

Digital Control of CE 151 Ball & Plate Model

Bc. Ľuboš Spaček

Master's thesis

2016

ABSTRAKT

Číslicové riadenie je dôležitým prvkom dnešných technológií a priemyselného prostredia.

Táto práca prezentuje číslicové riadenie nestabilného systému guľôčky na plošine, počínajúc

matematickým modelom a končiac riadením reálneho modelu. Existuje mnoho prístupov

návrhu regulátorov, pričom postup použitý v tejto práci je založený na minimalizácii

lineárneho kvadratického LQ kritéria pre 2DOF štruktúru regulátora s využitím spektrálnej

faktorizácie, ktorého výsledkom je takmer optimálne nastavený a relatívne robustný

regulátor schopný poskytnúť dobré sledovanie žiadanej hodnoty a potlačenie poruchy. Aby

bola voľba žiadanej hodnoty zaujímavejšia a automatická, tak bolo na plošine zostrojené

jednoduché 2D bludisko. Počítač automaticky a algoritmicky vyrieši toto bludisko, čím sa

získa žiadaná dráha guľôčky. Pre zjednotenie celého riadiaceho procesu bolo tiež navrhnuté

grafické užívateľské prostredie. Výsledky prezentované v tejto práci sú sľubné a dokazujú,

že LQ regulátor je veľmi vhodný pre tento typ aplikácie.

Kľúčové slová: guľôčka na ploche, číslicové riadenie, CE 151, LQ metóda, spektrálna

faktorizácia, riadenie v reálom čase, riešenie bludiska, watershed transformácia

ABSTRACT

The digital control is an important aspect of today’s technologies and industrial environment.

This thesis presents the digital control of an unstable Ball & Plate system from the

mathematical model to real-model control. There are many different controller design

approaches and the one used here is based on the minimization of linear quadratic LQ

criterion for 2DOF controller structure using spectral factorization, which results in almost

optimal and relatively robust controller able to provide good reference tracking and

disturbance rejection. To make the reference signal selection interesting and automatic, a

simple 2D maze was constructed on top of the plate. The computer automatically and

algorithmically solves the maze, thus obtaining the desired trajectory of the ball. A graphical

user interface was also designed to encapsulate the model control. Results shown in this

thesis are promising and prove that the LQ controller is a very suitable for this model.

Keywords: Ball & Plate, digital control, CE 151, LQ method, real-time control, spectral

factorization, maze solving, watershed transform

ACKNOWLEDGEMENTS

I would first like to thank my thesis supervisor prof. Ing. Vladimír Bobál, CSc. for his

valuable notes and suggestions. He consistently allowed this thesis to be my own work, but

steered me in the right direction whenever he thought I needed it.

I must also express my very profound gratitude to my family and friends for providing me

with unfailing support and encouragement throughout my years of study.

I hereby declare that the print version of my Master's thesis and the electronic version of my

thesis deposited in the IS/STAG system are identical.

Motto

“The pleasure of finding things out.”

 -- Richard Phillips Feynman

CONTENTS

INTRODUCTION .. 8

I THEORY .. 9

1 CE151 BALL & PLATE APPARATUS .. 10

1.1 TECHNICAL DETAILS ... 11

1.2 ALTERNATIVE SOLUTIONS AND COMPARISON .. 12

1.2.1 Pivot point ... 12

1.2.2 Actuator - plate connection ... 12

1.2.3 Sensory system .. 13

2 MATHEMATICAL MODEL .. 14

2.1 SETUP AND REQUIREMENTS ... 14

2.2 FORCE ANALYSIS AND SYSTEM EQUATIONS ... 14

2.2.1 System equations ... 15

2.2.2 Interpretation of terms in system equations .. 17

2.2.3 Matrix form of system equations .. 18

2.3 LINEARIZATION AND SIMPLIFICATION OF THE MODEL 18

3 LQ CONTROLLER DESIGN ... 20

3.1 DISCRETE MODEL STRUCTURE ... 20

3.2 CONTROLLER STRUCTURE ... 20

3.3 CONTROL LAW .. 21

3.4 CONTROLLER PARAMETERS DETERMINATION .. 22

3.4.1 Spectral factorization of a polynomial .. 23

3.4.2 Polynomial Toolbox for MATLAB .. 24

II ANALYSIS ... 25

4 IDENTIFICATION ... 26

5 SIMULATION ... 30

5.1 SIMULINK MODEL .. 30

5.2 CONTROLLER DESIGN .. 32

5.3 SIMULATION RESULTS ... 33

6 REAL MODEL CONTROL... 41

6.1 SIMULINK MODEL .. 41

6.2 CONTROLLER DESIGN .. 44

6.3 REAL MODEL CONTROL RESULTS ... 45

6.4 NAVIGATING THE MAZE... 49

6.4.1 Automatic path determination ... 49

6.4.2 Maze navigation results ... 51

6.4.3 Watershed transform ... 54

7 GRAPHICAL USER INTERFACE .. 55

CONCLUSION ... 57

BIBLIOGRAPHY ... 58

LIST OF FIGURES .. 60

APPENDICES ... 62

TBU in Zlín, Faculty of Applied Informatics 8

INTRODUCTION

Digital control is a widespread branch of control theory thanks to cheap and flexible

microcontrollers. They can easily act as the system controller with just few lines of code,

thus providing an easy way to implement various controllers. Even more so, controller

parameters can be changed adaptively during run time, which extends the possibilities of its

use. Also many sensors provide discrete time data, so just by implementing them in the

system introduces sampling frequency which needs to be dealt with. Discrete time models

are not the best way to describe real systems, but they are very simple and straightforward.

The CE 151 model from Humusoft is educational model designed to explore various tasks

in continuous or discrete time, and in state-space or I/O model. It provides supporting

hardware and software so that user can fully concentrate on the control problem ahead.

Despite the good background support, the user has to deal with typical problems which arise

before the design of controller and also after its design. User has to implement his own

solutions to make the model suitable for control, ranging from normalization and signals

scaling to model initialization. One could say that the controller design is only a small part

of a bigger picture.

The Ball & Plate model itself is unstable system, which is challenging in every aspect of the

design process. Identification and more importantly testing and debugging are steps that are

negatively influenced by system’s instability. The controller design is not influenced by this,

if chosen correctly. LQ controller design with pole placement and polynomial method for

determining controller parameters proved to be suitable as it can be computed

algorithmically and the result is relatively robust regarding the unstable systems.

TBU in Zlín, Faculty of Applied Informatics 9

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 10

1 CE151 BALL & PLATE APPARATUS

The CE151 Ball & Plate Apparatus is two dimensional system designed to control ball

position and trajectory on the plate with two degrees of freedom. The model is unstable with

second order astatism and is suited for studying system dynamics, identification and design

of various control algorithms. The plate is pivoted at its centre and can rotate around two

perpendicular axes using two stepper motors as shown in Fig. 1. [1] The rotational movement

of stepper motors is transformed to the plate inclination via steel wires. The ball position in

Cartesian coordinate system is obtained from camera located above the plate. In this

arrangement, the model has two inputs (stepper motors voltages) and two outputs (2D

coordinates of the ball).

Fig. 1 CE151 Ball & Plate model diagram [1]

TBU in Zlín, Faculty of Applied Informatics 11

1.1 Technical details

Technical details of the CE151 model were obtained mainly from model manual [1].

 Main body:

 Dimensions 430 x 430 x 200 mm

 Plate Dimensions 400 x 400 mm

 Length of the camera stand 1100 mm

 Weight 9 kg

 Plate actuation 2 stepper motors in open loop

 Step/angle conversion 1 step ≈ 0.001°

 Power Supply:

 DC Power Supply 32 V, 50 VA

 Dimensions 175 x 175 x 100 mm

 Weight 2 kg

 Multifunction I/O card

 Type MF 624 – PCI

 A/D converter 8 14-bit single-ended channels

 D/A converter 4 14-bit channels

 Digital I/O 8 TTL inputs and 8 TTL outputs

 Additional 4 encoder inputs, 4 counters/timers

 CCD camera:

 Type Logitech QuickCam Pro 5000

 Video format RGB24

 Resolution (set) 160 x 120 pixels

 Resolution (max) 640 x 480 pixels

 Frame rate (max) 30 fps

 Height (from the plate) 600 mm

 Range of experiments:

 Real time processing

 Digital PID controller design

 LQ/LQG controller design

 Fuzzy controller design

 Adaptive controller design

 Path planning

 Software provided:

 Interface drivers

 Demo package using PID controller

 Drivers for Real Time Toolbox for MATLAB/Simulink

TBU in Zlín, Faculty of Applied Informatics 12

1.2 Alternative solutions and comparison

Alternative solutions of the Ball & Plate model are proposed in this chapter, so they can be

compared to show other ways to control ball position and trajectory on the plate. This chapter

is not meant to explain every possible solution in detail, but merely show different solutions,

compare them and make several conclusions.

1.2.1 Pivot point

The CE151 model has one pivot point in the center and motors are indirectly connected with

the centers of plate edges. This solution is actually very simple and effective. Only two

motors are needed, each to control one axis. The other solution would be to have 3 pivot

points in the corners of the plate, with 2 of them directly connected to 2 motors. This setup

is slightly different from CE151, but it still retains its 2 degrees of freedom and could be

described as the 2DOF version of the Stewart platform. Such device was used in [2] and is

shown in Fig. 2.

Fig. 2 Alternative Ball & Plate model [2]

1.2.2 Actuator - plate connection

The CE151 model has motors connected with plate via steel wires using pulleys as shown in

Fig. 1. This solution may be simple, but wires are relatively prone to elastic deformations.

This may cause strong nonlinear behavior, mostly notable in rapid inclination changes. The

bigger problem is in wire flexibility, as it doesn’t have any counteracting force that would

compensate plate vibrations and sudden movements. Actuators should be connected to the

plate using more rigid arms with joints. Such setup would be more rigid and reliable, thus

TBU in Zlín, Faculty of Applied Informatics 13

providing better control of plate’s movement and inclination and reducing vibrations caused

by rapid changes. Arms could be connected to the plate anywhere on the main axes,

preferably closer to the center of the plate (pivot point) to reduce arm length, but not too

close to make use of the leverage provided.

There is also an option to increase the number of degrees of freedom, e.g. to 6DOF (or

3DOF) in Stewart platform arrangement (Fig. 3), which would add extra control over the

model in exchange for its simplicity.

