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ABSTRAKT 

Číslicové riadenie je dôležitým prvkom dnešných technológií a priemyselného prostredia. 

Táto práca prezentuje číslicové riadenie nestabilného systému guľôčky na plošine, počínajúc 

matematickým modelom a končiac riadením reálneho modelu. Existuje mnoho prístupov 

návrhu regulátorov, pričom postup použitý v tejto práci je založený na minimalizácii 

lineárneho kvadratického LQ kritéria pre 2DOF štruktúru regulátora s využitím spektrálnej 

faktorizácie, ktorého výsledkom je takmer optimálne nastavený a relatívne robustný 

regulátor schopný poskytnúť dobré sledovanie žiadanej hodnoty a potlačenie poruchy. Aby 

bola voľba žiadanej hodnoty zaujímavejšia a automatická, tak bolo na plošine zostrojené 

jednoduché 2D bludisko. Počítač automaticky a algoritmicky vyrieši toto bludisko, čím sa 

získa žiadaná dráha guľôčky. Pre zjednotenie celého riadiaceho procesu bolo tiež navrhnuté 

grafické užívateľské prostredie. Výsledky prezentované v tejto práci sú sľubné a dokazujú, 

že LQ regulátor je veľmi vhodný pre tento typ aplikácie. 

 

Kľúčové slová: guľôčka na ploche, číslicové riadenie, CE 151, LQ metóda, spektrálna 

faktorizácia, riadenie v reálom čase, riešenie bludiska, watershed transformácia 

 

ABSTRACT 

The digital control is an important aspect of today’s technologies and industrial environment. 

This thesis presents the digital control of an unstable Ball & Plate system from the 

mathematical model to real-model control. There are many different controller design 

approaches and the one used here is based on the minimization of linear quadratic LQ 

criterion for 2DOF controller structure using spectral factorization, which results in almost 

optimal and relatively robust controller able to provide good reference tracking and 

disturbance rejection. To make the reference signal selection interesting and automatic, a 

simple 2D maze was constructed on top of the plate. The computer automatically and 

algorithmically solves the maze, thus obtaining the desired trajectory of the ball. A graphical 

user interface was also designed to encapsulate the model control. Results shown in this 

thesis are promising and prove that the LQ controller is a very suitable for this model. 

 

Keywords:  Ball & Plate, digital control, CE 151, LQ method, real-time control, spectral 

factorization, maze solving, watershed transform
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INTRODUCTION 

Digital control is a widespread branch of control theory thanks to cheap and flexible 

microcontrollers. They can easily act as the system controller with just few lines of code, 

thus providing an easy way to implement various controllers. Even more so, controller 

parameters can be changed adaptively during run time, which extends the possibilities of its 

use. Also many sensors provide discrete time data, so just by implementing them in the 

system introduces sampling frequency which needs to be dealt with. Discrete time models 

are not the best way to describe real systems, but they are very simple and straightforward.  

The CE 151 model from Humusoft is educational model designed to explore various tasks 

in continuous or discrete time, and in state-space or I/O model. It provides supporting 

hardware and software so that user can fully concentrate on the control problem ahead. 

Despite the good background support, the user has to deal with typical problems which arise 

before the design of controller and also after its design. User has to implement his own 

solutions to make the model suitable for control, ranging from normalization and signals 

scaling to model initialization. One could say that the controller design is only a small part 

of a bigger picture. 

The Ball & Plate model itself is unstable system, which is challenging in every aspect of the 

design process. Identification and more importantly testing and debugging are steps that are 

negatively influenced by system’s instability. The controller design is not influenced by this, 

if chosen correctly. LQ controller design with pole placement and polynomial method for 

determining controller parameters proved to be suitable as it can be computed 

algorithmically and the result is relatively robust regarding the unstable systems. 
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I.  THEORY 
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1 CE151 BALL & PLATE APPARATUS 

The CE151 Ball & Plate Apparatus is two dimensional system designed to control ball 

position and trajectory on the plate with two degrees of freedom. The model is unstable with 

second order astatism and is suited for studying system dynamics, identification and design 

of various control algorithms. The plate is pivoted at its centre and can rotate around two 

perpendicular axes using two stepper motors as shown in Fig. 1. [1] The rotational movement 

of stepper motors is transformed to the plate inclination via steel wires. The ball position in 

Cartesian coordinate system is obtained from camera located above the plate. In this 

arrangement, the model has two inputs (stepper motors voltages) and two outputs (2D 

coordinates of the ball). 

 

Fig. 1 CE151 Ball & Plate model diagram [1] 
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1.1 Technical details 

Technical details of the CE151 model were obtained mainly from model manual [1]. 

 Main body: 

 Dimensions     430 x 430 x 200 mm 

 Plate Dimensions    400 x 400 mm 

 Length of the camera stand   1100 mm 

 Weight     9 kg 

 Plate actuation   2 stepper motors in open loop 

 Step/angle conversion   1 step ≈ 0.001° 

 

 Power Supply: 

 DC Power Supply   32 V, 50 VA 

 Dimensions    175 x 175 x 100 mm 

 Weight    2 kg 

 

 Multifunction I/O card 

 Type     MF 624 – PCI 

 A/D converter    8 14-bit single-ended channels 

 D/A converter    4 14-bit channels 

 Digital I/O    8 TTL inputs and 8 TTL outputs 

 Additional    4 encoder inputs, 4 counters/timers 

 

 CCD camera: 

 Type     Logitech QuickCam Pro 5000 

 Video format    RGB24 

 Resolution (set)   160 x 120 pixels 

 Resolution (max)   640 x 480 pixels 

 Frame rate (max)   30 fps 

 Height (from the plate)  600 mm 

 

 Range of experiments: 

 Real time processing 

 Digital PID controller design  

 LQ/LQG controller design 

 Fuzzy controller design 

 Adaptive controller design 

 Path planning 

 

 Software provided: 

 Interface drivers 

 Demo package using PID controller 

 Drivers for Real Time Toolbox for MATLAB/Simulink 
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1.2 Alternative solutions and comparison 

Alternative solutions of the Ball & Plate model are proposed in this chapter, so they can be 

compared to show other ways to control ball position and trajectory on the plate. This chapter 

is not meant to explain every possible solution in detail, but merely show different solutions, 

compare them and make several conclusions. 

1.2.1 Pivot point 

The CE151 model has one pivot point in the center and motors are indirectly connected with 

the centers of plate edges. This solution is actually very simple and effective. Only two 

motors are needed, each to control one axis. The other solution would be to have 3 pivot 

points in the corners of the plate, with 2 of them directly connected to 2 motors. This setup 

is slightly different from CE151, but it still retains its 2 degrees of freedom and could be 

described as the 2DOF version of the Stewart platform. Such device was used in [2] and is 

shown in Fig. 2. 

 

Fig. 2 Alternative Ball & Plate model [2] 

1.2.2 Actuator - plate connection 

The CE151 model has motors connected with plate via steel wires using pulleys as shown in 

Fig. 1. This solution may be simple, but wires are relatively prone to elastic deformations. 

This may cause strong nonlinear behavior, mostly notable in rapid inclination changes. The 

bigger problem is in wire flexibility, as it doesn’t have any counteracting force that would 

compensate plate vibrations and sudden movements. Actuators should be connected to the 

plate using more rigid arms with joints. Such setup would be more rigid and reliable, thus 
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providing better control of plate’s movement and inclination and reducing vibrations caused 

by rapid changes. Arms could be connected to the plate anywhere on the main axes, 

preferably closer to the center of the plate (pivot point) to reduce arm length, but not too 

close to make use of the leverage provided.  

There is also an option to increase the number of degrees of freedom, e.g. to 6DOF (or 

3DOF) in Stewart platform arrangement (Fig. 3), which would add extra control over the 

model in exchange for its simplicity.  

Another solution (Fig. 3) is to use inner plate rotating inside outer frame with perpendicular 

rotation axes as shown in [3]. At least one actuator in this setup (the inner one) would have 

to be directly connected to the plate, so without any transmission or gearbox, it could be 

challenging to assume that the problem is symmetrical in the matter of actuation, although 

this solution seems to be quite reliable and even more aesthetic.  

 

Fig. 3 Frame pivoting layout [3] and 6DOF Stewart platform [4] 

1.2.3 Sensory system 

The CE151 model uses RGB camera and the ball position is obtained from grayscale image. 

The camera is located above the plate in certain height so that it captures the whole scene. 

As an alternative to the camera, it is possible to use special motion detecting system that is 

able to detect and track pre-defined objects (e.g. Kinect ™), but these solutions are rather 

expensive. The other possibility is to use resistive touch panel (or any other suitable 

technology) to obtain the ball’s position. This method is probably better at dealing with 

external noise and disturbances in form of foreign object above the plate (in the camera 

vision field), possible reflections or light intensity changes. Touch panel would remove the 

need to use optical object tracking algorithm or greatly reduce its computational cost. 
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2 MATHEMATICAL MODEL 

This chapter’s aim is to derive an authentic mathematical model, which would be precise 

enough to cover dynamics of the real model, but simple enough to make it suitable for 

following implementation and controller design. 

