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Abstract

This thesis is focused on a study of security issues related to an execution of cryptographic
algorithms in an untrusted environment. It mainly studies whitebox cryptography methods
of transforming algorithms in such a way they resist attacks like key-extraction and inverting
in some extent. Particularly it examines whitebox transformations of AES cipher and attacks
on these transformations. Transformations construction and implementation is described. In
the thesis was discovered the known attack works also on AES transformation using dual
ciphers by Karroumi [1] that was supposed to resist the attack. The new improvements for
increasing a resistance of transformations to known attacks were proposed.
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1 Introduction

In the last few decades we have been witnessing a development in a field of outsourced
computations and storage. The rising prevalence of this computing model slightly changes
the classical attacker model that cryptography used to dealt with, what gave rise to a mobile

cryptography.
The classical goals the cryptography addresses are confidentiality, data integrity, authen-

tication and non-repundation [2]. From the data confidentiality perspective, the typical sce-
nario is two remote parties, Alice and Bob, want to communicate via untrusted channel, while
the computations on both sides are considered as trusted. A potential attacker resides in a
communication link. A bunch of cryptography primitives addressing security issues in this
scenario was invented, analyzed and widely used, e.g. symmetric and asymmetric cryptosys-
tems, digital signatures, authentication protocols, etc...

But with the expansion of outsourced computations and storage we are getting to a
situation that Alice does not trust even to Bob, but wants to use Bob’s resources for her
own purpose. Such outsourcing rises concerns about the loss of privacy of private data what
poses the potential barrier in adopting cloud services widely. To ensure the privacy, data is
encrypted. The major problem with this model is that in order to evaluate a function over
data, e.g. searching in an encrypted database, data has to be decrypted first. This poses an
another additional overhead. The fully homomorphic encryption provides a solution for these
issues.

Another major part of use cases is the protecting a private function computed in an
untrusted environment. A typical example of the function to be protected is the license code
verification embedded in a software or it is a software that provides access to some protected
material, e.g. copyrighted content. The major goal is to protect these functions from analysis,
tampering or extraction of a cryptographic material. Software protection techniques like an
obfuscation addressing these issues are used in practice. This thesis is devoted to a whitebox

cryptography, the field of cryptography that studies the level of security of cryptographic
algorithms executed in an untrusted environment.

This thesis studies in particular a transformation of the AES [3] implementation in such
a way that they provide some level of security when executed in an untrusted environment.
This transformed implementation has embedded a symmetric key inside and the main goal of
the transformation is to resist practical attacks attempting its extraction. The thesis covers
an introduction to whitebox cryptography, describes a first such transformation published
together with cryptanalysis. It also analyzes a new proposed transformation that should
resist a key extraction. The thesis states also a proof that this scheme can be broken using
an already existing attack. In the end, some improvements are suggested.

Chapter 2 describes mobile cryptography concepts and state of the art in this field mainly
with focus on the obfuscation and the homomorphic encryption. In chapter 3 the whitebox
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1. Introduction

cryptography is introduced, followed by an explanation of basic building blocks used for trans-
formations. The first proposed scheme by Chow et al. [4] is described in detail together with
the following cryptanalysis by Billet et al. [5]. Chapter 4 covers a new whitebox scheme for
AES by Karroumi [1] in a detail. A description of the schemes and the attack implementation
follow. In chapter 5, improvements for whitebox schemes are proposed with their analysis.
The last two chapters are devoted to possible further research directions and conclusion.

I declare this thesis is my own work, but I consulted the problems and proposed solutions
together with people from the Laboratory of Security and Applied Cryptography of the
Faculty of Informatics of Masaryk University, and from this reason is a personal pronoun
“we” used instead of “I”.
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2 Area overview

2.1 Overview

Computing in an untrusted environment is closely related to the notion of mobile cryptog-

raphy [6] which was established two decades ago. It analyzes security problems raised by a
concept of mobility of an executable code. The executable code that acts autonomously on
behalf a user in collecting and processing information is denoted as a mobile agent. Mobile
cryptography mainly studies two security threats:

1. protection of the host from malicious mobile code

2. protection of mobile code from the malicious host

The former threat can be mitigated to an acceptable level with countermeasures like
sandboxing, virtualization and code signing [2], what is widely adopted by current anti-virus
protection software and operating systems.

The latter is much difficult to address. Existing techniques provide protection to some
extent, making tampering the code on malicious host difficult for ordinary attacker, but there
are no guarantees of protection against very strong and determined attacker with enough
resources to invest in the attack.

In order to make tampering of the software very difficult, specialized, tamper-resistant
hardware is often used. It is designed with security concerns in mind so that very advanced
techniques and a large amount of resources is needed in order to attack such device, making
it practically impossible for an ordinary attacker. For an example hardware security mod-
ules used by banks or certification authorities protecting their secret cryptographic material.
Another example is a cryptographic smart card, widely used in use cases with high security
requirements.

However, the tamper-resistant hardware is not suitable for many applications, due to its
cost and physical nature, e.g. need to be distributed somehow, can be lost, forgotten, unin-
tentionally damaged, etc... Then it is preferable to use software-based protection techniques
for their low cost and flexibility. The downside of this approach is a limited strength.

2.2 Obfuscation

An obfuscation is another technique addressing the same problem, protecting a software
implementation. Roughly speaking, the major principle is the transformation of the code to a
form, that is very difficult to analyze and eventually to modify. The potential attacker should
not be able to gain any extra knowledge1 from the running program, in the ideal case, while
the original functionality of the program is preserved.

1. besides input/output behavior
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2. Area overview

The program obfuscation received an attention when Barak et al. formalized the notion
of obfuscation in [7], providing significant theoretical result that it is impossible to create a
generic obfuscator. They did so by showing the existence of a (contrived) family of functions
that are unobfuscatable, i.e. the family of functions always leaking some information. They
used assumption of existence of one-way functions.

On the other hand, later was published a first positive result [8] claiming it is possible
to construct some provably secure obfuscators for point functions. Point function accepts a
single input string and reject all other inputs. It was used to obfuscate complex access control
functionalities.

The first positive obfuscation result for a traditional cryptographic functionality (that is
significantly more complicated that point functions) was presented by Hohenberger et al. [9].
They used slightly modified definition of obfuscation in order to construct a secure obfuscator
for re-encryption2.

The question whether there exist a family of potentially interesting functions for which
exist provably secure obfuscators and how to construct them, is a subject of a further research.
But the work of Goldwasser et al. [10] suggest it is unlikely. Namely they state that there
exist many natural classes of functions that cannot be obfuscated w.r.t. auxiliary input.

An approximate obfuscation defined by Barak et al. [7] is a relaxation of the functional-
ity requirement of the obfuscated program. They presented impossibility result in the case
when an obfuscated program deviates from the original program only with a negligible prob-
ability and allows this event to depend only on the coin tosses of the obfuscator. Recently
Bitansky et al. [11] improved this impossibility result by hardening the requirements. They
showed there exist families of robust unobfuscatable functions for which even approximate
obfuscation is impossible. According to their definition, obfuscated program is only required
to agree with the original one with probability slightly more than 0.5 on a uniformly sampled
input, what was the open problem till then.

In a practice, the obfuscation is widely used as a software protection technique that
provides some level of protection from attackers, but it often lacks some proof of security. In
major cases it is collection of techniques that makes the static and/or run-time analysis of a
program significantly more difficult, but it does not rule out the probability of an successful
attack by a strong and determined attacker. A rich collection of state of the art obfuscation
techniques, protecting from static and run-time analysis can be found in the dissertation
thesis of J. Cappaert [12].

The concept of obfuscation is closely related to computing with a private function.

2. This functionality takes a ciphertext for message m encrypted under Alice’s public key and transforms it
into a ciphertext for the same message m under Bob’s public key. [9]
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2. Area overview

2.3 Computing with encrypted data

As is mentioned in the introduction, the fundamental question whether data can be manip-
ulated without being decrypted has been attracting attention for a long time.

2.3.1 Secure multiparty communication

The first positive results on this question make use of interaction. The concept of a secure

multiparty communication was introduced by Yao [13] in 1982. Roughly speaking, it enables
to evaluate a function over a private data of remote parties, while keeping the private data still
confidential. For this, both parties have to follow some protocol. A typical toy example is a
well-known Yao’s Millionaire’s Problem. In this problem two millionaires, Alice and Bob, want
to know which is richer, without disclosing their actual wealth. Note the first protocol solving
this problem had exponential time, space and communication complexity. This problem has
direct applications in e-commerce, e.g. on-line bidding and auctions and data mining [14].

Many protocols for secure multiparty schemes are based on arithmetic circuits. This is
also a one of cornerstones used in the following chapter, so it is important to describe it.

The function F is transformed to a network, that forms a directed acyclic graph, of gates
performing addition and multiplication operation, what forms an arithmetic circuit that is
able to evaluate the function F . It is known that considering arithmetic circuits is without
a loss of generality, i.e. any function that is feasible to compute at all can be specified as a
polynomial-size Boolean circuit using and and negation. Note that any such circuit can be
simulated by operations in F: Boolean values true or false can be encoded as 1 resp. 0. Then
negation of a bit b is 1 − b and and of bits b, c is b · c [14]. The resulting circuit is then
evaluated by remote parties in order to compute function F over their private data. A depth

of a circuit is the longest path in the circuit.
Ishai et al.[15] in 2008 demonstrated a two-party computation protocol of a function F

while communication overhead is a fixed constant factor larger than circuit size of F .

2.3.2 Fully homomorphic encryption

A cryptosystem is denoted as a fully homomorphic if it supports evaluation of two operations,
addition and multiplication, on ciphertexts where the result after decryption matches the same
operation on corresponding plaintexts.

a+ b ≡ D (E (a)⊕ E (b)) (2.1a)

a · b ≡ D (E (a)⊙ E (b)) (2.1b)

The power of the the fully homomorphic system is in its ability to evaluate an arbitrary
function over encrypted data, without actually decrypting the data. This is exactly the sit-
uation where Alice wants to outsource some computations to Bob, but doesn’t want Bob to
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2. Area overview

learn her information. When the function is evaluated homomorphically, the result is again
encrypted, so only Alice is able to read it. This is done by using the concept from the previous
chapter, arithmetic circuits.

The function F that Alive wants to compute, is converted into the arithmetic circuit that
computes the same function. This circuit evaluated over plaintext gives the wanted result,
but note that it can be evaluated also over ciphertexts using the homomorphic property of
the cryptosystem. Intuitively, Alice sends circuit representing F to Bob, Bob evaluates the
circuit on ciphertext and returns a result to Alice. When Alice decrypts the result from Bob,
obtains the result of F .

It is important to emphasize that in this use case, the cryptosystem becomes a computa-
tional platform, thus the possible space/time overheads slow down entire computation.

History. The concept of computing with encrypted data was first proposed by Rivest et al. [16]
in 1978, a few months ago before introduction of RSA implementation. They suggested that
a fully homomorphic encryption may be possible, but were unable to find such scheme. The
question whether it is possible to construct a fully homomorphic scheme was an open problem
for 30 years.

Some partially homomorphic schemes were known, for example RSA supports homomor-
phic evaluation of multiplication. There were also some limited homomorphic schemes pub-
lished, for example [17] in 2005. Their cryptosystem is based on elliptic curves and supports
unlimited number of additions and one multiplication operation. Even this restricted scheme
has interesting applications, for example efficient election system, as proposed in their paper.

The breakthrough in this field was done by Gentry in 2009 [18]. He demonstrated the fully
homomorphic encryption (FHE) scheme is possible to construct, using ideal lattices. Since
then this field is undergoing a rapid development.

Key ideas. Gentry first constructed “somewhat homomorphic” scheme that supports eval-
uating of low-degree polynomials on ciphertexts (corresponds to evaluating an arithmetic cir-
cuit of a small depth). To protect the information (plaintext), it is hidden in a large amount
of noise. Without going into further details, the main problem is the addition doubles and the
multiplication squares the noise level. Once the level exceeds acceptable boundary, decryption
is ambiguous even for Alice.

The ingenious idea of a noise reduction is called refreshing. It is a process of evaluating de-
cryption circuit homomorphically. Note that such evaluation produces again ciphertext, since
the result of homomorphic operation is still encrypted, but the level of noise is normalized.

Using this idea, Gentry built the FHE from the somewhat homomorphic scheme, by
periodically applying the refreshing operation when the noise reached the acceptable level.