Another solution (Fig. 3) is to use inner plate rotating inside outer frame with perpendicular

rotation axes as shown in [3]. At least one actuator in this setup (the inner one) would have

to be directly connected to the plate, so without any transmission or gearbox, it could be

challenging to assume that the problem is symmetrical in the matter of actuation, although

this solution seems to be quite reliable and even more aesthetic.

Fig. 3 Frame pivoting layout [3] and 6DOF Stewart platform [4]

1.2.3 Sensory system

The CE151 model uses RGB camera and the ball position is obtained from grayscale image.

The camera is located above the plate in certain height so that it captures the whole scene.

As an alternative to the camera, it is possible to use special motion detecting system that is

able to detect and track pre-defined objects (e.g. Kinect ™), but these solutions are rather

expensive. The other possibility is to use resistive touch panel (or any other suitable

technology) to obtain the ball’s position. This method is probably better at dealing with

external noise and disturbances in form of foreign object above the plate (in the camera

vision field), possible reflections or light intensity changes. Touch panel would remove the

need to use optical object tracking algorithm or greatly reduce its computational cost.

TBU in Zlín, Faculty of Applied Informatics 14

2 MATHEMATICAL MODEL

This chapter’s aim is to derive an authentic mathematical model, which would be precise

enough to cover dynamics of the real model, but simple enough to make it suitable for

following implementation and controller design.

2.1 Setup and requirements

Before the modelling itself, it is essential to set requirements and presumptions taken into

account. The model can be divided into a ball-plate model and a servo motor model. This

tactic is possible because it is assumed that servo motors are not influenced by the motion of

the plate or the ball. The ball-plate model describes the motion of the ball on the plate and

how plate inclination is influenced by the ball and driving forces (Fig. 4). The following

assumptions and simplifications are considered:

 There is no slip between the ball and the plate.

 The contact between the ball and the plate is not lost.

 There is no friction (e.g. from air or ball-plate contact).

 The ball is an ideal sphere or spherical shell and homogenous.

 The plate is an infinite plane and its inclination has no boundary.

Fig. 4 Mathematical model setup [5]

2.2 Force analysis and system equations

It is necessary to clarify that there is a modelling part present in [1] and this chapter follows

the same principles and methods, but there are significant mistakes which compromise the

resulting model. Hence it is not advised to closely follow the modelling part described in [1].

Similar approach is taken in [5], but it also contains few negligible mistakes. Many projects

TBU in Zlín, Faculty of Applied Informatics 15

and theses regarding CE151 were found, where mistakes from its manual pages were

repeated (more likely just copied) without further concern.

2.2.1 System equations

To obtain dynamical equations of the model, the general form of Euler-Lagrange equation

is used: dd𝑡 ∂𝑇𝜕�̇�𝑖 − 𝜕𝑇𝜕𝑞𝑖 + 𝜕𝑉𝜕𝑞𝑖 = 𝑄𝑖 (2.1)

Where T is overall kinetic energy, V is overall potential energy, Qi is i-th generalized force

and qi is i-th generalized coordinate. The generalized coordinates are two ball position

coordinates [𝑥, 𝑦] and two plate inclinations [𝛼 = 𝜃𝑥, 𝛽 = 𝜃𝑦], where [𝑥, 𝑦] = [0, 0] is

center of the plate.

The kinetic energy of the system consists of the kinetic energy of the ball and the kinetic

energy of the plate. 𝑇 = 𝑇𝑏𝑎𝑙𝑙 + 𝑇𝑝𝑙𝑎𝑡𝑒 (2.2)

The kinetic energy of the ball consists of translational and rotational parts: 𝑇𝑏𝑎𝑙𝑙 = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑟𝑜𝑡 (2.3)

The translational energy of the ball is:

𝑇𝑡𝑟𝑎𝑛𝑠 = 12𝑚𝑣2 = 12𝑚(�̇�2 + �̇�2) (2.4)

The rotational energy of the ball:

𝑇𝑟𝑜𝑡 = 12 𝐼𝑏𝜔2 = 12 𝐼𝑏 𝑣2𝑟2 = 12 𝐼𝑏𝑟2 (�̇�2 + �̇�2) (2.5)

Where v is the velocity of the ball (not just its speed), Ib is the moment of inertia of the ball,

r is the radius of the ball, ω is the angular velocity of the ball and m is the mass of the ball.

By substituting equations (2.4) and (2.5) into equation (2.3):

𝑇𝑏𝑎𝑙𝑙 = 12𝑚(�̇�2 + �̇�2) + 12 𝐼𝑏𝑟2 (�̇�2 + �̇�2) = 12 (𝑚 + 𝐼𝑏𝑟2) (�̇�2 + �̇�2) (2.6)

TBU in Zlín, Faculty of Applied Informatics 16

The kinetic energy of the plate (with its moment of inertia Ip) can be expressed:

𝑇𝑝𝑙𝑎𝑡𝑒 = 12 (𝐼𝑝 + 𝐼𝑏)(�̇�2 + �̇�2) + 12𝑚(�̇�𝑥 + �̇�𝑦)2
 (2.7)

After substitution of equations (2.6) and (2.7) into equation (2.2):

𝑇 = 12 (𝑚 + 𝐼𝑏𝑟2) (�̇�2 + �̇�2) + 12 (𝐼𝑝 + 𝐼𝑏)(�̇�2 + �̇�2) + 12𝑚(�̇�𝑥 + �̇�𝑦)2
 (2.8)

The potential energy of the ball with h being ball height relative to the plate center: 𝑉 = 𝑚𝑔ℎ = 𝑚𝑔(𝑥 sin 𝛼 + 𝑦 sin 𝛽) (2.9)

Individual parts of Euler-Lagrange equation: 𝜕𝑇𝜕�̇� = (𝑚 + 𝐼𝑏𝑟2) �̇� , 𝜕𝑇𝜕�̇� = (𝑚 + 𝐼𝑏𝑟2) �̇� (2.10)

𝜕𝑇𝜕�̇� = 𝑚(�̇�𝑥2 + �̇�𝑥𝑦) + (𝐼𝑝 + 𝐼𝑏)�̇� , 𝜕𝑇𝜕�̇� = 𝑚(�̇�𝑥𝑦 + �̇�𝑦2) + (𝐼𝑝 + 𝐼𝑏)�̇� (2.11)

 dd𝑡 𝜕𝑇𝜕�̇� = (𝑚 + 𝐼𝑏𝑟2) �̈� , dd𝑡 𝜕𝑇𝜕�̇� = (𝑚 + 𝐼𝑏𝑟2) �̈� (2.12)

dd𝑡 𝜕𝑇𝜕�̇� = (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑥2)�̈� + 𝑚(�̈�𝑥𝑦 + �̇�(�̇�𝑦 + 𝑥�̇�) + 2�̇��̇�𝑥) (2.13) dd𝑡 𝜕𝑇𝜕�̇� = (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑦2)�̈� + 𝑚(�̈�𝑥𝑦 + �̇�(�̇�𝑦 + 𝑥�̇�) + 2�̇��̇�𝑦) (2.14)

 𝜕𝑇𝜕𝑥 = 𝑚(�̇��̇�𝑦 + �̇�2𝑥), 𝜕𝑇𝜕𝑦 = 𝑚(�̇��̇�𝑥 + �̇�2𝑦), 𝜕𝑇𝜕𝛼 = 0, 𝜕𝑇𝜕𝛽 = 0 (2.15)

 𝜕𝑉𝜕𝑥 = 𝑚𝑔 sin α, 𝜕𝑉𝜕𝑦 = 𝑚𝑔 sin 𝛽 , 𝜕𝑉𝜕𝛼 = 𝑚𝑔𝑥 cos𝛼 , 𝜕𝑉𝜕𝛽 = 𝑚𝑔𝑦 cos𝛽 (2.16)

TBU in Zlín, Faculty of Applied Informatics 17

It is important to note there are no external forces (except gravity) acting on the ball itself

(𝑄𝑥 = 0 and 𝑄𝑦 = 0) and there are forces in the form of torque acting on the plate and

changing its inclination (𝑄𝛼 = 𝜏𝛼 and 𝑄𝛽 = 𝜏𝛽).

After substitution of equations (2.12) - (2.16) into (2.1), the nonlinear system equations are:

𝒙: (𝑚 + 𝐼𝑏𝑟2) �̈� − 𝑚(�̇��̇�𝑦 + �̇�2𝑥) + 𝑚𝑔 sin 𝛼 = 0 (2.17)

𝒚: (𝑚 + 𝐼𝑏𝑟2) �̈� − 𝑚(�̇��̇�𝑥 + �̇�2𝑦) + 𝑚𝑔 sin 𝛽 = 0 (2.18)

𝜶: (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑥2)�̈� + 𝑚(�̈�𝑥𝑦 + �̇�(�̇�𝑦 + 𝑥�̇�) + 2�̇��̇�𝑥) + 𝑚𝑔𝑥 cos 𝛼 = 𝜏𝛼 (2.19) 𝜷: (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑦2)�̈� + 𝑚(�̈�𝑥𝑦 + �̇�(�̇�𝑦 + 𝑥�̇�) + 2�̇��̇�𝑦) + 𝑚𝑔𝑦 cos 𝛽 = 𝜏𝛽 (2.20)

2.2.2 Interpretation of terms in system equations

It can be seen that equations (2.17) and (2.18) describe the ball motion and how the

acceleration of the ball depends on its position on the plate and on angles and angular

velocities of the plate. Equations (2.19) and (2.20) show plate dynamics and how it depends

on external torques, ball position, velocity, angular velocity and acceleration of the plate. It

is necessary to note that dynamics of the stepper motors are neglected, thus the system

equations describe only the ball and plate problem. These dynamics will be added later.