2.1 Setup and requirements 

Before the modelling itself, it is essential to set requirements and presumptions taken into 

account. The model can be divided into a ball-plate model and a servo motor model. This 

tactic is possible because it is assumed that servo motors are not influenced by the motion of 

the plate or the ball. The ball-plate model describes the motion of the ball on the plate and 

how plate inclination is influenced by the ball and driving forces (Fig. 4). The following 

assumptions and simplifications are considered: 

 There is no slip between the ball and the plate. 

 The contact between the ball and the plate is not lost. 

 There is no friction (e.g. from air or ball-plate contact). 

 The ball is an ideal sphere or spherical shell and homogenous. 

 The plate is an infinite plane and its inclination has no boundary. 

 

Fig. 4 Mathematical model setup [5] 

2.2 Force analysis and system equations 

It is necessary to clarify that there is a modelling part present in [1] and this chapter follows 

the same principles and methods, but there are significant mistakes which compromise the 

resulting model. Hence it is not advised to closely follow the modelling part described in [1]. 

Similar approach is taken in [5], but it also contains few negligible mistakes. Many projects 
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and theses regarding CE151 were found, where mistakes from its manual pages were 

repeated (more likely just copied) without further concern. 

2.2.1 System equations 

To obtain dynamical equations of the model, the general form of Euler-Lagrange equation 

is used: dd𝑡 ∂𝑇𝜕�̇�𝑖 − 𝜕𝑇𝜕𝑞𝑖 + 𝜕𝑉𝜕𝑞𝑖 = 𝑄𝑖 (2.1) 

Where T is overall kinetic energy, V is overall potential energy, Qi is i-th generalized force 

and qi is i-th generalized coordinate. The generalized coordinates are two ball position 

coordinates [𝑥, 𝑦] and two plate inclinations [𝛼 = 𝜃𝑥, 𝛽 = 𝜃𝑦], where [𝑥, 𝑦] = [0, 0] is 

center of the plate.  

The kinetic energy of the system consists of the kinetic energy of the ball and the kinetic 

energy of the plate. 𝑇 = 𝑇𝑏𝑎𝑙𝑙 + 𝑇𝑝𝑙𝑎𝑡𝑒 (2.2) 

 

The kinetic energy of the ball consists of translational and rotational parts: 𝑇𝑏𝑎𝑙𝑙 = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑟𝑜𝑡 (2.3) 

The translational energy of the ball is: 

𝑇𝑡𝑟𝑎𝑛𝑠 = 12𝑚𝑣2 = 12𝑚(�̇�2 + �̇�2) (2.4) 

The rotational energy of the ball: 

𝑇𝑟𝑜𝑡 = 12 𝐼𝑏𝜔2 = 12 𝐼𝑏 𝑣2𝑟2 = 12 𝐼𝑏𝑟2 (�̇�2 + �̇�2) (2.5) 

Where v is the velocity of the ball (not just its speed), Ib is the moment of inertia of the ball, 

r is the radius of the ball, ω is the angular velocity of the ball and m is the mass of the ball. 

 

By substituting equations (2.4) and (2.5) into equation (2.3): 

𝑇𝑏𝑎𝑙𝑙 = 12𝑚(�̇�2 + �̇�2) + 12 𝐼𝑏𝑟2 (�̇�2 + �̇�2) = 12 (𝑚 + 𝐼𝑏𝑟2) (�̇�2 + �̇�2) (2.6) 
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The kinetic energy of the plate (with its moment of inertia Ip) can be expressed: 

𝑇𝑝𝑙𝑎𝑡𝑒 = 12 (𝐼𝑝 + 𝐼𝑏)(�̇�2 + �̇�2) + 12𝑚(�̇�𝑥 + �̇�𝑦)2
 (2.7) 

After substitution of equations (2.6) and (2.7) into equation (2.2): 

𝑇 = 12 (𝑚 + 𝐼𝑏𝑟2) (�̇�2 + �̇�2) + 12 (𝐼𝑝 + 𝐼𝑏)(�̇�2 + �̇�2) + 12𝑚(�̇�𝑥 + �̇�𝑦)2
 (2.8) 

 

The potential energy of the ball with h being ball height relative to the plate center: 𝑉 = 𝑚𝑔ℎ = 𝑚𝑔(𝑥 sin 𝛼 + 𝑦 sin 𝛽) (2.9) 

 

Individual parts of Euler-Lagrange equation: 𝜕𝑇𝜕�̇� = (𝑚 + 𝐼𝑏𝑟2) �̇� ,            𝜕𝑇𝜕�̇� = (𝑚 + 𝐼𝑏𝑟2) �̇� (2.10) 

𝜕𝑇𝜕�̇� = 𝑚(�̇�𝑥2 + �̇�𝑥𝑦) + (𝐼𝑝 + 𝐼𝑏)�̇� ,        𝜕𝑇𝜕�̇� = 𝑚(�̇�𝑥𝑦 + �̇�𝑦2) + (𝐼𝑝 + 𝐼𝑏)�̇� (2.11) 

 dd𝑡 𝜕𝑇𝜕�̇� = (𝑚 + 𝐼𝑏𝑟2) �̈� ,           dd𝑡 𝜕𝑇𝜕�̇� = (𝑚 + 𝐼𝑏𝑟2) �̈� (2.12) 

dd𝑡 𝜕𝑇𝜕�̇� = (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑥2)�̈� + 𝑚(�̈�𝑥𝑦 + �̇�(�̇�𝑦 + 𝑥�̇�) + 2�̇��̇�𝑥) (2.13) dd𝑡 𝜕𝑇𝜕�̇� = (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑦2)�̈� + 𝑚(�̈�𝑥𝑦 + �̇�(�̇�𝑦 + 𝑥�̇�) + 2�̇��̇�𝑦) (2.14) 

 𝜕𝑇𝜕𝑥 = 𝑚(�̇��̇�𝑦 + �̇�2𝑥),         𝜕𝑇𝜕𝑦 = 𝑚(�̇��̇�𝑥 + �̇�2𝑦),         𝜕𝑇𝜕𝛼 = 0,         𝜕𝑇𝜕𝛽 = 0 (2.15) 

 𝜕𝑉𝜕𝑥 = 𝑚𝑔 sin α,      𝜕𝑉𝜕𝑦 = 𝑚𝑔 sin 𝛽 ,      𝜕𝑉𝜕𝛼 = 𝑚𝑔𝑥 cos𝛼 ,      𝜕𝑉𝜕𝛽 = 𝑚𝑔𝑦 cos𝛽 (2.16) 
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It is important to note there are no external forces (except gravity) acting on the ball itself 

(𝑄𝑥 = 0 and 𝑄𝑦 = 0) and there are forces in the form of torque acting on the plate and 

changing its inclination (𝑄𝛼 = 𝜏𝛼 and 𝑄𝛽 = 𝜏𝛽). 

After substitution of equations (2.12) - (2.16) into (2.1), the nonlinear system equations are: 

𝒙:     (𝑚 + 𝐼𝑏𝑟2) �̈� − 𝑚(�̇��̇�𝑦 + �̇�2𝑥) + 𝑚𝑔 sin 𝛼 = 0 (2.17) 

𝒚:     (𝑚 + 𝐼𝑏𝑟2) �̈� − 𝑚(�̇��̇�𝑥 + �̇�2𝑦) + 𝑚𝑔 sin 𝛽 = 0 (2.18) 

𝜶:     (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑥2)�̈� + 𝑚(�̈�𝑥𝑦 + �̇�(�̇�𝑦 + 𝑥�̇�) + 2�̇��̇�𝑥) + 𝑚𝑔𝑥 cos 𝛼 = 𝜏𝛼 (2.19) 𝜷:     (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑦2)�̈� + 𝑚(�̈�𝑥𝑦 + �̇�(�̇�𝑦 + 𝑥�̇�) + 2�̇��̇�𝑦) + 𝑚𝑔𝑦 cos 𝛽 = 𝜏𝛽 (2.20) 

2.2.2 Interpretation of terms in system equations 

It can be seen that equations (2.17) and (2.18) describe the ball motion and how the 

acceleration of the ball depends on its position on the plate and on angles and angular 

velocities of the plate. Equations (2.19) and (2.20) show plate dynamics and how it depends 

on external torques, ball position, velocity, angular velocity and acceleration of the plate. It 

is necessary to note that dynamics of the stepper motors are neglected, thus the system 

equations describe only the ball and plate problem. These dynamics will be added later. 

