consists of four slices and each slice
contains two LUTs (Look-Up Table). The signals sel and bx are control signals
for multiplexers that determine the configuration of the RO.[38]

Spartan-3E. The configurable RO shown in Fig. 2.12 consists of six inverters,
one AND and three multiplexers. It all fits into a single CLB occupying
basically the same area as a common 5-staged RO. The configuration of the
RO is set by the control bits that are used to control the multiplexers. In this
case, there are three control bits, hence eight possible configurations of the
RO. Since the PUF output is derived from the frequency comparisons, it is
necessary that the configurable ROs are symmetrical.

Another proposal of a configurable RO on Xilinx Spartan-3E was presen-
ted in the work by Xin et al. [38]. They extended the design proposed by
Maiti et al. [23]. The configurable RO still fits into a single CLB on FPGA,
but now it is capable of 256 various configurations. This design uses more

31

2. PUF classification and construction

x y

x
y

y

(a) Behaviour of a simple
circuit.

x
1

x
2

x
3

y

x
3

x
2

x
1

x
3

x
2

x
1

y y

(b) Behaviour of a more
general circuit.

Pattern 1 r = 1

r = 0

r = 1

Ignore glitch pulse below the threshold w.

Acquired glitch waveforms

Pattern 2

Pattern 3

w

(c) Conversion of the acquired
waveforms.

Figure 2.14: Substance of Glitch PUF.[33]

multiplexers and also latches as shown in Fig. 2.13. The latches are used as
an additional delay unit. This configurable RO is configured by eight control
bits, therefore it is possible to achieve 256 possible configurations. Again,
the ROs have to be mutually symmetric and also it is necessary to use the
ROs with same configuration for the comparison, otherwise, the result of the
comparison would not depend on the random delay variations.

2.2.10 Glitch PUF

Suzuki and Shimizu proposed a new PUF construction [33]. They considered a
possible behavioural difference of the same logic circuits with different delays.
Fig. 2.14(a) shows a difference in behaviour of a simple logic circuit. There
is a time difference between output changes from an input change. However,
this delay is variable since it depends on the random variations of gate delays
acquired from manufacturing and also largely on the temperature and voltage.
A behaviour of a more general circuit that performs AND and XOR operation
on multiple inputs can be seen in Fig. 2.14(b). We can see that a transient
state of an output signal, called a glitch, occurs; this is caused by the delay
difference between input signals. The glitch shown in Fig. 2.14(b) occurs at
the output of XOR due to differences between transition times of input signals
x 1 and x 2 after all input signals were changed from 0 to 1. Only in the case
that signal x 3 reaches the AND gate before the glitch, the glitch propagates
to the AND output. In the other case, the output remains unchanged since
the glitch did not propagate to the output.

According to [33], Glitch PUF consists of the three following steps. The
first step is data input to a random logic. The next step is the acquisition of
glitch waveforms at the output of the logic. The final step is the conversion of
the acquired waveforms into PUF response bits. An example of such conver-
sion is shown in Fig. 2.14(c), where a glitch with width less than a threshold
w is ignored.

32

Chapter 3

Description and properties of

the proposed PUF

So far, this work has focused on the state of the art. In previous chapters,
we introduced PUFs to the reader and we presented some of the major PUF
constructions that were proposed so far. This chapter presents our proposed
PUF construction, which is based on ring oscillators and according to the
classifications described in previous Chapter 2, this PUF construction may be
classified as delay-based intrinsic PUF since it exploits the random variations
in delays of logic gates and their interconnects that affect the frequency of
ring oscillators.

The motivation that led to the proposal of our PUF design was to design
a PUF that would be easy to implement, area efficient and also suitable for
FPGAs. There are already numerous PUF constructions proposed for FPGAs,
however, some of these are more suitable for FPGAs than others. A popular
PUF construction is SRAM PUF, but a lot of modern FPGAs initialise their
memory content and all of the randomness necessary for PUF is lost.

The main representative of delay-based PUFs is Arbiter PUF. Its ad-
vantage is its simplicity, low power consumption and its implementation is
inexpensive and suitable for resource-constrained platforms such as RFIDs.
However, Arbiter PUF is not well suited for FPGAs since it depends on the
symmetry of the two paths for which the delay is measured. In case of FPGAs,
it is impossible to achieve absolute symmetry of both paths; we can only try
to design the two paths so that they are as symmetric as possible. Therefore,
Arbiter PUFs are usually not implemented on FPGAs.

A more suitable PUF for FPGAs is Ring Oscillator PUF, which has the
same source of randomness as Arbiter PUF. Instead of having two symmet-
ric paths for which we compare their delay, the delay can be measured by
ring oscillators whose frequency will be affected by the random variations in
delays. A classical approach of using ROs for a PUF is to compare frequencies
of selected RO pairs. However, this approach requires the ROs to be mutually

33

3. Description and properties of the proposed PUF

symmetric in order to generate unpredictable result of the comparison. Im-
plementing symmetrical ROs is not as difficult task as in the case of Arbiter
PUF, but it is still an additional overhead to designing the PUF.

A considerable issue of the classical approach is the appropriate selection
of RO pairs so that the bits in the PUF response are unpredictable and they
are not correlated. The requirement for the most efficient usage of ROs also
leads to more complicated designs. Therefore, each RO is usually used for only
one comparison, which simplifies the design but a lot of potential RO pairs is
not used. However, there are some techniques presented in Section 2.2.9 that
improve the efficiency of ROPUF on FPGAs.

In our PUF proposal, we were inspired by PUFs based on ring oscillators.
Our goal was to propose a PUF that would be easy to implement and effective.
In our proposal, we use a different technique to generate the PUF output than
frequency comparison, which is used in the classical approach and requires the
ROs to be symmetrical. The PUF output will also be obtained based on the
selected RO pairs, but the problem of selecting particular RO pairs is no longer
present and on top of that, more bits for the PUF output will be gained from
each pair. This makes it possible to produce a longer PUF output using fewer
ROs.

The following two sections detail our PUF proposal. The first Section 3.1
describes our proposed PUF design. The next Section 3.2 explains the beha-
viour of our proposed PUF design and discusses its properties.

3.1 The ring oscillator based PUF proposal

The basic building element of the proposed ROPUF design is a five stage
RO (one NAND, four inverters). Instead of measuring frequency of each RO
using a reference clock, we select one RO pair and count their oscillations
simultaneously using two counters. As soon as one of these counters overflows,
the measurement is stopped. The resulting value in the counter that did not
overflow is used for further processing. This approach is shown in Fig. 3.1.

The proposed method implies that if we knew the exact frequencies of the
ROs during measurement, we could determine the resulting counter value (in
case of 16-bit counters) that is later processed as follows:

Counter value =
f2

f1
× 216, (3.1)

where f1 is the frequency of the faster RO and f2 is the frequency of the slower
RO.

When implementing the logic for detecting overflow of one of the counters
and stopping the other one, the routes between them may have different delays
and in the meantime, before the counter is stopped, it can perform some
additional steps. But since these two routes are the same for all RO pairs

34

3.1. The ring oscillator based PUF proposal

RO1

C

Counter 1

Counter 2

OF

Enable

C

CE

Q

CE

OF

Q

RO2

fRO1

fRO
2

Result

Measurement circuit

RST

RST

Control &

overflow

detection

RST

OF

Figure 3.1: The method of measuring the number of cycles of ring oscillators
in the proposed ROPUF design.

1011 1001 0110 1100

most significant bit least significant bit

increasing stability

very unstable positionshighly stable positions

Figure 3.2: The example behaviour of positions’ stability in a 16-bit value.

and for all FPGAs, it will only increase the resulting counter value by some
constant offset. It will be shown later that this offset is either 0 or 1.

The counter values obtained in this way are used for PUF without any
modification. Since these values are represented in binary code, we can use
the appropriately selected part of each binary number for PUF output. It can
be assumed that if we make multiple measurements of one RO pair, bits that
are close to the least significant bit (LSB) will vary a lot, for example due to
environmental changes. On the other hand, bits close to the most significant
bit (MSB) will be stable and the environmental changes will have almost no
influence on them. The closer we get to the MSB, the more stable these bits
will be. The example of described behaviour of measured values is shown on
a 16-bit value in Fig. 3.2. A concept of choosing suitable bits for PUF from
the counter values was also presented in the work by Bossuet et al.[1].

35

3. Description and properties of the proposed PUF

3.1.1 Bit stability

The stability si(RO) of bit at position i from a value measured using one
particular RO pair is determined as follows:

si(RO) =

{

P (bi = 1) if P (bi = 1) ≥ 0.5

1− P (bi = 1) if P (bi = 1) < 0.5,
(3.2)

where P (bi = 1) stands for the probability of occurrence of 1 at position i and
is defined as:

P (bi = 1) =
1

k

k
∑

j=1

bj,i, (3.3)

where k is the number of executed measurements and bj,i indicates the i -th
bit of the j -th measured value.

It is obvious, that each RO pair will have a different stability at various
positions of measured values since the ROs in this design are no longer mu-
tually symmetric. For this reason, if we want to perform a suitable selection
of positions for the PUF output for all RO pairs, we have to determine the
average stability of each position. Provided we have n RO pairs, the average
stability si of position i is determined as:

si =
1

n

n
∑

j=1

sj(ROj), (3.4)

where ROj is the j -th pair of ROs.

Based on the average stability si of each position, we can decide which
bits are suitable for PUF output. Ideally, we would like the stability si of
selected bit positions to be equal to 1, but we might not be able to achieve
such stability, either at all or only at a few bits that are closest to the MSB.
Therefore, it is convenient to define a threshold value sth, according to which
we will select appropriate bit positions. For example, if we choose sth = 0.95,
then we select all positions from the MSB to the first position where si < 0.95.

3.1.2 Entropy

So far we have selected appropriate bit positions based on their stability si.
However, in addition to their stability, we have to take into account their
uniqueness among different FPGAs. We may assume that if we compare
measured values from two equally positioned RO pairs on two FPGAs, bits
close to the MSB will not differ at all while the bits approximately in the
middle between the most and the least significant bits will vary. It is unneces-
sary to consider bit positions close to the LSB since it is expected that they
will be different due to their instability.

36

3.1. The ring oscillator based PUF proposal

The average entropy of bit position i within each FPGA separately can be
determined as follows:

Hintra(i) = −
1

m

m
∑

j=1

1
∑

k=0

pj(k) log2(pj(k)), (3.5)

where m is the number of FPGAs and pj(k) is the probability of message k
within the j -th FPGA. There are only two possible messages, namely 0 and
1. The probability of their occurrence we compute as:

pj(1) =
1

n

n
∑

k=1

maj(ROj,k, i), pj(0) = 1− pj(1), (3.6)

where ROj,k represents the k -th RO pair on the j -th FPGA and n is the num-
ber of RO pairs. maj(RO, i) is the majority of the i -th position determined
from k measurements evaluated for each pair of ROs. The result is in this
case either 1 or 0 and is defined as:

maj(RO, i) = round(
1

k

k
∑

j=1

bj,i), (3.7)

where round(x) rounds number x to integer.

The average entropy of bit position i of each of the n RO pairs across
different FPGAs can be determined using a similar formula:

Hinter(i) = −
1

n

n
∑

l=1

1
∑

k=0

pl(k) log2(pl(k)), (3.8)

where pl(k) this time is the probability of message k of the l -th RO pair among
different FPGAs. This probability is determined similarly as in the case of
Hintra, we just calculate it for a particular RO pair among different FPGAs.
pl(k) is defined as:

pl(1) =
1

m

m
∑

k=1

maj(ROk,l, i), pl(0) = 1− pl(1). (3.9)

The ideal value of Hintra and Hinter is 1 (it is the maximum entropy for 1-
bit message). Such a value will guarantee that there is no correlation between
bits on the same positions among different FPGAs. For example, the lower
the entropy Hinter is, the higher is the probability of successful estimation of
the bit at given position on another FPGA, provided we already know this bit
from one FPGA.

37

3. Description and properties of the proposed PUF

most

significant bit

least

significant bit

the increasing stability

the increasing entropy

s > sth

Hintra > Hth Hinter > Hth

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

selected

positions
: pos = 9

w = 3

>

Figure 3.3: The example selection of suitable bit positions for PUF.

3.1.3 Method of selecting suitable bit positions for PUF

When selecting suitable bit positions for PUF, we have to consider both sta-
bility and entropy. The stability is increasing towards the MSB, while the
entropy is decreasing in the same direction. Therefore, it is necessary to select
such a trade-off between good entropy and high stability where both variables
are close enough to their ideal value of 1. Based on the statistics, the selection
of appropriate bits may be as follows:

• We proceed from the most to the least significant bit as long as the
stability si is higher then the threshold value sth determined by us. As
soon as we come across a position, where si < sth, we stop and return
one position back. This position is denoted as variable pos.

