
Technical University of Košice

Faculty of Electrical Engineering and Informatics

From Proofs of Formal Propositions to
Executable Implementations

MasterŠs Thesis

2016 Bc. František Silváši

Technical University of Košice

Faculty of Electrical Engineering and Informatics

From Proofs of Formal Propositions to
Executable Implementations

MasterŠs Thesis

Study Programme: Informatics

Field of study: Informatics

Department: Department of Computers and Informatics (KPI)

Supervisor: doc. Ing. Martin Tomášek, PhD.

Consultant(s):

Košice 2016 Bc. František Silváši

Abstract

Programs are often full of underutilized semantic information, often hidden in types.

It is not uncommon that an implementation of a function simply mimics its type al-

beit with different syntax. An approach to code generation from types is presented.

A signature is looked at as a preposition (courtesy of the Curry-Howard isomor-

phism) and a proof is then synthesized within our calculus created for this purpose

using heuristic methods. The conducted analysis generates a set of strings which

are then transformed into a target language, in our case Haskell. This approach has

been used to generate the core of Haskell’s standard Prelude library and can in gen-

eral serve as an interesting way of program synthesis and automated construction.

Keywords

Code generation, formal logic, formal verification, Haskell

Abstrakt

Programy sú často plné nedostatočne využitých sémantických informácii, často ukry-

tých v typoch. Nestáva sa zriedka, že implementácia funkcie je len prepis jej sig-

natúry inou syntaxou. Prezentujeme prístup ku generovaniu kódu z typov, na ktoré

sa pozeráme ako na logické tvrdenia (dôsledok korešpondencie Curryho a Howarda),

ktorých dôkaz syntetizujeme v našom kalkule pomocou heuristických metód. Kalkul

bol navrhnutý práve pre teno účel. Výsledkom analýzy je množina reťazcov, ktoré

sú následne transformované na cieľový jazyk, v našom prípade Haskell. Tento spô-

sob je použitý na vygenerovanie časti štandardnej knižnice Haskellu - Prelude. Vo

všeobecnosti takýto postup predstavuje zaujímavý pohľad na syntézu programov.

Kľúčové slová

Generovanie kódu, formálna logika, formálna verifikácia, Haskell

Declaration

I hereby declare that this thesis is my own work and effort. Where other sources of

information have been used, they have been acknowledged.

Košice, Apríl 5, 2016 .

Signature

Acknowledgement

I would like to express my sincere gratitude to my supervisor doc. Ing. Martin

Tomášek, PhD. His suggestions and guidance were of paramount importance.

Preface

The thesis has emerged from a simple observation of the relationship between func-

tion signatures and their implementations. It is in fact often the case that as long

as a function is pure, its type generally contains enough information to make its

implementation superfluous. The more expressive the type system in question, the

more invariants about functionality it can encode; up to the point where it restricts

implementations that typecheck to exactly one. Types themselves then become

specifications / models that can be mechanically transcribed into executable code.

To take a look at the problem from a different point of view, we could consider

types as prepositions and corresponding programs as their proofs. This relationship

is known as Curry-Howard isomorphism. This rephrases the question in a way such

that we are looking to automatically construct a proof of a proposition, which then

corresponds to the program (implementation) that we do care about.

We present a calculus (and its implementation) that can be used to construct func-

tion implementations from their type signatures. It is a combination of formally

defined rules that manipulate prepositions (not unlike conducting a proof with nat-

ural deduction) and a set of heuristics that automatically invoke said rules, attempt-

ing to construct a proof. The transformation of result of the analysis to an actual

implementation in Haskell is then relatively straightforward.

Of course, it is also possible to do further transformations into more ubiquitous

imperative languages. We take a brief look at an unusual way of doing so; modifying

C++ in such way so that its syntax resembles a functional language, thus making

it an easier target for code generation. Effectively, we create a toy quasi-functional

language directly within C++.

Contents

1 Introduction 1

1.1 So wherein hides the meaning? . 1

1.1.1 Type systems . 2

1.1.2 Contracts . 6

1.2 Semantics for fun and profit . 8

1.2.1 Semantics for fun (and much less for profit) - documentation . 8

1.2.2 Semantics for profit - correctness 10

1.2.3 Semantics for profit (and profit) - implementation generation . 15

1.2.4 Why write it twice? . 16

2 From speciĄcation to executable code 19

2.1 Preliminaries and assumptions . 19

2.2 Signature analysis . 21

2.2.1 Formal logic and proof assistants as basis 21

2.2.2 Automated proof construction 27

2.2.3 Modelling the analysis . 29

2.2.4 Heuristics . 38

2.2.5 On naming scheme and language definitions 46

2.3 From proofs to executable programs 48

2.3.1 Direct correspondence between analytical primitives and a

language (Haskell) . 48

2.3.2 Further transformations to imperative languages, introducing

Ren . 54

3 Generating (some of the) Haskell standard ŤPreludeŤ and more 57

3.1 Const . 58

3.2 (.) also known as compose . 58

3.3 Flip . 59

FEI KPI

3.4 Seq . 59

3.5 ($) also known as apply . 60

3.6 Maybe with its corresponding maybe 60

3.7 Fst . 62

3.8 Snd . 62

3.9 Curry . 63

3.10 Uncurry . 63

3.11 Miscellaneous . 64

3.12 Summary . 67

4 What should be possible and grounds for further research, our

implementation and its limitations 67

4.1 Generating a correct map with a dependently typed system 68

4.2 Limitations . 72

5 Discussion 72

5.1 Decisions and their impact . 72

5.2 Further considerations and research 74

5.2.1 Using an existing system . 74

5.2.2 Our framework as a proof assistant 74

6 Conclusion 75

References 75

A Appendix A 82

A.1 System Requirements . 82

A.2 Software Requirements . 82

A.3 Installation . 82

A.4 Usage . 82

9

FEI KPI

B Appendix B 85

B.1 System Requirements . 85

B.2 Software Requirements . 85

B.3 Build, Compilation and Execution . 85

B.3.1 Compiler . 85

B.3.2 Dependencies . 86

B.3.3 Binary . 86

B.4 Project Structure . 87

B.5 ./asts . 88

B.5.1 Module funcAst . 88

B.5.2 Module specAst . 88

B.5.3 Module implAst . 89

B.6 ./parsers . 91

B.6.1 Module funcParser . 91

B.6.2 Module specParser . 92

B.7 ./semantics . 92

B.7.1 Module function . 93

B.7.2 Module semanticConsistency 93

B.7.3 Module specification . 94

B.8 ./internal . 94

B.8.1 Module wheels . 94

B.8.2 Module instancedF . 97

B.8.3 Module writerContextM . 98

B.9 ./type_operations . 98

B.9.1 Module unification . 98

B.9.2 Module substitution . 99

B.10 ./analysis . 99

B.10.1 Module analysis . 99

B.10.2 Module tactics . 100

10

List of Figures

1 – 1 Haddock HTML rendering . 9

1 – 2 Lambda cube . 10

List of Tables

2 – 1 Analytical atoms and their generative counterparts 50

FEI KPI

1 Introduction

Tremendous amount of effort is being put into discovering and inventing new ways of

explicitly stating information about semantics of computer programs, rather than

having the meaning be just a coincidental side effect of a series of commands or

transformations that even human beings have difficulty understanding.

Not only does the extra data help document the intention of the author of a program

so that other people can obtain better understanding of writer’s thought process,

but due to its often formalized and standardized nature that is clearly made visible,

automated tools can be efficiently used to extract and consequently utilise useful

information as well.

Explicit semantic description in source code has been found invaluable for various

purposes ranging from documentation to advanced static code analysis [9,11,14,34].

1.1 So wherein hides the meaning?

There are various sources of directly (and in a way redundantly) expressed semantics

in computer programs, regardless of the programming language used. We shall

only concern ourselves with formally and structurally stated origins of meaning,

disregarding places where advanced analysis would be required (up to the point of

natural language recognition on commented lines in source codes).

Various semantic models that are often not present directly within source texts (for

example because the model is represented graphically) will not be considered either.

It is however important to mention that models in whatever form they happen to

appear in are often used to encode semantics that is directly or indirectly used when

developing software. The approach of using the notion of models in this context is

called Model–driven software development (MDSD) [15]. That said, the term model

1

FEI KPI

can be viewed very broadly and could ”contain” even concepts that we shall indeed

consider.

1.1.1 Type systems

It has been clear since the beginning of programmable digital computers that pro-

gramming in assembly languages that are for all intents and purposes devoid of

explicit semantics is prone to errors. Type systems have been therefore introduced

into some of the earliest high level programming languages available [28]. The very

basic idea behind them is to have machines check certain properties of programs

and reject ones that provably1 exhibit absence of certain useful and/or desired be-

haviours. This is done by categorizing values by their type; a notion closely related

to a mathematical set.

It is important to realize that types are by no means necessary and statically typed

languages [5] often do not even preserve type information at runtime. Let us have

a look at a simple example (imported files and namespace qualifiers omitted for

brevity):

int main () {

int numCoins = 42;

numCoins += 30;

cout << numCoins ;

}

This C++ code compiled with clang 3.7 (-O3, -std=c++1y) emits the following

assembly:

; ... output omitted ...

1within the proof /type system present in the language

2

FEI KPI

main:

push rax

mov edi , std :: cout

mov esi , 72

; ... output omitted ...

We tell the type system that we have a numeric value (an integer) initialized to

42. We then proceed to increment it by 30 and print it to the standard output.

Compiler is smart enough to inline [35] the operator+=(int, int) and then fold the

constants [32] 30 and 42 into 72. This is then sent to standard output (by invoking

std::basic_ostream<char, std::char_traits<char> >::operator< <(int).

Meaning of this program is very simple and is ultimately reflected as the number 72

printed.

Let us now consider a semantically richer code fragment:

struct CoinPurse {

CoinPurse (int numCoins) : numCoins { numCoins } { }

int numCoins ;

friend int operator +(CoinPurse lhs , CoinPurse rhs) {

return lhs. numCoins + rhs. numCoins ;

}

friend ostream & operator <<(ostream & os , CoinPurse const &

c) {

os << c. numCoins ;

return os;

}

};

3

FEI KPI

auto addCoins (CoinPurse numCoins , CoinPurse newCoins) {

return CoinPurse { numCoins . numCoins + newCoins . numCoins };

}

int main () {

CoinPurse myPurse {42};

myPurse = addCoins (myPurse , 30);

cout << myPurse ;

}

The fragment compiles to:

; ... output omitted ...

main:

push rax

mov edi , std :: cout

mov esi , 72

; ... output omitted ...

This assembly should look familiar to an attentive reader. Indeed, it is identical to

the previous one in spite of the fact that the corresponding C++ code is entirely

different and semantically richer. We create a CoinPurse with 42 coins. Then

we add 30 coins into it and finish by streaming the resulting amount of coins to

the standard output. We tell the type system about CoinPurse, how to add two

values inhibiting said type and how to print it; but in the end, all this extra explicit

information is simply thrown away and reflected in the generated assembly as a

printed constant.

There are various kinds of type systems available, categorized on several basis. Some

classifications describe the expressiveness of the system, that is, how much can be

4

FEI KPI

said about behaviour of programs using types. One such categorization is obtained

by placing type systems on Lambda cube [12]. We shall be using the terminology

described therein throughout the thesis.

An interesting property type systems often have is that even though they exist

to provide explicit meaning, type annotations can sometimes be implicitly inferred

directly from definitions. Various type inference and type deduction algorithms

exist, such as Hindley-Milner systems often present in ML-like functional languages

and many kinds of Local type inference generally utilized by imperative languages

[26,29,33].

This implicitly generated type information can then be treated exactly as though it

was provided by a programmer. Let us take a look at a small example:

auto addTwoThings = [](auto const & first , auto const &

second) {

return first + second ;

};

This function (encoded as a C++ polymorphic lambda expression) does not state

its return type nor the types of the arguments it takes. All this information is

deduced from the definition first + second. We know we are using a polymorphic

operator+ (just + in the source code), and we also know that we are returning a

value inhibiting whatever type the operator+ returns.

We could also make this information explicit as follows:

template <typename T, typename U>

std :: decay_t < decltype (operator +(std :: declval <T >() ,

std :: declval <U >()))>

addTwoThings2 (T const & first , U const & second) {

return first + second ;

5

FEI KPI

}

Do note that a polymorphic type signature is being inferred, which is then made

monomorphic by instantiating appropriate templates on demand by invoking

addTwoThings2(42, 5) (42 and 5 are constants of type int), resulting in the fol-

lowing definition:

int addTwoThings3 (int const & first , int const & second) {

return first + second ;

}

Type inference in functional languages uses similar concepts to derive type anno-

tations from definitions. We would like to point out that once again, this step is

absolutely not required for the program to work but we choose to do it in order to

externalize information that are somewhat hidden within definitions.

1.1.2 Contracts

Contracts [25] are used to impose preconditions and postconditions on functions (in

general, on values entering and leaving logically corresponding blocks of code) and

are usually checked at runtime. Some languages provide direct support for contract

programming. Let us take a look at an example of a contract in the D programming

language [10].

long square_root (long x)

in

{

assert (x >= 0);

}

out (result)

6

FEI KPI

{

assert ((result * result) <= x && (result +1) * (result +1) >

x);

}

body

{

return cast(long)std.math.sqrt(cast(real)x);

}

Some use more general features such as annotations. The following Java fragment

(using the cofoja framework [6]) demonstrates this:

@Requires ("x >= 0")

@Ensures (" result >= 0")

static double sqrt(double x);

and some utilize various hacks (for instance coercing the type system into checking

something that we understand is a contract) as demonstrated in the following C++

example:

constexpr int divisibleByTwo (int n) {

return (!(n&1)) ? n : throw "Not divisble by two.";

}

void printEvenNumber (int x) {

// Precondition

auto r = divisibleByTwo (x);

cout << r;

}

7

FEI KPI

The important thing to note is that the extra information stated in contracts is just

that; extra information. It is by no means required for the execution of programs

and can also have negative impact on performance should it make its way into

runtime, as is often the case with contracts. More importantly, detecting an error

at runtime is sometimes not acceptable, which is a problem contracts usually share

with dynamic type systems.

Sometimes the boundary between the discussed concepts is blurry. This is exactly

because they serve the same purpose; semantically enrich computer programs so that

they can be understood better by both human beings and by automated tools. Their

definitions do overlap slightly, but type systems and contracts can be considered the

two most common ways to introduce explicit (and redundant) semantic information

into computer programs.

1.2 Semantics for fun and proĄt

So now that we have gone through all the trouble inventing (or abusing) language

constructs to contain certain information about behaviour of programs, let us ex-

amine various ways of utilizing the information.

1.2.1 Semantics for fun (and much less for proĄt) - documentation

Formalized form of semantics can be automatically turned into documentation for

human beings to read. Tools like Haddock [4] use structured comments, type an-

notations and project hierarchy to generate information about functions and their

parts.

Let us take a look at a small example:

module Lib (someFunc , square) where

8

FEI KPI

-- |The ’square ’ function squares an integer .

-- It takes one argument , of type ’Int ’.

square :: Int -> Int

square x = x * x

someFunc :: IO ()

someFunc = putStrLn " someFunc "

Running Haddock on the module generates the following HTML page:

Figure 1 – 1 Haddock HTML rendering

In this case, the extra information about semantics of programs is used to create

readable documentation for programmers to use. Taking this approach ensures that

our documentation is never out of sync with the actual implementation. It is worth

noting that type signatures are more often than not omittable in Haskell programs,

as it is possible to infer them from function definitions using the Hindley-Milner

type inference algorithm [33].