 𝑚     Mass of the ball - [kg]. 
 𝑟     Radius of the ball - [m]. 
 𝐼𝑏    Moment of inertia of the ball - [kgm2]. 
 𝐼𝑝    Moment of inertia of the plate - [kgm2]. 
 𝑥, 𝑦    Coordinates of the ball from center of the plate - [m]. 
 �̇�, �̇�    First time derivatives of coordinates - [ms−1]. 
 �̈�, �̈�    Second time derivatives of coordinates - [ms−2].  
 𝛼, 𝛽    Plate angles [θx, θy] respective to coordinates - [rad]. 
 �̇�, �̇�    First time derivatives of plate angles - [rads−1]. 
 �̈�, �̈�    Second time derivatives of plate angles - [rads−2]. 
 𝜏𝛼, 𝜏𝛽    Torques acting on the plate - [Nm]. 
 𝑚(�̇��̇�𝑦 + �̇�2𝑥)  Centrifugal force - [N]. 
 (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑥2)�̈�  Torque as a result of combined inertia - [Nm]. 
 𝑚(�̈�𝑥𝑦 + �̇��̇�𝑦 + �̇�𝑥�̇�) Gyroscopic influence - [Nm]. 
 2𝑚�̇��̇�𝑥   Coriolis influence - [Nm]. 
 𝑚𝑔𝑥 cos 𝛼   Gravitational influence - [Nm]. 
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2.2.3 Matrix form of system equations 

System equations can be generally written in the following tensor form: 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝑄 (2.21) 

Where 𝑀(𝑞) stands for inertia matrix, 𝐶(𝑞, �̇�) is Coriolis matrix (matrix of Coriolis and 

centrifugal forces) and 𝐺(𝑞) is gravity matrix. These terms are in equations (2.22) to (2.25). 

𝑞 = [𝑥𝑦𝛼𝛽],         �̇� = [�̇��̇��̇��̇�],         �̈� = [�̈��̈��̈��̈�] ,         𝑄 = [ 00𝜏𝛼𝜏𝛽] (2.22) 

 

𝑀(𝑞) =
[  
   
 (𝑚 + 𝐼𝑏𝑟2) 0 0 00 (𝑚 + 𝐼𝑏𝑟2) 0 00 0 (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑥2) 𝑚𝑥𝑦0 0 𝑚𝑥𝑦 (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑦2)]  

   
 
 (2.23) 

 

𝐶(𝑞, �̇�) = 𝑚 [   
 0 0 −�̇�𝑥 −�̇�𝑦0 0 −�̇�𝑥 −�̇�𝑦2�̇�𝑥 0 0 (�̇�𝑦 + 𝑥�̇�)0 2�̇�𝑦 (�̇�𝑦 + 𝑥�̇�) 0 ]   

 
 (2.24) 

 

𝐺(𝑞) = [ 𝑚𝑔 sin 𝛼𝑚𝑔 sin 𝛽𝑚𝑔𝑥 cos 𝛼𝑚𝑔𝑦 cos 𝛽] 

(2.25) 

2.3 Linearization and simplification of the model 

To simplify the model, it is assumed that stepper motors don’t lose any step and load doesn’t 

affect their performance, thus angles α and β can be direct system inputs. That’s why 

equations (2.19) and (2.20) can be omitted in behalf of simplification process. 

Because the ball is assumed to be homogenous sphere or hollow sphere, its moment of inertia 

can be approximated by the moment of inertia of sphere or spherical shell as in eq. (2.26). 



TBU in Zlín, Faculty of Applied Informatics 19 

 

𝐼𝑠𝑝ℎ𝑒𝑟𝑒 = 25𝑚𝑟2;                    𝐼𝑠ℎ𝑒𝑙𝑙 = 23𝑚𝑟2 (2.26) 

To linearize given equations around steady state where angles α and β are zero, it is assumed 

they change in range 〈−5°; 5°〉 or in other words, |𝛼| ≪ 1 and |𝛽| ≪ 1 in radians. Because 

of that, sine functions can be replaced by their arguments. In the same manner, it is assumed 

that the rate of change of angles is close to zero. As the equations contain squares of angular 

velocities or products of their combination, these terms can be assumed to be zero. 

To sum up linearization assumptions: 

 When |𝛼| ≪ 1; |𝛽| ≪ 1 => 𝑠𝑖𝑛 𝛼 ≈ 𝛼; 𝑠𝑖𝑛 𝛽 ≈ 𝛽. 

 When |�̇�| ≪ 1; |�̇�| ≪ 1 => �̇��̇� ≅ 0; �̇�2 ≅ 0; �̇�2 ≅ 0. 

System equations after simplification and linearization have the following structure: 𝒙:     �̈� = −𝐾𝑔𝛼 (2.27) 𝒚:     �̈� = −𝐾𝑔𝛽 (2.28) 

Where K is constant dependent only on the type of ball, whether it is hollow sphere or not: 

𝐾𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑚(𝑚 + 𝐼𝑠𝑝ℎ𝑒𝑟𝑒𝑟𝑏2 ) = 𝑚
(𝑚 + 25𝑚𝑟𝑏2𝑟𝑏2 ) = 57 ;            𝐾𝑠ℎ𝑒𝑙𝑙 = 35 

(2.29) 

It is now easy to obtain transfer functions from linearized model: 

𝒙:     𝐺𝑥/𝛼(𝑠) = −𝐾𝑔𝑠2  (2.30) 

𝒚:     𝐺𝑦/𝛽(𝑠) = −𝐾𝑔𝑠2  (2.31) 

It is obvious either from system equations, their matrix form or linearization that this 

problem is symmetric. Thus it is possible to analyze system and design controller for only 

one ball coordinate and plate angle.  

Instead of modelling the motor separately, a simple first order transfer function Gm is 

assumed, which is very simple and reliable approximation of its inner workings and drivers. 

𝐺𝑚(𝑠) = 𝐾𝑚𝜏𝑚𝑠 + 1 (2.32) 
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3 LQ CONTROLLER DESIGN 

The main purpose of this chapter is not to introduce various designs of controllers but to 

successfully design a digital controller, which would be suitable for the model. The chosen 

controller algorithm and design is thus briefly introduced in this chapter without going into 

much theory behind linear quadratic (LQ) control. 

3.1 Discrete model structure 

To discretize the model, it is needed to choose a sampling period, but as this is only the 

theoretical part of the design, a general discrete transfer function will be assumed. 

The transfer function combined from the ball and plate model (2.30) and motor model (2.32) 

has the following general structure: 

𝐺(𝑠) = 𝐾𝑇𝑠3 + 𝑠2 = 𝐾𝑠2(𝑇𝑠 + 1) (3.1) 

Thus it is assumed that resulting discrete transfer function has this structure: 

𝐺(𝑧−1) = 𝐵(𝑧−1)𝐴(𝑧−1) = 𝑏1𝑧−1 + 𝑏2𝑧−2 + 𝑏3𝑧−31 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + 𝑎3𝑧−3 (3.2) 

3.2 Controller structure 

It is possible to use many controller structures ranging from simple 1DOF structure, various 

cascade structures, ICM (Internal Model Control) to controllers with fuzzy supervision. The 

controller structure proposed here is two degree of freedom (2DOF) closed-loop controller 

structure shown in Fig. 5, which provides separation of feedback part (responsible for 

stabilization and disturbance rejection) and feedforward part (responsible for reference 

tracking) [6]. This should provide better control over the model and its behavior. 

Two degree of freedom closed-loop control system is shown in Fig. 5, where 𝐺(𝑧−1) is the 

controlled plant, 𝐶𝑏(𝑧−1) is the feed-back part of the controller, 𝐶𝑓(𝑧−1) is the feed-forward 

part of the controller, 1𝐾(𝑧−1) = 11−𝑧−1 is the summation part, w(k) is reference signal, n(k) is 

load disturbance and v(k) is disturbance signal. For the sake of simplification in the following 

chapters, there will be assumed no disturbances acting on the system.  
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Fig. 5 Structure of 2DOF controller 

3.3 Control law 

By taking signals in Fig. 5 in their discrete polynomial forms and omitting disturbances 𝑛(𝑘) 

and 𝑣(𝑘), it is possible to write equations describing the plant and the controller [7]: 

𝑌(𝑧−1) = 𝐵(𝑧−1)𝐴(𝑧−1) 𝑈(𝑧−1) (3.3) 

𝑈(𝑧−1) = 𝑅(𝑧−1)𝑃(𝑧−1)𝐾(𝑧−1)𝑊(𝑧−1) − 𝑄(𝑧−1)𝑃(𝑧−1)𝐾(𝑧−1) 𝑌(𝑧−1) (3.4) 

By substituting equation (3.4) into (3.3) and vice versa: 

𝑌(𝑧−1) = 𝐵(𝑧−1)𝑅(𝑧−1)𝐴(𝑧−1)𝐾(𝑧−1)𝑃(𝑧−1) + 𝐵(𝑧−1)𝑄(𝑧−1)𝑊(𝑧−1) (3.5) 

𝑈(𝑧−1) = 𝐴(𝑧−1)𝑅(𝑧−1)𝐴(𝑧−1)𝐾(𝑧−1)𝑃(𝑧−1) + 𝐵(𝑧−1)𝑄(𝑧−1)𝑊(𝑧−1) (3.6) 

The characteristic polynomial 𝐷(𝑧−1) can be selected from equation (3.5): 𝐴(𝑧−1)𝐾(𝑧−1)𝑃(𝑧−1) + 𝐵(𝑧−1)𝑄(𝑧−1) = 𝐷(𝑧−1) (3.7) 

The chosen degree of characteristic polynomial is 𝜕𝐷(𝑧−1) = 6 and plant’s degrees are 𝜕𝐴(𝑧−1) = 3 and 𝜕𝐵(𝑧−1) = 3 as shown in (3.2). Hence according to [7] for a step-

changing reference signal it is possible to obtain polynomial degrees considered in 𝑧−1:    𝜕𝑄 = 𝜕𝐴 + 𝜕𝐾 − 1 = 3 ;          𝜕𝑃 = 𝜕𝐷 − 𝜕𝐴 − 𝜕𝐾 = 2;          𝜕𝑅 = 0  (3.8) 

Note that it is possible to write feed-back and feed-forward parts as 𝑄𝑃𝐾 and 𝑅𝑃𝐾 respectively. 