 𝑚 Mass of the ball - [kg].
 𝑟 Radius of the ball - [m].
 𝐼𝑏 Moment of inertia of the ball - [kgm2].
 𝐼𝑝 Moment of inertia of the plate - [kgm2].
 𝑥, 𝑦 Coordinates of the ball from center of the plate - [m].
 �̇�, �̇� First time derivatives of coordinates - [ms−1].
 �̈�, �̈� Second time derivatives of coordinates - [ms−2].
 𝛼, 𝛽 Plate angles [θx, θy] respective to coordinates - [rad].
 �̇�, �̇� First time derivatives of plate angles - [rads−1].
 �̈�, �̈� Second time derivatives of plate angles - [rads−2].
 𝜏𝛼, 𝜏𝛽 Torques acting on the plate - [Nm].
 𝑚(�̇��̇�𝑦 + �̇�2𝑥) Centrifugal force - [N].
 (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑥2)�̈� Torque as a result of combined inertia - [Nm].
 𝑚(�̈�𝑥𝑦 + �̇��̇�𝑦 + �̇�𝑥�̇�) Gyroscopic influence - [Nm].
 2𝑚�̇��̇�𝑥 Coriolis influence - [Nm].
 𝑚𝑔𝑥 cos 𝛼 Gravitational influence - [Nm].

TBU in Zlín, Faculty of Applied Informatics 18

2.2.3 Matrix form of system equations

System equations can be generally written in the following tensor form: 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝑄 (2.21)

Where 𝑀(𝑞) stands for inertia matrix, 𝐶(𝑞, �̇�) is Coriolis matrix (matrix of Coriolis and

centrifugal forces) and 𝐺(𝑞) is gravity matrix. These terms are in equations (2.22) to (2.25).

𝑞 = [𝑥𝑦𝛼𝛽], �̇� = [�̇��̇��̇��̇�], �̈� = [�̈��̈��̈��̈�] , 𝑄 = [00𝜏𝛼𝜏𝛽] (2.22)

𝑀(𝑞) =
[

 (𝑚 + 𝐼𝑏𝑟2) 0 0 00 (𝑚 + 𝐼𝑏𝑟2) 0 00 0 (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑥2) 𝑚𝑥𝑦0 0 𝑚𝑥𝑦 (𝐼𝑝 + 𝐼𝑏 + 𝑚𝑦2)]

 (2.23)

𝐶(𝑞, �̇�) = 𝑚 [
 0 0 −�̇�𝑥 −�̇�𝑦0 0 −�̇�𝑥 −�̇�𝑦2�̇�𝑥 0 0 (�̇�𝑦 + 𝑥�̇�)0 2�̇�𝑦 (�̇�𝑦 + 𝑥�̇�) 0]

 (2.24)

𝐺(𝑞) = [𝑚𝑔 sin 𝛼𝑚𝑔 sin 𝛽𝑚𝑔𝑥 cos 𝛼𝑚𝑔𝑦 cos 𝛽]

(2.25)

2.3 Linearization and simplification of the model

To simplify the model, it is assumed that stepper motors don’t lose any step and load doesn’t

affect their performance, thus angles α and β can be direct system inputs. That’s why

equations (2.19) and (2.20) can be omitted in behalf of simplification process.

Because the ball is assumed to be homogenous sphere or hollow sphere, its moment of inertia

can be approximated by the moment of inertia of sphere or spherical shell as in eq. (2.26).

TBU in Zlín, Faculty of Applied Informatics 19

𝐼𝑠𝑝ℎ𝑒𝑟𝑒 = 25𝑚𝑟2; 𝐼𝑠ℎ𝑒𝑙𝑙 = 23𝑚𝑟2 (2.26)

To linearize given equations around steady state where angles α and β are zero, it is assumed

they change in range 〈−5°; 5°〉 or in other words, |𝛼| ≪ 1 and |𝛽| ≪ 1 in radians. Because

of that, sine functions can be replaced by their arguments. In the same manner, it is assumed

that the rate of change of angles is close to zero. As the equations contain squares of angular

velocities or products of their combination, these terms can be assumed to be zero.

To sum up linearization assumptions:

 When |𝛼| ≪ 1; |𝛽| ≪ 1 => 𝑠𝑖𝑛 𝛼 ≈ 𝛼; 𝑠𝑖𝑛 𝛽 ≈ 𝛽.

 When |�̇�| ≪ 1; |�̇�| ≪ 1 => �̇��̇� ≅ 0; �̇�2 ≅ 0; �̇�2 ≅ 0.

System equations after simplification and linearization have the following structure: 𝒙: �̈� = −𝐾𝑔𝛼 (2.27) 𝒚: �̈� = −𝐾𝑔𝛽 (2.28)

Where K is constant dependent only on the type of ball, whether it is hollow sphere or not:

𝐾𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑚(𝑚 + 𝐼𝑠𝑝ℎ𝑒𝑟𝑒𝑟𝑏2) = 𝑚
(𝑚 + 25𝑚𝑟𝑏2𝑟𝑏2) = 57 ; 𝐾𝑠ℎ𝑒𝑙𝑙 = 35

(2.29)

It is now easy to obtain transfer functions from linearized model:

𝒙: 𝐺𝑥/𝛼(𝑠) = −𝐾𝑔𝑠2 (2.30)

𝒚: 𝐺𝑦/𝛽(𝑠) = −𝐾𝑔𝑠2 (2.31)

It is obvious either from system equations, their matrix form or linearization that this

problem is symmetric. Thus it is possible to analyze system and design controller for only

one ball coordinate and plate angle.

Instead of modelling the motor separately, a simple first order transfer function Gm is

assumed, which is very simple and reliable approximation of its inner workings and drivers.

𝐺𝑚(𝑠) = 𝐾𝑚𝜏𝑚𝑠 + 1 (2.32)

TBU in Zlín, Faculty of Applied Informatics 20

3 LQ CONTROLLER DESIGN

The main purpose of this chapter is not to introduce various designs of controllers but to

successfully design a digital controller, which would be suitable for the model. The chosen

controller algorithm and design is thus briefly introduced in this chapter without going into

much theory behind linear quadratic (LQ) control.

3.1 Discrete model structure

To discretize the model, it is needed to choose a sampling period, but as this is only the

theoretical part of the design, a general discrete transfer function will be assumed.

The transfer function combined from the ball and plate model (2.30) and motor model (2.32)

has the following general structure:

𝐺(𝑠) = 𝐾𝑇𝑠3 + 𝑠2 = 𝐾𝑠2(𝑇𝑠 + 1) (3.1)

Thus it is assumed that resulting discrete transfer function has this structure:

𝐺(𝑧−1) = 𝐵(𝑧−1)𝐴(𝑧−1) = 𝑏1𝑧−1 + 𝑏2𝑧−2 + 𝑏3𝑧−31 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + 𝑎3𝑧−3 (3.2)

3.2 Controller structure

It is possible to use many controller structures ranging from simple 1DOF structure, various

cascade structures, ICM (Internal Model Control) to controllers with fuzzy supervision. The

controller structure proposed here is two degree of freedom (2DOF) closed-loop controller

structure shown in Fig. 5, which provides separation of feedback part (responsible for

stabilization and disturbance rejection) and feedforward part (responsible for reference

tracking) [6]. This should provide better control over the model and its behavior.

Two degree of freedom closed-loop control system is shown in Fig. 5, where 𝐺(𝑧−1) is the

controlled plant, 𝐶𝑏(𝑧−1) is the feed-back part of the controller, 𝐶𝑓(𝑧−1) is the feed-forward

part of the controller, 1𝐾(𝑧−1) = 11−𝑧−1 is the summation part, w(k) is reference signal, n(k) is

load disturbance and v(k) is disturbance signal. For the sake of simplification in the following

chapters, there will be assumed no disturbances acting on the system.

TBU in Zlín, Faculty of Applied Informatics 21

Fig. 5 Structure of 2DOF controller

3.3 Control law

By taking signals in Fig. 5 in their discrete polynomial forms and omitting disturbances 𝑛(𝑘)

and 𝑣(𝑘), it is possible to write equations describing the plant and the controller [7]:

𝑌(𝑧−1) = 𝐵(𝑧−1)𝐴(𝑧−1) 𝑈(𝑧−1) (3.3)

𝑈(𝑧−1) = 𝑅(𝑧−1)𝑃(𝑧−1)𝐾(𝑧−1)𝑊(𝑧−1) − 𝑄(𝑧−1)𝑃(𝑧−1)𝐾(𝑧−1) 𝑌(𝑧−1) (3.4)

By substituting equation (3.4) into (3.3) and vice versa:

𝑌(𝑧−1) = 𝐵(𝑧−1)𝑅(𝑧−1)𝐴(𝑧−1)𝐾(𝑧−1)𝑃(𝑧−1) + 𝐵(𝑧−1)𝑄(𝑧−1)𝑊(𝑧−1) (3.5)

𝑈(𝑧−1) = 𝐴(𝑧−1)𝑅(𝑧−1)𝐴(𝑧−1)𝐾(𝑧−1)𝑃(𝑧−1) + 𝐵(𝑧−1)𝑄(𝑧−1)𝑊(𝑧−1) (3.6)

The characteristic polynomial 𝐷(𝑧−1) can be selected from equation (3.5): 𝐴(𝑧−1)𝐾(𝑧−1)𝑃(𝑧−1) + 𝐵(𝑧−1)𝑄(𝑧−1) = 𝐷(𝑧−1) (3.7)

The chosen degree of characteristic polynomial is 𝜕𝐷(𝑧−1) = 6 and plant’s degrees are 𝜕𝐴(𝑧−1) = 3 and 𝜕𝐵(𝑧−1) = 3 as shown in (3.2). Hence according to [7] for a step-

changing reference signal it is possible to obtain polynomial degrees considered in 𝑧−1: 𝜕𝑄 = 𝜕𝐴 + 𝜕𝐾 − 1 = 3 ; 𝜕𝑃 = 𝜕𝐷 − 𝜕𝐴 − 𝜕𝐾 = 2; 𝜕𝑅 = 0 (3.8)

Note that it is possible to write feed-back and feed-forward parts as 𝑄𝑃𝐾 and 𝑅𝑃𝐾 respectively.

It is used separately due to the implementation effectiveness, where it is useless for the feed-

forward part to sum the reference value or the feed-back part to sum the output value.