As useful as documentations can be, they are meant for humans to read and as such,

9

FEI KPI

they do not provide much benefit when it comes to automated processing.

1.2.2 Semantics for proĄt - correctness

The main reason why type systems and contracts have been introduced is code

correctness. Type checking is a fundamental part of semantic analysis [9,14,34] and

serves to give us some confidence about correctness of code. Contracts usually assert

properties representing invariants that must hold to clearly signal what exactly has

gone wrong. They often work on values at runtime, as opposed to working on types

at compile time.

Figure 1 – 2 Lambda cube

Let us very briefly overview Lambda cube [12] type systems and how they make

use of type information. For the purposes of demonstration, the programming lan-

guage Idris [16] shall be used, as it uniformly supports all the vertices of the cube.

Even though we are using a functional language, the transition of the concepts to be

demonstrated into the realm of imperative programming is fairly straightforward.

An exception to this are type systems supporting dependent types, which are un-

10

FEI KPI

common in the imperative paradigm and languages such as Xanadu [8] are still in

experimental phases.

Note: while there is a very precise formal definition of what typing rules exist in

the type systems present on the lambda cube itself [12], languages utilizing their

concepts do not necessarily formalize everything and therefore all the examples to

be shown serve only for illustrative purposes and might not make use of the exact

typing relations of the corresponding type system they are based on

Note: type variables shall be denoted with lower case letters a, b, c..., concrete

types with upper case letters A, B, C... and kinds (types of types) shall be denoted

with asterisks *, using a meta function constructor ⊃ to express multi-kind type

functions such as * ⊃ *

The bottom left corner represents type systems deriving from simply typed lambda

calculus [12, 28] and are depicted on the cube as λ⊃. These include type checking

on a very basic level, as demonstrated by the following example:

add : Int -> Int -> Int

add x y = x + y

add 30 12

Given an add function of type Int ⊃ Int ⊃ Int, function application add 30 12

typechecks as both 30 and 12 are literals of type Int. We can therefore make sure

we are not applying the operator + to values that cannot be added together.

By introducing parametric polymorphism [30] into the type system, we introduce

a dependency of terms on types and form System F [22], depicted as λ2 on the

Lambda cube. Now we can formulate polymorphic functions that work on families

of types, as demonstrated by the example:

11

FEI KPI

id : a -> a

id x = x

id 42

Given an id function of type a ⊃ a, function application id 42 typechecks as there

are no requirements imposed on the expected argument of the function and a literal

of type Int is just as good as any other literal of some other type. By creating a

parametrically polymorphic system, we have eliminated the need to have a separate

id function for every type we could possibly require it for.

The next extension of the system (marked as λω on the Lambda cube) introduces

type functions (sometimes called type operators or somewhat less precisely type

constructors), forming a Simply typed lambda calculus with type operators where

types can dependent on other types. Let us have a look at a small example:

data NotAList : Type -> Type where

Nil : NotAList a

Cons : a -> NotAList a -> NotAList a

aList : NotAList Int

aList = Cons 5 Nil

Given a type declaration NotAList of kind * ⊃ * (syntactically in Idris, Type ⊃

Type), we can invoke ”function” application yielding the type NotAList by passing

it a type parameter (in our case a = Int). (Do note that both Nil and Cons

data constructors pass a to NotAList type constructor.) This way, we can create

types that depend on other types, allowing us to generalize their behaviour. For

example our NotAList type allows us to distinguish between NotALists of Ints

12

FEI KPI

and NotALists of Chars, further enriching the number of invariants we can express

about types (and ultimately values) at compile time.

Note: the data constructors Cons and Nil along with their application in the ex-

pression aList = Cons 5 Nil are only present for demonstrative purposes

Now we shall outline (by example) a vertex of the cube (denoted as λP) representing

a Dependently-typed type system, where types can depend on values (or, more

specifically, on terms). Consider the following example:

data MyVec : Nat -> Type -> Type where

MyNil : MyVec Z a

(::) : a -> MyVec k a -> MyVec (S k) a

myMap : (a -> b) -> MyVec k a -> MyVec k b

myMap f MyNil = MyNil

myMap f (x:: xs) = f x :: myMap f xs

Here we have introduced a MyVec data type that is parameterized by a single type

(Type) and indexed by a natural number (Nat). Do note that types are ”parame-

terized” by a type but ”indexed” by a value. Now we can create a myMap function

of type (a ⊃ b) ⊃ MyVec k a ⊃ MyVec k b, which encodes a new kind of in-

variant: the length of the result list must be equal to the length of the input list

(expressed as k binding the length for both the parameter list type and the result

type).

The rest of the vertices on the cube are a combination of various aforementioned

type systems with the most expressive one of them being Calculus of Constructions

(CoC) [19].

Note: the last example actually belongs to CoC, but we find it very illustrative for

13

FEI KPI

what dependent types are capable of and as such has been used to outline the idea

behind dependently typed systems

There exist, of course, many other type systems and type abstractions not repre-

sented on the cube. For example, subtyping is a very ubiquitous type abstraction

that is often approximated in object oriented languages by inheritance, even though

these concepts are not at all equivalent [18].

Most type systems are created in order to add safety and ensure additional dimen-

sion of correctness for programs they guard. They explicitly encode extra semantic

information that is then used by type checkers to constrain the programmer while

they also attempt to remain as expressive as possible.

Contracts are usually (but not necessarily) used to make up for what cannot be

expressed within the system. Additional invariants that would otherwise be just

assumed by the programmer can then be checked (generally at runtime) and provide

diagnostics about what exactly has gone wrong in terms of what contract has been

broken / what invariant does no longer hold.

Static analysis tools [11] are often overlaid on top of languages as well, utilizing type

information (among another things) to detect possible problems with code and can

sometimes advise on matters that a typechecker cannot - for example by taking into

consideration factors other than types (direct code analysis, attributes, annotations,

formalized comments, etc.).

14

FEI KPI

Just to show a small example, here is a perfectly valid C++ program from the point

of view of a C++ typechecker (qualifiers omitted for brevity):

int main () {

int* x = nullptr ;

cout << *x;

}

A static analysis tool can use the fact that int* is a pointer type and can be nullptr

therefore. Such tool can then be taught that dereferencing it in its ”null” state

is invalid. Using this information, a static analysis tool can warn the user that a

nullptr is being dereferenced.

Just to reiterate, all extra explicit semantic information in programs is technically

not needed and is there to ”make our lives easier”. We voluntarily limit ourselves

using type systems, contracts, annotations, etc. to inject information into our pro-

grams that is not necessary for machines, but of paramount importance for humans.

We then use this information in a variety of ways; in this case to have the machine

check correctness of our programs.

1.2.3 Semantics for proĄt (and proĄt) - implementation generation

Tools like the already mentioned Haddock [4] take (among other things) type in-

formation and transform it into something different. In this sense, we could say

that types are a model and the resulting documentation is its implemented or an

alternative representation; basically using ideas of MDSD [15] with generative ap-

proaches. Most type systems present in widespread programming languages are

expressive enough to describe fair amount of behaviour and therefore are a good

source of information for documentation generation. This is then supported and

enriched by comments in natural language. Of course there is nothing preventing

15

FEI KPI

documentation generators to utilize other sources of semantics (from contracts up

to analysing implementations themselves).

We think it is an excellent idea to take type information and transform it into

something different. As a matter of fact, the main goal of the thesis is to devise

a robust way to generate implementations of functions given their signatures and

potentially additional information, such as specifications of data types they use.

We can then map a function specification (in form of its type) to its executable

implementation.

Using this approach extensively, there would be theoretically no implicit semantics

in source texts whatsoever. Stating what we want in terms of types and then synthe-

sising an implementation of such specification ideally without human intervention

would lead to correct code by construction (provided the specification is accurate).

We shall return to further inspect this approach in a latter part of the thesis.

1.2.4 Why write it twice?

Some very powerful type systems have been devised over the years of research on the

subject. We believe that even the most ubiquitous and common of them (such as the

type systems present in languages used widely in the industry (in Java, C++, C#

, etc.)) contain enough data so that an implementation can be derived for certain

signatures.

Yet this information is very often underutilized to say the very least. As we have

already mentioned, we more often than not use our type systems to check our imple-

mentations (which is, naturally, a very useful thing to do) and the next best thing

they are commonly being used for is to create documentations (often with guidance

of natural language in form of comments).

16

FEI KPI

An important question leading to inception of this thesis is: If the machine knows

that what I have written is provably2 incorrect, why can it not give me an imple-

mentation (perhaps one that does not do exactly what I want) that is correct? This

observation then leads to many further questions, a few of which we shall mention

here:

∙ How do we actually do it?

∙ Is type information suitable for this task? (hint: it is)

∙ Shall we use type information only; there are other ways to encode semantics in

code as it has been discussed; shall we perhaps also make use of preconditions

and postconditions?

∙ Can a type system be expressive enough to be able to describe all invariants

we would like?

∙ What type system do we choose?

∙ Should we finally decide on what sources of semantics we shall make use of,

what functions can we devise an implementation for given information we have

at our disposal?

∙ Shall we use an entirely different approach? (I have it on good authority

that mathematics is good at dealing with abstract concepts - can we borrow

something from it; or have we done so already?)

∙ How do we connect the process of analysis with code generation?

∙ What should the target / source language be - are there any requirements?

∙ Is all of this worth doing? (hint: it is)

2within the proof / type system present in the language

17

FEI KPI

∙ Has anybody done something similar before?

Throughout the thesis, we shall discuss some of the aforementioned questions and

perhaps even attempt to provide an answer for a few.

As the title of the enclosing chapter suggests, we would really like to go from some-

thing like this:

mystery : (a -> b) -> [a] -> [b]

to something like this:

mystery : (a -> b) -> [a] -> [b]

mystery _ [] = []

mystery f (x :: xs) = f x :: mystery f xs

automatically.

note: Idris syntax has been chosen arbitrarily; the programming paradigm not so

much for reasons we shall discuss later. The example we have used has been selected

very carefully. It is not something entirely trivial, nor contrived. It is a useful

function that is small enough to not divert attention to details. We do hope that an

attentive reader can indeed deduce the ”usual” name of the function in question.

The type of the function surely contains enough useful information to at least get to

an approximation of what I would like it to do; or does it? This concept has been

(albeit in a slightly different context) explored by Philip Wadler in his Theorems for

free! paper [7].

18

FEI KPI

2 From speciĄcation to executable code

As we have touched on before, the entire idea can be expressed as having a model

representing a specification of some sort (a function signature, for example) and

by utilising generative approaches, we can transform said model into a different

representation (in this case, into a valid part of our target programming language

that corresponds to an implementation of the given signature).

However, we shall not concern ourselves with approaches to this particular process

(the process of Model driven software design), but instead, we shall focus on the

process of transforming explicit semantics found in source texts into their ”natural”

executable representations.

Mainly, we will concentrate on utilizing type systems more so than other sources of

explicit semantics within source codes.

2.1 Preliminaries and assumptions

Before we discuss the current state of art of matters we find relevant for the thesis, we

would like to point out that we shall sometimes be using concepts and terminology

from mathematical logic as described by Curry-Howard isomorphism (sometimes

also called Curry-Howard correspondence) [28].

Mathematics gives us an abstract and formal mechanism to approach analysing

function signatures (types) as we can simply reinterpret the notion of ”type” and

look at it as though it was a proposition. Then a proof of any given proposition

coincides with a program of the corresponding type and proof normalization (in a

way, simplification) reflects program evaluation.

Also, all analysis shall be done in the context of functional languages, as their map-

19

FEI KPI

ping to logic calculi (which are extremely useful for constructing proofs, that happen

to correspond with computer programs) is straightforward. In later chapters we shall

examine various ways of doing a paradigm shift to an imperative world, which is ar-

guably more prevalent, at least in the industry and overall more practically utilized

by programmers.

The next assumptions made is that all functions shall be considered total. Reasoning

about partiality would require a way to define what inputs the function does not

make any sense for and as such is subject to further research. We reckon it is

worth noting that partial functions can be converted to total functions, at least

from the practical standpoint, at the cost of losing their isomorphic nature to their

”mathematical counterpart” (the function they are trying to model). This conversion

can happen for example by wrapping return types in a meta-type that can represent a

state of failure. The aforementioned type is often called Maybe, Optional or Nullable.

We should also mention that language ”purity” shall be assumed. This means that

no arbitrary side effects are allowed and functions do what they advertise in their

signatures. This property is fairly common among functional languages (Haskell,

Idris, etc.) but relatively rare in the imperative paradigm. There are, however,

some attempts to incorporate at least some form of purity into impure imperative

languages [21]. We make this assumption mostly because it is much cleaner and

simpler not having to formalize arbitrary side effects that could ”randomly” occur;

as a matter of fact, no commonly used logic calculus allows arbitrary side effects.

It is also worth noting that non-termination which is related to totality can be

considered a side-effect.

Moreover, we will only consider a type system that is marked as λω on the lambda

cube, that is, it is based on System F and also supports type operations. In view of

the Curry-Howard isomorphism, its logic counterpart is second-order intuitionistic

logic with universal quantification for types. Haskell programming language without

20

FEI KPI

any extensions is based on this system.

Even though there are more expressive type systems available today (for example

in languages that are based on CoC; or in languages that follow pure type systems

[24], such as Henk 2000), we believe that our choice is a good starting point with

reasonable balance of expressiveness and complexity. We shall inspect possibilities

introduced by more expressive type systems towards the end of the thesis.

The last assumption we shall make is that only parameterized (both constrained

and unconstrained) signatures shall be taken into account. The intuition behind

this is thoroughly explored in the already mentioned paper Theorems for free! [7].

The basic idea just underlines the fact that, of course, it is impossible to generate

a sensible implementation (from our standpoint) for something like Integer ⊃

Integer.

2.2 Signature analysis

Setting out to generate an implementation from a signature, we believe it is impor-

tant to ”analyse” the type first to extract information it contains. The result of the

analysis (whatever it might be) needs to be usable for purposes of the successive

synthesis / implementation generation.

2.2.1 Formal logic and proof assistants as basis

The idea to describe a proof (and coincidentally, a program) in incremental steps,

decomposing a proposition gradually until we can prove it, is not new. Various

proof assistants such as Isabelle [27] and Coq [13] have been developed, based on

numerous kinds of logic calculi, corresponding (not necessarily isomorphically) with

various type systems.

21

FEI KPI

Let us demonstrate why this should be of any relevance to us on a simple example,

using the Coq proof assistant.

Consider the following example:

Variables A B C : Prop.

Lemma implication_transitive : ((A -> B) /\ (B -> C)) -> (A

-> C).

Suppose we have a proposition stating that implication (denoted by ⊃ in Coq) is

transitive. That is, if A implies B and (∧ in Coq) B implies C then A implies C. Coq

gives us the following interactive environment (after inputting the aforementioned

formulae):

A, B, C : Prop

(A⊃ B) ∧ (B ⊃ C)⊃ A⊃ C

Note: Coq removes extra parentheses for us (logical and binds stronger than impli-

cation and implication is right associative)

We have only one goal to solve, namely the conclusion of the current tree. The

horizontal line separates assumptions (listed above it) and the conclusion (shown

beneath the line).