Both symmetric and asymmetric schemes were proposed.

8



2. Area overview

Recent advances. There are three main FHE schemes known to date:

1. Gentry’s original scheme based on ideal lattices. The implementation was introduced
by Gentry et al. in [19]. The public key has a size 2.3 GB, refreshing operation takes
30 minutes.

2. Dĳk’s et al. [20] scheme DGHV, based on a problem from number theory, approximate
Greatest Common Divisor (GCD).

• Simpler that previous scheme.

• The latest results by Coron et al. [21] from 2012, significantly reduced the public
key size to 10.3 MB, refreshing operation takes 11 minutes.

• The result from 2013 by Coron et al. [22] added support for performing batch

operations with plaintexts.

• The fully homomorphic evaluation of AES encryption was performed, with amor-
tized cost 12 minutes per AES block on a standard desktop computer with 32 GB
RAM [22].

3. Brakerski et al. [23] Ring Learning With Errors (RLWE) scheme, adaptation of previ-
ous Learning With Errors (LWE) scheme. The LWE hard problem is to recover s ∈ Z

n
q

given a sequence of approximate random linear equations of s.

• The improvement by Brakerski et al. [24] changed the noise management via
modulus switching. The refreshing procedure as used by Gentry is not necessary
in this case. The noise is reduced gradually after each multiplication, protecting
from growing exponentially.

• Improvement by Gentry et al. [25] adds batch operation, using a cyclotomic num-

ber field3.

• The fully homomorphic evaluation of AES encryption was performed [26] with
amortized time 37 minutes per AES block on a standard desktop computer with
256 GB RAM.

Batch operation, also called plaintext “packing”, is a technique where multiple indepen-
dent plaintexts slots are embedded into a single ciphertext, using a proper algebraic structure.
Then when an operation is performed on the ciphertext, it has effect like it is performed on
the whole vector of plaintexts embedded in the ciphertext. This strongly resembles Single-
Instruction-Multiple-Data (SIMD) architecture of a paralell computer. This adds significant
improvement, since multiple blocks (like in AES case) are computed simultaneously, what

3. http://www.math.harvard.edu/~erickson/pdfs/cyclotomic_fields_part_iii.pdf
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gives better amortized running time of algorithms. Recall that in the original Gentry’s scheme,
the plaintext space size was only 1 bit.

As an illustration4 consider that a plaintext space is a group Z15 = Z3×Z5, from Chinese
Remainder Theorem. Using this structure we obtain 2 slots for plaintext of size 3 and 5. Let’s
have two ciphertexts c, c′ with (p3, p5) and (p′3, p

′
5) in their plaintext slots respectively.

Then after ADD(c, c′) the plaintext slots are (p3 + p′3, p5 + p′5). The analogy holds also for
MULT(c, c′) then the plaintext slots are (p3 · p

′
3, p5 · p

′
5).

The batching mechanism proposed in [24] is based on the similar idea but uses ring that
optimizes number of plaintext slots in ciphertext, by choosing a more appropriate algebraic
structure.

Somewhat homomorphic encryption schemes. FHE schemes is a very active area
of research nowadays, with still better and better improvements on a performance of the
schemes, but in spite of this, the practical use of FHE is still out of question due to its
computational complexity.

Naehrig et al. [28] proposed to sacrifice “fully” property and use just somewaht homomor-

phic schemes (SWHM), with limited number of multiplications. In this setup it is not possible
to evaluate arbitrary function, but some families of functions can still be useful. They give
examples of an application in medical, financial sectors and advertising.

Boneh et al. [29] designed and implemented a protocol for private database queries using
somewhat homomorphic encryption.

4. Example taken from [27]
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3 Whitebox cryptography

3.1 Introduction

Whitebox cryptography studies security issues related to an execution of cryptographic algo-
rithms in an untrusted environment, it is than said to be executed in a whitebox context.

Whitebox context (also abbreviated as WBC) is itself defined by the attacker model, which
was introduced by Chow et al. [4] in 2002. The WBC attacker has a full control over execution
of the particular algorithm. Namely attacker has the following abilities:

• can observe execution:

– access to the instructions processing at the moment of the computation

– trace the algorithm flow

– sees the memory used

• controls the execution environment - runtime modification:

– tamper the program memory

– execute only a specified part of the algorithm (one round of the cipher)

– modify if-conditions

– change cycle counters

– fault induction

It is in contrast to a blackbox context (also abreviated as BBC), the standard crypto-
graphic model, where attacker has only access to the output of the cryptographic algorithm.
In the BBC the cryptographic algorithm is considered as an oracle/blackbox evaluating some
function (an analogy to executing algorithm in secure environment). Depending on a finer
granularity of an attacker model, one can have access only to the algorithm output (cipher-
text), or attacker can also query an oracle (chosen plain-text attack) and so on, but has no
access to the computation itself.

The cryptographic algorithms (we are mainly interested in symmetric ciphers in this the-
sis) were extensively studied for attacks in the BBC in past. They were originaly designed
to resist attacks considering only the BBC. But if the context is wrong, it can be a possible
entry point for an attacker. Typical example is DRM 1, where software of a vendor (repre-
senting the rights owner) is executed in a potentially hostile environment, where user can
have motivation to extract protected content without restrictions added by DRM software.
In this situation we cannot consider DRM software to be executed in the BBC.

1. Digital rights management, <http://en.wikipedia.org/wiki/Digital_rights_management
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3. Whitebox cryptography

Let’s take some symmetric block cipher as an another example. Usually, it is constructed
as a keyed permutation (round function) that is repeated several times to add randomness
and to improve statistical results of the cipher, increasing security. But if we can inspect such
execution, it is very easy to extract encryption keys, since we can read memory during the
execution or trace the algorithm flow.

One such whitebox attack is the Key Whitening Attack [30]. Key whitening is a technique
intended to increase the security of the iterated block cipher. It is typically implemented as
adding a key material to the data (usually by simple operation, such as XOR) in the first and
the last round. Such key whitening is used by Twofish [31] and in a modified version (only
adding the key material in the last round) also by AES [3]. In Key Whitening Attack cipher’s
binary is modified (we are in whitebox context) in such a way that the output of the cipher
will be the key material itself.

Main two attacks in whitebox context are: (1) Key Recovery, i.e. an extraction of a
embedded symmetric key. (2) Plaintext recovery under Chosen Plaintext Attack (PR-CPA),
e.g. perform decryption with implementation of cipher with embedded encryption that is
supposed to be able only to perform encryption.

Whitebox cryptography is closely related to the obfuscation mentioned in the section
2.2. It is also a program transformation, but obfuscation, as defined in the literature, is too
restrictive and does not take specific security notios, e.g. cipher invertibility a.k.a. PR-CPA,
into account.

The definition of whitebox cryptography could be: “The challenge that white-box cryp-
tography aims to address is to implement a cryptographic algorithm in software in such a way
that cryptographic assets remain secure even when subject to white-box attacks. Software
implementations that resist such white-box attacks are denoted white-box implementations.”
[32].

3.2 History

Whitebox cryptography is a quite new field of cryptography. The study of the whitebox im-
plementation of the ciphers started by first whitebox implementation of AES [4] and DES [33]
by Chow et al. in 2002.

At first, the cryptanalysis of DES focused on its simplified variant. The first published in
2002 by Jacob et al. uses fault injection [34], another one published in 2005 by Link et al. uses
statistical analysis [35]. Later cryptanalysis of fully encoded variant of DES was published
by Wyseur et al. in 2007 using truncated differentials.

The similar case holds for AES. Two years after publishing the whitebox AES scheme the
successful cryptanalysis [5] was published by Billet et al. that enabled to recover embedded
symmetric key in less that 230 steps. Later, in 2008, the generalized version of the previous
attack was published [36] by Michiels et al. affecting the larger family of ciphers using the
same structure as AES.
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3. Whitebox cryptography

There were also attempts to fix whitebox AES scheme by adding additional linear map-
pings and increasing size of the implementation in [37] as a response to the Billet’s attack.
The attack against improved scheme using a linear equivalence algorithm was published in
2012 [38].

The another attempt, how to fix whitebox AES, was introducing random perturba-
tions [39], complicating algebraic cryptanalysis, but the effective attack was published by
Mulder et al. [40].

Last, but not least a whitebox AES scheme using dual ciphers [1] was published in 2011.
The paper claimed the scheme is robust enough to resist practical attacks on the implementa-
tion. We proved this assumption false by finding out the published attack works in the same
way on this implementation as on the original one, for the proof see the section 4.2.

This thesis is mainly focused on the scheme using dual ciphers, note it is generalization
of the first whitebox AES scheme.

3.3 Whitebox AES scheme

The first whitebox AES implementation, published by Chow et al. [4] is based on the look-up
tables implementation, that was also mentioned in original AES paper [3]. Note that it is
easy to transform AES with an embedded encryption key to a network of look-up tables and
to use these computed tables for an encryption (or a decryption). But this implementation
is vulnerable in the WBC, since it is possible to extract the encryption key with algebraic
analysis of the look-up tables. Recall that all the building blocks (except key schedule) of
AES are key-independent and publicly available. Thus these look-up tables have to be further
protected to resist algebraic attacks.

We are mainly focused on AES-128, for simplicity, but the same strategy can be applied
also to AES-192 and AES-256.

For further explanation we will need the following definitions:

Definition 1. Linear mapping is a mapping L (x) over GF(2)n that satisfies ∀ x, y ∈

GF(2)n : L(x+ y) = L(x) + L(y).

Definition 2. Affine mapping is a mapping A(x) over GF(2)n such that A(x) = L(x)+c, c ∈

GF(2)n and L(x) is the linear mapping.

3.3.1 AES-128

A brief introduction of AES is required for further understanding of the whitebox implemen-
tation and the implementation based on dual AES in section 4.

AES-128 is a symmetric, iterated, block cipher that maps 128 → 128 bits (block length)
using a 128-bit encryption key. It has 10 rounds and operates over 4 × 4 byte array. AES
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3. Whitebox cryptography

works with GF
(
28
)

and operations used in AES have quite algebraic nature. For each round
is generated a key material called round keys by key-schedule routine from encryption key.

The key-schedule is not an important operation from our perspective and can be ab-
stracted in further explanations. Important fact about the key-schedule is that it is reversible
i.e. if we have round keys from 2 consecutive rounds it is possible to derive all other round
keys, even the encryption key (the encryption key is used as a round key in the first round).

Besides the key-schedule there are 4 operations used in main AES body:

• AddRoundKey adds round keys to the state array. It is simple XOR of two 4× 4 byte
arrays.

• ShiftRows performs a simple shift of each row of the state array to the left, by the row
index (indexing from 0).

• SubByte is 8 → 8 bĳection, the only non-linear operation, performing confusion2. It
uses inversion in GF

(
28
)
.

• MixColum is the main diffusion3 operation. It corresponds to a matrix multiplication
in GF

(
28
)
. State array column is multiplied from left by MixColumn 4 × 4 matrix

(also denoted as MC). Due to this operation, after one round of the cipher, one byte
of the state array depends on 4 bytes of the input state array.

3.3.2 AES table implementation

Algorithm 1 is AES in a form suitable for the whitebox implementation, i.e. some operations
were regrouped in such a way that AddRoundKey is right before SubByte operation. This
enables to merge these two operations to one 8× 8 look-up table as is described in equation
3.1. Resulting tables following this construction are called T-boxes.

T ri,j(x) = S
(
x⊕ kri,j

)

T 9
i,j(x) = S

(
x⊕ k9

i,j

)
⊕ k10
i,j

(3.1)

ShiftRows has no counter-part in table implementation, it is implemented as the way how
tables between rounds are connected together (taking ShiftRows into account).

The MixColumn is problematic to transform into a look-up table since it is 32 → 32

mapping. A naive transformation would take 232 · 4 = 16 GB. Thus linearity of a matrix
multiplication is used, as illustrates equation 3.3.