TBU in Zlín, Faculty of Applied Informatics 22

In addition to the plant’s structure in (3.2) and by making use of (3.8), the digital controllers

can be expressed in following discrete transfer forms:

𝐶𝑏(𝑧−1) = 𝑄(𝑧−1)𝑃(𝑧−1) = 𝑞0 + 𝑞1𝑧−1 + 𝑞2𝑧−2 + 𝑞3𝑧−31 + 𝑝1𝑧−1 + 𝑝2𝑧−2 (3.9)

𝐶𝑓(𝑧−1) = 𝑅(𝑧−1)𝑃(𝑧−1) = 𝑟01 + 𝑝1𝑧−1 + 𝑝2𝑧−2 (3.10)

The resulting 2DOF controller output 𝑢(𝑘) is then given by: 𝑢(𝑘) = 𝑟0𝑤(𝑘) − 𝑞0𝑦(𝑘) − 𝑞1𝑦(𝑘 − 1) − 𝑞2𝑦(𝑘 − 2) − 𝑞3𝑦(𝑘 − 3) + +(1 − 𝑝1)𝑢(𝑘 − 1) + (𝑝1 − 𝑝2)𝑢(𝑘 − 2) + 𝑝2𝑢(𝑘 − 3)

(3.11)

3.4 Controller parameters determination

To determine unknown parameters of the controller it is essential to get coefficients of the

characteristic polynomial 𝐷(𝑧−1). As mentioned in previous chapter, the chosen degree of

characteristic polynomial in negative powers of z is 6: 𝐷6(𝑧−1) = 1 + 𝑑1𝑧−1 + 𝑑2𝑧−2 + 𝑑3𝑧−3 + 𝑑4𝑧−4 + 𝑑5𝑧−5 + 𝑑6𝑧−6 (3.12)

To determine its coefficients it is possible to place 6 poles on the z-plane which would

compose this polynomial. Placing 6 roots on the z-plane is quite challenging and hardly leads

to optimal solution. To get an optimal solution, it is possible to minimize quadratic criterion,

which with use of spectral factorization ultimately provides half of the roots as an optimal

solution. The quadratic criterion with controller output penalization is presented in [7]:

𝐽 = ∑{[𝑒(𝑘)]2 + 𝑞𝑢[𝑢(𝑘)]2}∞
𝑘=0 (3.13)

The constant 𝑞𝑢 is a penalization constant, 𝑒(𝑘) = 𝑤(𝑘) − 𝑦(𝑘) is the error and 𝑢(𝑘) is the

controller output. Standard minimization of this criterion is done in state-space description

and leads to the solution of algebraic Riccati equation. There is yet another solution which

minimizes the quadratic criterion using spectral factorization and plant model expressed in

transfer function as an I/O model. The criterion (3.13) is minimal for the (3.7), where 𝐷(𝑧−1)

is the result of spectral factorization of the following equation. [7] 𝐴(𝑧−1)𝑞𝑢𝐴(𝑧) + 𝐵(𝑧−1)𝐵(𝑧) = 𝐷(𝑧−1)𝛿𝐷(𝑧) (3.14)

Where δ is chosen so that coefficient d0 = 1 and 𝐴(𝑧), 𝐵(𝑧), 𝐷(𝑧) are conjugate polynomials.

TBU in Zlín, Faculty of Applied Informatics 23

Because it is assumed that degrees of polynomials in (3.2) are maximum 3, the equation

(3.14) has also polynomial of 3rd degree on both its sides. Thus only three coefficients

of 𝐷6(𝑧−1) can be obtained from this spectral factorization. Other three roots have to be

placed accordingly to the preference.

When coefficients of the polynomial 𝐷6(𝑧−1) are determined and degree of controller

polynomials is known, the Diophantine equation (3.7) can be solved. The equation (3.7) with

all polynomials expressed in their full form is long, hence only its matrix form will be

provided. This form is obtained from comparison of coefficients of 𝑧−𝑖 from either side of

the equation, which represents linear system of six equations with six variables:

[

𝑏3 0 0 0 −𝑎3 0𝑏2 𝑏3 0 0 𝑎3 − 𝑎2 −𝑎3𝑏1 𝑏2 𝑏3 0 𝑎2 − 𝑎1 𝑎3 − 𝑎20 𝑏1 𝑏2 𝑏3 𝑎1 − 1 𝑎2 − 𝑎10 0 𝑏1 𝑏2 1 𝑎1 − 10 0 0 𝑏1 0 1]

[

𝑞3𝑞2𝑞1𝑞0𝑝2𝑝1]

 =
[

𝑑6𝑑5𝑑4 + 𝑎3𝑑3 − 𝑎3 + 𝑎2𝑑2 − 𝑎2 + 𝑎1𝑑1 − 𝑎1 + 1]
 (3.15)

If the reference value is assumed to be step-changing, it is possible to write [7]:

𝑟0 = 1 + 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 + 𝑑5 + 𝑑6𝑏1 + 𝑏2 + 𝑏3 = 𝑞0 + 𝑞1 + 𝑞2 + 𝑞3 (3.16)

This equation of the form 𝐴𝑥 = 𝑏 can be easily solved in MATLAB or any other computing

software capable of doing matrix operations. The result is vector of unknown controller

parameters that can be inserted for example into equations (3.9), (3.10) and (3.11).

3.4.1 Spectral factorization of a polynomial

Spectral factorization changes the unstable part of the polynomial to reciprocal (stable).

Polynomials of the 1st or 2nd order can be used in analytical solution of the spectral

factorization. The spectral factorization of higher order polynomials is done iteratively, e.g.

by using special function of Polynomial Toolbox in MATLAB. The spectral factorization

example will be shown for 1st order polynomial, similar as in [7].

Having the 1st order polynomial 𝑀(𝑧−1) and its conjugate part 𝑀(𝑧) it is possible to solve

the following equation to find its factorized polynomial 𝐷(𝑧−1). Conjugate polynomial has

negative powers of variables replaced by their positive power counterparts as seen in (3.18). 𝑀(𝑧−1)𝑀(𝑧) = 𝐷(𝑧−1)𝛿𝐷(𝑧) (3.17)

TBU in Zlín, Faculty of Applied Informatics 24

(𝑚0 + 𝑚1𝑧−1)(𝑚0 + 𝑚1𝑧) = (1 + 𝑑1𝑧−1)𝛿(1 + 𝑑1𝑧) (3.18)

The equation (3.15) can be rewritten into the following form: (𝑚02 + 𝑚12) + 𝑚0𝑚1(𝑧 + 𝑧−1) = 𝛿(1 + 𝑑12) + 𝛿𝑑1(𝑧 + 𝑧−1) (3.19)

The solution {𝛿, 𝑑1} can be obtained by comparing the coefficients of (𝑧𝑖 + 𝑧−𝑖) terms.

3.4.2 Polynomial Toolbox for MATLAB

The Polynomial Toolbox is a package for systems, signals and control analysis and design

based on advanced polynomial methods. It consists of as many as 222 M-files in MATLAB

code and is easy to use. [8]

The Polynomial Toolbox consists of various tools and functions [8]:

 Polynomial Matrix Operations:

o Easy manipulation with polynomials and polynomial matrices.

o Pre-defined variables such as s or z.

o Polynomial matrix Editor for larger matrices.

 Advanced, fast and reliable algorithms:

o Linear matrix polynomial equation solvers based on Sylvester matrices.

o Spectral factorization algorithms.

o Diophantine equations solver, Riccati equation solver.

o Many more.

 Polynomial Matrix Fractions support.

 Polynomial Equations support.

 Classic and graphical analysis tools:

o Robustness, stability margins.

o Parametric and polytopic uncertainties.

o Interval polynomials.

 Built-in Design routines:

o LQG design, deadbeat control, pole placement, H-infinity, ...

 Links to other packages:

o Support and conversion of LTI objects, symbolic formats, descriptors.

o Conversion of toolbox’s formats to MATLAB formats and vice versa.

o Formatting of polynomial matrix for use in a LaTeX document.

The Polynomial Toolbox provides vast range of tools and functions, but the most interesting

for this thesis are functions for solving Diophantine equations axbyc() and spectral

factorization spf() [9].

TBU in Zlín, Faculty of Applied Informatics 25

 ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 26

4 IDENTIFICATION

The model was identified simply by positioning the ball to the center of the plate manually

and step-changing the plate’s inclination. The step response of the system was thus obtained

and properly identified. In early experiments, only the side walls were used to guide the ball

on the straight path. However these walls were removed later and the ball was identified

without any guide. Small variations in the perpendicular direction were compensated by

taking multiple measurements and nevertheless they were taken as the part of the model to

make the identification more precise for the given model. In other theses found dealing with

identification of CE151 model a rail was used to guide the ball. This is rather ineffective

because the ball loses a direct contact with the plate which could lead to wrong identification,

although this effect might be negligible.

The identification was made for plate inclination inputs 20%, 40%, 60% and 80%. For every

input approximately 20 measurements were done. And for each input these measurements

were repeated twice and in both directions. Measurements were done in one session for each

input. In one session, 20 measurements for one input could take up to 400 seconds to

measure. These data were processed accordingly to the input and only step-changing parts

were chosen and the averaged result was identified. Step responses for plate inclination of

40% measured in one session are shown in Fig. 6 and their average in Fig. 7.

Fig. 6 Measured step responses

TBU in Zlín, Faculty of Applied Informatics 27

Fig. 7 Average of measured step responses

As it can be seen, the ball hit the edge of the plate and bounced back, so the response had to

be identified only up until that point. The identification was done using fminsearch function

in MATLAB. The reason to choose this was simply because it is simple and very flexible to

use. It is not extraordinary fast, but as it is not used in adaptive scheme, that should not be a

problem. Other identification methods were used, like Least Squares and Recursive Least

Squares methods, as described in [10] and [11]. These methods were unfortunately

inefficient because the general discrete transfer function structure is less descriptive than its

continuous counterpart. The result of identification using the Recursive Least Squares

method is shown in Fig. 8, from which can be seen that this method would require some

tuning and modification to satisfy the demands. As the using different identification methods

is not the main part of this thesis, the simplest solution in the form of MATLAB’s fminsearch

was used.

Fig. 8 Identification using Recursive Least Squares method

TBU in Zlín, Faculty of Applied Informatics 28

The overall process of identification is implemented in MATLAB in function ident_bp.m

created for this purpose. The user is prompted to choose one of the ident*.mat files that

contain measured sessions. Then the user is prompted to choose the bounce point (Fig. 9),

as it is hard to algorithmically determine its position. The output of the function is the vector

containing identified parameters and the transfer function structure in the form of

anonymous function. Resulting identification process is shown in Fig. 10.

Fig. 9 Choosing the bounce point from the averaged response

Fig. 10 Identification process

TBU in Zlín, Faculty of Applied Informatics 29

Identified parameters (3.1) from all measured step responses were gathered into one scatter

plot (Fig. 11) to show their distribution and dependence on the ball type (table tennis ball

and ball from mechanical computer mouse). The raising character of parameters is caused

by the range of step inputs used (20-80%). Data are also normalized to better show their

clustering instead of actual values.