• Then we proceed from the position pos back towards the MSB, how-
ever, this time we consider the entropy values Hintra and Hinter. We
proceed backwards until both entropies satisfy our criteria (Hintra(i) >
Hth ∧ Hinter(i) > Hth, where Hth is the chosen threshold value). This
procedure is stopped as soon as the entropy is no longer sufficient. The
width w of our selection is determined by the difference of the current
position and position pos.

This whole procedure is shown in Fig. 3.3.

3.1.4 The proposed ROPUF circuit

The maximum amount of bits that we are able to extract using the above
described method is

(n
2

)

× w. It is the number of all possible combinations of
RO pairs multiplied by the number of bits that we select from the measured
value from one pair.

The circuit used for measurements is shown in Fig. 3.4. There are two
sets of ring oscillators and during the measurement of one pair, one RO is
selected from each set using multiplexer and a select signal. All of the ROs are
enabled and running during the measurement. The outputs of the two selected
ROs are fed into the two counters. When one of the counters overflows, the

38

3.1. The ring oscillator based PUF proposal

CNT 1

CE

C

OF

enable

M
U

X

Q

results0

s1

res0
RO 1

RO 2

RO n

.

.

.

.

.

M
U

X

RO 1

RO 2

RO n

.

.

.

.

.

M
U

X

sel0

sel1

CLR

fRO j

fRO i

CNT 1

CE

C

OF

Q

CLR RS 2

S Q

R Q

RS 1

S Q

R Q

res1

0xEB12

0xFFFF

0xEB12

challenge

running

Figure 3.4: The design of the proposed ROPUF.

measurement is stopped and the value of the counter that did not overflow is
selected as result. The detection of overflow is realised by two RS Flip-flops
as shown in Fig. 3.4.

3.1.5 Performance metrics

We need some metrics in order to evaluate the quality of PUF and its stat-
istical properties. We already discussed how to select good positions of the
counter values for the PUF based on their statistical properties such as stabil-
ity and entropy. After selecting the suitable positions, the PUF outputs made
up of these positions need to be evaluated by some additional parameters to
validate the selection of positions. In this subsection we describe the evalu-
ation method which we used to determine the qualities of the PUF outputs.
First we review two common parameters that are used to evaluate the proper-
ties of PUFs, namely Intra-Hamming distance (HDintra) and Inter-Hamming
distance (HDinter). Then we also depict the evaluation of randomness of the
PUF outputs.

Intra-Hamming distance

To evaluate the mutual similarity of the PUF outputs, we use Intra-Hamming
distance as a metric. HDintra is estimated as:

HDintra =
1

m× k

m
∑

i=1

k
∑

j=1

HD(Rri , Ri,j)× 100 [%], (3.10)

39

3. Description and properties of the proposed PUF

where m is the number of FPGAs, Rri is the reference output of the i -th PUF,
which the other outputs are compared to, and k is the number of compared
outputs from each PUF. As Rri , we can use either any output from the given
PUF or the mean output of several outputs (this may result in lower HDintra).
There are several influences that affect the value of HDintra such as changes
in voltage or temperature which cause HDintra to be of higher value.

Inter-Hamming distance

Another important metric that is used to evaluate the PUF quality is the
uniqueness of the generated outputs among different FPGAs. We can determ-
ine the uniqueness of the generated outputs by calculating the Inter-Hamming
distance, which is defined as:

HDinter =
1

(m
2

)

m−1
∑

i=1

m
∑

j=i+1

HD(Rri , Rrj)× 100 [%], (3.11)

where m is the number of FPGAs and Rri is the reference output of the i -th
PUF which is the mean output made of all outputs from the given PUF.

Randomness

In addition to HDintra and HDinter we also need to evaluate the randomness of
the PUF outputs, since one of the requirements on PUF is that the PUF out-
puts should be unpredictable. Therefore the PUF outputs should be random
(in the context of various challenges and devices, not random for one partic-
ular challenge and device) so that a potential adversary will not be able to
predict the PUF output based on the knowledge of some other PUF outputs.
It is required to have long bit strings in order to evaluate the randomness of
them. However, in case of PUF, we are limited by the fact that for very long
bit strings we would need a large population of devices.

To evaluate randomness, we used the statistical tests in NIST SP 800-
22 [30]. The version of the NIST software used is STS 2.1.2. Most of the
tests in this test battery require long input bit sequences; however, some tests
can work with sequences that are at least 100 bits long. These tests are
the Frequency, Block Frequency, Cumulative Sums, Runs, Longest Run and
Approximate Entropy tests. The Block Frequency and Approximate Entropy
tests require an additional parameter m, which is the length of the block. As
the input sequences for these tests we used the mean PUF outputs from 1000
measurements concatenated to one long bit string. In case of selecting one bit
from each RO pair, the bit string would be 3600 bits long (24 FPGAs, 150
RO pairs on each FPGA). The bit string is then split into 10 sequences of the
same length that are used as the input sequences for the NIST software. The
output of the software are pass rates for each of the tests and the distribution
of p-values, which is checked for uniformity [30]. The minimum pass rate of

40

3.2. Properties of the proposed PUF design

each of the tests is determined by the NIST software, in this case it is 8/10.
The significance level on which we test the distribution of p-values is 0.1,
corresponding to 10 input sequences.

3.2 Properties of the proposed PUF design

In Section 3.1 we introduced the reader to our PUF proposal that is based on
ring oscillators. We described the main concept of the proposed PUF design
which consists of counting the number of oscillations for two selected ROs
simultaneously using two counters and processing the value of the counter
that did not overflow. In this section we discuss the properties of this PUF
design.

3.2.1 Global versus separate selection of the appropriate

part of the counter values

The method of processing the obtained counter values was described in pre-
vious Section 3.1. In this case, processing means selecting the appropriate
part of the counter value, which is used to form the PUF output. In order to
determine the appropriate part of the counter value, it is necessary to statist-
ically evaluate each bit position of the counter value from the perspective of
stability and entropy. After determining the suitable bit positions, all we have
to do to generate the PUF output is to perform one measurement for each RO
pair and build the PUF output from the selected parts of the counter values
we obtained.

In other words, the proposed method consists of two phases:

1. First, repeated measurements for various RO pairs and various devices
have to be performed in order to obtain the counter values. Counter
values obtained in this way are statistically evaluated in terms of their
stability and entropy. A suitable part of the counter values is determ-
ined.

2. When generating a PUF output, the measurement is performed only
once for each selected RO pair. The part of the counter value that
was determined in the previous phase is extracted from each measured
counter value and used to form the PUF output by concatenating it with
other extracted values.

So far, we have assumed the statistical evaluation to be performed globally,
i.e. for all RO pairs and devices. However, since the ROs in our proposed PUF
design can be mutually asymmetric (therefore they may have very different
frequencies) and each RO pair can exhibit different behaviour in terms of
statistical properties of its bit positions, the suitable bit positions for PUF
can also be determined for each RO pair separately.

41

3. Description and properties of the proposed PUF

When determining the suitable bit positions for each RO pair separately,
the method remains the same, but the statistical evaluation is performed for
each RO pair on each device separately. By determining the suitable bit
positions for each RO pair separately, we may achieve higher stability of the
PUF outputs or more bits extracted from each counter value. However, it
has the disadvantage that the suitable bit positions for each RO pair have
to be stored, so that the same part of the counter value is extracted in each
measurement. Storing the suitable positions for each RO pair is the main
difference from selecting the positions globally for all RO pairs where we have
to store only one position (e.g. the start position and the number of bits
that are extracted from this position) that is later used for all RO pairs and
devices.

3.2.2 Independence on the maximum operating frequencies

of the counters

Another property of this design that we observed is the independence of this
design on the maximum operating frequencies of the counters. It is possible
that due to variations in voltage, temperature or other factors, the frequency
of the ROs may exceed the maximum operating frequency of the counter.
Even though this phenomenon should be avoided when designing the circuit,
it can still happen that due to variation in physical conditions the frequencies
of ROs will increase significantly and exceed the operating frequencies of the
counters.

When this phenomenon occurs, it results in an incorrect counter value that
is read from the counter at the end of the measurement, because the counters
miss some clock pulses. However, even in these cases the counter values exhibit
correct behaviour and the statistical properties of the PUF outputs remain
the same. More about this issue will be shown in Chapter 5.

3.2.3 Partial overflow of the counter value

As mentioned in Section 3.1, the counter values are represented as binary
values and by selecting an appropriate part of the counter value we can use
a specific part of this counter value to form a PUF output. However, since
it is a binary value, the number of bits that are changed when the value
is different in repeated measurements can be more than only e.g. one bit.
Because the counter values depend on ROs, the measured counter values are
not always the same due to the instability of ROs and variations in current
physical conditions when the measurement is performed.

As it was explained, the resulting counter value is affected by the frequen-
cies of the ROs that depend on various physical conditions. This is reflected
by the stability that is evaluated for each bit position, so the instability of
the frequencies of the ROs is considered when selecting an appropriate part of

42

3.2. Properties of the proposed PUF design

 Binary value

Measurement 1: 1001 1111 1111 1111

Measurement 2: 1010 0000 0000 0000

selected positions

Figure 3.5: Example of a partial overflow of a counter value represented in
binary code. Yellow colour highlighted area of the counter value represents
the part of the counter value that would be selected for PUF. The bits that
change with increasing the counter value by one in the next measurement are
highlighted in red.

the counter values for PUF. However, there are still cases in which some RO
pairs will produce unstable bits even in stable environmental conditions, be-
cause a considerable amount of bits are changed even when the counter value
is increased or decreased by one in the next measurement.

Such a case is shown in Fig. 3.5. This figure shows that even though the
counter value is increased by one, four bits are changed. When this happens, it
shows as a burst of errors in the PUF output and it increases the complexity of
correcting the PUF output if it is to be used for cryptographic key generation.

3.2.4 Influence of physical conditions

The basic building element of this PUF design is a RO, hence the physical
conditions such as variations in temperature or supply voltage will have impact
on the frequencies of ROs and therefore the behaviour of the PUF. In this
proposal, one RO pair is connected to two counters in each measurement and
the number of oscillations is counted for the two ROs until one of the counters
overflows and the measurement is stopped. Therefore, if we knew the exact
frequencies of the ROs during measurement, we could derive the resulting
counter value as it was shown in Eq. 3.1:

Counter value =
f2

f1
× 216,

where f1 is the frequency of the faster RO and f2 is the frequency of the slower
RO.

From Eq. 3.1 it is clear that the resulting counter value is dependent on
the ratio of the frequencies of the two selected ROs. It can be expected that
when the supply voltage or temperature is changed, then the frequencies of
the ROs should be affected in almost the same way.

Ideally, we want the ratio of the frequencies to remain constant in time. In
the context of Eq. (3.1) it means that the frequencies of ROs in a pair would

43

3. Description and properties of the proposed PUF

be modified (multiplied) by the same constant k. However, as it will be shown
in Chapter 5, the ratio of the frequencies is not constant, but the ratios of the
frequencies of the ROs measured in various physical conditions are close each
other and in some cases the change in ratio does not affect the bit positions
of the counter values that are used for the PUF.

The fact that the ratio of the frequencies of ROs is not constant also implies
that the frequencies of the two ROs in a pair are not multiplied by the same
constant k but rather two different constants k1 and k2. In order to achieve
stable PUF outputs, these constants should be almost the same (k1 ≈ k2).

Since the resulting counter value is determined by the ratio of the frequen-
cies of the two ROs in pair (see Eq. (3.1)), this method can be considered as a
differential measurement. It will be shown in Chapter 5 that the influence of
supply voltage or temperature on the frequencies of ROs is significant. How-
ever, since the resulting counter value depends on the ratio of the frequencies,
the changes in frequencies will not have such a large impact on the resulting
counter value if the change of the frequencies is almost the same.

44

Chapter 4

Improvements to the proposed

PUF

In this chapter we present the modifications of our PUF design that improve
its properties in terms of stability and its resistance to the influence of physical
conditions. Therefore, this chapter is closely related to Section 3.2 where we
discussed the properties of the proposed PUF design.

The first improvement of our PUF design is the application of Gray code
on the obtained counter values. This improvement is related to the partial
overflow of the counter values described in Section 3.2.3 and will be presented
in Section 4.1.