In Coq, proofs are carried out by using simple operations called tactics. These let us

manipulate the quasi ”proof trees”. In order to prove something, we need to ”solve

all goals”. Solving a goal generally means that we already have in assumptions what

we are trying to prove, similar to the way that sequent form calculi [17] use the

identity axiom rule.

Just to demonstrate a simple tactic and its relationship with an inference rule,

22

FEI KPI

considering the following identity rule (in propositional sequent calculus):

Id
A ⊢ A

Note: A is considered atomic

One of the corresponding Coq tactics is called assumption, which is documented in

the reference manual [13] as follows: ”This tactic looks in the local context for a

hypothesis which type is equal to the goal. If it is the case, the subgoal is proved.

Otherwise, it fails.”

From the wording we can see the identity axiomatic inference rule and the assump-

tion tactic are not in one to one correspondence, but their purpose is identical. As

a matter of fact, identities where the context contains more assumptions than nec-

essary can be transformed to their ”pure” form by using weak structural rules [17]

that are logical consequence of commutativity of contexts (represented by the so

called ”exchange structural rules”) and the fact that contexts can be weakened (cor-

responding rules are contraction and weakening).

Intuitively, given A, B and C, we can certainly prove B, even though the Identity

rule does not apply immediately, should we consider the sequent form A, B, C ⊢ B.

This very intuition is captured in Coq’s tactic assumption.

Note: other tactics used shall not be explained in detail; an interested reader may

refer to reference manual [13] for their exact descriptions

Continuing the example we started, a common strategy to solving goals that are

in the form of implication is to assert their antecedents. We therefore move on by

using the intro strategy.

// ... output omitted

intro .

23

FEI KPI

// ... output omitted

This results in the following environment:

A, B, C : Prop; H : (A⊃ B) ∧ (B ⊃ C)

A⊃ C

Note: tactics are allowed to introduce new arbitrary fresh names to newly con-

structed hypotheses (should user defined names not be provided); in this case the

name H is chosen by Coq

Applying intro one more time finally yields:

A, B, C : Prop; H : (A⊃ B) ∧ (B ⊃ C); H0 : A

C

Note: assumptions shall be separated by semicolons

The only way to get C from the available assumptions is to somehow find B (so

as to use B ⊃ C). The problem is that the implication we are looking for is not

contained in the assumptions as an atom. Therefore we have to start by eliminating

the addition, using the elim tactic.

// ... output omitted

elim H.

// ... output omitted

Which gets us to the following environment:

A, B, C : Prop; H : (A⊃ B) ∧ (B ⊃ C); H0 : A

(A⊃ B)⊃ (B ⊃ C)⊃ C

Now we introduce multiple hypotheses with a single tactic intros.

24

FEI KPI

// ... output omitted

intros .

// ... output omitted

The resulting environment is:

A, B, C : Prop; H : (A⊃ B) ∧ (B ⊃ C); H0 : A; H1 : A⊃ B; H2 : B ⊃ C

C

We can finally get C from B ⊃ C using the apply tactic.

// ... output omitted

apply H2.

// ... output omitted

Which leads us to:

A, B, C : Prop; H : (A⊃ B) ∧ (B ⊃ C); H0 : A; H1 : A⊃ B; H2 : B ⊃ C

B

And finally, we get B from A⊃ B with apply, resulting in the following environment:

A, B, C : Prop; H : (A⊃ B) ∧ (B ⊃ C); H0 : A; H1 : A⊃ B; H2 : B ⊃ C

A

At this point, we have a hypothesis H0 : A, which happens to be equal to the goal

we are trying to solve. Using the already mentioned tactic assumption:

// ... output omitted

assumption .

// ... output omitted

solves the goal and Coq tells us that there are ”No more subgoals”. For the sake of

completeness, the Qed tactic finishes the proof, yielding the following summary:

25

FEI KPI

intro .

intro .

elim H.

intros .

apply H2.

apply H1.

assumption .

We have therefore provided a constructive proof to the lemma implication_transitive.

Shifting our focus to the world of types, we are looking at a function called im-

plication_transitive that is of type (a ⊃ b, b ⊃ c) ⊃ a ⊃ c. (Using Haskell

notation and the fact that product types are tuples, concretely in this case, pairs

and implication represents a function type.)

The signature f :: (a ⊃ b, b ⊃ c) ⊃ a ⊃ c resembles the one of function

composition (denoted (.) in Haskell), which is (.) :: (b ⊃ c) ⊃ (a ⊃ b)

⊃ a ⊃ c. If we uncurry the composition operator, we get uncurry (.) :: (b

⊃ c, a ⊃ b) ⊃ a ⊃ c, which is almost identical to what we were proving ex-

cept for the fact that the operands for (.) are in reverse order, so as to go by the

convention of (f ◇ g) being interpreted as f after g, that is, f(g(x)).

Now that we have the ”proposition as type” covered, we should be able to convert

our constructive proof (expressed as a sequence of tactics in our case) into a meta-

program (or view / reinterpret it as such). This is a key idea we are going to build

upon; given a proposition, find the corresponding function type, find a constructive

proof of the proposition and transform it to a meta-program which can then be

translated to an executable implementation.

26

FEI KPI

2.2.2 Automated proof construction

One of the goals of the thesis is to devise a way to create executable implementa-

tions automatically. Coq however, is mainly a proof assistant - while the way of

constructing proofs can model construction of programs in a reasonably straightfor-

ward manner as will be shown shortly, the process requires a lot of human input and

as such is insufficient for our purposes. We therefore need to find a way to automate

the process, at least for a subset of interesting propositions / function types. This

particular task has yet to be explored fully, even more so in the context relating to

practical code generation potentially for mainstream languages used throughout the

industry. Let us take a look at a few ways that this task has been attempted.

Firstly, Coq does offer a few tactics capable of proving numerous propositions with-

out human intervention. (In general, most theorem provers available do.) Detailed

descriptions are available in the Coq reference manual [13]. Here is an overview of

a few:

∙ auto tactic tries to apply assumption and intros repeatedly with bounded re-

cursion depth

∙ tauto tactic is based on contraction-free sequent calculus [20]

∙ intuition tactic tries to apply tauto on all subgoals, which are simplified be-

forehand

∙ linear tactic is implemented to model direct predicate calculus [23]

The general idea behind them is to take a fragment of a logic calculus (for example by

restricting an existing one, such as removing the contraction rule from the first order

Gentzen’s sequent calculus, which is what the linear tactic does) and build either a

formal or a semi-formal procedure (with heuristics) applying tactics in attempt to

construct a proof. The heuristic approach is very pertinent for our solution.

27

FEI KPI

Secondly, there are proof engines that take some of the ideas behind theorem provers

and try to make them more accessible to ”practical” programmers. Edwin Brady’s

Ivor [2] implements dependent type theory and facilitates an API that makes it ac-

cessible to Haskell. There is also Zeno [31] theorem prover, which generates proofs

as Isabelle [27] theories, although it is important to note that it uses a dialect of

Haskell and function definitions, rather than declarations, which is primarily in spirit

of automated checking rather than actual generation. This particular proof engine

is capable of incorporating recursive data types and as such can use recursive con-

structors as basis for inductive proving. The ability to handle user-defined recursive

data types is of great importance for the thesis given its rather practical approach

to implementation generation.

Lastly, there are interactive modes and hints generally integrated within IDEs for

(usually dependently typed) functional languages that speed up the process of writ-

ing programs by generating various code fragments for the programmer. For in-

stance, Idris can generate equations corresponding to constructors of a type and can

also do context aware case analysis and splitting; this functionality is included in

for example Atom using the Idris Mode for Atom [1].

The idea of proving by induction on an algebraic data type’s constructors (corre-

sponding to Idris generating equations for a data type) is of utmost relevance should

we want to provide a way to handle user-defined data types and generate proofs /

programs based on provided definitions.

To summarize and describe our approach to proof synthesis, we are going to use the

idea of tactics to decompose types of functions into a series of primitives. We will

also take note of user defined types. Then we develop heuristics to chain tactics

together, hopefully solving the requested goal. Transformations to implementations

will be discussed shortly.

28

FEI KPI

2.2.3 Modelling the analysis

As we have mentioned already, we are going to use a model similar to what proof

assistants use. Let us discuss the most fundamental concepts from the standpoint

of a System F based type system (that is, we shall not concern ourselves with sigma

and pi dependent types, which are extensions of universal and existential quantifiers)

as well as outline the way they are handled internally.

The analysis starts by obtaining kind definitions (in a way, algebraic specifications or

simply, data definitions) and a function signature, representing a type for which we

would like an implementation to be synthesized. Two separate languages have been

created for this purpose; one for function signatures and one for type definitions.

The input is parsed, checked for semantic consistency (for example rejecting function

signatures that constrain type variables that are unused) and normalized to be ready

for internal processing (for example all functions are curried).

Now an initial environment is created, containing the signature that is being analysed

(for the purposes of recursive invocation) and known definitions from both generic

type restrictions and kind specifications.

Let us demonstrate on a simple example:

// Type definition

Specification List {

parameterization {

Any a

}

operations {

Nil ,

Cons : a -> List a

}

}

29

FEI KPI

The fragment of code is an example of our specification definition language. We

define a type called List, that is of kind * ⊃ *. The type argument named a is

unconstrained (represented by prefixing it in the ”parameterization” block with the

typeclass ”Any”). Value constructors of this type along with their definitions are

listed in the ”operations” block and are Nil and Cons in this particular scenario.

Note: return types of data constructors are always inferred, so for example Nil is

equivalent to Nil : List a

// Signature to be analysed

(Any a, Any b) => map : (a -> b) -> List a -> List b

This is a small example of our signature specification language (resemblance to

Haskell, Idris and other function languages is naturally purely coincidental). Here

we declare a function called map. Its signature contains two unconstrained (in the

typeclass Any) type variables named a and b and it takes two arguments, namely a

function from a to b and a List of a. The notation should be immediately familiar

to functional programmers.

Note: as we have already hinted at, all functions are normalized to their curried

forms and as such they are all treated as unary; map therefore takes a function a ⊃

b and returns a function from List a to List b

30

FEI KPI

The resulting initial environment is as follows:

map : ((a -> b) -> (List a -> List b))

Nil : List a

Cons : (a -> (List a -> List a))

((a -> b) -> (List a -> List b))

Our goal (that is, what we are trying to implement) is listed beneath the horizontal

line and is directly taken from the type signature of the function we are trying to

find an implementation for. Above the line is our context, which contains all our

available assumptions. Simply put, it has functions (or constants, nullary functions)

that we can use. Nil and Cons have been provided in the specification and map is

the function in question; as we can recursively invoke it, it is considered to be a part

of the context.

Now the entire ”proof construction” process is conducted by applying various tac-

tics (term borrowed from Coq). The order in which tactics are applied is devised

heuristically, more on the topic shortly. Tactics manipulate the environment in var-

ious ways. While the terminology is borrowed, the concepts are only similar, not

identical. As Coq is designed with human assistance in mind, its tactics are of form

<tactic_name> <arguments...>, with the arguments being supplied by the user.

Our analysis is however completely automatic - we heuristically devise what tactic to

use and should the invocation be successful, arguments are automatically synthesized

and returned as parameterized tactics, usually in form tactic_name<hypothesis>.

Compound and derived tactics sometimes take the form tactic_name[components...].

Data constructors for elements of type T shall be cT

0 ... cT

n
and their respective argu-

ments aci

0 ... aci

m
. The capital letter Γ shall be used to represent context ”remainder”;

let ∆ be explicitly mentioned context contents, then ∆∪Γ is the entire context and

31

FEI KPI

∆∩Γ = ∅; hypotheses shall be named h1...hn with their respective types listed after

the colon symbol (h1 : A). Here is an overview of their semantics as well as notes

on the way they are handled internally.

Note: some names are Coq-like but their functionality may not be in one to one

correspondence

Note: internally, modified versions of the tactics to be mentioned might be used, for

the sake of simplicity of implementation, clarity or efficiency

Trivial

The trivial tactic goes through available context and solves it if and only if there is

exactly one hypothesis that shares its type with the goal. All proofs need to finish

with this tactic, otherwise the proposition cannot be solved (except in rare cases,

where a yet unintroduced tactic apply can finish the proof for nullary functions).

The tactic roughly corresponds with the context/goal identity rule.

[∄k ∈ N : (k ̸= i ∧ (hk ∈ Γ : A))] trivial<hi>hi : A, Γ ⊢ A

Internally, context is linearly searched and a hypothesis of a corresponding type

(with the goal) is returned in case it is unique; its name is appended to the tactic

name. We shall postpone an example of this tactic for a moment.

Intro

The intro tactic asserts the antecedent of the outermost implication. This means

that applying it to a function introduces its first argument into the context (keep in

mind that all functions are curried at this point). Every proof will contain at least

one invocation of intro (or one of its derivatives). A fresh name (one that is not yet

within the context) is chosen for the introduced argument. The tactic is similar to

implication introduction.

32

FEI KPI

hi : A, Γ ⊢ B
[hi : _ /∈ Γ] intro<hi>Γ ⊢ A⊃ B

Internally, invocation of intro expects the goal is of function type, unwraps it into a

pair of argument and return type, moves the argument to the context and chooses

a fresh name for it (derived from its type). The return type is untouched and kept

as the remaining goal. It is again important to note that the function type as the

goal in question will have been curried by the time intro is invoked and therefore

the resulting goal can still be of function type.

A small example demonstrating the tactics we have discussed so far:

id : a -> a

Using intro results in successful invocation, yielding intro<a0>.

a0 : a, Γ ⊢ a
intro<a0>Γ ⊢ a⊃ a

Now the tactic trivial completes the proof, yielding trivial<a0>, thus forming the

following proof tree:

trivial<a0>a0 : a, Γ ⊢ a
intro<a0>Γ ⊢ a⊃ a

Note: we have omitted enumerating complete context contents (using Γ instead),

please see the preceding part about ”initial environment”

Note: naming scheme shall be discussed later

33

FEI KPI

Intros

The intros tactic is functionally equivalent to calling intro repeatedly. Intuitively,

it is useful for multi-argument functions (disregarding their curried representation).

The tactic is similar to introducing implication several times.

hk : A0, hk+1 : A1, ..., hm : An, Γ ⊢ B
[α] intros<∅ ∪ {hk...hm}>

Γ ⊢ A0 ⊃ A1 ⊃ ...⊃ An ⊃ B

where α is {hk : _...hm : _♢ ∩ Γ = ∅

Internally, intros calls intro repeatedly but does not require that the goal is of

function type. Instead, it simply stops its execution if it can no longer introduce a

new hypothesis; the resulting environment is equivalent to calling intro zero or more

times.

Consider the following example:

constant : a -> b -> a

With intros, we get intros[intro<a0> intro<b0>], and the following environment:

a0 : a, b0 : b, Γ ⊢ a
intros[intro<a0> intro<b0>]

Γ ⊢ a⊃ b⊃ a

Clear

The clear tactic removes a hypothesis from the current context. It is similar to

context weakening.

Γ ⊢ A
clear<hi>hi : _, Γ ⊢ A

Internally, the requested hypothesis is simply discarded.