Fig. 11 Distribution of identified parameters

Note that the model is linearized around the small inclination angles, thus preferring

parameters for small inputs would better describe the model. For the controller design, inputs

for 40% inclination were chosen as the best option.

TBU in Zlín, Faculty of Applied Informatics 30

5 SIMULATION

5.1 Simulink model

The model according to equations (2.17) and (2.18) was constructed in the Simulink block

diagram environment (Fig. 12). The motor model was simply replaced by ideal first order

transfer function mentioned in [1], where it is derived from dynamics of the servo system

used in the form of (2.32) as 𝐺𝑚(𝑠) = 0.18780.187𝑠+1.

Fig. 12 Nonlinear Simulink model

To make the Simulink model more readable, feedback connections of state variables were

replaced using GOTO and FROM blocks. The conversion from meters to normalized units

is done using gain of 5, because the maximum position on the plate is 0.2 in meters (5 is the

reciprocal of 0.2). This model is in masked subsystem with two inputs and two outputs as

shown in Fig. 13 and its simple step responses are shown in Fig. 14.

Fig. 13 Masked subsystem model

TBU in Zlín, Faculty of Applied Informatics 31

Fig. 14 Simulated response to step

TBU in Zlín, Faculty of Applied Informatics 32

5.2 Controller design

The 2DOF controller will be designed for the following plant model:

𝐺(𝑠) = −𝐾𝑔𝑠2 𝐾𝑚𝜏𝑚𝑠 + 1𝐶𝑥 = −𝐾𝑔𝐾𝑚𝐶𝑥𝑠2(𝜏𝑚𝑠 + 1) = −5.0706𝑠2(0.187𝑠 + 1) (5.1)

Where the first term is from equation (2.30), second term is the motor transfer function (2.32)

and 𝐶𝑥 is the conversion coefficient for normalization of position of the ball. This coefficient

is inverted value of half of the plate’s side length 𝐶𝑥 = 10.2 = 5 𝑚−1. As stated in the previous

chapter, the motor transfer function was obtained from [1] and its coefficients have

values 𝐾𝑚 = 0.1878 and 𝜏𝑚 = 0.187. The ball is assumed to be a hollow sphere (i.e.

spherical shell), thus 𝐾 = 35 as derived in (2.29) and 𝑔 is the gravitational acceleration.

A sampling period has to be determined in order to acquire discrete transfer function. As the

camera used in the real model has maximum sampling frequency of 30 fps, it is pointless to

choose a sampling period smaller than 130 seconds. Additionally, the personal computer used

to control real model is not fast enough to process camera images as quickly, thus the

camera’s sampling frequency was set to 10 fps. The sampling period was chosen accordingly

to this limitation to be 𝑇𝑠 = 0.1 𝑠. Nevertheless, the smaller sampling period was picking up

all jiggling movements of the ball which led to unnecessary corrections from the controller.

Discretized plant model is in equation (5.2) and its pole-zero map in Fig. 15.

𝐺(𝑧−1)𝑇𝑠=0.1𝑠 = 0.00396𝑧−1 + 0.01394𝑧−2 + 0.00304𝑧−31 − 2.5871𝑧−1 + 2.1743𝑧−2 − 0.5871𝑧−3 (5.2)

Following the plant and controller structures specified in chapter 3 in equations (3.2), (3.9),

(3.10) and characteristic polynomial 𝐷6(𝑧−1) in (3.12), it is possible to determine three

optimal roots of this polynomial using spectral factorization. The Polynomial toolbox in

MATLAB [9] and its function spf(A*qu*A' + B*B') were used to do spectral factorization

of equation (3.14). Optimal roots are 0.8477 ± 0.1409𝑖 and 0.5821 for 𝑞𝑢 = 1. Remaining

three roots were chosen to be [0.8 0.8 0.88]. Finally, using equations (3.15) and (3.16):

𝐶𝑏(𝑧−1) = −2.3556 + 5.8538𝑧−1 − 4.7512𝑧−2 + 1.2489𝑧−31 − 1.1796𝑧−1 + 0.4187𝑧−2

𝐶𝑓(𝑧−1) = −0.00411 − 1.1796𝑧−1 + 0.4187𝑧−2

(5.3)

TBU in Zlín, Faculty of Applied Informatics 33

 Fig. 15 Pole-zero map of the plant

5.3 Simulation results

Fig. 16 Ball & Plate control simulation model

TBU in Zlín, Faculty of Applied Informatics 34

Fig. 17 Simulated step reference tracking

TBU in Zlín, Faculty of Applied Informatics 35

Fig. 18 Simulated step disturbance rejection

TBU in Zlín, Faculty of Applied Informatics 36

Fig. 19 Simulated step load disturbance rejection

TBU in Zlín, Faculty of Applied Informatics 37

Fig. 20 Simulated circular reference tracking –

relatively low frequency

TBU in Zlín, Faculty of Applied Informatics 38

Fig. 21 Simulated circular reference tracking –

relatively high frequency

TBU in Zlín, Faculty of Applied Informatics 39

Fig. 22 Simulated circular reference tracking

with sinusoidal controller design

TBU in Zlín, Faculty of Applied Informatics 40

Fig. 23 Simulated ramp reference tracking with ramp controller design

Controllers are able to track sinusoidal reference value with relatively low frequency (apart

to the phase), but as the frequency goes higher, controllers don’t keep up and although the

motion is still circular, the amplitude is much smaller, as presented in Fig. 20 and Fig. 21.

This could be easily compensated by moving three chosen poles closer to the center, but this

could lead to instability. The better solution is to design controller for sinusoidal reference,

instead of step reference, which removes the phase lag (Fig. 22). Controllers were also

designed for ramp reference (Fig. 23) to remove evident permanent error for ramp signal.

Three chosen poles of characteristic polynomial are relatively far from the center, so that

output of controllers is steady. This results in longer rise time, but also in smaller and more

subtle plate inclinations.

Inputs in graphs are show on the scale from -1 to 1, although they rarely go near these limits.

Often the input is so much out of scale that is looks like straight line (e.g. in Fig. 20), but the

purpose of this is to show how relatively very small angles affect greatly the ball’s position.

In addition, when the input is very small, its ratio is more interesting than its actual value.

TBU in Zlín, Faculty of Applied Informatics 41

6 REAL MODEL CONTROL

6.1 Simulink model

The Simulink model and its subsystems (Fig. 24) will be presented in this chapter. The Real

Time Toolbox (RT I/O) is needed to communicate with MF624 driver card from Humusoft

and the Image Acquisition Toolbox (From Video Device) to communicate with the camera.

It also uses s-function supplied with the model for finding and determining ball’s position

(using mex-file and c-file) and Trajectory Graph for results monitoring and control. All other

subsystems were created for the purpose of this thesis or are built-in Simulink blocks.

Fig. 24 Simulink scheme for real model control

The first subsystem (Fig. 25) called Ball Coordinates has 3 inputs (RGB components) and

one 3-dimensional output (x position, y position and ball state – 0 for OK, 1 for NOT

FOUND and 2 for BALL TOO BIG). RGB components are averaged and the whole image

is trimmed and reshaped, after which the s-function is used to find ball’s position. Ball

position values are normalized and split in Selection and Scaling block (Fig. 26), which

results in ball’s coordinates ranging from -1 to 1 (borders of the plate), thus number 1

corresponds to 20 cm on the plate. Signals are then rerouted and collected (Fig. 27).

TBU in Zlín, Faculty of Applied Informatics 42

Fig. 25 Ball Coordinates Subsystem

Fig. 26 Selection and Scaling subsystem with mask options

Fig. 27 Selector & Data Collector subsystem

TBU in Zlín, Faculty of Applied Informatics 43

Fig. 28 Initialization and Scaling (left) and its Roll Init subsystem (right)

The real model has to be initialized first, so that it always starts in horizontal position (zero

inclination angles). During initialization all controllers are switched off because they would

be influenced by this “low level” plate control. The initialization uses digital outputs of the

model, which are four switches located under the plate in centers of casing sides. With

certain plate angle, the switch is activated and this signal is sent to RT In Digital block as

logical one. Initialization consists of slowly raising angle until the switch is activated and

angle at that moment is used as a bias value. Outputs of this subsystem (Fig. 28) are scaled

input and logical InitOK signal which controls start of the regulation. To know the time when

the regulation starts, the Calibration Delay subsystem was created (Fig. 29), which stores

and outputs this time. The controller subsystem is shown in Fig. 30.

Fig. 29 Calibration Delay subsystem

Fig. 30 Controller subsystem

TBU in Zlín, Faculty of Applied Informatics 44

Fig. 31 Reference Feed subsystem

Fig. 32 Reference Feed Trigger subsystem

The reference value can be chosen manually by clicking with mouse on the desired position

in Trajectory Graph block or the input can be custom and Trajectory Graph just passes this

input to next block. For the purpose of chapter 6.4, the subsystem that would feed desired

reference value as needed had to be created. The subsystem Reference Feed (Fig. 31)

contains reference vector in Repeating Sequence Stair block, which is simply passed to its

output. The Enable block is dealing with actual reference feeding. It freezes the whole

subsystem if the enable input to the Reference Feed subsystem is not true. Whole subsystem

is thus triggered by the output of the Reference Feed Trigger subsystem (Fig. 32). This

trigger is fired only if errors of both coordinates are less than 0.1 for the duration of 0.4 s.

6.2 Controller design

The controllers for the real model were designed in the similar fashion as in the chapter 5.2,

but the used plant was from the identification in chapter 4 for step angle 40% of the

maximum, showed in Fig. 10. This identified plant is presented in the following expression:

TBU in Zlín, Faculty of Applied Informatics 45

𝐺(𝑠) = 5.7402𝑠2(0.1877𝑠 + 1) (6.1)

Parameters obtained from experimental identification, modelling and the manual page [1]

are compared in Fig. 33. The parameter K is negative because of inverted x and y coordinates

in the real model. Parameter T is the same for the modelling part and manual page, because

this parameter was obtained from there as the time constant of motors.