The second improvement is related to the issue described in Section 3.2.4,
i.e. the influence of various physical conditions on the behaviour of the PUF.
Since the PUF design is based on ROs, the physical conditions will have a
significant impact on the frequencies of ROs, however, our goal is to make the
differential measurement (frequency ratio) more robust against such effects.
In Section 4.2 we present a possible solution to this problem and in Chapter 5
we will show the results of the performed experiments.

4.1 Gray code

One of the issues of selecting a block of bits from each counter value is that
all of the selected bits may change in the next measurement since they are
represented in binary code and they are a part of a counter value. So even
if the final value is increased or decreased just by one, all of the bits can
be influenced by this change. The first step to solving this issue involves
the application of Gray code to the obtained counter values. The reason for
using Gray code is the fact that two successive values differ in only one bit,
so this can eliminate the partial overflow and increase the overall stability of
the selected bits and even increase the number of extractable bits from each

45

4. Improvements to the proposed PUF

Binary code Gray code

Measurement 1: 1001 1111 1111 1111 1001 1110 0011 1111

Measurement 2: 1010 0000 0000 0000 1010 0000 0000 0000

selected positions selected positions

Figure 4.1: Example of counter value overflow and its behaviour when the
counter value is represented in binary and Gray code (Gray code is applied
only on the selected part of the counter value in this example). Areas of the
counter value highlighted with yellow colour represent the part of the counter
value that would be selected for PUF and the bits that change with increasing
the counter value in the next measurement are highlighted in red.

counter value. An example is shown in Fig. 4.1. The Gray code is used in the
following form:

g1 = b1

gi = bi ⊕ bi−1, (4.1)

where gi is the i-th bit of the value represented in Gray code and bi is the i-th
bit of the value in binary code. b1 and g1 are MSBs of the value encoded into
Gray code.

There are two possible ways to apply Gray code on the counter values.
Gray code can be applied either to the whole counter value or only to the
selected part. Our observations indicate that when Gray code is applied to
the whole counter value, the stability of the PUF outputs is higher and the
uniqueness of the PUF outputs is lower than when encoding only the selected
part of the counter value. Therefore the choice must be determined by the
actual situation and our preference.

The difference of statistical properties is caused by the definition of Gray
code (4.1). This definition implies that each bit in the encoded value depends
only on the current and the preceding bit and is not influenced by any bits
in the direction to LSB. Therefore the statistical properties of the PUF will
remain the same if we apply Gray code either on the selected part of the
counter value (e.g. positions 7–8) or on the whole part of the counter value
from the first selected bit position to LSB (e.g. 7–16 in case of 16-bit counter
value). However, different statistical properties may be achieved, when Gray
code is applied from some of the bits closer to MSB or to the whole counter
value. This is shown in Fig. 4.2 on 4-bit values, where the behaviour of the
last three bits is observed and the values are compared to the first one. When
the value is increased by 1 and 2, then in case of Gray code is applied only to
the last three bits, the difference is in one and two bits. But when Gray code
is applied on the whole value, then there is no difference (value increased by

46

4.2. Placement of ROs

0111 0100 0100

(+1) 1000 1000 1100

(+2) 1001 1001 1101

Binary
Gray

(part)

Gray

(whole)

Figure 4.2: Comparison of binary and Gray code. Yellow area corresponds to
bits that are encoded in Gray code and the differences to the original value
are highlighted with red colour. Only the last three bits are observed in this
example (the first bit is neglected).

1) or only in one bit (value increased by 2). The described behaviour implies
that the PUF will be more stable when Gray code is applied on the whole
counter value.

As mentioned before, the method of application of Gray code to the counter
value doesn’t influence only the stability but also the uniqueness of the PUF
outputs. The uniqueness of the PUF outputs is lower when Gray code is
applied on the whole counter value for the same reason why the stability is
higher (see Fig. 4.2). The counter values for the same RO pair on different
FPGAs are close to each other, but they also differ enough so that we can
distinguish them. However, by applying the Gray code on the whole counter
values, the difference between these values may not affect the selected positions
that are used for the PUF outputs if the difference between the counter values
is not large enough.

4.2 Placement of ROs

In our PUF proposal, we stated that compared to classical approach [32], our
PUF design does not require the ROs to be mutually symmetric. However, it
will be shown in Chapter 5 that when using symmetrical ROs, the proposed
PUF exhibits better behaviour in terms of stability at varying voltage or
temperature.

In Section 3.2.4 we presented how the resulting counter value is determined
(ratio of the frequencies of the two ROs in pair) and the physical conditions
that may affect the frequencies of ROs. In order to achieve high stability of
the PUF outputs at varying physical conditions, the ratios of the frequencies
of the ROs need to remain the same, or at least as close as possible.

It can be expected that the frequencies of ROs will change in a similar
way when the ROs are mutually symmetric. Therefore, the ratios of the

47

4. Improvements to the proposed PUF

en

outX0Y0 X4Y0

X4Y4X0Y4

Figure 4.3: Relative mutual placement of logic gates used for each RO on
Xilinx Spartan3E-100 CP132.

frequencies of RO pairs should be almost constant. In our experiments we
placed the logic gates of each RO so that the ROs placed on the FPGA are
mutually symmetric. This is a different approach than the one we used so far
because the placement of ROs was originally left to the automatic placer of
ISE 14.7.

The RO gates were placed using RLOC constraints that were the same for
all ROs. We used 5-stage ring oscillators (see Fig. 2.10) that were placed into
four slices, with each inverter occupying one slice and the last one sharing the
slice with the NAND gate. The relative locations of the slices were (X0, Y0),
(X4, Y0), (X4, Y4) and (X0, Y4) as shown in Fig. 4.3. Other placements
were left unconstrained and the choice was left to the automatic placer of ISE
14.7. It should be also noted that the constraints were put only on the relative
placement of the gates of each RO but not on the interconnects between them.
Therefore, even though the placement of ROs is mutually symmetric, the ROs
themselves are not absolutely symmetrical since the interconnects between the
gates of each RO can be different.

Using symmetric ROs we were able to achieve higher stability of the
PUF outputs at varying voltage or temperature. The statistical properties
of the PUF itself remained similar. All of this will be shown in the following
Chapter 5.

48

Chapter 5

Experimental results and

analysis

This chapter presents the results of our experiments. The experiments were
performed mainly on Digilent Basys 2 FPGA boards (Xilinx Spartan3E-100
CP132) [6]. To verify that the proposed PUF design works properly on other
types of FPGAs, we also performed measurements on Digilent Nexys 3 FPGA
boards (Xilinx Spartan-6), which is manufactured with 45nm technology while
Spartan-3E is a 90nm technology. As a measurement circuit we used the design
shown in Fig. 3.4 with 300 ROs divided into two sets of 150 ROs each.

The designs of logical circuits and their bitstreams for FPGAs were created
using Xilinx ISE 14.7 [36]. The FPGAs were then programmed with the
resulting bitstreams with Digilent Adept 2 [4]. The communication between
PC and FPGA was realised through USB using DEPP interface (Digilent
Adept Asynchronous Parallel Port Interface). It is a library that is part of
Adept SDK [5] which among other things, enables data transfer between PC
and the target device. Adept SDK provides API in C language that can be
used for interaction with various FPGA boards.

5.1 Selection of suitable positions

In this section we present the results achieved in our previous work [13]. The
measurements were performed on 24 Digilent Basys 2 FPGA boards and as
mentioned before, the circuit we used contained 300 ROs divided into two
groups of 150 ROs each (see Fig. 3.4). The ROs are ordinary 5-stage ROs as
shown in Fig. 2.10 and their oscillations are counted by 16-bit counters.

We performed the measurements for 150 RO pairs (each oscillator from the
first group is paired with another unused oscillator from the second group) and
1000 measurements were executed for each pair. The next measurement was
performed for 450 pairs with 500 measurements for each pair.

49

5. Experimental results and analysis

150 pairs of ring oscillators

pos(i) si Hintra Hinter P (bi=1)

1 1 0.1414 0 0.98
2 0.9996 0.9477 0.0557 0.3663
3 0.9995 0.9944 0.0794 0.5430
4 0.9985 0.9962 0.1657 0.5336
5 0.9983 0.9992 0.2955 0.4998
6 0.9950 0.9941 0.7183 0.4765
7 0.9908 0.9958 0.9475 0.5056
8 0.9815 0.9954 0.9663 0.4959
9 0.9650 0.9946 0.9639 0.4931
10 0.9297 0.9954 0.9681 0.4997
11 0.8624 0.9943 0.9701 0.4960
12 0.7268 0.9957 0.9728 0.4985
13 0.5569 0.9932 0.9732 0.5001
14 0.5139 0.9961 0.9654 0.4985
15 0.5135 0.9957 0.9647 0.4975
16 0.5140 0.9897 0.9613 0.4967

450 pairs of ring oscillators

pos(i) si Hintra Hinter P (bi=1)

1 0.9999 0.5473 0.0132 0.8736
2 0.9997 0.9831 0.0395 0.4239
3 0.9995 0.9949 0.0937 0.5410
4 0.9989 0.9979 0.1898 0.5248
5 0.9980 0.9982 0.3598 0.5233
6 0.9961 0.9973 0.6585 0.5233
7 0.9920 0.9982 0.9232 0.5118
8 0.9841 0.9986 0.9682 0.4978
9 0.9677 0.9984 0.9692 0.4971
10 0.9347 0.9983 0.9706 0.5047
11 0.8709 0.9984 0.9707 0.5042
12 0.7441 0.9981 0.9709 0.4969
13 0.5691 0.9987 0.9706 0.5005
14 0.5185 0.9982 0.9727 0.4996
15 0.5180 0.9981 0.9663 0.4991
16 0.5182 0.9972 0.9687 0.4977

Table 5.1: Statistical evaluation of 16-bit counter values obtained from 24
Digilent Basys 2 FPGA boards.

First, we want to present the results of stability (si), entropy (Hintra,
Hinter) and bias (P (bi = 1)) for each position of the 16-bit counter values.
See Section 3.1 for the description of these parameters. As can be seen in
Table 5.1, the entropy rises and is approaching the ideal value of 1 (especially
Hinter, Hintra is high since position 2) while the stability is decreasing with
the increasing position. The bias is very close to the ideal value of 0.5 on all
positions apart from the first few. The positions are numbered from the most
significant bit (MSB), i.e. position 1 corresponds to the MSB and position 16
corresponds to the least significant bit (LSB).

The next Table 5.2 presents the results for PUF that uses different se-
lections of positions. We used the same data that we measured before and
assembled PUF responses from them. PUF responses created in this fashion
were 150 × w or 450 × w bits long, where w is the number of bits selected
from each RO pair. When calculating HDintra, we used the first response as
the reference response. We calculated HDinter among all FPGAs using mean
responses from all obtained responses for each FPGA. Since one of our goals
was to achieve HDinter close to 50%, it was desirable to select bits starting at
position 7. However, since we need the PUF responses to be stable enough,
we have to select bits so that HDintra is very small, ideally 0%. Bit positions
that fulfil both these requirements are for example positions 7–8.

50

5.2. Timing analysis

150 pairs of ring oscillators

positions 6–8 7–8 7–9 8–9

w [-] 3 2 3 2
HDintra [%] 1.61 2.05 3.10 3.95

HDintra interval [%] 〈0.00, 6.44〉 〈0.00, 7.00〉 〈0.00, 8.67〉 〈0.00, 10.00〉
HDinter [%] 44.27 49.15 49.31 49.70

HDinter interval [%] 〈36.67, 52.44〉 〈39.67, 58.33〉 〈42.22, 56.67〉 〈40.33, 58.33〉

450 pairs of ring oscillators

positions 6–8 7–8 7–9 8–9

w [-] 3 2 3 2
HDintra [%] 1.37 1.78 2.79 3.60

HDintra interval [%] 〈0.00, 3.56〉 〈0.00, 4.56〉 〈0.74, 6.37〉 〈1.11, 8.22〉
HDinter [%] 42.69 48.42 48.94 49.96

HDinter interval [%] 〈34.67, 52.30〉 〈42.33, 56.11〉 〈44.74, 54.74〉 〈45.44, 54.67〉

Table 5.2: The results of statistical tests performed on the PUF outputs com-
posed of various bit selections and a comparison of the PUF quality. The
measurements were performed on 24 Digilent Basys 2 FPGA boards (Xilinx
Spartan-3E)

5.2 Timing analysis

For further investigation of the behaviour of ROs we performed measurements
using an oscilloscope. We sampled the signal coming out of ROs in the mea-
sured pairs of ROs with the oscilloscope and then processed the obtained
waveforms in software. To determine the impact of the delay of the circuit
that detects the overflow and stops the counting on the resulting counter value,
we performed measurements in which the chosen RO pairs were enabled and
from this moment these ROs were sampled. We read the counter values from
the FPGA and processed the waveforms obtained from the oscilloscope. By
counting the rising edges in the waveforms for the two ROs in a pair we
determined the correct value that should be in the counter.