34

FEI KPI

Let us take a look at the same example as above, the constant function:

constant : a -> b -> a

Clearly, we do not need b0, even though it has been introduced already. We can

therefore clear it from the context, with clear<b0>, continuing from the aforemen-

tioned proof tree we get:

a0 : a, Γ ⊢ a
clear<b0>a0 : a, b0 : b, Γ ⊢ a
intros[intro<a0> intro<b0>]

Γ ⊢ a⊃ b⊃ a

A small note on the clear tactic. It may seem completely irrelevant considering the

relaxed form of our ”identity” rule (trivial). We shall demonstrate its pertinence in

the generative phase of the thesis later on.

ElimSum

The elimSum tactic deconstructs an inductively defined type into its constructors,

yielding a new subgoal and a subtree for each unique constructor the type in question

has. It asserts the hypothesis it is being used on is indeed of sum type. The resulting

subgoals take the following form: all of the arguments of constructors are curried

and the remaining corresponding subgoal is suffixed as the rightmost returned type.

This tactic is similar to elimination of disjunction.

Let the number of c constructor arguments be N c.

And let M c r be ac

0 ⊃ ...⊃ ac

Nc−1 ⊃ r for N c > 0, otherwise r.

hi : A, Γ ⊢M c0 B ... hi : A, Γ ⊢M cn−1 B
elimSum<hi>(cA

0 ...cA

n−1)hi : A, Γ ⊢ B

where n is the number of constructors of type A

35

FEI KPI

This tactic is used to coinductively view all of the parts of any given discriminated

union type; that is, consider all of the possible origins of the value of the type in

question. For a functional programmer, this is the equivalent of doing case analysis

on an algebraic data type with multiple data constructors. For an imperative pro-

grammer with access to virtual methods (or ideally, multi-methods), this is similar

to overriding a function in several subtypes of T and then inspecting an object of

said type at runtime to decide what behaviour it should have, based on its concrete

subtype.

Internally, elimSum looks up all available data constructors of type T and for each of

them, creates a copy of the current environment. Then, based on the arguments of

each of the constructors, creates corresponding subgoals by synthesizing functions,

taking the original goal as the final return type and prefixing the arguments of the

constructor in question to it. The resulting environments are then enqueued to a

deque.

Here is a simple (and very contrived, I am sorry) example (using the already defined

List specification) demonstrating the tactic:

g : List a -> b

We first intro the argument. Then we continue by invoking elimSum lista0; this

yields two new environments (with their respective contexts and goals), the first one

being elimSum<lista0>(Nil) and the other elimSum<lista0>(Cons). The resulting

proof tree is as follows:

lista0 : List a, Γ ⊢ b lista0 : List a, Γ ⊢ a⊃ List a⊃ b
ruleElim

lista0 : List a, Γ ⊢ b
intro<lista0>Γ ⊢ List a⊃ b

where ruleElim = elimSum<lista0>(Nil) / elimSum<lista0>(Cons)

36

FEI KPI

It is important to note that the split on the topmost part of the tree represents

two separate environments. Naming has been kept ambiguous for brevity (as the

example is complete anyway).

Apply

The apply tactic represents complete function application. Given an uncurried n-

ary function f ultimately returning T in an environment ε and a goal of type T,

synthesizes n new environments ε0 ... ε(n−1) that are copies of the original environ-

ment ε except their respective goals correspond to the types of the arguments of f,

that is, the goal of εk is set to a new type Uk which coincides with the (k + 1)st

argument type. It is important to note that value constructors of arbitrary data

types are considered functions as well. The original goal of type T is eliminated in

the process of application. If the function in question is nullary (this is reasonably

often the case with data constructors), no new environment is created. This tactic

roughly corresponds to implication elimination.

Let ρ f be the arity of f.

hi : αA, Γ ⊢ β ... hi : αA, Γ ⊢ ω
apply<hi>(0...ar/ar)

hi : αA, Γ ⊢ A

where ar is ρ hi ⊗ 1 and αA is either a function or a data constructor of any arity

ultimately returning A, that is, takes the shape of A (in which case the rule is an

axiom) or β ⊃ γ ⊃ ...⊃ ω ⊃ A

Intuitively, apply facilitates usage of function-arguments in higher order functions.

The tactic is implemented by unifying the current goal with the return type of the

applied function in its uncurried form, then creating copies of the original environ-

ment and replacing their goals.

Consider the following example:

37

FEI KPI

f : a -> (a -> b) -> b

Using apply gives us apply< funca_b_0>(1/1), generating a single new environment.

Pre-intros omitted for brevity, the end of the proof is left as an (admittedly trivial)

exercise for an interested reader (hint: what does Γ contain that is not explicitly

listed after invocation of intros?).

funca_b_0 : a⊃ b, Γ ⊢ a
apply< funca_b_0>(1/1)

funca_b_0 : a⊃ b, Γ ⊢ b
intros[intro < a0 > intro < b0 >]

...

2.2.4 Heuristics

Now that we have tactics for manipulating our definitions, we need to find a way to

apply them in some order such that we can decompose them fully up to being able

to use the trivial tactic, or in some cases the nullary apply, in order to finish the

proof.

Our heuristics-driven analysis consists of several composed algorithms, but before

we move on, let us very briefly outline the implementation so that we can be clear

what the fragments of pseudocode to come mean. First of all, the entire process runs

in a state monad (henceforth denoted as M) consisting of environments, inferences

and generations.

∙ An environment represents one goal and its corresponding context.

∙ An inference is a string representing a sentence in our quasi-language for tac-

tics - it records analysis that has been conducted and can also be used as an

intermediate representation for the not-yet-mentioned implementation gener-

ation.

38

FEI KPI

∙ A generation is a string in our target language, should we choose to utilize it

during the analysis. If all we are after is the analysis which we would like to

transform into an implementation in a separate step, it can be ignored.

We then apply a series of tactics-using-algorithms that gradually transform our ini-

tial environment (see the previous chapter) into a solved one, whilst transitioning

between one or multiple environments and building up an inference string and possi-

bly also a generation string. Before we begin, we lift the relevant initial environment,

an empty inference string and an empty analysis string into M (this operation of type

a ⊃ m a is called return in Haskell), then we proceed with the following heuristic

algorithms:

Solve by Introduction

The process begins by introducing a single argument with intro immediately followed

by an attempt to invoke trivial, trying to solve the goal. Should this succeed,

we clear the used hypothesis for the current subgoal. Do note that this step is

redundant if it is also the only subgoal present, as the proof would hence be complete.

Immediate removal of all hypotheses we apply any tactic on captures the intuition

that generally, we only want to use each argument once for each equation resulting

from elimination. If at this point the goal is unsolved, we attempt to use elimSum in

order to deconstruct the most recently introduced proposition (a function argument)

if it is a user-defined algebraic data type with specified data constructors. Finally we

clear the eliminated hypothesis (for the aforementioned reason). This procedure is

then repeated until either all goals are solved or all arguments have been introduced,

that is, the resulting goals are no longer of function type (this condition shall be

marked as ”finished” in the following pseudo-code).

Do note that the elimSum tactic can create multiple new environments, therefore

also multiple new goals, which can in turn be again of function type. It is also

important to note that this requires a bit of extra work for recursively defined

39

FEI KPI

types. Consider the Cons constructor of List a, which expands to a ⊃ List a ⊃

List a. We would never halt if we were to expand it several times. We also assume

implicit monadic context over whatever is listed after with clause, using do notation

to handle monadic binds, that is, operations of type m a ⊃ (a ⊃ m b) ⊃ m b

((»=) in Haskell).

solveByIntroduction : (initialEnvironment : M) -> M

while not finished

with initialEnvironment

do intro

h <- trivial

clear h

h’ <- elimSum

clear h’

As an example that can be solved by this step, consider the following:

id : a -> a

Intro is tried first, introducing the leftmost (and in this case, the only) argument

of type a, yielding intro<a0>, which is appended to the inference string to the

corresponding (and again, the only one) environment. Now the trivial tactic is

tried and we can immediately unify the goal with the hypothesis a0, appending

the appropriate inference step to the log and solving all of the available goals and

proving the proposition. We could stop here but the implementation is designed in

such way so that also clear is then tried, resulting in clear<a0> being synthesized

and again, appended to the inference string.

The final environment:

id : (a -> a)

40

FEI KPI

// <an empty line , no goals remaining >

Available hypothesis are above the dashed line while the goal is below. Note that

this is very similar to the initial environment, except for the goal is no longer present

(it has been solved). An intermediate environment between intro and trivial also

contained the a0 : a hypothesis, but it was immediately cleared.

The final inference string:

intro <a_0 > trivial <a_0 > clear <a_0 >

Solve by Apply

At this point, we either have a solution or we have introduced hypotheses that are

of function type. We therefore try to use apply, synthesizing a new environment for

each argument of the applied function. Do note that if the function is nullary (as we

have mentioned before, this is not uncommonly the case with data constructors for

certain types, such as Nil for List), the apply tactic solves the goal immediately.

After a function has been applied successfully, we attempt to solve all of the created

environments with trivial. This process is then repeated until we either have a

solution or until we exit with an error.

Note: it is important to note that if we had at any point encountered any shape of

identity (suppose ((a ⊃ b) ⊃ c) ⊃ (a ⊃ b) ⊃ c), we would have solved it

by trivial and there would be no need to use apply

solveByApply : (introducedEnvironment : M) -> M

while not finished

with introducedEnvironment

do h <- apply

clear h

41

FEI KPI

h’ <- trivial

clear h’

Consider the following example where solve by apply is required after solve by in-

troduction:

flip : (a -> b -> c) -> b -> a -> c

After having run solve by introduction, we get the following environment:

flip : (a -> b -> c) -> b -> a -> c

func_a_b_c_0 : (a -> (b -> c))

b_0 : b

a_0 : a

c

So we still do have one goal to solve, namely of type c. We now try to use a

viable candidate to invoke apply with. We therefore attempt to unify the rightmost

return type of every hypothesis of function type with the goal. Calls that would

lead to recursion (in this case flip) get a penalty (they ”cost” more) and therefore

funcabc0 is the most viable candidate, resulting in apply<funcabc0>(1..2/2) being

invoked, synthesizing two new environments, one with goal of type a and the other

with goal of type b. Also, their corresponding inference strings have the appropriate

apply appended. The applied hypothesis is then cleared with clear<funcabc0>. Now

we attempt to solve both of the freshly introduced goals with trivial, resulting in

trivial<a0> in one of them and trivial<b0> in the other. Of course, all inference

strings are adjusted accordingly.

The final environments are now two, one for each of the arguments of the applied

42

FEI KPI

function:

flip : ((a -> (b -> c)) -> (b -> (a -> c)))

b_0 : b

// <an empty line , no goals remaining >

flip : ((a -> (b -> c)) -> (b -> (a -> c)))

a_0 : a

// <an empty line , no goals remaining >

And the resulting inference strings (also including inference steps from solve by

introduction):

intro < func_a_b_c_0 > intro <b_0 > intro <a_0 >

apply < func_a_b_c_0 >(1/2) clear < func_a_b_c_0 > trivial <a_0 >

clear <a_0 >

intro < func_a_b_c_0 > intro <b_0 > intro <a_0 >

apply < func_a_b_c_0 >(2/2) clear < func_a_b_c_0 > trivial <b_0 >

clear <b_0 >

Distilling the algorithms, we get:

43

FEI KPI

Type = Scalar | Parameterized | Function

Context = [(String , Type)]

Env = (Type , Context)

inferImplAux : (seen : [Env]) -> (env : Env) -> [Env]

inferImplAux seen env =

let continue e = case applyAux e of Nothing -> []

Just result -> result

(i, env ’) = intro env

(t, env ’’) = trivial env ’

envs = map (clear i) $ elimSum env ’’ i in

if env ‘elem ‘ seen then continue env

else case env ’’ of Nothing -> concatMap

(inferImplAux (env :: seen)) envs

Just (h, _) -> continue $ clear

env ’’ h

applyAux : (env : Env) -> Maybe [Env]

applyAux env =

let len = length . snd $ env in

if len < 1 then Nothing

else let envs = apply env (snd . last . snd $ env) in {

case envs of Nothing -> applyAux shorterEnv

where shorterEnv = take (pred len) . snd $ env;

Just (h, envs ’) =

let envs ’’ = map (clear h) envs ’

envs ’’’ = map trivial envs ’’

solved = filter isJust envs ’’’

unsolved = filter isNothing envs ’’’ in

if null unsolved

44

FEI KPI

then Just $ concatMap fromJust solved

else let result =

concatMap inferImplAux [] unsolved

in if not . null $ result then Just result

else Nothing

}

doAnalysis = inferImplAux []

The algorithm is not sound due to its greedy nature of invoking trivial (or its friend

nullary apply) whenever possible nor complete, considering we can end up invoking

mutually recursive functions ad infinitum, should the recursive call of the function to

be analysed have the lowest cost, which is represented by its position in the context.

Consider any type with a recursive data constructor, such as the Cons injection of

List. It will always end up costing more than its would-be recursion base case

(for List it is Nil), which would be prioritized therefore completely ignoring the

recursive case. An entirely arbitrary function such as f : a ⊃ List a ⊃ List

b ⊃ (a ⊃ c) ⊃ List c will therefore still simply give us:

f :: (a -> (List a -> (List b -> ((a -> c) -> List c))))

f = \a_0 -> \ list_a_0 ->

case list_a_0 of Nil -> \ list_b_0 ->

case list_b_0 of Nil ->

\ func_a_c_0 -> Nil

Cons b_0 list_b_1 -> \ func_a_c_0 ->

Nil

Cons a_1 list_a_1 -> \ list_b_0 ->

case list_b_0 of Nil ->

\ func_a_c_0 -> Nil

45

FEI KPI

Cons b_0 list_b_1 -> \ func_a_c_0 ->

Nil

Note: please do note that this is more of an overview rather than the actual imple-

mented algorithm considering it is written in an imperative language and is more

involved, probably beyond what would be useful to describe here

2.2.5 On naming scheme and language deĄnitions

Before we move on to describing transformations into executable code, we would

like to take a moment to provide a brief overview of the chosen naming scheme as

well as describe our specification languages.

Naming scheme

Names are derived from types. There are three kinds of types available, namely

scalar types of form T, U, a, b, etc. Parameterized types taking shape T x, U x y,

etc. and function types such as A ⊃ B.

For scalar types, we proceed as follows: given a hypothesis of type T, it is assigned

a name t_n where n is a fresh (not yet used) natural number for the given T.

For parameterized types, a hypothesis of type T a b ... z is first transformed by

recursively applying the naming method to all its parameterizing arguments. Then

it is converted into a string by intercalating the type with underscores, yielding

T_a_b..._z and only then is a fresh natural number n appended, along with a

preceding _, forming T_a_b..._z_n (for potentially non-scalar a...z).

For function types, a hypothesis of type a⊃ b is modified by recursively applying the

naming method to its components, then it is converted into a string by intercalating

the resulting types with underscores, forming a_b. Then the word ”func” along with

46

FEI KPI

an underscore is prefixed and an another underscore with a fresh natural number n

is suffixed, yielding the final form func_a_b_n.