2. Confusion is a property of secure cipher defined by Shannon [41], it should make relation between cipher-
text and symmetric encryption key complex.
3. Diffusion is a property of secure cipher defined by Shannon [41], it should make relation between ciphertext
and plaintext complex, dissipating small change into large range. Diffusion contributes to the avalanche effect.
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3. Whitebox cryptography

Algorithm 1 AES algorithm, form suitable for whitebox implementation
1: function AES(plaintext, k) ⊲ k is array of round keys
2: state← plaintext ⊲ state is 4× 4 byte array
3: for r ← 0, to 8 do

4: ShiftRows(state)
5: AddRoundKey(state, kr)

6: SubByte(state)

7: MixColumn(state)

8: end for

9: ShiftRows(state)
10: AddRoundKey(state, k9)

11: SubByte(state)

12: AddRoundKey(state, k10)

13: return state

14: end function

Let

MC =




a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3


 (3.2)

Then from linearity holds:

MC ·




x0

x1

x2

x3


 = MC ·




x0

0

0

0


⊕MC ·




0

x1

0

0


⊕MC ·




0

0

x2

0


⊕MC ·




0

0

0

x3




= x0 ·




a0,0

a1,0

a2,0

a3,0


⊕ x1 ·




a0,1

a1,1

a2,1

a3,1


⊕ x2 ·




a0,2

a1,2

a2,2

a3,2


⊕ x3 ·




a0,3

a1,3

a2,3

a3,3




= x0 ·MC0 ⊕ x1 ·MC1 ⊕ x2 ·MC2 ⊕ x3 ·MC3

(3.3)

Thus the 32 → 32 linear mapping represented by a matrix multiplication is decomposed
to four 8→ 32 look-up tables connected by three 32-bit XOR tables. The tables performing
this operation are denoted as Ty tables in a further text.

Figure 3.1 illustrates an evaluation of the AES round function using look-up tables for
one column of state array.
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3. Whitebox cryptography

Figure 3.1: Table AES implementation - rounds 2–8, taken from [42]

3.3.3 Whitebox AES

As mentioned before, special techniques are needed to protect look-up tables from algebraic
attacks. The most important ones are described in following paragraphs.

Input/output bĳections. One of the techniques used in whitebox implementation is a
use of input/output bĳections (also abbreviated as IO bĳections). According to Chow et al. [4]
IO bĳection is a random n → n bĳection4. Consider n → n IO bĳections F1, . . . , Fk, they
can be concatenated to form a kn→ kn bĳection F1|| . . . ||Fk. This concatenation enables to
build a large bĳections with small look-up tables. In a further explanations the size of basic
IO bĳection is 4→ 4.

Consider the table implementation of AES as mentioned in the section 3.3.2. To protect the
tables, each table is wrapped by the concatenated IO bĳections in such a way the composition
of two connected tables cancels the effect of IO bĳections as illustrates equation 3.4.

4. usually n = 4
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3. Whitebox cryptography

T ′ = g ◦ T ◦ f−1 (3.4a)

R′ = h ◦R ◦ g−1 (3.4b)

R′ ◦ T ′ =
(
h ◦R ◦ g−1

)
◦
(
g ◦ T ◦ f−1

)
= h ◦ (R ◦ T ) ◦ f−1 (3.4c)

Where T, R are look-up tables, g, h are IO bĳections, realizing confusion step and making
an analysis of a single table harder.

Mixing bĳections. Another whitebox building block is a mixing bĳection. It is a linear
transformation (represented as a multiplication by a non-singluar mixing bĳection matrix)
that realizes the diffusion. It is used together with the IO bĳections to increase a security
level of the concatenated bĳections, since it diffuses a single change in the one sub-bĳection
to the whole range of the concatenated bĳection. In order to fulfill this purpose properly,
the mixing bĳections have to be constructed in a special way. Zhou et al. in [43] describe
the algorithm that generates large random non-singular matrices with blocks of a full-rank.
The size of the sub-blocks is 4 what matches the size of basic IO bĳection what gives good
diffusion properties for the concatenated bĳections.

Note that full-rank property of matrix blocks provides good level of the diffusion. It
lies somewhere between two extreme cases: (1) random non-singular matrices without any
requirements on a diffusion power and (2) parity-check matrices of MDS5 codes that have
an optimal diffusion power (for a linear transformation), but it is harder to generate them
systematically. Note that MDS matrices are often used as a diffusion element in ciphers.

External input/output encoding. Consider AES protected with aforementioned white-
box techniques. A possible place where to attack is an input and an output of the algorithm,
since it is not protected from a whitebox attack. To mitigate this weakness Chow et al. also
introduces an external encoding that wraps whole AES. Usually the cipher is not a stan-
dalone element, but a part of the system. This technique helps to tie AES to its context and
to prevent from using the cipher separately as an oracle.

Whitebox implementation computes:

H ◦AES ◦G−1 (3.5)

If AES is used as a part of the system, a previous element has to apply transformation G
on data before passing them to the WB AES. Similarly, the next element has to apply H−1

to cancel the effect of the previous transformation.
Usually G,H are defined as a multiplication by 128 × 128-bit matrix followed by the

128→ 128 concatenated bĳection.

5. (n, k, d)-code is Maximum Distance Separable if d = n−k+1, http://www.mth.msu.edu/~jhall/classes/

codenotes/Linear.pdf
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3. Whitebox cryptography

Table types. To fully transform AES to the WB AES the following 4 table types are
needed. As mentioned above, the external encoding uses a 128 × 128 matrix multiplication
to protect the input and the output of the cipher. The matrix decomposition technique
introduced in section 3.3.2 is used to make table implementation feasible. Figure 3.2 depicts
8→ 128 table used in the first and the last round for the external encoding.

128 x 128 linear mapping

out . . .out out out out out out

in

in

Figure 3.2: Table type I, 8→ 128 mapping, used for external encoding, taken from [44]

Recall already mentioned T-boxes in section 3.3.2 that perform SubByte and AddRound-

Key operations. The MixColumn operation is implemented by the matrix multiplication de-
composition, these 8× 32 tables are called Ty boxes. In order to save space T and Ty boxes
are composed to resulting type II table as illustrates figure 3.3.

T r
i,j i

out out out out outout out out

in

in

 L
8x8 MB x MC

Figure 3.3: Table type II, 8→ 32 mapping, taken from [44]

Note 32×32 mixing bĳection added after the MixColumn operation to increase a diffusion.
To cancel this transformation the table type III is used as illustrates figure 3.4. Also recall the
matrix multiplication decomposition requires addition operation. This is done by exclusive-
OR (XOR), a cascade of table type IV is used for this purpose. Note that performing XOR by
table look-up is rather ineffective, but it is required to protect look-up tables by IO bĳections
and mixing bĳections (to form a protected network of look-up tables without revealing true
values on table boundaries).

Overall scheme. Figure 3.5 illustrates how the round function of whitebox AES imple-
mentation for one column looks, using aforementioned tables.

On the diagram in figure 3.5 are the following mappings:

• MB stands for Mixing Bĳection. It is 32 × 32 matrix with coefficients from GF(2),
representing linear transformation over GF (2)8. MB−1

{0,1,2,3} are then column stripes of
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MBL x
in

in

in

in

out out out out out out out out

out-1
i

Figure 3.4: Table type III and IV, taken from [44]

the corresponding MB inverse matrix (the matrix multiplication decomposition). This
transformation cancels out within one round.

• L stands also for Mixing Bĳection but in this case it is 8× 8 matrix.

• Q,P. These are random IO bĳections. It holds that P r+1
i,j ◦Q

r
i,j = id

3.3.4 Cipher invertibility

One of the requirements on the whitebox cipher implementation is usually a non-invertibility.
It means that given an encryption part of the cipher with an embedded key, one should not
be able to use it also for decryption and vice versa. This property is especially useful if one
wants to use a symmetric cipher to simulate an asymmetric. But it is important to realize
that this goal is difficult to achieve in the whitebox context.

As an example take AES whitebox implementation. Inverting the cipher in the blackbox
context is rather computationally difficult. Using brute-force one would need 2128 operations
to invert the cipher. The whitebox context, is in contrast to the blackbox, advantageous for
an attacker. One of the problems here is that ShiftRows operation can be very easily canceled
in whitebox context and that attacker can execute only particular round of the cipher. We
propose some improvement addressing this problem in section 5.3.

There are 4 columns of the state array within one round, independent on each other. Thus
the cipher can be easily inverted running it backwards and finding an inversion for the each
column separately, assuming 128×128 external mixing bĳections are I128. Thus the task is to
find an inversion of a 32-bit wide function representing one round of the cipher on one column
of the state array, by running through the space GF

(
28
)4, evaluating the round function and

comparing with the wanted result.
A computational complexity to invert the cipher is 10 · 4 · 232 operations 6.
One can also pre-compute tables for inverted cipher, that would occupy 10 ·4 ·(232 ·4) B ≈

69 GB. We have implemented an algorithm that inverts the WB AES, i.e. performing plaintext
recovery attack. In the non-optimized version it takes 13 hours on my hardware7 to invert
the WB AES with negligible memory requirements.

6. 10 (rounds) ·4 (columns) ·232 (column function input space size)
7. For hardware specifications see A.2
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P P PP

Q Q Q Q

Figure 3.5: The whitebox AES implementation - round #2, based on diagram from [42]
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P r
0, j

Pr1,
j + 1

Pr2,
j + 2

Pr3,
j + 3

T r
0, j

T r
1,
j + 1

T r
2,
j + 2

T r
3,
j + 3 MixColumns

‘ 02’ ‘ 03’ ‘ 01’ ‘ 01’

‘ 01’ ‘ 02’ ‘ 03’ ‘ 01’

‘ 01’ ‘ 01’ ‘ 02’ ‘ 03’

‘ 03’ ‘ 01’ ‘ 01’ ‘ 02’

× ·

Q r
0, j

Q r
1, j

Q r
2, j

Q r
3, j

x0

x1

x2

x3

y0

y1

y2

y3

Figure 3.6: AES round function from the BGE attack perspective, taken from [5]

3.4 The BGE attack

The paper [5] by Billet et al. demonstrated that the whitebox AES implementation, as de-
scribed in the previous section, is vulnerable to an algebraic attack. The attack is named
after initials of authors, the BGE attack. It recovers the symmetric key from the whitebox
AES implementation and negligible memory requirements in 230 computational steps.

The BGE attack does not analyze look-up tables locally, but instead the whole AES round
function is analyzed as a single look-up table. This has few benefits:

• the structure of the round function is fixed and well-known, thus it is easy to model
it as an algebraic equation.

• 32×32 mixing bĳections MB are canceled within one round, so they can be neglected.

• 8×8 mixing bĳection L can be easily merged with the IO bĳections on round boundary,
what simplifies further algebraic analysis.

Figure 3.6 illustrates the round function of AES for one column from the BGE attack per-

spective. Depicted function can be described as a mapping (x0, x1, x2, x3)
Rr
j
−−→ (y0, y1, y2, y3) , j =

0, . . . , 3.
Since the transformation L, L−1 is performed byte-wise on the state array, it can be

composed with corresponding IO bĳections, as in equation 3.6.

Qr ′i,j = Qri,j ◦ L
r+1
j (3.6a)

P r ′i,j = (Lrj)
−1 ◦ P ri,j (3.6b)

The IO bĳections are generally non-linear, thus composing then with an another linear trans-
formation (L) results again in a non-linear bĳection. Note that in the BGE attack, IO bĳec-
tions are considered to be general 8→ 8 bĳections, neglecting the fact they are concatenated
from 2 4→ 4 bĳections what allows composition with L.

The BGE attack proceeds in three steps:
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1. Transform the non-linear IO bĳections Qri,j to unknown GF (2)-affine transformation
(i.e. determine a non-linear part up to unknown affine part).

2. Fully determine Qri,j bĳection, using the algebraic analysis and the known form of the
round function.

3. Obtain round keys from 2 consecutive rounds and recover the symmetric key using
reversibility of the AES key-schedule.

3.4.1 Recovering non-linear parts

This step is particularly interesting because of its universality. It could be applied on a
different whitebox implementation.

The main goal of this step is to recover non-linear parts of (Qri )i=0,...,3. Consider y0 as
a function of (x0, x1, x2, x3). If x1, x2, x3 are fixed as constants c1, c2, c3, it is easy to see that
there exist α, βc1,c2,c3 ∈ GF

(
28
)

such that the following holds:

y0 (x0, c1, c2, c3) = Qr0,j

(
αT r0,j

(
P r0,j (x)

)
⊕ βc1,c2,c3

)

= Qr0,j ◦ ⊕βc1,c2,c3 ◦ α · T
r
0,j ◦ P

r
0,j (x)

(3.7)

The function y0 from the equation 3.7 now takes only 256 input values, thus the functions
y0 and y−1

0 can be easily evaluated (as look-up tables). For the rest of the chapter consider
constants c2, c3 fixed, without loss of generality let c2 = c3 = 0. For the simplification the r
superscript is dropped from the equations if it is clear from the context.