Due to variation in voltage or other reasons, the frequency of a selected
RO may exceed the maximum operating frequency of the respective counter.
This should be avoided by design, but if it happens, the counter starts missing
some clock pulses and it results in incorrect counter value read from the FPGA.
We have measured several instances where the reported counter values differ
from the exact values calculated by counting clock edges measured with the
oscilloscope. However, even in these instances the counter values are consistent
in time and the statistics for the PUF outputs remains the same. Table 5.3
shows the mean and standard deviations of differences of counter values from
the correct ones for five RO pairs where at least one RO frequency exceeded
the maximum operating frequency of the counters. The standard deviations of

51

5. Experimental results and analysis

RO pair 1 2 3 4 5

Mean difference 2812.43 3502.78 3085.41 4037.65 2861.42

Standard Deviation 0.5366 0.9054 0.7797 0.9987 0.7808

Table 5.3: The difference of measured counter values and the correct ones for
five RO pairs.

differences are very small, indicating that the counter values remain consistent
when the measurements are repeated. The measurements were carried out 100
times for each pair of ROs.

When using proper (fast enough) counters, the difference of counter values
and the correct ones should ideally be 0. The difference we measured was 0 or
1. When the difference is 1, it is caused by the overflow detection logic of one
of the counters – before the other counter is stopped, it manages to perform
one additional count. This way we verified that the stopping circuit works
correctly and consistently.

5.3 Gray code

Table 5.4 shows results for the PUF outputs that were extracted from 150 and
450 pairs of ROs and the Gray code was applied to the selected part of the
counter values. The measurements were repeated 1000 times in case of 150
pairs of ROs and 500 times in case of 450 pairs. The experiment was realised
on 24 Digilent Basys 2 FPGA boards. The results for the PUF outputs with
applied Gray code are compared to the outputs without Gray code. The PUF
outputs are composed of different positions of the counter values. The value w
is the number of bits selected from each counter value. The next parameters
are HDintra and HDinter.

From the observation of HDintra in Table 5.4, it can be seen that the PUF
outputs are more stable when Gray code is used. Without Gray code, we
determined positions 7–8 as good positions for PUF. But with Gray code,
we were able to extract more bits from each counter value with almost the
same values of HDintra and HDinter. For example, when we select positions
7–10, the average HDintra is 2.71% and the average HDinter is 49.32%. So
now we can extract twice as many bits as before with almost the same value
of HDintra.

Table 5.5 presents the results for Gray code applied both to the selected
part of the counter values and the whole counter values. These results confirm
that when Gray code is used on the whole counter values, the PUF outputs
are more stable (lower HDintra) but uniqueness is negatively affected (lower
HDinter).

52

5.4. Evaluation of the proposed PUF on Nexys 3 FPGA boards

Without Gray code
150 pairs of ring oscillators

positions 6–8 7–8 7–9 8–9

w [-] 3 2 3 2
HDintra [%] 1.61 2.05 3.10 3.95

HDintra interval [%] 〈0.00, 6.44〉 〈0.00, 7.00〉 〈0.00, 8.67〉 〈0.00, 10.00〉
HDinter [%] 44.27 49.15 49.31 49.70

HDinter interval [%] 〈36.67, 52.44〉 〈39.67, 58.33〉 〈42.22, 56.67〉 〈40.33, 58.33〉

450 pairs of ring oscillators

positions 6–8 7–8 7–9 8–9

w [-] 3 2 3 2
HDintra [%] 1.37 1.78 2.79 3.60

HDintra interval [%] 〈0.00, 3.56〉 〈0.00, 4.56〉 〈0.74, 6.37〉 〈1.11, 8.22〉
HDinter [%] 42.69 48.42 48.94 49.96

HDinter interval [%] 〈34.67, 52.30〉 〈42.33, 56.11〉 〈44.74, 54.74〉 〈45.44, 54.67〉

With Gray code
150 pairs of ring oscillators

positions 7–8 7–9 7–10 8–9

w [-] 2 3 4 2
HDintra [%] 1.37 1.77 2.71 2.63

HDintra interval [%] 〈0.00, 4.33〉 〈0.00, 4.44〉 〈0.50, 5.50〉 〈0.00, 6.33〉
HDinter [%] 48.49 49.06 49.32 50.00

HDinter interval [%] 〈40.00, 56.99〉 〈42.67, 55.56〉 〈44.00, 55.00〉 〈39.00, 58.33〉

450 pairs of ring oscillators

positions 7–8 7–9 7–10 8–9

w [-] 2 3 4 2
HDintra [%] 1.19 1.60 2.45 2.40

HDintra interval [%] 〈0.00, 2.78〉 〈0.52, 3.70〉 〈0.78, 5.33〉 〈0.78, 5.56〉
HDinter [%] 47.44 48.30 48.74 49.97

HDinter interval [%] 〈35.89, 60.33〉 〈39.48, 57.11〉 〈41.61, 56.39〉 〈45.67, 56.11〉

Table 5.4: The results of statistical tests performed on PUF outputs com-
posed of various bit selections, and a comparison of the PUF quality with and
without Gray code. The measurements were performed on 24 Digilent Basys
2 FPGA boards (Xilinx Spartan-3E)

5.4 Evaluation of the proposed PUF on Nexys 3

FPGA boards

To verify that the proposed PUF design works properly on other types of
FPGAs, we performed measurements on six Digilent Nexys 3 FPGA boards
that contain Xilinx Spartan-6 which is manufactured with 45nm technology
(Spartan-3E is 90nm technology). Table 5.6 shows the results of these mea-

53

5. Experimental results and analysis

Gray (part) Gray (whole)

HDintra [%] 1.37 1.03
HDintra interval [%] 〈0.00, 4.33〉 〈0.00, 3.67〉

HDinter [%] 48.49 40.70
HDinter interval [%] 〈40.00, 56.99〉 〈30.67, 50.67〉

Table 5.5: The difference of the PUF outputs with Gray code applied to the
selected part of the counter values and to the whole counter values for 150 RO
pairs and for selected positions 7–8.

positions 6–7 7–8 7–9 7–10

w [-] 2 2 3 4
HDintra [%] 0.81 1.56 1.98 2.88

HDintra interval [%] 〈0.00, 2.00〉 〈0.33, 3.00〉 〈0.74, 3.33〉 〈1.28, 4.00〉
HDinter [%] 40.27 49.36 49.30 49.54

HDinter interval [%] 〈28.67, 55.67〉 〈45.56, 51.89〉 〈47.33, 51.26〉 〈47.67, 51.50〉

Table 5.6: The results of statistical tests performed on PUF outputs composed
of various bit selections on Digilent Nexys 3 FPGA boards (Xilinx Spartan-6).

surements for 450 RO pairs and 500 measurements for each pair with Gray
code applied to the selected part of the counter values. The results are similar
to those obtained from Basys 2 (Spartan-3E).

5.5 Evaluation of randomness

As mentioned in Section 3.1, long bit strings are required to evaluate random-
ness. Since we had limited possibilities, we applied particular tests from the
NIST STS that are suitable for evaluating short input sequences. We evalu-
ated the randomness of 10 sequences that were 360 bits long (or its multiple,
depending on the number of bits selected from each counter value) and the
minimum pass rate for these tests was 8/10. But for the test of the distribu-
tion of p-values, at least 55 input sequences are required in order to obtain
statistically meaningful results according to [30]. Therefore, the results from
these tests have to be taken with caution.

Table 5.7 contains the results of the applied tests. Empty cells mean that
the pass rate for that test is 10/10 and red colored cells indicate that the test
failed for the distribution of p-values. The upper part of this table shows the
results for PUF outputs made of each position of the counter values. It can
be seen that for positions 1 to 5 the tests indicate that the input sequences
made from these positions are not random. This result is expected since these
positions are close to the MSB and therefore they have low entropy and the

54

5.5. Evaluation of randomness

PUF outputs made from these bits would have low HDinter. The positions
in the direction to the LSB have better results, but still with some failures
in the test of the distribution of p-values. As mentioned before, this can
be caused due to the small number of input sequences. The bottom part of
Table 5.7 presents the results for more extracted bits from the counter values
for various selections of positions. It is divided into two parts, where the left
side contains results for the parts of the counter values in binary code, while
the other side contains results for the parts of the counter values encoded with
Gray code. It can be seen that Gray code does not have a negative impact on
the randomness of the PUF outputs.

55

5
.

E
x
p
e
r
im

e
n
t
a
l
r
e
s
u
l
t
s
a
n
d

a
n
a
l
y
s
is

positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Frequency 0/10 0/10 9/10 9/10
Block Frequency (m=2) 0/10
Block Frequency (m=3) 0/10 9/10 9/10
Block Frequency (m=4) 0/10 8/10

Cumulative Sums 0/10 0/10 9/10 9/10
Runs 0/10 0/10 9/10 9/10 9/10

Longest Run 0/10 0/10 9/10
Approximate Entropy (m=2) 0/10 0/10 1/10 9/10
Approximate Entropy (m=3) 0/10 3/10 8/10 9/10 9/10
Approximate Entropy (m=4) 0/10 9/10 2/10 8/10

Binary code Gray code

positions 6–7 7–8 8–9 6–8 7–9 6–7 7–8 8–9 6–8 7–9 7–10

Frequency 9/10 9/10
Block Frequency (m=2)
Block Frequency (m=3)
Block Frequency (m=4)

Cumulative Sums 9/10
Runs 9/10 8/10

Longest Run
Approximate Entropy (m=2) 9/10 8/10
Approximate Entropy (m=3) 9/10 8/10
Approximate Entropy (m=4) 9/10

Table 5.7: The results of the tests from NIST STS. Each cell contains pass rate and indicates whether the test failed for the
distribution of p-values (red cells). Empty cells mean that the pass rate for those cells was 10/10. Minimum allowed pass
rate was 8/10. The top table contains results for PUF outputs made from each position of the counter values. The bottom
table presents results for various selections of positions of the counter values in binary and Gray code.

5
6

5.6. Evaluation of the proposed PUF with symmetric ROs

50 pairs of ring oscillators

pos(i) si Hintra Hinter P (bi=1)

1 1.0000 0.0000 0.0000 1.0000
2 1.0000 0.0000 0.0000 1.0000
3 0.9995 0.6911 0.0726 0.8143
4 0.9985 0.8667 0.1347 0.7107
5 0.9975 0.9953 0.2652 0.5197
6 0.9913 0.9926 0.6779 0.5364
7 0.9842 0.9610 0.8659 0.6016
8 0.9729 0.9865 0.9067 0.5162
9 0.9434 0.9759 0.9313 0.5524
10 0.8801 0.9940 0.9093 0.5054
11 0.7869 0.9926 0.9338 0.4918
12 0.6292 0.9833 0.9297 0.5078
13 0.5210 0.9912 0.9022 0.5023
14 0.5136 0.9922 0.9133 0.5007
15 0.5130 0.9787 0.9296 0.4987
16 0.5134 0.9789 0.9001 0.4977

150 pairs of ring oscillators

pos(i) si Hintra Hinter P (bi=1)

1 1.0000 0.0000 0.0000 1.0000
2 1.0000 0.0000 0.0000 1.0000
3 0.9992 0.6527 0.0730 0.8319
4 0.9987 0.8623 0.1357 0.7143
5 0.9971 0.9746 0.3320 0.5897
6 0.9936 0.9850 0.7524 0.5655
7 0.9866 0.9890 0.9413 0.5376
8 0.9710 0.9951 0.9648 0.5213
9 0.9415 0.9950 0.9718 0.5111
10 0.8895 0.9951 0.9657 0.5032
11 0.7839 0.9941 0.9662 0.5206
12 0.6214 0.9956 0.9655 0.4997
13 0.5186 0.9936 0.9706 0.5005
14 0.5131 0.9946 0.9679 0.5001
15 0.5129 0.9941 0.9661 0.4993
16 0.5130 0.9840 0.9588 0.4971

Table 5.8: Statistical evaluation of 16-bit counter values for symmetric ROs.
The first table contains statistical evaluation for 50 RO pairs measured 1000
times on 10 Digilent Basys 2 FPGA boards (Xilinx Spartan-3E). In the second
table, there are results of statistical evaluation for 150 RO pairs measured 1000
times on 24 of the same FPGA boards.