Language deĄnitions

We have already introduced (by example) both the specification definition language

and the function declaration language. Their grammars (EBNF, tokens with capital

letters are non-terminals, other tokens are terminals, potentially enclosed in apos-

trophes for disambiguation, assumed lexemes are enclosed in angled brackets) are

as follows:

SpeciĄcations

CONCEPT ::= <identifier >

IDENT ::= <identifier >

TPARAM ::= IDENT | ’(’ FUNCTYPE ’)’ | ’(’ DATATYPE ’)’

TPARAMS ::= TPARAM +

DATATYPE ::= IDENT [TPARAMS]

FUNCTYPE ::= TYPE -> TYPE (-> TYPE)*

TYPE ::= DATATYPE | ’(’ FUNCTYPE ’)’

KPARAMS ::= CONCEPT | ’(’ CONCEPT (, CONCEPT)* ’)

KIND ::= KPARAMS IDENT

PARAMS ::= parameterization { [KIND (, KIND)*] }

OPTYPE ::= : FUNCTYPE

OP ::= IDENT [OPTYPE]

OPS ::= operations { OP (, OP)* }

SPEC ::= Specification IDENT { [PARAMS] OPS }

Declarations

CONCEPT ::= <identifier >

IDENT ::= <identifier >

DATATYPE ::= IDENT [TPARAMS]

47

FEI KPI

FUNCTYPE ::= TYPE -> TYPE (-> TYPE)*

TYPE ::= DATATYPE | ’(’ FUNCTYPE ’)’

KIND ::= CONCEPT IDENT

KLIST ::= [KIND (, KIND)*]

KPARAMS ::= kind | ’(’ [KLIST] ’)’

KINDS ::= KPARAMS =>

SIGNATURE ::= IDENT : FUNCTYPE

OPERATION ::= [KINDS] SIGNATURE

2.3 From proofs to executable programs

Having decided on the way the analysis shall be conducted, we need an approach to

transforming its result to an executable implementation.

2.3.1 Direct correspondence between analytical primitives and a lan-

guage (Haskell)

We believe that the most elegant approach is to associate ”generative primitives”

with the analytical atoms we use. This way, an implementation is being synthesized

as the analysis is being conducted.

Let us take a look a look at a familiar simple example. Please do note that this

section is focused on the generative part and as such will skip many a step of the

analytical process, which is in detail described in the preceding chapter.

Given the analytical string for id : a ⊃ a consisting of three atoms:

intro <a_0 > trivial <a_0 > clear <a_0 >

48

FEI KPI

We transform each of the atoms directly to its corresponding primitive in the target

language. In our case, Haskell. Of course, this choice is mostly arbitrary even though

a functional language has a more direct mapping; more on the topic later.

intro <a_0 > as \a_0 ->

trivial <a_0 > as a_0

clear <a_0 > as <nothing >

Thus yielding the resulting generation string:

\a_0 -> a_0

Adding the name of the proposition id with an equal sign representing a definition

in Haskell, we get:

id = \a_0 -> a_0

Which indeed does happen to be a correct definition of the identity function in

Haskell. As a matter of fact, it is ”the” correct definition, as it is the only function

valid for the signature if we consider a total function.

Note: if we were to not consider totality, we could for example, create a definition

that would type check as follows: id = id . id - halting problem is somewhat

of a hindrance sometimes (there is an infinite amount of cyclic functions for the

signature in question)

49

FEI KPI

Let us take a look at Haskell’s generative counterparts to analytical primitives in

the following table:

Tactic Analytical atom Generative atom

Trivial trivial<h> h

Intro intro<h> \h ->

Intros intros[intro<h0>... intro<hn>] N / A (compound)

Clear clear<h> N / A (non-generative)

ElimSum elimSum<h>(c0 ... cn) case h of c0 ... cn ->

Apply apply<h>(0...n) h 0 1 ... n

Table 2 – 1 Analytical atoms and their generative counterparts

The generative part is language specific and can be specified for other languages as

well. In order for a new language to be introduced, it is almost enough to provide a

corresponding generative atom for Trivial, Intro, ElimSum and Apply. If we wanted

full ”integration”, we would also need to add syntax for various utilities such as type

introduction (:: in Haskell) or equation introduction (= in Haskell).

We have already seen intro and trivial in a generative example. Let us briefly take

a look at the other tactics as well.

Given f : a ⊃ (a ⊃ b) ⊃ b and its analytical string:

intro <a_0 > intro < func_a_b_0 > apply < func_a_b_0 >(1/1)

clear < func_a_b_0 > trivial <a_0 > clear <a_0 >

we can transcribe it to:

intro <a_0 > as \a_0 ->

intro < func_a_b_0 > as \ func_a_b_0 ->

apply < func_a_b_0 > as func_a_b_0

50

FEI KPI

trivial <a_0 > as a_0

yielding:

\a_0 -> \ func_a_b_0 -> func_a_b_0 a_0

This is a valid Haskell definition that simply applies the given function a ⊃ b to

the provided argument a.

The last remaining tactic to take a look at is the elimSum. Consider first : Pair

a b ⊃ a with its analytical string:

intro < pair_a_b_0 > elim < pair_a_b_0 >(Make) clear < pair_a_b_0 >

intro <a_0 > intro <b_0 > trivial <a_0 > clear <a_0 >

with the Pair type being defined as:

Specification Pair {

parameterization {

Any a,

Any b

}

operations {

Make : a -> b

}

}

Transformation to Haskell is then as follows:

intro < pair_a_b_0 > as \ pair_a_b_0 ->

elim < pair_a_b_0 >(Make) as case pair_a_b_0 of Make ->

51

FEI KPI

intro <a_0 > as \a_0 ->

intro <b_0 > as \b_0 ->

trivial <a_0 > as a_0

Yielding:

\ pair_a_b_0 -> case pair_a_b_0 of Make -> a_0 -> b_0 -> a_0

There is however a small problem with this particular generation. Haskell does not

allow for partially applied data constructors such as Make ⊃ a ⊃ This is

of course fixed within the implementation provided with the thesis but it is worth

pointing out the deficiency. This problem takes away from the elegance of the direct

transformation but is on the other hand easily fixed within an actual implementation.

Therefore the actual generation string (with fully applied Make) is:

\ pair_a_b_0 -> case pair_a_b_0 of Make a_0 b_0 -> a_0

An another deficiency of this approach is related to its context oblivious nature.

Whenever we use apply, we should parenthesize the enclosing applied function. Con-

sider the following arbitrary example:

foo : h -> (h -> i) -> x -> (i -> x -> w) -> w

If we were to directly transcribe its analysis strings:

intro <h_0 > intro < func_h_i_0 > intro <x_0 > intro < func_i_x_w_0 >

apply < func_i_x_w_0 >(1/2) clear < func_i_x_w_0 >

apply < func_h_i_0 >(1/1) clear < func_h_i_0 > trivial <h_0 >

clear <h_0 >

52

FEI KPI

intro <h_0 > intro < func_h_i_0 > intro <x_0 > intro < func_i_x_w_0 >

apply < func_i_x_w_0 >(2/2) clear < func_i_x_w_0 > trivial <x_0 >

clear <x_0 >

We would get:

\h_0 -> \ func_h_i_0 -> \x_0 -> \ func_i_x_w_0 -> func_i_x_w_0

func_h_i_0 h_0 x_0

This attempts to apply three arguments (namely func_h_i_0, h_0 and x_0) to a

binary function func_i_x_w_0. We therefore need to somewhat artificially enclose

every inner function application in parentheses. This is, of course, solved in the

provided implementation. The correct generated string (along with the function

name prefixed) is ultimately:

foo = \h_0 -> \ func_h_i_0 -> \x_0 -> \ func_i_x_w_0 ->

func_i_x_w_0 (func_h_i_0 h_0) x_0

The last problem is also related to handling contexts. When the elimSum introduces

more than a single constructor, a fresh equation is generated for every one of them.

We therefore need to trim common prefixes in order to end up with a single equation

pattern matching in the case of construct. We have already introduced the List a

data type, so consider the following:

random : List a -> c -> c

The analysis:

intro <list_a_0 > elim <list_a_0 >(Nil) clear <list_a_0 >

intro <c_0 > trivial <c_0 > clear <c_0 >

53

FEI KPI

intro <list_a_0 > elim <list_a_0 >(Cons) clear <list_a_0 >

intro <a_0 > intro <list_a_1 > intro <c_0 > trivial <c_0 >

clear <c_0 >

Direct transformation incorrect for the aforementioned reason:

\ list_a_0 -> case list_a_0 of Nil -> \c_0 -> c_0

\ list_a_0 -> case list_a_0 of Cons a_0 list_a_1 -> \c_0 ->

c_0

After common prefixes are trimmed, we end up with a correct definition (also in-

cluding the entire equation):

random = \ list_a_0 ->

case list_a_0 of Nil -> \c_0 -> c_0

Cons a_0 list_a_1 -> \c_0 -> c_0

It is important to note that whatever user defined type is used in analysis needs to

be also manually defined in target language.

2.3.2 Further transformations to imperative languages, introducing Ren

As we can see, the mapping for functional languages is very straightforward. They

are ”append only” in their nature, meaning that simple concatenation of atoms more

often than not leads directly to a valid sentence of the language.

On the other hand, imperative languages often come equipped with syntax that is

in some sense ”more context free” (excuse the carefree usage of the term); that is,

they often require for example matching sets of parentheses to introduce language

54

FEI KPI

constructs.

Consider (again) the omnipresent id : a ⊃ a example. In C++, we would ideally

want something along the lines of:

template <typename T>

T const & id(T const & a) {

return a;

}

However, we do not want to go too much into detail with C++ as a language and

therefore we first conveniently forget that passing by value requires semi-regular

types and we get the following definition:

template <typename T>

T id(T a) {

return a;

}

Also, logic is not something that the C++ standardization committee is too fond of

and as it turns out, exclusively with lambdas can we indeed omit the template syntax

for introducing type parameters, therefore finally going for the following definition:

auto id = [](auto a) { return a; };

Having the analytical string:

intro <a_0 > trivial <a_0 > clear <a_0 >

Clearly the intro<a_0> should be auto a_0, trivial<a_0> should be return a_0

and clear<a_0> is non-generative as we have stated before. Equation introduction

55

FEI KPI

would then be = [](and name transformation could easily be synthesized as f :

(name : String) ⊃ String with f name = "auto" + " " + name + " ".

It is however immediately obvious that we would need to somehow handle paren-

theses balancing, proper comma separation of arguments, context-aware generation

with trivial sometimes being with the preceding return keyword and sometimes

without, namely in function contexts.

We could of course handle all of this with either modifying the inference calculus to

be context-aware or simply fixing the implementation itself. After all, the conducted

analysis contains all the information we need; but then again, this is certainly not

as elegant as having very direct transformations between fragments of the analysis

and the generation.

The last option would be to adjust the target imperative language in a way such

that it would syntactically (and to some extent semantically) resemble a declarative

functional ”append-only” programming language and only then proceed to generate

an implementation.

As a small detour, we provide a mini quasi-functional language-within-a-language

for C++ named Ren to demonstrated how this would be done. We shall not go

into too much detail with it considering the nature of the thesis and its focus on

functional languages, or mostly Haskell. There is also no generative back-end from

the analytical part implemented so while it could be used as a reasonable way to

synthesize C++ from the analysis we conduct, we do not have an implementation

for this connection.

Consider the following:

auto sumAllOdds = c_foldl < std :: plus <int >{} < 0 |= c_filter

< isOdd ;

56

FEI KPI

This is completely valid C++ with some liberal use of operator overloads and tem-

plate metaprogramming. Its alternative in Haskell would be:

sumAllOdds = foldl (+) 0 . filter odd

Do note that for example arguments for c_foldl (which happens to represent the

reduce operation) are provided in such way so that they can be simply appended to

the function name with the preceding < symbol. Also all left hand sides are of form

auto f = . This ”kind” of C++ which is an imperative language would be very easy to

target with our framework. Ren provides seamless integration of curried functions,

partial application, the ability to compose functions with convenient syntax and

some functional primitives one would normally find in a functional language such as

map or filter. An interested reader may inspect the enclosed source code of Ren for

further reference with implementation and a few examples of its use.

Note: Ren is undocumented as it is an addendum to the thesis serving illustrative

purposes beyond its scope. A very recent C++ compiler is required to compile the

project. The recommended way to look at its functionality is to paste the contents

of ”/src/Ren/ren.cpp” into http://coliru.stacked-crooked.com/

3 Generating (some of the) Haskell standard ŤPre-

ludeŤ and more

Now that we have a way of analysing signatures and also transforming results of

the analysis into an executable implementation, let us take a look at some prac-

tical applications. The ”Prelude” [3] module of Haskell is automatically imported

unless specified otherwise to every Haskell project and forms the basis of notion of

”standard library”; it is a convenient place to look at for some practical examples.

57

FEI KPI

Skipping instance declarations and numeric functions that cannot be generated as

they lack parametricity, we arrive at the id function that has been (ab)used enough

already and is therefore skipped.

3.1 Const

The const function ignores its second argument whatever that may be and always

returns the first one. Stealing its type:

const : a -> b -> a

We get:

const :: (a -> (b -> a))

const = \a_0 -> \b_0 -> a_0

Which is exactly what we want.

3.2 (.) also known as compose

The dot operator composes two functions. Taking its type from Prelude and conve-

niently renaming it to compose:

compose : (b -> c) -> (a -> b) -> a -> c

We get:

compose :: ((b -> c) -> ((a -> b) -> (a -> c)))

compose = \ func_b_c_0 -> \ func_a_b_0 -> \a_0 -> func_b_c_0

(func_a_b_0 a_0)

58

FEI KPI

This definition happens to correspond to the one provided in the official standard,

modulo naming and some syntactic sugar.

3.3 Flip

Flip takes a function f and two arguments which are then applied to f in reverse

order. Its type:

flip : (a -> b -> c) -> b -> a -> c

And the resulting Haskell implementation:

flip :: ((a -> (b -> c)) -> (b -> (a -> c)))

flip = \ func_a_b_c_0 -> \b_0 -> \a_0 -> func_a_b_c_0 a_0 b_0

3.4 Seq

Seq introduces strictness into Haskell. It takes two arguments, returns the sec-

ond one and is strict in its first argument. Generating it makes no practical sense

whatsoever as we cannot enforce strictness, but we can nonetheless. Given its type:

seq :: a -> b -> b

We get:

seq :: (a -> (b -> b))

seq = \a_0 -> \b_0 -> b_0

Which does not really do much because its type does not say a whole lot about what

59

FEI KPI

this function is supposed to do, but we do have something; a function that returns

its second argument and ignores the first.

3.5 ($) also known as apply

The ($) operator (conveniently renamed to apply) is infix function application with

low priority and right associativity. Its type unfortunately does not contain the

aforementioned information, but we can in fact synthesize a function that at least

applies whatever argument it is given to the function it is given. Its type:

apply : (a -> b) -> a -> b

The synthesized function:

apply :: ((a -> b) -> (a -> b))

apply = \ func_a_b_0 -> func_a_b_0

Does what it advertises, but is completely useless because it lacks its implicit infix

nature and associativity.

Note: we now skip Bool and Char declarations and corresponding instance declara-

tions, we cannot do anything about those; consider f : Bool ⊃ Bool ⊃ Bool -

the f function can either be ”and” or ”or” and we have no way of figuring it out;

again, lack of parametricity

3.6 Maybe with its corresponding maybe

Maybe is a data type often used to represent a computation that may fail. Its

definition in our language:

60

FEI KPI

Specification Maybe {

parameterization {

Any a

}

operations {

Nothing ,

Just : a

}

}

Prelude now defines a function maybe that applies any f in case the value had been

constructed from its Just data constructor; otherwise it returns a user-provided

default. Its type:

maybe : b -> (a -> b) -> Maybe a -> b

Gives us:

maybe :: (b -> ((a -> b) -> (Maybe a -> b)))

maybe = \b_0 -> \ func_a_b_0 -> \ maybe_a_0 -> b_0

This of course is not quite what we wanted, as the default value is returned even

if the Maybe a is of shape Just a. This is the result of a relatively eager-to-prove

heuristic that attempts to invoke trivial whenever possible.