Now assume c′1 6= c1, also denote β0 = βc1,c2,c3 , β1 = βc′
1
,c2,c3 , it is visible that:

y0
(
x0, c

′
1, c2, c3

)
◦ y−1

0 (x0, c1, c2, c3) =

= (Q0,j ◦ ⊕β1
◦ α · T0,j ◦ P0,j) ◦

(
P−1

0,j ◦ (α · T0,j)
−1 ◦ ⊕β0

◦Q−1
0,j

)

= Q0,j ◦ ⊕β1
◦ ⊕β0

◦Q−1
0,j

= Q0,j ◦ ⊕(β0⊕β1) ◦Q
−1
0,j

Thus by fixing c1 and iterating c′1 we obtain the set of 256 bĳections, represented as
look-up tables, of the form Q0,j ◦ ⊕β ◦Q

−1
0,j , where β takes all values from GF

(
28
)
.

Theorem 1. Given a set of functions S = {Q ◦⊕β ◦Q
−1}β∈GF(28) given by values, where Q

is a permutation of GF
(
28
)

and the ⊕β is the translation by β in GF
(
28
)
, one can construct

a particular solution Q̃ such that there exists an affine mapping A so that Q̃ = Q ◦A.

For the proof see the original paper [5]. In order to recover a non-linear part of the IO
bĳection it is needed to generate the set S (by evaluating y0 functions) and to apply the
theorem.
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Note that the set S contains 256 functions, but only as look-up tables so the β is unknown.
One easily verifies the set S together with the operation of a function composition form
a group.

Observe there exists isomorphism ϕ :

ϕ :
S −→ GF (2)2

Q ◦ ⊕β ◦Q
−1 7−→ [β]

Since we don’t know the values β for the functions in S the ϕ cannot be constructed
directly, however it is possible to recover ϕ up to unknown linear transformation L i.e.
ψ = L−1 ◦ ϕ. Without going into the details, the ψ is determined by finding base func-
tions f1, . . . , f8 that span the whole S under composition. Mapping ψ is then constructed by
assigning standard basis vectors e1, . . . , e8 ∈ GF (2)8 to these functions.

It is then possible to obtain Q̃ by using the mapping ψ from the theorem 1 according to
the following formula:

Q̃ (ψ (g)) = g (0) , g ∈ S (3.9)

Note that the value g (0) is known, the function was evaluated during ψ construction. The
term ψ (g) is also easy to evaluate, since we have constructed mapping ψ. Thus in order to
recover Q̃ as a look-up table we just run over the set S and compute the values of mapping
Q̃ according to the equation 3.9.

3.4.2 Recovering the symmetric key

As the rest of the BGE attack is very AES and implementation specific, it is not covered
in detail. In this phase, we are still in situation as is depicted in figure 3.6 with a difference
(Qri )i=0,...,3 and

(
P r+1
i

)
i=0,...,3

are affine, still matching, bĳections. This fact makes further

algebraic analysis of round function possible.
Consider following useful proposition:

Proposition 1. For any pair (yi, yj) exists a unique linear mapping L and a unique constant

c such that:

∀x0 ∈ GF
(
28
)

: yi (x0, 0, 0, 0) = L (yj (x0, 0, 0, 0))⊕ c (3.10)

By using Theorem 1 one can obtain the linear parts of Q1, Q2, Q3 from the knowledge of
the Q0 linear part in 216 steps by simple running over c and testing the resulting mapping
for linearity in 28 steps. Thus the rest of the attack focuses on Q0 determination.

First of all, the linear part of Q0 up to [γ] , γ ∈ GF
(
28
)
\ {0} is determined, where [γ]

denotes the matrix in GF (2) corresponding to multiplication by γ in GF
(
28
)
. For more

details see appendix A.4.
Then γ and a constant part q0 of Q0 are determined. During these steps, the public

knowledge of S-boxes and MixColumn matrix coefficients is used.
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With completely determined Q0 the round keys are extracted. The attack ends using the
fact the key-schedule of AES is reversible, so from two consecutive round keys one can derive
original symmetric key.
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4 WBCAR AES using dual ciphers

WBCAR stands for the whitebox context attack resistant, meaning cipher implementation
should resist attacks like key-extraction, cipher inversion and others against attacker in the
whitebox context.

In this chapter we describe a whitebox scheme proposed in [1] that make use of AES dual
ciphers. It is supposed that using dual AES, different in each round, will increase security
of the whitebox implementation of the cipher. The paper says that this modification results
in raising BGE attack [5] complexity to 291 computational steps, making it unfeasible to
perform it in practice. It is shown in section 4.2 that this assumption is false due to existence
of an attack we performed.

4.1 Scheme

In the original paper [1] the explanation how to obtain dual AES ciphers and how to construct
mapping from one to another is not given. This is important part since it plays a crucial role
in a proof that this scheme is vulnerable. At first is described the generalization of the AES
and how to construct mappings between them.

4.1.1 Ciphers duality

This section introduces a notion of dual ciphers used in this chapter. Dual ciphers have
interesting properties and are used in a construction of the scheme that is described by this
chapter. Consider the following definition.

Definition 3. Two ciphers E and E′ are called Dual Ciphers, if they are isomorphic, i.e.,

if there exist invertible transformations f , g and h such that

∀p, k : Ek(p) = f−1
(
E′g(k)(h(p))

)
(4.1)

where p is the plaintext, and k is the secret key.

4.1.2 Generic AES

It is possible to generalize AES by changing its irreducible polynomial and generator to obtain
a generic form of AES.

The generic AES can be represented as a {R(x), β}, where R(x) ∈ (Z/pZ) [x] is a irre-
ducible polynomial of degree 8, β ∈ GF

(
28
)

is a generator of the field GF
(
28
)
.

Default AES (as in NIST standard [45]) in this notation is represented as {{11B}x, {03}x}.
Polynomial is expressed in the hexadecimal notation. Each bit corresponds to a polynomial
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coefficient, LSB1 corresponds to constant term.
Thus 0x11B16 = 1 0001 10112 ⇒ {11B}x ∼ x

8 + x4 + x3 + x+ 1.
It is known that there are 30 irreducible polynomials over GF

(
28
)
. For each of them

there are 8 possible generators that can be used to generate field and to preserve the duality
mentioned in the next section.

4.1.3 Generic AES duality

Let’s assume we have some arbitrary generic AES {R(x), β}.
All elements of the field GF

(
28
)

= {01, 02, . . . , FF} can be expressed in terms of the
generator β, GF

(
28
)

= {βi | i ∈ [0, 254]} = {β0, β1, . . . , β254}.

We can then construct 8 × 8 matrix ∆ =
[
β0 β25 β50 β75 β100 β125 β150 β175

]

where βi ∈ GF
(
28
) ∼= GF(2)8 is a column vector. Then ∆ is a base change matrix:

∆ : {{11B}x, {03}x} −→ {R(x), β} (4.2a)

∆−1 : {R(x), β} −→ {{11B}x, {03}x} (4.2b)

For default AES {{11B}x, {03}x} holds

∆ =
[
030 0325 0350 0375 03100 03125 03150 03175

]

=
[
01 02 04 08 16 32 64 128

]

= I8

as expected.
From this it is clear that following duality holds: E ∼ {{11B}x, {03}x}, E

′ ∼ {R(x), β}

then:

∀p, k : Ek(p) = ∆−1
(
E′∆(k)(∆(p))

)
(4.3)

4.1.4 Constructing Dual AES

We can construct arbitrary dual AES from default AES. Recall there are 4 operations used
in single AES round: ShiftRows, AddRoundKey, SubByte, MixColumn.

Default AES ShiftRows, AddRoundKey functions are quite simple and remain same after
AES generalization. SubByte, MixColumn are affected by generalization. For proper under-
standing of construction generic AES, description follows.

1. least significant bit
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SubByte

S : GF
(
28
)
−→ GF

(
28
)

x 7−→ A× x−1 ⊕ c
(4.4)

where x−1 is element inverse in GF
(
28
)
, A is 8 × 8 matrix over GF(2), c is column vector

GF(2)8. A, c are constants defined in NIST standard [45].
Equation for affine transformation used in S-box:




y0

y1

y2

y3

y4

y5

y6

y7




=




1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 0 1 1 1 1







x0

x1

x2

x3

x4

x5

x6

x7




+




1

1

0

0

0

1

1

0




(4.5)

where xi, yi ∈ GF(2).

MixColumn

• columns of the state array considered as polynomials over GF
(
28
)

• p(x) · c(x) (mod x4 + 1)

where c(x) is fixed polynomial c(x) = 03x3 + 01x2 + 01x+ 02




y0

y1

y2

y3


 =




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02







x0

x1

x2

x3


 (4.6)

where xi, yi ∈ GF
(
28
)
.

Generic AES In the generic AES, the operations ShiftRows, AddRoundKey work same as
in default AES, they are not affected by base change operation.

SubByte

Sdual : GF
(
28
)
−→ GF

(
28
)

x 7−→ ∆×A×∆−1
(
x−1

)
⊕∆ (c)

(4.7)
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MixColumn MixColumn matrix coefficients are expressed in terms of the generator
β = 03.




β25 β1 β0 β0

β0 β25 β1 β0

β0 β0 β25 β1

β1 β0 β0 β25




Round function - default AES We consider the whole AES round as a single function
R of a state array. Let’s define




x0,0 x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

x3,0 x3,1 x3,2 x3,3



R
−→




y0,0 y0,1 y0,2 y0,3

y1,0 y1,1 y1,2 y1,3

y2,0 y2,1 y2,2 y2,3

y3,0 y3,1 y3,2 y3,3




From this we define yi,j as a function with 4 arguments from GF
(
28
)
:

yi,j (xi,0, xi,1, xi,2, xi,3) =
3⊕

l=0

αl,j · S(xi,l ⊕ ki,l) (4.8)

where αk,j is MixColumn matrix coefficient in k-th row and j-th column. We are abstracting
here ShiftRows operation, it won’t be needed for our further argumentation. To make it clear
here are the equations for the first column of the state array:

y0,0 (x0,0, x1,0, x2,0, x3,0) = 02 · T0,0(x0,0)⊕ 03 · T1,0(x1,0)⊕ 01 · T2,0(x2,0)⊕ 01 · T3,0(x3,0) (4.9a)

y1,0 (x0,0, x1,0, x2,0, x3,0) = 01 · T0,0(x0,0)⊕ 02 · T1,0(x1,0)⊕ 03 · T2,0(x2,0)⊕ 01 · T3,0(x3,0) (4.9b)

y2,0 (x0,0, x1,0, x2,0, x3,0) = 01 · T0,0(x0,0)⊕ 01 · T1,0(x1,0)⊕ 02 · T2,0(x2,0)⊕ 03 · T3,0(x3,0) (4.9c)

y3,0 (x0,0, x1,0, x2,0, x3,0) = 03 · T0,0(x0,0)⊕ 01 · T1,0(x1,0)⊕ 01 · T2,0(x2,0)⊕ 02 · T3,0(x3,0) (4.9d)

where Ti,j(x) = S (x⊕ ki,j).

Round function - generic AES Using aforementioned generic form of SubByte and Mix-

Column functions we can define round function also for the generic AES in the same way,
using base change transformation. From this we define yi,j as a function with 4 arguments
from GF

(
28
)
:

yi,j (xi,0, xi,1, xi,2, xi,3) =
3⊕

l=0

∆(αl,j) ·
(
∆×A×∆−1

(
(xi,l ⊕∆ (ki,l))

−1
)
⊕∆ (c)

)
(4.10)
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4.1.5 Whitebox Dual AES

The paper describing the AES whitebox implementation with use of the dual AES [1], claimed
that this implementation should be more difficult (in terms of time complexity) to break using
the BGE attack on the whitebox AES. On the figure 4.1 is scheme for one round, one column
of state array, the whitebox dual AES implementation for round 2. According to the original
paper, in each column is used different generic AES. This implementation is compatible with
default AES, so after computing in dual AES we have to transform the result to default AES
with base change transformation ∆.

By changing irreducible polynomial and generator we obtain 30 · 8 = 240 different generic
AES ciphers. The bigger is set of possible ciphers to use, the more difficult is for attacker to
break the dual scheme, since he has to try all possible combinations, according to [1]. But in
[1] is assumed there are 61200 different generic AES ciphers but it is not said how they are
constructed and how such construction influences the whitebox implementation.