5.6 Evaluation of the proposed PUF with

symmetric ROs

As described in Section 4.2, we placed the gates of each ROs as shown in
Fig. 4.3. We used the same RLOC constraints for the placement of all 5-
staged ROs and put each RO into four slices with each inverter occupying
one slice and the last one sharing it with the NAND gate. The placement
of the ROs themselves and also the interconnects between the gates were left
unconstrained and the choice was left to the automatic placer of ISE 14.7.
The circuit used for measurements remained the same (see Fig. 3.4), but the
number of ROs was smaller due to the RLOC constraints that were used.
There were 100 ROs divided into two groups of 50 ROs each.

The left part of Table 5.8 shows the results of the statistical evaluation of
each bit position of the counter values for 50 RO pairs measured 1000 times
on 10 Digilent Basys 2 FPGA boards. It can be seen that the results are very
similar to what was presented in Table 5.1. Only the values of Hinter are a
little bit lower. It is caused by the smaller number of boards which were used
for the measurements.

The right part of Table 5.8 contains the statistical evaluation of each bit

57

5. Experimental results and analysis

Gray code (part)
50 pairs of ring oscillators

positions 7–8 7–9 7–10 8–9

w [-] 2 3 4 2
HDintra [%] 1.96 2.89 4.60 4.30

HDintra interval [%] 〈0.00, 7.00〉 〈0.00, 8.00〉 〈0.00, 9.50〉 〈0.00, 12.00〉
HDinter [%] 48.51 49.53 49.93 50.18

HDinter interval [%] 〈38.00, 60.00〉 〈40.67, 60.00〉 〈41.50, 60.00〉 〈40.00, 63.00〉

150 pairs of ring oscillators

positions 7–8 7–9 7–10 8–9

w [-] 2 3 4 2
HDintra [%] 2.16 2.81 4.21 4.21

HDintra interval [%] 〈0.00, 5.67〉 〈0.22, 6.00〉 〈0.83, 8.33〉 〈0.33, 9.00〉
HDinter [%] 48.81 49.23 49.45 49.88

HDinter interval [%] 〈40.00, 60.33〉 〈42.67, 56.22〉 〈43.67, 55.17〉 〈42.33, 56.67〉

Gray code (whole)
50 pairs of ring oscillators

positions 7–8 7–9 7–10 8–9

w [-] 2 3 4 2
HDintra [%] 1.35 2.48 4.30 3.26

HDintra interval [%] 〈0.00, 6.00〉 〈0.00, 7.33〉 〈0.00, 9.50〉 〈0.00, 11.00〉
HDinter [%] 47.00 48.52 49.18 51.04

HDinter interval [%] 〈34.00, 60.00〉 〈39.33, 57.33〉 〈41.00, 56.50〉 〈38.00, 65.00〉

150 pairs of ring oscillators

positions 7–8 7–9 7–10 8–9

w [-] 2 3 4 2
HDintra [%] 1.72 2.52 3.99 3.22

HDintra interval [%] 〈0.00, 5.00〉 〈0.00, 5.56〉 〈0.67, 7.83〉 〈0.00, 7.67〉
HDinter [%] 46.28 47.54 48.19 49.78

HDinter interval [%] 〈34.33, 55.33〉 〈38.44, 57.11〉 〈41.33, 56.33〉 〈41.33, 58.00〉

Table 5.9: The results of statistics carried out for PUF outputs composed of
various bit selections and a comparison of the PUF quality with Gray code
applied on the whole counter value or only on the selected part. The measure-
ments were performed on Digilent Basys 2 FPGA boards (Xilinx Spartan-3E)

position of the counter values for 150 RO pairs measured 1000 times on 24
Digilent Basys 2 FPGA boards. As we can see, the results are also very
similar to Table 5.1 and also the suitable bit positions for PUF are the same
(the positions starting from position 7).

From the same set of measurements we statistically evaluated the PUF
outputs composed of various selections of bit positions. Table 5.9 contains the
results of this evaluation. We provide this evaluation with Gray code applied

58

5.7. Influence of supply voltage

either to the selected part of the counter values or to the whole counter values.
We can see a similar behaviour of the metrics HDintra and HDinter to that in
Table 5.5 which was described in Section 4.1. When Gray code is applied to
the whole counter values, the HDintra is lower, but HDinter is lower as well.
However, compared to results presented in Table 5.5 for positions 7–8, the
difference of these two cases of Gray code usage is not so significant in case
of symmetric ROs. The difference in HDinter for asymmetric ROs is 7.79%
(from 48.49% to 40.70%) while for symmetric ROs the difference is about 2%
(48.51% to 47.00% and 48.81% to 46.28%).

5.7 Influence of supply voltage

All of the previous measurements were performed at normal environmental
conditions with stable temperature and supply voltage. In this section, we
present the results of the experiments performed at varying voltage. First,
we will describe the influence of temperature conditions on the measurements
to evaluate the correctness of our approach. Then we will present the results
of the experiments and show the difference of the results obtained for both
asymmetric and symmetric ROs.

5.7.1 Temperature conditions during the measurements

All of the measurements regarding the influence of voltage were performed
at stable environmental conditions with stable room temperature 24.5± 1 ◦C.
Before the measurements were started, the FPGAs were turned on with run-
ning oscillators for at least 2 minutes to eliminate other influences than the
influence of change of voltage. The reason for this is the fact that in the short
time period after enabling the ring oscillators, there is a significant change in
temperature of the FPGA which could affect the measurement.

To evaluate the correctness of our approach, we observed the behaviour
of ring oscillators on three different FPGAs during warm-up. The duration
of the measurement was at least 30 minutes and up to 90 minutes. For this
measurement we selected one RO pair, which is common for all three FPGAs,
and then two other random RO pairs for each FPGA (three RO pairs for each
FPGA in total). The values of temperature, RO frequency and counter value
were sampled in intervals of 1.5 to 3 seconds. We analysed the results and the
maximum difference of the gathered counter values in the whole time interval
was such that it influences positions 9–16 of the counter value. For the time
after 2 minutes (the waiting time that we used for the measurements of the
influence of the supply voltage), the maximum difference affects positions 10–
16, and when extending the delay to 30 minutes, it still affects positions 10–16
of the counter value. These results indicate that the influence of change in
temperature during the warm-up of FPGAs with stable room temperature is
negligible compared to the influence of voltage.

59

5. Experimental results and analysis

Frequency (MHz)

0 1000 2000 3000 4000 5000
164.

164.5

165.

165.5

166.

24.

27.

29.

32.

34.

Temperature (°C)

Time (s)

(a) The frequency progress for approx-
imately 90 minutes.

0 50 100 150
164.

164.5

165.

165.5

166.

24.

27.

29.

32.

34.

Time (s)

Frequency (MHz) Temperature (°C)

(b) A more detailed frequency progress
at the beginning of warm-up of FPGA.

Figure 5.1: Frequency behaviour during warm-up of FPGA (Xilinx Spartan-
3E). Blue dots represent the measured frequency of RO. The temperature at
the time of the frequency measurement is marked with purple colour.

Fig. 5.1 shows the frequency behaviour during warm-up of FPGA for one
RO on one FPGA. The graphs contains both the frequency of RO and the
temperature that was recorded at the time of measurement. Fig. 5.1(a) shows
the behaviour of one RO on one FPGA for the whole recorded time. It can be
seen that the largest change in both temperature and frequency occurs at the
beginning of the measurement, which is shown in better detail in Fig. 5.1(b).

5.7.2 Asymmetric ROs

In previous subsection we described the temperature conditions during the
measurements performed in this experiment. The next measurement concerns
the influence of voltage on the behaviour of the proposed ROPUF design. The
measurements were performed on two Digilent Basys 2 FPGA boards contain-
ing Xilinx Spartan3E-100 CP132. The main power supply for the FPGA’s
internal logic is Vccint and its nominal voltage is 1.2V. The maximum ratings
for Vccint are -0.5V and 1.32V, with manufacturer’s recommended range from
1.14V to 1.26V. The circuit remained the same and the results presented in
Table 5.10 relate to 1000 measurements for 150 RO pairs; they show how the
PUF outputs are different from those obtained at nominal voltage, which is
1.2V. The range of tested voltages is from 1.018V to 1.286V and the selected
positions of counter values for the PUF outputs are 7–8 and 7–10.

For the purpose of obtaining values of HDintra, we averaged the PUF
outputs at each voltage. The average PUF output can be determined as the
majority of each column when the PUF outputs are written in rows.

60

5.7. Influence of supply voltage

RO pair 1 RO pair 2

10000 20000 30000 40000

200

400

600

800

1000

46350 46360 46370 46380 46390 46400

20

40

60

80

100

1.018V

1.050V

1.100V

1.150V

1.200V

1.262V

1.286V

Counter value

1.018V

1.050V
1.100V

1.150V
1.200V1.262V

1.286V

39500 40000 40500 41000 41500

200

400

600

800

Counter value

Counter value

RO pair 1 RO pair 2

Figure 5.2: Histograms for two examples of behaviour of measured counter
values for two RO pairs for seven different voltages (range from 1.018V to
1.286V). The histogram for RO pair 1 shows the undesired behaviour of
counter values while the histogram for RO pair 2 shows the desired beha-
viour because the frequency distribution of counter values is approximately
the same for all voltages.

7–8 7–10

Voltage [V] ∆U [mV] HDintra [%] HDintra [%]

1.200 → 1.018 -182 53.56 51.55
1.200 → 1.050 -150 51.65 48.05
1.200 → 1.100 -100 41.89 47.33
1.200 → 1.150 -50 23.67 36.45
1.200 → 1.200 0 0.55 2.00
1.200 → 1.262 62 34.19 42.01
1.200 → 1.286 86 38.66 43.49

Table 5.10: The difference of the PUF outputs measured at various voltages
and the PUF outputs measured at nominal voltage 1.2V for 150 RO pairs and
for selected positions 7–8 and 7–10.

61

5. Experimental results and analysis

FrequencyHMHzL

1050 1100 1150 1200 1250

90

100

110

120

VoltageHmVL

(a) Difference of the change of fre-
quency for two ROs in pair. Red
curve represents the faster RO and
blue curve is the slower RO.

Ratio of frequencies

1050 1100 1150 1200 1250

0.76

0.77

0.78

0.79

0.80

VoltageHmVL

(b) The change of ratio of frequen-
cies for one RO pair in dependence on
voltage.

Figure 5.3: Dependency of the frequencies of two ROs and their ratio on the
change of voltage.

It can be seen that the influence of voltage on this ROPUF design is sig-
nificant since the PUF outputs are very different. The influence of voltage is
even larger for positions 7–10 since it includes the positions closer to the LSB,
therefore, the stability is lower than for positions 7–8. The cause of this beha-
viour can be seen in Fig. 5.2. These histograms show how the counter values
for two chosen RO pairs change with voltage. The upper histogram contains
the counter values for both of the RO pairs and the bottom histograms show
the counter values for each of the RO pairs in detail. We can see that the
mean values of the counter values for RO pair 1 are very different for each
voltage. Ideally, we would need the behaviour of another RO pair (RO pair 2)
where the counter values would not significantly change with varying voltage.
The reason of the difference in behaviour of the two RO pairs is still unclear
and therefore our future work will address this issue. There is a suspicion that
this issue is related to the mutual symmetry of ROs, i.e. with the placement
of ROs which is discussed in Section 4.2.

The next experiment was to determine whether the length of ROs influence
the behaviour of PUF when the voltage is changed. We performed measure-
ments 1000 times for 90 RO pairs where ROs were five and seven stages long
and the selected positions of counter values were 7–8. Table 5.11 shows the
results of these measurements and as it can be seen, the change of length of
ROs did not affect the PUF behaviour.

The high sensitivity of this ROPUF design to voltage is caused by the
change of ratios of two frequencies of ROs in each pair. If we want the PUF
outputs to remain stable at varying voltage, the ratios of the frequencies for
each pair of ROs have to be the same. The reason is that the value of the

62

5.7. Influence of supply voltage

Voltage [V] ∆U [mV] HDintra [%]

5-stage ROs
1.204 → 1.101 -103 47.57
1.204 → 1.289 85 53.28

7-stage ROs
1.204 → 1.101 -103 48.51
1.204 → 1.289 85 50.76

Table 5.11: The difference of the PUF outputs with various voltages and the
PUF outputs measured at nominal voltage 1.2V for selected positions 7–8 with
5-stage and 7-stage ROs.

Voltage [V] ∆U [mV] HDintra [%]

1.201 → 1.180 -21 19.79
1.201 → 1.190 -11 10.49
1.201 → 1.193 -8 8.12
1.201 → 1.196 -5 5.76
1.201 → 1.201 0 1.50
1.201 → 1.207 6 5.04
1.201 → 1.212 11 9.78
1.201 → 1.222 21 19.40

Table 5.12: The PUF outputs with various voltages from the range of 1.180V
to 1.222V compared to the PUF outputs measured at nominal voltage 1.2V
for selected positions 7–8.