Note: skipping more instance declarations as we are going over the entire Prelude [3]

61

FEI KPI

3.7 Fst

Fst returns the first part of a pair (a tuple of size two). Pair has been defined in the

previous chapter. The signature of fst rewritten in terms of our definition:

fst : Pair a b -> a

Yields:

fst :: (Pair a b -> a)

fst = \ pair_a_b_0 -> case pair_a_b_0 of Make a_0 b_0 -> a_0

Which indeed works as intended.

3.8 Snd

Similarly to fst, snd returns the second part of a pair. Given its type using our

definition of pair:

snd : Pair a b -> b

Results in the following definition:

snd :: (Pair a b -> b)

snd = \ pair_a_b_0 -> case pair_a_b_0 of Make a_0 b_0 -> b_0

This is indeed the functionality we are looking for.

62

FEI KPI

3.9 Curry

Curry converts an uncurried function to a curried function. Its type using our own

pair:

curry : (Pair a b -> c) -> a -> b -> c

Synthesizes the following:

curry :: ((Pair a b -> c) -> (a -> (b -> c)))

curry = \ func_pair_a_b_c_0 -> \a_0 -> \b_0 ->

func_pair_a_b_c_0 (Make a_0 b_0)

Which is what we were looking for.

3.10 Uncurry

Uncurry converts a curried function into an uncurried one. It is of type:

uncurry :: ((a -> (b -> c)) -> (Pair a b -> c))

uncurry = \ func_a_b_c_0 -> \ pair_a_b_0 -> case pair_a_b_0 of

Make a_0 b_0 -> func_a_b_c_0 a_0 b_0

Works as intended.

Of the remaining four functions in the main part of the Prelude, two are hacks for

error handling, one contains Bool in its signature and the last one called asTypeOf

is of type a ⊃ a ⊃ a, for which our heuristic cannot decide which argument to

return (the first a or the second a) and fails.

63

FEI KPI

3.11 Miscellaneous

We can of course also generate implementations from completely arbitrary signa-

tures. Consider:

arbitrary : List a -> List b -> c -> c

Which yields:

arbitrary :: (List a -> (List b -> (c -> c)))

arbitrary = \ list_a_0 -> case list_a_0 of Nil ->

\ list_b_0 -> case list_b_0 of Nil -> \c_0 -> c_0

Cons b_0 list_b_1 -> \c_0

-> c_0

Cons a_0 list_a_1

->

\ list_b_0 -> case list_b_0 of Nil -> \c_0 -> c_0

Cons b_0 list_b_1 -> \c_0

-> c_0

or something along the lines of:

arbitrary : h -> j -> (h -> j -> i) -> x -> (i -> y -> x ->

z -> w) -> y -> z -> w

Yielding:

arbitrary :: (h -> (j -> ((h -> (j -> i)) -> (x -> ((i -> (y

-> (x -> (z -> w)))) -> (y -> (z -> w)))))))

arbitrary =

\h_0 -> \j_0 -> \ func_h_j_i_0 -> \x_0 ->

64

FEI KPI

\ func_i_y_x_z_w_0 -> \y_0 -> \z_0 ->

func_i_y_x_z_w_0 (func_h_j_i_0 h_0 j_0) y_0 x_0 z_0

Naturally, we can perhaps even make something useful for a change:

swap : Pair a b -> Pair b a

Gets us:

swap :: (Pair a b -> Pair b a)

swap = \ pair_a_b_0 -> case pair_a_b_0 of Make a_0 b_0 ->

Make b_0 a_0

repl : x -> Pair x x

-- -----------------------

repl :: (x -> Pair x x)

repl = \x_0 -> Make x_0 x_0

firsts : Pair a b -> Pair c d -> Pair a c

-- ---------------------------------------

firsts :: (Pair afirsts :: (Pair a b -> (Pair c d -> Pair a

c))

firsts = \ pair_a_b_0 -> case pair_a_b_0 of Make a_0 b_0 ->

\ pair_c_d_0 -> case pair_c_d_0 of Make c_0 d_0 -> Make

a_0 c_0

Broken map:

map : (a -> b) -> List a -> List b

-- --------------------------------

65

FEI KPI

map :: ((a -> b) -> (List a -> List b))

map = \ func_a_b_0 -> \ list_a_0 ->

case list_a_0 of Nil -> Nil

Cons a_0 list_a_1 -> Nil

As we have stated before, Nil is perfectly valid in the Cons case without dependent

types.

We also support basic backtracking, therefore both of the following work:

backtrack : c -> (a -> b) -> (c -> b) -> b

-- --

backtrack :: (c -> ((a -> b) -> ((c -> b) -> b)))

backtrack = \c_0 -> \ func_a_b_0 -> \ func_c_b_0 -> func_c_b_0

c_0

Backtrack works as expected as arguments closer to the return type cost less. How-

ever, with only very basic backtracking in place, we can also make the following

work:

trackback : a -> (a -> b) -> (c -> b) -> b

-- --

trackback :: (a -> ((a -> b) -> ((c -> b) -> b)))

trackback = \a_0 -> \ func_a_b_0 -> \ func_c_b_0 -> func_a_b_0

a_0

If we cannot find a proof with applying the c ⊃ b function, we trace our steps back

and try the other one.

66

FEI KPI

3.12 Summary

In general, our heuristics within the calculus perform a non-exhaustive search of

some sort. This means that they sometimes do find a solution and sometimes they

miss it, but it is difficult to classify the set of solutions that can be found using

this method. That said, using this approach we can synthesize implementations

for functions used ubiquitously in Haskell (among other things), which shows the

merit of the method. Informally, functions that end up being fully generated must

typecheck by construction and hence provide a viable definition of the signature. It

is impossible to do further analysis on whether it does what was ”intended”. When

it comes to signatures that can be synthesized, the following general criteria must

be met:

∙ purely parametric signature

∙ totality

∙ unambiguous type occurrences (consider a⊃ a⊃ a, which a do we return?)

∙ hints to disambiguate data constructors (as all of those ultimately return the

type they are constructing, naturally resulting in ambiguity)

4 What should be possible and grounds for fur-

ther research, our implementation and its lim-

itations

As we have mentioned before, we do not support dependent types. However, with

the ability for types to depend on terms (values), we could generate implementations

for a whole new class of functions.

67

FEI KPI

4.1 Generating a correct map with a dependently typed sys-

tem

First consider the signature of map without dependent types, using Idris syntax:

map : (f : (a -> b)) -> (xs : List a) -> List b

Using SolveByIntroduction, after introducing both the function f and the xs list

(corresponding with intros), we get the following:

f : (a⊃ b), xs : List a , Γ ⊢ List b

Deconstructing xs (as though elimSum was used) yields two new environments. For

Nil:

f : (a⊃ b), xs : List a, Γ ⊢ List b

For Cons:

f : (a⊃ b), xs : List a, x : a, ys : List a , Γ ⊢ List b

In the Nil environment, the only way to construct something of type List b is to

use Nil (transitioning to Solve by Apply, as though apply with zero arguments was

used), which solves the subgoal of the environment in question. Therefore we would

have intros[intro<f>, intro<xs>], elimSum<xs>, apply<Nil>, which we could then

transform to:

map = \f -> \xs -> case xs of Nil -> Nil

Which is correct for the map implementation in case of Nil. However in the Cons

case, we immediately encounter a problem: Nil is of type List b and it is a perfectly

valid right hand side. This is, of course, incorrect. What we do want is:

68

FEI KPI

map = \f -> \xs -> case xs of Cons x ys -> Cons (f x) (map f

ys)

It is also important to note that there are also two hypothesis with type List a,

which means that the trivial tactic would fail in the recursive call of Cons, if the Nil

type match had not been a problem in first place; this could however be solved by

immediately clearing the eliminated hypothesis.

As is immediately obvious, it would be very difficult to devise a general heuristic

to apply functions in correct order to handle these subtle ambiguities. However,

if we could encode more information in the signature itself, we would be able to

disambiguate in many more cases. Consider the following definition of List in Idris,

which also encodes its size in its type.

data List : Nat -> Type -> Type where

Nil : List Z a

Cons : a -> List k a -> List (S k) a

Now for the signature of map:

map : (f : (a -> b)) -> (xs : List k a) -> List k b

What we are saying is that the resulting list needs to be exactly as long as the

input list xs. If we were to now assert all the arguments (beginning with Solve by

Introduction), we would get:

f : (a⊃ b), xs : List k a , Γ ⊢ List k b

Deconstructing xs yields two new environments. For Nil:

f : (a⊃ b), xs : List (S k) a , Γ ⊢ List Z b

69

FEI KPI

Here we see a difference already. We indicate that the resulting list needs to be of

length zero and as such, the Nil constructor is the only way to create a definition

that typechecks. For Cons:

f : (a⊃ b), xs : List (S k) a, x : a, ys : List k a , Γ ⊢ List (S k) b

We can now see, however, that Nil is no longer a valid right hand side, as k ̸= Z. If

we also immediately cleared the deconstructed xs, we would be left with:

f : (a⊃ b), x : a, ys : List k a , Γ ⊢ List (S k) b

The only way to get List k b if we do not have Nil is to use Cons, which generates two

further environments. For its first argument, we have a hole of type that corresponds

with the first argument of the Cons data constructor, b (after unification a ⊂ b).

Therefore:

f : (a⊃ b), x : a, ys : List k a , Γ ⊢ b

The only function in the context that has return type of b is f, applying it generates

a new goal with the same context (without f if immediately cleared) and with a goal

of type a:

x : a, ys : List k a , Γ ⊢ a

Now the goal a can be solved, as x : a is already available.

The second argument of Cons is a list of size k, parameterized by b. Therefore the

other environment generated by deconstructing xs is:

f : (a⊃ b), x : a, ys : List k a , Γ ⊢ List k b

The only function with return type unifiable with the current subgoal is map (its

recursive invocation), applying it creates two more environments. The first argument

is of type a⊃ b, therefore the new environment:

f : (a⊃ b), x : a, ys : List k a , Γ ⊢ (a⊃ b)

70

FEI KPI

This one is trivial as f is the only thing that matches. The second argument of map

is of type List k a, yielding the following environment:

f : (a⊃ b), x : a, ys : List k a , Γ ⊢ List k a

This one can be immediately completed by using ys from the context.

If we were to reconstruct the analysis, we would get something along the lines of:

intros [intro <f>, intro <xs >] elimSum <xs >(Nil) clear <xs >

apply <Nil >(1/1) clear <Nil >

intros [intro <f>, intro <xs >] elimSum <xs >(Cons) clear <xs >

apply <Cons >(1/2) intro <x> intro <ys > apply <f >(1/1)

trivial <x> clear <x>

intros [intro <f>, intro <xs >] elimSum <xs >(Cons) clear <xs >

apply <Cons >(2/2) intro <x> intro <ys > apply <map >(1/2)

trivial <f> clear <f>

intros [intro <f>, intro <xs >] elimSum <xs >(Cons) clear <xs >

apply <Cons >(2/2) intro <x> intro <ys > apply <map >(2/2)

trivial <ys > clear <ys >

Which could be then transformed to (using Idris syntax):

map : (a -> b) -> List k a -> List k b

map = \f => \xs => case xs of Nil => Nil

Cons x ys => Cons (f x) (map f

ys)

This is indeed a correct implementation of map. As we have stated before, we would

71

FEI KPI

need to implement a dependently typed system for this to work with the heuristics

we have devised.

4.2 Limitations

Our prototype has various bugs at its disposal, as well as missing features and

general imperfections. First and foremost, dependent types are not available.

Secondly, only one user defined type definition per analysis is allowed. For example

it is impossible to have a function containing a List and a Pair.

Moreover, data constructors must contain only a single capital letter; namely the

initial one.

Also, we do not import additional operations from type restrictions. As a matter of

fact, there is no way to define them either. Therefore the any constraint (which is

equivalent to no constraints) is the only one available.

No guarantees are made about what happens when an implementation cannot be

synthesized. This manifests in several ways that include (but are not limited to)

not halting, crashing, throwing an exception that is uncaught and generating a

malformed implementation.

5 Discussion

5.1 Decisions and their impact

Both arbitrary and well thought out decisions have been made along the way, with

various levels of impact on the entire process of analysis and generation. Said as-

72

FEI KPI

sumptions are discussed in the chapter ”Preliminaries and assumptions”, along with

the reasoning about why they had been made in first place. Their influence on the

resulting process of analysis and synthesis varies.

Functional paradigm is first and foremost different semantically, at least in terms

of preferred way of solving problems, which is in some sense more aligned with

mathematical logic. However, we also take advantage of the fact that in a way,

their syntax to some extent reflects their declarative nature and is therefore easier

to be synthesised from our analysis. As a matter of fact, it is so easy that in most

scenarios, our tactics can be directly transcribed to an executable form, regardless

of context they are in.

Purity is on the other hand important for the analysis phase, where we had the

freedom to operate under the assumption that each function signature ”states” what

it does and no other functionality was at all possible. This allows us to have some

confidence that what we synthesize does in fact do what we originally wanted. This

concept is also reasonably close to termination, where assuming totality allows us

to avoid malformed definitions that typecheck.

There is no doubt that a more expressive type system, such as one with dependent

types, would allows us to do a lot more, as we showed with map. As a matter of

fact, our general approach does work with such system, we just have not provided

an implementation thereof, as it would require more complex unification and nor-

malization algorithms, as well as additional complexities in occurs checks and in the

notion of equality, with regards to normalization of terms and types.

73

FEI KPI

5.2 Further considerations and research

5.2.1 Using an existing system

An interesting approach would be to take an existing language with dependent types

such as Idris and utilize its unification and other parts integral for our purposes.

This would give us a framework to work with, allowing us to focus on creating more

diverse heuristics, potentially with more advanced backtracking and various cost

functions, which help specify order of applied tactics. We could also utilize tooling

that has been created for Idris and programmers could use syntax they are familiar

with to provide their specifications and declarations; this would then also remove the

need to manually enter type declarations. Moreover, having a very expressive type

system implemented would also allow us to ”cheat” with implementation synthesis;

we could simply search in a shared database of definitions written by other users.

Given that functionality is very well specified by the type itself, we assume that type

directed search would be of great merit. As an interesting observation to consider,

our framework is basically a programming language that does not allow definitions

to be entered, only declarations (be it for types or functions).

5.2.2 Our framework as a proof assistant

It would be possible to turn our implementation into a proof assistant very easily.

We would simply drop the part that does automatic solving and prompt users to

manually enter tactics and compute environment changes based on the tactics they

would provide. That said, our thesis is unique in its approach and this step is an

integral part of the idea behind it. Not to mention that powerful proof assistants

already exist and ours would pale in comparison.