It is used separately due to the implementation effectiveness, where it is useless for the feed-

forward part to sum the reference value or the feed-back part to sum the output value. 



TBU in Zlín, Faculty of Applied Informatics 22 

 

In addition to the plant’s structure in (3.2) and by making use of (3.8), the digital controllers 

can be expressed in following discrete transfer forms: 

𝐶𝑏(𝑧−1) = 𝑄(𝑧−1)𝑃(𝑧−1) = 𝑞0 + 𝑞1𝑧−1 + 𝑞2𝑧−2 + 𝑞3𝑧−31 + 𝑝1𝑧−1 + 𝑝2𝑧−2  (3.9) 

𝐶𝑓(𝑧−1) = 𝑅(𝑧−1)𝑃(𝑧−1) = 𝑟01 + 𝑝1𝑧−1 + 𝑝2𝑧−2 (3.10) 

The resulting 2DOF controller output 𝑢(𝑘) is then given by: 𝑢(𝑘) = 𝑟0𝑤(𝑘) − 𝑞0𝑦(𝑘) − 𝑞1𝑦(𝑘 − 1) − 𝑞2𝑦(𝑘 − 2) − 𝑞3𝑦(𝑘 − 3) + +(1 − 𝑝1)𝑢(𝑘 − 1) + (𝑝1 − 𝑝2)𝑢(𝑘 − 2) + 𝑝2𝑢(𝑘 − 3) 

(3.11) 

3.4 Controller parameters determination 

To determine unknown parameters of the controller it is essential to get coefficients of the 

characteristic polynomial 𝐷(𝑧−1). As mentioned in previous chapter, the chosen degree of 

characteristic polynomial in negative powers of z is 6: 𝐷6(𝑧−1) = 1 + 𝑑1𝑧−1 + 𝑑2𝑧−2 + 𝑑3𝑧−3 + 𝑑4𝑧−4 + 𝑑5𝑧−5 + 𝑑6𝑧−6 (3.12) 

To determine its coefficients it is possible to place 6 poles on the z-plane which would 

compose this polynomial. Placing 6 roots on the z-plane is quite challenging and hardly leads 

to optimal solution. To get an optimal solution, it is possible to minimize quadratic criterion, 

which with use of spectral factorization ultimately provides half of the roots as an optimal 

solution. The quadratic criterion with controller output penalization is presented in [7]: 

𝐽 = ∑{[𝑒(𝑘)]2 + 𝑞𝑢[𝑢(𝑘)]2}∞
𝑘=0  (3.13) 

The constant 𝑞𝑢 is a penalization constant, 𝑒(𝑘) = 𝑤(𝑘) − 𝑦(𝑘) is the error and 𝑢(𝑘) is the 

controller output. Standard minimization of this criterion is done in state-space description 

and leads to the solution of algebraic Riccati equation. There is yet another solution which 

minimizes the quadratic criterion using spectral factorization and plant model expressed in 

transfer function as an I/O model. The criterion (3.13) is minimal for the (3.7), where 𝐷(𝑧−1) 

is the result of spectral factorization of the following equation. [7] 𝐴(𝑧−1)𝑞𝑢𝐴(𝑧) + 𝐵(𝑧−1)𝐵(𝑧) = 𝐷(𝑧−1)𝛿𝐷(𝑧) (3.14) 

Where δ is chosen so that coefficient d0 = 1 and 𝐴(𝑧), 𝐵(𝑧), 𝐷(𝑧) are conjugate polynomials. 
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Because it is assumed that degrees of polynomials in (3.2) are maximum 3, the equation 

(3.14) has also polynomial of 3rd degree on both its sides. Thus only three coefficients 

of 𝐷6(𝑧−1) can be obtained from this spectral factorization. Other three roots have to be 

placed accordingly to the preference. 

When coefficients of the polynomial 𝐷6(𝑧−1) are determined and degree of controller 

polynomials is known, the Diophantine equation (3.7) can be solved. The equation (3.7) with 

all polynomials expressed in their full form is long, hence only its matrix form will be 

provided. This form is obtained from comparison of coefficients of 𝑧−𝑖 from either side of 

the equation, which represents linear system of six equations with six variables: 

[  
   
𝑏3 0 0 0 −𝑎3 0𝑏2 𝑏3 0 0 𝑎3 − 𝑎2 −𝑎3𝑏1 𝑏2 𝑏3 0 𝑎2 − 𝑎1 𝑎3 − 𝑎20 𝑏1 𝑏2 𝑏3 𝑎1 − 1 𝑎2 − 𝑎10 0 𝑏1 𝑏2 1 𝑎1 − 10 0 0 𝑏1 0 1 ]  

   
[  
   
𝑞3𝑞2𝑞1𝑞0𝑝2𝑝1]  

   =
[  
   

𝑑6𝑑5𝑑4 + 𝑎3𝑑3 − 𝑎3 + 𝑎2𝑑2 − 𝑎2 + 𝑎1𝑑1 − 𝑎1 + 1 ]  
    (3.15) 

If the reference value is assumed to be step-changing, it is possible to write [7]: 

𝑟0 = 1 + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 + 𝑑5 + 𝑑6𝑏1 + 𝑏2 + 𝑏3 = 𝑞0 + 𝑞1 + 𝑞2 + 𝑞3 (3.16) 

This equation of the form 𝐴𝑥 = 𝑏 can be easily solved in MATLAB or any other computing 

software capable of doing matrix operations. The result is vector of unknown controller 

parameters that can be inserted for example into equations (3.9), (3.10) and (3.11). 

3.4.1 Spectral factorization of a polynomial 

Spectral factorization changes the unstable part of the polynomial to reciprocal (stable). 

Polynomials of the 1st or 2nd order can be used in analytical solution of the spectral 

factorization. The spectral factorization of higher order polynomials is done iteratively, e.g. 

by using special function of Polynomial Toolbox in MATLAB. The spectral factorization 

example will be shown for 1st order polynomial, similar as in [7]. 

Having the 1st order polynomial 𝑀(𝑧−1) and its conjugate part 𝑀(𝑧) it is possible to solve 

the following equation to find its factorized polynomial 𝐷(𝑧−1). Conjugate polynomial has 

negative powers of variables replaced by their positive power counterparts as seen in (3.18). 𝑀(𝑧−1)𝑀(𝑧) = 𝐷(𝑧−1)𝛿𝐷(𝑧) (3.17) 
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(𝑚0 + 𝑚1𝑧−1)(𝑚0 + 𝑚1𝑧) = (1 + 𝑑1𝑧−1)𝛿(1 + 𝑑1𝑧) (3.18) 

The equation (3.15) can be rewritten into the following form: (𝑚02 + 𝑚12) + 𝑚0𝑚1(𝑧 + 𝑧−1) = 𝛿(1 + 𝑑12) + 𝛿𝑑1(𝑧 + 𝑧−1) (3.19) 

The solution {𝛿, 𝑑1} can be obtained by comparing the coefficients of (𝑧𝑖 + 𝑧−𝑖) terms. 

3.4.2 Polynomial Toolbox for MATLAB 

The Polynomial Toolbox is a package for systems, signals and control analysis and design 

based on advanced polynomial methods. It consists of as many as 222 M-files in MATLAB 

code and is easy to use. [8] 

The Polynomial Toolbox consists of various tools and functions [8]:  

 Polynomial Matrix Operations: 

o Easy manipulation with polynomials and polynomial matrices. 

o Pre-defined variables such as s or z. 

o Polynomial matrix Editor for larger matrices. 

 Advanced, fast and reliable algorithms: 

o Linear matrix polynomial equation solvers based on Sylvester matrices. 

o Spectral factorization algorithms. 

o Diophantine equations solver, Riccati equation solver. 

o Many more. 

 Polynomial Matrix Fractions support. 

 Polynomial Equations support. 

 Classic and graphical analysis tools: 

o Robustness, stability margins. 

o Parametric and polytopic uncertainties. 

o Interval polynomials. 

 Built-in Design routines: 

o LQG design, deadbeat control, pole placement, H-infinity, ... 

 Links to other packages: 

o Support and conversion of LTI objects, symbolic formats, descriptors. 

o Conversion of toolbox’s formats to MATLAB formats and vice versa. 

o Formatting of polynomial matrix for use in a LaTeX document. 

The Polynomial Toolbox provides vast range of tools and functions, but the most interesting 

for this thesis are functions for solving Diophantine equations axbyc() and spectral 

factorization spf() [9]. 
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 ANALYSIS 
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4 IDENTIFICATION 

The model was identified simply by positioning the ball to the center of the plate manually 

and step-changing the plate’s inclination. The step response of the system was thus obtained 

and properly identified. In early experiments, only the side walls were used to guide the ball 

on the straight path. However these walls were removed later and the ball was identified 

without any guide. Small variations in the perpendicular direction were compensated by 

taking multiple measurements and nevertheless they were taken as the part of the model to 

make the identification more precise for the given model. In other theses found dealing with 

identification of CE151 model a rail was used to guide the ball. This is rather ineffective 

because the ball loses a direct contact with the plate which could lead to wrong identification, 

although this effect might be negligible.  