In order to generate 61200 different AES representations it is needed to study AES S-Box
affine self-equivalences [46].

Definition 4. n×n-bit mapping S is affine self-equivalent if there exist n×n affine relations

A1, A2 such that:

A2 ◦ S ◦A1 = S (4.11)

In [46] are published effective algorithms for finding linear and affine equivalences for
permutations (S-boxes). We have implemented them 2 to verify number of self-equivalences
for AES S-Boxes for an encryption and a decryption algorithm. This algorithm can be further
used to study modified S-boxed or basic building blocks of the cipher (see chapter 5.1) for
equivalences, what can lead to revealing potential weaknesses.

The algorithm found 2040 affine self-equivalences. Together with 30 possible irreducible
polynomials there are 61200 dual ciphers. Biryukov et al. derived general expressions for
A1, A2:

A1(x) = [a] ·Qi · x (4.12a)

A2(x) = A
(
Q−i · [a] ·A−1 (x)

)
(4.12b)

Where

A is a fixed affine mapping from AES S-box definition (see section 4.1.4), A−1 its
inverse.

[a] denotes 8 × 8 matrix with coefficients from GF (2) representing a multiplication

by a ∈ GF
(
28
)
\ {0} in GF

(
28
)
. From the fact GF (2)8 ≃ GF

(
28
)

(all finite

2. path: implementation/LinearAffineEq.{h,cpp}
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P P PP

Q Q Q Q

Δ

Δ

Δ

Δ Δ Δ

Δ Δ

Figure 4.1: Whitebox Dual AES implementation - round #2, based on diagram from [42]
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fields with same number of elements are isomorphic), the multiplication is linear
transformation in GF

(
28
)
, it can be expressed in a matrix form. Refer to A.4 to

see how to construct such matrix.

Q denotes 8×8 matrix with coefficients from GF (2) representing squaring in GF
(
28
)
.

Squaring is a linear operation in GF
(
28
)

so it is possible to represent it as
a matrix. Refer to appendix A.3 for the construction and the proof. Note that
Q8 = I ⇒ Q−i = Q8−i. Thus there are 8 different powers of Q, Qi, i ∈ [0, 7].

It is visible that with the general expressions we can obtain 8 ·255 = 2040 different A1, A2

relations3 confirming the output of the algorithm.
Observe that by inserting A1, A2 before and after S-Box the cipher is not affected. Note

that A1 is linear, this fact can be used to push the input mapping A1 through the mixing
layer and combine it with A2 from the previous round, then we obtain 2040 different AES
tables evaluating the same function. Note that they are dual, but with identity isomorphism,
it is just a different table implementation of AES, thus ∆ = I. This is a potential flaw of the
whitebox scheme using dual ciphers, since it does not increase security against known attacks
at all. This construction is neglected in the original paper [1].

The layers of mixing bĳections (L, MB) cancel between rounds so they can be neglected in
pushing A1 to the previous round. Recall A2 (S (A1 (x))) = S(x). An input to S-box is output
of previous round, so apply A1 on previous round. It is shown only for one column (equation

4.13), others are analogical. It is easy to verify that [a] · Qi · [c] =
[
c2i
]
· [c] · Qi. Redefine

Tr(x) = Ar2(S(x⊕ k)) to take the affine relations into account, where k is a particular round
key byte. Then we can write:

Ar+1
1 ·

[
02 · Tr(x) 01 · Tr(x) 01 · Tr(x) 03 · Tr(x)

]T
(4.13a)

=
[
Ar+1

1 (02 · Tr(x)) Ar+1
1 (01 · Tr(x)) Ar+1

1 (01 · Tr(x)) Ar+1
1 (03 · Tr(x))

]T

=
[
022i ·Ar+1

1 (Tr(x)) 012i ·Ar+1
1 (Tr(x)) 012i ·Ar+1

1 (Tr(x)) 032i ·Ar+1
1 (Tr(x))

]T

=
[
022i ·Ar+1

1 (Tr(x)) 01 ·Ar+1
1 (Tr(x)) 01 ·Ar+1

1 (Tr(x)) 032i ·Ar+1
1 (Tr(x))

]T

(4.13b)

This gives us different tables for the AES round function when using different A1, A2

relations. Note that table of type II with A1 pushed from next round is still the same, no
matter which form of equation 4.13 is used, due to linearity of A1. For simplicity in further
proofs and description we can assume form 4.13a.

3. by running through possible values for a, i

31



4. WBCAR AES using dual ciphers

4.2 Attacking Dual AES scheme

According to [1] the whitebox scheme using dual AES is considered to be more difficult to
crack with the BGE attack and thus it is consider safer than an original scheme proposed
in [4]. But we show that it is not true. This result has not been published yet.

Proposition 2. Whitebox Dual AES scheme can be broken with the BGE attack with the

same time complexity as the whitebox AES scheme.

Proof. Let’s define a round function for the whitebox AES and for the whitebox dual AES
and compare them. Note that MB mixing bĳections are left out since their effect is canceled
within one round. If we also assume use of A1, A2 affine relations, they can be merged
together with L mixing bĳection to input/output encodings. Thus for simplicity A1, A2 is
omitted from the proof (it is clearly visible it does not increase resistance against the BGE
attack - input/output encodings are fully determined in the attack).

Round function - whitebox AES. Q′, P ′ functions represent IO bĳections, for details
see [4, 5].

yi,j (xi,0, xi,1, xi,2, xi,3) = Qr ′i,j

(
3⊕

l=0

αl,j · S
(
P r ′i,l (xi,l)

))
(4.14a)

= Qr ′i,j

(
3⊕

l=0

αl,j ·

(
A

((
P r ′i,l (xi,l)⊕ ki,l

)−1
)
⊕ c

))
(4.14b)

= Qr ′i,j ◦Ri,j (xi,0, xi,1, xi,2, xi,3) (4.14c)

Round function - whitebox dual AES. For simplicity define:

P r ′′i,j =
(
∆r−1

)−1
◦ P r ′i,j =

(
∆r−1

)−1
◦ (Lrj)

−1 ◦ P ri,j (4.15)

Also we have to distinguish in which dual AES is element encoded, so define x∆ as an element
of the dual AES which base change matrix is ∆ from standard AES field. The same holds
for inversion operation −1. Denote −1∆

inversion in field of dual AES which has base change
matrix ∆.

For simplicity assume that ∆ = ∆r for round r if it is obvious from context and is not
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defined otherwise. According to figure 4.1 the equation for one round is:

yi,j (xi,0, xi,1, xi,2, xi,3) =

= Qr ′i,j

(
3⊕

l=0

∆(αl,j) ·

(
∆×A×∆−1

((
∆ ◦ P r ′′i,l (xi,l)⊕∆ (ki,l)

)−1∆ GF(28)
)
⊕∆ (c)

))

= Qr ′i,j ◦∆

(
3⊕

l=0

αl,j ·

(
A×∆−1

((
∆ ◦ P r ′′i,l (xi,l)⊕∆ (ki,l)

)−1∆ GF(28)
)
⊕ c

))

= Qr ′i,j ◦∆

(
3⊕

l=0

αl,j ·

(
A×∆−1

((
∆
(
P r ′′i,l (xi,l)⊕ ki,l

))−1∆ GF(28)
)
⊕ c

))
(4.16a)

= Qr ′i,j ◦∆

(
3⊕

l=0

αl,j ·

(
A×∆−1

(
∆
(
P r ′′i,l (xi,l)⊕ ki,l

)−1 GF(28)
)
⊕ c

))
(4.16b)

= Qr ′i,j ◦∆

(
3⊕

l=0

αl,j ·

(
A×

((
P r ′′i,l (xi,l)⊕ ki,l

)−1 GF(28)
)
⊕ c

))

= Qr ′i,j ◦∆

(
3⊕

l=0

αl,j ·

(
A×

((
P r ′′i,l (xi,l)⊕ ki,l

)−1 GF(28)
)
⊕ c

))

= Qr ′i,j ◦∆ ◦R′i,j (xi,0, xi,1, xi,2, xi,3) (4.16c)

Now it is easy to see whitebox dual AES correctness, moreover it is visible that the same
attack breaking the whitebox AES breaks the whitebox dual AES scheme as well

A transformation from 4.16a to 4.16b is possible due to base change matrix properties
and fields we are computing in.

∀x, y ∈ GF
(
28
)

: y = x−1 ⇒ ∆y = (∆x)−1∆

(4.17)

Note that element inversion GF
(
28
)

has changed from one field to another.
Now if we compare equations 4.14c and 4.16c, they are very similar, the only difference

here is the application of the base change matrix ∆.
Here we can do the similar thing we did in equations 3.6, 4.15 where we composed two

transformations, non-linear and linear to non-linear transformation, with equation 4.16c.
We can thus define:

Qr ′′i,j = Qr ′i,j = Qri,j ◦∆ = Qri,j ◦ L
r+1
j ◦∆ (4.18a)

yi,j (xi,0, xi,1, xi,2, xi,3) = Qr ′i,j ◦∆ ◦R′i,j (xi,0, xi,1, xi,2, xi,3) (4.18b)

yi,j (xi,0, xi,1, xi,2, xi,3) = Qr ′′i,j ◦R
′
i,j (xi,0, xi,1, xi,2, xi,3) (4.18c)

Now it is evident that equations for whitebox AES 4.14c and 4.18c are the same, the only
differences are only in non-linear transformations Q, P (inside R′), but it is important they
are both non-linear.
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Conclusion is if the attack can break the whitebox AES scheme with the round function
4.14c, it can also break the whitebox dual AES scheme. During the attack is transformation
Q fully determined, we verified that if the dual AES scheme is used, transformation Q is of
the exact form as described above.

4.3 Implementation of the cipher

As a implementation part of this thesis, 2 whitebox schemes were implemented. The scheme
using dual AES was chosen to be implemented, since in time of making this decision there
was no published cryptanalysis of this scheme and it had interesting construction. The fact
it is a generalization of the original whitebox AES scheme published by Chow et al. is an
additional benefit what simplifies the implementation.

4.3.1 NTL library

Recall AES cipher uses finite fields algebra extensively, namely in GF (2) and GF
(
28
)
. For

this reason the library NTL4 was selected as a cornerstone of this implementation. It enables
both an effective computation in the finite fields and to write a simple, understandable and
easy-to-read source code.

Besides NTL there was no need to use any other math library.

4.3.2 Generic AES

In order to be able to implement the whitebox AES, it was necessary to implement the basic
building blocks of the AES as described in previous chapters (such as S-boxes, MixColumn,
etc...), using the NTL library. It was preferred to implement it from the scratch, according
to the specification, rather than taking existing implementations. The emphasis was put on
a simple and extendable source code, rather than optimized and difficult to understand. The
implementation is publicly available so that other researchers could use it, e.g. for experi-
menting with their own transformations. This was also the reason why to write it from the
scratch.

The another reason was the fact that AES implementations work with fixed finite field (as
generated by an irreducible polynomial and a generator - according to the AES specifications)
so the algebraic nature of the operations is not clear from the code anymore, because of
various optimizations. Due to the fact dual AES scheme uses generalized AES, it was needed
to generate such AES instances with changed irreducible polynomial and generator.

The output from the key-schedule (generated by generic AES) was also required by the

4. NTL is a high-performance, portable C++ library providing data structures and algorithms for manipu-
lating signed, arbitrary length integers, and for vectors, matrices, and polynomials over the integers and over
finite fields. http://www.shoup.net/ntl/
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whitebox implementation, because the S-boxes with an embedded symmetric key are gener-
ated during the construction.

4.3.3 Mixing Bĳections

As described in section 3.3.3 the mixing bĳection matrices have to have special form in order
to provide a sufficient level of protection. The algorithm described by Zhou et al. in [43] to
generate matrices with desired properties was implemented.

This part of the implementation is independent on whitebox context and thus can be used
separately, to generate matrices with good diffusion properties.

In order to implement mentioned algorithm it was necessary to extend the NTL library.
Namely it was needed to generate such matrices P,Q for a matrix A so that the equation
4.19 holds. The Gauss-Jordan elimination was modified to generate these matrices5.

P ·A ·Q =




1 · · · 0 0 · · · · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · · · · 0

0 · · · 0 0 · · · · · · 0
...