74

FEI KPI

6 Conclusion

We set out to find a way to automatically convert a function signature into an ex-

ecutable implementation. We chose an approach that utilizes the Curry-Howard

isomorphism between types and propositions. Having taken advantage of the corre-

spondence, we created a calculus with operations that manipulate contexts, allowing

us to decompose a proposition and construct its proof. We then developed a set of

heuristic algorithms to apply said operations in order to automate the process of

proof construction. Then we devised a way of transforming proofs to executable

implementations in functional languages and also outlined an approach that allows

us to perform further transformations to imperative paradigm. As an interesting

example of modifying a non-functional language into one that offers functional syn-

tax, we created a toy embedded domain specific language of sorts called Ren, which

is just as easy to target as any other functional language. Finally we created a set

of concrete transformations to Haskell and implemented the entire functionality.

75

FEI KPI

References

[1] Brady, E.: Idris Mode for Atom.[online]. [accessed 29.1.2016]. <https://

github.com/idris-hackers/atom-language-idris.

[2] Brady, E.: Ivor, a Proof Engine.[online]. [accessed 29.1.2016]. <https://eb.

host.cs.st-andrews.ac.uk/writings/ivor.pdf>.

[3] Jones, S. P.: The Haskell 98 Report[online]. [accessed 26.3.2016]. <https:

//www.haskell.org/onlinereport/standard-prelude.html>.

[4] Marlow S., Waern D.: Haddock Documentation.[online]. [accessed 11.12.2015].

<https://www.haskell.org/haddock/>.

[5] Meijer, E. and Drayton, P.: Static Typing Where Possible, Dynamic Typ-

ing When Needed: The End of the Cold War Between Programming

Languages.[online]. [accessed 12.12.2015]. <http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.394.3818&rep=rep1&type=pdf>.

[6] Unknown: Cofoja framework.[online]. [accessed 12.12.2015]. <https://

github.com/nhatminhle/cofoja>.

[7] Wadler, P.: Theorems for free![online]. [accessed 2.2.2016]. <http://ttic.

uchicago.edu/~dreyer/course/papers/wadler.pdf>.

[8] Xi, H.: A Dependently Typed Assembly Language.[online]. [accessed

11.12.2015]. <http://www.cs.bu.edu/~hwxi/academic/papers/DTAL.pdf>.

[9] Aho, A. V.; Sethi, R.; Ullman, J. D.: Compilers: Principles, Techniques, and

Tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1986,

ISBN 0-201-10088-6.

76

https://github.com/idris-hackers/atom-language-idris
https://github.com/idris-hackers/atom-language-idris
https://eb.host.cs.st-andrews.ac.uk/writings/ivor.pdf
https://eb.host.cs.st-andrews.ac.uk/writings/ivor.pdf
https://www.haskell.org/onlinereport/standard-prelude.html
https://www.haskell.org/onlinereport/standard-prelude.html
https://www.haskell.org/haddock/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3818&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3818&rep=rep1&type=pdf
https://github.com/nhatminhle/cofoja
https://github.com/nhatminhle/cofoja
http://ttic.uchicago.edu/~dreyer/course/papers/wadler.pdf
http://ttic.uchicago.edu/~dreyer/course/papers/wadler.pdf
http://www.cs.bu.edu/~hwxi/academic/papers/DTAL.pdf

FEI KPI

[10] Alexandrescu, A.: The D Programming Language. Addison-Wesley Profes-

sional, first edition, 2010, ISBN 0321635361, 9780321635365.

[11] Ball, T.; Rajamani, S. K.: The SLAM Project: Debugging System Software via

Static Analysis. SIGPLAN Not., volume 37, nr. 1, January 2002: p. 1–3, ISSN

0362-1340.

[12] Barendregt, H. P.: Handbook of Logic in Computer Science (Vol. 2). New York,

NY, USA: Oxford University Press, Inc., 1992, ISBN 0-19-853761-1, p. 117–309.

[13] Barras, B.; Boutin, S.; Cornes, C.; aj.: The Coq Proof Assistant Reference

Manual : Version 6.1. Research Report RT-0203, INRIA, May 1997, projet

COQ.

[14] Bennett, J. P.: Introduction to Compiling Techniques: A First Course Using

ANSI C, LEX and YACC. New York, NY, USA: McGraw-Hill, Inc., 1996, ISBN

007709221X.

[15] Beydeda, S.; Book, M.; Gruhn, V.; aj.: Model-driven software development,

volume 15. Springer, 2005.

[16] Brady, E. C.: IDRIS —: Systems Programming Meets Full Dependent Types.

In Proceedings of the 5th ACM Workshop on Programming Languages Meets

Program Verification, PLPV ’11, New York, NY, USA: ACM, 2011, ISBN 978-

1-4503-0487-0, p. 43–54.

[17] Buss, S. R.: Handbook of Proof Theory, chapter An Introduction to Proof

Theory. Elsevier, Amsterdam, 1998, p. 1–79.

[18] Cook, W. R.; Hill, W.; Canning, P. S.: Inheritance is Not Subtyping. In Pro-

ceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’90, New York, NY, USA: ACM, 1990, ISBN

0-89791-343-4, p. 125–135.

77

FEI KPI

[19] Coquand, T.; Huet, G.: The calculus of constructions. Information and Com-

putation, volume 76, nr. 2, 1988: p. 95 – 120, ISSN 0890-5401.

[20] Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. Journal

of Symbolic Logic, volume 57, 9 1992: p. 795–807, ISSN 1943-5886.

[21] Finifter, M.; Mettler, A.; Sastry, N.; aj.: Verifiable functional purity in java.

In Proceedings of the 15th ACM conference on Computer and communications

security, ACM, 2008, p. 161–174.

[22] Girard, J.-Y.: The system F of variable types, fifteen years later. Theoretical

Computer Science, volume 45, 1986: p. 159 – 192, ISSN 0304-3975.

[23] Ketonen, J.; Weyhrauch, R.: A decidable fragment of predicate calculus. Theo-

retical Computer Science, volume 32, nr. 3, 1984: p. 297 – 307, ISSN 0304-3975.

[24] McKinna, J.; Pollack, R.: Typed Lambda Calculi and Applications: Interna-

tional Conference on Typed Lambda Calculi and Applications TLCA ’93 March,

16–18, 1993, Utrech, The Netherlands Proceedings, chapter Pure type systems

formalized. Springer Berlin Heidelberg, 1993, ISBN 978-3-540-47586-6, p. 289–

305.

[25] Meyer, B.: Applying ’design by contract’. Computer, volume 25, nr. 10, Oct

1992: p. 40–51, ISSN 0018-9162.

[26] Milner, R.: A theory of type polymorphism in programming. Journal of Com-

puter and System Sciences, volume 17, nr. 3, 1978: p. 348 – 375, ISSN 0022-

0000.

[27] Nipkow, T.; Paulson, L. C.; Wenzel, M.: Isabelle/HOL: a proof assistant for

higher-order logic, volume 2283. Springer Science & Business Media, 2002.

78

FEI KPI

[28] Pierce, B. C.: Types and Programming Languages. Cambridge, MA, USA: MIT

Press, 2002, ISBN 0-262-16209-1.

[29] Pierce, B. C.; Turner, D. N.: Local Type Inference. ACM Trans. Program.

Lang. Syst., 2000: p. 1–44, ISSN 0164-0925, doi:10.1145/345099.345100.

[30] Reynolds, J. C.: Types, Abstraction and Parametric Polymorphism. In IFIP

Congress, 1983, p. 513–523.

[31] Sonnex, W.; Drossopoulou, S.; Eisenbach, S.: Zeno: An automated prover for

properties of recursive data structures. In TACAS, Lecture Notes in Computer

Science, March 2012.

[32] Tarditi, D.; Morrisett, G.; Cheng, P.; aj.: TIL: A Type-directed Optimizing

Compiler for ML. SIGPLAN Not., 1996: p. 181–192, ISSN 0362-1340.

[33] Tofte, M.: Type inference for polymorphic references. Information and Com-

putation, volume 89, nr. 1, 1990: p. 1 – 34, ISSN 0890-5401.

[34] Tremblay, J.-P.; Sorenson, P. G.: Theory and Practice of Compiler Writing.

New York, NY, USA: McGraw-Hill, Inc., 1985, ISBN 0070651612.

[35] Zhou, X.; Yan, L.; Lilius, J.: Function Inlining in Embedded Systems with Code

Size Limitation. In Embedded Software and Systems, editation Y.-H. Lee; H.-N.

Kim; J. Kim; Y. Park; L. Yang; S. Kim, Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 2007, ISBN 978-3-540-72684-5, p. 154–161.

79

FEI KPI

Appendices

Appendix A User’s Guide

Appendix B Technical Documentation

Appendix C a CD ROM containing the thesis in digital form as well as the gen-

erator and Ren

80

FEI KPI

Appendices

81

FEI KPI

A Appendix A

User Guide - Implementation overview

A.1 System Requirements

∙ Processor: 1 gigahertz (GHz)

∙ RAM: 1 gigabyte (GB)

∙ Hard disk space: 64 megabytes (MB)

∙ Graphics card: N/A

A.2 Software Requirements

∙ OS: Windows 10

A.3 Installation

No installation required. An binary executable file for the Windows platform is

provided, namely ”GenGen.exe”. Please see Technical Documentation for further

instructions on how to build the software for a different platform.

A.4 Usage

There are two input files required to launch ”GenGen.exe”, both of which need to

be in a directory called ”input”, located in the same folder as the executable. The

82

FEI KPI

first one is to be named ”input.spec”. It contains a definition of a user defined type,

using our specification language.

The other file must be named ”input.cppf” and contains a type signature of a func-

tion we want to analyse, described by our declaration language.

The program then reports:

∙ success (or failure) of syntactic analysis (whether the specified files follow the

proper grammar)

∙ success (or failure) of semantic analysis (certain consistency rules, such as

restriction of type variables only used in the signature)

∙ a set of analysis strings representing results of the analytical part of the pro-

gram

∙ transcription of the analysis to a generation string

∙ a set of environments after all analysis has been finished

∙ the resulting implementation in Haskell

An example for flip. The file ”input.spec” is empty as no additional definitions are

required. The file ”input.cppf” contains:

flip : (a -> b -> c) -> b -> a -> c

Running ”GenGen.exe” then gives us the following output:

Parsing succeeded - specification

Parsing succeeded - signature

Syntactic analysis passed .

Semantic analysis passed .

83

FEI KPI

intro < func_a_b_c_0 > intro <b_0 > intro <a_0 >

apply < func_a_b_c_0 >(1/2) clear < func_a_b_c_0 > trivial <a_0 >

clear <a_0 >

intro < func_a_b_c_0 > intro <b_0 > intro <a_0 >

apply < func_a_b_c_0 >(2/2) clear < func_a_b_c_0 > trivial <b_0 >

clear <b_0 >

\ func_a_b_c_0 -> \b_0 -> \a_0 -> func_a_b_c_0 a_0 b_0

flip : ((a -> (b -> c)) -> (b -> (a -> c)))

b_0 : b

-- ---

flip : ((a -> (b -> c)) -> (b -> (a -> c)))

a_0 : a

-- ---

flip :: ((a -> (b -> c)) -> (b -> (a -> c)))

flip = \ func_a_b_c_0 -> \b_0 -> \a_0 -> func_a_b_c_0 a_0 b_0

Please do note that if a user defined algebraic data type is used, it needs to be

manually defined in the target Haskell file as well.

84

FEI KPI

B Appendix B

B.1 System Requirements

∙ Processor: 1 gigahertz (GHz)

∙ RAM: 1 gigabyte (GB)

∙ Hard disk space: 64 megabytes (MB)

∙ Graphics card: N/A

B.2 Software Requirements

∙ OS: Windows 10

B.3 Build, Compilation and Execution

The project is written in native C++. A binary file ”GenGen.exe” is provided for

platforms running Windows 10. Should one want to target a different ecosystem, a

build from sources is required.

B.3.1 Compiler

The software has been tested to compile with GCC 4.9.3 (namely with g++). This

or every more recent build of GCC should therefore be used to compile the project.

No guarantees for other C++ compilers are provided albeit recent versions of Clang,

Visual Studio and Intel C++ Compiler with appropriate flags should be able to build

the target.

85

FEI KPI

The flags required for compilation: -std=c++14 and link to C++ boost libraries

flags

B.3.2 Dependencies

The project depends only on C++ boost libraries, namely 1.59.0 or newer.

∙ Parsing is done by boost::spirit

∙ Sum types support for ease of implementation is from boost::variant

∙ Error handling is enhanced by boost::optional

The used libraries are header only.

B.3.3 Binary

The generated executable requires a folder within the same directory, containing

input.spec and input.cppf. Output is sent to the standard output channel.

86

FEI KPI

B.4 Project Structure

\---src

\---analysis

\---analysis .cpp

\---analysis .hpp

\---tactics .cpp

\---tactics .hpp

\---asts

\---funcAst .hpp

\---implAst .cpp

\---implAst .hpp

\---specAst .hpp

\---internal

\---fmapType .hpp

\---instancedF .cpp

\---instancedF .hpp

\---wheels .hpp

\---writerContextM .hpp

\---writerContextM .cpp

\---parsers

\---funcParser .hpp

\---funcParser .cpp

\---semantics

\---function .cpp

\---function .hpp

\---semanticConsistency .cpp

\---semanticConsistency .hpp

\---specification .cpp

\---specification .hpp

\---type_operations

87

FEI KPI

\---substituion .cpp

\---substituion .hpp

\---unification .cpp

\---unification .hpp

main.cpp

B.5 ./asts

B.5.1 Module funcAst

Module describing the abstract syntax tree unique to function definitions. Each

node is represented by a structure, be it a simple aggregate or a boost::variant.

∙ Kind represents a type of type, with two string fields, representing a type

class they belong to and a name

∙ KList is a std::vector of kinds

∙ KParams is a sum type (boost::variant) either representing a kind or option-

ally a list KList

∙ Signature represents a function type signature from an independent AST.

∙ Operation denotes an aggregate of kinds and a signature, forming a full

operation

B.5.2 Module specAst

Module describing the abstract syntax tree of the specification language as well as

various utility functions.

88

FEI KPI

∙ KParams represents kind parameters and is a discriminated union that is

either a string or a vector of strings if there are multiple kind parameters

present

∙ Kind is an aggregate of kind parameters and a kind name, forming a kind

∙ Functype denotes a function type, which is just a vector of types

∙ TParam is a recursive variant that is either a string representing a typename,

or a funcType or a dataType

∙ DataType aggregates a name of a type and its type parameters

∙ Type is then a sum type that is either a funcType or a dataType

∙ Op represents an operation with name and type

∙ Spec is the final specification, aggregating the entire AST

We provide serialization functions for each of the nodes and the following self-

explanatory utilities in this translation unit:

isFuncType : type const & -> bool

isDataType : type const & -> bool

B.5.3 Module implAst

Module describing internal ASTs for implementations and various utilities. It con-

tains a utility type implemented as a synonym for a pair of optional string and a

node from any AST (templated by T), as well as an injection for it:

89

FEI KPI

makeImplemented : boost :: optional <std :: string > const & impl

-> T const & -> implemented

and two projections:

getImpl : implemented < specAstNode > const & ->

boost :: optional <std :: string >

getTtpe : implemented < specAstNode > const & -> T

Then it contains a notion of type that is curried. It is encoded in curriedType

structure, which wraps type and adds the following utilities:

construct : type -> curriedType

Which curries an uncurried type.

deconstruct : curriedType -> std :: pair < curriedType ,

boost :: optional < curriedType >>

Which strips one argument off a curried function and returns the rest if it exists.