16-bit counter can be determined as shown in Eq. 3.1:

Counter value =
f2

f1
× 216,

where f1 is the frequency of the faster RO and f2 is the frequency of the
slower RO. Fig. 5.3(a) shows the dependency of the frequencies of two ROs
in a pair on voltage. The higher the voltage is, the higher is the frequency
of the oscillator. The change of ratio for one RO pair (the same pair as in
Fig. 5.3(a)) is shown on the next Fig. 5.3(b). Ideally, the ratio should be
constant, however the ratio is changing with the change of voltage.

In order to determine the interval of voltage in which the PUF may be
operating, we performed more measurements. This time the voltage ranged
from 1.180V to 1.222V and we used 150 RO pairs and positions 7–8. The
results are presented in Table 5.12. The nominal voltage is 1.2V. If we want
HDintra to be about 5% on each side from the nominal voltage, then the
interval for voltage might be approximately from 1.195V to 1.205V. Under
these circumstances the correct behaviour of the PUF should be guaranteed.

63

5. Experimental results and analysis

HDintraH%L

æ

æ

æ

æ

æ

æ

æ

à

à

à
à
à à

à

à
à

à

à

ì

ì

ì
ì

ì

ì

ì ì

ì

ì

ì

Asymmetric

FPGA 1

Symmetric FPGA 1

Symmetric FPGA 2

Manufacturer’s recommended

 range of VCCINT

1050 1100 1150 1200 1250

10

20

30

40

50

VoltageHmVL

(a) Dependence of HDintra on voltage for
positions 7–8.

HDintraH%L

æ

æ
æ

æ

æ

æ
æ

à

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì
ì

ì

ì
ì

ì

ì

ì

Symmetric FPGA 1

Symmetric FPGA 2

Asymmetric FPGA 1 Manufacturer’s recommended

 range of VCCINT

1050 1100 1150 1200 1250

10

20

30

40

50

VoltageHmVL

(b) Dependence ofHDintra on voltage for
positions 7–10.

Figure 5.4: Comparison of the behaviour of the proposed PUF when using
mutually symmetric and asymmetric ROs for positions 7–8 and 7–10. The
reference output for calculating HDintra is the mean output from the PUF
outputs measured at nominal voltage 1.2V. The yellow area represents the
manufacturer’s recommended range of FPGA’s main power supply voltage
Vccint, which is from 1.14V to 1.26V.

5.7.3 Symmetric ROs

In the previous subsection we presented the results of the measurements for the
proposed ROPUF design at varying voltage. It was shown that the influence
of supply voltage is significant because the ratios of the frequencies of ROs
in pairs change when the voltage varies. These results were obtained for the
ROPUF design where the ROs were not mutually symmetric and there was
no emphasis on the placement of the logic gates of each RO.

We can expect that the frequencies of ROs will change in a similar way
when the ROs are mutually symmetric. Therefore, the ratios of the frequencies
of RO pairs should be almost constant. In the next experiment, we placed the
logic gates of each RO so that the ROs were mutually symmetric.

Table 5.13 shows the results of evaluated measurements for various voltages
ranging from 1.022V to 1.287V on two FPGAs. These measurements were per-
formed 1000 times for 50 RO pairs where all ROs had the same mutual place-
ment of logic gates and Gray code was applied to the whole counter values. It
can be seen that the improvement is significant compared to results presen-
ted in Table 5.10 where ROs were not mutually symmetric. Fig 5.4(a) and
Fig. 5.4(b) present the comparison of the behaviour of the proposed ROPUF
when using mutually symmetric and asymmetric ROs for positions 7–8 and
7–10. The results forHDintra are not ideal, but they demonstrate the improve-
ment when using symmetric ROs compared to asymmetric ROs and show the
way for further investigation of the influence of the placement of ROs on the
stability of the PUF outputs.

64

5.8. Influence of temperature

Positions 7–8

FPGA 1 FPGA 2

Voltage [V] ∆U [mV] HDintra [%] HDintra [%]

1.202 → 1.022 -180 21.01 26.97
1.202 → 1.102 -100 8.13 12.89
1.202 → 1.150 -52 2.49 7.55
1.202 → 1.180 -22 1.39 6.32
1.202 → 1.192 -10 0.58 4.13
1.202 → 1.202 0 0.79 0.91
1.202 → 1.210 8 2.31 4.21
1.202 → 1.222 20 4.80 4.30
1.202 → 1.242 40 6.34 8.26
1.202 → 1.261 69 7.79 12.15
1.202 → 1.287 85 12.34 14.95

Positions 7–10

FPGA 1 FPGA 2

Voltage [V] ∆U [mV] HDintra [%] HDintra [%]

1.202 → 1.022 -180 36.10 38.80
1.202 → 1.102 -100 25.45 28.16
1.202 → 1.150 -52 15.76 19.86
1.202 → 1.180 -22 8.72 9.95
1.202 → 1.192 -10 5.94 9.28
1.202 → 1.202 0 1.69 2.58
1.202 → 1.210 8 5.20 7.39
1.202 → 1.222 20 9.51 8.13
1.202 → 1.242 40 14.79 16.14
1.202 → 1.261 69 21.20 24.09
1.202 → 1.287 85 26.91 30.82

Table 5.13: The PUF outputs with various voltages from the range of 1.022V
to 1.287V compared to the PUF outputs measured at nominal voltage 1.2V
and for selected positions 7–8 and 7–10 for two FPGAs.

5.8 Influence of temperature

This section examines the influence of changes in temperature on the pro-
posed ROPUF. The statistical properties of PUF using both symmetric and
asymmetric ROs will be compared. Fig. 5.5 depicts our measurement setup.
For the purpose of our experiment, we performed measurements at different
temperatures. For these measurements, FPGA was preheated to a preset
temperature (e.g. 40 ◦C) with ROs enabled. Each of the measurements was

65

5. Experimental results and analysis

Heater

PCB

Thermal isolation

FPGA

Thermocouple

I/O

Multi-

meter
PC

Heater control

Figure 5.5: Measurement setup for measuring at elevated temperatures. PCB
is the Digilent Basys 2 prototyping board. The FPGA is a Xilinx Spartan3E-
100 CP132. The heater was used to preheat the FPGA to a target temperat-
ure.

carried out when the temperature measured on the package of the FPGA sta-
bilised at the given value. We used three Digilent Basys 2 FPGA boards for
this experiment.

The values of HDintra were obtained by averaging the PUF outputs at
each temperature. The average PUF output is obtained as the majority of
each column when the PUF outputs are written in the form of matrix where
each row represents one PUF output.

Table 5.14 displays the values of HDintra for three FPGAs for asymmetric
and symmetric ROs. As in the previous Section 5.7, the RO symmetry consists
of the mutual placement of the gates of each RO but not of the interconnects
between them. The column “temperature” presents the temperatures at which
the PUF outputs are compared. The values of HDintra for symmetric and
asymmetric ROs are almost equivalent for small differences in temperature,
but for larger changes in temperature there is a visible improvement of the
PUF behaviour when symmetric ROs are used. This is a very similar result
to that which was presented in Section 5.7 where the stability of the PUF
outputs was also increased by using symmetric ROs.

It was shown before that the resulting counter value depends on the ratio
of the frequencies of the two ROs which are influenced by various physical
conditions. However, it can be expected that the frequencies should be affected
in a similar way. Therefore, the change of the frequencies due to varying
temperature should be eliminated by their ratio. Fig. 5.6(a) shows the change
of the frequencies of two ROs with increasing temperature. The higher the
temperature, the smaller are the frequencies of ROs.

66

5.8.
In
fl
u
en
ce

of
tem

p
eratu

re

Asymmetric ROs

FPGA 1 FPGA 2 FPGA 3

Temperature [◦C] HDintra [%] Temperature [◦C] HDintra [%] Temperature [◦C] HDintra [%]

36.7 → 41.2 2.67 38.4 → 42.3 2.67 37.7 → 41.8 1.0
36.7 → 51.8 7.67 38.4 → 50.1 6.67 37.7 → 50.9 5.0
36.7 → 60.4 9.33 38.4 → 60.3 9.33 37.7 → 61.3 7.0
36.7 → 71.1 11.33 38.4 → 69.9 12.67 37.7 → 70.1 12.0

Symmetric ROs

FPGA 1 FPGA 2 FPGA 3

Temperature [◦C] HDintra [%] Temperature [◦C] HDintra [%] Temperature [◦C] HDintra [%]

33.0 → 42.4 2.67 34.4 → 40.9 1.67 34.5 → 41.1 3.67
33.0 → 50.5 3.67 34.4 → 50.5 3.0 34.5 → 51.4 6.0
33.0 → 60.6 3.67 34.4 → 60.8 4.67 34.5 → 60.6 7.0
33.0 → 71.0 4.67 34.4 → 70.2 5.33 34.5 → 70.4 7.33

Table 5.14: Evaluation of HDintra for 150 asymmetric/symmetric RO pairs and selected positions 7–8 at different temperat-
ures.

67

5. Experimental results and analysis

FrequencyHHzL

40 45 50 55 60 65 70

145

150

155

160

165

170

TemperatureH° CL

(a) Difference in the change of fre-
quency for two ROs in pair. Red
curve represents the faster RO and
blue curve is the slower RO.

Ratio

40 45 50 55 60 65 70

0.908

0.910

0.912

0.914

TemperatureH° CL

(b) The change of ratio of frequencies
for one RO pair in dependence on tem-
perature.

Figure 5.6: Dependency of the frequencies of two ROs and their ratio on the
temperature change.

Ideally, we need the ratios of the frequencies to remain constant in time,
but as it is shown in Fig. 5.6(b), the ratio is not constant at varying tem-
peratures. Therefore, we need to minimize the difference in the ratio of the
frequencies at varying temperatures (or other influences) and using symmetric
ROs may be one of the possible solutions. By using symmetric ROs the fre-
quencies of the ROs are closer to each other, hence they should be more likely
influenced in the same way when the physical conditions are changed. How-
ever, it is still necessary to investigate the relationship between PUF stability
at varying environmental conditions and the symmetry of ROs further.

5.9 Comparison of different methods

The whole chapter was devoted to experiments and their evaluation in order to
present the properties of the proposed PUF design. In this section we compare
three different methods of using the ROs for generating the PUF outputs. We
will show that the proposed one is the most stable against change of physical
conditions, specifically the supply voltage and temperature.

Since the resulting counter value in our proposal is determined by the ratio
of the frequencies of the two ROs in a pair, this method can be considered as a
differential measurement because even though the physical conditions such as
supply voltage or temperature have a significant influence on the frequencies
of the ROs, the change in the ratio of the frequencies is much smaller. To
show the difference between some other possible approaches, Fig. 5.7 presents
three different methods for using ROs to obtain some counter value that would
be later processed. The first two approaches require a stable reference clock
such as a crystal oscillator. There is a formula for each method to determine

68

5.9. Comparison of different methods

CRY

fC

f

RO

162
Cf

f
valueCounter

Counter value

ϕ

(a) A basic approach, where the counter value is calculated for each
RO for the same amount of time given by a crystal oscillator (CRY)
with a stable frequency fC which serves as a reference clock. It is
assumed that the frequency of the crystal oscillator is greater than
the frequency of any RO.

RO1

f1

f2

RO2

16

21 2
1

)(
Cf

ffvalueCounter

CRY

fC

Counter value

ϕ

(b) A subtraction method. First, the value of the counter is incre-
mented for every rising edge of the first RO (RO1). Then the counter
value is decremented for every rising edge of the second RO (RO2).
The incrementing and decrementing runs for the same amount of
time given by a crystal oscillator (CRY) with a stable frequency
fC . The assumption is that the frequency of the crystal oscillator is
greater than the frequency of any RO and that f1 > f2.

RO1

f1

f2

RO2

16

1

2 2
f

f
valueCounter

Counter value

ϕ

(c) A frequency ratio method that is used in our PUF design. The
resulting counter value is given by the ratio of the frequencies f1 and
f2. There is no reference clock as opposed to the previous cases. It
is assumed that f1 > f2

Figure 5.7: Three different methods of using the ROs for PUF.

69

5. Experimental results and analysis

45 50 55 60 65 70

0.5870

0.5875

0.5880

0.5885

0.5890

Temperature C

ϕ

Temperature (°C)

Δϕ

Figure 5.8: Behaviour of ϕ at varying temperature. In this example, ϕ = f2
f1
,

therefore, ϕ represents ratio of the frequencies of two ROs.

the resulting counter value and the part of the equation that is dependent on
the physical conditions is highlighted with a red circle and we will denote this
part as ϕ.