. . .
...

...
...

0 · · · 0 0 · · · · · · 0




(4.19)

It is also needed to generate a random linear transformation in the algorithm. The number
of all possible p × p matrices in Fq is qp·p, while the number of all possible non-singular
(invertible) matrices is

∏p−1
i=0 (qp − qi). In our case q = 2, Fq ≡ GF (2). The table 4.1 shows

the probability of randomly generated matrix of particular dimension being non-singluar.
For our parameters the value converges around 0.2888 so it is enough to generate a random
matrix and test whether it is invertible. Within 4 iterations the non-singular matrix is found
with a sufficient probability.

The rest of the algorithm for construction mixing bĳections follows the paper by Zhou et al. [43].

4.3.4 Linear and affine equivalences

In order to generate 61200 different dual AES ciphers, it is needed to study S-box affine
self-equivalences, as mentioned in the [46]. The paper also presents effective algorithms for
finding linear and affine equivalences on arbitrary n→ n permutations.

In order to verify the general form of affine relations for AES S-box (see section 4.1.5) the
mentioned algorithm was implemented. It is independent on the rest of the implementation
so it can be used separately.

5. Matrix P corresponds to multiplication of elementary row matrices that transform matrix A to row-echelon
form. The matrix Q corresponds to multiplication by column elementary matrices that reorder the columns
in a way the equation 4.19 holds.
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dimension probability

2× 2 0.375

4× 4 0.30762

8× 8 0.28992

16× 16 0.2888

Table 4.1: Probability of randomly generated matrix being non-singular

Note the attack on the perturbated whitebox AES scheme [40] and the attack on the
Xiao et al. implementation [38] use this algorithm so it is particularly interesting and useful
tool. It can be also used to analyze properties of new S-boxes proposed in sections 5.1 and
5.4 during a further research.

4.3.5 Whitebox AES

The implementation exactly follows description given in the previous chapters. Detailed de-
scription of the implementation is out of scope of this thesis, for further details, please, refer
to the source code.

It is important to emphasize the implementation is not optimized for speed. The main
focus was on the code readability and simplicity.

One can choose several options how to generate whitebox AES. It is possible to en-
able/disable6 the following protections (as described in sections 3.3.3 and 4):

1. 4× 4 IO bĳections

2. external input/output encoding

3. 8× 8 L mixing bĳection

4. 32× 32 MB mixing bĳection

5. irreducible polynomial change in each column (to generate a dual cipher)

6. usage of affine A1, A2 relations (to generate a dual cipher)

The algorithm for generating IO bĳections in a networked manner, so the whole cipher
works in the same way as without them, takes the substantial part of the source code. It
was non-trivial to design this approach of generating and connecting bĳections together. The
main idea of the approach is that 4× 4 bĳections are generated at once, each having its own
unique identifier. There is a map of the IO bĳections describing particular relations between

6. If the feature is disabled it means the particular transformation is identity
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them for each look-up table in the cipher. This map is constructed in a similar way as the
encryption algorithm works when using look-up tables for encryption. It is generated at run-
time, but is constant for the scheme and thus can be cached to speed-up the generation
algorithm. The generating of tables for the whitebox AES itself is then very simple, the map
is used to determine the IO bĳection identifier that should be used for the particular table
that is being generated at the moment.

The emphasis was also put on the comments in the source code. The details of every
important step/block are described in the comments in a detail. The source code comments
also contains diagrams, algebraic equations and important details about the implementation.

The implementation is partially influenced by ideas used in similar whitebox implemen-
tation by Petr Švenda 7. For more details, please, refer to the implementation.

4.3.6 Evaluation

The benchmark was implemented as a part of the implementation8 to measure the real time
needed to generate AES whitebox scheme and how it performs in encryption. The results are
shown in table 4.2.

Recall implementation is not optimized. The external encoding was disabled so the in-
put can be directly passed to the cipher. Note that even if some protection is disabled, the
whole cipher works in the same way, there are still the same tables (but just containing
identity transformation) and the same amount of work needs to be done during the encryp-
tion/decryption. The only difference is during generating the tables, but the time difference
is negligible.

The throughput was tested by measuring the time needed to encrypt files of various sizes.
The files were either null (full of zeros) or random (/dev/urandom) to compare results and
influences induced by a potential caching.

Also the performance of AES-128-ECB implemented in OpenSSL9 was measured by en-
crypting the same files 10.

4.4 Implementation of the attack

The BGE attack as described in the section 3.4 was implemented. The implementation ex-
actly follows the description. Since the attack proceeds in steps, the implementation is quite
straightforward. It has the same structure as described in the original paper [5].

The detailed description of the attack implementation is out of scope of this thesis. For
the implementation details of the attack please refer to the attack source codes.

7. http://www.fi.muni.cz/~xsvenda/securefw.html

8. The hardware and software described in appendix A.2 was used to do the tests.
9. http://www.openssl.org/
10. Command used: time openssl aes-128-ecb -k fi.muni.cz -in /tmp/input_file -out /dev/null
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Test Result Additional info. OpenSSL result

generate WB AES 8.48 s avg. 100 samples
throughput, 1 MB random 867.8 KB/s 1.18 s 57283 KB/s
throughput, 10 MB random 1022.977 KB/s 10.01 s 54179 KB/s
throughput, 100 MB random 1028.319 KB/s 99.58 s 74744 KB/s
throughput, 1024 MB random 1124.792 KB/s 932.24 s 63723 KB/s
throughput, 1 MB null 975 KB/s 1.05 s 93091 KB/s
throughput, 10 MB null 969.970 KB/s 10.56 s 68821 KB/s
throughput, 100 MB null 1058.507 KB/s 96.74 s 56356 KB/s
throughput, 1024 MB null 1050.593 KB/s 998.08 s 57283 KB/s

Table 4.2: Results of the benchmark for whitebox AES generator

The demonstration of the attack is included in the implementation. At first the new
whitebox AES is generated. Then the set S is computed by composing functions y0. The ψ
recovering follows. This first step of the attack is performed for rounds 0 . . . 7. The same
would be possible for the round 8 but the implementation would be complicated due to
type I tables. When this step finishes, the IO bĳections on particular round boundaries are
affine and matching. This modified cipher is tested with AES test vectors to verify the attack
managed to transform IO bĳections properly. The first step takes the 1/3 of the time needed
for the attack approximately.

Note it is not required to transform all possible non-linear IO bĳection to affine bĳections.
In order to finish the attack it needs to be done only for 3 consecutive rounds.

Parts of the affine transformations are gradually recovered in the rest of the attack. The
attack ends by printing out the symmetric key that was embedded to the whitebox AES.

The benchmark of the attack is part of the implementation. The average time needed to
break whitebox AES was 46.8 s (sample size = 10).
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The BGE attack [5] strongly relies on publicly known constants and building blocks used
in the AES cipher (MixColumn constants, fixed S-box). This leads us to an idea of turning
constant part of cipher into key dependent ones, according to Kerckhoffs’s principle.

It should increase computational complexity of the attack since an attacker would have
to try all combinations of key dependent part of the cipher. In the ideal scenario the attack
will be unfeasible due to high computational complexity.

As we know, AES S-box is constant and has relatively simple algebraic form. In blackbox
context, it is quite difficult to construct algebraic equations for whole AES (this was one of
design criterion of AES in order to prevent possible algebraic attacks), but the BGE attack
aims only on one round of the cipher and from this perspective it is quite easy to construct
algebraic equations for 1 round - as we seen in the BGE attack, this is what makes AES
vulnerable to algebraic attacks in the whitebox context.

In the whitebox implementation of the cipher we have two contrary goals - to minimize
table size and to prevent an attack in the whitebox context. Table size is what puts quite
limitations in the implementation and on security boundaries. In one extreme case we would
build look-up table for whole AES for every possible input with total size

(
2128 · 16

)
> 1039

bytes. This scheme is no weaker than AES in blackbox context, therefore with the same level
of security in whitebox context, but rather unfeasible in practice.

As we seen in the BGE attack it is easy to turn random non-linear IO bĳections, protect-
ing table contents from the local analysis, to the affine transformations between rounds of the
cipher, what helps further algebraic analysis. From this reason, constructing more compli-
cated non-linear IO bĳections is probably not the way how to solve this problem. Whitebox
construction should not solely rely on the non-linear IO bĳections [5, 36].

Widely used ciphers nowadays were designed also with the goal to be effectively imple-
mented in a hardware (one of the criterion in AES contest). It influenced a design of the
cipher building blocks such as size of a diffusion layer, matrix coefficients (lower are better),
recycling of cipher primitives in a key-schedule algorithm, etc... Such additional restrictions
do not lower security level of the cipher usually, because of the iterating round function, but
this can be problem in WBC.

To summarize the weaknesses of the ciphers used to mount the whitebox attacks:

• simple key-schedule (reversible, forward/backward)

• key whitening technique

• publicly known, constant (key-independent) primitives
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• weak round function, simple algebraic description

• use of diffusion elements that are easy to remove in the whitebox context (e.g. ShiftRows
in the AES)

• diffusion element with low diffusion power with respect to the one round of the cipher,
i.e. low dependency of output byte from round function on input bytes (1 output byte
of the AES round function depends on 4 input bytes)

As the AES in a standard form is not suitable for the WBC implementation, we are
proposing to break the backward compatibility with AES (or any other well known cipher)-
as it does not have proper structure for whitebox implementation, what is also visible from
the fact there are no non-broken whitebox scheme of AES nowadays, as far as we know. The
whitebox schemes using new techniques to protect cipher implementation (but still preserving
backward compatibility with the cipher) were successfully cryptanalyzed effectively [5, 36, 40,
38]. In literature was already proposed to design a new cipher with whitebox implementation
issues in mind [5, 44].

In our proposal of a new cipher suitable for WBC implementation we are addressing
the aforementioned weaknesses. The base of our cipher is AES since it uses widely accepted
cipher building blocks and structure, it was extensively analyzed and is in general considered
as a secure cipher.

Our modifications of the AES consist of:

• key-dependent S-Boxes

• non-reversible, strong, key schedule

• stronger (output byte dependence on input bytes), key-dependent diffusion element

In our proposal, we took inspiration from the Twofish [31] cipher which has key dependent
S-boxes with rather complicated algebraic representations. As emphasized before, the key idea
here is to make expressing one round of the cipher as algebraic equations more difficult for
an attacker. Our scheme uses Twofish-like key dependent S-boxes in AES algorithm.

5.1 Twofish S-boxes

Here observe the Twofish S-boxes (from [31]) and their algebraic representation.

s0,k0,k1
(x) = q1 [q0 [q0 [x]⊕ k0]⊕ k1] (5.1a)

s1,k2,k3
(x) = q0 [q0 [q1 [x]⊕ k2]⊕ k3] (5.1b)

s2,k4,k5
(x) = q1 [q1 [q0 [x]⊕ k4]⊕ k5] (5.1c)

s3,k6,k7
(x) = q0 [q1 [q1 [x]⊕ k6]⊕ k7] (5.1d)
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function hashes per second
SHA1 63 G/s
MD5 180 G/s
BCrypt 71 K/s

Table 5.1: Hash functions performance comparison

Where q0, q1 are fixed 8-bit permutations, ki, i ∈ [0, 7] are key bytes, sj,ka,kb , j ∈ [0, 4] are
resulting S-boxes.

Thus instead of fixed AES S-box we use the Twofish key dependent S-boxes. In particular
we use sj,ka,kb , j ∈ [0, 4] instead of four the same constant S-boxes in computation of one
column of the state matrix - approach consistent with use of S-boxes Twofish algorithm
(diffusion element is connected to the output of S-box).

In the blackbox context there is a disadvantage for the use of key dependent S-boxes, since
it takes some time to generate them, for each encryption key, but in the whitebox context the
whole cipher is generated before use, including S-boxes, so during the encryption/decryption
there is no such disadvantage anymore.

5.2 Key schedule

The part of the BGE attack also make use of reversible AES key-schedule, to obtain an
encryption key. It is only needed to obtain round keys for two consecutive rounds of the
cipher in order to obtain full encryption key.

In order to avoid this reversing we propose to modify the key-schedule. In particular
we suggest to use hash-chains as round keys, so an attacker would not be able to combine
knowledge of two consecutive rounds as is done in the BGE attack.