K T

Manual Page 4.803 0.187

Modelling -5.0706 0.187

Identification 5.7402 0.1877

Fig. 33 Comparison of models

The discretized model of identified plant:

𝐺(𝑧−1)𝑇𝑠=0.1𝑠 = 0.00449𝑧−1 + 0.01579𝑧−2 + 0.00344𝑧−31 − 2.5870𝑧−1 + 2.1741𝑧−2 − 0.5870𝑧−3 (6.2)

Optimal roots are 0.8391 ± 0.1491𝑖 and 0.5811 for 𝑞𝑢 = 1. Remaining three roots were

chosen to be also [0.8 0.8 0.88]. Resulting controllers:

𝐶𝑏(𝑧−1) = 2.2372 − 5.5540𝑧−1 + 4.5040𝑧−2 − 1.1831𝑧−31 − 1.1796𝑧−1 + 0.4187𝑧−2

𝐶𝑓(𝑧−1) = 0.00411 − 1.1623𝑧−1 + 0.4118𝑧−2

(6.3)

6.3 Real model control results

The original idea was to use approximation of the model with first order astatism and time

delay, because lower order of the system simplified the model. The approximation was quite

precise and also controller with time delay compensation using digital Smith Predictor [12]

was designed. Its usage was proven to be difficult, because stepper motors were losing steps

(breaking the assumption in 2.3). Lost steps are load disturbance that cannot be measured

and because Smith Predictor relies on knowing the input to the system (which is unknown

due to lost steps), a permanent error occurred that couldn’t be removed. One of the options

was to use adaptive controller, however it was not possible due to small sampling period and

slow personal computer used to control the model. Lost steps compensated by controllers

can be seen in Fig. 34 as non-zero controller outputs α and β.

TBU in Zlín, Faculty of Applied Informatics 46

Fig. 34 Reference tracking

TBU in Zlín, Faculty of Applied Informatics 47

Fig. 35 Disturbance rejection (blowing to the ball)

TBU in Zlín, Faculty of Applied Informatics 48

Fig. 36 Circular reference tracking

TBU in Zlín, Faculty of Applied Informatics 49

6.4 Navigating the maze

6.4.1 Automatic path determination

In addition to classical reference values, the maze was constructed on the plate using a blue

tape (Fig. 37). The blue RGB component from camera output was removed (although this

doesn’t mean the blue color was removed), because the blue tape would add unwanted noise.

Fig. 37 Maze

Next, the simple color segmentation was used. Taking only the blue RGB component is not

enough, because presence of the blue component doesn’t necessarily mean the presence of

the blue color as perceived by humans, as shown in Fig. 38. Thus the simple formula for

computing the blueness b [13] of the image was used: b = B – max(R, G).

Fig. 38 Color perception [13]

A blueness mask was created from blueness image using appropriate threshold value and the

redundant noise was removed, thus only binary mask of walls remains (Fig. 39). The

watershed transform (see 6.4.3) and further noise cleaning was used to obtain the solution of

the maze [14] shown in Fig. 40.

Fig. 39 Blueness picture and its mask

TBU in Zlín, Faculty of Applied Informatics 50

Fig. 40 Watershed transform steps

A sequence of reference values was obtained from the computed path in the form of logical

matrix. For reference to be step-changing signal, only corner points of the path were chosen.

Various reflections and foreign objects could confuse the algorithm, because this method is

based on color segmentation. That’s why the user is prompted to check the result (Fig. 41).

The only downside of this method is that the maze has to be perfect with one entrance, one

exit and without loops (algorithm generates a warning otherwise - Fig. 42).

Fig. 41 Algorithm completion with user prompt

Fig. 42 Different paths test and looped path with warning

TBU in Zlín, Faculty of Applied Informatics 51

6.4.2 Maze navigation results

Fig. 43 Maze navigation – first run

TBU in Zlín, Faculty of Applied Informatics 52

Fig. 44 Maze navigation – second run

TBU in Zlín, Faculty of Applied Informatics 53

Fig. 45 Maze navigation – third run

TBU in Zlín, Faculty of Applied Informatics 54

6.4.3 Watershed transform

The term watershed refers to a ridge that divides areas drained by different river systems as

shown in Fig. 46. A catchment basin is the geographical area draining into a river or

reservoir. [15] In image processing, it was introduced as a tool for segmenting grayscale

images by S. Beucher and C. Lantuéjoul in the late 70’s. It considers a grayscale image as a

topographical relief (the grey level of a pixel represents the elevation of a point, where dark

areas are “low” and bright areas are “high”). [16] The example grayscale image and its 3D

surface is in Fig. 47. The watershed function in MATLAB detects these watershed regions

and outputs them in the matrix of the same size as the input image (Fig. 40 - left).

Fig. 46 Watershed drainage [17]

Fig. 47 Grayscale image and its topological relief [15]

TBU in Zlín, Faculty of Applied Informatics 55

7 GRAPHICAL USER INTERFACE

The graphical user interface (GUI) was designed using MATLAB’s GUIDE design

environment to control simulation or the real model. As mentioned on few occasions, the

personal computer used to control the model is slow and it barely managed to run GUI on

top of the Simulink application. Because of this, the real model control is not supported,

although its layout was prepared for such option. Only simulation mode is fully operational

and the GUI is directly connected to the Simulink simulation model (modified version of

model in Fig. 16). It is straightforward to use this GUI and doesn’t need detailed explanation.

Warning and error dialogs were implemented to prevent user from choosing parameters and

inputs that are not expected. The designed GUI implements 4 sources of the reference value

as seen in Fig. 48: manual input using edit boxes Xref and Yref, circular reference, maze

navigation and MAT-file. By choosing either of these sources, the user is prompted

accordingly. Sliders to the right and above the axes have no actual use in simulation mode

as their purpose is to manually control plate inclination. Note also that the classical

MATLAB’s gray figure background is removed only for the sake of this document.

Fig. 48 Ball & Plate model GUI

TBU in Zlín, Faculty of Applied Informatics 56

As seen in Fig. 49, by clicking the Additional Plots toggle button, extra plots appear with

radio buttons to choose desired plot. Zoom in/out and Data Cursor palettes also appear under

the context menu. The Fig. 49 shows a maze simulation example where all line and marker

colors correspond to colors in chapters 5.3, 6.3 and 6.4.2 (except of red color representing

ball position in x-y plane).

Fig. 49 Additional plots in GUI with maze navigation simulation results

In Fig. 50, the circle parameters user prompt (left) and the context menu content (right) are

shown to introduce the complexity of the GUI and its preparedness for the real model. All

other buttons and GUI elements are self-explanatory and don’t require further attention.

Fig. 50 Circle parameters user prompt and context menu content

TBU in Zlín, Faculty of Applied Informatics 57

CONCLUSION

This thesis introduced the CE 151 Ball & Plate model from Humusoft, its structure,

parameters, downsides, mathematical description and the design of suitable digital

controller. The model was not perfect in terms of an ideal Ball & Plate system, mostly

because of its configuration using steel wires. This caused motors to lose steps, which

ultimately led to random unmeasurable load disturbance. Possible solutions were to directly

access the hardware and electronics or change the driver’s software, neither of which was

the aim of this thesis. The computational limitations of personal computer used to run

Simulink environment had to be also taken into account as it contained the communication

card and thus could not be changed to faster one.

The LQ controller design proved to be easy to use after appropriate algorithms were created

and optimal poles computed. It was surprisingly easy to place remaining poles as they had

to be further from the center of complex plane to make the controller output bounded.

Together with optimal poles, the resulting controller was able to track the reference and

reject disturbances. This solution was robust enough to even deal with switching the ball “on

the flight”, although the rise time and settling time were clearly worse.

The model was experimentally identified for different inputs (plate inclinations) and two

different balls, resulting in 26 identified models. The chosen model was the one for small

plate inclinations, as it is the assumed linearization point. As the model is assumed to be

symmetrical, the same model was used to design both controllers.

After initial preparations, the simulated model was controlled for different reference signals

and disturbances to show its ideal behavior. The real model was controlled afterwards in the

same manner. Additionally, the maze navigation was implemented to make the reference

signal selection process more interesting and algorithmic. To encapsulate all tested reference

signals, the graphical user interface (GUI) was designed, although for simulation purposes

only. This proved to be a valuable tool to quickly change reference values and see the final

outcome of the simulated model. The layout of the GUI was also prepared for the real model

control, but due to mentioned PC limitations, it was not implemented as a functional solution.

TBU in Zlín, Faculty of Applied Informatics 58

BIBLIOGRAPHY

[1] HUMUSOFT. CE 151 Ball & Plate Apparatus User‘s Manual. Prague, 2006.

[2] ČUPIĆ, Grgo. Implementacija nelinearnih algoritama upravljanja platformom s

dva stupnja slobode [online]. Zagreb, 2011 [cit. 2016-04-14]. Available from:

http://bib.irb.hr/datoteka/534227.gcupic_diplomski_rad_2011.pdf

[3] BRUCE, Jonathan, Chris KEELING a Ronald RODRIGUEZ. Four Degree of

Freedom Control System Using a Ball on a Plate [online]. Southern Polytechnic

State University, 2011 [cit. 2016-04-23].

Available from: https://users.soe.ucsc.edu/~jbruce/webfiles/BPFinalReport.pdf

[4] BOHIGAS, Oriol, Montserrat MANUBENS, Lluís ROS. A Linear Relaxation
Method for Computing Workspace Slices of the Stewart Platform. Journal of

Mechanisms and Robotics [online]. 2013, 5(1), 011005- [cit. 2016-04-15]. DOI:

10.1115/1.4007706. ISSN 1942-4302. Available from:

http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1

115/1.4007706

[5] NOKHBEH, Mohammad and Daniel KHASHABI. Modelling and Control of

Ball-Plate System [online]. Amirkabir University of Technology, 2011 [cit. 2016-

04-23]. Available from:

http://web.engr.illinois.edu/~khashab2/files/2011_LinearControl/16.pdf. Under

the supervision of H.A. Talebi.

[6] MATUŠŮ, Radek and Roman PROKOP. Algebraic design of controllers for two-

degree-of-freedom control structure. International Journal of Mathematical

Models and Methods in Applied Sciences [online]. 2013, vol. 7, iss. 6, s. 630-637

[cit. 2016-04-28]. ISSN 1998-0140. Available from:

http://www.naun.org/cms.action?id=5358.

[7] BOBÁL, V. Adaptivní a prediktivní řízení. Zlín: Univerzita Tomáše Bati ve Zlíně.
Akademické centrum, 2008, ISBN 978-80-7318-662-3.