The first method is similar to our approach, but in place of two ROs
forming a pair there is always one stable reference clock (crystal oscillator)
and one RO. In the case shown in Fig. 5.7(a) it is assumed that the frequency
of the reference clock is greater than the frequency of any RO and the resulting
counter value is then calculated from the ratio of the frequency of RO and
reference clock. However, because we assume the reference clock to be stable
at varying temperatures, then ϕ is only the frequency of the RO (ϕ = f),
since the resulting counter value depends solely on the frequency of the RO.

In addition, if we have n ROs, we can extract only n×w (w is the number of
bits extracted from each counter value) bits for the PUF response. Therefore,
even though the design would be very simple, it would not be very efficient
since it requires a lot of ROs in order to generate long PUF outputs.

The second method shown in Fig. 5.7(b) also uses a stable reference clock
and it is assumed that its frequency is greater than the frequency of any RO.
At first, the counter is incrementing with the frequency given by the first RO.
Then the value in the counter is decremented by the second RO and both the
incrementation and decrementation take the same time given by the reference
clock. In this case, ϕ = f1 − f2 because the resulting counter value is derived
from the difference of the frequencies.

From the perspective of using the ROs in pairs, this method is similar to
the method we proposed. The theoretical maximum number of bits that can
be extracted using this method is

(n
2

)

× w just like in our proposal.

70

5.9. Comparison of different methods

Temperature Supply voltage
FPGA 1 FPGA 2 FPGA 3 FPGA 1
∆ϕ

ϕmax
[%] ∆ϕ

ϕmax
[%] ∆ϕ

ϕmax
[%] ∆ϕ

ϕmax
[%]

crystal 3.42 3.01 2.97 22.18
subtraction 4.08 4.29 3.78 33.21

ratio 0.27 0.16 0.14 2.41

Table 5.15: The change of ϕ at varying temperatures and voltages for the
three different approaches. The frequencies were measured for 300 ROs. In
case of temperature, the measurements were performed on three FPGAs at
temperatures ranging from 40◦C to 71◦C. For supply voltage, the measure-
ments were performed on one FPGA and the range of supply voltage was from
1.018V to 1.286V.

The last method is shown in Fig. 5.7(c) and it is the method used in our
PUF design described in Chapter 3. As it was explained before, it is based on
a ratio of the frequencies of two ROs in a pair, hence ϕ = f2

f1
. The maximum

number of bits for PUF is
(n
2

)

× w as was the case with the previous method
based on subtraction.

To evaluate the resistance of each method to varying physical conditions,
we measured the frequencies of 300 ROs at different physical conditions. In
case of varying temperature, we performed the measurements on three FPGAs,
while the measurements concerning the change of voltage were performed on
one FPGA. Depending on the method, we calculated the values of ϕ from the
frequencies at different physical conditions and determined the value of ∆ϕ as
∆ϕ = ϕmax−ϕmin. See Fig. 5.8 for an example of determining ∆ϕ for varying
temperatures. From ∆ϕ

ϕmax
we can observe the resistance of each method to

the change of physical conditions.
The results of this evaluation are shown in Table 5.15 for all presented

methods. It can be seen that the change of ϕ at varying temperatures and
voltages is the lowest for the method used in our PUF design (ratio of the
frequencies). We can also notice that the change of ϕ is considerably larger
for varying voltage than for varying temperature. This may indicate that the
frequencies of ROs are more dependent on supply voltage than on temperature.

71

Conclusion

Physical Unclonable Functions are now a very popular research topic in hard-
ware security because they are increasingly used in proposals of cryptographic
protocols and security architectures as they provide a unique fingerprint of
the device. One of the major applications of PUF is key generation which is
used to generate cryptographic keys instead of storing them in a non-volatile
memory which is difficult to secure. However, there are more applications and
scenarios in which PUFs can be used, including device identification, authen-
tication, anti-counterfeiting, binding software to hardware platforms; they can
also be integrated into cryptographic algorithms.

In this thesis we dealt with the statistical analysis of behaviour of the
proposed PUF design and improvements to this proposal. It builds upon our
previous work [13], which was later extended and published in [14, 15, 16]. The
goals of this thesis were to analyse and discuss the properties of the proposed
PUF design and further improve the design in order to enhance its statistical
properties.

The literature research regarding PUFs is provided in the first two chapters.
In Chapter 1 we introduced the topic of PUFs, described PUFs in general and
also presented the properties that we may require of PUFs. Finally, this
chapter presented the applications where PUFs can be used. Chapter 2 dis-
cussed possible classifications of PUFs in dependence on their properties or
the nature of their features. After the discussion, the chapter introduced ex-
amples of various PUF constructions. We focused mainly on PUFs suitable
for FPGAs and we put emphasis on PUF constructions based on ROs since
our PUF design is based on them.

Chapter 3 is devoted to the description of the PUF, proposed in [13]. Its
main feature is the ability to extract more output bits from each RO pair
compared to the classical approach, which additionally requires the ROs to be
mutually symmetric. Our design no longer requires the ROs to be mutually
symmetric, hence it is easier to implement and also more area efficient. The
second part of this chapter discussed the properties of the proposed PUF

73

Conclusion

design.

In Chapter 4 we proposed improvements of the PUF design in order to
enhance its statistical properties. Since the proposed PUF is based on ROs
whose frequencies are dependent on various physical conditions, our goal was
to eliminate this dependence. Therefore the improvements were proposed
mainly to decrease the influence of physical conditions on the stability of the
PUF outputs.

Finally, Chapter 5 was devoted to experiments, measurements and also
presenting and discussing their results. The measurements were performed
mainly on Digilent Basys 2 FPGA boards (Xilinx Spartan3E-100 CP132).
We have shown that the proposed design can be used as PUF on FPGAs.

To evaluate the PUF behaviour on other types of FPGAs, we performed
measurements on Digilent Nexys 3 FPGA boards (Xilinx Spartan-6). The
results of statistical evaluation indicated that the PUF implemented on Nexys
3 works properly.

We also investigated the behaviour of PUF when using counters whose
maximum operating frequency is too slow for the incoming signal from the
ROs. This causes the counters to miss some clock pulses and the resulting
counter value is then incorrect. Our finding was that it does not have any
impact on the statistics of the PUF outputs.

In Section 5.3 we presented the results for one of our improvements of
the design, which is the application of Gray code to the selected parts of the
counter values. This increased the stability of the PUF outputs and allowed
us to extract four bits of the PUF output from each RO pair with almost the
same quality as two bits without Gray code.

Another improvement presented in this work is the use of symmetric ROs
in order to enhance the stability of the PUF outputs at varying physical con-
ditions. We statistically evaluated the PUF with symmetric ROs at stable
physical conditions and the results were shown in Section 5.6. These results
were very similar to those for the PUF design with asymmetric ROs.

Section 5.7 and Section 5.8 analysed the influence of change in voltage
and temperature. It turned out that the influence of supply voltage on the
proposed PUF design is significant. In order to achieve HDintra to be ap-
proximately 10%, the range of supply voltage would have to be from 1.190V
to 1.212V. This corresponds to the change of voltage ∆U = 10mV from the
nominal supply voltage.

We proposed a placement of the logic gates of ROs such that all ROs are
mutually symmetric. As a result, the PUF outputs were considerably more
stable and the influence of voltage was not so significant as in the case of
asymmetric ROs.

The evaluation of the influence of temperature on the statistical properties
of the proposed PUF design was performed on three Digilent Basys 2 FPGA
boards. The stability of the PUF outputs are almost equivalent for small

74

changes in temperature, however, when the change in temperature is greater,
the ROPUF using symmetric ROs gives better results.

Finally, we compared three different methods of using the ROs for gener-
ating the PUF outputs. They are based on measuring the frequency against a
fixed crystal oscillator, difference of frequencies and ratio of frequencies (our
method). We have shown that our method, which is based on ratio of fre-
quencies, is the most resistant against varying physical conditions.

We can conclude that the goals of this thesis were fully accomplished. We
analysed the properties of the proposed PUF and tested the quality of the PUF
outputs at various physical conditions. We proposed suitable modifications
of the PUF that improved the quality of its output. Both Gray code and
symmetry of ROs improved the stability of the PUF outputs when the physical
conditions are varying.

The results presented in this work are a motivation for future research in
this area. Here are the possibilities for future research:

• Further investigate the influence of supply voltage and temperature to-
gether with the placement of ROs.

• Investigate the influence of aging on the proposed PUF design.

• Examine possible attacks on this PUF.

• Design a TRNG based on the proposed PUF.

75

Bibliography

[1] Bossuet, L.; Ngo, X. T.; Cherif, Z.; Fischer, V. A PUF based on a transi-
ent effect ring oscillator and insensitive to locking phenomenon. In IEEE
Transactions on Emerging Topics in Computing, 2014, 2.1, pp. 30–36.

[2] Busch, H.; Sotáková; M.; Katzenbeisser, S.; Sion, R.: The
PUF Promise (Short Paper). 2010, [Cited 2016-05-02]. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.187.324&rep=rep1&type=pdf

[3] Delvaux, J.; Verbauwhede, I. Side channel modeling attacks on 65nm ar-
biter PUFs exploiting CMOS device noise. In Hardware-Oriented Security
and Trust (HOST), 2013 IEEE International Symposium on, 2013, pp.
137–142.

[4] Digilent: Digilent, Adept. [Cited 2016-05-02]. Available from: https:

//reference.digilentinc.com/digilent_adept_2

[5] Digilent: Digilent, Adept SDK. [Cited 2016-05-02]. Available from:
https://reference.digilentinc.com/digilent_adept_2

[6] Digilent: Digilent Basys2 Board Reference Manual. [Cited 2016-05-
02]. Available from: https://reference.digilentinc.com/_media/

basys2:basys2_rm.pdf

[7] Digilent: Digilent Nexys3 Board Reference Manual. [Cited 2016-05-02].
Available from: https://reference.digilentinc.com/_media/nexys:

nexys3:nexys3_rm.pdf

[8] Gassend, B. Physical Random Functions. Dissertation thesis. Mas-
sachusetts Institute of Technology, 2003, [Cited 2016-05-02]. Avail-
able from: http://www.textfiles.com/bitsavers/pdf/mit/lcs/tr/

MIT-LCS-TR-881.pdf

77

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.324&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.324&rep=rep1&type=pdf
https://reference.digilentinc.com/digilent_adept_2
https://reference.digilentinc.com/digilent_adept_2
https://reference.digilentinc.com/digilent_adept_2
https://reference.digilentinc.com/_media/basys2:basys2_rm.pdf
https://reference.digilentinc.com/_media/basys2:basys2_rm.pdf
https://reference.digilentinc.com/_media/nexys:nexys3:nexys3_rm.pdf
https://reference.digilentinc.com/_media/nexys:nexys3:nexys3_rm.pdf
http://www.textfiles.com/bitsavers/pdf/mit/lcs/tr/MIT-LCS-TR-881.pdf
http://www.textfiles.com/bitsavers/pdf/mit/lcs/tr/MIT-LCS-TR-881.pdf

Bibliography

[9] Gassend, B.; Clarke, D.; Dijk, M.; Devadas, S. Silicon Physical Random
Functions. In Proceedings of the 9th ACM conference on Computer and
communications security. ACM, 2002, pp. 148–160.

[10] Herder, C.; Yu, M. D.; Koushanfar, F.; Devadas, S. Physical Unclonable
Functions and Applications: A Tutorial. In Proceedings of the IEEE,
2014, 102.8, pp. 1126–1141.

[11] Holcomb, D. E.; Burleson, W. P.; Fu, K. Power-up SRAM State as an
Identifying Fingerprint and Source of True Random Numbers. In IEEE
Transactions on Computers, 2009, 58.9, pp. 1198–1210.

[12] Katzenbeisser, S; Kocabaş; Ü.; Rožić; V.; Sadeghi, A.; Verbauwhede, I.;
Wachsmann, Ch. PUFs: Myth, Fact or Busted? A Security Evaluation
of Physically Unclonable Functions (PUFs) Cast in Silicon. In Crypto-
graphic Hardware and Embedded Systems–CHES 2012. Springer Berlin
Heidelberg, 2012, pp. 283–301.

[13] Kodýtek, F. Physical Unclonable Function on FPGAs. Bachelor thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2014.

[14] Kodýtek, F.; Lórencz, R. A Design of Ring Oscillator Based PUF on
FPGA. In Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2015 IEEE 18th International Symposium on. IEEE, 2015,
pp. 37–42.