The identification was made for plate inclination inputs 20%, 40%, 60% and 80%. For every 

input approximately 20 measurements were done. And for each input these measurements 

were repeated twice and in both directions. Measurements were done in one session for each 

input. In one session, 20 measurements for one input could take up to 400 seconds to 

measure. These data were processed accordingly to the input and only step-changing parts 

were chosen and the averaged result was identified. Step responses for plate inclination of 

40% measured in one session are shown in Fig. 6 and their average in Fig. 7. 

 

Fig. 6 Measured step responses 
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Fig. 7 Average of measured step responses 

 

As it can be seen, the ball hit the edge of the plate and bounced back, so the response had to 

be identified only up until that point. The identification was done using fminsearch function 

in MATLAB. The reason to choose this was simply because it is simple and very flexible to 

use. It is not extraordinary fast, but as it is not used in adaptive scheme, that should not be a 

problem. Other identification methods were used, like Least Squares and Recursive Least 

Squares methods, as described in [10] and [11]. These methods were unfortunately 

inefficient because the general discrete transfer function structure is less descriptive than its 

continuous counterpart. The result of identification using the Recursive Least Squares 

method is shown in Fig. 8, from which can be seen that this method would require some 

tuning and modification to satisfy the demands. As the using different identification methods 

is not the main part of this thesis, the simplest solution in the form of MATLAB’s fminsearch 

was used.  

 

Fig. 8 Identification using Recursive Least Squares method 
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The overall process of identification is implemented in MATLAB in function ident_bp.m 

created for this purpose. The user is prompted to choose one of the ident*.mat files that 

contain measured sessions. Then the user is prompted to choose the bounce point (Fig. 9), 

as it is hard to algorithmically determine its position. The output of the function is the vector 

containing identified parameters and the transfer function structure in the form of 

anonymous function. Resulting identification process is shown in Fig. 10. 

 

Fig. 9 Choosing the bounce point from the averaged response 

 

 

Fig. 10 Identification process 
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Identified parameters (3.1) from all measured step responses were gathered into one scatter 

plot (Fig. 11) to show their distribution and dependence on the ball type (table tennis ball 

and ball from mechanical computer mouse). The raising character of parameters is caused 

by the range of step inputs used (20-80%). Data are also normalized to better show their 

clustering instead of actual values. 

 

Fig. 11 Distribution of identified parameters 

 

Note that the model is linearized around the small inclination angles, thus preferring 

parameters for small inputs would better describe the model. For the controller design, inputs 

for 40% inclination were chosen as the best option. 
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5 SIMULATION 

5.1 Simulink model 

The model according to equations (2.17) and (2.18) was constructed in the Simulink block 

diagram environment (Fig. 12). The motor model was simply replaced by ideal first order 

transfer function mentioned in [1], where it is derived from dynamics of the servo system 

used in the form of (2.32) as 𝐺𝑚(𝑠) = 0.18780.187𝑠+1. 

 

Fig. 12 Nonlinear Simulink model 

To make the Simulink model more readable, feedback connections of state variables were 

replaced using GOTO and FROM blocks. The conversion from meters to normalized units 

is done using gain of 5, because the maximum position on the plate is 0.2 in meters (5 is the 

reciprocal of 0.2). This model is in masked subsystem with two inputs and two outputs as 

shown in Fig. 13 and its simple step responses are shown in Fig. 14. 

 

Fig. 13 Masked subsystem model 
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Fig. 14 Simulated response to step 



TBU in Zlín, Faculty of Applied Informatics 32 

 

5.2 Controller design 

The 2DOF controller will be designed for the following plant model: 

𝐺(𝑠) = −𝐾𝑔𝑠2 𝐾𝑚𝜏𝑚𝑠 + 1𝐶𝑥  = −𝐾𝑔𝐾𝑚𝐶𝑥𝑠2(𝜏𝑚𝑠 + 1) = −5.0706𝑠2(0.187𝑠 + 1) (5.1) 

Where the first term is from equation (2.30), second term is the motor transfer function (2.32) 

and 𝐶𝑥 is the conversion coefficient for normalization of position of the ball. This coefficient 

is inverted value of half of the plate’s side length 𝐶𝑥 = 10.2 = 5 𝑚−1. As stated in the previous 

chapter, the motor transfer function was obtained from [1] and its coefficients have 

values 𝐾𝑚 = 0.1878 and 𝜏𝑚 = 0.187. The ball is assumed to be a hollow sphere (i.e. 

spherical shell), thus 𝐾 = 35 as derived in (2.29) and 𝑔 is the gravitational acceleration. 

A sampling period has to be determined in order to acquire discrete transfer function. As the 

camera used in the real model has maximum sampling frequency of 30 fps, it is pointless to 

choose a sampling period smaller than 130 seconds. Additionally, the personal computer used 

to control real model is not fast enough to process camera images as quickly, thus the 

camera’s sampling frequency was set to 10 fps. The sampling period was chosen accordingly 

to this limitation to be 𝑇𝑠 = 0.1 𝑠. Nevertheless, the smaller sampling period was picking up 

all jiggling movements of the ball which led to unnecessary corrections from the controller. 

Discretized plant model is in equation (5.2) and its pole-zero map in Fig. 15. 

𝐺(𝑧−1)𝑇𝑠=0.1𝑠 = 0.00396𝑧−1 + 0.01394𝑧−2 + 0.00304𝑧−31 − 2.5871𝑧−1 + 2.1743𝑧−2 − 0.5871𝑧−3 (5.2) 

Following the plant and controller structures specified in chapter 3 in equations (3.2), (3.9), 

(3.10) and characteristic polynomial 𝐷6(𝑧−1) in (3.12), it is possible to determine three 

optimal roots of this polynomial using spectral factorization. The Polynomial toolbox in 

MATLAB [9] and its function spf(A*qu*A' + B*B') were used to do spectral factorization 

of equation (3.14). Optimal roots are 0.8477 ± 0.1409𝑖 and 0.5821 for 𝑞𝑢 = 1. Remaining 

three roots were chosen to be [0.8 0.8 0.88]. Finally, using equations (3.15) and (3.16): 

𝐶𝑏(𝑧−1) = −2.3556 + 5.8538𝑧−1 − 4.7512𝑧−2 + 1.2489𝑧−31 − 1.1796𝑧−1 + 0.4187𝑧−2  

𝐶𝑓(𝑧−1) =  −0.00411 − 1.1796𝑧−1 + 0.4187𝑧−2 

(5.3) 
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   Fig. 15 Pole-zero map of the plant 

5.3 Simulation results 

 

Fig. 16 Ball & Plate control simulation model 
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Fig. 17 Simulated step reference tracking 



TBU in Zlín, Faculty of Applied Informatics 35 

 

 

 

Fig. 18 Simulated step disturbance rejection 
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Fig. 19 Simulated step load disturbance rejection 
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Fig. 20 Simulated circular reference tracking – 

relatively low frequency 
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Fig. 21 Simulated circular reference tracking – 

relatively high frequency 
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Fig. 22 Simulated circular reference tracking 

with sinusoidal controller design 
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Fig. 23 Simulated ramp reference tracking with ramp controller design 

 

Controllers are able to track sinusoidal reference value with relatively low frequency (apart 

to the phase), but as the frequency goes higher, controllers don’t keep up and although the 

motion is still circular, the amplitude is much smaller, as presented in Fig. 20 and Fig. 21. 

This could be easily compensated by moving three chosen poles closer to the center, but this 

could lead to instability. The better solution is to design controller for sinusoidal reference, 

instead of step reference, which removes the phase lag (Fig. 22). Controllers were also 

designed for ramp reference (Fig. 23) to remove evident permanent error for ramp signal. 

Three chosen poles of characteristic polynomial are relatively far from the center, so that 

output of controllers is steady. This results in longer rise time, but also in smaller and more 

subtle plate inclinations.  

Inputs in graphs are show on the scale from -1 to 1, although they rarely go near these limits. 

Often the input is so much out of scale that is looks like straight line (e.g. in Fig. 20), but the 

purpose of this is to show how relatively very small angles affect greatly the ball’s position. 

In addition, when the input is very small, its ratio is more interesting than its actual value.  
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6 REAL MODEL CONTROL 

6.1 Simulink model 

The Simulink model and its subsystems (Fig. 24) will be presented in this chapter. The Real 

Time Toolbox (RT I/O) is needed to communicate with MF624 driver card from Humusoft 

and the Image Acquisition Toolbox (From Video Device) to communicate with the camera. 

It also uses s-function supplied with the model for finding and determining ball’s position 

(using mex-file and c-file) and Trajectory Graph for results monitoring and control. All other 

subsystems were created for the purpose of this thesis or are built-in Simulink blocks. 