We suggest to use bcrypt [47] or scrypt [48] as a hash function for generating hash chains.
We could also use iterated SHA hash function for this purpose, but the main reason we
are proposing bcrypt or scrypt is the fact SHA has been very successfully implemented in a
hardware (ASICS chips, for Bitcoin1 mining), with performance 1500 G hashes per second
for one device [49]. Also the Bitcoin economy is based on SHA hash function, so there is
motivation to build machines specialized on computing SHA hashes - making brute force
attacks on SHA easier.

As an illustration consider [50], where M. Gosney used a cluster made of GPUs (general
purpose hardware) and benchmarked hash functions from performance perspective, for details
see table 5.1. Bcrypt is by orders of magnitude slower than SHA1, almost by factor 106. This
makes brute-force attack practically unfeasible on the general purpose hardware.

1. http://bitcoin.org/en/
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From this reason we propose to use hash functions that were specifically designed to
take a long time to evaluate (bcrypt, scrypt) and/or to be more difficult to implement in a
hardware (contrary to standard hash functions like SHA, MD5).

Note that as key-schedule is done during preparation of whitebox instance (generating
tables) of a cipher, there is no time penalty during usage of the implementation.

In AES-128 we have 128 bit cipher key, k0, . . . , k15. We define kri to be round key byte
i ∈ [0, 15] used in round r ∈ [0, 10].

We define hash function used further in our modified key schedule:

hash (inp, salt)Nbc,Nsha = bcrypt
(
Nbc, salt,SHA-256Nsha (inp)

)
(5.2)

Where we have 2 security parameters in this scheme. Nbc is a work load for bcrypt, determines
computation complexity of bcrypt hash function. Nsha is a number of nested iterations of
SHA-256 function.

With this we define key-schedule for our new cipher:

kri =

{
hashNbc,Nsha(key, salt)i if r = 0

hashNbc,Nsha(k
r−1 || key, salt)i otherwise

(5.3)

Where

i subscript on the right side stands for i-th byte of resulting hash

key is an encryption key, 128 bits

kr−1 is a whole round key for round r − 1

|| symbol is concatenation of two binary arguments

salt is arbitrary 128 bit salt used in bcrypt algorithm. This can be publicly known - pub-
lished together with the ciphertext or in particular whitebox cipher instance.

Equation for kri is chosen with two primary goals in mind, an attacker is not able to:

1. derive the encryption key from two (or more) consecutive round keys. This results from
the infeasability of reversing hash chain. We are also using computational intensive
hash function so even brute-forcing is unfeasible.

2. derive the round key for r1−1 or r2 +1 if he already has round keys for rounds [r1, r2].
Unavailability of deriving round key for r1−1 results from the previous argument, but
here is also important that from already derived round keys we are not able to derive
next ones (when compared to standard AES) since it also depends on the encryption
key directly.
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5.2.1 Key bytes for S boxes

In order to increase strength of the proposed scheme we don’t use round key bytes for S-box
computation directly. If someone succeeds in determining this round key bytes by computing
the Proposition 3 from the BGE attack for all key bytes possibilities, it could help to derive
the round keys.

From this reason we use completely different keys for the key-dependent S-boxes that in
the rest of the cipher.

kr ′i =

{
hashNbc,Nsha(key || ”magicConstant”, salt)i if r = 0

hashNbc,Nsha(k
r−1 ′ || key || ”magicConstant”, salt)i otherwise

(5.4)

The equation 5.4 is the same as 5.3 with only difference of concatenation of a "magic-
Constant". This makes two hash chains (one for round keys, one for S-boxes) completely
different and non-transformable one to another.

5.3 Diffusion layer modification

In section 3.3.4 was mentioned the cipher invertibility. We suggest to extend input/output
space of the round function from 32-bits to 128-bits, raising complexity of mentioned inverting
attack to 10 · 4 · 2128 operations. In AES one byte of the state array depends only on 4 bytes
= one column of the state array. Round function of AES acts independently on 4 columns,
making it easy to invert it.

The proposed improvement is in changing a MDS (Maximum Distance Separable) matrix
from 4 × 4 to 16 × 16. Then would one byte of the state array depend on 16 bytes, making
round function 128-bit wide.

MDS matrix acts as a diffusion element in the cipher, since our cipher belongs to substitution-
permutation cipher category. Our MDS matrix represents invertible linear mapping. The
important metric for its security is branch number [51], it gives measure on the worst case
diffusion. If the diffusion matrix has a maximal possible branch number, it is optimal. AES [3],
Twofish [31] and SHARK [52] ciphers are using MDS matrices optimizing the branch number
as a main security measure of diffusion layer.

For generating such MDS matrices is particularly interesting following proposition from
SHARK cipher paper [52] (for the proof see the original paper).

Proposition 3. Let C be a (2n, n, n+ 1)-code over the Galois field GF(2m). Let Ge be the

generator matrix of C in echelon form:

Ge =
[
In×n Bn×n

]
(5.5)

Then C defines an optimal invertible linear mapping γ:

γ : GF(2m)n → GF(2m)n = X 7→ Y = B ·X (5.6)
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Recall that (2n, n, n + 1)-code is MDS 2. Reed-Solomon codes are subset of the MDS
codes, so their parity-check matrix can be used as MDS matrix in the cipher acting as a strong
diffusion element. The MDS matrices derived from the Reed-Solomon codes are used by many
ciphers, for example Twofish, Shark.

In our case we would be interested in (32, 16, 17)-code, to obtain 16 × 16 MDS matrix
with wanted properties.

Another way how to generate the MDS matrices is described in [53] using Cauchy matri-

ces3.
It is important to mention that ciphers using the MDS matrix as the diffusion element

usually put additional requirements on the MDS matrix, also optimizing the performance
and simplicity of a hardware implementation. In the blackbox context it is usually the secu-
rity/performance trade off. In the whitebox context we need to have a diffusion element very
strong, so we can sacrifice the performance in order to increase a security.

Also an article [54] mentions AES diffusion layer modification from 4 × 4 to 16 × 16

MDS matrix, argumenting with a stronger security within one round, what is particularly
interesting in the whitebox context. They constructs the MDS matrix using Cauchy matrices.
Cauchy matrices depend on the first row only, this increases a possible diversity of 16 × 16

MDS matrices helping the following idea - a key dependent diffusion element.
Consider also idea to have key-dependent MDS matrices. If we can generate the set SMDS

of MDS matrices representing an optimal linear mapping, their selection can be based on a
key-dependent criteria. Set SMDS can be also extended using following proposition from [55].

Proposition 4. Let B = [bi,j ]n×n , bi,j ∈ Fq an MDS matrix, for an element e ∈ Fq, e 6= 0,

e ·B is an MDS matrix.

Having key-dependent diffusion layer also complicates whitebox attacks, namely the BGE
attack [5] and the Generic attack by Michiels [36] requires known MDS matrix coefficients
(thus key-independent).

5.4 Analysis

In this chapter we try to analyze the suggested scheme improvements from the whitebox
point of view, particularly we try to mount the BGE attack to this modified variant. Note
the diffusion layer modification is not assumed here, but in the next section.

S-box definitions are needed in proposition 3 in BGE attack where we obtain 4 affine

2. (n, k, d)-code is MDS iff d = n− k + 1
3. http://www.proofwiki.org/wiki/Definition:Cauchy_Matrix
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Figure 5.1: Computational diagrams of AES and MDS-AES (taken from [54])

mappings.

P̃0 : x 7→
(
S−1 ◦ Λδ0 ◦ Ã

−1
0

)
(y0 (x, 00, 00, 00)) (5.7a)

P̃1 : x 7→
(
S−1 ◦ Λδ1 ◦ Ã

−1
0

)
(y0 (00, x, 00, 00)) (5.7b)

P̃2 : x 7→
(
S−1 ◦ Λδ2 ◦ Ã

−1
0

)
(y0 (00, 00, x, 00)) (5.7c)

P̃3 : x 7→
(
S−1 ◦ Λδ3 ◦ Ã

−1
0

)
(y0 (00, 00, 00, x)) (5.7d)

In our implementation of the BGE attack we iterate over (δi, ci)i=0,...,3 ∈ GF
(
28
)
×GF

(
28
)

what gives complexity 216 for one mapping. In each step is mapping checked for an affinity
in 28 steps (for the affinity check algorithm see A.5), altogether one relation takes 224 steps,
for all relations 226 steps.

Here is the place where we use public knowledge of AES S-Box definitions. One way how
to mount the BGE attack to this modified variant is to guess also a particular S-box mapping
for each P̃ and to test it for affinity.

Equations 5.1 describe Twofish S-boxes. There are 216 possible s0 S-boxes. One S-box
mapping stored as look-up table takes 28 bytes. Thus pre-computed s0 s-box for all possible
key bytes would take 28 · 216 = 224 > 107 bytes.
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Even if an attacker determines round keys for S-boxes it will be completely useless for
further extraction of the cipher key since the hash chains are different.

Twofish S-boxes thus increase a complexity of the Proposition 3 from the BGE from 224

to 240 steps. This is still not strong enough, it is a highly parallelizable problem. In order to
increase the work needed to mount the Proposition 3 attack, one could redefine key-dependent
S-boxes to increase attack complexity to level 2128, what is larger than best known attack on
AES [56]. We then would need S-box to depend on 13 bytes derived from the encryption key.
Upper bound on number of different non-linear S-boxes is 256! ≈ 8, 5 · 10506 so there are still
options to expand the S-box space.

s′j (x) = sboxgen(j, 12, x) (5.8)

The S-box is generated recursively by a sboxgen (defined in 5.9), following the idea of
nesting fixed permutations with addition of the round key:

sboxgen(j, l, x) =

{
q′j,0 [x]⊕ kj+1 if l = 0

q′j,l [sboxgen (j, l − 1, x)]⊕ k(j+1)·(l+1) otherwise
(5.9)

Where q′j,l is one of two fixed Twofish 8-bit permutations. In order to select a good sequence
of nested permutations, a deeper analysis woudl be needed, to avoid possible weaknesses
induced by composing inappropriate permutations together. We can choose for example:

q′0 =
[
q1 q0 q1 q0 q1 q0 q1 q0 q1 q0 q1 q0 q0

]

q′1 =
[
q1 q1 q0 q0 q1 q1 q0 q0 q1 q1 q0 q0 q1

]

q′2 =
[
q0 q0 q1 q1 q0 q0 q1 q1 q0 q0 q1 q1 q0

]

q′3 =
[
q0 q0 q0 q1 q1 q1 q0 q0 q0 q1 q1 q1 q1

]

(5.10)

We suggest to study linear/affine self-equivalences [46] as a part of an further analysis of
the S-boxes generated by this algorithm.

Proposed S-Boxes give us a good security margin for the BGE attack, raising computa-
tional complexity to 2128 steps. Pre-computed s0 S-box for all possible key bytes would take
28 · 28·13 = 2112 > 1033 bytes.

Also, as long as are SHA-256 and bcrypt uncracked, key extraction should be unfeasible,
since it is not possible to invert the hash easily.

The proposed cipher modifications affects only S-boxes and round keys, so other parts of
the BGE attack are not affected, namely transforming non-linear parts to affine, the Propo-
sitions 1 and 2 work as before modifications.

The cipher modifications don’t increase table sizes, because modifications are made only
in S-box definitions and key-schedule - both parts of the cipher are already evaluated and
stored in the look-up tables. Our modifications also don’t affect the encryption/decryption
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performance since the only difference is made during particular whitebox instance (look-up
tables) generation. An encryption/decryption algorithm itself is not affected.

5.5 Analysis of diffusion layer modification

Taking also the section 5.3 into account will result in bigger look-up tables. Mainly type II
tables are affected, previously it was mapping 28 → 232, with cascade of XOR tables to sum
four 32-bit values to obtain one column of state array. Now type II tables are 28 → 2128,
with cascade of XOR tables to a obtain whole state column vector. The cipher with modified
structure uses type I tables instead of type II tables. Cascade of XOR tables is working in
the same manner as in the external encodings in the first and the last round.

Table 5.2 summarizes changes in table sizes of WB AES. From this is visible that they
come at a substantial price (215%) compared to the original whitebox AES implementation.