[15] Kodýtek, F.; Lórencz, R. Proposal and Properties of Ring Oscillator-
Based PUF on FPGA. In Journal of Circuits, Systems and Computers,
2016, 25.03, 1640016.

[16] Kodýtek, F.; Lórencz, R.; Buček, J. Improved ring oscillator PUF on
FPGA and its properties. In Microprocessors and Microsystems, 2016.
(In Press)

[17] Kumar, S. S.; Guajardo, J.; Maes, R.; Schrijen, G.; Tuyls, P. Exten-
ded abstract: The butterfly PUF protecting IP on every FPGA. In
Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE Inter-
national Workshop on. IEEE, 2008, pp. 67–70.

[18] Lee, J. W.; Lim, D.; Gassend, B.; Suh, G. E.; Dijk, M.; Devadas, S. A
technique to build a secret key in integrated circuits for identification and
authentication applications. In VLSI Circuits, 2004. Digest of Technical
Papers. 2004 Symposium on. IEEE, 2004, pp. 176–179.

[19] Lim, D.; Lee, J. W.; Gassend, B.; Suh, G. E.; Dijk, M.; Devadas, S.
Extracting secret keys from integrated circuits. In IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2005, 13.10, pp. 1200–1205.

78

Bibliography

[20] Maes, R. Physically Unclonable Functions: Constructions, Prop-
erties and Applications. Dissertation thesis. Katholieke Universiteit
Leuven, 2012, [Cited 2016-05-02]. Available from: https://

securewww.esat.kuleuven.be/cosic/publications/thesis-211.pdf

[21] Maes, R.; Tuyls, P.; Verbauwhede, I. Intrinsic PUFs from Flip-flops on
Reconfigurable Devices. In 3rd Benelux workshop on information and
system security (WISSec 2008), 2008, [Cited 2016-05-02]. Available from:
https://www.researchgate.net/profile/Roel_Maes/publication/

228615879_Intrinsic_PUFs_from_flip-flops_on_reconfigurable_

devices/links/0912f51126478b8661000000.pdf

[22] Maes, R.; Verbauwhede, I. Physically Unclonable Functions: A Study
on the State of the Art and Future Research Directions. In Towards
Hardware-Intrinsic Security. Springer Berlin Heidelberg, 2010, pp. 3–37.

[23] Maiti, A.; Schaumont, P. Improving the quality of a Physical Unclon-
able Function using configurable Ring Oscillators. In Field Programmable
Logic and Applications, 2009. FPL 2009. International Conference on.
IEEE, 2009, pp. 703–707.

[24] Marchand, C.; Bossuet, L.; Cherkaoui, A. Enhanced TERO-PUF Imple-
mentations and Characterization on FPGAs. In Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays. ACM, 2016, pp. 282–282.

[25] Morozov, S.; Maiti, A.; Schaumont, P. An Analysis of Delay Based PUF
Implementations on FPGA. In Reconfigurable Computing: Architectures,
Tools and Applications. Springer Berlin Heidelberg, 2010, pp. 382–387.

[26] Pappu, R. S. Physical One-Way Functions. Dissertation thesis. Mas-
sachusetts Institute of Technology, 2001, [Cited 2016-05-02]. Available
from: http://alumni.media.mit.edu/~pappu/pdfs/Pappu-PhD-POWF-

2001.pdf

[27] Petit, J.; Bösch, Ch.; Feiri, M.; Kargl, F. On the potential of PUF for
pseudonym generation in vehicular networks. In Vehicular Networking
Conference (VNC), 2012 IEEE. IEEE, 2012, pp. 94–100.

[28] Platonov, M. SRAM-Based Physical Unclonable Function on an Atmel
ATmega Microcontroller. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2013.

[29] Platonov, M.; Hlaváč, J.; Lórencz, R. Using Power-Up SRAM State of At-
mel ATmega1284P Microcontrollers as Physical Unclonable Function for
Key Generation and Chip Identification. In Information Security Journal:
A Global Perspective. 2013, 22.5–6, pp. 244–250.

79

https://securewww.esat.kuleuven.be/cosic/publications/thesis-211.pdf
https://securewww.esat.kuleuven.be/cosic/publications/thesis-211.pdf
https://www.researchgate.net/profile/Roel_Maes/publication/228615879_Intrinsic_PUFs_from_flip-flops_on_reconfigurable_devices/links/0912f51126478b8661000000.pdf
https://www.researchgate.net/profile/Roel_Maes/publication/228615879_Intrinsic_PUFs_from_flip-flops_on_reconfigurable_devices/links/0912f51126478b8661000000.pdf
https://www.researchgate.net/profile/Roel_Maes/publication/228615879_Intrinsic_PUFs_from_flip-flops_on_reconfigurable_devices/links/0912f51126478b8661000000.pdf
http://alumni.media.mit.edu/~pappu/pdfs/Pappu-PhD-POWF-2001.pdf
http://alumni.media.mit.edu/~pappu/pdfs/Pappu-PhD-POWF-2001.pdf

Bibliography

[30] Ruhkin, A. et al. A Statistical Test Suite for Random and Pseudor-
andom Number Generators for Cryptographic Applications. NIST
Special Publication 800-22 Revision 1a. 2010, [Cited 2016-05-02].
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/

SP800-22rev1a.pdf

[31] Su, Y.; Holleman, J.; Otis, B. A 1.6pJ/bit 96% Stable Chip-ID Gener-
ating Circuit using Process Variations. In IEEE Journal of Solid-State
Circuits, 2008, 43.1, pp. 69–77.

[32] Suh, G. E.; Devadas, S. Physical Unclonable Functions for Device Au-
thentication and Secret Key Generation. In Proceedings of the 44th annual
Design Automation Conference. ACM, 2007, pp. 9–14.

[33] Suzuki, D.; Shimizu, K. The Glitch PUF: A New Delay-PUF Architec-
ture Exploiting Glitch Shapes. In Cryptographic Hardware and Embedded
Systems, CHES 2010. Springer Berlin Heidelberg, 2010, pp. 366–382.

[34] Tuyls, P.; Schrijen, G.; Škorić, B.; Geloven, J.; Verhaegh, N.; Wolters, R.
Read-Proof Hardware from Protective Coatings. In Cryptographic Hard-
ware and Embedded Systems-CHES 2006. Springer Berlin Heidelberg,
2006, pp. 369–383.

[35] Varchola, M.; Drutarovsky, M. New High Entropy Element for FPGA
Based True Random Number Generators. In Cryptographic Hardware and
Embedded Systems, CHES 2010. Springer Berlin Heidelberg, 2010, pp.
351–365.

[36] Xilinx: ISE Design Suite. [Cited 2016-05-02]. Available from: http://

www.xilinx.com/products/design-tools/ise-design-suite.html

[37] Xilinx: Spartan-3E FPGA Family Data Sheet. [Cited 2016-05-02]. Avail-
able from: http://www.xilinx.com/support/documentation/data_

sheets/ds312.pdf

[38] Xin, X.; Kaps, J.; Gaj, K. A Configurable Ring-Oscillator-Based PUF for
Xilinx FPGAs. In Digital System Design (DSD), 2011 14th Euromicro
Conference on. IEEE, 2011, pp. 651–657.

[39] Yin, C. -E. D.; Qu, G.: LISA: Maximizing RO PUF’s secret extraction. In
Hardware-Oriented Security and Trust (HOST), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 100–105.

80

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf

Appendix A

FPGA

Field-programmable gate array (FPGA) is an integrated circuit which can
be configured by a designer even after manufacturing. FPGAs have a gene-
ral structure consisting of an array of programmable logic blocks and pro-
grammable interconnections between these blocks. The logic blocks can be
configured to perform various combinational functions. The configuration of
a FPGA is created using a hardware description language (HDL), such as
VHDL or Verilog.

Fig. A.1 shows the architecture of Xilinx Spartan-3E which we used for
the implementation of our PUF design and performing the measurements. It
consists of five fundamental programmable functional elements [37]:

• Configurable Logic Blocks (CLBs) are probably the most import-
ant elements of the FPGAs. They can be configured so that they can
perform complex combinational functions or store data. Each CLB con-
sists of slices, which are further divided into logic cells. These logic cells
contain Look-Up Tables (LUTs), multiplexers, carry logic and flip-flops.
LUT is a RAM-based function generator. In case of Spartan-3E, LUTs
have four logic inputs and a single output, therefore any four-variable
Boolean logic operation can be implemented in one LUT. When func-
tions with more inputs are needed, they can be implemented by cascad-
ing LUTs.

• Input/Output Blocks (IOBs) realise the communication with the
outside world. They control the flow of data between the I/O pins and
the internal logic of the device. The IOBs are located on the edge of the
FPGA.

• Block RAM (BRAM) provides data storage in the form of 18-Kbit
dual-port blocks; its content can be defined in the design for the FPGA.
It is initialised after power-up, therefore it cannot be used as a source
of randomness for PUF.

81

A. FPGA

Figure A.1: Spartan-3E family architecture.[37]

• Multiplier Blocks calculate the product of two input 18-bit binary
numbers.

• Digital Clock Manager (DCM) Blocks provide solutions for distrib-
uting, delaying, multiplying, dividing and phase-shifting clock signals.

All of the configurable elements are interconnected by a rich network of
traces, transmitting signals among them. Each functional element has a switch
matrix that permits multiple connections to the routing.

Digilent Basys 2

Most of the measurements presented in this work were performed on Digilent
Basys 2 FPGA boards [6]. This board contains FPGA from the family of
Xilinx Spartan-3E, specifically Xilinx Spartan3E-100 CP132. This FPGA
contains 240 CLBs and each CLB consists of four slices. Each slice contains
two LUTs and two flip-flops, resulting in 1920 LUTs and flip-flops that are
available for the design. This FPGA also contains a fast dual-port BRAM
72KBit in size.

For circuit inputs, there are four pushbuttons and eight slide switches
available. The outputs can be displayed using a four-digit seven-segment LED
display or eight LEDs. For the communication with FPGA, the board provides
a PS/2 port, VGA, USB and others.

The FPGA has to be configured in order to perform some useful function.
The configuration is stored in a bitstream, which can be transferred to the

82

Figure A.2: Digilent Basys 2.

FPGA via the FPGA’s JTAG programming port using the Adept software [4].
The bitstream can be loaded directly into FPGA, thereby configuring it, or
it can be transferred to non-volatile ROM called “Platform Flash” that can
automatically transfer a stored bitstream to the FPGA at power-on or reset
event.

For more detailed description of this board, see [6].

83

Appendix B

Acronyms

CLB Configurable logic block

CRP Challenge-response pair

ECC Error correcting code

FPGA Field-programmable gate array

HD Hamming distance

LSB Least significant bit

PUF Physical Unclonable Function

MSB Most significant bit

RFID Radio-frequency identification

RO Ring oscillator

ROPUF Ring oscillator physical unclonable function

SRAM Static random-access memory

TERO Transient effect ring oscillator

TRNG True random number generator

85

Appendix C

Contents of the enclosed CD

readme.txt the file with CD contents description
app the directory with executables
data...........................the directory containing measured data

nist data data for NIST STS
of detect verif............data for evaluation of overflow detection
RO intervals..............................data for PUF evaluation

Basys2..............................data obtained from Basys 2
Nexys3..............................data obtained from Nexys 3

RO intervals cb.......data obtained from circuit with slow counters
temperature..................data obtained at various temperatures
voltage...........................data obtained at various voltages

src.......................................the directory of source codes
auxiliary materials..............Wolfram Mathematica notebooks
C programs....implementation sources of programs for measurements
Digilent Adept SDK...........................Digilent Adept SDK
scripts........................scripts used for statistical evaluation
thesis..............the directory of LATEX source codes of the thesis
Xilinx projects............................projects for Xilinx ISE

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

87

	Introduction
	Motivation and background
	Research goals
	Thesis outline

	Physical Unclonable Functions
	Description of PUFs
	PUF's properties
	PUF's applications

	PUF classification and construction
	PUF classification
	PUF construction

	Description and properties of the proposed PUF
	The ring oscillator based PUF proposal
	Properties of the proposed PUF design

	Improvements to the proposed PUF
	Gray code
	Placement of ROs

	Experimental results and analysis
	Selection of suitable positions
	Timing analysis
	Gray code
	Evaluation of the proposed PUF on Nexys 3 FPGA boards
	Evaluation of randomness
	Evaluation of the proposed PUF with symmetric ROs
	Influence of supply voltage
	Influence of temperature
	Comparison of different methods

	Conclusion
	Bibliography
	FPGA
	Acronyms
	Contents of the enclosed CD