 

Fig. 24 Simulink scheme for real model control 

 

The first subsystem (Fig. 25) called Ball Coordinates has 3 inputs (RGB components) and 

one 3-dimensional output (x position, y position and ball state – 0 for OK, 1 for NOT 

FOUND and 2 for BALL TOO BIG). RGB components are averaged and the whole image 

is trimmed and reshaped, after which the s-function is used to find ball’s position. Ball 

position values are normalized and split in Selection and Scaling block (Fig. 26), which 

results in ball’s coordinates ranging from -1 to 1 (borders of the plate), thus number 1 

corresponds to 20 cm on the plate. Signals are then rerouted and collected (Fig. 27). 
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Fig. 25 Ball Coordinates Subsystem 

 

Fig. 26 Selection and Scaling subsystem with mask options 

 

Fig. 27 Selector & Data Collector subsystem 
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Fig. 28 Initialization and Scaling (left) and its Roll Init subsystem (right) 

 

The real model has to be initialized first, so that it always starts in horizontal position (zero 

inclination angles). During initialization all controllers are switched off because they would 

be influenced by this “low level” plate control. The initialization uses digital outputs of the 

model, which are four switches located under the plate in centers of casing sides. With 

certain plate angle, the switch is activated and this signal is sent to RT In Digital block as 

logical one. Initialization consists of slowly raising angle until the switch is activated and 

angle at that moment is used as a bias value. Outputs of this subsystem (Fig. 28) are scaled 

input and logical InitOK signal which controls start of the regulation. To know the time when 

the regulation starts, the Calibration Delay subsystem was created (Fig. 29), which stores 

and outputs this time. The controller subsystem is shown in Fig. 30. 

 

Fig. 29 Calibration Delay subsystem 

 

Fig. 30 Controller subsystem 
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Fig. 31 Reference Feed subsystem 

 

Fig. 32 Reference Feed Trigger subsystem 

 

The reference value can be chosen manually by clicking with mouse on the desired position 

in Trajectory Graph block or the input can be custom and Trajectory Graph just passes this 

input to next block. For the purpose of chapter 6.4, the subsystem that would feed desired 

reference value as needed had to be created. The subsystem Reference Feed (Fig. 31) 

contains reference vector in Repeating Sequence Stair block, which is simply passed to its 

output. The Enable block is dealing with actual reference feeding. It freezes the whole 

subsystem if the enable input to the Reference Feed subsystem is not true. Whole subsystem 

is thus triggered by the output of the Reference Feed Trigger subsystem (Fig. 32). This 

trigger is fired only if errors of both coordinates are less than 0.1 for the duration of 0.4 s. 

6.2 Controller design 

The controllers for the real model were designed in the similar fashion as in the chapter 5.2, 

but the used plant was from the identification in chapter 4 for step angle 40% of the 

maximum, showed in Fig. 10. This identified plant is presented in the following expression: 
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𝐺(𝑠) = 5.7402𝑠2(0.1877𝑠 + 1) (6.1) 

Parameters obtained from experimental identification, modelling and the manual page [1] 

are compared in Fig. 33. The parameter K is negative because of inverted x and y coordinates 

in the real model. Parameter T is the same for the modelling part and manual page, because 

this parameter was obtained from there as the time constant of motors. 

  
K T 

Manual Page 4.803 0.187 

Modelling -5.0706 0.187 

Identification 5.7402 0.1877 

Fig. 33 Comparison of models 

The discretized model of identified plant: 

𝐺(𝑧−1)𝑇𝑠=0.1𝑠 = 0.00449𝑧−1 + 0.01579𝑧−2 + 0.00344𝑧−31 − 2.5870𝑧−1 + 2.1741𝑧−2 − 0.5870𝑧−3 (6.2) 

Optimal roots are 0.8391 ± 0.1491𝑖 and 0.5811 for 𝑞𝑢 = 1. Remaining three roots were 

chosen to be also [0.8 0.8 0.88]. Resulting controllers: 

𝐶𝑏(𝑧−1) = 2.2372 − 5.5540𝑧−1 + 4.5040𝑧−2 − 1.1831𝑧−31 − 1.1796𝑧−1 + 0.4187𝑧−2  

𝐶𝑓(𝑧−1) =  0.00411 − 1.1623𝑧−1 + 0.4118𝑧−2 

(6.3) 

6.3 Real model control results 

The original idea was to use approximation of the model with first order astatism and time 

delay, because lower order of the system simplified the model. The approximation was quite 

precise and also controller with time delay compensation using digital Smith Predictor [12] 

was designed. Its usage was proven to be difficult, because stepper motors were losing steps 

(breaking the assumption in 2.3). Lost steps are load disturbance that cannot be measured 

and because Smith Predictor relies on knowing the input to the system (which is unknown 

due to lost steps), a permanent error occurred that couldn’t be removed. One of the options 

was to use adaptive controller, however it was not possible due to small sampling period and 

slow personal computer used to control the model. Lost steps compensated by controllers 

can be seen in Fig. 34 as non-zero controller outputs α and β. 
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Fig. 34 Reference tracking 
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Fig. 35 Disturbance rejection (blowing to the ball) 
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Fig. 36 Circular reference tracking 
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6.4 Navigating the maze 

6.4.1 Automatic path determination 

In addition to classical reference values, the maze was constructed on the plate using a blue 

tape (Fig. 37). The blue RGB component from camera output was removed (although this 

doesn’t mean the blue color was removed), because the blue tape would add unwanted noise.  

 

Fig. 37 Maze 

Next, the simple color segmentation was used. Taking only the blue RGB component is not 

enough, because presence of the blue component doesn’t necessarily mean the presence of 

the blue color as perceived by humans, as shown in Fig. 38. Thus the simple formula for 

computing the blueness b [13] of the image was used: b = B – max(R, G). 

 

Fig. 38 Color perception [13] 

A blueness mask was created from blueness image using appropriate threshold value and the 

redundant noise was removed, thus only binary mask of walls remains (Fig. 39). The 

watershed transform (see 6.4.3) and further noise cleaning was used to obtain the solution of 

the maze [14] shown in Fig. 40. 

 

Fig. 39 Blueness picture and its mask 
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Fig. 40 Watershed transform steps 

A sequence of reference values was obtained from the computed path in the form of logical 

matrix. For reference to be step-changing signal, only corner points of the path were chosen. 

Various reflections and foreign objects could confuse the algorithm, because this method is 

based on color segmentation. That’s why the user is prompted to check the result (Fig. 41). 

The only downside of this method is that the maze has to be perfect with one entrance, one 

exit and without loops (algorithm generates a warning otherwise - Fig. 42). 

 

Fig. 41 Algorithm completion with user prompt 

 

 

Fig. 42 Different paths test and looped path with warning 
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6.4.2 Maze navigation results 

 

 

Fig. 43 Maze navigation – first run 
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Fig. 44 Maze navigation – second run 
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Fig. 45 Maze navigation – third run 
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6.4.3 Watershed transform 

The term watershed refers to a ridge that divides areas drained by different river systems as 

shown in Fig. 46. A catchment basin is the geographical area draining into a river or 

reservoir. [15] In image processing, it was introduced as a tool for segmenting grayscale 

images by S. Beucher and C. Lantuéjoul in the late 70’s. It considers a grayscale image as a 

topographical relief (the grey level of a pixel represents the elevation of a point, where dark 

areas are “low” and bright areas are “high”). [16] The example grayscale image and its 3D 

surface is in Fig. 47. The watershed function in MATLAB detects these watershed regions 

and outputs them in the matrix of the same size as the input image (Fig. 40 - left). 

 

Fig. 46 Watershed drainage [17] 

 

  

Fig. 47 Grayscale image and its topological relief [15] 
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7 GRAPHICAL USER INTERFACE 

The graphical user interface (GUI) was designed using MATLAB’s GUIDE design 

environment to control simulation or the real model. As mentioned on few occasions, the 

personal computer used to control the model is slow and it barely managed to run GUI on 

top of the Simulink application. Because of this, the real model control is not supported, 

although its layout was prepared for such option. Only simulation mode is fully operational 

and the GUI is directly connected to the Simulink simulation model (modified version of 

model in Fig. 16). It is straightforward to use this GUI and doesn’t need detailed explanation. 

Warning and error dialogs were implemented to prevent user from choosing parameters and 

inputs that are not expected. The designed GUI implements 4 sources of the reference value 

as seen in Fig. 48: manual input using edit boxes Xref and Yref, circular reference, maze 

navigation and MAT-file. By choosing either of these sources, the user is prompted 

accordingly. Sliders to the right and above the axes have no actual use in simulation mode 

as their purpose is to manually control plate inclination. Note also that the classical 

MATLAB’s gray figure background is removed only for the sake of this document.  

 

Fig. 48 Ball & Plate model GUI 
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As seen in Fig. 49, by clicking the Additional Plots toggle button, extra plots appear with 

radio buttons to choose desired plot. Zoom in/out and Data Cursor palettes also appear under 

the context menu. The Fig. 49 shows a maze simulation example where all line and marker 

colors correspond to colors in chapters 5.3, 6.3 and 6.4.2 (except of red color representing 

ball position in x-y plane). 

 

Fig. 49 Additional plots in GUI with maze navigation simulation results 

 

In Fig. 50, the circle parameters user prompt (left) and the context menu content (right) are 

shown to introduce the complexity of the GUI and its preparedness for the real model. All 

other buttons and GUI elements are self-explanatory and don’t require further attention. 