Type
original modified

# of tables bit-width total size # of tables bit-width total size
I 4 · 4 · 2 = 32 8→ 128 131072 B 4 · 4 · 2 = 32 8→ 128 131072 B
II 4 · 4 · 9 = 144 8→ 32 147456 B 4 · 4 · 9 = 144 8→ 128 589824 B
III 4 · 4 · 9 = 144 8→ 32 147456 B 4 · 4 · 9 = 144 8→ 32 147456 B

IV
8 · 6 · 4 · 9 = 1728 8→ 4 221184 B 8 · 3 · 4 · 9 = 864 8→ 4 110592 B
8 · 4 · 15 · 2 = 960 8→ 4 122880 B 8 · 4 · 15 · 2 = 960 8→ 4 122880 B

IV 8 · 4 · 15 · 9 = 4320 8→ 4 552960 B

Total
770048 B 1654784 B
752 kB 1616 k B

Table 5.2: Whitebox implementation size with/without our modifications

From the security point of view this modifications also prevent the inverting attack men-
tioned in section 3.3.4. The function is now too wide to be inverted by running over GF

(
28
)16.

The key-dependent MDS matrix also prevents mounting the BGE attack. In particular
we don’t know MixColumn matrix coefficients so we are not able to construct the set β from
the section 3.3 in [5]. This leads to further ambiguities so the Proposition 2 and 3 from the
the BGE attack won’t work anymore. This also makes complete recovering of I/O encodings
unfeasible, using this attack. The transformation of random IO bĳections to affine is not
affected by these modification, but the parameters of the affine IO bĳections are unkown.

As noted above, also the Generic attack by Michiels [36] requires known MDS matrix
coefficients, that are not known in our proposal due to their key-dependency.
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5.6 Drawbacks

By modification of an AES design we are coming up with a new cipher, what could also bring
some possible problems. AES and Twofish have advantage of being well analyzed from the
blackbox context and being relatively secure. Designing a new cipher may help to increase
security level in whitebox context but there also may be weaknesses in the blackbox context.
It would be needed to analyze the new cipher from this point of view, for example for a
resistance to the linear or differential cryptanalysis.

We tried to design the scheme improvements following the standard established principles
for a designing a secure block cipher, inspired by AES, Twofish, Shark and others. However,
there is no guarantee that the proposed cipher is strong enough to resist classical blackbox
context cryptanalysis.
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6 Future work

As a future work we would like to study the blackbox properties of suggested improved
cipher. In particular, it is worth to study the S-box construction and to test it for possible
weaknesses. It will be needed to model S-boxes as algebraic equations and to perform various
test, e.g. number of fixed points. One can also study these S-boxes and their differential /
linear probability coefficients (measuring a resistance of the S-box to a differential / linear
cryptanalysis). Testing S-boxes for Square and linear approximation attacks are also possible
research directions.

The resistance to the BGE attack results from dependence on 13 round key bytes. If one
shows that S-box space is smaller than assumed, it can be a vulnerability that can be exploited
by a whitebox attack. Possible, a deeper study of the key-dependent S-boxes construction
will be needed. One could also analyzethe key-dependent S-boxes of another ciphers, e.g.
Blowfish [57].

We are proposing the systematic generation of the MDS matrices in the previous chapter.
It would be needed to analyze the size of the MDS matrix space and the contribution of the
key-dependence to the increasing resistance to attacks.

We would like to examine attacks on whitebox implementations, where each round of the
cipher is considered as a single mini-cipher with its own key. The whitebox cipher imple-
mentation then would be a network of serially connected mini-ciphers. From this point of
view, we would be interested in a resistance of the mini-ciphers to a linear and differential
cryptanalysis.

From the fact the cryptanalysis uses algebraic approach to break the AES based scheme,
it would be needed to study and adapt ideas from schemes with a complex algebraic repre-
sentation, in order to make the algebraic analysis more difficult. For example an IDEA [58]
is a cipher with a complex algebraic representation. The design of IDEA is supported by
a careful analysis of the interaction and algebraic incompatibilities of operations across the
groups (Fn2 ,⊕), (Z2n ,⊞) and

(
Z
∗
2n+1,⊙

)
[2].

Since the basic building block, look-up tables with XOR function, is vulnerable to recov-
ering non-linear bĳections, what enables to mount a potential algebraic attack, it is needed
to come up with new building blocks, resistant to this kind of attacks. Possibly adding some
noise could help in constructing new, probabilistic building blocks.

The important part of the further research should also be devoted to an analysis of known
hard problems and their possible use in whitebox cryptography. Incorporating such a hard
problem to a cipher should not limit its proper use, and what is more, it should be difficult
for an attacker to break such scheme.
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7 Conclusion

This thesis gives an introduction to a computing in an untrusted environment and summarizes
current state of the art in this field, focusing mainly on the obfuscation, fully homomorphic
encryption and whitebox cryptography.

Foundations and the basic building blocks used in whitebox implementations were ex-
plained. The thesis further goes through the construction of classical and new whitebox
schemes using AES. The proof that scheme using dual ciphers is not more secure than the
classical one was given. This result is new and was not published before. The thesis also
describes implementation of those schemes and the attack. The implementation is publicly
available so that researches interested in whitebox cryptography could use it, test their new
improvements and attacks, since it aims at providing flexible framework for whitebox appli-
cations.

The thesis also suggests some new improvements that should increase a resistance to the
algebraic attack, with following analysis of the improvements. But there is still a work to be
done toward making whitebox implementation secure. The current state of the art suggests
new primitives must be discovered, since no strong whitebox non-broken implementation
is known. As the literature [5, 44] suggest, in order to design a strong scheme, new and
innovative approaches has to be used. It is suggested to design a new cipher, with whitebox
implementation pitfalls in mind. This thesis attempted to make such a small step toward this
target by modifying the design of AES, introducing key-dependent building blocks.
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A Appendix A

A.1 Attachments

The electornic archive of this thesis contains an archive impl.tgz that contains implemented
algorithms. Note that in order to compile it NTL library is needed to be installed on the
system.

The following list puts files with given file name prefix and implemented algorithm into a
relation:

• NTLUtils contains some helper methods for NTL library

• MixingBijections contains algorithm for generating mixing bĳections as described
in the sections 3.3.3 and 4.3.3

• LinearAffineEq contains algorithm for finding linear and affine equivalences as de-
scribed in the sections 4.1.5 and 4.3.4

• GenericAES implements generalized AES, with adjustable irreducible polynomial and
generator, as described in the section 4.1.2

• WBAES implements both whitebox AES scheme described by Chow et al. [4] and Kar-
roumi [1]

• WBAESGenerator contains algorithm for generating schemes mentioned in the previous
point

• BGEAttack implements the BGE attack as described in the sections 3.4 and 4.4

• main contains benchmarking tests, compiles to binary executable code, use --help for
more details

A.2 Hardware and software specifications

Several performance tests were performed in this thesis, here is a detailed description of used
hardware and software.

A.3 Squaring matrix

Here is shown how to compute matrix Q from the section 4.1.5 that represents squaring
operation in GF

(
28
)
. Consider the following proposition:
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Component Specifications Additional information

CPU
Intel R© Core

TM

i5 M 560 @ 2.67GHz 64-bit, 4 thread cores
http://ark.intel.com/products/49653 3 MB cache

RAM
2 x 4 GiB SODIMM DDR3 Synchronous 1067 MHz

width: 64 bits
Kinston 9905428-005.A02LF

OS Fedora 15 kernel 2.6.42.9-2.fc15.x86_64

Proposition 5. ∀a, b ∈ GF
(
28
)

: (a+ b)2 = a2 + b2.

Proof. From binomial theorem, assume general case, a, b ∈ GF(pm), where p is prime.

(a+ b)p = ap +
p−1∑

k=1

(
p

k

)
ap−kbk + bp = ap + bp

since
(p
k

)
is multiple of p for 0 < k < p (from binomial coefficient definition) and multiples of

p are 0 in GF(pm). (
(p
k

)
/∈ GF(pm) is coefficient, so it is reduced mod p). To finish proof let

p = 2.

Proposition 6. ∀a, b ∈ GF
(
28
)

: (a+ b)2 = a2 + b2 ⇒ squaring in GF
(
28
)

is linear

operation which is equivalent to matrix multiplication with coefficients from GF (2).

Proof. Let’s have a ∈ GF
(
28
)
. Elements from this field are represented as polynomials, in

polynomial basis
[
x0 x1 x2 x3 x4 x5 x6 x7

]
. Thus we can write: a =

∑7
i=0 ai · x

i

where ai ∈ GF (2). Also note that ai = a2
i , because GF (2) = ({0, 1},+, ·), so 0 = 02 ∧ 1 = 12.

Thus we can write

a2 =

(
7∑

i=0

ai · x
i

)2

=
7∑

i=0

a2
i · x

i2 =
7∑

i=0

ai · x
i2 =

7∑

i=0

xi
2

· ai =

(
7∑

i=0

xi
2

)
· a = Q · a

Thus the squaring matrix is Q from the proof. It holds that GF
(
28
)
≃ GF (2)8 since finite

fields with the same number of elements are isomorphic. We use this isomorphism to obtain
matrix Q. It is enough to transform polynomial base in GF

(
28
)

to vector base in GF (2)8. It
is easy to see that:

[
x0 x1 x2 x3 x4 x5 x6 x7

]
GF(28)

7→
[
e1 e2 e3 e4 e5 e6 e7 e8

]
GF(2)8

= I8, GF(2)8

Where ei is i-th base vector from standard base.
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Now it is obvious how to construct matrix Q:

Q =




1 0 0 0 1 0 1 0

0 0 0 0 1 0 1 1

0 1 0 0 0 1 0 0

0 0 0 0 1 1 1 1

0 0 1 0 1 0 0 1

0 0 0 0 0 1 1 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 1




GF(2)8

A.4 Multiplication matrix

In this section is described how to construct a 8× 8 matrix [a] with coefficients from GF (2)

that represents multiplication by constant a ∈ GF
(
28
)

in GF
(
28
)
. It uses the same technique

as in section A.3, using isomorphism.

Recall uGF(28) =
∑7
i=0 ui · x

i 7→
[
u0 · · · u7

]T
GF(2)8

=
∑8
i=1 ui−1 · ei where ui ∈ GF (2).

Multiplication is linear transformation, so let’s denote multiplication by a as La : GF (2)8 →

GF (2)8 . Now from linearity:

La(u) = L

(
8∑

i=1

ui−1 · ei

)
=

8∑

i=1

ui−1 · La(ei)

=
8∑

i=1

La(ei) · ui−1 =
[
La (e1) . . . La (e8)

]
·




u0
...
u7




Thus matrix [a] has form:

[a] =
[
La (e1) . . . La (e8)

]
GF(2)8

A.5 Affinity check

In this section we describe affinity check needed in proposition 3 of the BGE attack. We are
given relation P̃ as a look-up table and the task is to test it for affinity. If P̃ is affine it must
hold:

P̃ (x) = M × x⊕ c (A.1)

For some square matrix M with coefficients from GF(2) and constant c ∈ GF
(
28
)

(or equiv-
alently 8× 1 vector with coefficients from GF(2)).
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By evaluating P̃ (0) = c we obtain affine constant c so we derive new mapping P̃ ′, reducing
the problem to test P̃ ′ for being linear.

P̃ ′ (x) = P̃ (x)⊕ c (A.2)

And from linearity the following formula must hold:

∀x ∈ GF
(
28
)
, ∃! kj ∈ {0, 1}, j ∈ [0, 7] : x =

7∑

j=0

kj · P̃ ′ (ej) (A.3)

It says that each element from the field has to be unique sum of its basis vectors. Assuming
that P̃ ′ is linear, we can obtain mapped base vectors for this transformation easily as gj =

P̃ ′ (ej). Now it is visible that time complexity is 28.

Algorithm 2 Algorithm for testing given mapping for being affine

1: function isAffine(P̃ : GF
(
28
)
7→ GF

(
28
)
) ⊲ Determine if P is affine mapping

2: c← P̃ [0] ⊲ c is affine constant
3: P̃ ′[x]← P̃ [x] + c ⊲ 28 time complexity
4: isAffine← true

5: for x← 0, (28 − 1) do

6: px← P̃ ′[x]

7: cx← 0

8: for i← 0, 7 do

9: if xi = 1 then ⊲ xi is i-th bit of x in binary
10: cx← cx⊕ P̃ ′ [ei] ⊲ P̃ ′ [ei] is mapped base vector
11: end if

12: end for

13: if px 6= cx then ⊲ cx is expressed via mapped base vectors
14: isAffine← false

15: return

16: end if

17: end for ⊲ All elements from field checked for linearity
18: return isAffine

19: end function
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