Then free functions for further utility:

curry : type -> curriedType

uncurry : curriedType -> type

The module also contains an environment class which represents the main state

of analysis in the program. It has names within its context as a map from string

to unsigned, which keeps track of hypotheses names and a vector of curriedTypes

which represents the available hypothesis in the context, as well as their type. The

environment keeps track of uniqueness of names and as such provides:

90

FEI KPI

addToContextWithDefaultName : curriedType const & ->

std :: string

which modifies its internal state as well as returns the most recently assigned name.

The rest of the class just deals with basic operations on vector, such as adding

and removing from the context. The last thing contained in this translation unit is

notion of equality for types and their respective hashing.

B.6 ./parsers

There are two languages present, each of them with a separate parser.

B.6.1 Module funcParser

This module represents a parser for the definition language. Its grammar is in

the main part of the thesis and its implementation with boost::spirit::x3 mirrors it

closely, namely as such:

auto const kind_def = spec :: concept >> spec :: ident ;

auto const kList_def = kind % ", ";

auto const kParams_def = kind | (’(’ >> -kList >> ’) ’);

auto const kinds_def = kParams >> "=>";

auto const signature_def = spec :: ident >> ’:’ >>

spec :: funcType ;

auto const operation_def = -kinds >> signature ;

91

FEI KPI

B.6.2 Module specParser

This module represents a parser for the specification language. This parser is syn-

thesized from the following C++ code:

auto const concept_def = lexeme [+ alnum];

auto const ident_def = lexeme [+ alnum];

auto const tParam_def = ident | ’(’ >> funcType >> ’)’ | ’(’

>> dataType >> ’) ’;

auto const tParams_def = + tParam ;

auto const dataType_def = ident >> -tParams ;

auto const funcType_def = type >> "->" >> type % "->";

auto const type_def = dataType | ’(’ >> funcType >> ’) ’;

auto const kParams_def = concept | ’(’ >> concept % ’,’ >>

’) ’;

auto const kind_def = kParams >> ident ;

auto const params_def = lit(" parameterization ") >> ’{’ >>

kind % ’,’ >> ’}’;

auto const opType_def = ’:’ >> funcType ;

auto const op_def = ident >> -opType ;

auto const ops_def = lit(" operations ") >> ’{’ >> op % ’,’ >>

’}’;

auto const spec_def = lit(" Specification ") >> ident >> ’{’

>> -params >> ops >> ’}’;

B.7 ./semantics

This folder aggregates translation units related to representations of internal hy-

potheses as they are built from input strings all the way to units ready for analysis.

92

FEI KPI

B.7.1 Module function

Module representing a function of a programming language. Contains a class func-

tion which contains name of a function, information about its parameterized types,

its arguments and its return type. It serves as an intermediate representation re-

sulting from the declaration AST transformation and as such is fairly trivial, with

getters only for all of its aforementioned fields. The module also provides two self-

explanatory utility functions, namely:

isParametric : std :: string const & -> bool

isConcrete : std :: string const & -> bool

B.7.2 Module semanticConsistency

This modules only contains a single function. Its purpose is to ensure basic semantic

consistency of the parsed declaration, namely between kind specifications and type

variables. It has the following signature:

ensureConsistentConstraints : (typesBegin : Fwd_It) ->

(typesEnd : Fwd_It) -> (constrainedNames :

std ::set <std :: string >) -> void

Given a range of types and a range of constrained names, it checks whether any

nullary kind constraints are present (ones that do not actually restrict any types)

and also whether we are not restricting type variables that are unused.

93

FEI KPI

B.7.3 Module speciĄcation

Similar to the function module, this one is the result of transforming the specification

AST into the resulting speciĄcation class. It is again just an intermediary and as

such does not do much more than aggregate fields with very little additional logic. Its

data members contain the name of the specification, what constructors are available

and what the resulting type of construction is.

B.8 ./internal

This directory contains utility functions, helper structures and general templates.

B.8.1 Module wheels

The wheels module has general purpose functionality useful for implementation.

(Explanation for self-explanatory functions omitted.)

rangeEmpty : (first : Any_It) -> (last : Any_It) -> bool

The intersperse function intersperses an element in a range.

intersperse : (first : Fwd_It) -> (last : Fwd_It) -> (dest :

Out_It) -> (elem : typename

std :: iterator_traits <Out_It >:: value_type const &) -> Out_It

Intercalate takes a range and intercalates it with an another range.

intercalate : (first : Fwd_It) -> (last : Fwd_It) -> (dest :

Out_It) -> (elemFirst : Fwd_It2) -> (elemLast : Fwd_It2)

-> Out_It

94

FEI KPI

Intercalate stream is a specialized version for intercalate, working on streams.

intercalateStream : (first : Fwd_It) -> (last : Fwd_It) ->

std :: ostream & -> (what : std :: string) -> std :: ostream &

Flatten flattens nested ranges into a single one.

flatten : Outer const & -> std :: vector <Inner >

head : (begin : Fwd_It) -> (end : Fwd_It) ->

Fwd_It :: value_type

tail : (begin : Fwd_It) -> (end : Fwd_It) ->

std :: vector < typename Fwd_It :: value_type >

init : (begin : Fwd_It) -> (end : Fwd_It) ->

std :: vector < typename Fwd_It :: value_type >

last : (begin : Fwd_It) -> (end : Fwd_It) ->

Fwd_It :: value_type

A helper structure creating a pair of any T and its name encoded as a string called

named, along with its injection:

make_named : std :: string const & -> T const & -> named <T>

And of course, two projections:

getName : named <T> const & -> std :: string

getObj : named <T> const & -> T

A function merging two hashes discarding duplicate keys:

hashMerge : std :: unordered_map <Key , Val > const & ->

95

FEI KPI

std :: unordered_map <Key , Val > const & ->

std :: unordered_map <Key , Val > const &

A helper formatting function removing redundant consecutive whitespace characters:

formatWhistespace : std :: string -> std :: string

Is prefix of is a predicate returning whether one range is a prefix of the other:

isPrefixOf : (begin : Fwd_It) -> (end : Fwd_It) -> (prefix :

Fwd_It) -> bool

A function removing common prefixes:

removeCommonPrefix : (lhsBegin : Fwd_It) -> (lhsEnd :

Fwd_It) -> (rhsBegin : Fwd_It) -> (rhsEnd : Fwd_It) ->

(result : Out_It) -> Fwd_It

Split implements a string splitting on tokens.

split : std :: string const & -> char ->

std :: vector <std :: string >

fmapType

A group of recursive algorithms analysing type signatures, expressed as C++ func-

tors (callable objects). The structure getNames is functionally equivalent to:

getNames : type -> std :: vector <std :: string >

96

FEI KPI

which yields all names used in a type. There is also a structure getNamesBy,

which is basically:

getNamesBy : type -> (string -> bool) ->

std :: vector <std :: string >

It takes a predicate and filters the names as well as yields them. A utility function

creating a view over a type as a function type:

viewAsFuncType : type const & -> funcType const &

A structure getFuncTypeArguments which is functionally equivalent to:

getFuncTypeArguments : type const& -> std :: vector <funcType >

That is, it returns type arguments of a function signature. Finally the module

specifies a structure getRetType, which is conceptually:

getRetType : funcType const & -> dataType

This return the return type of a function.

B.8.2 Module instancedF

InstancedF is a module representing a type after unification, that is, proper substi-

tution of type variables. It is an intermediate utility (with a structure instacedF)

representation that is in place just for type safety and all it does is ensures that the

unification algorithm is invoked before the type is being further processed.

97

FEI KPI

B.8.3 Module writerContextM

This module represents a state of computation (class notAMonad)with the follow-

ing data members:

∙ envsT : deque<environment<» which represents active environments

∙ infsT : deque<string> denoting active inferences

∙ gensT : deque<string> encoding active synthesis to Haskell

An operation to lift said fields into this type:

mreturn : envsT -> deque <string > -> deque <string > ->

notAMonad

An operation to chain functions over the type:

mbind : notAMonad -> std :: function < notAMonad (envT)> ->

notAMonad

And getters for each of the fields, which are just data member names prefixed with

”get”. Also setters and some specializations of them.

B.9 ./type_operations

Aggregates modules implementing operations on propositions / types.

B.9.1 Module uniĄcation

An implementation of a unification and a substitution algorithm.

98

FEI KPI

unify : type const & -> type const & -> std ::set < substitution >

Given two types to unify, generates a set of substitutions that lead to equivalency

of said types.

substitute : curriedType const & -> std ::set < substitution >

const & -> curriedType

Given a type and a set of substitutions, substitute yields a new type with all the

substitutions performed.

B.9.2 Module substitution

Module containing only a structure (named substitution) aggregating two string

representations of a type, used as an intermediary for unification. It is for all intents

and purposes just a pair of two strings.

B.10 ./analysis

A folder containing modules that perform function analysis and implementation

synthesis.

B.10.1 Module analysis

A class called implementation representing an implementation of a given function

signature. Its fields are as follows:

99

FEI KPI

∙ constructors : std::unordered_map<curriedType, std::vector<wheels::named<

curriedType»>representing a hash map keeping information about how every

type can be constructed

∙ recursionInfo : std::unordered_map<std::string, std::unordered_map<

std::string, std::vector<std::size_t»>is a structure keeping tracks of recursive

types

It contains an important function:

inferImplementation : curriedType ->

std :: vector < wheels :: named < implementation :: curriedType >>

-> std :: vector < implementation >

Which orchestrates the analysis and generation by invoking algorithms that transi-

tively invoke tactics.

B.10.2 Module tactics

This module implements all tactics as well as their combinations in algorithms. It

also contains many utility functions.

getRecursiveParts : dataType const & -> typeCtorsMapT const &

-> std :: unordered_map <std :: string ,

std :: vector <std :: size_t >>

Gets recursive parts of a data type. There is also a structure called occurs that is

functionality equivalent to:

occurs : type -> bool

100

FEI KPI

Which is an implementation of occurs check.

getIgnoredNames : std :: unordered_map <std :: string ,

std :: vector <std :: size_t >> const & indices ->

std :: unordered_map <std :: string , std :: vector <std :: string >>

-> std :: unordered_map <std :: string ,

std :: vector <std :: string >>

Get ignored names in combination with occurs prevent cyclic deconstruction of

recursively defined data types.

skipDeconstruction : envT const & ->

std :: unordered_map <std :: string , std :: vector <std :: string >>

const & -> std :: string const & ctorName -> bool

SkipDeconstruction is a predicate that allows us to skip deconstruction of sum types.

contextIntersection : envT const & -> envT const & -> envT

Performs intersection of contexts treating them as sets.

generateApplyPlaceholders : std :: deque <std :: string > gens ->

unsigned arity -> std :: vector <int > const & ->

std :: string name -> std :: deque <std :: string >

Generates dummy arguments to apply tactic, allowing us to fill in parameters later.

getArity : curriedType -> unsigned

Gets arity of a curried type, treating it as though it was uncurried.

101

FEI KPI

injectGenerations : notAMonad & -> std :: deque <std :: string > ->

void

In combination with generateApplyPlaceholders, fills in function parameters after

apply.

fixContext : std :: string -> std :: string

Mends inconsistencies in generated strings.

trivial : envT -> notAMonad

Implements the trivial tactic.

attempt : F -> envT -> Ts &&... -> notAMonad

Attempts a tactic, does not error if invocation unsuccessful.

intro : envT -> notAMonad

Implements the intro tactic.

intros : envT -> notAMonad

Implements the intros tactic.

clear : envT -> std :: size_t -> notAMonad

Implements the clear tactic.

102

FEI KPI

elimSum : envT -> envIter -> typeCtorsMapT const & ->

notAMonad

Implements the elimSum tactic.

elimSumIntro : envT -> std :: size_t -> typeCtorsMapT const &

-> skipT const & -> valid -> std :: deque <valid >% vs ->

std :: deque <int >& -> std :: pair <notAMonad , skipT >

Implements a part of the Solve by Introduction algorithm, generating names to skip

on the next pass in case they are recursive.

introsElims_if : envT -> typeCtorsMapT const & ->

std :: vector <std :: string > const & -> notAMonad

Second part of the Solve by Introduction algorithm.

introsFuncargs : envT -> typeCtorsMapT const & ->

recursionMapT const & -> notAMonad

Finishes the Solve by Introduction algorithm.

apply : envT -> std :: size_t -> notAMonad

Implements the apply tactic.

applySome : envT -> unsigned -> std :: pair <notAMonad ,

wheels :: named < curriedType >>

A helper function for the Solve by Apply algorithm.

103

FEI KPI

applySolve : envT env -> typeCtorsMapT const & -> notAMonad

Implements the Solve by Apply algorithm.

104

	1 Introduction
	1.1 So wherein hides the meaning?
	1.1.1 Type systems
	1.1.2 Contracts

	1.2 Semantics for fun and profit
	1.2.1 Semantics for fun (and much less for profit) - documentation
	1.2.2 Semantics for profit - correctness
	1.2.3 Semantics for profit (and profit) - implementation generation
	1.2.4 Why write it twice?

	2 From specification to executable code
	2.1 Preliminaries and assumptions
	2.2 Signature analysis
	2.2.1 Formal logic and proof assistants as basis
	2.2.2 Automated proof construction
	2.2.3 Modelling the analysis
	2.2.4 Heuristics
	2.2.5 On naming scheme and language definitions

	2.3 From proofs to executable programs
	2.3.1 Direct correspondence between analytical primitives and a language (Haskell)
	2.3.2 Further transformations to imperative languages, introducing Ren
	3 Generating (some of the) Haskell standard ''Prelude'' and more
	3.1 Const
	3.2 (.) also known as compose
	3.3 Flip
	3.4 Seq
	3.5 ($) also known as apply
	3.6 Maybe with its corresponding maybe
	3.7 Fst
	3.8 Snd
	3.9 Curry
	3.10 Uncurry
	3.11 Miscellaneous
	3.12 Summary

	4 What should be possible and grounds for further research, our implementation and its limitations
	4.1 Generating a correct map with a dependently typed system
	4.2 Limitations

	5 Discussion
	5.1 Decisions and their impact
	5.2 Further considerations and research
	5.2.1 Using an existing system
	5.2.2 Our framework as a proof assistant

	6 Conclusion
	 References
	A Appendix A
	A.1 System Requirements
	A.2 Software Requirements
	A.3 Installation
	A.4 Usage
	B Appendix B
	B.1 System Requirements
	B.2 Software Requirements
	B.3 Build, Compilation and Execution
	B.3.1 Compiler
	B.3.2 Dependencies
	B.3.3 Binary
	B.4 Project Structure
	B.5 ./asts
	B.5.1 Module funcAst
	B.5.2 Module specAst
	B.5.3 Module implAst

	B.6 ./parsers
	B.6.1 Module funcParser
	B.6.2 Module specParser

	B.7 ./semantics
	B.7.1 Module function
	B.7.2 Module semanticConsistency
	B.7.3 Module specification

	B.8 ./internal
	B.8.1 Module wheels
	B.8.2 Module instancedF
	B.8.3 Module writerContextM

	B.9 ./type_operations
	B.9.1 Module unification
	B.9.2 Module substitution

	B.10 ./analysis
	B.10.1 Module analysis
	B.10.2 Module tactics