 

Fig. 50 Circle parameters user prompt and context menu content 
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CONCLUSION 

This thesis introduced the CE 151 Ball & Plate model from Humusoft, its structure, 

parameters, downsides, mathematical description and the design of suitable digital 

controller. The model was not perfect in terms of an ideal Ball & Plate system, mostly 

because of its configuration using steel wires. This caused motors to lose steps, which 

ultimately led to random unmeasurable load disturbance. Possible solutions were to directly 

access the hardware and electronics or change the driver’s software, neither of which was 

the aim of this thesis. The computational limitations of personal computer used to run 

Simulink environment had to be also taken into account as it contained the communication 

card and thus could not be changed to faster one. 

The LQ controller design proved to be easy to use after appropriate algorithms were created 

and optimal poles computed. It was surprisingly easy to place remaining poles as they had 

to be further from the center of complex plane to make the controller output bounded. 

Together with optimal poles, the resulting controller was able to track the reference and 

reject disturbances. This solution was robust enough to even deal with switching the ball “on 

the flight”, although the rise time and settling time were clearly worse. 

The model was experimentally identified for different inputs (plate inclinations) and two 

different balls, resulting in 26 identified models. The chosen model was the one for small 

plate inclinations, as it is the assumed linearization point. As the model is assumed to be 

symmetrical, the same model was used to design both controllers. 

After initial preparations, the simulated model was controlled for different reference signals 

and disturbances to show its ideal behavior. The real model was controlled afterwards in the 

same manner. Additionally, the maze navigation was implemented to make the reference 

signal selection process more interesting and algorithmic. To encapsulate all tested reference 

signals, the graphical user interface (GUI) was designed, although for simulation purposes 

only. This proved to be a valuable tool to quickly change reference values and see the final 

outcome of the simulated model. The layout of the GUI was also prepared for the real model 

control, but due to mentioned PC limitations, it was not implemented as a functional solution. 
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APPENDIX P I: FUNCTION FOR MAZE SOLVING 

function [refPitch, refRoll, pathOK] = mazeSolve(imgPath) 
%************************************************************************ 
% mazeSolve.m - function to solve mazes with blue walls. The call without  
%               agruments results in taking the snapshot from camera. 
% 
% Return: 
%   refPitch  (Nx1 double)   reference values of pitch (y axis for CE151) 
%   refRoll   (Nx1 double)   reference values of roll (x axis for CE151) 
%   pathOK    (1x1 logical)  flag to tell if the path is OK 
% 
% Arguments: 
%   imgPath    (string)      path to the maze image (image or MAT-file) 
% 
% Examples: 
%   [y, x, pathOK] = mazeSolve('maze.mat'); 
%   [y, x, pathOK] = mazeSolve('maze.jpg'); 
%   [y, x, pathOK] = mazeSolve(); 
% 
% Author: Lubos Spacek, l1_spacek@fai.utb.cz, 2016 
%************************************************************************ 
  
if nargin == 0 
    useCam = 1; 
else 
    useCam = 0; 
end 
  
f = figure('Units','Normalized','Position',[0.3 0.3 0.4 0.4],... 
       'Name', 'Maze Path', 'NumberTitle','off'); 
  
% treshold value for blueness (empirical) 
tresholdValue = 75; 
  
% number of pixels to crop horizontally from each side (empirical) 
cropValue = 20; 
  
% get the video object 
if useCam 
    vid = videoinput('winvideo',1,'RGB24_160x120'); 
end 
  
pathOK = false; 
  
while ~pathOK && ishandle(f) 
  
    % take a snapshot 
    if useCam 
        img = getsnapshot(vid); 
    elseif strcmp(imgPath(end-2:end), 'mat') 
        try 
            S = load(imgPath); 
            img = cell2mat(struct2cell(S)); 
        catch 
            errordlg('Select maze picture stored in one matrix!'); 
            refPitch = 0; refRoll = 0; 
            return; 
        end 



 

 

    else 
        try 
            img = imread(imgPath); 
        catch 
            errordlg('Select a picture!'); 
            refPitch = 0; refRoll = 0; 
            return; 
        end 
    end 
    imgSize = size(img); 
  
    % crop the snapshot 
    I = img(:,cropValue:imgSize(2)-cropValue+1,:); imgSize = size(I); 
  
    % create and show red image as the base for trajectory alpha mask  
    redImg = zeros(imgSize); redImg(:,:,1) = ones(imgSize(1:2)); 
  
    % plot the image 
    h1 = subplot(121); 
    imshow(I); hold on; 
    h = imshow(redImg); hold off; 
  
    % get the R-G-B values 
    R = I(:,:,1);  
    G = I(:,:,2);  
    B = I(:,:,3); 
  
    % calculate the blueness of each pixel b = B - max(R,G) 
    blueness = double(B) - max(double(R),double(G)); 
  
    % create a label image, where all pixels having the same value 
    % belong to the same object, example: 
    % 1 1 0 1 1 0      1 1 0 2 2 0 
    % 0 1 0 0 0 0      0 1 0 0 0 0 
    % 0 0 0 1 1 0  ->  0 0 0 3 3 0 
    % 0 0 1 1 1 0      0 0 3 3 3 0 
    % 1 0 0 0 1 0      4 0 0 0 3 0 
    labels = bwlabel(blueness > tresholdValue); 
  
    % choose label with maximum occurence 
    id = mode(labels(:)); 
  
    % get the mask containing only the maze walls 
    maze = (labels == id); 
  
    % apply the watershed transform to get the trajectory 
    L = watershed(maze); 
  
    % remove all connected objects that have fewer than 120 pixels 
    traj = bwareaopen(L == 0, 120); 
  
    % apply the trajectory alpha mask to add red trajectory to image 
    set(h, 'AlphaData', traj); 
  
    % corner points north to east (empirical) 
    cPts = struct('N',4,'S',110,'W',7,'E',118); 
  
    % init 



 

 

    row = 1; col = find(traj(1,:)==1); 
    trajLength = sum(traj(:)); 
    try 
        walk = zeros(trajLength,2); walk(1,:) = [row col]; 
  
        % direction of movement 1-NORTH, 2-SOUTH, 3-EAST, 4-WEST 
        DIR = zeros(trajLength,1); 
        % get the row and column indices of the trajectory in order 
        for i = 2:trajLength 
  
            if DIR(i-1) ~= 2 && traj(row+1,col) == 1 
                row = row + 1; 
                DIR(i) = 1; 
            elseif row > 1 && DIR(i-1) ~= 1 && traj(row-1,col) == 1 
                row = row - 1; 
                DIR(i) = 2; 
            elseif DIR(i-1) ~= 4 && traj(row,col+1) == 1 
                col = col + 1; 
                DIR(i) = 3; 
            elseif col > 1 && DIR(i-1) ~= 3 && traj(row,col-1) == 1 
                col = col - 1; 
                DIR(i) = 4; 
            else 
                disp('The trajectory is not continuous!'); 
                break; 
            end 
  
            walk(i,:) = [row col]; 
        end 
  
    catch 
        DIR = 0; 
        wH = warndlg('The path is probably looped or incomplete.', ... 
                'Path Warning'); 
        uiwait(wH); 
    end 
  
    % get the corner points 
    walk = walk(logical(diff([DIR;1])),:); 
  
    % saturate to avoid touching the walls 
    walk(walk(:,1) < cPts.N+5) = cPts.N+5;  % start offset 
    walk(walk(:,1) > cPts.S-5) = cPts.S-5;  % end offset 
    walk(walk(:,2) < cPts.W) = cPts.W; 
    walk(walk(:,2) > cPts.E) = cPts.E; 
  
    % plot path 
    h2 = subplot(122); 
    imshow(I); hold on;  
    plot(walk(:,2),walk(:,1),'r',walk(:,2),walk(:,1),'.g'); 
  
    button = questdlg('Is the path OK?', 'Continue?', ... 
        'Path OK', 'Try Again', 'Quit', 'Path OK'); 
    pathOK = strcmpi(button, 'Path OK'); 
  
    if strcmpi(button, 'Quit') 
        break; 
    end 
  



 

 

    if ~pathOK 
        arrayfun(@cla,[h1 h2]); 
    end 
  
end 
  
% normalize to <-1,1> range 
if pathOK 
    refPitch = (walk(:,1) - cPts.N)*(-2/(cPts.S-cPts.N)) + 1; 
    refRoll = (walk(:,2) - cPts.W)*(2/(cPts.E-cPts.W)) - 1; 
else 
    refPitch = 0; refRoll = 0; 
end 
     
% maze from maze generator solution - http://www.mazegenerator.net/ 
% I = imread('maze 20 by 20 orthogonal.png'); 
% I = logical(I(:,:,1)); 
% imshow(I); figure; 
% L = watershed(I); 
% imshow(L,[]); figure; 
%  
% S = L == 0; 
% D = I - S; 
% imshow(D); 

 
 

  



 

 