[8] PolyX [online]. Prague, 2001 [cit. 2016-04-30]. Available from:

http://www.polyx.com/

[9] Šebek, M.: Polynomial Toolbox for MATLAB, Version 3.0. PolyX, Prague, 2014

[10] BOBÁL, V. Identifikace systémů. Zlín: Univerzita Tomáše Bati ve Zlíně.
Akademické centrum, 2009, ISBN 978-80-7318-888-3.

[11] LANDAU, Ioan D. Digital control systems design, identification and

implementation. 1st ed. London: Springer, 2007. ISBN 978-184-6280-566.

http://bib.irb.hr/datoteka/534227.gcupic_diplomski_rad_2011.pdf
https://users.soe.ucsc.edu/~jbruce/webfiles/BPFinalReport.pdf
http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4007706
http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4007706
http://www.naun.org/cms.action?id=5358
http://www.polyx.com/

TBU in Zlín, Faculty of Applied Informatics 59

[12] BOBÁL, Vladimír, Petr CHALUPA, Petr DOSTÁL and Marek KUBALČÍK.
Digital control of unstable and integrating time-delay processes. International

Journal of Circuits, Systems and Signal Processing [online]. 2014, vol. 8, s. 424-

432 [cit. 2016-04-28]. ISSN 1998-4464. Available from:

http://naun.org/cms.action?id=7621.

[13] A simple image segmentation example in MATLAB. In: MATLABtricks [online].

Zoltan Fegyver, 2014 [cit. 2016-05-09]. Available from:

http://matlabtricks.com/post-35/a-simple-image-segmentation-example-in-

matlab

[14] Solving mazes with the watershed transform. In: Mathworks Blogs [online].

Spandan Tiwari, 2014 [cit. 2016-05-09]. Available from:

http://blogs.mathworks.com/steve/2014/01/21/solving-mazes-with-the-

watershed-transform/

[15] The Watershed Transform: Strategies for Image Segmentation. In: Mathworks

Technical Articles [online]. Steve Eddins, 2014 [cit. 2016-05-09]. Available from:

http://www.mathworks.com/company/newsletters/articles/the-watershed-

transform-strategies-for-image-segmentation.html

[16] COUPRIE, Michel, Laurent NAJMAN a Gilles BERTRAND. Algorithms for the

Topological Watershed [online]. s. 172 [cit. 2016-05-09]. DOI: 10.1007/978-3-

540-31965-8_17. Available from:

http://link.springer.com/10.1007/978-3-540-31965-8_17

[17] The Long Island Sound Watershed. In: The SoundBook Online [online]. [cit. 2016-

05-09]. Available from:

http://soundbook.soundkeeper.org/chapter_ContentID_210_SectionID_6.htm

http://naun.org/cms.action?id=7621
http://www.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-segmentation.html
http://www.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-segmentation.html

TBU in Zlín, Faculty of Applied Informatics 60

LIST OF FIGURES

Fig. 1 CE151 Ball & Plate model diagram [1] ... 10

Fig. 2 Alternative Ball & Plate model [2] ... 12

Fig. 3 Frame pivoting layout [3] and 6DOF Stewart platform [4] 13

Fig. 4 Mathematical model setup [5] .. 14

Fig. 5 Structure of 2DOF controller .. 21

Fig. 6 Measured step responses .. 26

Fig. 7 Average of measured step responses .. 27

Fig. 8 Identification using Recursive Least Squares method 27

Fig. 9 Choosing the bounce point from the averaged response 28

Fig. 10 Identification process .. 28

Fig. 11 Distribution of identified parameters .. 29

Fig. 12 Nonlinear Simulink model ... 30

Fig. 13 Masked subsystem model ... 30

Fig. 14 Simulated response to step ... 31

Fig. 15 Pole-zero map of the plant .. 33

Fig. 16 Ball & Plate control simulation model ... 33

Fig. 17 Simulated step reference tracking .. 34

Fig. 18 Simulated step disturbance rejection .. 35

Fig. 19 Simulated step load disturbance rejection .. 36

Fig. 20 Simulated circular reference tracking – relatively low frequency 37

Fig. 21 Simulated circular reference tracking – relatively high frequency 38

Fig. 22 Simulated circular reference tracking with sinusoidal controller design 39

Fig. 23 Simulated ramp reference tracking with ramp controller design 40

Fig. 24 Simulink scheme for real model control .. 41

Fig. 25 Ball Coordinates Subsystem ... 42

Fig. 26 Selection and Scaling subsystem with mask options 42

Fig. 27 Selector & Data Collector subsystem .. 42

Fig. 28 Initialization and Scaling (left) and its Roll Init subsystem (right) 43

Fig. 29 Calibration Delay subsystem .. 43

Fig. 30 Controller subsystem .. 43

Fig. 31 Reference Feed subsystem ... 44

Fig. 32 Reference Feed Trigger subsystem .. 44

TBU in Zlín, Faculty of Applied Informatics 61

Fig. 33 Comparison of models .. 45

Fig. 34 Reference tracking .. 46

Fig. 35 Disturbance rejection (blowing to the ball) .. 47

Fig. 36 Circular reference tracking ... 48

Fig. 37 Maze ... 49

Fig. 38 Color perception [13] ... 49

Fig. 39 Blueness picture and its mask ... 49

Fig. 40 Watershed transform steps ... 50

Fig. 41 Algorithm completion with user prompt .. 50

Fig. 42 Different paths test and looped path with warning ... 50

Fig. 43 Maze navigation – first run ... 51

Fig. 44 Maze navigation – second run .. 52

Fig. 45 Maze navigation – third run ... 53

Fig. 46 Watershed drainage [17] ... 54

Fig. 47 Grayscale image and its topological relief [15] .. 54

Fig. 48 Ball & Plate model GUI ... 55

Fig. 49 Additional plots in GUI with maze navigation simulation results 56

Fig. 50 Circle parameters user prompt and context menu content 56

TBU in Zlín, Faculty of Applied Informatics 62

APPENDICES

P I Function for maze solving

P II Function for identification

P III Function for LQ controller design

P IV Script for spectral factorization

APPENDIX P I: FUNCTION FOR MAZE SOLVING

function [refPitch, refRoll, pathOK] = mazeSolve(imgPath)
%**
% mazeSolve.m - function to solve mazes with blue walls. The call without
% agruments results in taking the snapshot from camera.
%
% Return:
% refPitch (Nx1 double) reference values of pitch (y axis for CE151)
% refRoll (Nx1 double) reference values of roll (x axis for CE151)
% pathOK (1x1 logical) flag to tell if the path is OK
%
% Arguments:
% imgPath (string) path to the maze image (image or MAT-file)
%
% Examples:
% [y, x, pathOK] = mazeSolve('maze.mat');
% [y, x, pathOK] = mazeSolve('maze.jpg');
% [y, x, pathOK] = mazeSolve();
%
% Author: Lubos Spacek, l1_spacek@fai.utb.cz, 2016
%**

if nargin == 0
 useCam = 1;
else
 useCam = 0;
end

f = figure('Units','Normalized','Position',[0.3 0.3 0.4 0.4],...
 'Name', 'Maze Path', 'NumberTitle','off');

% treshold value for blueness (empirical)
tresholdValue = 75;

% number of pixels to crop horizontally from each side (empirical)
cropValue = 20;

% get the video object
if useCam
 vid = videoinput('winvideo',1,'RGB24_160x120');
end

pathOK = false;

while ~pathOK && ishandle(f)

 % take a snapshot
 if useCam
 img = getsnapshot(vid);
 elseif strcmp(imgPath(end-2:end), 'mat')
 try
 S = load(imgPath);
 img = cell2mat(struct2cell(S));
 catch
 errordlg('Select maze picture stored in one matrix!');
 refPitch = 0; refRoll = 0;
 return;
 end

 else
 try
 img = imread(imgPath);
 catch
 errordlg('Select a picture!');
 refPitch = 0; refRoll = 0;
 return;
 end
 end
 imgSize = size(img);

 % crop the snapshot
 I = img(:,cropValue:imgSize(2)-cropValue+1,:); imgSize = size(I);

 % create and show red image as the base for trajectory alpha mask
 redImg = zeros(imgSize); redImg(:,:,1) = ones(imgSize(1:2));

 % plot the image
 h1 = subplot(121);
 imshow(I); hold on;
 h = imshow(redImg); hold off;

 % get the R-G-B values
 R = I(:,:,1);
 G = I(:,:,2);
 B = I(:,:,3);

 % calculate the blueness of each pixel b = B - max(R,G)
 blueness = double(B) - max(double(R),double(G));

 % create a label image, where all pixels having the same value
 % belong to the same object, example:
 % 1 1 0 1 1 0 1 1 0 2 2 0
 % 0 1 0 0 0 0 0 1 0 0 0 0
 % 0 0 0 1 1 0 -> 0 0 0 3 3 0
 % 0 0 1 1 1 0 0 0 3 3 3 0
 % 1 0 0 0 1 0 4 0 0 0 3 0
 labels = bwlabel(blueness > tresholdValue);

 % choose label with maximum occurence
 id = mode(labels(:));

 % get the mask containing only the maze walls
 maze = (labels == id);

 % apply the watershed transform to get the trajectory
 L = watershed(maze);

 % remove all connected objects that have fewer than 120 pixels
 traj = bwareaopen(L == 0, 120);

 % apply the trajectory alpha mask to add red trajectory to image
 set(h, 'AlphaData', traj);

 % corner points north to east (empirical)
 cPts = struct('N',4,'S',110,'W',7,'E',118);

 % init

 row = 1; col = find(traj(1,:)==1);
 trajLength = sum(traj(:));
 try
 walk = zeros(trajLength,2); walk(1,:) = [row col];

 % direction of movement 1-NORTH, 2-SOUTH, 3-EAST, 4-WEST
 DIR = zeros(trajLength,1);
 % get the row and column indices of the trajectory in order
 for i = 2:trajLength

 if DIR(i-1) ~= 2 && traj(row+1,col) == 1
 row = row + 1;
 DIR(i) = 1;
 elseif row > 1 && DIR(i-1) ~= 1 && traj(row-1,col) == 1
 row = row - 1;
 DIR(i) = 2;
 elseif DIR(i-1) ~= 4 && traj(row,col+1) == 1
 col = col + 1;
 DIR(i) = 3;
 elseif col > 1 && DIR(i-1) ~= 3 && traj(row,col-1) == 1
 col = col - 1;
 DIR(i) = 4;
 else
 disp('The trajectory is not continuous!');
 break;
 end

 walk(i,:) = [row col];
 end

 catch
 DIR = 0;
 wH = warndlg('The path is probably looped or incomplete.', ...
 'Path Warning');
 uiwait(wH);
 end

 % get the corner points
 walk = walk(logical(diff([DIR;1])),:);

 % saturate to avoid touching the walls
 walk(walk(:,1) < cPts.N+5) = cPts.N+5; % start offset
 walk(walk(:,1) > cPts.S-5) = cPts.S-5; % end offset
 walk(walk(:,2) < cPts.W) = cPts.W;
 walk(walk(:,2) > cPts.E) = cPts.E;

 % plot path
 h2 = subplot(122);
 imshow(I); hold on;
 plot(walk(:,2),walk(:,1),'r',walk(:,2),walk(:,1),'.g');

 button = questdlg('Is the path OK?', 'Continue?', ...
 'Path OK', 'Try Again', 'Quit', 'Path OK');
 pathOK = strcmpi(button, 'Path OK');

 if strcmpi(button, 'Quit')
 break;
 end

 if ~pathOK
 arrayfun(@cla,[h1 h2]);
 end

end

% normalize to <-1,1> range
if pathOK
 refPitch = (walk(:,1) - cPts.N)*(-2/(cPts.S-cPts.N)) + 1;
 refRoll = (walk(:,2) - cPts.W)*(2/(cPts.E-cPts.W)) - 1;
else
 refPitch = 0; refRoll = 0;
end

% maze from maze generator solution - http://www.mazegenerator.net/
% I = imread('maze 20 by 20 orthogonal.png');
% I = logical(I(:,:,1));
% imshow(I); figure;
% L = watershed(I);
% imshow(L,[]); figure;
%
% S = L == 0;
% D = I - S;
% imshow(D);

APPENDIX P II: FUNCTION FOR IDENTIFICATION

function [X, fG] = ident_bp(fG, guess)
%**
% ident_bp.m - function to identify measured step responses for B&P model
%
% Return:
% X (1xN double) identified parameters
% fG (func. handle) handle for identified anonymous function
%
% Arguments:
% fG (func. handle) handle for anonymous function to identify
% guess (1xN double) initial guesses for identification
%
% Examples:
% [X, fG] = ident_bp(@(X) tf(X(1), [X(2) 1 0 0]), [5 0.2]);
% X = ident_bp();
%
% Author: Lubos Spacek, l1_spacek@fai.utb.cz, 2016
%**

% set default transfer function and initial guess
if nargin < 2
 fG = @(X) tf(X(1), [X(2) 1 0 0]);
 % fG = @(X) tf(X(1), [X(2) 1 0], 'iodelay', X(3));
 guess = [5 0.2];
end

% get the file containing identification data
[filename, pathname] = uigetfile('ident*.mat','Pick a File');
if pathname == 0
 X = []; fG = [];
 return;
end
S = load([pathname filename]);

u = S.input(:,2);
if strcmp(S.desc(1:7),'rollOut')
 dataPos = S.rollOut;
elseif strcmp(S.desc(1:8),'pitchOut')
 dataPos = S.pitchOut;
end

% choose only step-responses parts (where u > 0)
ud = diff([0; abs(u)>0; 0]);
sI = find(ud > 0); % start indices
len = find(ud < 0)-sI;
lenMin = min(len);
t = dataPos(sI(1):sI(1)+lenMin-1,1) - dataPos(sI(1),1);

dataY = zeros(lenMin,length(sI)); dataU = dataY;
figure('Units','Normal','Position',[0.14 0.14 0.66 0.66],...
 'Name', 'Identification', 'NumberTitle','off');

%---
subplot(311);
for i = 1:length(sI)
 y = dataPos(sI(i):sI(i)+lenMin-1,2) - dataPos(sI(i),2);
 u = S.input(sI(i):sI(i)+lenMin-1,2);

 dataY(:,i) = y;
 dataU(:,i) = u;
 plot(t, y); hold on;
end

if any((dataU-dataU(1)) ~= 0)
 error('Input vector si not consistent.');
end
title(['Measured step responses to constant input u = ', ...
 num2str(u(1)*100),'%']);
ylabel('Position [-]'); grid on;

%---
subplot(312);
y = mean(dataY,2);
plot(t, y,'.-'); hold on;
ylabel('Position [-]'); grid on;
title('Average of measurements');
hText = text(0, 1.05, 'Choose the bounce point.',...
 'color','r','fontweight','bold');
[xm,ym] = ginput(1); % mouse input
delete(hText);
[ind,ind] = min(abs(xm-t));
plot(t(ind), y(ind), 'ro');
y = y(1:ind); t = t(1:ind); u = u(1:ind);

%---
subplot(313);
X = fminsearch(@(x) krit(x, fG, t, u, y,'plot'), guess);
Ts = t(2);
Gz = c2d(fG(X),Ts);
ys = lsim(Gz,u,t);
hold on; stairs(t, ys, 'r');
xlabel('t [s]'); ylabel('Position [-]'); grid on;
title('Identification','fontweight','bold');

APPENDIX P III: FUNCTION FOR LQ CONTROLLER DESIGN

function [q,r,p,refPitch,refRoll,pathOK] = controllerDesign_LQ(refTrack)
%**
% controllerDesign_LQ.m - function to design LQ controller for B&P model
%
% Return:
% q (1xK double) numerator of feedback controller in z^-1
% r (1xL double) numerator of feedforward controller in z^-1
% p (1xM double) denominator of controllers in z^-1
% refPitch (Nx1 double) see mazeSolve.m
% refRoll (Nx1 double) see mazeSolve.m
% pathOK (1x1 logical) see mazeSolve.m
%
% Arguments:
% refTrack (string) reference tracking option (ramp, sin, maze)
%
% Examples:
% [q,r,p] = controllerDesign_LQ();
% [q,r,p] = controllerDesign_LQ('sin');
% [q,r,p,refPitch,refRoll,pathOK] = controllerDesign_LQ('maze');
%
% Author: Lubos Spacek, l1_spacek@fai.utb.cz, 2016
%**

if nargin == 0
 refTrack = 'step';
end

refPitch = 0; refRoll = 0; pathOK = false; % init

% [X, fG] = ident_bp();

% get pre-identified parameters (also needed to get polynomial D)
% note: the polynomial D is computed using spectral factorization using
% Polynomial Toolbox (PolyX, Ltd. - http://polyx.com/)
par = 11;
S = load('params.mat'); X = S.params{par,2}; fG = S.params{par,3};

Ts = 0.1;

% Gz = c2d(tf(-5.0706, [0.1878 1 0 0]), Ts);
Gz = c2d(fG(X), Ts);
set(Gz, 'var', 'z^-1')
[num,den] = tfdata(Gz, 'v');
temp = num2cell(den); [a1, a1, a2, a3] = temp{:};
temp = num2cell(num); [b1, b1, b2, b3] = temp{:};

% D = conv([1 -2.2774 1.7252 -0.4298],poly([0.8 0.8 0.8]));
D = conv(S.dataD{par},poly([0.8 0.8 0.88]));
% D = conv(dataD{par},poly([0.9 0.85 0.88])); % maze

A = [b3 0 0 0 -a3 0
 b2 b3 0 0 a3-a2 -a3
 b1 b2 b3 0 a2-a1 a3-a2
 0 b1 b2 b3 a1-1 a2-a1
 0 0 b1 b2 1 a1-1
 0 0 0 b1 0 1];
b = [D(7) D(6) D(5)+a3 D(4)-a3+a2 D(3)-a2+a1 D(2)-a1+1]';

res = num2cell(A\b);
[q3, q2, q1, q0, p2, p1] = res{:};
r = sum(D)/sum(num);

% reference tracking options
if strcmp(refTrack, 'sin')
 w = 2*pi*0.2;
 C = -2*cos(w*Ts);
 A = [0 0 0 0 0 1
 0 0 0 0 1 C
 0 b3 0 1 C 1
 b3 b2 1 C 1 0
 b2 b1 C 1 0 0
 b1 0 1 0 0 0];
 b = [D(7) D(6) D(5) D(4) D(3)-1 D(2)-C]';

 res = num2cell(A\b);
 [r0, r1, ~, ~, ~, ~] = res{:};
 r = [r0 r1];
elseif strcmp(refTrack, 'ramp')
 A = [0 0 0 0 0 1
 0 0 0 0 1 -2
 0 b3 0 1 -2 1
 b3 b2 1 -2 1 0
 b2 b1 -2 1 0 0
 b1 0 1 0 0 0];
 b = [D(7) D(6) D(5) D(4) D(3)-1 D(2)+2]';

 res = num2cell(A\b);
 [r0, r1, ~, ~, ~, ~] = res{:};
 r = [r0 r1];
elseif strcmp(refTrack, 'maze')
% [refPitch, refRoll, pathOK] = mazeSolve(); % use camera
 [refPitch, refRoll, pathOK] = mazeSolve('maze.mat');
end

q = [q0 q1 q2 q3]; p = [1 p1 p2];

disp('DONE');

APPENDIX P IV: SCRIPT FOR SPECTRAL FACTORIZATION

% ***
% Spectral factorization to minimize the LQ criterion
% ***

% check for Polynomial Toolbox (PolyX, Ltd. - http://polyx.com/)
v = ver;
PT = any(strcmp(cellstr(char(v.Name)), 'Polynomial Toolbox'));
if ~PT
 % User does not have the toolbox installed.
 message = sprintf(['Sorry, but you do not seem to have the ' ...
 'Polynomial Toolbox.\nDo you want to try to continue
anyway?']);
 reply = questdlg(message, 'Toolbox missing', 'Yes', 'No', 'Yes');
 if strcmpi(reply, 'No')
 % User said No, so exit.
 return;
 end
end

gprops zi
pformat SYMB

Gz = c2d(tf(-5.0706, [0.1878 1 0 0]), 0.1);
set(Gz, 'var', 'z^-1');
[num, den] = tfdata(Gz,'v');
A = pol(den, length(den)-1, 'zi');
B = pol(num, length(num)-1, 'zi');

qu = 1;
D = spf(A*qu*A' + B*B');
Di = pol(D*zi^deg(D));
Di = Di/Di{0};