APPENDIX P II: FUNCTION FOR IDENTIFICATION 

function [X, fG] = ident_bp(fG, guess) 
%************************************************************************ 
% ident_bp.m - function to identify measured step responses for B&P model 
% 
% Return: 
%   X       (1xN double)   identified parameters 
%   fG      (func. handle) handle for identified anonymous function 
% 
% Arguments: 
%   fG      (func. handle) handle for anonymous function to identify 
%   guess   (1xN double)   initial guesses for identification 
% 
% Examples: 
%   [X, fG] = ident_bp(@(X) tf(X(1), [X(2) 1 0 0]), [5 0.2]); 
%   X = ident_bp(); 
% 
% Author: Lubos Spacek, l1_spacek@fai.utb.cz, 2016 
%************************************************************************ 
     
% set default transfer function and initial guess 
if nargin < 2 
    fG = @(X) tf(X(1), [X(2) 1 0 0]); 
    % fG = @(X) tf(X(1), [X(2) 1 0], 'iodelay', X(3)); 
    guess = [5 0.2]; 
end 
  
% get the file containing identification data 
[filename, pathname] = uigetfile('ident*.mat','Pick a File'); 
if pathname == 0 
    X = []; fG = []; 
    return; 
end 
S = load([pathname filename]); 
  
u = S.input(:,2); 
if strcmp(S.desc(1:7),'rollOut') 
    dataPos = S.rollOut; 
elseif strcmp(S.desc(1:8),'pitchOut') 
    dataPos = S.pitchOut; 
end 
  
% choose only step-responses parts (where u > 0) 
ud = diff([0; abs(u)>0; 0]); 
sI = find(ud > 0);    % start indices 
len = find(ud < 0)-sI; 
lenMin = min(len); 
t = dataPos(sI(1):sI(1)+lenMin-1,1) - dataPos(sI(1),1); 
  
dataY = zeros(lenMin,length(sI)); dataU = dataY; 
figure('Units','Normal','Position',[0.14 0.14 0.66 0.66],... 
       'Name', 'Identification', 'NumberTitle','off'); 
  
%------------------------------------------------------------------- 
subplot(311); 
for i = 1:length(sI) 
    y = dataPos(sI(i):sI(i)+lenMin-1,2) - dataPos(sI(i),2); 
    u = S.input(sI(i):sI(i)+lenMin-1,2); 



 

 

    dataY(:,i) = y; 
    dataU(:,i) = u; 
    plot(t, y); hold on;  
end 
  
if any((dataU-dataU(1)) ~= 0) 
    error('Input vector si not consistent.'); 
end 
title(['Measured step responses to constant input u = ', ... 
                                              num2str(u(1)*100),'%']); 
ylabel('Position [-]'); grid on; 
  
%------------------------------------------------------------------- 
subplot(312); 
y = mean(dataY,2); 
plot(t, y,'.-'); hold on; 
ylabel('Position [-]'); grid on; 
title('Average of measurements'); 
hText = text(0, 1.05, 'Choose the bounce point.',... 
                        'color','r','fontweight','bold'); 
[xm,ym] = ginput(1);    % mouse input 
delete(hText); 
[ind,ind] = min(abs(xm-t)); 
plot(t(ind), y(ind), 'ro'); 
y = y(1:ind); t = t(1:ind); u = u(1:ind); 
  
%------------------------------------------------------------------- 
subplot(313); 
X = fminsearch(@(x) krit(x, fG, t, u, y,'plot'), guess); 
Ts = t(2); 
Gz = c2d(fG(X),Ts);  
ys = lsim(Gz,u,t);  
hold on; stairs(t, ys, 'r');  
xlabel('t [s]'); ylabel('Position [-]'); grid on; 
title('Identification','fontweight','bold'); 
 

  



 

 

APPENDIX P III: FUNCTION FOR LQ CONTROLLER DESIGN 

function [q,r,p,refPitch,refRoll,pathOK] = controllerDesign_LQ(refTrack) 
%************************************************************************ 
% controllerDesign_LQ.m - function to design LQ controller for B&P model 
% 
% Return: 
%   q         (1xK double)   numerator of feedback controller in z^-1 
%   r         (1xL double)   numerator of feedforward controller in z^-1 
%   p         (1xM double)   denominator of controllers in z^-1 
%   refPitch  (Nx1 double)   see mazeSolve.m 
%   refRoll   (Nx1 double)   see mazeSolve.m 
%   pathOK    (1x1 logical)  see mazeSolve.m 
% 
% Arguments: 
%   refTrack  (string)       reference tracking option (ramp, sin, maze) 
% 
% Examples: 
%   [q,r,p] = controllerDesign_LQ(); 
%   [q,r,p] = controllerDesign_LQ('sin'); 
%   [q,r,p,refPitch,refRoll,pathOK] = controllerDesign_LQ('maze'); 
% 
% Author: Lubos Spacek, l1_spacek@fai.utb.cz, 2016 
%************************************************************************ 
  
if nargin == 0 
    refTrack = 'step'; 
end 
  
refPitch = 0; refRoll = 0; pathOK = false; % init 
  
% [X, fG] = ident_bp(); 

 
% get pre-identified parameters (also needed to get polynomial D) 
% note: the polynomial D is computed using spectral factorization using 
%       Polynomial Toolbox (PolyX, Ltd. - http://polyx.com/) 
par = 11; 
S = load('params.mat'); X = S.params{par,2}; fG = S.params{par,3}; 
  
Ts = 0.1; 
  
% Gz = c2d(tf(-5.0706, [0.1878 1 0 0]), Ts); 
Gz = c2d(fG(X), Ts); 
set(Gz, 'var', 'z^-1') 
[num,den] = tfdata(Gz, 'v'); 
temp = num2cell(den); [a1, a1, a2, a3] = temp{:}; 
temp = num2cell(num); [b1, b1, b2, b3] = temp{:}; 
  
% D = conv([1 -2.2774 1.7252 -0.4298],poly([0.8 0.8 0.8])); 
D = conv(S.dataD{par},poly([0.8 0.8 0.88])); 
% D = conv(dataD{par},poly([0.9 0.85 0.88])); % maze 
  
A = [b3 0  0  0  -a3     0 
     b2 b3 0  0  a3-a2  -a3 
     b1 b2 b3 0  a2-a1 a3-a2 
     0  b1 b2 b3 a1-1  a2-a1 
     0  0  b1 b2   1   a1-1 
     0  0  0  b1   0     1]; 
b = [D(7) D(6) D(5)+a3 D(4)-a3+a2 D(3)-a2+a1 D(2)-a1+1]'; 



 

 

  
res = num2cell(A\b); 
[q3, q2, q1, q0, p2, p1] = res{:}; 
r = sum(D)/sum(num); 
  
% reference tracking options 
if strcmp(refTrack, 'sin') 
    w = 2*pi*0.2; 
    C = -2*cos(w*Ts); 
    A = [0  0  0  0  0  1 
         0  0  0  0  1  C 
         0  b3 0  1  C  1 
         b3 b2 1  C  1  0 
         b2 b1 C  1  0  0 
         b1 0  1  0  0  0]; 
    b = [D(7) D(6) D(5) D(4) D(3)-1 D(2)-C]'; 
  
    res = num2cell(A\b); 
    [r0, r1, ~, ~, ~, ~] = res{:}; 
    r = [r0 r1]; 
elseif strcmp(refTrack, 'ramp') 
    A = [0  0  0  0  0  1 
         0  0  0  0  1  -2 
         0  b3 0  1  -2  1 
         b3 b2 1  -2  1  0 
         b2 b1 -2  1  0  0 
         b1 0  1  0  0  0]; 
    b = [D(7) D(6) D(5) D(4) D(3)-1 D(2)+2]'; 
  
    res = num2cell(A\b); 
    [r0, r1, ~, ~, ~, ~] = res{:}; 
    r = [r0 r1]; 
elseif strcmp(refTrack, 'maze') 
%     [refPitch, refRoll, pathOK] = mazeSolve(); % use camera 
    [refPitch, refRoll, pathOK] = mazeSolve('maze.mat'); 
end 
  
q = [q0 q1 q2 q3]; p = [1 p1 p2]; 
  
disp('DONE'); 
 
  



 

 

APPENDIX P IV: SCRIPT FOR SPECTRAL FACTORIZATION 

% *********************************************************************** 
% Spectral factorization to minimize the LQ criterion 
% *********************************************************************** 
  
% check for Polynomial Toolbox (PolyX, Ltd. - http://polyx.com/) 
v = ver; 
PT = any(strcmp(cellstr(char(v.Name)), 'Polynomial Toolbox')); 
if ~PT 
    % User does not have the toolbox installed. 
    message = sprintf(['Sorry, but you do not seem to have the ' ... 
          'Polynomial Toolbox.\nDo you want to try to continue 
anyway?']); 
    reply = questdlg(message, 'Toolbox missing', 'Yes', 'No', 'Yes'); 
    if strcmpi(reply, 'No') 
        % User said No, so exit. 
        return; 
    end 
end 
  
gprops zi 
pformat SYMB 
  
Gz = c2d(tf(-5.0706, [0.1878 1 0 0]), 0.1); 
set(Gz, 'var', 'z^-1'); 
[num, den] = tfdata(Gz,'v'); 
A = pol(den, length(den)-1, 'zi'); 
B = pol(num, length(num)-1, 'zi'); 
  
qu = 1; 
D = spf(A*qu*A' + B*B'); 
Di = pol(D*zi^deg(D)); 
Di = Di/Di{0}; 
 
 
 

 


